
Algant Master Thesis
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mia interminabile serie di non-necessariamente-strettamente-pertinenti do-
mande e per avermi assiduamente invitato a sperimentare la libertà che la
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Introduction

The aim of this thesis is to give a proof of a fundamental result which relates
the classical Galois Cohomology theory with the “broader” Étale Cohomol-
ogy theory. More specifically we will prove that the category of continuous
modules for the action of the absolute Galois group Gk of some field k is
equivalent to that of the abelian sheaves on the étale site Spec(k)ét. It will
follow that the Galois cohomology groups can be equivalently computed as
étale (sheaf) cohomology groups on the spectrum of k. In order to properly
define the étale cohomology groups we will have to develop a rather abstract
machinery. In chapter I we will introduce the fundamental notion of étale
morphism of schemes which somehow mimics the notion of local diffeomor-
phism of differentiable manifolds. If we were to express this concept by
means of a formula we would write

étaleness = unramifiedness ∩ flatness.

We will first give the “classical” definition via local morphisms of local rings.
At a later time the functor of points will enter the scene enabling us to
rephrase étaleness for scheme morphisms in a wholly categorical fashion.
Chapter II will deal with the delicate matter of widening our standard con-
ception of topology on a space in favour of the much more abstract notion
of Grothendieck topology on a site. This last tool will overshadow the role of
points (of primary importance in Top) emphasizing on the other hand the
role of the objects of the chosen category which will act like open subsets in
a topological space. We will define sheaves on a site and we will develop the
particularly suitable notion of canonical site (on a category). Armed with
these tools we will prove a couple of equivalences that involve the category
of sets with a left action of a group G and the category Sh(TG) of sheaves of
sets on the canonical site on the former category itself. This result will easily
extend to the case of G-modules and abelian sheaves. We will be especially
interested in the case of continuous G-modules and abelian sheaves on the
continuous canonical G-site. In chapter III we will consider the étale site
Sét of a scheme S, whose underlying category Ét/S has objects the étale
schemes over S and we will introduce the key notion of this thesis, namely
the étale cohomology of a scheme with values in a sheaf on the site Sét.
Next we will consider the case when S = Spec(k) with k a field. We will

vii
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prove the essential result which gives us an isomorphism of sites between
Spec(k)ét and the continuous canonical site T C

Gk
, where Gk denotes the ab-

solute Galois group of k. We will end this chapter giving a proof of the main
theorem of this thesis which relates the category of abelian sheaves on the
site Spec(k)ét and the category of continuous Gk-modules. From this we will
be able to recover “classical” Galois Cohomology theory, which originates as
way of measuring the non-exactness of the fixed-point functor with source
the category of continuous Gk-modules, in terms of the étale cohomology
of the one-point scheme Spec(k) with values in an abelian sheaf over the
étale site associated to this scheme. In chapter IV we will present the very
basics of Galois Cohomology in its classical fashion, mainly following the
homonymous cornerstone of the subject edited by Serre. Lastly in Chap-
ter V we will propose a nice application of the main theorem; namely we
will recover Hilbert Theorem 90 (one of the fundamental results of classical
Galois Cohomology) in an étale way.



Notation

Everytime we write “ring” we mean “commutative ring with 1” and we de-
note with just CRing the category of commutative unitary rings. Everytime
we write X ∈ C (where C here denotes a category) we mean X ∈ Ob(C).
When we have an arrow f ∈ Mor(C) we simply write f ∈ C. We denote
with Iso(C) ⊆ Mor(C) the set of isomorphisms in the category C. In the
sequel we will also use the terms “map” or “arrow” to refer to the notion
of morphism in a certain category C. Everytime we say “F is a functor”
we mean “F is a covariant functor”. Given two functors F,G : C → D, we
write F ' G to denote an isomorphism of functors between the two. Also
we denote with Nat(F,G) the collection of all natural transformations (or
“morphisms of functors”) between F and G. Given two categories C and
D, we denote with Func(C,D) the collection of all functors from C to D.
For any X ∈ C, we set hX := HomC(X,−) and hX := HomC(−, X). We
set Maps(A,B) := HomSet(A,B), for any A,B ∈ Set. Whenever we write
“neigh” we mean “neighbourhood”. Fld denotes the category of fields and
field extensions. Given R a ring, J(R) denotes its Jacobson radical (ideal).
The symbol ≈ is used to denote homeomorphisms (i.e. the isos in Top).
Given X ∈ Top we denote with PSh(X) and Sh(X) resp. the category of
presheaves and of sheaves of sets on X. More generally, given X ∈ Top and
C a category, we denote with C(X) and with PC(X) the category of C-valued
presheaves and sheaves on X. When we deal with a site T = TC , we use the
same kind of notation just with T in place of X. We write G-Set to denote
the category of left G-sets, whereas with Set-G we denote the right G-sets.
We use the terms mono, epi and iso respectively for monomorphism, epimor-
phism and isomorphism. Given G ∈ Grp and A ∈ G-Mod we denote with
AG the set of G-invariant elements of A. Given X ∈ Top we denote with
OpX the category whose objects are the open subsets of X and whose arrows
defined setting HomOpX (V,U) := ∅ if V * U and HomOpX (V,U) := {pt}
otherwise.
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Chapter 1

Algebra

“Non devo ascoltarla
o non termineró la [mia] rivoluzione.”.

— Lenin V.I.U.

1.1 Finiteness conditions

Definition 1.1. cp. [Bourb, ch. I, §2, no.8, p. 20] Let A be a ring. Let E be
a left A-module (the definition can be given analogously for right modules).
We define a presentation for E to be an exact sequence of left A-modules

L1 → L0 → E → 0 (1.1)

where L1 and L0 are free A-modules.

Proposition 1.2. Every (left) A-module E admits a presentation.

Proof. Every A-module E can be written as a quotient of a free A-module
L0, hence we have a morphism of A-modules ϕ0 : L0 � E; similarly we get
a morphism ψ : L1 � ker(ϕ0), with L1 free A-module; composing ψ with
the inclusion ker(ϕ0) ↪→ L0, we get the second desired A-module morphism
ϕ1 : L1 → L0.

Definition 1.3. Given a (left)A-module E and P = (L1, L0) a presentation
of E, we say that P is finite, if both L1 and L0 have finite bases as free
A-modules. We call E a finitely presented A-module, if E admits a finite
presentation P.

Here below we give some more concrete definitions for finiteness condi-
tions on ring morphisms:

1



2 CHAPTER 1. ALGEBRA

Definition 1.4. Let f : A→ B be a morphism of rings. We say that:

1. f is finite, if B is finitely generated as an A-module;

2. f is of finite type, if B is finitely generated as an A-algebra;

3. f is of finite presentation, if B is finitely generated and finitely
related as an A-algebra.

Remark 1.5. Rephrasing the above definitions:

1. B ∼=A-Mod A
⊕n/I (I ⊆submod A⊕n, n ∈ N);

2. B ∼=A-Alg A[x1, . . . , xn]/I (I ⊆ideal A[x1, . . . , xn], n ∈ N);

3. B ∼=A-Alg A[x1, . . . , xn]/(f1, . . . , fm) (fi ∈ A[x1, . . . , xn], m, n ∈ N).

A choice of a surjection A⊕n � B or A[x1, . . . , xn] � B is called a pre-
sentation of B.

Let’s now recall some basic notions about schemes. Everytime we are given
an arrow in Sch, we are indeed dealing with a pair f = (f, f ]) : (X,OX)→
(S,OS), where

� (f : X → S) ∈ Top

� (f# : OS → f∗OX) ∈ CRing(S)

such that the induced ring morphisms on the stalks OS,f(x)
f#
x−−→ OX,x are

local, (which means f#
x (mf(x)) ⊆ mx). Given (X,OX) ∈ Sch and (S,OS) ∈

AffSch we have the following contravariant adjunction on the right:

HomCRing(A,OX(X)) ∼= HomSch(X,Spec(A))

where (S,OS) ∼= (Spec(A),OSpec(A)), in LRSp. On the level of affine
schemes we have the above adjunction takes the form

HomCRing(A,B) ∼= HomLRSp(Spec(B), Spec(A))

where X ∼= Spec(B) in LRSp. This can be alternatively stated saying that
the functor Spec : CRingop → AffSch is fully faithful; specifically we have
the following categorical duality:

CRingop AffSch

A Spec(A)

OX(X) X

∼



1.2. ÉTALENESS 3

recalling that for S = Spec(A) ∈ AffSch, the ring OX(X) is canonically
identified with A. Moreover given an arrow f : X → S in Sch and open
affines U = Spec(B) ⊆ X and V = Spec(A) ⊆ S such that f(U) ⊆ V , (i.e.
U ⊆ f−1(V )), we get a ring morphism

OS(V )→ (f∗OX)(V ) = OX(f−1(V ))→ OX(U)

that makes OX(U) into an OS(V )-algebra. Now, since OV = OS |V and
OS |V (V ) = OS(V ), we have that OS(V ) = OV (V ) = A and analogously
OX(U) = OU (U) = B. So the ring morphism we are dealing with is nothing
but the arrow A→ B, (hence B ∈ A-Alg).

After these considerations let’s define some notions about scheme mor-
phisms.

Definition 1.6. Let f : X → S be a scheme morphism and let x ∈ X. We
say that f is of finite type at x, if there exist an affine open neighbourhood
U = Spec(B) ⊆ X of x and an affine open V = Spec(A) ⊆ S with f(U) ⊆ V ,
such that the induced ring morphism OS(V ) = A→ B = OX(U) is of finite
type. We say that f is locally of finite type, if it is of finite type at x, for
every x ∈ X.

Definition 1.7. Let f : X → S be a scheme morphism and let x ∈ X.
We say that f is of finite presentation at x, if there exist an affine open
neighbourhood U = Spec(B) ⊆ X of x and an affine open V = Spec(A) ⊆
S with f(U) ⊆ V , such that the induced ring morphism OS(V ) = A →
B = OX(U) is of finite presentation. We say that f is locally of finite
presentation, if it is of finite presentation at x, for every x ∈ X.

Remark 1.8. If a scheme morphism is locally of finite presentation then is
clearly also locally of finite type.

1.2 Étaleness

The first aim of this section is to introduce the key notion of étale morphism
of schemes. In order to do this we will introduce the concepts of flatness
and of unramifiedness in Sch.

Definition 1.9. Let f : A → B be a morphism of rings. We say that f is
flat, if the functor − ⊗A B is exact. In this case we can also say that B is
a flat A-algebra.

Definition 1.10. Let f : X → S be a morphism of schemes. Let x ∈ X
and let s = f(x). We say that f is flat at x, if the natural morphism

f#
x : OS,s → OX,x is flat, (i.e. −⊗OS,s

OX,x is exact). We say that f is flat,
if f is flat at x, for every x ∈ X.
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Definition 1.11. Let f : A→ B be a morphism of rings. Let p ∈ Spec(A)
and q ∈ Spec(B) such that f−1(q) ⊇ p (i.e. q lies over p). We say that f is
unramified at q, if

� f is of finite type

� pBq = qBq

� κ(p) ↪→ κ(q) is finite and separable.

