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Preview

In Introduction we will define a few basic things, fix a few notations and
introduce the problem we want to study.

In Chapter 2 we will define and discuss Some Special Graphs. We will
also prove an interesting original result in Section 2.4 of that chapter.

In Chapter 3 we speak about Planar Ocliques and oclique numbers. We
discuss some existing results and conjectures about them. We also make some
conjectures and ask some relevant questions.

In Chapter 4 we discuss about Oriented Chromatic Number Of Ori-
ented Planar Graphs and reprove some known results about upper and lower
bounds of χ(P). Also we construct a new example of a graph with oriented
chromatic number at least sixteen in Section 4.2. To construct this example,
we prove an original result in this section. Then using this example and some
known results that we discuss in the same chapter, we construct a new example
of an oriented planar graph with oriented chromatic number at least seventeen.

In Conclusion we put together what we have done in this master thesis.
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Chapter 1

Introduction

We kick-off with a popular problem as motivation.
The Konigsberg Bridge Problem: In Perussia on the river Pregel there

was the city of Konigsberg. The city was made up of two islands and some
lands on each of the river banks. These four pieces of lands were separated by
the river and connected by seven bridges (shown in the diagram below). People
wondered if one can start from some point of the city and use every bridge
exactly once and come back to the point they started from.

X

Y

Z

1

2

3

4

5

6

7W

In the diagram we denote the lands by X,Y,Z,W and the bridges (green) by
1,2,3,4,5,6,7.

W

Y

X

Z

Solution
Then the problem was reduced and given by the diagram above where the dots

7



8 CHAPTER 1. INTRODUCTION

(vertices) represent the lands and lines (edges) connecting the dots represent
the bridges.

From this diagram we can argue that whenever we enter and leave one piece
of land, we use two bridges connected to it. We can also pair the first and the
last bridge that we use to leave and enter the piece of land we start from. So to
start from any point and travel on each bridge exactly once and come back to
the same point, we must have an even number of bridges connected to each of
the piece of lands. But we do not have that. So the task cannot be done.

�

This problem, originally modeled (and solved) in the language of graph the-
ory by Euler in 1736, is often referred as the beginning of graph theory. Many
problems from different areas of studies, as diverse as computer science, coding
theory, study of atoms, genetics, chemistry, physics, biology, sociology, architec-
ture etc., can be simplified, studied and solved using graph theory. So we can
regard graph theory like a helping tool for other studies.

For me, graph theory is a huge collection of puzzles and riddles and I would
like to try solving some of them.

1.1 Basic definitions and notations

Definition 1 A graph is an ordered pair G = (V,E) where,
• V is a set of vertices
• E is a set of edges, where an edge is an unordered pair of vertices
The vertices in the unordered pair, defining the edge, are called endpoints

of the edge.
Endpoints are adjacent to each other.
The set of neighbors of a vertex v in a graph G is the set of vertices adjacent

to v in G.
The set of neighbors of a vertex v in a graph is denoted by N(v).
Degree of a vertex v in a graph G is the number of edges having v as their

endpoint.
We denote the degree of v by d(v).
Also,
∆(G) = maxv∈V (G){d(v)} and
δ(G) = minv∈V (G){d(v)}
For a graph G we denote the vertex set of the graph by V (G) and the edge

set of the graph by E(G).
Order of a graph G is given by, | G |=| V (G) |.

Sometimes we allow E(G) to be a multiset. In this case G is called a multi-
graph. Notice that the graph in the Konigsberg Bridge Problem is a multi-
graph. But here we will only deal with graphs without multiple edges. Though
V (G) can be any set, in this master thesis we will only use finite V (G). Also
there are graphs that have edges with the same endpoints. These kind of edges
are called loops. But in our definition of a graph we do not allow loops. Ba-
sically, the definition we give for a graph is the definition of a simple graph.
We do this because we will not use graphs with multiple edges or loops in this
master thesis.
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Definition 2 A digraph or directed graph is an ordered pair
−→
G = (V,A)

where,

• V is a set of vertices.

• A is a set of arcs, where an arc is an ordered pair of vertices.

For an arc (x, y) where x, y ∈ V we say x is a successor of y and y is a
predecessor of x. x and y are the endpoints of the arc.

Endpoints are adjacent to each other.

The set of neighbors of a vertex v in a graph is the set of vertices adja-
cent to v in the graph, where a successor is an out (or +)-neighbor and a
predecessor is an in (or -)-neighbor.

The set of neighbors of a vertex v in a digraph is denoted by N(v).

The set of out-neighbors of a vertex v in a digraph is denoted by N+(v).

The set of in-neighbors of a vertex v in a digraph is denoted by N−(v).

Degree of a vertex v in a digraph
−→
G is the number of arcs having v as their

endpoint.

We denote the degree of v by d(v).Also d+(v) is the number of vertices which
are successors of v and d−(v) is the number of vertices which are predecessors
of v.

If d+(v) =| V (
−→
G) | −1, then v is a sink.

If d−(v) =| V (
−→
G) | −1, then v is a source.

Also,

∆(
−→
G) = max

v∈V (
−→
G)
{d(v)}

δ(
−→
G) = min

v∈V (
−→
G)
{d(v)}

For a digraph
−→
G we denote the vertex set of the graph by V (

−→
G) and the

arc set of the graph by A(
−→
G).

Order of a digraph
−→
G is given by, |

−→
G |=| V (

−→
G) |

We will sometimes denote an arc (x, y) by x→ y.

We use this notation in a “free way”. For example we may use {x→ y → z →
x} to describe a graph with vertex set {x, y, z} and arc set {(x, y), (y, z), (z, x)}.

For an arc (x, y) we have [x, y] = 1 and [y, x] = −1

If [x, z][y, z] = 1, then we say that x, y agree on z and if [x, z][y, z] = −1,
then we say that x, y disagree on z.

