
UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITE BORDEAUX 1
Facoltà di Scienze MM. FF. NN U.F.R. Mathématiques et Informatique

Master Thesis

Vo Ngoc Thieu

Reduction Modulo Ideals and Multivariate

Polynomial Interpolation

Advisor: Prof. Jean-Marc Couveignes

June 28, 2013

Contents

1 Polynomial Interpolation Problems 5
1.1 Univariate case . 5

1.1.1 Lagrange Interpolating Polynomials 5
1.1.2 Fast Interpolation . 6

1.2 Multivariate case . 10
1.2.1 Introduction . 10
1.2.2 The Cartesian product case - Grids 13

2 Reduction modulo ideals in several variables 17
2.1 Monomial orders . 17
2.2 Multivariate Division Algorithm . 21
2.3 Gröbner bases . 24

2.3.1 Gröbner bases . 25
2.3.2 Buchberger’s Algorithm . 26
2.3.3 Reduced bases and computer calculation 30

2.4 Some Applications . 33
2.4.1 Solving Polynomial equations . 33
2.4.2 Implicitization Problem . 35
2.4.3 Finding the projective closure of an affine variety 37

3 Using reduction modulo ideals to solve multivariate interpolation prob-
lems 40
3.1 Interpolating ideals . 41

3.1.1 Lower sets . 41
3.1.2 The Gröbner basis of interpolating ideal with respect to <lex 45
3.1.3 Constructing the reduced Gröbner basis with respect to <lex 47
3.1.4 Changing monomial orders in Gröbner bases 57

3.2 Solving Polynomial Interpolation by reduction modulo ideals 64
3.2.1 Choosing an initial solution . 64
3.2.2 Choosing the best solution . 67

3.3 Other approaches . 68

1

Acknowledgments

I am special grateful to my advisor, Prof. Jean-Marc Couveignes, for proposing this project,
for his strong support for my work during the last semester, and for many comments on
writing a good scientific English. Working under his enthusiasm and kindly guidance is an
honor for me. Without him this thesis can not be completed.

I would like to thank Mathias Lederer for suggesting an improvement of his origin paper
[6] and for giving some useful remarks, and hence help me read the paper in a favorable way.

I want to express my gratitude to ERASMUS MUNDUS - ALGANT program, who
funded my Master degree in Padova, Italy and Bordeaux, France, so that give me a great
chance to study with famous professors in Europe and excellent students from several coun-
tries over the world.

Finally I would like to thank my family and my friends for support and encouragement.

2

List of Algorithms

1 Naive Interpolation . 6
2 Building Mi,j . 7
3 Fast Multievaluation . 9
4 Fast Interpolation . 10
5 Fast Multivariate Interpolation . 15
6 Multivariate Division with remainder . 21
7 Buchberger’s algorithm . 30
8 Addition of lower sets . 46
9 Find the associated lower set . 47
10 Find the reduced Gröbner with respect to <lex 56
11 Compute coordinates of all elements in D(A) ∪M(D(A)) 62
12 Changing ordering . 63
13 Choose an initial solution . 67
14 Finding the best solution . 67

3

Introduction

Interpolation is the problem of constructing a function P that must be in a given linear space
(of simple functions) from a given set of local data. It is called Polynomial Interpolation if
P is found in a polynomial algebra. In this case, P is called the interpolating polynomial,
and the given set of local data is the interpolation condition. Polynomial Interpolation is a
fundamental method in Numerical Analysis, in which the interpolation condition is usually
obtained from the evaluations of another, but difficult, function f . So that f can be approx-
imated by the interpolating polynomial P and then solve the problem in approximate, but
particular, way.

Interpolation in Univariate Polynomial is the simplest and most classical case. It dates
back to Newton’s fundamental interpolation formula and the Lagrange interpolating poly-
nomials. Polynomial Interpolation in several variables is much more intricate. This topic
has probably started in the second-half of the 19th century with work of W.Borchardt in
[9] and L. Kronecker in [10]. However its extreme development has only started since the
final quarter of the 20th century within a strong connection to the development of theory of
polynomial ideals. It is currently an active area of research.

The purpose of this Master thesis is using reduction modulo ideals in polynomial algebras
to solve Polynomial Interpolation Problem. In order to do that, the solution of univariate
case in Chapter 1 and the theory of Gröbner bases in Chapter 2 are preparation steps. In
Chapter 1, we present an algorithm for solving the Interpolation Problem in univariate case
in quasi-linear time computation. Also in Chapter 1, a particular case of Multivariate Poly-
nomial Interpolation when the interpolation set forms a tensor product of grids is solved in
quasi-linear time. The general case requires a more geometric study of interpolation con-
ditions. In Chapter 2, we introduce the theory of Gröbner bases and reduction modulo an
ideal in polynomial algebra. It leads us to far more geometric interpretation of the ideal
associated with finite set of points in affine space. So that reduction is the main tool to solve
the Multivariate Polynomial Interpolation in Chapter 3.

Chapter 3 is the main part of the thesis in which solving Polynomial Interpolation Prob-
lem by using reduction method is presented. The method is not only concerned with finding
the best solution in some sense for each interpolation condition but also with determining
explicitly the zero dimension ideal that is defined by the interpolation set. The first section
of Chapter 3 is based on the work of M. Lederer in [6] and J.C. Faugere, P.Gianni, D.Lazard,
T.Mora in [8]. After solving the Multivariate Polynomial Interpolation and estimating algo-
rithmic costs, we end the thesis by comparison with the other known methods.

4

Chapter 1

Polynomial Interpolation Problems

Assume that there is an unknown real function f(x) with its value at n + 1 distinct points
x0, x1, ..., xn ∈ R corresponding u0, u1, ..., un ∈ R. The Interpolation Problem is to construct
a function P (x) passing through these points, i.e, to find a function P (x) such that the
interpolation requirements

P (xi) = uj, ∀i = 0, 1, ..., n

are satisfied. In this article, we look for the most important case, when the function P is a
polynomial.

In that case, the real numbers field R can be replaced by any commutative unitary ring
R.

1.1 Univariate case

Through this section, we denote R an unitary commutative ring.

1.1.1 Lagrange Interpolating Polynomials

Problem 1 (Univariate Interpolation Problem). Given n ∈ N; u0, u1, ..., un−1 ∈ R such that
ui − uj are units in R; v0, v1, ..., vn−1 ∈ R, compute polynomial f ∈ R[x] of degree less than
n that satisfies the interpolation conditions:

f(ui) = vi, ∀i = 0, 1, ..., n− 1

If we do not limit the degree of the interpolation polynomial, it is easy to see that there
are infinite many polynomials that interpolate the set {(ui, vi), i = 0, ..., n − 1}. But there
is exactly one of these polynomials with the lowest possible degree. It will be described
explicitly in the following result:

Proposition 1. As the notation in Problem 1, there always exists an unique polynomial of
degree less than n which solves Problem 1. It has the form:

f(x) =
n−1∑
j=0

vj

n−1∏
i=0,i 6=j

x− ui
uj − ui

(1.1)

f is called Lagrange Interpolating Polynomial.

5

Proof : Clearly. �

Proposition 1 shows us a naive way to solve Problem 1. In this way, we only compute
the standard form of f defined by (1.1).

Algorithm 1 Naive Interpolation

Require: n ∈ N; n > 0; u0, ..., un−1 ∈ R such that ui−uj units in R ∀i 6= j; v0, ..., vn−1 ∈ R.
Ensure: f ∈ R[x].

1: Compute lj =
n∏

i 6=j, i=0

x−ui
uj−ui , j = 0, ..., n− 1.

2: Return f :=
n−1∑
j=0

vjlj.

Theorem 1. Algorithm 1 takes O(n2) operations in R.

Proof: To compute lj,we notice that

lj =
m

(x− uj)m′(uj)

where m = (x− u0)(x− u1)...(x− un−1).
Firstly, we compute (x−u0), (x−u0)(x−u1), ...,m = (x−u0)(x−u1)...(x−un−1). They are just
products of monic polynomials of degree 1 and monic polynomials of degree i, i = 1, ..., n−2.

So they take
n−1∑
i=1

2i− 1 = (n− 1)2 = O(n2) operations in R. For each j = 0, 1, ..., n− 1, we

divide m by (x − uj) and then evaluate m
x−uj at x = uj thanks to Horner scheme, taking

O(n) operators. And then, we divide m
x−uj by the last value to obtain lj. This amounts to

n(O(n) +O(n)) = O(n2) operations in R.

Finally, computing the linear combination f =
n−1∑
j=0

vjlj takes O(n2) more operations. Hence,

the arithmetic cost for Algorithm 1 is O(n2). �

1.1.2 Fast Interpolation

In the last subsection, we compute the Lagrange interpolation polynomial

f =
n−1∑
j=0

vj

n−1∏
i=0,i 6=j

x− ui
uj − ui

=
n−1∑
j=0

vj
m′(uj)

.
m

(x− uj)

in O(n2) operations in R. In this subsection, a cheaper algorithm will be given.

For convenience, in this section, we assume that n = 2k for some k ∈ N. The idea of
the fast interpolation algorithm is to split the set of interpolation points {u0, ..., un−1} into
two halves of equal cardinality and to proceed recursively with each half. This leads us to
a binary tree of depth k with roots {u0, ..., un−1} and the singletons {ui} for 0 ≤ i ≤ n− 1.

6

Figure 1.1: Binary tree of interpolation set.

This idea can be described by the diagram above.

Now we define the subproducts Mi,j of m recursively as:
M0,j = (x− uj) j = 0, ..., n− 1
Mi,j = Mi−1,2j.Mi−1,2j+1 i = 1, ..., k; j = 0, ..., n

2i
− 1

Thus

Mi,j = (x− uj.2i)(x− uj.2i+1)...(x− uj.2i+(2i−1)), i = 0, ..., k; j = 0, ...,
n

2i
− 1 (1.2)

is a subproduct of m with 2i factors and monic square-free polynomial of degree 2i.

Algorithm 2 Building Mi,j

Require: u0, ..., un−1 as above.
Ensure: The all Mi,j as in (1.2).
1: for all 0 ≤ j ≤ n do
2: M0,j := (x− uj)
3: end for
4: for all 1 ≤ i ≤ k do
5: for all 0 ≤ j ≤ n

2i
− 1 do

6: Mi,j := Mi−1,2j.Mi−1,2j+1

7: end for
8: end for
9: Return all such Mi,j.

7

Lemma 1. Algorithm 2 computes all subproducts Mi,j in O(M(n) log n) operations in R.
Where M(n) is the number of arithmetic operations in R to compute product of two polyno-
mials of degree less than n in R[x].

Proof: The number of loops in algorithm 2 is k − 1 = O(log n).

On the i-th loop, we must compute n
2i

products of two polynomials of degree 2i

Mi,j := Mi−1,2j.Mi−1,2j+1, j = 0, ...,
n

2i
− 1

So it take n
2i
.M(2i) ≤ M(n) operators in R. Hence, the arithmetic cost of algorithm 2 is

M(n)O(log n) = O(M(n) log n). �

The core of the fast interpolation algorithm is the relation between the interpolation
polynomial of the set {(ui, vi), i = 0, ..., n− 1} and the other two interpolation polynomials
of two halves subsets {(ui, vi), i = 0, ..., n

2
− 1} and {(ui, vi), i = n

2
, ..., n − 1}. It leads us

come to the following lemma.

Lemma 2. Let u0, u1, ..., un−1 ∈ R as notation above, c0, c1, ..., cn−1 ∈ R. Denote:

f =
n−1∑
i=0

ci.
m

x− ui

fk−1,0 =

n
2
−1∑
i=0

ci.
Mk−1,0

x− ui

fk−1,1 =
n−1∑
i=n

2

ci.
Mk−1,1

x− ui

Then
f = Mk−1,1.fk−1,0 +Mk−1,0.fk−1,1 (1.3)

Proof: Because for each j = 0, 1, ..., n − 1 the values of both sides of (1.3) are equal to

cj.
n−1∏

i=0;i 6=j
(uj − ui). �

Now we consider the Lagrange interpolation formula

f =
n−1∑
j=0

vj
m′(uj)

.
m

(x− uj)

Denote cj =
vj

m′(uj)
then the lemma 2 can help us to compute Lagrange formula recursively.

The only problem now is computing m′(uj) for all j = 0, 1, ..., n−1. Horner scheme can help
us to evaluate m′ at n points u0, u1, ..., un−1, but it takes O(n2) operations in R. In fact,
one can use the binary tree of subproductsMi,j to give the other method which is really faster.

Theorem 2. Algorithm 3 evaluates f at n points u0, ..., un−1 correctly in O(M(n) log n)
operations in R.

8

Algorithm 3 Fast Multievaluation

Require: f ∈ R[x] of degree less than n; u0, ..., un−1 as above; Mi,j as in (1.2).
Ensure: f(u0), ..., f(un−1).
1: if n = 1 then
2: return f
3: end if
4: rk,0 := f .
5: i := k − 1.
6: while 0 ≤ i ≤ k do
7: ri,2j := ri+1,j mod Mi,2j.
8: ri,2j+1 := ri+1,j mod Mi,2j+1.
9: i := i− 1.
10: end while
11: Return r0,0, ..., r0,n−1.

Proof: For any j = 0, ..., n− 1, from the algorithm, we have

r0,j = r1,j1 modM0,j

for some j1 such that M0,j1 divides M1,j1 . We also have

r1,j1 = r2,j2 modM1,j1

for some j2 such that M1,j1 divides M2,j2 . So

r0,j = r2,j2 modM0,j

for some j2. Repeat this process k − 1 times, we imply that

r0,j = f modM0,j = f(uj)

The correctness of algorithm is proved. Now we estimate the arithmetic cost.

The length of loops of while round from line 6 to line 10 is equal to k = O(n). For each
next two loops, for example the i-th and (i+1)-th loop, the number of divisions with remain-
der to compute ri,j for all j is equal to two times the number of divisions with remainder to
compute all ri+1,j. But degMi+2,j = 2. degMi+1,j and deg ri+1,j < 2. degMi,j. Thus the cost
of i-th loop is less than or equal to the cost of (i + 1)-th loop, then inductively, the cost of
(k − 1)-th loop.

In (k− 1)-th loop, i = k− 1, we divide with remainder f of degree less than n by Mk−1,0

and Mk−1,1 of degree n
2
. So it takes 2.O(M(n

2
)) = O(M(n)) operations in R.

Hence, the arithmetic cost of algorithm 3 is O(M(n) log n). �
Putting all things together,we obtain the following fast interpolation algorithm.

Theorem 3. Algorithm 4 solves correctly the univariate interpolation problem in O(M(n) log n)
operations in R.

9

Algorithm 4 Fast Interpolation

Require: u0, ..., un−1; v0, ..., vn−1 ∈ R as above, where n = 2k for some k ∈ N.
Ensure: f ∈ R[x] of degree less than n such that f(ui) = vi for all i.
1: Use algorithm 2 to compute all the Mi,j.
2: m := Mk,0.
3: Use algorithm 3 to evaluate the polynomial m′ at u0, ..., un−1.
4: ci := vi

m′(ui)

5: f0,j := uj
6: for i = 0→ k − 1 do
7: for j = 0→ n

2i+1 − 1 do
8: fi+1,j := Mi,2j.fi,2j+1 +Mi,2j+1.fi,2j
9: end for

10: end for
11: Return fk,0.

Proof: The correctness of algorithm 4 follows directly from lemma 2.

Thanks to lemma 1 and theorem 2, the arithmetic cost of line 1 and line 3 are equal to
O(M(n) log n). Equivalently, the cost of step 3 is also equal to O(M(n) log n). Hence, the
arithmetic cost of algorithm 4 is O(M(n) log n). �

If the ring R admits the Fast Fourier Transform to compute the product of any two
polynomials of degree less than n in M(n) = O(n log n) operations in R, then the Fast
Interpolation algorithm takes O(n(log n)2) operations in R.

1.2 Multivariate case

Univariate Interpolation is a very classical topic. In the last section we have described a
really fast algorithm to solve the Univariate Interpolation in quasi-linear time. However,
Interpolation by polynomials in several variables is much more intricate and is a subject
which is currently an active area of research. In this section, we will state the Multivariate
Interpolation Problem, give the existence of solutions. And then we will describe an algo-
rithm to solve essentially a simple case in which the set of interpolation points is a Cartesian
product.

1.2.1 Introduction

Problem 2 (Multivariate Interpolation Problem). Fix the commutative field k, and positive
integers d,N . Given N + 1 interpolation points X0, X1, ..., XN ∈ kd and N + 1 scalar values
u0, u1, ..., uN ∈ k. Find the polynomial P ∈ k[x1, ..., xd] with smallest possible degree, that
satisfies the interpolation conditions:

P (Xi) = ui, ∀i = 0, ..., N (1.4)

10

Assume the solution for Problem 2 is the polynomial P of degree n in k[x1, ..., xd] of the
form:

P (X) =
∑

I∈Nd;|I|≤n

cIX
I

where
X = (x1, ..., xd)
I = (i1, ..., id)
XI := xi11 ...x

id
d

|I| = i1 + ...+ id
The number of coefficients cI that occur in P which we must find is

card{I ∈ Nd s.t |I| ≤ n} =

(
n+ d
d

)

Thus the uniqueness of solution for problem 2 requires at least

(
n+ d
d

)
values of polyno-

mial P at

(
n+ d
d

)
distinct points.

Different from the univariate case, the distinctness of N + 1 =

(
n+ d
d

)
interpolation

points is not enough to be sure that the interpolating polynomial always exist and of degree
less than or equal to n.

Example 1. For d = 2, n = 1, N = 3, in the plane k2, let three distinct pointsO(0, 0);A(0,−1);B(0, 1)
in the axis Ox. Then there is no polynomial in k[x, y] of degree less than or equal to 1 that
interpolates O,A,B ∈ k2 with the corresponding scalar values 0; 1; 1 ∈ k. Otherwise, there
is a polynomial P (x, y) = a+ bx+ cy ∈ k[x, y] satisfies assumption, then:

P (0; 0) = a = 0
P (0;−1) = a− b = 1
P (0; 1) = a+ b = 1

But the last system has no solution (contradiction!!!).

However, if we do not limit the degree of interpolating polynomial, then we can choose
Q(x, y) = x2.

Return to the general case, consider the k-linear map:

eva : k[x1, ..., xd]→ kN+1, f 7→ (f(X0), ..., f(XN))

It is called the evaluation map. The restriction of eva to kn[x1, ..., xd] which is the set of all
polynomials of degree less than or equal to n is a k-linear map between k-vector spaces of

dimension N + 1 =

(
n+ d
d

)
eva|kn[x1,...,xd] : kn[x1, ..., xd]→ kN+1

11

Thus it is bijective if and only if it is surjective if and only if it is injective. In this case, we
call the points X0, ..., XN poised.