Remark 1.12. Let f : X → S be a morphism of schemes. Let x ∈ X
and let s = f(x). The induced ring morphism on stalks f#

x : OS,s → OX,x
canonically induces the commutative diagram

OS,s OX,x

OS,s/ms OX,x/msOX,x

f#
x

where msOX,x denotes the pushforward of the ideal ms to the ring OX,x
and the bottom arrow is nothing but the projection of f#

x , namely [t]ms 7→
[f#
x (t)]msOX,x

. (It is injective as OS,s/ms is a field.).

Definition 1.13. Let f : X → S be a morphism of schemes. Let x ∈ X
and let s = f(x). We say that f is unramified at x, if

� f is of finite type at x

� msOX,x = mx

� κ(s) ↪→ κ(x) is finite and separable.

We say that f is unramified, if f is unramified at x, for every x ∈ X.

Remark 1.14. The 2nd and the 3rd condition in the previous definition
can be merged together requiring that κ(s) ↪→ OX,x/msOX,x is finite and
separable in Fld.

We will now give a concrete definition of étale scheme morphism:

Definition 1.15. Let f : X → S be a morphism of schemes and let x ∈ X.
We say that f is étale at x, if f is finitely presented, flat and unramified
at x. We say that f is étale, if f is étale at x, for every x ∈ X.
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1.3 Functor of points

We will now reformulate (almost) all the notions that we introduced in the
two previous sections in terms of the language of functors of points.

Definition 1.16. Let’s consider the (covariant) functor

h : Sch Func(Schop, Set)

X HomSch(−, X)

defined on the arrows in obviuos manner. For any given X ∈ Sch the
contravariant functor

hX : Schop Set

Y HomSch(Y,X)

is called the functor of points of the scheme X. An arrow (Y → X) ∈ Sch
is said to be a Y -valued point of X. The set hX(Y ) is called the set of
Y -valued points of X. When Y = Spec(A), with A ∈ CRing, the above
arrow is said to be an A-valued point of X and hX(Y ) is called the set of
A-valued points of X.

Let’s recall here a powerful categorical tool: the Yoneda’s Lemma.

Lemma 1.17. [Yoneda] Let C be a locally small category (i.e. the hom-sets
are not proper classes). Then we have that:

1. for any F ∈ Func(C, Set) and any X ∈ C, there is a isomorphism (in
Set)

Nat(hX , F ) F (X)

η ηX(idX)

natural in both F and X. In other words there is a 1-1 correspon-
dence between the natural transformations hX ⇒ F and the elements
of F (X);

2. given X,Y ∈ C, we have that

hX ' hY ⇒ X ∼= Y .

Proof. Part (1): see for example [MacL]. Part (2): follows immediately from
part (1) applied to the case F = hY .
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Remark 1.18. By Yoneda’s Lemma (part 2), given X,X ′ ∈ Sch we have
that hX ' hX′ implies X ∼=Sch X

′. Hence the functor of points hX actually
determines the scheme X.

Definition 1.19. Given F ∈ Func(Schop, Set) we say that F is co-repre-
sentable, if there exists X ∈ Sch such that F ' hX . Again by Yoneda’s
Lemma (part 2), if such X does exist then it is unique (up to iso).

Totally analogue definitions apply to the case when we consider schemes
in the slice category Sch/S, where S denotes some scheme.

Notation 1.20. Given S ∈ Sch and X ∈ Sch/S we donote with XS :=
HomS(−, X) the slice functor of points ofX. (Here we set HomS(−, X) :=
HomSch/S(−, X).) When Y = Spec(A), with A ∈ CRing, we set XS(A) :=
XS(Y ).

Definition 1.21. Let (A
f→ B) ∈ Ring. We say that f is formally un-

ramified, if for every commutative Ring-diagram

A B

R R/I

f

p  

A B

R R/I

f

ϕ

there exist at most one arrow ϕ that makes the two triangles commute. Here
I is a square-zero ideal of R. Analogously we say that f is formally étale,
if there exist a unique such ϕ.

Remark 1.22. Observe that asking (A → B) ∈ Ring to be formally un-
ramified, resp. formally étale, is equivalent to ask the natural set-map

HomA(B,R) HomA(B,R/I)

to be injective, resp. bijective, (where HomA(−,−) : (A-Alg)2 → Set).

The following is an equivalent definition of unramifiedness for ring mor-
phisms.

Definition 1.23. Let (A
f→ B) ∈ Ring. We say that f is unramified, if

� f is of finite type;

� f is formally unramified.

Definition 1.24. Let (A
f→ B) ∈ Ring. We say that f is étale, if

� f is of finite presentation;

� f is formally étale.
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Here we will give an alternative definition of finitely presented ring map.

Definition 1.25. [Vez] Let (A
f→ B) ∈ Ring. We say that f is finitely

presented, if the functor HomA(B,−) : A-Alg → Set commutes with fil-
tered colimits, i.e. if for every filtered diagram C : I → A-Alg (where I is a
filtrant category) the natural set-map

lim−→i∈I HomA(B,Ci) HomA(B, lim−→i∈I Ci)

is a bijection.

Remark 1.26. The above canonical map is “schematically” constructed as
follows:

Ci

lim−→i∈I Ci

Cj

ϕij  

HomA(B,Ci)

HomA(B, lim−→i∈I Ci)

HomA(B,Cj)

hB(ϕij)

 

HomA(B,Ci)

lim−→i∈I HomA(B,Ci) HomA(B, lim−→i∈I Ci)

HomA(B,Cj)

where the ϕij ’s denote the transition maps of the filtered diagram.

Remark 1.27. This last definition is equivalent to the one given in Def 1.4.
For a proof (of this equivalence) see [EGAIV,3, Cor 8.14.2.2, p. 53].

Let’s talk about schemes now:

Definition 1.28. Let (X
f→ S) ∈ Sch. We say that f is formally un-

ramified, resp. formally étale, if for every Y ∈ AffSch/S and for every
closed immersion Y0 ↪→ Y defined by a square-zero ideal we have that the
natural set-map

HomS(Y,X) HomS(Y0, X)

is injective, resp. bijective. Equivalently we can ask the map

HomS(Spec(C), X) HomS(Spec(C/I), X)



8 CHAPTER 1. ALGEBRA

to be injective, resp. bijective, for every C ∈ CRing/S and every square-
zero ideal I ⊆ C.

Remark 1.29. Observe that in the case of an affine scheme morphism
Spec(B)→ Spec(A) the above is nothing but the “Spec”-ed version of Def.
1.21:

A B

R R/I

f

ϕ  

Spec(A) Spec(B)

Spec(R) Spec(R/I).

Spec(ϕ)

Definition 1.30. Let S ∈ Sch. We define a ring over S to be a scheme
morphism Spec(C)→ S, (where C ∈ CRing).

Notation 1.31. Given S ∈ Sch we denote with CRing/S the category of
rings over S and with AffSch/S the category of affine schemes over S.

Definition 1.32. [Vez] Let (X
f−→ S) ∈ Sch. We say that f is locally

finitely presented, if the functor hX : AffSch/S → Set commutes with
filtered colimits, i.e. if for every filtered diagram C : I → CRing/S the
natural set-map

lim−→i∈I HomS(Spec(Ci), X) HomS(Spec(lim−→i∈I Ci), X)

is a bijection.

Remark 1.33. This last definition is equivalent to the one given in Def 1.7.
For a proof (of this equivalence) see [EGAIV,3, Prop 8.14.2, p. 52].

Remark 1.34. In the case of an affine morphism Spec(B)
ϕ−→ Spec(A),

asking ϕ to be (locally) finitely presented in the sense of the above definition
equals asking the corresponding map of rings A→ B being finitely presented
in the sense of Def 1.25.

Remark 1.35. No such a functorial characterization is known for a scheme
morphism to be locally of finite type.

Definition 1.36. Let (X
f−→ S) ∈ Sch. We say that f is étale, if

� f is formally étale;

� f is locally finitely presented.

Remark 1.37. This new definition is equivalent to the one given in Def
1.15. For a proof (of this equivalence) see [S.P., Tag 02HM].

So we characterized the notion of étaleness of a scheme morphism X → S
purely in terms of its slice functor of points XS . The two conditions it has
to satisfy can be (just briefly) resumed as

� XS(C) = XS(C/I) (I2 = 0);

� lim−→i∈I XS(Ci) = XS(lim−→i∈I Ci).
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1.4 Sorites

Definition 1.38. Let f : X → S be a morphism of schemes and let s ∈ S.
We define the fibre of f at the point s ∈ S to be the fiber product
Xs := X ×S Spec(κ(s)). We refer to it also calling it the s-fibre of f .

Next we characterize the notion of unramifiedness for a scheme map
by several different formulations, some of which we already encountered.
Before doing this we introduce the notion of separable k-algebra and we give
a useful lemma.

Definition 1.39. Let k ∈ Fld and A ∈ k-Alg. Let’s denote with k an
algebraic closure of k and set Ak := A⊗k k. We say that A is separable, if
J(Ak) = 0.

Lemma 1.40. Let k ∈ Fld and A ∈ k-Alg. Assume A is finite over k. The
following assertions are equivalent:

1. A is separable;

2. A ∼=
∏
i=1,...,n ki, where the ki’s are (finite and) separable field exten-

sion of k and n ∈ N;

3. Ak
∼=

∏
finite k.

Proof. See [Mil1, Prop. 3.1, p.20].

Proposition 1.41. Let f : X → S be a morphism of schemes. The following
assertions are equivalent:

1. f is unramified;

2. for every s ∈ S, the s-fibre decomposes as Xs =
⊔
i∈I
Spec(ki), where

ki/κ(s) is a finite and separable field extension, for every i ∈ I;

3. for every s ∈ S, the fiber Xs admits an open covering by spectra of
finite and separable κ(s)-algebras;

4. for every s ∈ S, the fiber morphism Xs → Spec(κ(s)) is unramified;

5. for every morphism Spec(k) → S, with k separably closed, the mor-
phism X×S Spec(k)→ Spec(k) is unramified, (i.e. all the geometric
fibers of f are unramified);

6. the diagonal morphism ∆X/S : X → X ×S X is an open immersion;

7. f is formally unramified and locally of finite type.

Proof. See for instance [Mil1, Prop. 3.2, p.21].
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Here below we state some properties of the étale morphisms.

Corollary 1.42. Let k ∈ Fld and X ∈ Sch/k. Then X/k is étale if and
only if we can write X as a disjoint union of spectra of finite and separable
field extensions of k.

Proof. Follows immediately from Prop. 1.41 and from the fact that − ⊗k
OX,x is exact for every x ∈ X.

Corollary 1.43. The category of étale schemes over k ∈ Fld admits arbi-
trary coproducts.

Proposition 1.44. Let S ∈ Sch.

1. Open immersions of schemes are étale;

2. given f : X → Y and g : Y → Z in Sch we have that

� f and g étale ⇒ g ◦ f étale;

� g ◦ f and g étale ⇒ f étale;

3. given f : X → X ′ and g : Y → Y ′ in Sch/S we have that

f and g étale ⇒ f ×S g : X ×S Y → X ′ ×S Y ′ étale.

Proof. See [EGAIV,4, Prop. 17.3.3, 17.3.4, pp. 61-62].



Chapter 2

Topology

Cos’è l’amore?
Il bisogno di uscire da sé stessi.