Like we commented after the definition of a graph, here we can make a

similar comment. Sometimes we allow E(
−→
G) to be a multiset. In this case

−→
G is

called a multidigraph. Also sometimes we allow loops (i.e. arcs with the same
endpoints). So we actually defined oriented graphs in the above definition.

We are more interested in simple graphs and oriented graphs. Notice that
an oriented graph is not a graph. But sometimes when there is no chance of
confusion, we ambiguasly use the term “graph” instead of “oriented graph”.

To draw a graph we can draw some points on a plane representing the vertices
of the graph and join the points corresponding to the adjacent vertices with a
line. These lines represent the edges. We can draw a digraph in a similar way by
replacing a the lines by arrows pointing towords the point corresponding to the
successor. This drawing is not unique. This is called a planar embedding of
a graph (digraph). From now on whenever we speak about graphs or digraphs
we can think about some planar embedding of it. In this way it will be easy to
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visualize the graph (digraph). It is good to have the drawing of the graph in
mind while reading the theory (at least for this master thesis).

Definition 3 An underlying graph of a digraph is the graph that we get by
replacing the arcs (ordered pair) of the digraph by edges (unordered pair).

If
−→
G is the digraph we denote the underlying graph of

−→
G by und(

−→
G).

Sometimes, when there is no chance of confusion, we use a simpler notation.

We denote the underlying graph of a digraph
−→
G simply by G. That is, we just

forget the “arrow” over it.

Remark 4 Underlying graph of an oriented graph is a simple graph.

Definition 5 Let G = (V,E) be a graph. A subgraph induced by the vertex
set V ′ ⊆ V of G = (V,E) is the graph G′ = (V ′, E′) where, E′ = {{x, y} ∈ E |
x, y ∈ V ′}.

We call G′ the induced subgraph of G by V ′. We denote it by G[V ′].

Similarly, let
−→
G = (V,A) be a digraph. A subgraph induced by the vertex

set V ′ ⊆ V of
−→
G = (V,A) is the digraph

−→
G′ = (V ′, A′) where, A′ = {(x, y) ∈

A | x, y ∈ V ′}.
We call

−→
G′ the induced subdigraph of

−→
G by V ′. We denote it by

−−−→
G[V ′].

Definition 6 A subgraph H of a graph G is a graph with V (H) ⊆ V (G) and
E(H) ⊆ E(G[V (H)].

A subdigraph
−→
H of a digraph

−→
G is a digraph with V (

−→
H ) ⊆ V (

−→
G) and

A(
−→
H ) ⊆ A(

−−−−−−→
G[V (

−→
H )]).

Notice that induced subgraph (induced subdigraph) is also a subgraph (sub-
digraph). Though here we define subgraph (subdigraph) using the definition of
induced subgraph (induced subdigraph), it can be defined independently.

Definition 7 A planar graph is a simple graph that can be drawn in a plane
in such way that its edges intersect only at their endpoints.

An oriented planar graph is an oriented graph whose underlying graph
is planar.

Definition 8 An outerplanar graph is a planar graph O such that there is
a planar graph P with V (P ) = V (O)∪{v}, v being a vertex adjacent to all the
other vertices.

An oriented outerplanar graph is an oriented graph whose underlying
graph is outerplanar.

1.2 Homomorphisms and bounds

Definition 9 A homomorphism of a graph G to a graph H is a map f from
V (G) to V (H) such that if {a, b} ∈ E(G), then {f(a), f(b)} ∈ E(H).

We write f : G −→ H to show that f is a homomorphism of G to H. Also
we can write G −→ H to say that there exist a homomorphism of G to H.
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A homomorphism f : G −→ H is an isomorphism if f is a bijection from
V (G) to V (H).

Let C be a class of graphs. If for any G ∈ C , G −→ H, we say H is a bound
for C or H bounds C or H is a C-bound. If no subgraph of H bounds C, then
H is a minimal C-bound.

A graph is vertex transitive if for any pair of vertices v, u ∈ V (G) there
is an automorphism f : G −→ G such that f(u) = v.

Similarly, a homomorphism of a digraph
−→
G to a digraph

−→
H is a map f

from V (
−→
G) to V (

−→
H ) such that if (a, b) ∈ A(

−→
G), then (f(a), f(b)) ∈ A(

−→
H ).

We write f :
−→
G −→

−→
H to show that f is a homomorphism of

−→
G to

−→
H . Also

we can write
−→
G −→

−→
H to say that there exist a homomorphism of

−→
G to

−→
H .

A homomorphism f :
−→
G −→

−→
H is an isomorphism if f is a bijection

from V (
−→
G) to V (

−→
H ).

Let
−→
C be a class of digraphs. If for any

−→
G ∈

−→
C ,
−→
G −→

−→
H , we say

−→
H is

a bound for
−→
C or

−→
H bounds

−→
C or

−→
H is a

−→
C -bound. If no subgraph of

−→
H

bounds
−→
C , then

−→
H is a minimal

−→
C -bound.

An anti-homomorphism of a digraph
−→
G to a digraph

−→
H is a map f from

V (
−→
G) to V (

−→
H ) such that if (a, b) ∈ A(

−→
G), then (f(b), f(a)) ∈ A(

−→
H ).

An anti-homomorphism f :
−→
G −→

−→
H is an anti-isomorphism if f is a

bijection from (V (
−→
G) to V (

−→
H ).

An automorphism of a digraph
−→
G is isomorphism to itself.

A digraph is vertex transitive if for any pair of vertices v, u ∈ V (
−→
G) there

is an automorphism f :
−→
G −→

−→
G such that f(u) = v.

A digraph is arc transitive if for any pair of arcs (u, v), (x, y) ∈ A(
−→
G) there

is an automorphism f :
−→
G −→

−→
G such that f(u) = x and f(v) = y .

If f : G −→ H (f :
−→
G −→

−→
H ) and g : H −→ S (g :

−→
H −→

−→
S ), then

g ◦ f : G −→ S (g ◦ f :
−→
G −→

−→
S ).