Definition 1 (Poised). The set of N+1 =

(
n+ d
d

)
points X0, ..., XN ∈ kd is called poised

if the k-linear map eva|kn[x1,...,xd] is bijective. Namely, problem 2 always admits an unique
solution of degree less than or equal n for any given scalar value u0, ..., uN ∈ k.

Next we analyze the map φ := eva|kn[x1,...,xd] in the matrix terms to get more practical
viewing of the poiseness.

φ : kn[x1, ..., xd]→ kN+1, f 7→ (f(X0), ..., f(XN))

Clearly that the set B(X) := {XI | I ∈ Nd, |I| ≤ n} forms the canonical basis of
kn[x1, ..., xd]. So that each polynomial f in kn[x1, ..., xd] can be written by

f(X) = (cI)I .B(X)t

where B(X) is seen as a row vector of k[x1, ..., xd]
N+1, and (cI)I , I ∈ Nd, |I| ≤ n, the

coefficients of f . Under these terms, the matrix form of φ(f) is

φ(f) = (cI)I .A

where
A =

[
B(X0)t B(X1)t ... B(XN)t

]
is a square matrix of size N + 1 with entries in k. A is exactly the matrix representation
of φ over the basis B(X) of kn[x1, ..., xd] and the canonical basis of kN+1, so that it reflect
faithfully the properties of φ. In particular, X0, ..., XN is poised if and only if φ is bijective,
so that it depend on the non-singularity of A. Based on this fact, the following theorem is
trivial.

Theorem 4 (Criteria of poiseness). Given N + 1 =

(
n+ d
d

)
distinct points X0, ..., XN in

kd. The following are equivalent:

(i) X0, ..., XN are poised.

(ii) X0, ..., XN do not belong to a common hypersurface of degree less than or equal to n.

(iii) For any given vector of scalar values (u0, ..., uN) ∈ kN+1, there exists a polynomial P
of degree less than or equal to n that satisfies the interpolation conditions.

Also based on the matrix representation of φ, one can check the poiseness of X0, ..., XN

by computing the determinant of A, hence taking O(N3) operations on k. Furthermore, once
X0, ..., XN are poised, the inverse image, or the interpolating polynomial, for the vector of
scalar values (u0, ..., uN) ∈ kN+1 is defined by

f(X) = (u0, ..., uN).A−1.B(X)

12

So that solving the interpolation problem in the poised case is equivalent to computing the
inverse of a square matrix of size N + 1, hence takes O(N3) operations on k using standard
algorithm.

In the univariate case (then n = N), the canonical basis of kn[x] is {1, x, x2, ..., xn}. So
that the matrix A is exactly the Vandemonde matrix of size n+ 1.

1 1 ... 1
X0 X1 ... XN

...
XN

0 XN
1 ... XN

N


It is easy to show that detA =

∏
i 6=j

(Xi −Xj). Hence the poiseness in the univariate case

is agreeing with the distinctness.

In the polynomial ring of several variables, the distinctness is strictly weaker than the
poiseness as we seen in example 1. The method for solving the Multivariate Polynomial
Interpolation in the general case is more complicate than the poiseness one. And we will
back to this detail in the final chapter.

1.2.2 The Cartesian product case - Grids

When the set of interpolation points forms a lattice, i.e. a Cartesian product of finite sets
on each coordinate, we can use the fast interpolation in the last section to find an solution.
The aim of this subsection is to present such an algorithm.

Problem 3. Given d finite subsets of k:

J1 = {x11, ..., x1n1}

J2 = {x21, ..., x2n2}
.....

Jd = {xd1, ..., xdnd}
where xij 6= xij′ , ∀i, ∀j 6= j′, and N = n1n2...nd scalar values

{uI ∈ k|I = (i1, ..., id) ∈ J1 × ...× Jd}

Find a polynomial P ∈ k[x1, ..., xd] satisfies the interpolation condition:

P (x1i1 , ..., xdid) = ui1...id

for all (i1...id) ∈ J1 × ...× Jd.

Before coming to a fast algorithm which solves Problem 3, we discuss about the existence
of solutions via the evaluation maps:

eva : k[x1, ..., xd]→ kN , f 7→ (f(x1i1 , ..., xdid))i1,...,id

13

Figure 1.2: A Lattice in k2.

evaj : k[xj]→ knj , g 7→ (g(xj1), ..., g(xjnj))

Take tensor product over the field k of k-linear maps evaj, j = 1, ..., d, we obtain the
following commutative diagram of canonical k-linear maps:

k[x1]⊗
k
...⊗

k
k[xd] kn1 ⊗

k
...⊗

k
knd

k[x1, ..., xd] kN
?

-

?
-eva

where the columns are natural isomorphism.

Since the hypothesis of Problem 3, for each j = 1, ..., d, the set {xj1, ..., xjnj} ⊂ k is
poised. So the restriction of evaj to knj−1[xj] is bijective

evaj|knj−1[xj] : knj−1[xj]→ knj

Get tensor product of all such k-linear maps, we obtained an isomorphism between k-vector
spaces of dimension N = n1...nd:

kn1−1[x1]⊗
k
...⊗

k
knd−1[xd]→ kn1 ⊗

k
...⊗

k
knd ∼= kN

We can identify elements of kn1−1[x1]⊗
k
...⊗

k
knd−1[xd] with their images via the composition

of canonical k-linear maps:

kn1−1[x1]⊗
k
...⊗

k
knd−1[xd]→ k[x1]⊗

k
...⊗

k
k[xd]→ k[x1, ..., xd]

where the first arrow is the natural embedding and the second arrow defined by xi1⊗...⊗xid 7→
xi1 ...xid , ∀(i1, ..., id) ∈ Nd. Putting together all of them, we obtain the following proposition:

14

Proposition 2. Problem 3 always admits an unique solution in the set of polynomials whose
the highest power of variable xj is less than or equal to nj − 1 for all j = 1, ..., d.

The main idea to solve Problem 3 is viewing the ring of polynomials in d variables
k[x1, ..., xd] as a ring of polynomials in variable xd over the ring k[x1, ..., xd−1]. Recall that
the Fast Interpolation Algorithm runs on the polynomial ring over any unitary commutative
ring. It only needs the interpolation points distinct and the different between them invertible.

Algorithm 5 Fast Multivariate Interpolation

Require: Ji = {xi1, ..., xini} where i = 1, ..., d;n1, ..., nd ∈ N;xij 6= xij′ , ∀i,∀j 6= j′, and
N = n1n2...nd scalar values {uI ∈ k|I = (i1, ..., id) ∈ J1 × ...× Jd}.

Ensure: P .
1: s := d.
2: gi1...id−1l := ui1...id−1l, l = 1, ..., nd.
3: while 2 ≤ s ≤ d do
4: for all (i1, ..., is−1) ∈ J1 × ...× Js−1 do
5: Recall Algorithm 4 to find the interpolating polynomial gi1...is−1 with R[x] = k[xs]

if s = d, or (k[xs+1,...,xd])[xs] if s < d; the set of interpolation points Js; the set of scalar
values {gi1...is−1l|l = 1, ..., ns}

6: end for
7: s := s− 1
8: end while
9: Recall the Algorithm 4 to find the interpolating polynomial P inR[x1] = (k[x2, ..., xd])[x1]

with the set of interpolation points J1 and the set of scalar values {g1, ..., gn1}.
10: Return P .

Theorem 5. The interpolating polynomial P in algorithm 5 has degree at most (n1−1)(n2−
1)...(nd−1). And Algorithm 5 runs in O(M(N) logN) operations in k, where N = n1n2...nd
the number of interpolation points.

Proof: By induction on d.

In the case d = 1, algorithm 5 is only a Fast Interpolation, so taking O(M(n1) log n1)
operations in k. And the interpolating polynomial is of degree at most n1 − 1. We may
inductively assume that the theorem is correct. Then the step 1 of algorithm 5 gives
the interpolating polynomials g1, ..., gn1 of degree at most (n2 − 1)...(nd − 1) and takes
O(M(n2...nd) log(n2, ..., nd)) operations in k.

In line 9, we apply Algorithm 4 on R[x1] = (k[x2, ..., xd])[x1], so taking O(M(n1) log n1)
operations in k[x2, ..., xd], and the interpolating polynomial is of degree at most n1 − 1 on
variable x1 . All of polynomials occur in line 9 are of degree at most (n2 − 1)...(nd − 1).
Thus the final interpolating polynomial is of degree at most (n1 − 1)(n2 − 1)...(nd − 1). On
the other hand, the cost of O(M(n1) log n1) operations in k[x2, ..., xd] is equal to M((n2 −
1)...(nd − 1))O(M(n1) log n1) = O(M(n1n2...nd) log n1).

Since
M(n2...nd) log(n2, ..., nd) +M(n1n2...nd) log n1 ≤M(N) logN

15

the totally cost of algorithm 5 is O(M(N) logN). �

16

Chapter 2

Reduction modulo ideals in several
variables

It is not difficult to see that the evaluation map

eva : k[x1, ..., xd]→ k(N+1), f 7→ (f(X0), ..., f(XN))

is a surjective map. More precisely, in the next chapter, we will present an algorithm to find
an interpolating polynomial f from any given N + 1 scalar values. Unfortunately f is not
maybe a good solution because the degree of f may be too large. We also known that, if
f and f ′ are interpolating polynomials of points X0, ..., XN with the same values at these
points, then the difference between them vanishes at all Xi, i = 0, ..., N . It implies that f
and f ′ are congruent modulo an ideal a of k[x1, ..., xd] that is defined by points X0, ..., XN .
The purpose of this chapter is to present an analogue of division with remainder in case of
several variables. Then we can use it to reduce some bad solution f module the ideal a to
obtain a better interpolating polynomial in some sense.

2.1 Monomial orders

The division with remainder in univariate polynomial ring is exactly Euclide algorithm. In
k[x], if we want to divide a polynomial f by an other non-zero polynomial g, we first divide
all terms of f by the leading term of g. Thus in order to do an analogous algorithm in several
variables, we must define the leading term of a polynomial. In this section, we will define
orders on the set of all monomials, then deduce an order on terms also, of k[x1, ..., xd] and
end with some important properties of these orders.

Definition 2 (Monomial order). A monomial order on k[x1, ..., xd] is an order ”<” on the
set of all monomials that satisfies the following conditions:

(i) ”<” is a total order.

(ii) ”<” is compatible with multiplication, i.e. if m,m, p are monomials then

m < n⇒ mp < np

(iii) 1 < m for every monomial m 6= 1.

17

Figure 2.1: Semi-subgroup of Md which is generated by A = {x3, x2y2, xy}.

Remark: In the univariate case, there is only one way to order monomials in k[x] which
is ordering by their degree. In fact, the condition (iii) says that 1 < xa, ∀a > 0 and (ii)
implies that xa < xb, ∀a < b. Thus we always have 1 < x < x2 < x3 < ...

Denote Md the set of all monomials in k[x1, ..., xd]. It forms a commutative unitary
semigroup with basis {x1, ..., xd}. The structure of Md can be described faithfully via the
canonical isomorphism of semigroups:

Md → Nd, XI = xi11 ...x
id
d 7→ I = (i1, ..., id)

For example, for any I, J ∈ Nd, XI divides XJ if and only if J − I ∈ Nd, i.e. all coordinates
of I are less than or equal to the corresponding coordinates of J . Thus all principal ideals
of Md have the form I + Nd, where XI is its generator. And then every ideal of Md is an
union of some such I + Nd.

Example 2. In k[x, y], let A = {x3, x2y2, xy}. Then the semi-subgroup of M2 generated by
A can be seen from Figure 2.1

Lemma 3 (Dickson). All ideals of Md are finitely generated. Furthermore, for every set
A ⊆Md, there exists a finite subset B ⊆ A such that B generates 〈A〉, the ideal of Md which
is generated by A.

Proof: In Md, we consider a relation ”<” defined by:

m < m′ ⇔ m divides m′, ∀m,m′ ∈Md

For any given element of m ∈Md, there are only finitely many elements of Md that divide m.
Hence, the relation ”<” satisfies the descending chain condition. Thanks to Zorn’s lemma,
A admits some minimal elements with respect to ”<”. Let B be the set of all such minimal
elements of A. Then B generates the ideal a = 〈A〉. It suffices to show that B is a finite set.

We will prove that B is finite by induction on d. If d = 1, then M = {1, x1, x
2
1, ..., x

n
1 , ...}

is totally ordered by ”<”. So B has only the smallest element of A. If d ≥ 2, consider the
projection between semigroups:

π : Md →Md−1, xi11 ...x
id
d 7→ xi11 ...x

id−1

d−1

18

Figure 2.2: B is the set of all minimals elements of A, and π(B) image of B via projection π

where Md−1 is the set of all monomials of k[x1, ..., xd−1]. Clearly π(A) is a semi-subgroup
of Md−1, and the ideal 〈π(A)〉 ⊆ Md−1 is generated by the set π(B) ⊆ Md−1. By induction
hypothesis, the set C of all minimal elements of π(B) with respect to the order ”<” generates
〈π(A)〉 and finite, namely

C = {m1, ...,mr} ⊆ π(B) ⊆Md−1, r > 0

For each i = 1, ..., r, since mi ∈ C ⊆ π(B), there exists di > 0 such that

mix
di
d ∈ B

We choose such di smallest possible. And let

e = max{d1, ..., dr}

The key of this proof is the following claim:

Claim: For any xi11 ...x
id
d ∈ B, we have id ≤ e.

In fact, if xi11 ...x
id
d ∈ B then xi11 ...x

id−1

d−1 ∈ π(B). So there exists mi ∈ C such that

mi ≤ xi11 ...x
id−1

d−1 . From here, if id > e then

mix
di
d ≤ mix

e
d < mix

id
d

It is impossible because mix
di
d ∈ B and mix

id
d = xi11 ...x

id
d is minimal in B. The claim is proved.

Similarly, we also find that all other powers of variables xi on B are bounded. Hence, B
is finite. �

Thanks to lemma 3, all monomial orders in k[x1, ..., xd] must be well-order.

Theorem 6. Every monomial order in k[x1, ..., xd] is well-order, i.e. every non-empty subset
of M admits the smallest element.

19

Proof: Let A be a non-empty set of some monomials in k[x1, ..., xd]. With a given
monomial order ”<” in k[x1, ..., xd], we need to find the smallest element of A. Because of
Dickson’s lemma, A contains a finite subset B ⊆ A such that every element of A is divisible
by some elements of B. The order ”<” is a total order. So B admits the smallest element.
And then it is also the smallest element of A. �

Example 3. Here are some important examples of monomial orders in k[x1, ..., xd]. In the
following example, we denote a = (a1, ..., ad); b = (b1, ..., bd) ∈ Nd.

1. Lexicography order:

Xa <lex X
b ⇔ the leftmost non-zero entry in a− b is negative.

For example, in k[x, y, z], we have y4 <lex xyz
3 <lex x

2.

2. Graded lexicographic order:

Xa <grlex X
b ⇔ |a| < |b| or (|a| = |b| and Xa <lex X

b).

For example, x2 <grlex y
4 <grlex xyz

2.

3. Graded reverse lexicographic order:

Xa <grevlex X
b ⇔ |a| < |b| or (|a| = |b| and the rightmost non-zero entry of a − b is

positive).

For example, x2 <grevlex xyz
2 <grevlex y

4.

Definition 3. Let f =
∑
I∈Nd

cIX
I be a non-zero polynomial in k[x1, ..., xd], where the sum is

finite, and ”<” a monomial order.

(i) Each cIX
I with cI 6= 0 is called a term of f . We denote its order is the order of XI .

(ii) The leading term of f , denoted by lt<(f) (or lt(f) if the monomial order is defined),
is the maximal term of f with respect to <.

(iii) The leading monomial of f , denoted by lm(f), is the monomial which respect to the
leading term of f .

(iv) The leading coefficient of f , denoted by lc(f), is the coefficient of leading term of f .

(v) For an ideal a, we denote lt(a) the set of lt(f) for all f ∈ a.

Example 4. Let f(x, y, z) = y4 + 2xyz2 − 3x2 ∈ k[x, y, z], then

<lex <grlex <grevlex

lt(f) −3x2 2xyz2 y4

lm(f) x2 xyz2 y4

lc(f) −3 2 1

20

The following are characteristic properties of monomial orders in example 3.

Proposition 3. Let f ∈ k[x1, ..., xd].

• If lt<lex(f) ∈ k[xs, ..., xd] for some s = 1, ..., d then f ∈ k[xs, ..., xd].

• If f is homogeneous and lt<grlex(f) ∈ k[xs, ..., xd] for some s = 1, ..., d then f ∈
k[xs, ..., xd].

• If f is homogeneous and lt<grevlex(f) ∈ 〈xs, ..., xd〉 for some s = 1, ..., d, where 〈xs, ..., xd〉
is the ideal of k[x1, ..., xd] which is generated by xs, ..., xd, then f ∈ 〈xs, ..., xd〉.

2.2 Multivariate Division Algorithm

The following is the main theorem of this chapter.

Theorem 7. In k[x1, ..., xd] with a given monomial order ”<”, let f1, ..., fs, (s ≤ 1) be
non-zero polynomials. Then for any polynomial f , there exists an expression

f = q1f1 + ...+ qsfs + r

where q1, ..., qs, r ∈ k[x1, ..., xd] such that:

(i) lt(qifi) ≤ lt(f), ∀i = 1, ..., s.

(ii) None of the terms in r is divisible by any lt(fi) for all i = 1, ..., s.

The proof of theorem 7 consists of an algorithm for finding such an expression of f .

Algorithm 6 Multivariate Division with remainder

Require: Non-zero polynomials f, f1, ..., fs ∈ k[x1, ..., xd] and monomial order ”<”.
Ensure: The q1, ..., qs, r ∈ k[x1, ..., xd] as in theorem 7.
1: r := 0, q1 := 0, ..., qs := 0, p := f
2: while p 6= 0 do
3: if lt(fi) divides lt(p) for some i = 1, ..., s then
4: then choose the smallest such i.
5: qi := qi + lt(p)

lt(fi)

6: p := p− lt(p)
lt(fi)

.fi
7: else
8: r := r + lt(p)
9: p := p− lt(p)

10: end if
11: end while
12: Return q1, ..., qs, r.

We denote the remainder r obtained from this algorithm by

r := f rem {f1, ..., fs}

21

Lemma 4. Each time the algorithm 6 passes through inside the while round from line 2 to
line 11, we always have

f = p+ q1f1 + ...+ qsfs + r (2.1)

where lt(qifi) ≤ lt(f), ∀i = 1, ..., s and no term of r divisible by lt(fi) for all i.

Proof: In the first loop, the equation 2.1 is expressed by

f = f + 0.f1 + ...+ 0.fs + 0

hence holds the lemma. Assume at an other loop, we have p, q1, ..., qs, r satisfy the lemma
and p 6= 0. We will see what happens in the next loop.