— Baudelaire C.
Il mio cuore messo a nudo

2.1 Sites & Sheaves

Definition 2.1. We define a site to be a pair TC = (C, Cov(C), where C is
a category and Cov(C) is a collection of families {Ui → U}i∈I of morphisms
in C satisfying the four following axioms:

1. (existence of fiber products) given {Ui → U}i∈I ∈ Cov(C) and (V →
U) ∈ C, the fiber product Ui ×U V exists, for every i ∈ I;

2. (stability under base change) given {Ui → U}i∈I ∈ Cov(C) and (V →
U) ∈ C, {Ui ×U V → V }i∈I lies in Cov(C);

3. (transitivity) given {Ui → U}i∈I ∈ Cov(C) and, for every i ∈ I, an
element {Vij → Ui}j∈J(i) ∈ Cov(C), the composite element {Vij →
U}i∈I,j∈J(i) lies in Cov(C);

4. (iso-cover) given (U ′ → U) ∈ Iso(C), we have that {U ′ → U} lies in
Cov(C).

The elements of Cov(C) are called coverings of elements of C and the collec-
tion Cov(C) itself is said to be a Grothendieck topology on the category
C. The four axioms above will be called the covering-axioms.

Example 2.2. Let X ∈ Top. Let also C := OpX be the category whose
objects are the open subsets in X and whose arrows are the usual inclusion
maps between opens. Then we have that TX := TC is a site, where Cov(TX)
consists of the usual coverings made of open subsets in Top.

11
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Definition 2.3. Given two sites T = TC and T ′ = TC′ , we define a mor-
phism of sites f : T → T ′ to be a functor f : C → C′ satisfying the two
following properties w.r.t. the coverings:

� (cover-compatibility) given {Ui → U}i∈I ∈ Cov(C), the element {f(Ui)
→ f(U)}i∈I lies in Cov(C′);

� (fiber product compatibility) given {Ui → U}i∈I ∈ Cov(C) and (V →
U) ∈ C, we have a C′- isomorphism

f(Ui ×U V ) f(Ui)×f(U) f(V )∼

for every i ∈ I.

Here we denoted with f both the morphism of sites and the functor between
the underlying categories, for convenience.

Definition 2.4. Let T = TC and T ′ = TC′ be two sites and f : T → T ′ be
a morphism of sites. We say that f is an isomorphism of sites if:

� the underlying functor f : C ∼−→ C′ is an equivalence of categories;

� {Wj →W}j∈J ∈ Cov(C′) ⇒ {g(Wj)→ g(W )}j∈J ∈ Cov(C).

Here g denotes a quasi-inverse functor to f . Restricting our attention to the
collections of coverings this is also called an equivalence of Grothendieck
topologies.

Example 2.5. Let (X
f→ Y ) ∈ Mor(Top). We have that f induces a

morphism of sites f−1 : TY → TX , which acts on the objects as

OpY 3 U 7→ f−1(U) ∈ OpX .

Definition 2.6. Let T = TC be a site and let D be a category with arbitrary
products, (Set or Ab for instance). We define a presheaf on T values in
D to be a functor F : Cop → D.

Definition 2.7. Let T = TC be a site and let F ,G : Cop → D be two
presheaves (on T with values in D). We define a morphism of presheaves
to be a morphism of functors η : F → G .

Notation 2.8. We denote with PSh(T ) and with PD(T ) the categories
whose objects are the preshaves on the site T respectively with values in
Set and in D and whose arrows are the morphisms between them.

Before starting to define the notion of sheaf on a site, we will make
clear the construction of the arrows which will be involved. Given a site
T = TC , a presheaf F ∈ PD(T ) and an element {Ui → U}i∈I ∈ Cov(C),
the set of pullback maps {F (U) → F (Ui)}i∈I naturally induces a map
ϕ : F (U) →

∏
i∈I F (Ui) (unique up to iso) that makes the below diagram

commute
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∏
i∈I F (Ui)

F (U) F (Ui)

πi

pi

ϕ

for every i ∈ I. Moreover we define two symmetric maps (1) and (2) by
requiring the diagrams

∏
i∈I F (Ui)

∏
(i,j)∈I2

F (Ui ×U Uj)
∏
i∈I F (Ui)

F (Ui) F (Ui ×U Uj) F (Ui)

(1)

πi πi,j

(2)

πj

Fpi

Fpj

to commute for every i, j ∈ I, where pi and pj come from the pullback
diagram

Ui ×U Uj Uj

Ui U

pj

pi
p ϕj

ϕi

.

Definition 2.9. Let T = TC be a site and let F ∈ PD(T ). We say that
F is a sheaf, if the arrow ϕ in the first diagram is the equalizer of arrows
(1) and (2) above constructed, i.e. if ϕ = Eq((1), (2)). This condition can
be restated saying that for every element {Ui → U}i∈I ∈ Cov(C) we require
the diagram

F (U)
∏
i

F (Ui)
∏

(i,j)

F (Ui ×U Uj)ϕ
(1)

(2)

to be exact, (with i varying in I and (i, j) in I2).

Definition 2.10. Let T = TC be a site and let F ,G : Cop → D be two
sheaves on T with values in D. We define a morphism of sheaves to
be a morphism of functors η : F → G (i.e. η is simply a morphism of
presheaves).

Notation 2.11. We will denote with Sh(T ) and with D(T ) the categories
whose objects are the shaves on the site T respectively with values in Set
and in D and whose arrows are the morphisms between them. A sheaf in
Ab(T ) will be called an abelian sheaf.

Example 2.12. Let T = TC be a site. For any Z ∈ C, we have that
Hom(−, Z) : Cop → Set is a covariant functor and so Hom(−, Z) ∈ PSh(T ).
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Definition 2.13. Let T = TC be a site and let Z ∈ C. Given a presheaf
F ∈ PSh(T ), we say that F is (co-)representable, if we have that F '
HomC(−, Z) for some Z ∈ C.

We will now introduce the key notion of canonical site on a category C.
In the sequel we will assume C to be a category with fiber products. Recall
that a given arrow (U → V ) ∈ C is said to be an epimorphism in C, if the
canonical map Hom(V,Z) → Hom(U,Z) is injective for every Z ∈ C. Let’s
denote with Epi(C) ⊆ Mor(C) the collection of all epis in C.

Definition 2.14. Let C be a category and let (U
ϕ−→ V ) ∈ Epi(C). We say

that

� ϕ is effective, if the natural diagram

HomC(V,Z) HomC(U,Z) HomC(U ×V U,Z)

(arising from the pullback diagram) is exact;

� ϕ is universally effective, if it is effective and for every (V ′ → V ) ∈ C
the morphism U×V V ′ → V ′ is an effective epi. (This condition equals
requiring effectiveness to be stable under base change.).

Let’s now extend these notions of effectiveness to families of morphisms,
in order to address coverings. Recall that a collection {Ui → V }i∈I of
morphisms in C is defined to be a family of epimorphism in C, if the canonical
map

HomC(V,Z)
∏
i

HomC(Ui, Z)

is injective for every Z ∈ C.

Definition 2.15. Let U := {Ui → V }i∈I be a family of epis in C. (Not
necessarily U satisfies the covering-axioms.) We say that

� U is effective, if the diagram

HomC(V,Z)
∏
i

HomC(Ui, Z)
∏

(i,j)

HomC(Ui ×V Uj , Z)

is exact for every Z ∈ C;

� U is universally effective, if it is effective and for every (V ′ → V ) ∈ C
the collection {Ui ×V V ′ → V ′}i∈I is an effective family of epis. (This
condition equals requiring effectiveness of the collection to be stable
under base change.).
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Definition 2.16. We define the canonical site TC by endowing the cate-
gory C with the Grothendieck topology Cov(C) consisting of all the elements
{Ui → U}i∈I ∈ Mor(C) which are universally effective families epis. The pair
TC = (C, Cov(C) so defined is indeed a site: the first and the third axioms are
trivially verified; for what concerns the second axiom is sufficient to extend
the result in [SGA3, exp. IV, Prop. 1.8, p. 180] to universally effective
families of epis.

Remark 2.17. Observe that:

� by construction of the canonical site, the (co-)representable presheaf
of sets

U 7→ HomC(U,Z)

lies in Sh(TC), for every Z ∈ C. Whenever the functor HomC(−, Z) is
a sheaf we denote it with Hom C(−, Z).

� TC is the finest site on C such that HomC(−, Z) is a sheaf for every Z ∈
C. (In other words TC is the terminal object in the category of sites on
C. In fact given a site T = TC such that {HomC(−, Z)}Z∈C ⊆ Sh(T ),
we have that U ∈ Cov(T ) implies that U is a universally effective
family of epis and so the identity functor idC induces a morphism of
sites T → TC .). In this case we say that the site T is subcanonical.

2.2 G-Set

Notation 2.18. Given G ∈ Grp we define the canonical G-site TG to
be the canonical site on the category G-Set. (Morphisms in the underlying
category are the G-equivariant maps.).

Remark 2.19. The following characterization holds: given an element U =
{ϕi : Ui → U}i∈I ∈ Cov(G-Set), we have that U is a family of universally
effective epis if and only if we can write U =

⋃
i∈I ϕi(Ui). A family U of

maps in G-Set satisfying the last condition is said to be jointly surjective.

Remark 2.20. a morphism (G
f→ H) ∈ Grp naturally induces a morphism

H-Set→ G-Set which in turn induces a morphism of sites TH → TG. Given
Z ∈ H-Set we can make G act on Z by setting (g, z) 7→ f(g).z for every
z ∈ Z.

We know that by construction of the canonical site TG the presheaf
HomG-Set(−, Z) is a sheaf on TG for every Z ∈ G-Set. The next result will
establish that all the sheaves of sets on TG arise in this way.

Notation 2.21. For shortness we set HomG(−, Z) := HomG-Set(−, Z) and
HomG(−, Z) := HomG-Set(−, Z).
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Remark 2.22. Given G ∈ Grp we can define a G-structure on F (G), by
setting g.s := F (·g)(s), for every g ∈ G and every s ∈ F (G). Here ·g
denotes the map “right multiplication by g”. By functoriality of F , this is
indeed an action of G on F (G).

Theorem 2.23. Let G ∈ Grp. The functors

G-Set Sh(TG)

Z HomG(−, Z)

F (G) F

φ

ψ

yield an equivalence of categories.

Proof. We already observed that the presheaf HomG(−, Z) lies in Sh(TG),
so φ is well-defined. By Rmk 2.22 ψ is well-defined too.
Step 1: ψ ◦ φ ' idG-Set. This means that for every Z ∈ G-Set we want
an isomorphism Z ∼= HomG(G,Z), functorial in Z. First way: by hands.
Let’s define a map τ by setting:

Z HomG(G,Z)

z fz

τ
fz : G Z

g g.z

for every z ∈ Z and every g ∈ G. We have that fz ∈ HomG(G,Z), for
every z ∈ Z. In fact, given g, h ∈ G, we have that h.fz(g) = h.(g.z) =
(hg).z = fz(hg). (fz is obviously well-defined as Z is a G-set.). Hence τ is
well-defined. Define now a map

G×HomG(G,Z) HomG(G,Z)

(g, f) g∗f : G Z

h f(hg).