That is, homomorphism defines a quasi-order on the class of all graphs (di-
graphs).

Definition 10 Core of a graph (digraph) G is a graph H such that ,
• G −→ H.
• H −→ G.
• no subgraph of H has this property.
A graph (digraph) G is a core graph (digraph) if it is a core of itself.

Homomorphism defines a partial order on the class of core graphs (digraphs).
Finding minimal bound for some “nice” class of graphs or digraphs is a very

important and interesting problem. Clearly, the minimal bounds are core graphs
(digraph). Here we will discuss about the minimal bound of the class of oriented
planar graphs. Lets fix a notation P for the class of oriented planar graphs. So,
we will be interested in the minimal P-bound in this master thesis. This
problem is unsolved till now. We will discuss this problem and prove some of
the latest results about it.

Definition 11 A graph H is said to be contained in a graph G if H is isomor-
phic to some subgraph of G.
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A digraph
−→
H is said to be contained in a digraph

−→
G if

−→
H is isomorphic to

some subdigraph of
−→
G .

Here we will define some special kinds of graphs and digraphs which we will
use frequently.

Definition 12 Complete graph on n vertices is a simple graph on n vertices
such that there is an edge between any two vertices.

We denote it by Kn.
A tournament on n vertices is an oriented graph such that its underlying

graph is Kn.

Definition 13 A path of length n is the graph P (n) such that V (P (n)) =
{1, 2, 3, ...., n} and E(P (n)) = {{1, 2}, {2, 3}, {3, 4}, ......{n− 1, n}}

A directed path of length n is the graph
−−−→
P (n) such that V (

−−−→
P (n)) =

{1, 2, 3, ...., n} and A(
−−−→
P (n)) = {(1, 2), (2, 3), (3, 4), ......, (n− 1, n)}

A cycle of length n is the graph C(n) such that V (C(n)) = {1, 2, 3, ...., n}
and E(P (n)) = {{1, 2}, {2, 3}, {3, 4}, ......{n− 1, n}, {n, 1}}

A directed cycle of length n is the graph
−−−→
C(n) such that V (

−−−→
C(n)) =

{1, 2, 3, ...., n} and A(
−−−→
C(n)) = {(1, 2), (2, 3), (3, 4), ......, (n− 1, n), (n, 1)}

We will call a path/directed path/cycle/directed cycle of length n a
n-path/directed path/cycle/directed cycle.

We call a directed 3-cycle a directed triangle.
A tournament on three vertices with a sink (or source) is called a transitive

triangle.

These definitions are up to isomorphism.

Definition 14 A tree is a graph such that there is exactly one simple path
between any two vertices. In other words, any connected cycle free graph is a
tree.

Disjoint union of tree(s) is called forest.
A directed tree (forest) is a digraph whose underlying graph is a tree

(forest).

Now we want to state a famous theorem by Wagner. For that we need to
define a few things.

Definition 15 In a graph G we can remove one edge and identify the endpoints
of that edge to get another graph. This process is called edge contraction.

Definition 16 A graph H obtained (up to isomorphism) by zero or more edge
contractions on a subgraph of a graph G is called a minor of the graph G.

Definition 17 A clique in a graph is a subset of the vertex set of the graph
that induces a complete graph.

If the induced complete graph is Kn then we call the clique an n-clique.
The clique number of a graph G is an integer w(G) such that there is a

w(G)-clique but not a (w(G) + 1)-clique in G.
For a class C of graphs we have w(C) = max{w(G) | G ∈ C}.
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Definition 18 An independent set in a graph is a subset of the vertex set
that induces a subgraph with no edges.

Definition 19 A k-partite graph is a graph whose vertex set can be written
as the disjoint union of k independent sets. These k independent sets are called
parts of the graph. The parts may not be unique.

Definition 20 A complete k-partite graph is a simple k-partite graph with
all the edges between two different parts.

We call a 2-partite graph a bipartite graph.
Moreover, we denote a complete bipartite graph with parts of size r and

s by Kr,s.

Here we state a very important theorem due to Wagner about planar
graphs:

Theorem 21 A graph (finite) is planar if and only if it does not have K5 or
K2,3 as a minor.

Definition 22 For an oriented graph
−→
G we define,

−→
G

2
by,

•V (
−→
G

2
) = V (

−→
G)

•A(
−→
G

2
) = A(

−→
G)∪ {(x, y)|(x, y) and (y, x) /∈ A(

−→
G) , but (x,w) and (w, y) ∈

A(
−→
G) for some w ∈ V (

−→
G)}.

Definition 23 An oclique is a digraph
−→
G such that

−→
G

2
is a tournament.

The oclique number wo(
−→
G) of a digraph

−→
G is w(und(

−→
G

2
)).

For a class C of digraphs we have wo(C) = max{wo(
−→
G) |

−→
G ∈ C}.

Definition 24 Let S be a set with | S |= k. Let G be a graph. A function
f : V (G) −→ S is called a k-coloring of G.

Elements of the set S are called colors.

Definition 25 f is a proper k-coloring of G if,

(i) f is a k-coloring of G.
(ii){x, y} ∈ E(G) implies, f(x) 6= f(y).

If G has a proper k-coloring, then G is k-colorable.
The chromatic number χ(G) ofG is the least k such thatG is k-colorable.
For a class C of graphs we have χ(C) = max{χ(G) | G ∈ C}.

Definition 26 Let S be a set with | S |= k. Let
−→
G be an oriented graph. An

function f : V (
−→
G) −→ S is called an oriented k-coloring of

−→
G .

Elements of the set S are called colors.

Definition 27 f is a proper oriented k-coloring of
−→
G if,
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(i) f is an oriented k-coloring of
−→
G .

(ii)(x, y) ∈ A(
−→
G) implies, f(x) 6= f(y).