If lt(fj) divides lt(p) for some j = 1, ..., s and i is the such smallest index. Then we get:

qi := qi +
lt(p)

lt(fi)

p := p− lt(p)

lt(fi)
.fi

So
f = p+ q1f1 + ...+ qsfs + r =

=

(
p− lt(p)

lt(fi)
.fi

)
+ q1f1 + ...+

(
qi +

lt(p)

lt(fi)

)
fi + ...+ qsfs + r

So the equation 2.1 also holds in the next loop. On the other hand, since lt(qifi) ≤ lt(f)

and lt
(
lt(p)
lt(fi)

fi

)
= lt(p) ≤ lt(f), we imply that

lt

(
qi +

lt(p)

lt(fi)

)
≤ lt(f)

Hence, the lemma also holds in the next loop. Equivalently for the case there is no lt(fi)
that divides lt(f). �

Theorem 8. Algorithm 6 finds correctly an expression of f as in theorem 7 in O
(
ndmd

)
operations in k, where n is the total degree of f and m the maximal total degree of f1, ..., fs.

Proof: Each time the algorithm 6 passes through inside the while round from line 2 to
line 11, we alway have either

p := p− lt(p)

lt(fi)
.fi

or
p := p− lt(p)

Then the leading term of p strictly decreases. So the number of loops of the while round is
bounded by the maximum number of terms of a polynomial of total degree n in k[x1, ..., xd],

namely O

((
n+ d
d

))
= O(nd) loops.

22

The algorithm stops as soon as p = 0. The final equation that we obtained is

f = q1f1 + ...+ qsfs + r

And it proves theorem 7 using lemma 4.

On the other hand, on each loop, the cost is bounded by the cost to compute p = p− lt(p)
lt(fi)

fi

for some i, hence taking O

((
m+ d
d

))
= O(md) operations in k. Finally the arithmetic

cost of algorithm 6 is O
(
ndmd

)
. �

Example 5. In k[x, y] with the lexicography order, we use Multivariate Division Algorithmto
divide f = x3 + x2y + xy2 + y3 by f1 = xy + 1, f2 = x+ 1. The following table is its trace:

Step f = x3 + x2y + xy2 + y3 f1 = xy + 1 f2 = x+ 1 Remainder
0 p = x3 + x2y + xy2 + y3 q1 = 0 q2 = 0 r = 0
1 x2y − x2 + xy2 + y3 0 x2 0
2 −x2 + xy2 − x+ y3 x 0 0
3 xy2 + y3 0 −x 0
4 y3 − y y 0 0
5 −y 0 0 y3

6 0 0 0 −y
Final q1 = x+ y q2 = x2 − x r = y3 − y

Hence, f = (x+ y)(xy + 1) + (x2 − x)(x+ 1) + (y3 − y).

Example 6. With the same polynomials as in the above example, but now we change the
order of f1 and f2. The trace of algorithm is the following table:

Step f = x3 + x2y + xy2 + y3 f1 = x+ 1 f2 = xy + 1 Remainder
0 p = x3 + x2y + xy2 + y3 q1 = 0 q2 = 0 r = 0
1 x2y − x2 + xy2 + y3 x2 0 0
2 −x2 + xy2 − xy + y3 xy 0 0
3 xy2 − xy + x+ y3 −x 0 0
4 −xy + x+ y3 − y2 y2 0 0
5 x+ y3 − y2 + y −y 0 0
6 y3 − y2 + y − 1 1 0 0
7 −y2 + y − 1 0 0 y3

8 y − 1 0 0 −y2

9 −1 0 0 y
10 0 0 0 −1

Final q1 = x2 + xy − x+ y2 − y + 1 q2 = 0 r = y3 − y2 + y − 1

Hence, f = (x2 + xy − x + y2 − y + 1)(x + 1) + 0.(xy + 1) + (y3 − y2 + y − 1). So the
remainders which are obtained from the Multivariate Division Algorithmdepend on the way
to index the elements of the set F = {f1, ..., fr}.

23

Example 7. In k[x, y] with the lexicography order, we divide f = x2y+y−2 by f1 = xy+1
and f2 = x+ 1.

Step f = x2y + y − 2 f1 = xy + 1 f2 = x+ 1 Remainder
0 p = x2y + y − 2 q1 = 0 q2 = 0 r = 0
1 −x+ y − 2 x 0 0
2 y − 1 0 −1 0
3 −1 0 0 y
4 0 0 0 −1

Final q1 = x q2 = −1 r = y − 1

Hence, x2y + y − 2 = x(xy + 1)− (x+ 1) + (y − 1).
However,

x2y + y − 2 = y(x+ 1)2 − 2(xy + 1) ∈ 〈x+ 1, xy + 1〉

where 〈x+ 1, xy + 1〉 is an ideal of k[x, y] which is generated by x + 1 and xy + 1. Thus in
this case, the Multivariate Division Algorithmdoes not help us to check that f = x2y+ y− 2
is in 〈x+ 1, xy + 1〉 or not!!!

2.3 Gröbner bases

We start with a following problem:

Problem 4 (Ideal Membership Problem). Let a ⊆ k[x1, ..., xd] be an ideal which is generated
by a given set of polynomials F = {f1, ..., fs}. Given any f ∈ k[x1, ..., xd]. Is it f ∈ a?

Everything is easy in the case d = 1. Since k[x] is an Euclidean domain, all ideals of k[x]
are principal, and

〈f1, ..., fs〉 = 〈gcd(f1, ..., fs)〉

So we can use Euclid’s algorithm to divide f by g = gcd(f1, ..., fs) with remainder r whose
degree less than degg. Then

f ∈ 〈f1, ..., fs〉 if and only if r = 0 (2.2)

Unfortunately, (2.2) is no longer true in the several variables case, as we have seen in the
example 6. Thus if we want to use the Multivariate Division Algorithmto solve the Ideal
Membership Problem, we must change the monomial order in k[x1, ..., xd] or the set of gen-
erators of a.

In fact, from any given monomial order of k[x1, ..., xd] and given set of generators of a,
we can find an other special set of generators such that the Ideal Membership Problem can
be done by using Multivariate Division Algorithm. Such set of generators is called Gröbner
bases. In this section, we will define Gröbner bases and describe Buchberger’s algorithm to
find a Gröbner basis from any given set of generators.

24

2.3.1 Gröbner bases

Throughout this section, we assume some monomial order ”<” on k[x1, ..., xd]. To define
Gröbner bases, we first give the definition below:

Definition 4 (Monomial ideals). A monomial ideal a ⊆ k[x1, ..., xd] is an ideal generated by
monomials in k[x1, ..., xd].

From now, for a set of polynomials A, we denote 〈A〉 an ideal of k[x1, ..., xd] which is
generated by A.

Assume A ⊆ Md be a set of monomials, and a = 〈A〉 a monomial ideal of k[x1, ..., xd].
Then the set a ∩Md of all monomials in a forms an ideal of Md which is generated by A.
This fact can be described as the following bijective:

{ideals of Md} {monomial ideals of k[x1, ..., xd]}-
φ

where φ(A) = 〈A〉 for A ⊆ Md an ideal, and φ−1 (a) = a ∩Md for a ⊆ k[x1, ..., xd] a
monomial ideal. Thus the properties of ideals of Md can translate faithfully to the prop-
erties of monomial ideals of k[x1, ..., xd]. Here we need the finiteness of monomial ideals of
k[x1, ..., xd], that is translated directly from lemma 3.

Lemma 5 (Dickson). All monomial ideals of k[x1, ..., xd] are finite generated. Furthermore,
for every set A ⊆ Md of monomials, the exists a finite subset B ⊆ A such that B generates
the monomial ideal 〈A〉.

For each ideal a ⊆ k[x1, ..., xd], the ideal 〈lt(a)〉 ⊆ k[x1, ..., xd] which is generated by all
leading terms of all elements of a is a monomial ideal. It contains all information about the
leading terms of elements of a, so that has strong relation with a. Dickson’s lemma says
that it is always generated by only finitely many monomials, say m1, ...,ms. Conversely, any
subset of a whose the set of leading terms is large enough, i.e. any mi can be represent by
leading terms of some its elements, can generates the whole a. This fact is the following
lemma:

Lemma 6. Let a ⊆ k[x1, ..., xd] be an ideal. If G ⊆ a is a finite subset such that 〈lt(G)〉 =
〈lt(a)〉, then 〈G〉 = a.

Proof: Let G = {g1, ..., gs} as assumption. Let any f ∈ a. Using the Multivariate
Division Algorithmto divide f by G = {g1, ..., gs} gives us an expression:

f = q1g1 + ...+ qsg2 + r

where q1, ..., qs, r ∈ k[x1, ..., xd] such that either r = 0 or no term of r is divisible by leading
term of any gi. But we also have r = f − q1g1 − ... − qsgs ∈ a, so lt(r) ∈ 〈lt(a)〉 = 〈lt(G)〉.
Thus r = 0. And then f = q1g1 + ...+ qsgs ∈ 〈G〉. Hence 〈G〉 = a. �

Together two above lemmas, we obtain the following theorem which is the motivation of
Gröbner bases.

25

Theorem 9 (Hilbert’s basis theorem). Every ideal a ⊆ k[x1, ..., xd] is finitely generated.
More precisely, a can be generated by a finite set of polynomials G ⊂ a that satisfies

〈lt(G)〉 = 〈lt(a)〉

Proof: Because of Dickson’s lemma, there exist a finite subset of lt(a), namely {m1, ...,ms},
that generates 〈lt(a)〉, where mi is the leading term of some polynomial gi ∈ a, i = 1, ..., s.
Let G = {g1, ..., gs}, then 〈G〉 ⊆ a and 〈lt(G)〉 = 〈lt(a)〉. Thanks to the lemma 5, we have
〈G〉 = a. �

We have seen that the remainder from dividing a polynomial f ∈ k[x1, ..., xd] by a finite
set of generators F of an ideal a ⊆ k[x1, ..., xd] depends on the order of F . The main reason
for this fact is the set lt(F) of leading terms of all polynomials in F probably not enough. The
Hilbert’s basis theorem gives the existence of a set of generators whose set of leading terms is
enough to represent all leading terms of polynomial in a. For this reason, we will see in this
subsection, that the remainder of dividing f by such set of generators is unique in some sense.

Definition 5. Given an ideal a ⊆ k[x1, ..., xd]. A finite subset G ⊆ a is called a Grobner
basis for a with respect to ”<” if 〈lt(G)〉 = 〈lt(I)〉.

Because of Hilbert’s basis theorem, a Gröbner basis for any given ideal a always exists,
and is in fact a set of generators of a in the ring theoretical sense.

Proposition 4. Let G be a Gröbner basis for ideal a, and f ∈ k[x1, ..., xd]. Then there exists
a unique polynomial r ∈ k[x1, ..., xd] such that f ≡ r mod a and no term of r is divisible by
any term of lt(G).

Proof: The existence of r follows from the Multivariate Division Algorithm. Now, we
suppose that f ≡ r1 ≡ r2 mod a with r1, r2 ∈ k[x1, ..., xd] and no term of r1, r2 is divisible
by any term of lt(G). Then r1 − r2 ∈ a. It implies that lt(r1 − r2) ∈ 〈lt(a)〉 = 〈lt(G)〉. But
there is no term of r1 − r2 divisible by any term of lt(G), hence r1 − r2 = 0. �

An immediately consequence of this proposition is the solvability of Ideal Membership
Problem.

Theorem 10. Let G be a Gröbner basis for ideal a ⊆ k[x1, ..., xd] with respect to a monomial
order ”<”. Then for any f ∈ k[x1, ..., xd]

f ∈ a if and only if (f rem G) = 0

.

2.3.2 Buchberger’s Algorithm

The aim of this subsection is to describe an algorithm of Bruno Buchberger to construct a
Gröbner basis for any given idea a ⊆ k[x1, ..., xd] with given set of generators F = {f1, ..., fs}.
The main ideal of Buchberger’s algorithm is to add some more polynomials into the set F for

26

which the corresponding monomial ideal 〈lt(a)〉 is bigger. The polynomials which we want
to add to F come from the cancellation the leading terms of pairs of polynomials in F .

Now for each pair g, h ∈ k[x1, ..., xd] of non-zero polynomials, we define a new polynomial
which we call S-polynomial, by:

S(g, h) =
m

lt(g)
.g − m

lt(g)
.h

where m = lcd (lt(g), lt(h)) is a monomial.

Since m
lt(g)

, m
lt(h)
∈ k[x1, ..., xd], S(g, h) ∈ 〈g, h〉 . And since m

lt(g)
.g, m

lt(h)
.h have the same

leading terms, it is killed in S(g, h) . So we can add some more reduction modulo a of such
S-polynomials into the set of generators of a to obtain a new set of generators whose the
leading terms generates probably a bigger monomial ideal. As soon as the set of generators
of a is ”large enough”, then all of such reductions will vanishes.

Theorem 11 (Buchberger’s criteria). A set of generators G = {g1, ..., gs} of an ideal a ⊆
k[x1, ..., xd] is a Gröbner basis if and only if

S(gi, gj) rem G = 0, ∀i 6= j

Proof : If G = {g1, ..., gs} is a Gröbner basis for a, then S(gi, gj) rem G = 0 for all i 6= j
because of Ideal Membership Problem. The conversely way is more complicate.

Now assume G = {g1, ..., gs} is a set of generators of a such that S(gi, gj) rem G = 0 for
all i 6= j. To become a Gröbner basis, the leading terms of elements of G must generate
the monomial ideal 〈lt(a)〉. We will prove that for any f ∈ a, lt(f) is divisible by some
lt(gi) ∈ lt(G).

Now let any f ∈ a. f can be represented via the set of generators G by

f = h1g1 + ...+ hsgs (2.3)

where h1, ..., hs ∈ k[x1, ..., xd]. In all such expressions, we choose a representation such that
the greatest leading monomial of terms in the right hand side

m := max{lm(higi), i = 1, ..., s}

smallest possible, recalled by (2.3). Our aim is to prove that m = lt(f), hence the theorem
is concluded.

By contradiction, assume m > lt(f). The following is to construct an other expression of
f via the set of generators G such that the greatest leading monomial of terms in the right
hand side is less than m, so getting contradiction.

By renumbering indexes, we can assume more

m = lm(h1g1) = ... = lm(hrgr) > lm(hr+1gr+1) ≥ ... ≥ lm(hsgs), r ∈ {1, ..., s}

27

Now we rewrite (2.3) as follow:

f =
r∑
i=1

lt (hi) gi +
r∑
i=1

(hi − lt (hi)) gi +
s∑

i=r+1

higi (2.4)

The second and the third sum in the right hand side of (2.4) are linear combinations of
gi such that the leading terms of their terms are less than m. Now let us consider the first
sum.

S = lt(h1)g1 + ...+ lt(hr)gr (2.5)

All leading monomials of terms of S are the same and equal to m. The multiplication by
non-zero constants in k to gi does not change the result, so we can assume that all leading
coefficients of gi are equal to 1. Rewrite lt(h1) = ciX

αi , ci ∈ k, αi ∈ Nd, we represent (2.5)
by:

S = c1X
α1g1 + ...+ crX

αrgr
= c1 (Xα1g1 −Xα2g2) + (c1 + c2) (Xα2g2 −Xα3g3) + ...+ (c1 + ...+ cr−1) (Xαr−1gr−1 −Xαrgr) +

+ (c1 + ...+ cr)X
αrgr

Notice that (c1 + ...+ cr) is the coefficient of m in the standard expression of f =
s∑
i=1

higi.

But, as our assumption, m > lt(f), then c1 + ...+ cr = 0. We conclude:

S = d1 (Xα1g1 −Xα2g2) + ...+ dr−1 (Xαr−1gr−1 −Xαrgr) (2.6)

where d1, ..., dr−1 ∈ k.

Now look at any term of the right hand side of (2.6), for example the first term:

S1 = d1 (Xα1g1 −Xα2g2)

Recall that the leading coefficient of gi is equal to 1, and Xα1lt(g1) = Xα2lt(g2) = m. We
rewrite S1 as follow:

S1 = d1.
[
Xα1 lt(g1)

m12

(
m12

lt(g1)
g1

)
− Xα2 lt(g2)

m12

(
m12

lt(g2)
g2

)]
= d1m

m12

[
m12

lt(g1)
g1 − m12

lt(g2)
g2

]
= d1X

α12S(g1, g2)

where m12 = lcd (lt(g1), lt(g2)), α12 ∈ Nd, and the final term satisfies:

lt (Xα12S(g1, g2)) = lt (Xα1g1 −Xα2g2) < m (2.7)

Using Multivariate Division Algorithmto divide S(g1, g2) by G, we get an expression of
S(g1, g2) as:

S(g1, g2) = f121g1 + ...+ f12sgs (2.8)

28

where the remainder vanishes because of the hypothesis. Furthermore,

lt(f12jgj) ≤ lt(S(g1, g2)) (2.9)

Combination (2.6) and (2.8), we obtain an new expression of S as:

S =
r−1∑
i=1

diX
αi(i+1)

s∑
j=1

fi(i+1)jgj =
s∑
j=1

(
r−1∑
i=1

diX
αi(i+1)

)
fi(i+1)jgj

or shorter

S =
s∑
j=1

fjgj (2.10)

where fj =

(
r−1∑
i=1

diX
αi(i+1)

)
fi(i+1)j, j = 1, ..., s. Now look at the leading terms of terms in

the right hand side of (2.10), we have

lt(fjgj) ≤ max
i=1,...,r

lt
(
Xαi(i+1)fi(i+1)jgj

)
= max

i=1,...,r
Xαi(i+1)lt

(
fi(i+1)jgj

)
≤ max

i=1,...,r
Xαi(i+1)lt (S(gi, gj)) (since (2.9))

< m (since (2.7))

Finally, putting together (2.4) with (2.10) we obtain

f =
s∑
j=1

fjgj +
r∑
i=1

(hi − lt(hi)) gi +
s∑

j=r+1

hjgj

an expression of f via the set of generators G such that the leading terms of terms in the
right hand side are less than m. It is contradiction with the minimality of m. The proof is
completed. �

We now present a simplified version of Buchberger’s algorithm (1965).

Theorem 12. Buchberger’s algorithm always terminates.

Proof: Whenever Buchberger’s algorithm stops, we obtain a set of generators of a which
holds Buchberger’s criteria. Hence, it is a Gröbner basis.

Now assume G and G′ are set of polynomials correspond to successive passes through
step 2 each time, i.e. G′ = G ∪ S, where

S = {S(gi, gj) rem G 6= 0 | gi, gj ∈ G, i 6= j}

We have known that S(gi, gj) ∈ 〈gi, gj〉 ⊆ 〈G〉 = a. Thus 〈G′〉 = 〈G〉 = a. It means that the
set G of polynomials passes throughout the for round and if round from line 3 to line 15
always generates the ideal a. We now consider the corresponding monomial ideals.