φ

We have that:

� φ is well-defined: given h, t ∈ G, it holds t.((g∗f)(h)) = t.(f(hg)) =
f(t(hg)) = f((th)g) = (g∗f)(th);

� φ is a (left) group action: given g, h, t ∈ G, it holds (t∗(g∗f))(h) =
(g∗f)(ht) = f((ht)g) = f(h(tg)) = ((tg)∗f)(h) (and trivially also
1∗f = f).

Hence indeed HomG(G,Z) ∈ G-Set. (The key point here is that G lies both
in G-Set and in Set-G.). Let’s now prove that τ is a G-isomorphism:
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� injectivity: given z, z′ ∈ Z, with g.z = g.z′, we have that acting by
g−1 we get z = z′;

� surjectivity: given f ∈ HomG(G,Z), we have that f(g) = f(g · 1) =
g.f(1), for any g ∈ G (hence f is totally determined by its value at 1).
Therefore f = ff(1);

� G-compatibility: given z ∈ Z and h, g ∈ G, we have that (h∗fz)(g) =
fz(gh) = (gh).z = g.h.z = fh.z(g), hence h∗τ(z) = τ(h.z).

So we showed that τ is a bijective G-morphism and by properties of group
actions this implies τ−1 is a G-morphism, hence τ ∈ IsoG(Z,HomG(G,Z)).
Second way: categorically. Referring to the notation used in the state-
ment of Yoneda’s Lemma, we take C := G, where here we see the group G
as a category G “in itself” with Ob(G) := {pt} (one-object category) and
Mor(G) := G, (here every arrow is an iso). As there is an isomorphism
G-Set ∼= Func(G, Set),we can interpret the G-set Z as the image of a certain
F ∈ Func(G, Set), namely F (pt) = Z. Let X := pt. By Yoneda’s Lemma we
get a bijection Nat(hpt, F ) ∼= F (pt) = Z. Moreover we can see the groupG as
the image of the functor hpt, namely hpt(pt) = HomG(pt, pt) = G, so by the
above isomorphism of categories we have that HomG(G,Z) ∼= Nat(hpt, F ),
hence our iso. By Yoneda’s Lemma this iso is natural in F , hence in Z.
Step 2: φ ◦ ψ ' idSh(TG,Set). So what we want is a natural isomorphism

θ = {θF : F
∼−→ φ(ψ(F ))}F∈Sh(TG,Set). This means that given any sheaf

F ∈ Sh(TG), we have to show that for every U ∈ G-Set there is an iso
F (U) ∼= (φ(ψ(F )))(U) = HomG(U,F (G)).

So let’s assume that F ∈ Sh(TG). We want to show that F (U) ∼=
HomG(U,F (G)). Consider the collection of G-maps U = {G ϕu→ U}u∈U
defined as ϕu : g 7→ g.u. We have that U ∈ Cov(TG). In fact by Rmk
2.19, it suffices to prove that U =

⋃
u∈U ϕu(G). Now for every u ∈ U , we

have that ϕu(G) = Ou (i.e. the orbit of u under G) and so, as {Ou}u∈U is a
partition of U , we are done. For every u, v ∈ U we have the two commutative
diagrams below

G×U G G

G U

pu

pv ϕu

ϕv

F (G×U G) F (G)

F (G) F (U).

Fpu

Fpv

Fϕv

Fϕu

(where the first one is cartesian). As F is a sheaf on TG we have the
exact Set-diagram

F (U)
∏
u

F (G)
∏

(u,v)

F (G×U G)ϕ
(1)

(2)
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We will now prove that the condition ϕ = Eq((1), (2)) implies that our iso
holds. Let’s first observe a few facts:

� for the fiber product in G-set there is the description

G×U G = G×U,u,v G = {(g, h) ∈ G2 | g.u = h.v};

� as we are working with sheaves of sets we can write
∏
u∈U F (G) =

HomSet(U,F (G));

� as we are working with sheaves of sets the isomorphism we are looking
for is just a bijection;

� 1st case: Ou ∩ Ov = ∅. In this case G×U,u,v G = ∅.

� 2nd case: Ou = Ov. In this case there exist t ∈ G such that v = t.u.
So a pair (g, h) ∈ G2 satisfies g.u = h.v = h.t.u iff g−1ht ∈ StG(u) iff
g−1h ∈ StG(u)t−1.

Now considering the diagrams∏
u∈U F (G)

∏
(u,v)∈U2

F (G×U,u,v G)
∏
u∈U F (G)

F (G) F (G×U,u,v G) F (G)

(1)

πu
p

πu,v
p

(2)

πv

Fpu

Fpv

we have that the “equalizer condition” means that the image of the
injection ϕ, namely Im(ϕ) = {ϕ(a) = (au)u∈U | a ∈ F (U)} coincides with
the subset of

∏
u∈U F (G)

{(au)u∈U ∈
∏
u∈U

F (G) | (1)((au)u) = (2)((au)u)}

= {(au)u∈U ∈
∏
u∈U

F (G) | ∀u, v ∈ U, πu,v((1)((au)u)) = πu,v((2)((au)u))}

= {(au)u∈U ∈
∏
u∈U

F (G) | ∀u, v ∈ U, (Fpu)(au) = (Fpv)(av)}

which by the last above observation is the subset of
∏
u∈U F (G) with

elements (au)u∈U such that for every u, v ∈ U with Ou = Ov it holds
(Fpu)(au) = (Fpv)(av). Hence this subset can be reparametrized as the
one with elements (au)u∈U such that for every u ∈ U and every g ∈ G it
holds (Fpu)(au) = (Fpv)(ag.u). On the other hand we have that

HomG(U,F (G)) = {f : U → F (G) | f is G-equivariant}
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coincides with

{(au)u∈U ∈
∏
u∈U

F (G) | ∀u ∈ U,∀g ∈ G, g.au = ag.u }

= {(au)u∈U ∈
∏
u∈U

F (G) | ∀u ∈ U,∀g ∈ G, F (·g)(au) = ag.u}.

Now noticing that the set-map F (·g) lands in F (G), if we reinterpret
the maps Fpu,Fpv : F (G) → F (G ×U,u,v G) as maps F (G) → F (G),
namely F (·g) on the left and “the identity” on the right, we see that the
two above sets do coincide. This way we get the wanted natural set-iso
F (U) ∼= HomG(U,F (G)) which is functorial in both U ∈ G-Set and in
F ∈ Sh(TG), whence the thesis.

Here below we obtain as a “corollary” an analogous equivalence which
relates G-modules and sheaves of abelian groups on the G-site, given by the
“same” functors:

Theorem 2.24. Let G ∈ Grp. We have the following equivalence (of cate-
gories)

G-Mod Ab(TG).∼

2.3 CG-Set

Let’s now consider the case when G is a profinite group and the action is
continuous. Here below we give two equivalent ways to define a profinite
group.

Definition 2.25. Let G ∈ Grp be a topological group. We say that G is
profinite if

1. G has the algebraic structure lim←−i∈I Gi of an inverse limit (of an inverse

system) of finite groups and it is endowed with the topology induced
by the product topology on the product of the discrete finite groups
involved;

2. G it is totally disconnected, compact and T2.

Remark 2.26. In a profinite group the set H := {H}H�openG is a fun-
damental system of neighbourhoods of 1G (i.e. for any neighbourhood
U ⊆ G of 1G in G we can find a finite number of elements H1, . . . ,Hn ∈ H
such that 1G ∈

⋂
i=1,...,nHi ⊆ U). We can canonically identify G with

lim←−H�openG
G/H.

Let’s now move to continuous actions.
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Definition 2.27. Let G ∈ Grp be a topological group and let U ∈ Top. We
define a continuous action of G on U to be a continuous map G×U → U
satisfying the axioms of a group action.

In our case we endow the set U with the discrete topology and we call
it a continuous G-set. G for us will be a profinite group.

Remark 2.28. The continuity of the action of G on U can be characterized,
for example, in the two following ways:

� {StG(u) |u ∈ U} ⊆ OpG

� U =
⋃
H∈H U

H .

Notation 2.29. Let’s denote with CG-Set the category with Ob(CG-Set) :=
{continuous G-sets} and Mor(CG-Set) := Mor(G-Set). We define the cano-
nical continuous G-site T C

G to be the canonical site on the category
CG-Set. Also in this case we set Hom CG(−, U) := Hom CG-Set(−, U) for
every U ∈ CG-Set.

Remark 2.30. The result of Rmk 2.19 holds also for continuous G-sets.

We have that also the sheaves of sets on the continuous G-site arise all
as representable (pre)sheaves.

Theorem 2.31. Let G ∈ Grp and assume G is profinite. The functors

CG-Set Sh(T C
G )

U Hom CG(−, U)

lim−→
H�openG

F (G/H) F .

φ

ψ

yield a categorical equivalence.

Proof. Given H �open G, we have that G × G/H → G/H, (g, tH) 7→ gtH
makes G/H into a continuous G-set. We make G act on F (G/H) by set-
ting g.s := F (·gH)(s) for every g ∈ G and every s ∈ F (G/H) where
·gH : G/H → G/H is the map tH → tHgH. The set {H}H�openG is a
directed system, setting K � H iff K ⊆ H. The canonical G-morphisms
G/K � G/H induce G-morphisms F (G/H)→ F (G/K), which will be the
transition maps in the direct system considered. The maps G×F (G/H)→
F (G/H) (that define the action of G on F (G/H)) give rise to the canonical
map

lim−→H
(G×F (G/H))→ lim−→H

F (G/H).

Now since (G×−, HomSet(G,−)) is an adjoint pair we have that the functor
G×− is right exact, hence it preserves colimits. So we have a map
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G× lim−→H
F (G/H)→ lim−→H

F (G/H)

which endows our direct limit with a continuous G-structure. (Notice that
here the direct limit is in Set, hence is nothing but

⋃
H�openG

F (G/H).).
Hence ψ is well-defined.
Step 1: ψ ◦ φ ' idCG-Set. Let U ∈ CG-Set. What we is want a G-iso

lim−→H
HomCG(G/H,U) ∼= U .

First let’s observe that there is a (set-)isomorphism HomCG(G/H,U) ∼= UH

given by setting f 7→ f(1G/H) = f(1G ·H). From this we deduce that

lim−→H
HomCG(G/H,U) ∼= lim−→H

UH =
⋃
H U

H = U

Step 2: φ ◦ ψ ' idSh(T C
G ). Let F ∈ Sh(T C

G ). What we want is an iso of
sheaves

F ' HomCG(−, lim−→H
F (G/H)).

Let U ∈ CG-Set. Then we can write U =
⋃
H U

H . Let’s write U as lim−→H
UH

taking the colimit over the directed set of the open normal subgroups of G
with the order relation above defined and let’s call H this system. We have
that {UH ↪→ U} ∈ Cov(CG-Set) and so we have that the sheaf diagram

F (U)
∏
H∈H

F (UH)
∏

(H,K)∈H2

F (UH ×U UK)ϕ
(1)

(2)

is exact. Observe that

� UH ×U UK = UH ∩ UK , for every H,K ∈ H

� K � H iff K ⊆ H iff UH ⊇ UK  F (UH)→ F (UK)

so {F (UH)}H∈H is an inverse system in Set with transition maps τK,H =
F (ρK,H) where ρK,H : UK ↪→ UH for any K � H. We claim that exactness
of the above sheaf diagram translates into the isomorphism

F (U) ∼= lim←−H F (UH).