(iii) if {(x, y), (u, v)} ⊆ A(
−→
G) and f(y) = f(u), then f(x) 6= f(v).

If
−→
G has a proper oriented k-coloring, then

−→
G is said to be oriented

k-colorable.
The oriented chromatic number χo(

−→
G) of

−→
G is the least k such that

−→
G

is oriented k-colorable.
For a class C of digraphs we have χo(C) = max{χo(

−→
G) |

−→
G ∈ C}.

From now on whenever we speak about coloring in the context of a simple
graph, we will actually be refering to a proper coloring unless otherwise stated.
Also k-coloring of a simple graph will mean proper k-coloring of it unless oth-
erwise stated.

In the context of an oriented graph, coloring/proper coloring/oriented col-
oring or k-coloring/oriented k-coloring will refer to a proper oriented coloring
or proper oriented k-coloring respectively, unless otherwise stated.

The following classic results can be found in the book Graphs and Homo-
morphisms written by Pavol Hell and Jaroslav Nesetril [1] .

Lemma 28 Let f : G −→ H be a homomorphism. Then, w(G) ≤ w(H).

Proof
There is a w(G)-clique in G. The image of this w(G)-clique in H is also a
w(G)-clique. So H has a w(G)-clique. Therefore, w(G) ≤ w(H). �

Lemma 29 If there is a homomorphism f :
−→
G −→

−→
H , then there is a homo-

morphism g : und(
−→
G

2
) −→ und(

−→
H

2
).

Proof

This is clear from the definitions of homomorphism and und(
−→
G

2
) of a oriented

graph
−→
G . �

Lemma 30 Let f :
−→
G −→

−→
H be a homomorphism. Then, wo(

−→
G) ≤ wo(

−→
H ).

Proof

By Lemma 29 we have some homomorphism g : und(
−→
G

2
) −→ und(

−→
H

2
). Now

by Lemma 28 we have wo(
−→
G) = w(und(

−→
G

2
)) ≤ w(und(

−→
H

2
)) = wo(

−→
H ). �

Lemma 31 Let f : G −→ H be a homomorphism. Then, χ(G) ≤ χ(H).

Proof
If c is a proper χ(H)-coloring of H, then c◦f |V (G) gives a proper χ(H)-coloring
of G. �

Lemma 32 Let f :
−→
G −→

−→
H be a homomorphism. Then, χo(

−→
G) ≤ χo(

−→
H ).
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Proof
If c is a proper oriented χo(

−→
H )-coloring of

−→
H , then c ◦ f |

V (
−→
G)

gives a proper

oriented χo(
−→
H )-coloring of

−→
G .

�

Lemma 33 For any graph (digraph)G (
−→
G), w(G) ≤ χ(G) (wo(

−→
G) ≤ χo(

−→
G)).

Proof
A graph G has a w(G)-clique. Any proper coloring of the subgraph induced by
that w(G)-clique will use w(G) colors. And we have the inclusion homomor-
phism from the subgraph to the graph. So by Lemma 28 w(G) ≤ χ(G).

Similarly for the digraph using Lemma 32.
�

Definition 34 The color graph Cc(
−→
G) of an oriented graph

−→
G for a proper

oriented coloring c of
−→
G is given by:

(i)V (Cc(
−→
G)) = {c(x) | x ∈ V (

−→
G)}

(ii)A(Cc(
−→
G)) = {(c(x), c(y)) | (x, y) ∈ A(

−→
G)}

Remark 35 The color graph is also an oriented graph.

In other words, there is a homomorphism from
−→
G to Cc(

−→
G) given by c.

By the remark above we can say that for a class C of oriented graphs, the
minimal C-bound will be on at least χo(C) vertices. So to find the minimal
C-bound, “what is χo(C)?” is a good question to ask.

Also finding wo(C) helps to answer the question. And for any oclique
−→
G is

of course a subgraph of the minimal P-bound.
But how good is the question? Sometimes it is very good, especially if we

know that the minimal C-bound is actually on χo(C) vertices. But unfortunately
this is not always true.

For example, if we take the class of all oriented graphs on n vertices, the
class has oriented chromatic number n, but no graph on n vertices will contain
all the tournaments on n vertices as subgraph.

We are interested in the class P of oriented planar graphs. The question is
a very good question for this class because of the following result by Sopena:

Theorem 36 The minimal P-bound has χo(P) vertices.

Proof
Let χo(P) = k. Suppose the theorem is not true. Then there exists no P-bound

on k vertices. That means, for each oriented graph
−→
U on k vertices there exist

some oriented planar graph
−→
P−→
U

that does not admit homomorphism to
−→
U .

Let {
−→
U1, ....,

−→
Ul} be the set of all oriented graphs on k-vertices.

Let
−→
P = ti=1,2,...,l

−→
P−→
Ui

be the disjoint union of all
−→
P−→
Ui

s.
−→
P is clearly planar and it has a proper oriented χo(P)-coloring c.

Now Cc(
−→
P ) =

−→
Ui for some i ∈ {1, 2, ...., l} is an oriented graph on k vertices

to which
−→
P admits a homomorphism. Now restrict that homomorphism to

−→
P−→
Ui

and get a contradiction.
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�

For the class P of planar graphs, the minimal bound is K4 which itself
belongs to the class P . So χ(P ) = w(P ) = 4. This is a graph theoric formulation
of the famous four color theorem.

Theorem 37 (Four color) Every planar graph is four colorable.

In 1852 this statement was proposed as a conjucture. Then there were a
few false proofs given over a long period of time until finally in 1989 it was
proved by Appel and Haken. The proof was very big and complicated and used
computer programming for the very complex calculations. Till now we do not
have a hand proof for the theorem.

The equivelant question for the class of oriented-planar graphs (P) also seems
to be a very difficult one. We seek for the minimal P-bound. Knowing what
χo(P) and wo(P) is would certainly help in answering the question.