29

Algorithm 7 Buchberger’s algorithm

Require: g1, ..., gs ∈ k[x1, ..., xd] and a monomial order ”<”.
Ensure: A Gröbner basis G for the ideal a = 〈g1, ..., gs〉 with respect to ”<”.
1: G := {g1, ..., gs}
2: S := ∅
3: for all gi, gj ∈ G, gi 6= gj do
4: r := S(gi, gj) rem G
5: if r 6= 0 then
6: S := S ∪ {r}
7: end if
8: end for
9: if S = ∅ then

10: Return G. Stop the algorithm.
11: else
12: G := G ∪ S
13: S = ∅
14: Repeat for round from line 3.
15: end if

Clearly G ⊆ G′, then 〈lt(G)〉 ⊆ 〈lt(G′)〉. Hence the ideals 〈lt(G)〉 in successive passes
throughout the for round and if round form a ascending chain of monomial ideals. Thus
after a finite number of steps, we have

〈lt(G)〉 = 〈lt(G′)〉 ⊆ 〈lt(a)〉

We claim that the algorithm will stop in this step, i.e. S = ∅. In fact in this step, for any
pair gi, gj ∈ G, let r = S(gi, gj) rem G. Then r must be zero. Otherwise, by definition
of remainder on Multivariate Division Algorithmnone term of r is divisible by any term of
lt(G). On the other hand, r ∈ G′ then

lt(r) ∈ lt(G′) ⊆ 〈lt(G′)〉 = 〈lt(G)〉

Contradiction!!! Thus r = 0, and then S = ∅. Hence the algorithm terminates. �

2.3.3 Reduced bases and computer calculation

In general the Gröbner basis computed by Buchberger’s algorithm is neither minimal nor
unique. By removing some unnecessary its elements, we can make both properties hold. The
following lemma is the base for this fact.

Lemma 7. If G is a Gröbner basis for an ideal a ⊆ k[x1, ..., xd], and g ∈ G such that
lt(g) ∈ 〈lt (G\{g})〉, then G\{g} is still a Gröbner basis for a.

Proof: Denote G′ = G\{g}. From the hypothesis, we have 〈G′〉 ⊆ 〈G〉 = a and
〈lt(G′)〉 = 〈lt(G)〉. The proof is completed thanks to lemma 6. �

30

Definition 6. A subset G ⊂ k[x1, ..., xd] is a minimal Gröbner basis for an ideal a ⊆
k[x1, ..., xd] if it is a Gröbner basis for a, and all g ∈ G hold:

(i) lc(g) = 1.

(ii) lt(g) /∈ lt(G\{g})

If furthermore,

(iii) None term of g is in lt(G\{g})

Then we call G a reduced Gröbner basis.

Theorem 13. Every ideal of k[x1, ..., xd] has a unique reduced Gröbner basis.

Proof: Let any non-zero ideal a ⊆ k[x1, ..., xd]. Because of Hilbert’s basis theorem, a
admits a Gröbner basis G. Thanks to lemma 7, we can delete all elements g in G which
satisfy

lt(g) ∈ lt(G\{g})
and repeat it, we will receive a minimal Gröbner basis for a, recall G = {g1, ..., gs}. We
construct a reduced Gröbner basis from G as follow. Let

h1 = g1 rem {g2, ..., gs}
hi = gi rem {h1, ..., hi−1, gi+1, ..., gs}, i = 2, ..., s− 1
hs = gs rem {h1, ..., hs−1}

And set H = {h1, ..., hs}. To prove that H is a reduced basis for a, we claim that:

Claim: For 1 ≤ i ≤ s, we have

(i) No term of hi is divisible by any term of {lt(h1), ..., lt(hi−1), lt(gi+1), ..., lt(gs)}.

(ii) lt(hi) = lt(gi).

In fact, (i) holds thanks to the definition of remainder of Multivariate Division Algorithm.
Now we will prove (ii) by induction on i. If i = 1, then lt(h1) = lt(g1) because {g1, ..., gs}
is a minimal Gröbner basis for a. Assume for some 1 ≤ i ≤ s− 1, the claim is true for any
1 ≤ j ≤ i. Then lt(hj) = lt(gj), ∀j = 1, ..., i. Thus {h1, ..., hi, gi+1, ..., gs} is also a minimal
Gröbner basis for a. Hence, lt(hi+1) = lt(gi+1). The claim is proved.

Now thanks to the claim, the set H = {h1, ..., hs} is a minimal Gröbner basis for a that
satisfies the third condition of definition 6. Hence, H is a reduced Gröbner basis for a.

For the uniqueness, assume H ′ = {h′1, ..., h′r}, r ∈ N another reduced Gröbner for a.

We firstly show that lt(H) = lt(H ′). In fact, for any hi ∈ H, we have

lt(hi) ∈ lt(H) ⊆ 〈lt(H)〉 = 〈lt(H ′)〉

Then lt(hi) is divisible by lt(h′j) for some h′j ∈ H ′. By a symmetric argument, lt(h′j) is
divisible by lt(hl) for some hl ∈ H. So lt(hi) is divisible by lt(hl). But H is minimal, so it

31

implies that lt(hi) = lt(hl) = lt(h′j) ∈ lt(H ′). The hi ∈ H is arbitrary, then lt(H) ⊆ lt(H ′).
By a symmetric argument, we imply lt(H) = lt(H ′).

Now, for any hi ∈ H, lt(hi) = lt(h′j) for some h′j ∈ H ′. The element hi − h′j ∈ a has no
term that divisible by any term of lt(H) = lt(H ′). Because of the definition of remainder of
Multivariate Division Algorithm, hi − h′j is itself remainder when we divide hi − h′j by H.
Since hi−h′j ∈ a and H a Gröbner basis, the Ideal Membership Problem say that hi−h′j = 0.
So hi = h′j ∈ H ′. The hi ∈ H is arbitrary, thus H ⊆ H ′. By a symmetric argument, H = H ′.
�

Most computer algebra systems that have the Groebner package contain a function
”Basis” which computes the reduced Gröbner basis for any given set of generators for an
ideal. In this article, we will use Maple 16, an computer algebra system that is developed
by Waterloo Maple Inc., Ontario, Canada. To use the Groebner package, one must start by
loading it by the command:

>with Groebner;

Here, > is the Maple prompt, and all Maple commands end with a semicolon. Once the
Groebner package is loaded, we can compute the reduced Gröbner bases and carry out a
variety of other commands that are contained in Groebner package.

The format for the Basis command is

>Basis(F,torder);

where F is a finite set of polynomials, torder one of the monomial orders described below:

• plex(x[1],...,x[n]): lexicographic order with x[1] > ... > x[n].

• grlex(x[1],...,x[n]): graded lexicographic order with x[1] > ... > x[n].

• tdeg(x[1] ... x[n]): graded reverse lexicographic order.

For instance, the commands:
>F:=[x^2-y*z,y^2-z*x,z^2-x*y];

>Basis(F,plex(x,y,z));

computes the reduced Gröbner basis for ideal 〈x2 − yz, y2 − zx, z2 − xy〉 ⊂ k[x, y, z] with
the lexicographic order defined by x > y > z. The output is[

y3 − z3,−y2 + zx,−z2 + yx, x2 − yz
]

a reduced Gröbner basis.

An other command in Groebner package that is usually used is NormalForm, for doing
Multivariate Division Algorithm. The command of dividing polynomial f by the finite set
of polynomials F has the following syntax:

>NormalForm(f,F,torder);

32

The output is only the remainder. For example, to divide x3+3y3 by F = {x2 − yz, y2 − zx, z2 − xy}
using graded lexicographic order with x > y > z, we would enter:

>NormalForm(x^3+3*y^3,F,grlex(x,y,z));

The output is 4y3, the remainder of this division.

Some other useful Maple commands in the Groebner package are:

• IsBasis which is to check that the given set of generators is a Gröbner basis or not.

• LeadingMonomial (respect LeadingTerm, LeadingCoefficient) which computes the
leading monomial (respect leading term, leading coefficient) of an polynomial.

• SPolynomial which computes the S-polynomial S(f, g) of two polynomials f, g.

• Solve which solves an algebraic system by computing a collection of reduced Gröbner
bases.

2.4 Some Applications

Given a set of polynomial equations modelling a problem, a Gröbner basis for this system
will help simplifying any polynomial in the involved variables. For this reason, Gröbner bases
are an important tool to solve computationally many problems in polynomial algebras. In
this section, we will see how the Gröbner bases can be used to solve some usual geometric
problems.

2.4.1 Solving Polynomial equations

In this subsection, we will discuss a straightforward approach to solving the system of poly-
nomial equations that is based on the elimination property of Gröbner bases with the lexi-
cographic order. Before giving the key theorem, we introduce some notation.

Let F = {f1, ..., fs} ⊂ k[x1, ..., xd] be a set of polynomials and let a ⊂ k[x1, ..., xd] be the
ideal generated by F . We denote:

V(a) :=
{

(a1, ..., ad) ∈ kd | f(a1, ..., ad) = 0 ∀f ∈ a
}

the set of all roots of the system f1 = ... = fs = 0. We usually call kd an affine space.
It has a natural topology structure for which the closed sets are the V(a) for some ideal
a ⊂ k[x1, ..., xd]. It is called the Zariski topology. We also denote

al := a ∩ k[xl, ..., xd] (l = 1, ..., d)

and call it the l-th elimination ideal of a. Thus al consists of all consequences of f1 = ... =
fs = 0 not depend on the variables x1, ..., xl−1.

The key of the method to solving polynomial equations we will discuss here is the fol-
lowing theorem:

33

Theorem 14 (The elimination theorem). Let a ⊆ k[x1, ..., xd] be an ideal and G a Gröbner
basis of a with respect to the lexicographic order such that x1 > ... > xd. Then for every
l = 1, ..., d, the set

Gl := G ∩ k[xl, ..., xd]

is a Gröbner basis of the l-th elimination ideal al.

Proof: The proof of this theorem comes from the characteristic property of lexicography
order. For any f ∈ al ⊂ a, the lt(f) is divisible by lt(g) for some g ∈ G. Since f ∈ k[xl, ..., xd]
and the definition of lexicographic order with x1 > ... > xd, lt(f) involves only the variables
xl, ..., xd, hence so is lt(g), and g. So that g ∈ Gl. Hence Gl is a Gröbner for al. �

To describe how the theorem works we come to an example.

Example 8. Solve the following system in C3:
x2y − z3 = 0
2xy − 4z − 1 = 0
z − y = 0

These equations determine an ideal a = 〈x2y − z3, 2xy − 4z − 1, z − y〉 ⊂ k[x, y, z]. And
we want to find all points of V(a). Now, using the Basis command, we compute a Gröbner
basis for a using the lexicographic order.

>Basis([x^2*y-z^3,2*x*y-4*z-1,z-y],plex(x,y,z));

The result is [−1 − 8z − 16z2 + 4z4,−z + y,−2z3 + 2 + x + 8z]. According to theorem 14,
the elimination ideals of a are:

a1 = a = 〈−1− 8z − 16z2 + 4z4,−z + y,−2z3 + 2 + x+ 8z〉
a2 = 〈−1− 8z − 16z2 + 4z4,−z + y〉
a3 = 〈−1− 8z − 16z2 + 4z4〉

Our system is equivalent to the new one:
−2z3 + 2 + x+ 8z = 0
−z + y = 0
−1− 8z − 16z2 + 4z4 = 0

Thus the Elimination theorem use Gröbner bases with the lexicographic order to eliminate
certain variables. In this example, we use it to eliminate x, y from our equations to obtain
a new polynomial equation that only depends on z. This polynomial is in a ∩C[z] with the
smallest possible degree. So that it is easy to find all points of V(a3), the set of all roots of
−1−8z−16z2+4z4 = 0. Next, when these values of z are substituted into the other equations,
these equations can be solved respectively for y, x. Finally, all solutions of our system are(

4+
√

2
2
, 4+

√
2

2
, 4+

√
2

2

)
;
(

4−
√

2
2
, 4−

√
2

2
, 4−

√
2

2

)
;
(
−4+

√
2

2
, −4+

√
2

2
, −4+

√
2

2

)
;
(
−4−

√
2

2
, −4−

√
2

2
, −4−

√
2

2

)

34

2.4.2 Implicitization Problem

Suppose that a subset W ⊆ kd is defined by the parametric equations:
x1 = f1(t1, ..., tm)
....
xd = fd(t1, ..., tm)

where f1, ..., fd are polynomials or rational functions of variables t1, ..., tm. The Impliciti-
zation problem asks for the equations defining the Zariski closure Z of W in kd. In this
subsection, for simplicity, we assume all of fi are polynomials. The case f1, ..., fd are rational
functions is really similar to our case.

Notice that, the parametrization does not always fill up all Z. In fact, we can think of
the parametrization as the map:

φ : km → kd, (t1, ..., tm) 7→ (f1(t1, , .., tm), ..., fd(t1, ..., tm))

and then W is exactly the image of φ. Unfortunately, the image of a closed subset may not
be closed. It is the reason why the Implicitization problem asks for the Zariski closure of
W rather than W itself. However, once the Zariski closure Z of W has been found, one can
check if the parametrization fills up all Z or not, and if the answer is no, one can find all
missing points. In this subsection, we will only give the way to find Z by using Gröbner
bases. This follows directly from the Closure theorem.

Theorem 15 (Closure theorem). Let k be an algebraic closed field. Let a = 〈x1 − f1, ..., xd − fd〉 ⊆
k[t1, ..., tm, x1, ..., xd] be an ideal and

am+1 = a ∩ k[x1, ..., xd]

its (m+ 1)-elimination. Then
V(am+1) = Imφ

Proof: Break the map φ into the composition of the graph of φ and the projection from
the graph of φ to the image of φ. We obtain the following commutative diagram of affine
varieties and morphisms:

km kd

km+d

-
φ

?

j

�
�
���

π

where j(t1, ..., tm) = (t1, ..., tm, f1(t1, ..., tm), ..., fd(t1, ..., tm)) for all (t1, ..., tm) ∈ km and
π(t1, ..., tm, x1, ..., xd) = (x1, ..., xd) for all (t1, ..., tm, x1, ..., xd) ∈ km+d. Then we have

Imφ = π(j(km)) = π(V(a))

What we need to prove now is the equality:

V(am+1) = π(V(a)) (2.11)

35

Firstly, the inclusion π(V(a)) ⊆ V(am+1) is trivial. In fact, any point P ∈ π(V(a)) has the
form P = (f1(t1, ..., tm), ..., fd(t1, ..., tm)) for some (t1, ..., tm) ∈ km. Then for any polynomial
g ∈ am+1 = a ∩ k[x1, ..., xd], and think of g as polynomial in k[t1, ..., tm, x1, ..., xd], we have

g(P) = g(f1(t1, ..., tm), ..., fd(t1, ..., tm))
= g(t1, ..., tm, f1(t1, ..., tm), ..., fd(t1, ..., tm)) = 0

It means that the point P ∈ π(V(a)) vanishes all polynomials in am+1. Thus π(V(a)) ⊆
V(am+1). And then π(V(a)) ⊆ V(am+1).

The proof of the converse inclusion requires Hilbert’s Nullstellensatz so that the field k
must be algebraic closed. What we want to prove now is the inclusion

V(am+1) ⊆ π(V(a))

Because of Hilbert’s Nullstellensatz, it is equivalent to an other inclusion of ideals

I(π(V(a))) ⊆ √am+1 (2.12)

Now let any g ∈ I(π(V(a))) ⊆ k[x1, ..., xd]. Then g vanishes at all points of π(V(a)), i.e.

g(f1(t1, ..., tm), ..., fd(t1, ..., tm)) = 0, ∀(t1, ..., tm) ∈ km

Consider g as an element of k[t1, ..., tm, x1, ..., xd], we certainly have

g(t1, ..., tm, f1(t1, ..., tm), ..., fd(t1, ..., tm)) = 0, ∀(t1, ..., tm) ∈ km

It means that g vanishes at all points of V(a). Because of Hilbert’s Nullstellensatz, gN ∈ a
for some N > 0. On the other hand, g does not depend on t1, ..., tm, neither gN , so
gN ∈ a ∩ k[x1, ..., xd] = am+1. Thus g ∈ √am+1. Hence the inclusion 2.12 holds. The
theorem is proved. �

Thanks to the Closure theorem, the method to find the Zariski closure Z of W is clear.
The system defining Z is the set of generators of the (m+ 1)-elimination ideal of a.

Example 9. Find the equations defining the surface whose parametrization is
x = t+ u
y = t2 + 2tu
z = t3 + 3t2u

where t, u ∈ C.

First find the Gröbner basis of the ideal a = 〈x− t− u, y − t2 − 2tu, z − t3 − 3t2u〉 using
lexicographic order with t > u > x > y > z. We comment:

>Basis([x-t-u,y-t^2-2*t*u,z-t^3-3*t^2*u],plex(t,u,x,y,z));

The result is [z2−6yzx+4y3+4x3z−3y2x2, 5y2z−4yx2z−2z2u−2z2x+2y3u+y3x,−yz+
2x2z + 2xzu− 2y2u− y2x, 2y2 − x2y − zu− zx+ xuy, 3yx− 2x3 − 2yu+ 2x2u− z, y + u2 −
x2,−x + t + u]. Then the third elimination ideal of a is the principal ideal generated by
z2 − 6yzx+ 4y3 + 4x3z − 3y2x2. Finally the equation defining our surface is

z2 − 6yzx+ 4y3 + 4x3z − 3y2x2 = 0

36

2.4.3 Finding the projective closure of an affine variety

Before presenting the main problem in this subsection, we will give some notation. We
denote Pdk the classical projective space of dimension d over k. The underlying set is the set
of equivalent classes of (

kd+1 − {0}
)/
∼

where the equivalent relation ∼ is defined for any x = (x0, .., xd), y = (y0, ..., yd) ∈ kd+1−{0}
by

x ∼ y ⇔ x = λy, for some λ ∈ k

For each subset A ⊆ Pdk, we denote

I+(A) := {f ∈ k[x0, ..., xd] | f is homogeneous and f(x0, ..., xd) = 0, ∀(x0, ..., xd) ∈ A}

that is an homogeneous ideal of k[x0, ..., xd]. Conversely, for each homogeneous ideal a ⊆
k[x0, ..., xd], we denote

V+(a) := {P = (x0, ..., xd) ∈ Pdk such that P vanishes all homogeneous polynomials of a}

Pdk has a natural topological structure whose closed subsets are the V+(a) for some homoge-
neous ideal a. It is called Zariski topology. The affine space kd can be embedded continuously
via:

kd → Pdk, (x1, ..., xd) 7→ (1, x1, ..., xd)

Identify kd with its image, then kd is an open subset of Pdk. So that any affine closed subset
of kd can be seen as a, not necessary closed, subset of Pdk. In this section, we will give a
certain way to find the projective closure of any given affine closed set.

In order to do that, we first define the homogenization of polynomials in k[x1, ..., xd]. It
is expressed by the following map:

(−)h : k[x1, ..., xd]→ k[x0, ..., xd], f 7→ fh := xdeg f
0 f

(
x1

x0

, ...,
xd
x0

)
Directly from the definition of (−)h, fh is a homogeneous polynomial of k[x0, ..., xd] and
fh(1, x1, ..., xd) = f(x1, ..., xd).