On one hand we have that

Eq((1), (2)) = {(aH)H∈H ∈
∏
H∈H

F (UH) | (1)((aH)H) = (2)((aH)H)}

= {(aH)H | ∀H,K ∈ H, πH,K((1)((aH)H)) = πH,K((2)((aH)H))}
= {(aH)H | ∀H,K ∈ H, (F iH)(aH) = (F iK)(aK)}
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where the diagrams involved are

UH ∩ UK UK

UH U

iK

iH ϕK

ϕH

 

F (UH ∩ UK) F (UK)

F (UH) F (U).

F iK

F iH

FϕH

FϕK

and ∏
H∈HF (UH)

∏
(H,K)∈H2

F (UH ∩ UK)
∏
H∈HF (UH)

F (UH) F (UH ∩ UK) F (UK).

(1)

πH
p

πH,K
p

(2)

πK

F iH

F iK

Now assuming for example H,K ∈ H such that K � H we have that from
iH = ρK,H ◦iK we get F iH = FρK,H ◦iK = F iK ◦FρK,H and so the condi-
tion (F iH)(aH) = (F iK)(aK) can be rewritten as (F iK)((FρK,H)(aH)) =
(F iK)(aK). On the other hand we have that

lim←−
H

F (UH) = {(aH)H ∈
∏
H∈H

F (UH) | ∀K � H, τK,H(aH) = aK}

= {(aH)H | ∀K � H, (FρK,H)(aH) = aK}.

Then by the same kind of “trick” used in the proof of Thm 2.23 we get
that Eq((1), (2)) = lim←−H F (UH) and so we are done.

Next consider the collection of maps {G/H ϕu−−→ UH}u∈UH . We have that
this lies indeed in Cov(CG-Set). First notice that given u ∈ UH , gH ∈ G/H
and h ∈ H we have that h.g.u = g.u iff g−1hg.u = hg.u = u which is true as
H�G. So the ϕu’s are well-defined and they are clearly G-homomorphisms.
Moreover given an orbit-decomposition of U , namely U =

⋃
u∈U Ou, we have

that

UH = (
⋃
u∈U Ou) ∩ UH =

⋃
u∈U (Ou ∩ UH) =

⋃
u∈UH Ou

where last equality holds since Gy UH . Hence we are done, observing that
for every u ∈ UH we have Im(ϕu) = {g.u | gH ∈ G/H} = Ou. Consider
now the exact sheaf Set-diagram

F (UH)
∏
u
F (G/H)

∏
(u,v)

F (G/H ×U G/H)ϕ
(1)

(2)

where u varies in UH and (u, v) in (UH)2. By the same kind of reasoning
explained in the proof of Thm 2.23 we get an set-iso

F (UH) ∼= HomCG(UH ,F (G/H)) ∼= HomCG/H(UH ,F (G/H))
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where the last iso follows from the fact that the G-structures on UH and
F (G/H) coincide with their G/H-structures in this case. Resuming what
we found till now we have that for every continuous G-set U it holds F (U) ∼=
lim←−H F (UH) and for every H ∈ H we have that

F (UH) ∼= HomCG/H(UH ,F (G/H)).

What we want is to prove that

F (U) ∼= HomCG(U, lim−→H
F (G/H)).

In order to achieve this we need one more intermediate “techinical” result,
namely the set-iso

HomCG/H(UH ,F (G/H)) ∼= HomCG(UH , lim−→H
F (G/H)).

To this aim let’s consider the one-map G-covering given by the projection
G/K

πH−−→ G/H defined for K � H, i.e. K ⊆ H. From the associated exact
Set-diagram

F (G/H) F (G/K) F (G/K)

we deduce, once more by the same “trick” used in the proof of Thm 2.23,
that

F (G/H) ∼=HomCG((G/K)/(H/K),F (G/K))
∼=HomCG(G/H,F (G/K))
∼=HomCG/K(G/H,F (G/K))

where the last iso follows again from the fact that in this case the G-
structures on G/H and F (G/H) coincide with their G/K-structures. Now
by the same kind of iso that we used in Step 1 we have that

HomCG/K((G/H),F (G/K)) ∼=HomCG/K((G/K)/(H/K),F (G/K))

∼=F (G/K)H/K

and so F (G/H) ∼= F (G/K)H/K . From this we deduce that the natural
map F (G/H)→ lim−→H′

F (G/H ′)) induces the iso

F (G/H) ∼= (lim−→H′
F (G/H ′))H .

To get our result we must now observe that there is an adjunction between
the functors

CG-Set CG/H-Set
G(−)

(−)H
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where G(−) is the “pullback functor” built along the projection G� G/H;
it is defined by setting U 7→ GU which denotes the set U endowed with its
natural G-structure. In the opposite direction acts the functor (−)H which
is just the “fixed-points functor”. (See for instance [GrMay, Lemma 1.1,
p.4].). This implies that for every Z ∈ CG-Set and every U ∈ CG/H-Set
we have a set-iso

HomCG(U,Z) ∼= HomCG/H(U,ZH).

Applying it to the CG-set Z := lim−→H
F (G/H)) we get

HomCG/H(UH ,F (G/H)) ∼=HomCG/H(UH , (lim−→
H′

F (G/H ′)))H)

∼=HomCG(UH , lim−→
H′

F (G/H ′)).

Finally we can write natural isos

F (U) ∼= lim←−
H

F (UH)

∼= lim←−
H

HomCG/H(UH ,F (G/H))

∼= lim←−
H

HomCG(UH , lim−→
H′

F (G/H ′))

∼=HomCG(lim−→
H

UH , lim−→
H′

F (G/H ′))

∼=HomCG(U, lim−→
H′

F (G/H ′)).

which are functorial both in U ∈ CG-Set and in F ∈ Sh(T C
G ). Hence we

won.

Also in this case we have an analogous equivalence which relates contin-
uous G-modules with sheaves of abelian groups on the continuous G-site,
given by the “same” functors (of the previous theorem):

Corollary 2.32. Let G ∈ Grp. We have the following equivalence (of
categories)

CG-Mod Ab(T C
G ).∼



Chapter 3

Étale cohomology

“[...] in a world that he did not create,
but he will go through it as if it was
his own making [...].”

— Rose A.
(live at The Ritz New York

- 1988 )

3.1 Hq
ét(X,F )

In this section we will deal with the étale topology on a scheme.

Notation 3.1. By implication 1) in Prop. 1.44 we can consider the category
Ét/S of the étale schemes over S ∈ Sch. Morphisms in this category can be

seen as commuting triangles

X Y

S

ét ét .

(By implication 2) in Prop. 1.44, it follows that the horizontal arrow is étale
too.)

Remark 3.2. By the last implication in Prop. 1.44 applied to the case
X ′ = Y ′ = S, we have that Ét/S has (finite) fiber products (and idS : S → S
is its terminal object).

Definition 3.3. A family of morphisms {ϕi : Xi → X}i∈I in Sch is said to
be jointly surjective, if X =

⋃
i∈I

ϕi(Xi).

Remark 3.4. Given S ∈ Sch, the collection of all the onto families of étale
S-morphisms satisfies the covering-axioms.

25
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Definition 3.5. Let S ∈ Sch. We define the étale site to be the pair
Sét := (Ét/S,Cov(Ét/S)), where Cov(Ét/S) is defined to be the collection
of all the onto families of morphisms in Ét/S. (By the above Rmk, Sét is
indeed a site.).

Remark 3.6. The category Sh(Sét) is called the étale topos of S.

Proposition 3.7. Given T = TC a site:

� PAb(T ) and Ab(T ) are abelian categories;

� PAb(T ) and Ab(T ) have enough injectives;

� F → G →H is exact in PAb(T ) iff F (U)→ GU)→H (U) is exact
in Ab, ∀U ∈ C.

Proof. See for instance [Tam, Prop. 2.1.1, p. 31]

Remark 3.8. Given U ∈ C, the evaluation functor ΓU : PAb(T ) → Ab,
sending F 7→ F (U) is exact, by the second point of Prop. 3.7. Consider
the composition of the two functors

Ab(T ) PAb(T ) Ab.i ΓU

Since ΓU is exact and the inclusion functor i is left exact (for a proof of these
two facts see for instance [Tam, Thm. 3.2.1, p. 50]), then the composite of
the two, denoted again with ΓU , is left exact.

Definition 3.9. Let U ∈ C and let F ∈ Ab(T ). By Prop. 3.7 and Rmk
3.8, we can right-derive the functor ΓU : Ab(T ) → Ab. So for every q ≥ 0
we define the q-th cohomology group of U with values in F to be

Hq(U,F ) := (RqΓU )(F ) = Hq(ΓU (I•))

where 0→ F → I• denotes an injective resolution of F in Ab(T ).

Remark 3.10. The case when T = Sét, U = X ∈ Ét/S and F ∈ Ab(Sét)
gives us the q-th étale cohomology group Hq

ét(X,F ) of X with values
in F .

3.2 The case S = Spec(k)

We will now consider the case when k ∈ Fld and S = Spec(k). Let ks be a
separable closure of k and set Gk = Gal(ks/k) (which is a profinite group).

Notation 3.11. For brevity we set Ét/k := Ét/Spec(k) and Sch/k :=
Sch/Spec(k).
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Definition 3.12. Let S ∈ Sch. We define a geometric point of S to be a
morphism Spec(Ω) → S, where Ω ∈ Fld is separably closed. Alternatively
it can be defined as a point s ∈ S together with an injection k(s) ↪→ Ω,
where Ω ∈ Fld is separably closed.

Notation 3.13. Let X ∈ Sch/k. We denote with X(ks) := XSpec(k)(ks)
the set of all ks-valued points of X, i.e. the set of all the morphisms
(Spec(ks)→ X) ∈ Sch/k. This is the set of all geometric points of X.

Notation 3.14. Given an k-automorphism ϕ ∈ Gal(ks/k), we will de-
note with ϕ = Spec(ϕ) : Spec(ks) → Spec(ks) the associated morphism
of schemes.

We define an action Gk y X(ks) by setting (ϕ, f) 7→ f ◦ ϕ, for every
ϕ ∈ Gk and every f ∈ X(ks). On the level of the topological spaces the
elements of Gk just send a point to itself; the core of the action is on the
level of the structure sheaves.

Remark 3.15. Let’s now take an open subgroup H ≤ Gk. It holds then the
identification X(ks)

H = X(kHs ). Let’s consider the affine case X = Spec(A),
where A ∈ k-Alg. We have that

X(ks)
H = {f : Spec(ks)→ Spec(A) | f ◦ ϕ = f, ∀ϕ ∈ H}

= {f# : A→ ks |ϕ ◦ f# = f#,∀ϕ ∈ H}
= {f# : A→ ks | Im(f#) ⊆ kHs }
= {f : Spec(kHs )→ Spec(A)}
= X(kHs ),

where f# denotes the sheaf morphism OSpec(A) → f∗OSpec(ks) evaluated on
the whole space X = Spec(A) (i.e. we are using the duality CRingop '
AffSch). The morphisms of schemes considered in the above equalities are
all over Spec(k) and the morphisms of rings are all over k.

Remark 3.16. Let H ≤open Gk. Since Gk is profinite this means H is a
closed subgroup of Gk with [Gk : H] < ∞. By Galois Theory this implies
[kHs : k] <∞. Moreover for every such H we have that X(kHs ) ⊆ X(ks) by
pre-composing arrows with the canonical morphism Spec(ks) → Spec(kHs ).
Actually it holds the decomposition

X(ks) =
⋃

H⊆openGk

X(kHs ).