Chapter 2

Some Special Graphs

Here we will define some special oriented graphs and family of oriented graphs.
First we will define a highly symetric family of tournaments called the Paley
tournaments and state some well known facts about it and reprove few properties
of a particular tournament P7 of that family. Then we will define another
highly symmetric family of oriented graphs called Tromp graphs. This family
was introduced by Tromp and then generalized by Albiero and Sopena [6] .
Then we will define another family of oriented graphs called the Zielonka graphs
introduced by Zielonka.

After this we will define property Qn and clasify all oriented graphs on eight
vertices having property Q2.

These will serve as a tool for what we are going to do in the later part of
this master thesis.

2.1 Paley tournaments

Definition 38 Let q = pn such that q ≡ 3(mod 4) for some prime p. We
know there exists a field Fq of order q unique upto isomorphism. The Paley
torunament Pq is given by,
•V (Pq) = {x|x ∈ Fq}
•A(Pq) = {(x, y) | y − x is a non-zero square in Fq}
As -1 is not a square in Fq (for q ≡ 3(mod 4)), either x − y or y − x (but

not both) is a square for all x, y ∈ Fq.
Hence Pq indeed is a tournament.

From now on, for q = p prime, we will assume Fp = Z/pZ without loss of
generality in the definition of Pp. The elements of Z/pZ will be denoted by
{0, 1, 2, ...., p− 1} in the natural way.

It is known (for example you can find the proof in Marshall’s paper [2] ) that
Pq is arc transitive .

Definition 39 An oriented graph
−→
G has property Q1 if it has a directed cycle

as a subgraph.

An oriented graph
−→
G has propertyQn if for every vertex v ∈ V (

−→
G),
−−−−−−→
G[N+(v)]

and
−−−−−−→
G[N−(v)] both has property Qn−1.

17
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This definition was originally given by Marshall [2] . He also proved that
the minimal P-bound has property Q3. So for every vertex v in minimal P-
bound the graph induced by N+(v) and N−(v) both has property Q2. So it
is important to know oriented graphs with property Q2. Hence the following
lemma. This lemma was stated without proof in Marshall’s paper [2] . Here we
give a proof.

Lemma 40 If an oriented graph
−→
H has property Q2, then

−→
H has at least seven

vertices.
Furthermore, P7 is the only oriented graph on seven vertices that has prop-

erty Q2.

Proof
A directed cycle needs at least 3 vertices. So if an oriented graph has property
Q2, then every vertex of the oriented graph should have at least 3 in-neighbors
and 3 out -neighbors.

That means, an oriented graph with property Q2 should have at least 7
vertices and each vertex of the graph should have in-degree and out-degree
exactly equal to 3.

Let
−→
H be an oriented graph on 7 vertices with propertyQ2. We will construct

the graph.

Clearly by what we said before,
−→
H is a tournament.

Without loss of generality consider a vertex 0 of
−→
H . Let

−−−−−−→
H[N+(0)] = {1→

2→ 4→ 1} and
−−−−−−→
H[N−(0)] = {3→ 5→ 6→ 3}.

Now notice that each vertex in N−(0) already has out-degree 2 and each
vertex in N+(0) already has in-degree 2.

So there is a one-one correspondence between A = {3, 5, 6} and B = {1, 2, 4}
such that there is an arc between the corresponding vertices (from the vertex
of A to the vertex of B). All the other arcs are from the B to A.

Without loss of generality assume the arc 3 → 4. This will imply the arcs
1→ 3 and 2→ 3.

Now we have N−(3) = {1, 2, 6}. This should be a directed cycle. This will
force 6→ 1.

Now, the one-one correspondence between A = {3, 5, 6} and B = {1, 2, 4}
implies 5→ 2. Now we can complete the graph.

This is exactly the graph P7. �

Now we will prove two more lemmas stated without proof in Marshall’s paper
[2] .

Lemma 41 For x, y ∈ V (P7), x, y agree exactly on 2 vertices and disagree
exactly on 3 vertices.

Proof
As P7 is arc transitive, it is enough to show for x = 0 and y = 1. Now 0 and 1
agrees on {2, 6} and disagrees on {5, 3, 4}. �

Lemma 42 For any two disjoint directed cycle C,C ′ in P7 we have {V (C), V (C ′)} =
{N+(v), N−(v)}, for some v ∈ V (P7).
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Proof
From proof of Lemma 41 we can say that Nσ(u)∩Nτ (v) 6= Nσ(u) and Nσ(u)∩
Nτ (v) 6= φ for any two distinct u, v ∈ V (P7) and for σ, τ ∈ {+,−}

So, {P7[N+(v)], P7[N−(v)]}v∈V (P7) is a set of 14 distinct directed triangles
in P7.

Now for P7 we have,

#directed triangles = #triangles−#transitive triangles

=

(
7

3

)
− 7×

(
3

2

)
= 35− 21

= 14

So, the only directed triangles are the directed triangles induced by N+(v)
or N−(v) for some v ∈ V (P7)

Now C,C ′ are disjoint directed cycles in P7, then one of them, say C, is a
directed triangle. Thus V (C) = N±(v). Now C ′ ⊆ N∓(v) ∪ {v}. So C ′ cannot
contain v. So C ′ = N∓(v). �

2.2 Tromp graphs

Here we will define another highly symmetric family of oriented graphs called
Tromp graphs. This family was introduced by Tromp and then generalized by
Albiero and Sopena [6] .

Definition 43 Let q = pn such that q ≡ 3(mod 4) for some prime p. The
Tromp graph T2q+2 of order (2q + 2) is given by,

•V (T2q+2) = {(x, i) | x ∈ Fq ∪ {∞} and i ∈ {1,−1}}
•A(T2q+2) = {(x, i)→ (y, j) | y − x is a square in Fq and ij = 1 or x− y is

a square in Fq and ij = −1 for x, y ∈ Fq} ∪ {(x, i)→ (y, j) | x =∞, y ∈ Fq and
ij = 1 or x ∈ Fq, y =∞ and ij = −1}.