If a ⊆ k[x1, ..., xd] is an ideal, we denote ah an homogeneous ideal of k[x0, ..., xd] that
is generated by all fh with f ∈ a. Notice that if {f1, ..., fs} generates a, then {fh1 , ..., fhs }
may not generate ah. A reason for this fact is that the map (−)h has no ”homomophism”
property. However, we have the following theorem.

Theorem 16. Let a ⊆ k[x1, ..., xd] be an ideal and let G = {g1, ..., gs} be a Gröbner basis
for a with respect to graded lexicographic order with x1 > ... > xd. Then Gh = {gh1 , ..., ghs }
generates ah.

37

Proof: In k[x0, ..., xd], we define a new monomial order >h by:

xa11 ...x
ad
d x

a0
0 >h x

b1
1 ...x

bd
d x

b0
0 ⇔

[
xa11 ...x

ad
d >grlex x

b1
1 ...x

bd
d or

xa11 ...x
ad
d = xb11 ...x

bd
d and a0 > b0

What we need from the constructing >h is a monomial order in k[x0, ..., xd] which is com-
patible with the graded lexicographic order in k[x1, ..., xd], i.e. for any f ∈ k[x1, ..., xd], lt>grlex(f) =
lt>h(f). In fact, >h defined above is a monomial order that satisfies our purpose, because
the leading term of f ∈ k[x1, ..., xd] is unchanged by homogenization.

Now we will prove that Gh = {gh1 , ..., ghs } is indeed a Gröbner basis for ideal ah ⊆
k[x0, ..., xd] with respect to >h, so generates ah. Clearly Gh ⊂ ah. It is suffices to show that
the set lt>h(Gh) generates

〈
lt>h(ah)

〉
.

Now let any polynomial Q ∈ ah. Notice that ah is the homogeneous ideal of k[x0, ..., xd]
that is generated by homogenization of polynomials in a. Then Q has the form:

Q =
∑
i

qif
h
i

where the sum is finite, qi ∈ k[x0, ..., xd], and fi ∈ k[x1, ..., xd]. Setting x0 = 1 and let
q := Q(1, x1, ..., xd) ∈ k[x1, ..., xd], we obtain

q =
∑
i

qi(1, x1, ..., xd).f
h
i (1, x1, ..., xd) =

∑
i

qi(1, x1, ..., xd).fi(x1, ..., xd) ∈ a

Since G is a Gröbner basis for a with respect to >grlex, lt>grlex(q) is divisible by lt>grlex(gi)
for some gi ∈ G. On the other hand, the setting q := Q(1, x1, ..., xd) ∈ k[x1, ..., xd] yields
deg q ≤ degQ and

qh = xdeg q
0 .q

(
x1
x0
, ..., xd

x0

)
= xdeg q

0 .Q
(

1, x1
x0
, ..., xd

x0

)
=

xdeg q0

xdegQ0

Q(x0, ..., xd)

It implies that
lt>h(Q) = xdegQ−deg q

0 .lt>h(qh) = xdegQ−deg q
0 .lt>grlex(q)

It means that lt>h(Q) is divisible by lt>grlex(q), and hence is divisible by lt>grlex(gi). Because
of the aim of the constructing >h, we have lt>grlex(gi) = lt>h(ghi). Thus lt>h(Q) is divisible
by lt>h(ghi).

Hence Gh is a Gröbner basis for ah with respect to >h. The theorem is proved. �

Theorem 17. Let k be an algebraic closed field and a ⊆ k[x1, ..., xd] an ideal. Then V+(ah) ⊆
Pdk is the projective closure of V(a) ⊆ kd.

Proof: Clearly V(a) ⊆ V+(ah) ⊆ Pdk. The converse inclusion requires Hilbert’s Nullstel-
lensatz, so the field k must be algebraic closed.

38

Assume V+(b) ⊆ Pdk another projective closed set that contains V(a), where b ⊆
k[x0, ..., xd] is a homogeneous ideal. We must show that

V+(ah) ⊆ V+(b)

Because of Hilbert’s Nullstellensatz, it is equivalent to the inclusion of homogeneous ideals
√
b ⊆
√
a

Now let any homogeneous polynomial f ∈ b. As our assumption V(a) ⊆ V+(b), f vanishes
at all points of V(a), i.e.

f(1, x1, ..., xd) = 0, ∀(x1, ..., xd) ∈ V(a)

Because of Hilbert’s Nullstellensatz, fN(1, x1, ..., xd) ∈ a for some N > 0. Thanks to the

homogenization, we imply fN ∈ ah. Then f ∈
√
ah. The f is arbitrary, so b ⊆

√
ah. Hence√

b ⊆
√
ah. The theorem is proved. �

Now if we combine theorem 16 and 17, we will get an algorithm for computing the
projective closure of an affine closed set W ⊆ kd. In fact, if W is defined by the system
of polynomials equations f1 = ... = fs = 0, we first compute the reduced Gröbner basis G
for {f1, ..., fs} with respect to graded lexicographic order, and then the projective closure
Z = W is defined by the system gh = 0, ∀g ∈ G.

Example 10. Find the projective closure of a curve (C) in C3 whose parametrization is:


x = t3

y = t4

z = t5

where t ∈ C.

We first find the Gröbner basis of the ideal a = 〈x− t3, y − t4, z − t5〉 using lexicographic
order with t > x > y > z. We enter:

>Basis([x-t^3,y-t^4,z-t^5],plex(t,x,y,z));

The output is [y5−z4,−y2+xz, y3x−z3,−z2+yx2, x3−yz,−x2+tz, ty−z, tx−y,−x+t3].
Then the second elimination ideal of a which express the affine closure of (C) is

a2 =
〈
y5 − z4,−y2 + xz, y3x− z3,−z2 + yx2, x3 − yz

〉
Next we find the reduced Gröbner basis for a2 with respect to graded lexicographic order:

>Basis([y^5-z^4, -y^2+x*z, y^3*x-z^3, -z^2+y*x^2, x^3-y*z],plex(t,x,y,z));

The result is [−y2 + xz,−z2 + yx2, x3 − yz, y3x − z3, y5 − z4]. Finally, taking their
homogenization, we obtain a homogeneous ideal of C[t, x, y, z]〈

−y2 + xz,−tz2 + yx2, x3 − yzt, y3x− tz3, y5 − tz4
〉

that expresses the projective closure of (C) in P3
C.

39

Chapter 3

Using reduction modulo ideals to
solve multivariate interpolation
problems

This chapter is the heart of the thesis in which the Multivariate Polynomial Interpolation
problem will be solved by the strong connection within the theory of polynomial ideals. After
recalling the main problem, we will analyse the main idea for this method.

Problem 5 (Multivariate Polynomial Interpolation). Fix the commutative field k, and pos-
itive integer N, d. Let N + 1 distinct interpolation points X0, ..., XN ∈ kd and N + 1 scalar
values u0, ..., uN ∈ k. Find a polynomial P ∈ k[x1, ..., xd] with the smallest possible degree
such that

P (Xi) = ui, ∀i = 0, ..., N (3.1)

The system (3.1) is called the interpolation conditions.

To connect to the theory of polynomial ideals, we denote the evaluation map:

eva : k[x1, ..., xd]→ kN+1, f 7→ (f(X0), ..., f(XN+1))

Then the problem 5 can be said again that finding the inverse image of eva for each given
vector (u0, ..., uN) ∈ kN+1.

Clearly eva is a k-linear map. It is furthermore a surjective morphism. In the sec-
ond section of this chapter, an algorithm for finding an inverse image of any given vector
(u0, ..., uN+1) ∈ kN+1 will be presented. The kernel of eva is

a = {f ∈ k[x1, ..., xd] | f(X0) = ... = f(XN+1) = 0}

that is an ideal of k[x1, ..., xd] which expresses the set of interpolation points. We call it
interpolating ideal. Thus eva induces an isomorphism of k-vector spaces

k[x1, ..., xd]/a→ kN+1

40

It means that there is a one-to-one correspondence between the vectors in kN+1 and equiv-
alent classes of modulo a in k[x1, ..., xd]. Hence the problem of finding an interpolating
polynomial f for given vector (u0, ..., uN+1) ∈ kN+1 with the smallest possible degree is
equivalent to finding a representative of the equivalent class f + a with the smallest possible
degree. For this reason, reduction modulo ideals is the key of the method.

3.1 Interpolating ideals

In this section we will present an algorithm for finding the interpolating ideals that are based
on the relation between the monomial ideals of k[x1, ..., xd] and the complement of ideals in
Nd. The cornerstone of this method is disclosing the geometric connection between the set
A of interpolation points and the minimal basis of monomial ideal 〈lt(a)〉 to find the reduced
Gröbner basis for a with respect to lexicographic order. And then an algorithm for finding
the reduced Gröbner basis with respect to any other monomial order by changing ordering
from the lexicographic order case.

3.1.1 Lower sets

Recall Md be the set of all monomials in k[x1, ..., xd]. We have seen that Md forms a com-
mutative unitary semi-group with basis {x1, ..., xd}. Then it is isomorphic with Nd via the
canonical map:

Md → Nd, Xa = xa11 ...x
ad
d 7→ (a1, ..., ad)

We have also seen that there is a one-to-one correspondence between the monomials ideals
of k[x1, ..., xd] and the ideals of Md that is expressed by the map:{

monomial ideals
of k[x1, ..., xd]

}
→
{

ideals
of Md

}
b 7→ b ∩Md

Putting together two such bijective maps, we obtain a one-to-one correspondence between
monomial ideals of k[x1, ..., xd] and the ideals of Nd, namely:

ϕ :

{
monomial ideals

of k[x1, ..., xd]

}
→
{

ideals
of Nd

}
where ϕ corresponds each monomials b of k[x1, ..., xd] with the set of exponents of monomials
in b. In particular, ϕ is indeed an isomorphism of lattices.

Now we will disclose the connection between the bijective map ϕ with our problem. Re-
call the interpolating ideal a = I(A). The ideal 〈lt(a)〉 is a monomial ideal of k[x1, ..., xd].
We associates to it an ideal of Nd, that is ϕ(〈lt(a)〉). Associate monomials of each point in
its completion, i.e. Nd − ϕ(〈lt(a)〉), are k-linear independent in k[x1, ..., xd]/a. On the other
hand, since the set A of interpolation points is a finite set, k[x1, ..., xd]/a is a k-vector space
of finite dimension. Hence the set Nd − ϕ(〈lt(a)〉) is finite. Furthermore, the cardinality of
Nd − ϕ(〈lt(a)〉) is in fact the dimension of k[x1, ..., xd]/a as a k-vector space.

41

Proposition 5. With notation above, we have:

#A = dimk k[x1, ..., xd]/a = #Nd − ϕ(〈lt(a)〉)

Proof: The first equality comes from the Chinese Remainder Theorem. In fact we have:

a = I(A) = I

(⋃
a∈A

{a}

)
=
⋂
a∈A

I ({a})

The I ({a}) are the distinct maximal ideals of k[x1, ..., xd], then the Chinese Remainder
Theorem gives us

k[x1, ..., xd]/a ∼= k[x1, ..., xd]/
⋂
a∈A

I ({a}) ∼=
∏
a∈A

k[x1, ..., xd]/I ({a}) ∼= k#A

Thus
dimk k[x1, ..., xd]/a = #A

In order to prove the second one, we consider the images of the points of Nd − ϕ(〈lt(a)〉) in
k[x1, ..., xd]/a via the composition:

Nd →Md → k[x1, ..., xd]→ k[x1, ..., xd]/a

We claim that the images of Nd−ϕ(〈lt(a)〉) in k[x1, ..., xd]/a forms a k-basis of k[x1, ..., xd]/a.

Firstly, if {a1, ..., as} is any finite subset of Nd − ϕ(〈lt(a)〉) and {Xa1 , ..., Xas} its image
in k[x1, ..., xd]/a. Then {Xa1 , ..., Xas} is independent over k. In fact, if there is a k-linear
combination, namely c1X

a1 + ...csX
as with c1, ..., cs ∈ k, that vanishes in k[x1, ..., xd]/a, then

c1X
a1+...csX

as ∈ a. If c1X
a1+...csX

as 6= 0, then its leading term is a Xai for some i = 1, ..., s
that is belong to lt(a). But it is contradiction with the setting ai ∈ Nd − ϕ(〈lt(a)〉). Thus
we must have c1X

a1 + ...csX
as = 0, so c1 = ... = cs = 0. Hence the image of Nd − ϕ(〈lt(a)〉)

in k[x1, ..., xd]/a is k-linear independent.

To conclude the proposition, we only need to prove that the image of Nd − ϕ(〈lt(a)〉)
in k[x1, ..., xd]/a spans the whole k[x1, ..., xd]/a. Let {f1, ..., fs} be a Gröbner basis for a,
then {lt(f1), ..., lt(fs)} spans 〈lt(a)〉. For any polynomial f ∈ k[x1, ..., xd], using Multivariate
Division Algorithmto divide f by the basis {f1, ..., fs} gives the remainder r ∈ k[x1, ..., xd]
such that either r = 0 or no term of r is divisible by any lt(fi), i = 1, ..., s. If r = 0, then
f ∈ a and vanishes in k[x1, ..., xd]/a. Otherwise, the points in Nd that correspond with the
terms of r is in Nd − ϕ(〈lt(a)〉). Then f = r mod a is a k-linear combination of the image
of Nd − ϕ(〈lt(a)〉) in k[x1, ..., xd]/a. The proposition is proved. �

The proposition gives the first connection between the interpolating ideal a and the set
Nd − ϕ(〈lt(a)〉). To analyse some further information of a from the set Nd − ϕ(〈lt(a)〉), we
will consider the geometrical representation of such set. Assume a minimal Gröbner basis
{f1, ..., fs} is given. Then the set of all monomials in 〈lt(a)〉 is a semi-subgroup of Md that
is generated by {lt(f1), ..., lt(fs)}. In the proof of Proposition 5, we showed that the set
Nd − ϕ(〈lt(a)〉) is exactly the set of point a ∈ Nd such that the monomial Xa is divisible by
none of lt(fi), i = 1, ..., s.

For example, the figure 3.1 is the geometric expression of Nd−ϕ(〈lt(a)〉), where 〈lt(a)〉 =
〈x4, x3y, x2y3, y4〉.

42

Figure 3.1: Nd − ϕ(〈lt(a)〉) is the set of blank circle.

Definition 7. • A finite set D ⊂ Nd is called a lower up set if Nd − D forms an ideal
of Nd. We denote Dd the class of all lower up set of Nd.

• For each lower up set D ∈ Dd, the minimal basis of the ideal Nd −D is called the set
of limit points of D, namely E(D).

Example 11. The set of the blank circles in the figure 3.1 is a lower up set of N2. Its limit
points is the solid circles.

Return to our problem of finding the interpolating ideal a = I(A) of the given set of
interpolation points A. If we know the lower set associated with the monomial ideal 〈lt(a)〉
by some ways, then the set of limits points give us the minimal basis of 〈lt(a)〉. The question
is how to can construct the lower set D from A geometrically. In fact, each monomial order
in k[x1, ..., xd] yields a different rule to construct the associated lower set.

In the next subsection, the lower set associated with A will be constructed by induction
on the dimension d. To pass from d−1 to d, we need an operation on Dd that called addition.
Before give the additive operator in Dd, we define some useful notation.

For each i = 1, ..., d, we denote the projections

pi : Nd → N, a = (a1, ..., ad) 7→ ai

and
p̂i : Nd → Nd−1, a = (a1, ..., ad) 7→ (a1, ..., ai−1, ai+1, ..., ad)

We usually use the projection to the last coordinate pd and to the first d− 1 coordinates p̂d,
so we always write p(a) (respect p̂(a)) to replace pd(a) (respect p̂d(a)).

Each projection p̂i induces a natural map from Dd to Dd−1 that corresponds each lower
set D ∈ Dd to a lower set p̂i(D) ∈ Dd−1. Conversely each lower set in Dd−1 can be seen as a
lower set on Dd via the embedding:

Nd−1 → Nd, a = (a1, ..., ad) 7→ (a1, ..., ..., ad−1, 0)

Now the addition map in Dd can be defined as follow:

43

Figure 3.2: Nd − ϕ(〈lt(a)〉) is the set of blank circle.

Definition 8. For D,D′ ∈ Dd, define D +D′ to be the set of all points c ∈ Nd that satisfy:

(i) p(c) < #{a ∈ D | p̂(a) = p̂(c)}+ #{b ∈ D′ | p̂(b) = p̂(c)} and

(ii) p̂(c) ∈ p̂(D) ∪ p̂(D′)
Look at an example in the figure 3.2. To get D + D′, we first draw D and D′ in the

same coordinate system N2 such that D and D′ are putted in the semi-line Oy and do not
intersect. Then drop the elements of D′ down along the Oy until they lie on top of elements
of D. The result is D +D′.

Lemma 8. The operator ”+” defined above is an addition on Dd and then Dd becomes a
commutative semi-group with the empty set as neutral element.

Proof: We must check that the following are true:

(i) ”+” is indeed a birelation in Dd, i.e. D +D′ ∈ Dd for every D,D′ ∈ Dd.

(ii) ”+” is associative, i.e. (D +D′) +D” = D + (D′ +D”) for any D,D′, D” ∈ Dd.

(iii) ”+”is commutative, i.e. D +D′ = D′ +D for all D,D′ ∈ Dd.

(iv) Empty set is a neutral element, i.e. D + ∅ = ∅+D = D for all D ∈ Dd.

All of them are come directly from the definition of ”+” and the properties of lower up sets.
The proof of the third final items is trivial. To prove the first one, let any D,D′ ∈ Dd, we
must show that the complement of D +D′ in Nd forms an ideal of Nd.

Recall the definition of D +D′:

D +D′ = {c ∈ Nd, | c satisfies (i) and (ii)}
where

44

(i) p(c) < #{a ∈ D | p̂(a) = p̂(c)}+ #{b ∈ D′ | p̂(b) = p̂(c)} and

(ii) p̂(c) ∈ p̂(D) ∪ p̂(D′)

Let any u = (u1, ..., ud) ∈ Nd − (D +D′). Then u does not satisfies either (i) or (ii).

If u does not hold (i), i.e.

p(u) < #{a ∈ D | p̂(a) = p̂(u)}+ #{b ∈ D′ | p̂(b) = p̂(u)}

Then for any v = (v1, ..., vd) ∈ Nd, we have

p(uv) = udvd ≥ ud = p(u) ≥ #{a ∈ D | p̂(a) = p̂(u)}+ #{b ∈ D′ | p̂(b) = p̂(u)}

It means that uv also does not hold (i), then uv ∈ Nd − (D +D′), for every v ∈ Nd.