Indeed consider a morphism f : Spec(ks)→ X (→ Spec(k)). This f locates
a point x ∈ X and we get a tower of fields k → κ(x) → ks. By Galois
Theory there exists a closed subgroup H ⊆ Gk such that κ(x) = kHs . If
we now assume that X is locally of finite type we have that the extension



28 CHAPTER 3. ÉTALE COHOMOLOGY

κ(x)/k is finite, since it is algebraic (see for example [G.-W., Prop. 3.33,
p. 79]). This means that H is closed and of finite index in Gk, hence
open. Let now U = Spec(A) ⊆ X an open affine containing x. Denoting
with p the ideal in A corresponding to x we have canonical composition of
ring morphisms A → Ap → Ap/pAp = κ(x) from which we get a scheme
morphism Spec(κ(x)) = Spec(kHs ) → X that composed with the canonical
arrow Spec(ks) → Spec(kHs ) gives us f . Therefore f ∈ X(kHs ) = X(ks)

H ,
for some H ⊆open Gk. Hence Gk y X(ks) continuously, since the directed
system of normal open subgroups of a profinite group is cofinal to the one
of its open subgroups.

We will now state and prove a theorem which will turn out to be the
second main ingredient in the proof of the main theorem of this thesis.

Theorem 3.17. Let k ∈ Fld. The functors

Ét/k CGk-Set

X/k X(ks)⊔
i∈I

Spec(k
Hui
s ) U

φ

ψ

yield an equivalence of categories. Here |I| is the cardinality of the collection
of all the Gk-orbits in U , ui is a chosen point in the i-th orbit and Hui

denotes the stabilizer StGk
(ui). This equivalence induces an isomorphism

Spec(k)ét T C
Gk

∼

of sites.

Proof. First step: we have to check that ψ is well-defined (on the objects).
So let U ∈ CGk-Set and let’s write U =

⊔
i∈I Oui as the coproduct of its

Gk-orbits. Now as Gk is profinite we have that Hui = StGk
(ui) ≤open Gk

and so it is closed and finite. This implies that k
Hui
s /k is a finite (and

separable) field extension, hence the morphism ϕi : Spec(k) → Spec(k
Hui
s )

is unramified. As it is also clearly flat, we have that ϕi is étale. Since
by Cor. 1.43 the category Ét/k has arbitrary coproducts we have that
ψ(U) =

⊔
i∈I ϕi is étale over k. Let’s show moreover that the map ψ does

not depend on the choice of the points in the orbits. Choose an index i ∈ I
and let u and v be two different points in the Gk-orbit O. Then there
exist g ∈ Gk such that g.u = v. From this it follows that Hv = StGk

(v) =

StGk
(u)g

−1
= Hg−1

u . Via some elementary computations we can also see that

kH
g−1

u
s = g(kHu

s ). So in practice we found that a choice of a different point
in O equals substituting the field extension kHu

s with one of its conjugates
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(under Gk). Clearly all remains the same passing to spectra and so we are
done. Second step: we prove that the above functors are mutually quasi-
inverse. First direction: ψ ◦ φ ' idÉt/k. Let X be an étale scheme over

k. By Prop. 1.41 we have that X can be written as
⊔
i∈I Spec(ki), where

ki/k is a finite and separable field extension of k, for every i ∈ I. Let’s fix
a separable closure ks of k so that we can see all in towers, namely k ⊆
ki ⊆ ks. Now φ(X) = X(ks) = (

⊔
i∈I Spec(ki))(ks) =

⊔
i∈I Spec(ki)(ks).

The essential fact to observe here is that “surprisingly” the set of indices
I parametrizes also the orbits of the Gk-set φ(X). In fact for every i ∈ I
we have that Spec(ki)(ks) ∼= Homk(ki, ks) and Gk acts transitively on this
set on the right permuting the k-immersions of ki in ks. So we have that

φ(X) is sent by ψ to the étale k-scheme
⊔
i∈I Spec(k

Hfi
s ), where fi is a

chosen point in Spec(ki)(ks) for every i ∈ I. Now Hfi = StGk
(fi) is nothing

but the stabilizer of ki for the action of Gk on ks, i.e. Hfi = Gal(ks/ki). So

k
Hfi
s = k

Gal(ks/ki)
s = ki and we are done. Second direction: φ◦ψ ' idCGk-Set.

Let U be a continuous Gk-set. First we apply ψ obtaining the étale k-scheme⊔
i∈I Spec(k

Hui
s ). Then we apply φ passing to its ks-valued points. Since φ

clearly commutes with arbitrary coproducts we can restrict our attention to

the Gk-set Ui := Spec(k
Hui
s )(ks). Now for every choice of an index i ∈ I we

have that Ui ∼= Homk(k
Hui
s , ks) and this last set is Gk-isomorphic to the Gk-

set [Gk : Hui ] of the cosets of Hui in Gk. Finally [Gk : Hui ] is Gk-isomorphic
to the orbit Oui of ui under Gk. So for every i we have that Ui ∼= Oui
and taking the disjoint union we recover U . Third step: the equivalence

φ induces a morphism of sites. Given (X
f−→ Z), (Y

g−→ Z) ∈ Ét/k, we have
that (X×Z Y )(ks) ∼= X(ks)×Z(ks) Y (ks). Consider the (CGk-Set) - diagram

U

(X ×Z Y )(ks) Y (ks)

X(ks) Z(ks)

ρ

γ

pY (ks)

pX(ks) g(ks)

f(ks)

where the two squares commute. We want to prove that there exist a “dotted
map” such that “triangles” commute. Let u ∈ U . Then we have that
g(ks)(ρ(u)) = f(ks)(γ(u)) i.e. g ◦ ρ(u) = f ◦ γ(u) i.e. in the Ét/k - diagram



30 CHAPTER 3. ÉTALE COHOMOLOGY

Spec(ks)

X ×Z Y Y

X Z

ρ(u)

γ(u)

θ(u)

pY

pX g

f

the outer square commutes and so there exists a unique mediating arrow
θ(u) that makes the two “triangles” commute. Now if we define the dotted
arrow θ : U → (X ×Z Y )(ks) in the first diagram by setting u 7→ θ(u) we
are done since we have that{
γ(u) = pX ◦ θ(u)

ρ(u) = pY ◦ θ(u)
 

{
γ(u) = pX(ks)(θ(u))

ρ(u) = pY (ks)(θ(u))
 

{
γ = pX ◦ θ
ρ = pY ◦ θ

where in the first two brackets we mean “for every u ∈ U ”. So the object
(X ×Z Y )(ks) satisfies the universal property of the fiber product, whence
our iso. From the fact that the functor φ preserves fiber products it follows
immediately that the 2nd property of morphisms of sites is verified. Notice
now that given an arrow (ϕ : Y → X) ∈ Ét/k its image via our functor φ

is nothing but the post-composition ϕ ◦ −. So now given {Xi
ϕi−→ X}i∈I ∈

Cov(Ét/k), i.e. X =
⋃
i∈I ϕi(Xi), we have that

X(ks) = (
⋃
i∈I ϕi(Xi))(ks) =

⋃
i∈I(ϕi(Xi))(ks) =

⋃
i∈I ϕi(ks)(Xi(ks))

where the second equality follows from the equality

(ϕi(Xi))(ks) = ϕi(k)(Xi(ks))

which holds for every i ∈ I. This is just because the data of a morphism
Spec(k) → ϕi(Xi) is equivalent to the data of a morphism Spec(k) → Xi

post-composed with the i-th arrow of our covering. So φ maps coverings
to coverings. Fourth step: this is indeed an site isomorphism. Let {fi :
Ui → U}i∈I ∈ Cov(CGk-Set). By essential surjectivity of φ, we have that
Ui = Xi(ks) and U = X(ks), for some X and Xi’s in Ét/k. By fully
faithfulness of φ we have moreover that for every i ∈ I there exist (a unique)
ϕi ∈ HomÉt/k(Xi, X) such that fi = ϕi(ks). So our covering is nothing but

the covering {ϕi(ks) : Xi(ks)→ X(ks)}i∈I . The covering condition has then
the form X(ks) =

⋃
i∈I ϕi(k)(Xi(ks)). By the same kind of reasoning shown

above we have that

X(ks) =
⋃
i∈I ϕi(ks)(Xi(ks)) =

⋃
i∈I(ϕi(Xi))(ks) = (

⋃
i∈I ϕi(Xi))(ks).

From this we can conclude that X =
⋃
i∈I ϕi(Xi). In fact take any étale

k-map f : Y → X such that f(ks) : Y (ks)→ X(ks) is onto. Well now if we
take a point x ∈ X we have that the map k → κ(x) is finite and separable
and so the composition Spec(ks) → Spec(κ(x)) → X gives us a geometric
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point x′ of X associated to x. Since f(ks) is onto there is a geometric point
y′ : Spec(ks) → Y lying over x′. The corresponding point y ∈ Y lies over
x.

Remark 3.18. Before stating the previous theorem giving explicitly the
two functors in both directions we were following another path. The idea
was to first just “abstractly” prove the existence of a left adjoint to φ and
then show that indeed the associated adjoint morphisms (below defined) are
indeed isomorphisms. While pursuing the second task we recognized that
it would have been necessary to anyway give an “explicit way back” from
continuous Gk-sets to étale k-schemes. So we abandoned the first approach
and removed it from the body of the proof as otherwise (possibly) redundant.
We insert it anyway here below, since it seems a nice criterion that can be
used in order to prove “existence of (left) adjoints”. First we will explain
how the “method” works, then we will apply to our case above. Method:
given a functor F : C → D, a left adjoint to F is a functor G : D → C such
that for every C ∈ C and D ∈ D we have an isomorphism

HomD(D,F (C)) HomC(G(D), C)∼

functorial in C and in D. (The functor G is determined up to a unique iso.)
The adjointness condition induces a pair of canonical natural transforma-
tions

idD F ◦G

G ◦ F idC

called adjoint morphisms. In order to prove the existence of a left adjoint
G to F it suffices to show that the functor C → Set, defined by C 7→
HomD(D,F (C)) is co-representable, i.e. there exist an iso

HomD(D,F (C)) ∼= HomC(G(D), C)

functorial in C. In fact if we assume this last condition to hold, we have
that given D ∈ D there is a canonical arrow φD : D → F (G(D)). Moreover
given an arrow (f : D → E) ∈ D we get an arrow φE ◦ f : D → F (G(E)),
which gives us a last arrow G(f) : G(D) → G(E), by the above iso. So
finally we got a functor G : D → C which, by construction, is such that the
iso HomD(D,F (C)) ∼= HomC(G(D), C) holds and is functorial also in D.
Hence G a F . Case of Thm 3.17: the functor φ admits a left adjoint ψ.
Thanks to Rmk 3.18 in order to do this it suffices to show that the functor
Ét/k → Set defined by

X/k HomGk
(U,X(ks))

is co-representable for every U ∈ CGk-Set. Now let’s observe a few facts:
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1. every U ∈ CGk-Set can be decomposed as the disjoint union of its
Gk-orbits, namely U =

⊔
u∈U Ou;

2. every orbit Ou is isomorphic, as continuous Gk-set, to some quotient
space Gk/H, for some H ≤open Gk;

3. the category Ét/k admits arbitrary coproducts.