Informally, Tromp graph T2q+2 of order (2q + 2) consists of two copies of
Pq, along with two vertices (∞, 1) and (∞,−1) that disagree with each other
completely and (∞, 1) has one of the Pqs as its in-neighbor and the other as
its out-neighbor. To describe the arcs between the two Pqs we first fix an
isomorphism f : N−((∞, 1)) −→ N+((∞, 1)) between the two Pqs. For each
vertex v in N−((∞, 1)) there is no arc between v and f(v), and v and f(v)
disagree with each other completely.

Albiero and Sopena [6] had shown that T2q+2 is vertex transitive.

Here we state a lemma from Marshall’s paper [2] about Pq without proof.

Lemma 44 A vertex set S ⊆ V (T2q+2) is such that T2q+2[S] ∼= Pq if and only
if S = N+(v) or N−(v) for some v ∈ V (T2q+2).
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2.3 Zielonka graphs

Now we will define another family of oriented graphs called the Zielonka graphs
introduced by Zielonka.

Definition 45 Let k be a positive integer. The Zielonka graph Z(k) is given
by,
•V (Z(k)) = ∪i=1,2,...,kSi, where Si = {x = (x1, ..., xk)|xj ∈ {0, 1} for j 6= i

and x(i) = ∗}.
•A(Z(k)) = {x → y | for x ∈ Si, y ∈ Sj such that either x(j) = y(i) and

i < j or x(j) 6= y(i) and i > j}.
Here x(i) refers to the ith coordinate of x.

Note that, the underlying graph of Z(k) is a complete k-partite graph.
Clearly Z(k) has k × 2k−1 vertices.

2.4 Oriented graphs on eight vertices having prop-
erty Q2

To prove that the minimal P-bound has maximum degree at least 16, Marshall
[2] used Lemma 40. To improve the result, it seems that we should know some
informations about oriented graphs on 8 vertices having property Q2.

We would like to classify all graphs on 8 vertices having property Q2. To
this end we first provide examples of such graphs.

Definition 46 A twin of a vertex agrees with it on every other vertices of the
graph.

An anti-twin of a vertex disagrees with it on every other vertices of the
graph.

Definition 47 P7 with a twin 0′ of 0 gives us new graph on 8 vertices. We will
call it P+

7 .

Definition 48 P7 with an antitwin 0′ of 0 gives us a new graph on 8 vertices.
We will call it P−7 .

Notice that both P+
7 and P−7 has property Q2 and also T8 has property Q2.

Now we are going to prove that any graph on 8 vertices having property Q2

must have one of these graphs as subgraph. To this end we first classify all
tournaments on 8 vertices having property Q2. We show below that each such
tournament is obtained from one of these 3 graphs (P+

7 , P−7 and T8) plus some
more arcs. The new arcs will be called blue arcs. This is an original result
proved in this master thesis. This result is proved by Sopena, Naserasr and Sen.

Theorem 49 If G is a tournament on 8 vertics and has property Q2, then G
is isomorphic to one of the following oriented graphs:

G1 : P+
7 plus (0, 0′),

G2 : P−7 plus (0, 0′),
G3 : P−7 plus (0′, 0),
G4 : T8 plus
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((1,−1), (1, 1)), ((2,−1), (2, 1)), ((3,−1), (3, 1)) and ((∞,−1), (∞, 1)),
G5 : T8 plus
((1,−1), (1, 1)), ((2,−1), (2, 1)), ((3,−1), (3, 1)) and ((∞, 1), (∞,−1)).

Before proving the theorem we will prove some lemmas which will help us
to prove the theorem.

Fix G to be a tournament on 8 vertices and have property Q2.
Then each of the vertices of G will have in-degree (out-degree) at least 3.

Remark 50 A semiregular tournament is a tournament on 2n vertices such
that it has n vertices with out-degree n and n vertices with out-degree (n− 1).
Notice that G is semi-regular.

Lemma 51 For any v ∈ V (G), N+(v) and N−(v) contains a directed triangle.

Proof
If not, then one of N+(v) and N−(v) has a directed 4-cycle. But G is a tour-
nament. So there is a directed triangle in the directed 4-cycle. �

Lemma 52 There is a pair {u, v} ⊆ V (G) and a directed triangle T ⊆ G such
that all the three vertices of T agrees with each other on u (and v).

Proof
For each x ∈ V (G) we have N+(v) and N−(v). Call them N1(x) and N2(x)
such that | N1(x) | ≥ | N2(x) |. So | N1 |= 4 and have a directed triangle by
Lemma 51

But N1(x) is a tournament. If N1(x) have exactly one directed triangle, then
it has a source or a sink. Then we are done.

If not, then for any x ∈ V (G), N+(x)∪N−(x) contains three directed trian-
gles. If the lemma is false, then all of these triangles are distinct. So there are
4× 3 + 4× 3 = 24 distinct directed triangles.

G is semi-regular.

#directed triangles = #triangles−#transitive triangles

=

(
8

3

)
− [4×

(
4

2

)
+ 4×

(
3

2

)
],

(we are counting the transitive triangles using sources)

= 56− 36

= 20

This is a contradiction. �

Lemma 53 There is a vertex v in G with a twin or an antitwin u.

Proof
Lemma 52 implies that there exists a directed triangle T and vertices u,v such
that all the three vertices of T agrees with each other on u (and v).

If u, v agree on T , then asume without loos of generality that u sees v and
T in the same way. G has property Q2. So there is another directed triangle
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T ′ which disagree on u with T . Now there must be a directed triangle that
disagree on v with T . This directed triangle cannot use vertex u because other
two vertices are form T ′ and they cannot form a directed triangle with u. So T ′

is the triangle. Hence u, v are twins.

If u, v disagree on T , then either u (and v) and T agree on v (and u) or u
(and v) and T disagree on v (and u).