On the other hand, if u does not hold (ii), i.e.

p̂(u) = (u1, ..., ud−1) /∈ p̂(D) ∪ p̂(D′)

then neither p̂(u) /∈ p̂(D) nor p̂(u) /∈ p̂(D′). Notice that p̂(D) and p̂(D′) are lower sets on
Nd−1. Now by induction on the dimension d, we can assume that p̂(uv) = p̂(u)p̂(v) /∈ p̂(D)
and p̂(uv) = p̂(u)p̂(v) /∈ p̂(D′) for every v ∈ Nd. So p̂(uv) /∈ p̂(D) ∪ p̂(D′), i.e. uv also does
not hold (ii).

Finally we have proved that if u ∈ Nd− (D+D′) then so is uv for any v ∈ Nd. Of course
D +D′ is a finite set. Hence D +D′ is indeed a lower set in Nd. �

In particular, given a finite family {Di}i∈I in Dd, we can form the sum∑
i∈I

Di ∈ Dd

It is the set of points c ∈ Nd that satisfy

(i) p(c) <
∑
i∈I

{a ∈ Di | p̂(a) = p̂(c)} and

(ii) p̂(c) ∈
⋃
i∈I
p̂(Di)

3.1.2 The Gröbner basis of interpolating ideal with respect to <lex

. In this subsection we only work with the lexicographic order. Now we have enough to
construct the associated lower set to the interpolating ideal. Recall that A ⊂ Nd is the
set of interpolation points. We will define a way to translate geometrically the set A into
the associate lower set D<lex(A), or shortly D(A), that contains all information about the
leading terms of the reduced Gröbner basis for the interpolating ideal a = I(A).

The lower set D(A) is constructed by induction on the dimension d as follow:

45

Algorithm 8 Addition of lower sets

Require: Two lower sets D,D′ in Nd.
Ensure: D′′ = D +D′.
1: D′′ := D
2: if D′ = ∅ then
3: return D′′

4: else
5: pick any a = (a1, ..., ad) ∈ D′.
6: end if
7: if a ∈ D′′ then
8: ad := ad + 1, repeat round if
9: else

10: D′′ := D′′ ∪ {a}
11: D′ := D′ − {a}
12: repeat the first round if.
13: end if

• For d = 1, we set D(A) = {0, 1, ...,#A− 1}.

• To pass from d− 1 to d, we consider the family of slices of A that are defined by

H(ad) := {b ∈ A | p(b) = ad}

where ad runs on the whole p(A). In other words, the slice H(ad), ad ∈ p(A) is the set
of points in A that have the same d-th coordinate and equal to ad. We think of each
H(ad) as a subset of Nd−1 via the projection:

p̂ : Nd → Nd−1, b = (b1, ..., bd) 7→ (b1, ..., bd−1)

Then the lower sets D(H(ad)) are well-defined by induction hypothesis. Finally, we
have

D(A) =
∑

ad∈p(A)

D(H(ad))

We can see how the process works on the figure 3.3 with an example in N2. The inter-
polation points are the blank points in the left hand picture. A can be seen as the discrete
union of the family pieces H(ad), ad ∈ p(A) that are that sets of all points which have the
same second coordinates. Each such set can be seen as a subset of N if we forget the second
coordinates, then D(H(ad)) is defined as in the univariate dimension case. Finally the sum
of all such D(H(ad)) gives us the associate lower set D(A) in the right hand picture which
we want to find.

This process can be formulated into an algorithm as the following:
The following is one of the main theorem of this chapter.

Theorem 18. Let A,D(A), a be notation as above. Then the ideal Nd − D(A) defines the
monomial ideal 〈lt(a)〉, i.e. for any α ∈ D(A), there exists a polynomial φα ∈ a such that
lt(φ) = Xα. Furthermore, the set {φα |α ∈ E(D(A))} forms a minimal Gröbner basis for a.

46

Figure 3.3: Construct D(A) from A.

Algorithm 9 Find the associated lower set

Require: A finite set A ⊂ Nd.
Ensure: The associated lower set D := D(A).
1: if d = 1 then
2: D := {0, 1, ...,#A− 1}
3: end if
4: Compute p(A) ⊂ N.
5: For each ad ∈ p(A), compute H(ad) := {b ∈ A | p(b) = ad}.
6: Call the algorithm recursively to compute D(H(ad)).
7: Repeating algorithm 8 many times to compute

∑
ad∈p(A)

D(H(ad)).

8: Return D.

Proof: This theorem will be proved in 2 steps. First is an algorithm that computes
for each α ∈ E(D(A)) a polynomial φα ∈ a such that lt(φ) = Xα. And then the relation
between the ideals of Nd and the monomial ideals of k[x1, ..., xd] will finishes the proof. The
first step is rather long and very important for us, then it will be described carefully in the
next subsection.

In this case, we assume the first step is done, i.e the set φα ∈ a such that lt(φ) = Xα

is defined. Then we have lt(φα) ∈ 〈lt(a)〉 for every α ∈ E(D(a)). Because of the definition
of lower set, the set of exponents of φαs, i.e. E(D(A)), forms a minimal basis for ideal
Nd − D(A). Then the set of lt(φα)s forms a minimal basis for the monomial ideal 〈lt(a)〉.
Hence, {φα |α ∈ E(D(A))} is a minimal Gröbner basis for a. �

3.1.3 Constructing the reduced Gröbner basis with respect to <lex

For each α ∈ E(D(A)), the polynomial φα can be constructed by induction on the dimension
d. In order to do that, we see the set H(ad) = {b ∈ A | p(b) = ad} for each ad ∈ p(A) as a
lower set of Nd−1 via the projection:

p̂ : Nd → Nd−1, u = (u1, ..., ud) 7→ (u1, ..., ud−1)

47

Figure 3.4: T (β) and S(β) with β ∈ E(D(A)).

In the case d = 1, A is just a finite distinct points in a line, namely {m0, ...,mN} ⊂
N. Then D(A) = {0, 1, ..., N} and E(D(A)) = {N + 1}. In this case, the product (x −
m0)...(x − mN) that is of degree N + 1 generates the interpolating ideal. From here, for
any n ∈ N − D(A) = {N + 1, N + 2, ...}, dividing xn by (x −m0)...(x −mN) gives us the
remainder r(x) that is of degree less than N . Thus the polynomial xn − r(x) is in a such
that all exponents of its non-leading terms are in D(A).

To pass from d− 1 to d, we need the inductive assumption.

Inductive assumption We assume the following holds for every slice H(ad) of A with
ad ∈ p(A). For any α ∈ Nd−1 −D(H(ad)), we can compute a polynomial fα,ad ∈ k[x1, ..., xd]
that satisfies:

(i) lt(fα,ad) = Xα and

(ii) fα,ad(b) = 0 for all b ∈ H(ad).

(iii) The exponents of all non-leading terms of fα,ad lie in D(H(ad)).

Now let any β ∈ E(D(A)), we split the set p(A) in two components:

S(β) := {ad ∈ p(A) | p̂(β) ∈ D(H(ad))}
T (β) := p(A)− S(β)

The definition of T (β) and S(β) is illustrated in figure 3.4. As the definition of T (β) and
S(β), the d-th coordinate of β is exactly the cardinality of S(β). It is also the degree of the
variable xd in the polynomial φβ that we are looking for.

To kill all points in A whose projection on the d-th coordinate belongs to S(β), we use
the product

πβ =
∏

ad∈S(β)

(xd − ad)

48

We will find φβ of the form φβ = πβθβ for some polynomial θβ ∈ k[x1, ..., xd] which need

to find. Because of the construction of πβ, its leading term is x
#S(β)
d , where #S(β) is ex-

actly the exponent of xd in the leading term of φβ. Thus the leading term of θβ must be

p̂(X)p̂(β) = xβ11 ...x
βd−1

d−1 . Furthermore, the polynomial θβ must kill all points of A whose pro-
jection to the d-th coordinate is belong to T (β).

We will construct θβ by using the inductive assumption. According to the above assump-
tion, for each ad ∈ T (β), there is a polynomial fp̂(β),ad ∈ k[x1, ..., xd−1] that satisfies (i)-(iii).
Write this polynomial as

fp̂(β),ad = p̂(X)p̂(β) + gp̂(β),ad

where gp̂(β),ad ∈ k[x1, ..., xd−1] is the sum of non-leading terms of fp̂(β),ad . Next we define:

θβ = p̂(X)p̂(β) +
∑

ad∈T (β)

χ(T (β), ad)gp̂(β),ad

where χ(T (β), ad) :=
∏

bd∈T (β)−{ad}

xd−bd
ad−bd

is the characteristic polynomial of ad ∈ T (β).

Clearly θβ kills all points of A whose the d-coordinate belongs to T (β). In fact, if
b = (b1, ..., bd) ∈ A is such that bd ∈ T (β) then

χ(T (β), ad)(bd) =

{
0 if ad 6= bd
1 if ad = bd

Thus
θβ(b) = p̂(b)p̂(β) + gp̂(β),bd = fp̂(β),bd(b) = 0 (since b ∈ H(bd))

Now, setting φβ := πβθβ then

(i) lt(φβ) = lt(πβ).lt(θβ) = Xβ.

(ii) φβ kills all points of A.

Look at the exponents of non-leading terms of φβ. By inductive assumption, the exponents
of all terms of gp̂(β),ad , for each ad ∈ T (β), lie in D(H(ad)). The character polynomials
χ(T (β), ad) is a polynomial with only variable xd of degree |T (β)|−1. So that the exponents
of all non-leading terms of θβ lie in ⋃

ad∈T (β)

D(H(ad))

× {0, 1, ..., |T (β)| − 1} ⊂ Nd

πβ is also a polynomial with only variable xd of degree S(β). Thus the exponents of non-
leading terms of φβ is contained in the set

Exp(φβ) :=

 ⋃
ad∈T (β)

D(H(ad))

× {0, 1, ..., |T (β)| − 1}

⋃ [{p̂(β)} × {0, 1, ..., |S(β)| − 1}]

which can be illustrated in the figure 3.5
There are maybe some non-leading terms of φβ whose exponents do not lie in D(A). So

that φβ is not necessary reduced modulo a = I(A). On the other words, we only obtain the
following proposition:

49

Figure 3.5: The exponents of non-leading terms of φβ.

Proposition 6. The set {φβ | β ∈ E(D(A))} forms a minimal Gröbner basis for ideal a.

Example 12. Let the interpolation set A as the figure 3.6. Then p(A) = {1, 2, 3, 4} ⊂ Oy,
and H(1), H(2), H(3), H(4) as in the figure.

Figure 3.6: The interpolating set A.

The set D(H(1)), D(H(2)), D(H(3)), D(H(4)) is described in the left and the associated
lower set D(A) in the right of figure 3.7. Then the set of limit points of D(A) is E(D(A)) =
{(0, 4), (1, 3), (2, 2), (3, 0)}. So a minimal basis for 〈lt(I(A))〉 is {y4, xy3, x2y2, x3}. Now we
will construct for each β = (β1, β2) ∈ E(D(A)) a polynomial φβ ∈ k[x, y] whose leading term
is xβ1yβ2 .

First is the case β = (0, 4), the smallest element of E(D(A)). The leading term of
polynomial φ(0,4) which we need to find is y4. So that φ(0,4) is in the elimination ideal

50

Figure 3.7: Constructing the associated lower set D(A).

k[y] ∩ I(A). In this case, we always have p̂(β) = β1 = 0. So that

S(β) = {y ∈ p(A) | β1 = 0 ∈ D(H(y))} = {1, 2, 3, 4} = p(A)
T (β) = p(A)− S(β) = ∅

Thus φ(0,4) is a polynomial in only variable y that vanishes at all points in p(A), i.e.

φ(0,4) = (y − 1)(y − 2)(y − 3)(y − 4) = y4 − 10y3 + 35y2 − 50y + 24

In the case β = (1, 3), then p̂(β) = β1 = 1. In this case, p(A) is spitted into two parts:

S(β) = {y ∈ p(A) | β1 = 1 ∈ D(H(y))} = {1, 3, 4}
T (β) = p(A)− S(β) = {2}

To kill all points in A whose second coordinates are in S(β), we use the product

π(1,3) = (y − 1)(y − 3)(y − 4)

Notice that the leading term of the polynomial φ(1,3) which we want to find is xy3. And the
φ(1,3) will be found in the form φ(1,3) = π(1,3).θ(1,3) for some θ(1,3) ∈ k[x, y] which we need to
determine. Then the leading term of θ(1,3) must be x. Furthermore, θ(1,3) must kill the point
(4, 2) ∈ A whose second coordinate is in T (β). So that θ(1,3) = x− 4. And then

φβ = (y − 1)(y − 3)(y − 4)(x− 4) = y3x− 4y3 − 8y2x+ 32y2 + 19yx− 76y − 12x+ 48

In the case β = (2, 2), then p̂(β) = β1 = 2. The leading term of the φ(2,2) is x2y2. In
order to do that, we split the set p(A) into two parts:

S(β) = {y ∈ p(A) | β1 = 2 ∈ D(H(y))} = {3, 4}
T (β) = p(A)− S(β) = {1, 2}

The sets S(β) and T (β) split A into two discrete parts, that are H(3)∪H(4) and H(1)∪H(2)
whose projection to the second coordinate are in S(β) and T (β) respectively.

51

To kill all points in H(3)∪H(4), we use the product π(2,2) = (y−3)(y−4) whose leading
term is y2. So that we only need to find the polynomial θ(2,2) that vanishes at all points
of H(1) ∪ H(2) and whose leading term is x2. In order to construct θ(2,2), we first find
polynomials in only variable x that vanish at H(1) and H(2) respectively, and furthermore,
their leading terms are also x2. Notice that we can identify H(1) and H(2) as subsets of N
by forgetting the second coordinates. The corresponding polynomials are:

f2,1 = (x− 1)(x− 3) = x2 − 4x+ 3
f2,2 = x2 − [x2 mod (x− 4)] = x2 − 16

In general, the polynomial fp̂(β),ad ∈ k[x1, ..., xd−1], for each β ∈ E(D(A)), must satisfy
the inductive condition (i)-(iii). So that it is reduced by the ideal of k[x1, ..., xd−1] that
interpolates H(ad). In our case, the set H(2) = {(4, 2)} is considered as a subset of N
by forgetting the second coordinate. So that the interpolating ideal of H(2) is a principal
ideal of k[x] that is generated by (x− 4). It is the reason why the polynomial f2,2 must be
reduced modulo (x − 4). Now by using the characteristic polynomials of T (β) = {1, 2}, we
can construct the θ(2,2) from f2,1 and f2,2 as

θ(2,2) = x2 +
y − 2

1− 2
(−4x+ 3)− 16.

y − 1

2− 1
= x2 + (y − 2)(4x− 3)− 16(y − 1)

And then

φ(2,2) = π(2,2).θ(2,2) = (y − 3)(y − 4) [x2 + (y − 2)(4x− 3)− 16(y − 1)] =
= y2x2 + 4y3x− 19y3 − 36y2x+ 155y2 − 7yx2 + 104yx− 382y + 12x2 − 96x+ 264.

The case β = (3, 0) is completely the same to the previous case. We have p̂(β) = β1 = 3.
So that

S(β) = ∅
T (β) = {1, 2, 3, 4}

And then π(0,3) = 1. To determine θ(3,0), we first find the polynomials in only variable x
whose leading terms are x3, and they vanish at H(1), H(2), H(3), H(4) respectively. They
are

f3,1 = x3 − [x3 mod (x− 1)(x− 3)] = x3 − 13x+ 12
f3,2 = x3 − [x3 mod (x− 4)] = x3 − 64
f3,3 = (x− 1)(x− 2)(x− 4) = x3 − 7x2 + 12x− 8
f3,4 = (x− 2)(x− 4)(x− 5) = x3 − 11x2 + 38x− 40

Next the character polynomials of T (β) = {1, 2, 3, 4} can be used to determine θ(3,0) as

θ(3,0) = x3 + (y−2)(y−3)(y−4)
(1−2)(1−3)(1−4)

(−13x+ 12) + (y−1)(y−3)(y−4)
(2−1)(2−3)(2−4)

(−64)+

+ (y−1)(y−2)(y−4)
(3−1)(3−2)(3−4)

(−7x2 + 12x− 8) + (y−1)(y−2)(y−3)
(4−1)(4−2)(4−3)

(−11x2 + 38x− 40) =

= 440 + 286y2 + 5
2
y3x− 31

2
y2x+ 42yx− 27

2
y2x2+

+ 173
6
yx2 + 5

3
y3x2 − 42x− 2032

3
y + x3 − 17x2 − 110

3
y3.

And then φ(3,0) = π(3,0).θ(3,0) = θ(3,0) completes the minimal Gröbner basis {φ(0,4), φ(1,3), φ(2,2), φ(3,0)}
of I(A).

Next we will show how the reduced Gröbner basis of a can be constructed inductively
by using the minimal Gröbner basis {φβ | β ∈ E(D(A))}. Of course, one can reduce the

52

basis {φβ | β ∈ E(D(A))} by using the Multivariate Division Algorithm as in the proof
of theorem 13. However, Multivariate Division Algorithm takes a very bad complexity in
general. Without using the Multivariate Division Algorithm, the algorithm we will present
here can be used to compute for any α ∈ Nd − D(A) a polynomial gα ∈ k[x1, ..., xd] such
that:

(i) lt(gα) = Xα.

(ii) gα is reduced modulo a, i.e. the exponents of non-leading terms of gα lie in D(A).

Before giving the main algorithm in this section, we recall the example 12.

Example 13. Let the interpolation set A ⊂ Nd as in the example 12. Recall the minimal
Gröbner basis {φ(0,4), φ(1,3), φ(2,2), φ(3,0)} of the interpolating ideal, where

φ(0,4) = y4 − 10y3 + 35y2 − 50y + 24
φ(1,3) = y3x− 4y3 − 8y2x+ 32y2 + 19yx− 76y − 12x+ 48
φ(2,2) = y2x2 + 4y3x− 19y3 − 36y2x+ 155y2 − 7yx2 + 104yx− 382y + 12x2 − 96x+ 264
φ(3,0) = 440 + 286y2 + 5

2
y3x− 31

2
y2x+ 42yx− 27

2
y2x2 + 173

6
yx2 + 5

3
y3x2 − 42x−

− 2032
3
y + x3 − 17x2 − 110

3
y3

Our aim is to construct the reduced Gröbner basis G = {gα |α ∈ E(D(A))}.