We can then restrict to show the co-representability of the functor X 7→
HomGk

(Gk/H,X(ks)). In fact, once proven this, i.e. once we found a certain
scheme ψ(Gk/H) ∈ Ét/k such that

HomGk
(Gk/H,X(ks)) ∼= HomÉt/k(ψ(Gk/H), X)

we have that given any continuous Gk-set U it holds

HomGk
(U,X(ks)) ∼= HomGk

(
⊔
u∈U
Ou, X(ks))

∼= HomGk
(
⊔
u∈U

Gk/H,X(ks))

∼=
∏
u∈U

HomGk
(Gk/H,X(ks))

∼=
∏
u∈U

HomÉt/k(ψ(Gk/H), X)

∼= HomÉt/k(
⊔
u∈U

ψ(Gk/H), X),

hence, by point (3) above, we would be done. So now consider the field
kHs , for some H ≤open Gk. We have that Spec(kHs )/k ∈ Ét/k. In fact
Spec(kHs ) → Spec(k) being étale equals k ↪→ kHs being so, i.e. being flat
and unramified. But being H open in Gk, the extension kHs /k is finite and
obviously separable, hence unramified. Moreover the tensor functor kHs ⊗k−
is exact (barely because k ∈ Fld). Now by Rmk 3.15 we have that

HomGk
(Gk/H,X(ks)) ∼= X(ks)

H ∼= X(kHs ) ∼= HomÉt/k(Spec(k
H
s ), X)

and these isos are functorial in X. So our functor is co-represented.

Remark 3.19. Observe that the above result gives us a site isomorphism
Spec(k)ét ∼= TÉt/k. This kind of result does not hold when considering the

category Ét/S, where S ∈ Sch is an arbitrary scheme.

Now we have finally all the tools to state and prove the main theorem
of this thesis. Before doing this we observe an important fact that already
sheds a light on the interrelation between Étale and Galois Cohomology.
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Remark 3.20. Let G be a profinite group. By Cor 2.32 we know that there
is an categorical equivalence CG-Mod ' Ab(T C

G ) given by the mutually
quasi-inverse functors A 7→ Hom CG(−, A) and F 7→ lim−→H�openG

F (G/H).

Let’s denote with P the set with one element, endowed with its unique
(continuous) left G-structure. Observe that given A ∈ CG-Mod we have
that

ΓP (Hom CG(−, A)) = HomCG(P,A) ∼= AG

so the functors ΓP : Ab(T C
G ) → Ab and −G : CG-Mod → Ab get identified.

So, since the q-th étale cohomology group and the q-th Galois cohomol-
ogy group are respectively obtained right-deriving the first and the second
functor above, we have that

Hq(P,Hom CG(−, A)) ∼= Hq(G,A).

Theorem 3.21. Let k ∈ Fld. Denote with Σ the set of all field inter-
extensions k ⊆ l ⊆ ks such that [l : k] <∞. The functor

Ab(Spec(k)ét) CGk-Mod

F lim−→
l∈Σ

F (Spec(l))

φ

yields an equivalence of categories. For every F ∈ Ab(Spec(k)ét) and every
q ≥ 0 this induces a (∂-functorial) isomorphism

Hq
ét(Spec(k),F ) ∼= Hq(Gk, lim−→

l∈Σ

F (Spec(l)))

in Ab, (where the l.h.s. denotes the étale cohomology and the r.h.s. denotes
the Galois cohomology).

Proof. Equivalence. Let’s first observe the following facts:

� in the above statement the notation Spec(l) stands for Spec(l)/k;

� the set Σ is a directed system in Fld;

� lim−→l∈Σ
F (Spec(l)) ∈ Ab and there is a natural continuous action of

Gk on it (by the same reasoning used in the proof of last theorem of
chapter II).

So φ is well-defined (on the objects). The equivalence follows immediately
from Cor 2.32 and Thm 3.17. Indeed by the first we have the categorical
equivalence CGk-Mod ' Ab(T C

Gk
) and by the second we have the site iso

T C
Gk
' Spec(k)ét. So we conclude that Ab(Spec(k)ét) ' CGk-Mod.

Cohomology. Let’s first observe that the above direct limit can be equiv-
alently taken over the directed subsystem Σ′ := {l ∈ Σ | l/k normal } ⊆ Σ.
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By Cor 2.32 we have that every sheaf F on T C
Gk

corresponds to a unique
(continuous) Gk-module A (up to iso), via the mutually quasi-inverse func-
tors A 7→ HomCGk

(−, A) and F 7→ lim−→H�openGk
F (Gk/H). Let then F

be an abelian sheaf on Spec(k)ét. By Rmk 3.20 applied to the case when
P := Spec(k) we have that

Hq
ét(Spec(k),F ) ∼= Hq(P,F ′)

∼= Hq(P,HomCGk
(−, A))

∼= Hq(Gk, A)
∼= Hq(Gk, lim−→

H�openGk

F ′(Gk/H)

∼=(1) Hq(Gk, lim−→
l∈Σ′

F ′(Spec(l)(ks)))

∼=(2) Hq(Gk, lim−→
l∈Σ′

F (Spec(l)))

where

� F ′ denotes the sheaf that corresponds (up to iso) to the sheaf F via
the site iso Ab(Spec(k)ét) ' Ab(T C

Gk
);

� iso (1) follows from the Gk-isos

Gk/H ∼= Homk(k
H
s , ks)

∼= HomÉt/k(Spec(ks), Spec(k
H
s ))

= Spec(kHs )(ks);

� iso (2) follows from the categorical equivalence given in Thm 3.17.

This theorem provides us an alternative way to compute the classical
group cohomology of continuous Gk-modules and highlights the fact that
Galois Cohomology theory can be somehow “embedded” in the étale one as
the Étale Cohomology over Spec(k).



Chapter 4

Classical theory

’twoslovetfrstsait.

In this chapter we will give a summary of the main definitions, results
and some applications of the classical Galois Cohomology theory. We will
mainly follow [Ser], [T.] and [C.-F.]. Let’s start with some notions about
group cohomology.

4.1 Group Cohomology

Notation 4.1. Let G be profinite. We will denote with CG-Mod the cat-
egory of the discrete abelian groups on which G acts continuously. This
category is abelian (in particular we can take kers and cokers) and is full in-
side G-Mod. As in the case of continuous G-sets we have the two equivalent
conditions:

� {StG(a) | a ∈ A} ⊆ OpG

� A =
⋃
H� openGA

H .

Any A ∈ CG-Mod will be called a discrete G-module.

Remark 4.2. “A is a G-module”, in this context, means that there is a map
G × A → A such that it is continuous, it is linear in the second argument,
1G acts trivially and g ◦ h acts as “g acts after h”.

Now let’s pass to define cohomology of our profinite group G with values
in CG-Mod. There are essentially two ways to define it. First way: denote
by Cn(G,A) the “set of all continuous maps Gn → A ”, (as A is discrete
we are just dealing with the locally constant maps here). We define the
coboundary map
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dn : Cn(G,A)→ Cn+1(G,A)

setting

(df)(g1, . . . , gn+1) := g1f(g2, . . . , gn+1)

+

n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn)

for every f ∈ Cn(G,A). We obtain then a complex (C•(G,A), d•). The
cohomology of this complex, defined as Hq(G,A) := ker(dq)/Im(dq−1) is
what we will call “the q-th cohomology group of G with values in A”. (When
|G| < ∞, we recover the usual cohomology of finite groups.) The following
result points out the way profinite cohomology can be seen in terms of the
finite one:

Proposition 4.3. Let {Gi}i∈I be an inverse system of profinite groups and
let {Ai}i∈I be a direct system of abelian groups, where Ai ∈ CG-Mod for
every i ∈ I. Assume that the morphisms in these two systems are compatible
in the sense that the diagram

Gi ×Ai Ai

Gj ×Aj Aj

commutes. Then we have that

Hq(lim←−iGi, lim−→i
Ai) = lim−→i

Hq(Gi, Ai),

for each q ≥ 0.

Proof. See for example [Ser, Prop. 8, p. 11].

Corollary 4.4. Given A ∈ CG-Mod, with G profinite, it holds

Hq(lim←−H G/H, lim−→H
AH) = lim−→H

Hq(G/H,AH)

with H varying among the open normal subgroups of G.

Second way: we can define the q-th cohomology group of G with values
in A, by setting

Hq(G,A) := ExtqZ[G](Z, A) = Rq(HomZ[G](Z,−))(A).

Now since we can naturally make HomZ(Z, A) into a (continuous) G-module
and it holds HomZ[G](Z, A) = (HomZ(Z, A))G = AG we have that we are in-

deed taking the right derived functors of the functor −G. This construction
makes sense since HomZ[G](Z,−) is left exact and the category CG-Mod is
equivalent to the module category CZ[G]-Mod and so it has enough injec-
tives.
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Remark 4.5. The “low degree” cohomology groups can be interpreteted in
some nice ways:

� H0(G,A) = AG ( it corresponds to “taking G-invariants in A”);

� H1(G,A) = “classes of continuous crossed-homomorphisms G→ A”;

� H2(G,A) = “classes of continuous cocycles (or factor systems) G2 →
A”.

If Gy A trivially, we have that H1(G,A) = HomGrp(G,A).

Let’s now introduce two very relevant maps relating cohomology groups.

Consider a morphisms (G′
f→ G) ∈ Grp and let A ∈ CG-Mod and A′ ∈

CG′-Mod. Let A
h→ A′ be a map such that h(f(g).a) = g.h(a), ∀a ∈ A and

∀g ∈ G′, which means some sort of commutativity of the below diagram

G×A A

G′ ×A′ A′.

Via h, we can consider A as a G′-module. Passing to cohomology, this
compatible pair (f, h) defines a morphism of groups that we will denote
with the same notation:

(f, h) : Hq(G,A)→ Hq(G′, A′).

The map here is so defined: given an element [σ] ∈ Hq(G,A) repre-
sented by the cocycle σ : Gq → A we define (f, h)([σ]) to be the element of
Hq(G′, A′) represented by the cocycle σ′ : (G′)q → A, defined setting

(g′1, . . . , g
′
q) 7→ h(σ(f(g′1), . . . , f(g′q))).

If we apply the above definition to the case when G′ = H ↪→ G is a closed
subgroup of G and A = A′ we get the well-known restriction map:

Res : Hq(G,A)→ Hq(H,A),

for every q ≥ 0. When we have an open subgroup H ↪→ G we can define the
corestriction map

Cor : Hq(H,A)→ Hq(G,A),

for every q ≥ 0, (i.e. the “dual” map to Res). This second map is defined
by a limit process starting from finite groups.

Proposition 4.6. We have that Cor ◦Res = n, where n = [G : H].

Proof. See for instance [R.-Z., Thm 6.7.3, p. 226].
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4.2 Galois Cohomology

Galois Cohomology theory is nothing but a specialization of the “profinite
group cohomology theory”, above introduced, given by regarding the in-
volved profinite groups as automorphism groups of Galois extensions of
fields. Namely the usual approach consists in:

1. fixing some base field k;

2. taking some Galois extension l/k;

3. associating some discrete (abelian) group M(l) to the group Gal(l/k).