In the 1st case u and v are antitwin because there must be a directed triangle
that disagree on u (or v) with T and the only option for that is the 3 vertex in
V (G) \ {V (T ), u, v}.

In the 2nd case if u and v are not antitwin, then the following is forced.

Without loss of generality, assume T ⊆ N−(u) and v ∈ N+(u). If u, v are
not antitwin, then either v is a vertex of the directed triangle in N+(u) or u is a
vertex of the directed triangle in N−(v). If v is a vertex of the directed triangle
in N+(u) and let {v → b → a → v} ⊆ N+(u) be the directed triangle. Now
|N+(v)| = 4 already. So we get final vertex c (say) to be such that {c, u, a} is
the directed triangle in N−(v).

If u is a vertex of the directed triangle in N−(v), then we force the same
structure similarly.

Assume T = {1→ 2→ 3→ 1}
Now we have two cases.

case1 | N+(a) |= 3.

Without loss of generality assume a→ 3 .

This implies 1→ a and 2→ a.

Now, N+(1) ⊇ {a, 2, u} where {a, u} ⊆ N−(2) ⇒| N+(1) |= 4 and |
N−(1) |= 3 but {v → 3} ⊆ N−(1) and v → b implies b ∈ N+(1) and c ∈ N−(1).

Now, to complete the directed triangle in N+(1) we have b→ 2.

Now, N−(2) ⊇ {1← v → b} implies c ∈ N−(2).

To complete the directed triangle in N−(2) we have b→ c.

Now, N+(3) ⊇ {1← c→ u} which cannot make a directed triangle implies
b ∈ N+(3).

This completes the graph.
Here 1 is antitwin of a.

case2 | N−(a) |= 3

Without loss of generality assume 3→ a .

This implies a→ 1 and a→ 2.

Now, {3 → u → b} ⊆ N−(a). To complete the directed triangle we need
b→ 3.

Now, {2← v → b} ⊆ N−(3). We cneed one more to get a directed triangle.
This forces c→ 3.

{v → 1 ← a} ⊆ N−(2) implies | N+(2) |= 3 but, N+(2) ⊇ {3 → u} so this
forces b ∈ N+(2) which implies c ∈ N−(2).

To complete the directed triangle in N−(2) we get 1→ c.

{c→ u← 2} ⊆ N+(1) implies b ∈ N+(1).

Now we have N−(b) = {v, u, 1, 2} implies b→ c.

This completes the graph.

Here 2 is antitwin of a.

�
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Lemma 54 Let G be a tournament on 8 vertices having property Q2. If G has
a pair u, v of twin vertices, then G ∼= G1.

Proof
Any x ∈ V (G) \ {u, v} is such that N+(x) and N−(v) both contains a directed
triangle. (Lemma 51 ). Now, every x ∈ V (G) sees u and v in the same way but
they cannot both be in the same directed triangle. But, they are twins. So if
one of them is in a directed triangle, we can replace it with the other and still
have a directed triangle.

Hence G \ {u} ∼= G \ {v} also have property Q2.
So by Lemma 40 G ∼= G1. �

Proof of Theorem 49
Let u, v be antitwins and T1 = {x→ y → z → x} ⊆ N+(v)(and N−(u)) and

T2 = {a→ b→ c→ a} ⊆ N−(v) (and N+(u) ) Now as G is a tournament, there
are 9 arcs between T1 and T2. Let m = #{ arcs from T1 to T2} and n = #{
arcs from T2 to T1}. without loss of generality we can assume n ≥ m.

For any v ∈ V (Ti) there is at least 1 arc from Ti to Tj and at least 1 arc from
Tj to Ti having v as one of the endpoints for i, j = 1, 2 and i 6= j otherwise,
N+(v) or N−(v) will be less than 3.

So that means m,n ≥ 3. But as n ≥ m, we conclude that either (m,n) =
(3, 6) or (m,n) = (4, 5).

case1 Let (m,n) = (3, 6). We know any two arcs from T1 to T2 cannot have
a common endpoint. Without loss of generality let x → a. Now, there can be
two cases.

subcase1: y → c and z → b. In this case if u → v, then G ∼= G2 and
if v → u, then G ∼= G3 [isomorphisms given by sending (u, v, x, y, z, a, b, c) to
(0, 0′, 3, 5, 6, 4, 2, 1)].

subcase2: y → b and z → c. In this case if u → v, then G ∼= G4 and
if v → u, then G ∼= G5 [isomorphisms given by sending (a, z, b, x, c, y, u, v) to
((1,−1), (1, 1), (2,−1), (2, 1), (3,−1), (3, 1), (∞,−1), (∞, 1))]

case2 Let (m,n) = (4, 5). We know 3 among the 5 arcs from T2 to T1 are
such that no two of them have common endpoints. Also no vertex in T1 can
recieve more than 2 arcs from T2

Without loss of generality assume that x recieves only one arc from T1 and
that from a. Now there can be two subcases.

subcase1:Let b → y and c → z. Now, if possible, let c → y. Then,
N−(c) = {x→ b← u} which contradicts property Q2 of G. So, y → c.

Now let, if possible, a → z. This implies y → a. This implies V (N−(a)) =
{c, y, u}. But this is not a directed triangle. This is a contradiction. So z → a.

This implies, b → z and a → y. So we got all the 5 arcs from T2 to T1.
Hence all the arcs from T1 to T2.

Now, if u→ v, thenG ∼= G5 [isomorphism given by sending (x, c, u, v, a, y, z, b)
to ((1,−1), (1, 1), (2,−1), (2, 1), (3,−1), (3, 1), (∞,−1), (∞, 1))].