Let us see the non-leading terms of the polynomials φ(0,4), φ(1,3), φ(2,2), φ(3,0). Their expo-
nents lie in the rectangle Q := {0, 1, 2, 3}×{0, 1, 2} which is the smallest rectangle containing
D(A). So that, we must find for any α ∈ Q−D(A) the reduced polynomial gα whose leading
term is Xα. And then they can be used to kill all non-leading terms of φβ, β ∈ E(D(A))
whose exponents do not lie in D(A). It can be done as follow:

Step 1: The exponents of all non-leading terms of φ(0,4), φ(1,3) are in D(A). So that
φ(0,4), φ(1,3) are reduced. We set

g(0,4) := φ(0,4)

g(1,3) := φ(1,3)

Step 2: For α = (2, 2), the polynomials φ(2,2) has a non-leading term 4xy3 whose
exponent does not lie in D(A). It can be reduced by setting

g(2,2) := φ(2,2) − 4φ(1,3) =
= y2x2 − 3y3 − 4y2x+ 27y2 − 7yx2 + 28yx− 78y + 12x2 − 48x+ 72

Step 3: For α = (2, 3), consider the polynomial

yg(2,2) = y3x2 − 3y4 − 4y3x+ 27y3 − 7y2x2 + 28y2x− 78y2 + 12yx2 − 48yx+ 72y

The leading term of yg(2,2) is x2y3, but it is not reduced. Because the exponents of
non-leading terms −7x2y2,−4y3x,−3y4 are not in D(A). One can kill them by setting

g(2,3) = yg(2,2) + 7g(2,2) + 4g(1,3) + 3g(0,4) =
= y3x2 − 40y3 − 32y2x+ 344y2 − 37yx2 + 224yx− 928y + 84x2 − 384x+ 768

53

Step 4: For α = (3, 0), to reduce φ(0,3), we set

g(3,0) = φ(3,0) − 5
2
g(1,3) + 27

2
g(2,2) − 5

3
g(2,3) =

= 12− 17
6
y2 + 23

6
y2x− 5

6
yx− 4yx2 − 20x+ 19

3
y + x3 + 5x2 − 1

2
y3.

Finally the polynomials g(0,4), g(1,3), g(2,2), g(3,0) indeed forms the reduced Gröbner basis
for the interpolating ideal a = I(A).

Theorem 19. Let A ⊂ Nd as before. For any α ∈ Nd−D(A), there exist a unique polynomial
gα ∈ k[x1, ..., xd] such that:

(i) lt(gα) = α.

(ii) gα kills all points of A.

(iii) The exponents of all non-leading terms of gα lie in D(A).

Proof: The uniqueness of gα comes from the unique linear representation of Xα via
the k-basis D(A) of the quotient k[x1, ..., xd]/a. The existence of gα can be implied directly
from the dividing Xα by the reduced Gröbner basis. But it is not useful for our aim. Here,
the existence can be proved constructively, so that it can be formulated into an efficient
algorithm.

We construct gα by induction on α ∈ Nd−D(A), and using the available minimal Gröbner
basis {φβ | β ∈ E(D(A))} that is presented in the previous pages.

If α is the smallest element of Nd−D(A), then it is also the smallest element of E(D(A)).
So that the polynomial φα is available. Setting gα := φα. Then gα clearly satisfies (i)-
(iii). Now let any α ∈ Nd − D(A) that is not the smallest element. We assume for any
β ∈ Nd −D(A), β < α, the reduced polynomial gβ that satisfies the hypothesis is available.
Two cases can arise: either α ∈ E(D(A)) or α /∈ E(D(A)).

If α ∈ E(D(A)), then gα can be obtained from the available polynomial φα by killing all
non-leading terms of φα whose exponents do not belong to D(A), namely

gα := φα −
∑

γ∈Ext(φα), γ /∈D(A)

cγgγ

where cγ is the coefficient of Xγ in φα. Clearly gα satisfies the hypothesis.

In the case α /∈ E(D(A)), there exists an i = 1, ..., d such that α−ei ∈ Nd−D(A), where
ei = (0, ..., 0, 1, 0, ..., 0) is the unit vector of Nd with the value 1 at the i-th coordinate. By
the inductive assumption, there exists a polynomial gα−ei ∈ k[x1, ..., xd] satisfying (i)-(iii),
namely

gα−ei = Xα−ei +
∑

γ∈D(A)

cγX
γ

54

where cγ ∈ k. Notice that the exponents of all non-leading terms of gα−ei must be of course
smaller than α− ei. So that the only coefficients cγ with γ < α− ei are non-zero. The gα−ei
can be rewriting as:

gα−ei = Xα−ei +
∑

γ∈D(A), γ<α−ei

cγX
γ

Then
xigα−ei = Xα +

∑
γ∈D(A), γ<α−ei

cγX
γ+ei

The exponent of leading term of xigα−ei is exactly Xα. But maybe there are some exponents
of its non-leading terms that do not lie in D(A). All these exponents are in the set:

Γ := {γ + ei | γ is the exponent of a non-leading term of gα−ei and γ + ei /∈ D(A)}

For every γ + ei ∈ Γ, we have γ + ei < (α− ei) + ei = α. So that the inductive assumption
also holds for every elements of Γ. Now setting:

gα := xigα−ei −
∑
γ∈Γ

cγgγ

where cγ is the coefficient of Xγ in gα−ei . Clearly gα satisfies (i)-(iii).
Hence, the theorem is proved. �

Thanks to the proof of theorem 19, an algorithm for finding the reduced the Gröbner
basis for interpolating ideal is progressively clear. The only one more to thing is that how
large area of Nd we should do. In fact, in the proof, we assume for each α ∈ Nd − D(A)
the hypothesis holds for all β ∈ Nd −D(A) such that β < α. But the number of such β is
infinite. And we clearly do not need to compute gβ for all of such β. Our aim is only to
compute the reduced Gröbner basis inductively and by using the φβ, β ∈ E(D(A)) whose
exponents of the non-leading terms are lie in the box:

Q :=
d∏
i=1

{0, 1, ..., |pi(A)|+ 1} ⊂ Nd

All polynomials that appear in the proof of theorem 19 have the exponents of their non-
leading terms in Γ. Clearly Γ ⊆ Q. Hence, the box Q is large enough for us.

Putting together all things, we obtain the main algorithm of this section in the next page.

Theorem 20. Algorithm 10 compute correctly the reduced Gröbner basis G for the interpo-
lating ideal a = I(A).

55

Algorithm 10 Find the reduced Gröbner with respect to <lex

Require: The interpolating set A ⊂ Nd.
Ensure: The reduced Gröbner basis G of interpolating ideal.
1: Using algorithm 9 to compute D(A) . Preparation step:
2: Compute E(D(A)).
3: Dim := d
4: p := max

1≤i≤d
|pi(A)|.

5: Q :=
d∏
i=1

{0, 1, ..., |pi(A)|+ 1} ⊂ Nd.

6: Data := ∅.
7: G := ∅.
8: if Dim = 1 then . Univariate case:
9: g|A| :=

∏
a∈A (x1 − a).

10: Data := Data ∪ {g|A|}.
11: G := G ∪ {g|A|}.
12: for β = |A|+ 1→ p do

13: gβ := x1gβ−1 − c|A|−1g|A| where c|A|−1 is the coefficient of x
|A|−1
1 in g|A|.

14: Data := Data ∪ {gβ}.
15: end for
16: Return G.
17: end if
18: if Dim > 1 then . Induction step:
19: Compute pd(A).
20: for all ad ∈ pd(A) do
21: Compute H(ad) := p−1

d (A) ∩ A.
22: Using algorithm 9 to compute D(H(ad)).
23: Dim := Dim − 1.
24: Q(ad) := Q ∩ p−1

d (ad).
25: Call the algorithm recursively to compute

Pad := {gγ,ad | γ ∈ Q(ad)−D(H(ad))}

26: Data := Data ∪ Pad .
27: end for
28: end if
29: for all β ∈ E(D(A)) do . Compute φβ, β ∈ E(D(A))
30: Compute S(β) := {ad ∈ p(A) | p̂(β) ∈ D(H(ad))}.
31: Compute T (β) := p(A)− S(β).
32: Compute χ(T (β), ad) :=

∏
bd∈T (β), bd 6=ad

xd−bd
ad−bd

for all ad ∈ T (β).

33: Compute πβ :=
∏

ad∈S(β)

(xd − ad).

34: Compute θβ := p̂(X)p̂(β) +
∑

ad∈T (β)

χ(T (β), ad)(gp̂(β),ad − p̂(X)p̂(β)), where gp̂(β),ad is

available in Data .
35: Compute φβ := πβθβ.
36: end for

56

37: for all α ∈ Q−D(A) do . Reducing φβ, β ∈ E(D(A))
38: if α ∈ E(D(A)) then
39: if α = min<lex E(D(A)) then
40: gα := φα
41: else
42: Compute Γ := {γ ∈ Q−D(A) | γ < α}.
43: Call for round from line 37 recursively to compute gγ for all γ ∈ Γ.
44: gα := φα −

∑
γ∈Γ

cγgγ, where cγ is the coefficient of Xγ in φα.

45: Data := Data ∪ {gα}.
46: end if
47: G := G ∪ {gα}.
48: end if
49: if α /∈ E(D(A)) then
50: Choose an i = 1, ..., d such that α− ei ∈ Q−D(A).
51: Call for round from line 37 recursively to compute gα−ei .
52: Compute Γ := {γ + ei | γ ∈ D(A), γ + ei /∈ D(A), γ < α− ei}.
53: Call for round from line 37 recursively to compute gγ for all γ ∈ Γ.
54: gα := xigα−ei −

∑
γ∈Γ

cγgγ, where cγ is the coefficient of Xγ in gγ−ei .

55: Data := Data ∪ {gα−ei}.
56: end if
57: end for
58: Return G.

3.1.4 Changing monomial orders in Gröbner bases

The previous subsection presents an algorithm for finding the reduced Gröbner basis of the
interpolating ideal with respect to the lexicographic order. However the lexicographic order
can not control the total degree of the reduced polynomials. So that the result after reducing
some bad interpolating polynomials may not have the smallest total degree as requested for
the Interpolation Problem. In 1993, J.C.Faugere, P.Gianni, D.Lazard and T.Mora presented
in [8] an efficient algorithm for changing Gröbner basis of zero dimensional ideal from any
given monomial order to any other one. So that one can determine the interpolating ideal
in the graded order from the lexicographic one. And then it can be used to compute the
interpolating polynomial with the smallest possible total degree.

As before, we consider the set A ⊂ Nd and call A the set of interpolation points, and let
a ⊆ k[x1, ..., xd] its interpolating ideal. We assume that there are two different monomial or-
ders in k[x1, ..., xd], denoted by < and <new. We also assume that the reduced Gröbner basis
G, the associated lower set D(A), and the limit set E(D(A)) with respect to the monomial
order < are already known. Our aim is to find the reduced Gröbner basis Gnew of ideal a
with respect to the new monomial order <new.

Before describing how the algorithm works, we need a following notation.

57

Definition 9. Let D be a lower set of Nd, we denote

M(D) := {xim |m ∈ D, 1 ≤ i ≤ d, such that xim /∈ D}

and call it the bordering set of D.

Figure 3.8: The set of solid points is a bordering set.

Now we define sequences {Dn}n, {En}n, {Gn}n, {Mn}n inductively, that will lead us to
(respectively) the associated lower set Dnew(A), the limit set E(Dnew(A)), the reduced
Gröbner basis Gnew, and the bordering set M(Dnew(A)) with respect to the new mono-
mial order <new, as follow:

For n = 0, we set D0 = {1}, E0 = ∅, G0 = ∅,M0 = ∅.

Assume we have known {Dn}n, {En}n, {Gn}n, {Mn}n for some n ≥ 0. Look at the
bordering set of Dn,

M(Dn) = {xim |m ∈ Dn, 1 ≤ i ≤ d, such that xim /∈ Dn}

If M(Dn) = Mn, then we stop the process with {Dn}n, {En}n, {Gn}n, {Mn}n. In the next
lemma, we will show that it is a sufficient condition for having the equality Dn = Dnew.

Otherwise, let m be the smallest element of M(Dn)−Mn with respect to the new mono-
mial order <new. Denote m the remainder of dividing m by G. Three cases can arise:

Case 1: If m is independent with the elements of Dn, then m has to be inserted to Dn, i.e.

Dn+1 := Dn ∪ {m}
En+1 := En, Gn+1 := Gn,Mn+1 := Mn

Case 2: If m is a linear combination of elements in Dn and m is a strictly multiple of an element
in En, then m has to be inserted to Mn, i.e.

Dn+1 := Dn, En+1 := En, Gn+1 := Gn

Mn+1 := Mn ∪ {m}

58

Case 3: If m is not in the case 1 and 2, i.e. m is not a strictly multiple of any elements in En,
and m a linear combination of elements in Dn, such as

m =
∑
a∈Dn

λaa, λa ∈ k

then we set
En+1 := En ∪ {m}, Gn+1 := Gn ∪ {m−

∑
a∈Dn λaa}

Dn+1 := Dn,Mn+1 := Mn

Lemma 9. (i) Every Dn is contained in Dnew(A), the associated set of A with respect to
<new. So that the sequences {Dn}n, {En}n, {Gn}n, {Mn}n have only finite elements.
In the other words, the construction will stop after finite steps.

(ii) Assume the construction stops at step N , then GN is the reduced Gröbner for a with
respect to <new, DN the associated lower set of A, EN the limit set of Dnew(A), and
MN the bordering set of Dnew(A).

Proof: We will prove the inclusion Dn ⊆ Dnew(A) by induction on n. Clearly D0 =
{1} ⊆ Dnew(A). To pass from n to n+ 1 we assume Dn ⊆ Dnew(A) and see what happen in
the next step.

Recall the bordering set of Dn:

M(Dn) = {xim |m ∈ Dn, 1 ≤ i ≤ d, such that xim /∈ Dn}

If M(Dn) = Mn, then there is nothing to do. Otherwise, let m = min<new(M(Dn) −Mn).
Since Dn ⊆ Dnew(A), we have

M(Dn) ⊆ Dnew(A) ∪M(Dnew(A))

So that m ∈ Dnew(A) ∪M(Dnew(A)).

If m ∈ Dnew(A), then Dn ∪ {m} ⊆ Dnew(A). So that m and the elements of Dn are
linear independent in k[x1, ..., xd]/a. The linear independence does not depend on the way
to choose k-basis for k[x1, ..., xd]/a. So that by reducing modulo the Gröbner basis G, m
is independent with the elements of Dn. We are in the case 1 of the construction, so that
Dn+1 = Dn ∪ {m} ⊆ Dnew(A)

Otherwise, if m ∈ M(Dnew(A)), then m is a linear combination of elements in Dnew(A)
that are smaller than m with respect to the order <new. On the other words, m is a linear
combination of elements of Dn since the minimality of m. Thus it leads us to the case 2 or
3 in which the set Dn does not change.

Finally, we always have Dn ⊆ Dnew(A). Hence the construction stops after finite steps.

Assume the construction stop at the step N . Then MN = M(DN) and DN = Dnew(A).
So that EN is the limits set of Dnew(A), and GN is a minimal Gröbner basis for a with
respect to <new. On the other hand, all the non-leading terms of elements in GN are in

59

Dnew(A), so that they do not divide any elements in EN . Hence, GN is exactly the reduced
Gröbner basis for a with respect to the new monomial order <new. �

The lemma 9 asserts that the construction of {Dn}n, {En}n, {Gn}n, {Mn}n certainly lead
us to the reduced Gröbner basis with the new monomial order<new. To become an algorithm,
we must solve efficiently the following problems:

Problem 6. Compute the m = m mod G where m is defined on each step.

In fact we can use directly the Multivariate Division Algorithm. But there is an extremely
better way by using linear algebra that we will describe below.

Problem 7. Check the linearly independence of m with the elements of Dn, and find a linear
combination if the answer is no.

In order to do that, we will translate everything to the language of coordinates. Fix the
k-basis D(A) of k[x1, ..., xd]/a. For each monomial m ∈ k[x1, ..., xd], the coordinates of m,
that is the image of m in k[x1, ..., xd]/a, can be computed naturally by reduction modulo G.
If the result, for example, is the linear combination m =

∑
a∈D(A) λaa, then the coefficients

(λa)a∈D(A) is the coordinates of m. This can be formulated by the isomorphism of k-linear
spaces:

k[x1, ..., xd]/a→ kD(A), f + a 7→ coefficients of (f mod G)

Now we will give an answer for problem 6. Assume at the step n, we have already known
{Dn}n, {En}n, {Gn}n, {Mn}n and the coordinates of all elements of Dn. Assume also in the
next step, M(Dn) −Mn 6= ∅. Let m be the smallest element of M(Dn) −Mn with respect
to <new. Then m = xim

′ for some i = 1, ..., d and m′ ∈ Dn whose coordinates have already
known, namely (λa)a∈D(A). Then

m = xim′ =
∑

a∈D(A)

λaxia

The final equality requires the coordinates of all elements that are of the form xia for some
i = i, ..., d and a ∈ D(A), i.e. the elements of the set D(A)∪M(D(A)). The next lemma will
presents a fast way to compute all coordinates of elements in D(A)∪M(D(A)). After then,
we have enough to compute the coordinates of m. And finally, problem 7 is just solving a
linear system.

Lemma 10. The coordinates of all elements in D(A) ∪ M(D(A)) can be computed in
O(d.|A|3) operations on k.

Proof: We divide D(A) ∪M(D(A)) into 3 distinct parts, such as:

D(A) ∪M(D(A)) = D(A) ∪ E(D(A)) ∪ (M(D(A))− E(D(A)))

Every element m in D(A) has the coordinates (δma)a∈D(A), where

δma =

{
0 if m 6= b
1 if m = b

60

In the case m ∈ E(D(A)), m is the leading term of an polynomial in G, namely g =
m+

∑
a∈D(A) λaa. Then the coordinates of m is (−λa)a∈D(A).

The difficult case is if m ∈ M(D(A)) − E(D(A)). By induction, we can assume all
elements in M(A) that are smaller than m with respect to < have already computed. So
that m = xim

′ for some i = 1, .., d and m′ ∈ M(D) such that m′ < m and its coordinates
has already known. Assume (m′a)a∈D(A) the coordinates of m′, then

m′ =
∑

a∈D(A)

m′aa

Because of the definition of remainder by division algorithm, we much have
∑

a∈D(A) m
′
aa <

m′. So that the only coefficients in the sum
∑

a∈D(A) m
′
aa whose monomials are smaller than

m′ are non-zero. On the other word, m′a = 0 for all a ∈ D(A), a ≥ m′. So that we can
rewrite:

m′ =
∑

a∈D(A),a<m′

m′aa

And then
m = xim′ =

∑
a∈D(A),a<m′

m′axia =
∑

a∈D(A),xia<m

m′axia

Because the inductive assumption, the coordinates of the xia are available, namely xia =
((xia)b)b∈D(A). Thus the coordinates of m can be computed by

m =
∑

a∈D(A),xia<m

m′a
∑

b∈D(A)

(xia)bb =
∑

b∈D(A)

 ∑
a∈D(A)

m′a

 (xia)bb

i.e.

mb =

 ∑
a∈D(A)

m′a

 (xia)b

Clearly it takes O(|A|2) operations to compute the coordinates of each m ∈ M(D(A)) −
E(D(A)). On the other hand, we always have |M(D(A))| ≤ d|A|. Hence, it takes O(d|A|3)
operations on k to compute coordinates of all elements in D(A) ∪M(D(A)). �

The correctness of the algorithm follows directly from the proof of lemma 10.