This “construction” leads us to consider the (well-defined) cohomology groups
Hq(Gal(l/k),M(l)), for any q ≥ 0, (only q ∈ {0, 1} in the non-abelian case).
However there is a more efficient way to introduce the Galois cohomol-
ogy groups. Fix an object k ∈ Fld and denote with Sepk the category
of separable field extensions of the base field k. Let’s consider a functor
M : Sepk → Grp. Assume M satisfies the following four conditions:

� l/k Galois extension  Gal(l/k) yM(l);

� M(l) = lim−→ki
M(ki), where ki varies among the inter-extensions k ⊆

ki ⊆ l that are finite over k;

� l ↪→ l′ ⇒ M(l) ↪→M(l′);

� l′/l Galois extension ⇒ M(l) = H0(Gal(l′/l),M(l′)).

Remark 4.7. It’s enough to assume the first condition in order to have an
action Gal(l′/l) y M(l′), anytime we meet a Galois extension l′/l. In fact
if Gal(l′/k) y M(l′) then we can just consider this action restricted to the
subgroup Gal(l′/l) ≤ Gal(l′/k).

Notation 4.8. The following notation is commonly used:

� Hq(l/k,M) := Hq(Gal(l/k),M(l));

� Hq(k,M) := Hq(ks/k,M).

Example 4.9. The preminent example we will consider in terms of the
étale cohomology will be the one associated to the extension ks/k, (here ks
denotes a separable closure of k).

Example 4.10. The functor M can be defined enlarging the source cat-
egory to Fldk (i.e. we can drop out the assumptions of algebraicity and
separability). The preminent example in this context is the one of group
schemes over k. In fact given such a functor M : Sch/k → Grp, we have
that M verifies the three last conditions above and if we assume in addition
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the first condition we are done. Algebraic groups in particular form a class
of group schemes (over k). Two very frequent examples of group schemes
are

Ga : (Sch/k)op Ab

X (OX(X),+)

and

Gm : (Sch/k)op Ab

X (OX(X)∗, ·)

where OX(X)∗ denotes the group of units of the global-sections ring of
the structural sheaf of the k-scheme X.

Here below we state two relevant results in Galois cohomology.

Proposition 4.11. Let k ∈ Fld and l ∈ Fldk. Assume l/k is Galois. We
have that:

� H1(l/k,Gm) = 0 (“Hilbert 90”)

� Hq(l/k,Ga) = 0, ∀q ≥ 1.

In particular we have that H1(k,Gm) = 0 (particular case of “Hilbert
90”).

Remark 4.12. For q > 1 it can be that Hq(l/k,Gm) 6= 0. As an ex-
ample consider the case q = 2: we have that H2(k,Gm) ∼= Br(k), where
Br(k) denotes the Brauer group of the field k. For l ∈ Fldk we have that
H2(l/k,Gm) ∼= Br(l/k) ↪→ Br(k) ∼= H2(k,Gm).
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Chapter 5

Hilbert 90. An étale view

You cannot always wait for the
perfect time.
Sometimes you [must] dare to
jump.

(anonymous)

In this last chapter we present a application of Thm 3.21 to one of the
main results in classical Galois Cohomology, namely Hilbert Theorem 90.
We will first rephrase this theorem in terms of the étale cohomology and
then outline a path that eventually brings to a proof of this result in the
“étale setting”.

First of all we will consider the classical formulation of Hilbert 90 (as stated
in Prop. 4.11) for the case of the Galois extension ks/k, where the notation
is the same as in Thm 3.21. Namely the result in this case can be stated as

H1(Gk, k
∗
s) = 0.

with Gk = Gal(ks/k). Now by Thm 3.21 we have that for every F ∈
Ab(Spec(k)ét) there is isomorphism

Hq
ét(Spec(k),F ) ∼= Hq(Gk, lim−→

l∈Σ

F (Spec(l)))

of abelian groups, where Σ is as in the statement of the theorem.

Remark 5.1. Observe that for every such F we can identify lim−→
l∈Σ

F (Spec(l))

with the stalk Fs̄ at the geometric point s̄ = Spec(ks) → Spec(k) (for a
proof see [Tam, p.116-118]).

Given S ∈ Sch let’s consider the étale abelian presheaf
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Gm : (Ét/S)op Ab

X Gm(X) := OX(X)∗.

This presheaf is co-represented by the scheme S ×Spec(Z) Spec(Z[t, t−1]),
namely

Gm(−) ' HomS(−, S ×Spec(Z) Spec(Z[t, t−1])).

By a theorem of Grothendieck (see for example [Zom, Thm 1.1, p.1]) we
have that Gm ∈ Ab(Sét). Let’s take in exam the case when S = Spec(k).
We have that the stalk of the sheaf Gm on at the point s̄ is

(Gm)s̄ = lim−→
l∈Σ

Gm(Spec(l)) = lim−→
l∈Σ

OSpec(l)(Spec(l))∗ = lim−→
l∈Σ

l∗ = k∗s .

So by Thm 3.21 applied to the case when F = Gm and Rmk 5.1 we have
that

H1(Gk, k
∗
s) = H1(Gk, (Gm)s̄) ∼= H1

ét(Spec(k),Gm).

Next step will be defining the notion of Picard group of a ringed site (TC ,OT ),
which in our case will the small Zariski or small étale site. Given S ∈ Sch
we will denote them respectively with SZar and Sét. The former is defined
as the site TC , with C = SubOpS the category whose objects are the open
subschemes of S and Cov(TC) consisting of the jointly surjective families
of morphisms in SubOpS . In order to do this let’s introduce some further
notions about sheaves on sites.

Definition 5.2. We define a ringed site to be a pair (TC ,OT ) where T = TC
is a site and OT ∈ Ring(T ).

Definition 5.3. Given (TC ,OT ) a ringed site we define a presheaf of OT -
modules as a pair (F , η) where

� F ∈ PAb(T )

� (O ×F
η−→ F ) ∈ PSh(T )

such that for every U ∈ C, the map O(U)×F (U)
ηU−−→ F (U) endows F (U)

with a O(U)-module structure.

Definition 5.4. Given (F , η) and (G , θ) two presheaves of OT -modules
we define a morphism of presheaves of OT -modules as a morphism
(F

ϕ−→ G ) ∈ PAb(T ) such that the diagram

O ×F F

O × G G

η

idO×ϕ ϕ

θ
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commutes. The category of presheaves of OT -modules and associated mor-
phisms will be denoted by PMod(OT ).

Definition 5.5. Given (F , η) ∈ PMod(OT ) we say that (F , η) is a sheaf
of OT -modules, if F ∈ Ab(T ).

Definition 5.6. Given (F , η) and (G , θ) two sheaves of OT -modules we say

that (F
ϕ−→ G ) ∈ PAb(T ) is a morphism of sheaves of OT -modules, if

ϕ ∈ PMod(OT ). The category of sheaves of OT -modules and associated
morphisms will be denoted by Mod(OT ).

Definition 5.7. Let (TC ,OT ) be a ringed site and let F = (F , η) ∈
Mod(OT ). We say that F is quasi-coherent, if for every U ∈ C there
exists a covering {Ui → U}i∈I ∈ Cov(C) such that for every i ∈ I there
exists a sequence of OT |Ui-modules⊕

K(i)

OT |Ui →
⊕
J(i)

OT |Ui → F |Ui → 0

which is exact. In this case we say that F admits a local presentation.
Quasi-coherent sheaves of OT -modules form a category which we denote
with QCoh(OT ).

Definition 5.8. Let (TC ,OT ) be a ringed site and F ,G ∈ Mod(OT ). We
define the tensor product of F and G over OT as the sheaf of OT -
modules F ⊗OT

G obtained by sheafifying the presheaf defined by setting
U 7→ F (U)⊗OT (U) G (U) for every U ∈ C.

Definition 5.9. Given F ∈Mod(OT ) we say that F is invertible, if there
exists G ∈Mod(OT ) such that F ⊗OT

G ∼= OT .

Definition 5.10. Given F ,G ∈Mod(OT ) and denote respectively with F
and G their isomorphism classes. We set F •OT

G := [F ⊗OT
G ]∼. We

define the Picard group Pic(T ) of the ringed site (TC ,OT ) to be the set
of isomorphism classes of invertible sheaves of OT -modules. We have that
Pic(T ) ∈ Ab.

Definition 5.11. Let T = TC be a site. If C has a terminal object E we
define the global-sections functor of the site TC as the evaluation functor
ΓE : Ab(T ) → Ab that sends F 7→ F (E). If C does not have such kind of
object we define the above functor by setting ΓTC(F ) := HomPSh(TC)(e,F ),
where e is a terminal object in PSh(TC). In this fashion we set respectively
Hq(TC ,F ) := (RqΓE)(F ) and Hq(TC ,F ) := (RqΓTC)(F ).

Proposition 5.12. Let (TC ,OT ) be a ringed site. There is a canonical
isomorphism

H1(TC ,O∗T ) ∼= Pic(T )
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Proof. The main ingredient here is the canonical identification between
H1(TC ,O∗T ) and the set of isomorphism classes of O∗T -torsors. For details
see for instance [S.P., Tag 040E].

In our case we deal with the category Ét/Spec(k) and with the site
T = Spec(k)ét and so the above result reads

H1
ét(Spec(k),Gm)) = H1

ét(Spec(k),O∗Spec(k))
∼= Pic(Spec(k)ét).

The next step will be proving that Pic(Spec(k)ét) ∼= Pic(Spec(k)Zar).

Definition 5.13. Let S ∈ Sch and F ∈ QCoh(OS). We define the associ-
ated sheaf of OSét

-modules (resp. of OSZar
-modules) F a by setting

F a : (T
f−→ S) 7→ (f∗F )(T )

where f∗F denotes the pullback sheaf of F via f .

Proposition 5.14. Given S ∈ Sch and F ∈ QCoh(OS) we have that the
functor

QCoh(OS) QCoh(OSét
)

F F a

is an equivalence of categories. (The same holds for SZar.).

Proof. See for instance [S.P., Tag 03DX]. The proof essentially develops
following a “descent theory argument”.

From this we get that invertible sheaves on the site Sτ with τ ∈ {ét, Zar}
descend to invertible sheaves on the scheme S and isomorphism classes “on
one side” correspond to isomorphism classes “on the other side”. So what
we get in our case is that

Pic(Spec(k)ét) ∼= Pic(Spec(k)Zar) ∼= Pic(Spec(k)).

To conclude it just suffices to observe that

Pic(Spec(k)) = 0.

This follows from this argument: let F an invertible sheaf on S and let
G ∈Mod(OS) such that F ⊗OS

G ' OS . We want to prove that F ' OS .
It is enough to check things on the stalks. In our case S = Spec(k) so for
the unique point x ∈ Spec(K) we have that

(F ⊗OS
G )x ∼= Fx ⊗OS,x

Gx ∼= OSpec(k),x
∼= k

hence Fx
∼= k and we are done.
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Tome 1, Lecture Notes in Mathematics, vol. 151, Springer, Berlin Hei-
delberg New York (1970).

[GrMay] Greenless, J.P.C., May, J.P.: Equivariant Stable Homotopy Theory,
<http://www.math.uchicago.edu/~may/PAPERS/Newthird.pdf>.
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