Now we have enough data to present the algorithm that compute the reduced Gröbner
basis by changing ordering.

Theorem 21. Algorithm 12 computes the reduced Gröbner basis with respect to the new
monomial order in O(d.|A|3) operations on k.

Proof: The correctness of algorithm follows directly from lemma 9.

The arithmetic cost of algorithm 12 is bounded by the cost of:

61

Algorithm 11 Compute coordinates of all elements in D(A) ∪M(D(A))

Require: The D(A), G.
Ensure: The set ”Data” of coordinates of all elements in D(A) ∪M(D(A)).
1: Data := ∅
2: Delete := D(A) ∪M(D(A))
3: if Delete = ∅ then
4: Return Data. Stop the algorithm.
5: else
6: pick m ∈ Delete .
7: end if
8: if m ∈ D(A) then
9: Data := Data ∪ {(δma)a∈D(A)}

10: end if
11: if m ∈ E(D(A)) then
12: Find a polynomial g ∈ G such that lt(g) = m

g = m+
∑

a∈D(A)

λaa

13: Data := Data ∪ {(λa)a∈D(A)}
14: else
15: Find an xi that divides m.
16: Call the algorithm recursively to compute the coordinates ((m

xi
)a)a∈D(A) of m

xi
and the

coordinates ((xia)b)b∈D(A) of xia ∈ D(A) for all a ∈ D(A), a < m
xi

.
17: Compute mb = (xia)b

∑
a∈D(A),a<m

xi

(m
xi

)

18: Data := Data ∪ {(mb)b∈D(A)}
19: end if
20: Delete := Delete − {m}.
21: Repeat algorithm from line 3.

62

Algorithm 12 Changing ordering

Require: The set of interpolation points A ⊂ Nd; the associated lower set D(A), the reduced
Gröbner base G of I(A) with respect to a given monomial order <; a new monomial order
<new.

Ensure: The reduced Gröbner basis Gnew.
1: Recall algorithm 11 to compute Data .
2: D := {1}
3: E := ∅
4: G := ∅
5: M := ∅
6: Compute M(D) = {xib | 1 ≤ i ≤ d, b ∈ D, xib /∈ D}.
7: if M(D) = M then
8: Return G, and stop the algorithm.
9: else

10: let m = min<new(M(D)−M)
11: if m is a strictly multiple of an element in E then
12: M := M ∪ {m}
13: end if
14: end if
15: Find xi that divides m. . Compute the coordinates of m.
16: Recall the coordinates ((m

xi
)a)a∈D(A) that are available in Data .

17: Recall the coordinates ((xia)b)b∈D(A) of xia, for every a ∈ D(A), that are also available
in Data .

18: Compute mb :=
∑

a∈D(A) (xia)b.(
m
xi

)a.

19: Data := Data ∪ {(mb)b∈D(A)}
20: Solving the linear system ∑

u∈D

(ua)a∈D(A)xu = (mb)b∈D(A) (3.2)

with the variables xu, u ∈ D.
21: if 3.2 has no root then
22: D := D ∪ {m}
23: end if
24: if 3.2 has a root (xu)u∈D = (λu)u∈D then
25: E := E ∪ {m}
26: G := G ∪ {m−

∑
u∈D λuu}

27: end if
28: Repeat algorithm from line 6.

63

(i) Compute the set Data of coordinates of all elements of D(A) ∪M(D(A)), and

(ii) Compute the coordinates of each m ∈M(Dnew(A)), and

(iii) Solving the linear system 3.2 for each m ∈ Dnew(A) ∪ E(Dnew(A)).

Thanks to the lemma 10, the set Data is computed in O(d|A|3) operations on k. Similarly,
computing the coordinates of all m ∈ M(Dnew(A)) takes more O(d|A|3) because it takes
O(|A|2) operations on k to compute the coordinates for each m. In the whole, solving the
systems 3.2 for all m ∈ Dnew(A)∪E(Dnew(A)) is equivalent to computing an inverse matrix
of size |A|× |A| and multiplying an |A|× |A| matrix with |Dnew(A)∪E(Dnew(A))| vectors in
k|A|. Notice that |Dnew(A)∪E(Dnew(A))| ≤ |Dnew(A)|+ |M(Dnew(A))| ≤ (d+1)|A|. So that
the cost of solving the systems 3.2 is O(|A|3) + O((d+ 1)|A|.|A|2) = O(d|A|3). It concludes
the theorem. �

3.2 Solving Polynomial Interpolation by reduction mod-

ulo ideals

In this section we will complete the solution of Multivariate Polynomial Problem by using
the reduction method. Recalling the notion as in problem 5, we known that there is a one-to-
one correspondence between the vectors of scalar values in kN+1 and the equivalence classes
modulo the interpolating ideal in k[x1, ..., xd]. The interpolating ideal can be computed as
in the previous section. Here we will find an initial representation for each equivalent class,
and then reduce them to obtain the best interpolating polynomial in some sense.

3.2.1 Choosing an initial solution

The content of this subsection is solving computationally the following problem:

Problem 8 (The existence of interpolating polynomials). Fix the commutative field k, and
positive integer N, d. Let A = {X0, ..., XN} be the set of finite distinct points in kd. Then
for any scalar values u0, ..., uN ∈ k, there exists a polynomial P ∈ k[x1, ..., xd] satisfying the
interpolation condition:

P (Xi) = ui, ∀i = 0, ..., N

The existence of solution of problem 8 is equivalent to the surjectivity of the evaluation
map:

eva : k[x1, ..., xd]→ kN+1, f 7→ (f(X0), ..., (XN))

So that it can be proved by using the Chinese Remainder Theorem. In fact, the ideals
(X −Xi), i = 0, ..., N , where X := (x1, ..., xd) for shortly, are maximal in k[x1, ..., xd]. Since
the points Xi are distinct, the ideal (X −Xi) are pairly coprime. Then Chinese Remainder
Theorem gives us an isomorphism:

k[x1, ..., xd]/
N⋂
i=0

(X −Xi)→
N∏
i=0

k[x1, ..., xd]/(X −Xi)

f mod
N⋂
i=0

(X −Xi) 7→ (f mod (X −Xi))i

64

where the left hand side is the quotient of k[x1, ..., xd] over the interpolating ideal a := I(A) =
N⋂
i=0

(X −Xi). The vector space in the right hand side is isomorphic to kN+1 via the k-linear

map:
N∏
i=0

k[x1, ..., xd]/(X −Xi)→ kN+1

(f mod (X −Xi))i 7→ (f(Xi))i

Hence the evaluation map eva is certainly surjective.

Unfortunately the Chinese Remainder Theorem does not give us any practical way to
compute an inverse image for each vector of scalar values in kN+1. However by reducing the
problem into the univariate case, one can compute the inverse image in O(dN2) operations
on k. It is the content of the following theorem.

Theorem 22. For each (u0, ..., uN) ∈ kN+1, one can compute a polynomial P ∈ k[x1, ..., xd]
satisfying P (Xi) = ui, ∀i = 0, ..., N in O(dN2) operations on k.

Proof : The idea is reducing the problem into the univariate case. Precisely, we will find
the polynomial P in the form

P = f(a1x1 + ...+ adxd)

where

(i) f is an univariate polynomial, and

(ii) a1, ..., ad ∈ k will be found such that the function y = a1x1 + ...+adxd gets the distinct
values at all points in A, and

(iii) Only two of a1, ..., ad are different from zero.

We need (ii) because of the condition to apply the fast interpolation in univariate case. And
(iii) is to easy computing the standard form of P whenever f, a1, ..., ad available.

In order to do that, we first compute all differences B := {Xi−Xj | i 6= j, i, j = 0, ..., N}.
The cardinality of B is at most 1

2
N(N + 1), so that it takes O(dN2) operations on k. Next

we choose randomly a vector α = (α1, ..., αd) ∈ kd that satisfies (iii) and such that

αβ :=
d∑
l=1

αlβl 6= 0 ∀β = (β1, ..., βd) ∈ B

The existence of such α is clear if the cardinality of k is infinity or much larger than N .
Otherwise, if the field k is finite and the number N is large enough then the such α maybe
does not exist. To measure how large k is enough, we will compare the cardinality of B and
the number of α ∈ kd that holds (ii)-(iii). It requires the inequality:

1

2
d(d− 1)|k|(|k| − 1) >

1

2
N(N + 1)

65

that is equivalent to

|k| > 1

2
+

2N + 1

2
√
d(d− 1)

(3.3)

Since
1

2
+

2N + 1

2
√
d(d− 1)

<
N + d

2

d− 1

we can replace the condition (3.3) by a simpler one

|k| >
N + d

2

d− 1
(3.4)

If the condition (3.4) holds then an α that holds (ii)-(iii) always exists. Otherwise, if

(3.4) does not hold, we can replace the field k by its extension of degree at least log|k|
N+ d

2

d−1
.

For simple reason, we can assume in our thesis that the condition (3.4) is satisfied.

Once such α is found, we denote y = a1x1 + ...+adxd, and compute its values at all points
of A, namely yi = a1x1i + ... + adxdi. It takes O(dN) more operations on k. Because of the
condition of α, all such yi are distinct. Thus we can use the Fast Interpolation Algorithm to
determine a polynomials f ∈ k[y] satisfying f(yi) = ui, ∀i = 0, ..., N . It takes O(N logN)
more operations on k. Finally, the polynomial P := f(a1x1 + ... + adxd) ∈ k[x1, ..., xd] is
what we need. It can be determined in

O(dN2) +O(dN) +O(N logN) = O(dN2)

operations on k. �

Once α = (α1, ..., αd) whose only two of coordinates i-th and j-th are non-zero is found,
then for every r ∈ k−{0} the vector r.α also holds (ii)-(iii). So that we can replace α by 1

αi
α.

Thus factoring P in to the standard form is equivalent to factoring the powers (xi +
αj
αi
xj)

l

for all l = 1, ..., N , hence takes O(N2) more operations on k. Combining all these things, we
get the following algorithm:

66

Algorithm 13 Choose an initial solution

Require: X0, ..., XN ∈ kd and u0, ..., uN ∈ k, such that the inequality (3.4) is satisfied.
Ensure: P ∈ k[x1, ..., xd] such that P (Xi) = ui ∀i = 0, ..., N .
1: Compute the set B := {Xi −Xj | i 6= j}.
2: Choose an α := (a1, ..., ad) ∈ kd that holds (iii) such that:

α.β :=
d∑
l=1

αlβl 6= 0 ∀β = (β1, ..., βd) ∈ B

3: Pick an i such that αi 6= 0, and set α := 1
αi
.α.

4: Compute yi := α1x1i + ...+ αdxdi for all i = 0, ..., N .
5: Using algorithm 4 to determine polynomial f ∈ k[y] such that f(yi) = ui for all i =

0, ..., N .
6: Factor f(α1x1 + ...+ αdxd), and return by P .

3.2.2 Choosing the best solution

The aim of this subsection is to putting together all things in chapter 3 to give an algorithm
for solving the Multivariate Polynomial Interpolation problem in general case. All necessary
material for finding the smallest interpolating polynomial is available in the previous sections.
Before presenting the algorithm, we recall the main problem.

Problem 9 (Multivariate Polynomial Interpolation). Fix the commutative field k, and pos-
itive integer N, d. Let N + 1 distinct interpolation points X0, ..., XN ∈ kd. Find for each
vector of scalar values (u0, ..., uN) ∈ kN+1 a polynomial P ∈ k[x1, ..., xd] with the smallest
possible degree that satisfies the interpolation conditions:

P (Xi) = ui, ∀i = 0, ..., N (3.5)

As mentioned before, any two solutions for the same vector of scalar value u = (u0, ..., uN) ∈
kN+1 agree in the same coset of interpolating ideal a = V({X0, ..., XN}) in k[x1, ..., xd].
Hence the problem of finding the interpolating polynomial with the smallest possible degree
is equivalent to finding the least representer for this equivalence class. It is the reason why
reduction modulo ideals is the key of our method.

Algorithm 14 Finding the best solution

Require: X0, ..., XN ∈ kd and u0, ..., uN ∈ k.
Ensure: P ∈ k[x1, ..., xd] with smallest possible degree such that P (Xi) = ui ∀i = 0, ..., N .
1: Using algorithm 10 to compute the reduced Gröbner basis for interpolating ideal a :=

V({X0, ..., XN}) with respect to <lex.
2: Using algorithm 12 to compute the reduced Gröbner basis G of a with respect to <grlex

by changing ordering.
3: Using algorithm 13 to compute an initial interpolating polynomial P .
4: Using algorithm 6 to reduce P by G, rename by P .
5: Return P .

67

3.3 Other approaches

In this section, we will give a short summary on the method we have used in this thesis
within other known methods.

The algorithm for finding the reduced Gröbner basis for zero-dimensional ideal in k[x1, ..., xd]
is the core of the algorithm for solving Multivariate Polynomial Interpolation. There have
been several papers referring to this issue. B. Buchberger and M. Möller presented the first
algorithm for finding the reduced Gröbner basis of zero-dimensional ideals in EUROCAM
1982 [11]. Their algorithm is based on Gauss elimination on a generalized Vandemonde
matrix and runs in the cubic time in the number of interpolation points and variables. It
is improved significantly and extended into the projective case thanks to the work of M. G.
Marinari, H.M. Möller and T. Mora in 1993 [12] and J. Abbott, A. Bigatti, M. Kreuzer and
L. Robbiano in 2000 [13]. An other method which is generalized naturally from Newton’s
interpolation for univariate polynomials is proposed by J. Farr and S.Gao in 2006 [14]. The
algorithmic cost of their algorithm is exponent in term of the number of variables. However
the algorithm which we refer for the thesis is given by M. Lederer in 2008 [6]. A more com-
pleted version was written in the first chapter of his Habilition thesis in 2012 [7]. Without
solving any linear system but by induction over the dimension of affine space, his method
describes geometrically the set of all leading terms of polynomials in a zero-dimensional ideal.

In the algorithm 14, which is our main algorithm, the most expensive step is reducing
the initial solution by the reduced Gröbner basis with respect to <grlex of the interpolating
ideal. It is not hard to solve that the reducing step takes O(Nd+1) operations on k. So
that finding a more efficient polynomial reduction is necessary to improve our algorithm. It
remains an open problem.

There are several available methods that does not use polynomial reduction. One of them
is proposed by P. J. Olver in 2006 [5]. His method is a generation of Vandemonde matrix in
multidimensional case whose entries are in the certain block forms instead of scalar values.
In order to do that, he develop a multivariate divided difference calculus based on the theory
of non-commutative quasi-determinants. As the same in the univariate case, he presented
an explicit block LU decomposition of multidimensional Vandemonde matrices for comput-
ing the multivariate interpolation coefficients, and hence established an analog of Newton’s
fundamental interpolation formula in several variables. His method has a strong connection
with the theory of non-commutative symmetric functions.

An other but equivalent method for solving Multivariate Interpolation Problem is come
from an improvement of Buchberger-Müller algorithm that is proposed by J. Abbott, A. Bi-
gatti, M. Kreuzer and L. Robbiano in 2000 [13]. Based on Gauss elimination of Vandemonde
matrix, they added into the origin Buchberger-Müller algorithm a new step for computing
all separated polynomials. And then the interpolation polynomial is just a certain linear
combination of the separated polynomials, so that can be computed efficiently.

68

Bibliography

[1] Joachim von zur Gathen, Jürgen Gerhard, Modern Computer Algebra, Cambridge Uni-
versity Press, July 3, 2003.

[2] D. Cox - J. Little - D. OShea, Ideals, varieties and algorithms: An introduction to com-
putational algebraic geometry and commutative algebra, Springer-Verlag, second edition,
1997.

[3] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Springer-
Verlag, 1995.

[4] M. Gasca, T. Sauer, Polynomial interpolation in several variables, Advances in Compu-
tational Mathematics 12 (2000), 377-410.

[5] P. J. Olver, On Multivariate Interpolation, Studies in Applied Mathematics, 116 (2006),
201-240.

[6] M. Lederer, The vanishing ideal of a finite set of closed points in affine space, J. Pure
Appl. Algebra 212 (2008), 1116-1133.

[7] M. Lederer, Connect Four theory for Hilbert schemes of points, Habilition thesis, Uni-
versity of Bielefeld, Germany, 2012.

[8] J.C. Faugere, P. Gianni, D. Lazard and T. Mora, Efficient Computation of Zero-
dimensional Gröbner bases by Change of Ordering, J. Symbolic Computation 16 (1993),
329-344.

[9] W. Borchardt, Über eine Interpolationsformel für eine Art symmetrischer Funktionen
und deren Anwendung, Abh. d. Preu. Akad. d. Wiss. (1860), 1-20.

[10] L. Kronecker,Über einige Interpolationsformeln für ganze Funktionen mehrerer Vari-
abeln, Lecture at the academy of sciences, December 21, 1865. In L. Kroneckers Werke,
volume I, H. Hensel edit., 133141. Teubner 1895, reprinted by Chelsea Publishing Com-
pany 1968.

[11] B. Buchberger and H. M. Möller, The construction of multivariate polynomials with pre-
assigned zeros, Computer algebra, EUROCAM ’82, pp. 24-31, Lecture Notes in Comput.
Sci., vol. 144, Springer, Berlin-New York, 1982.

[12] M. G. Marinari, H.M. Möller and T. Mora, Gröbner bases of ideals defined by functionals
with an application to ideals of projective points, Appl. Algebra Engrg. Comm. Comput.
4 (1993), 103-145.

69

[13] J. Abbott, A. Bigatti, M. Kreuzer and L. Robbiano, Computing ideals of points, J.
Symbolic Comput. 30 (2000), 341-356.

[14] J. Farr and S.Gao, Computing Gröbner bases for vanishing ideals of finite set of points,
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in
Computer Science, Volume 3857 (2006), 118-127.

70

	Polynomial Interpolation Problems
	Univariate case
	Lagrange Interpolating Polynomials
	Fast Interpolation

	Multivariate case
	Introduction
	The Cartesian product case - Grids

	Reduction modulo ideals in several variables
	Monomial orders
	Multivariate Division Algorithm
	Gröbner bases
	Gröbner bases
	Buchberger's Algorithm
	Reduced bases and computer calculation

	Some Applications
	Solving Polynomial equations
	Implicitization Problem
	Finding the projective closure of an affine variety

	Using reduction modulo ideals to solve multivariate interpolation problems
	Interpolating ideals
	Lower sets
	The Gröbner basis of interpolating ideal with respect to <lex
	Constructing the reduced Gröbner basis with respect to <lex
	Changing monomial orders in Gröbner bases

	Solving Polynomial Interpolation by reduction modulo ideals
	Choosing an initial solution
	Choosing the best solution

	Other approaches