And,if v → u, thenG ∼= G5 [isomorphism given by sending (b, z, v, u, x, c, a, y)
to ((1,−1), (1, 1), (2,−1), (2, 1), (3,−1), (3, 1), (∞,−1), (∞, 1))].

subcase2:Let b→ z and c→ y. Now N−(x) = {a, z, v} should be a directed
triangle. Then z → a. Now, if possible, let a → y. This implies, y → b. This
implies, c→ z. But then N+(b) = {c→ z ← v} which contradicts property Q2.
So y → a. So, b→ y and c→ z. This is subcase1 .
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Now we also have Lemma 54. So we are done.
�

Corollary 55 If a graph on 8 vertices has property Q2, then it has P+
7 , P−7 or

T8 as a subgraph.

Proof
Note that, adding edges does not kill property Q2. So any graph on 8 vertices
having property Q2 is a subgraph of Gi for some i ∈ {1, 2, 3, 4, 5} as in Theorem
49. Now notice that if we delete any blue arc from Gi, then we do not kill
property Q2 of the graph (it is easy to check). But after deleting the blue arcs
we still have P+

7 , P−7 or T8 as a subgraph.
Claim: If we delete any arc other than the blue arcs from Gi, then we kill

property Q2.
If we can prove this claim, then we are done.
In the following proof of the claim, we use arc to mention some arc other

than blue arcs.
Proof of the claim: Let u, v be twins or antitwins in Gi. Now let us delete

any arc which has u as a an endpoint. Then either N+(u) or N−(u) can not
have a directed cycle because either it is left with only 2 vertices or with v and
2 other vertices that agree with each other on v. So we kill property Q2 if we
delete any arc which has a vertex having a twin or antitwin as its endpoint.

Now in G4 and G5 every arc is endpoint of a vertex having an antitwin. So
we are done for G4 and G5.

For G1,G2 and G3 we kill property Q2 if we delete any arc having 0 or 0′ as
endpoints. Also we kill property Q2 if we delete any arc of the directed triangles
induced by {1, 2, 4} and {3, 5, 6} because otherwise N+(0) and N−(0) will not
have a directed cycle in them.

Now by symmetry, it will be enough to check if we kill property Q2 if we
delete one of (3, 4), (1, 3) and (2, 3) from Gi for i = 1, 2, 3.

Now, if we delete any one of (3, 4), then N+(3) will not have a directed cycle
in it.

If we delete (1, 3), then N+(6) will not have a directed cycle in it.
If we delete (2, 3), then N−(4) will not have a directed cycle in it.
This proves the claim.

�

Corollary 56 If a graph on 8 vertices has property Q2, then it has P7 or T8 as
a subgraph.

Proof
Immediately from Corollary 55. �



Chapter 3

Planar Ocliques

We know that any planar oclique is a subdigraph of the minimal P-bound. Here
we present an oclique on 15 vertices and conjetture about how big can a planar
oclique be. Also we discuss about the upper and lower bounds of wo(P).

3.1 Bounds known for planar ocliques

We call the oriented graph presented by the diagram in the next page, the

“butterfly graph”. We denote it by
−→
B0. It can have some different planar

representations.

Remark 57 Any two vertices in
−→
B0 have a path of length 1 or 2 between them.

So
−→
B0 is an oclique on 15 vertices..

From the above remark we immediately conclude wo(P) ≥ 15. But the
question is “is there a bigger oclique?”. We do not know the answer till now.
But we have the following conjecture by Klostermeyer and MacGillivray [7]:

Conjecture 1 A planar oclique can at most be on 15 vertices.

We have an upper bound for wo(P) from the result proved by Raspaud and
Sopena [4] , that χo(P) ≤ 80. This result and Lemma 33 gives us wo(P) ≤ 80.
We will give a proof of this result in the next chapter. This upper bound implies
that any oclique has at most 80 vertices.

Then there is the following theorem proved by Klostermeyer and MacGillivray
[7] :

Theorem 58 A planar oclique can at most be on 36 vertices.

We will not prove the theorem but we will give some idea about the proof.

Lemma 59 An indepentent set of size 5 cannot agree on a sixth vertex inside
a planar oclique.

Proof
Without loss of generality let I = {a, b, c, d, e} ⊆ N−(v), where {a, b, c, d, e, v} =
S are all vertex of some planar oclique and I is an independent set in it.

25
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-1 -2 -3

-4

-5 -6 -7

1 2 3

4

5 6 7

0

Fix a planar embedding of the planar oclique. Without loss of generality let
a, b, c, d, e are arranged in a clockwise order around v. Each pair of vertices of
I are connected by a directed 2-path using some intermidiate vertex other than
the ones in S.

Without loss of generality assume a→ x→ e connects a and e.
case1:if b and d also uses x to connect, then c have to use x to connect with

both a, e which is impossible.
case2:if b and d uses y 6= x to connect, then c have to use y to connect with

both a, e which is impossible.
So we are done. �

This is a forbidden configuration for a planar oclique.

Idea of the proof of Theorem 58: Let
−→
D be a planar oclique with

more than 36 vertices. Now we know a planar graph has at least one vertex
of degree at most 5. Let that vertex be v and its neighbors be v1, ...., vr. Now

as
−→
D is an oclique, the graph D[V (D) \ {v, v1, .., vr}] is outerplanar. Hence

D[V (D)\{v, v1, .., vr}] is 3-colorable. Now as this graph has at least 31 vertices,
we have a independent set I of at least size 11 in this graph. Now by renumbering
the vis we get a partition of S1, ..., Sr of I such that,

i)any vertex in Si is connected to v by a directed 2-path using the vertex vi
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ii)| S1 |≥ .......... ≥| Sr |
iii)if w ∈ Si, then there is no directed 2-path between w and v using vj for

any j ≤ i
Now we break the situation into some disjoint cases:
(1)| S1 |≥ 5,
(2)| S1 |= 4 , | S2 |= 4,
(3)| S1 |≥ 3 ,| S2 |= 3 ,| S3 |= 3,
(4)| S1 |= 4 ,| S2 |≥ 2 ,| S3 |≥ 2,| S4 |≥ 2 , | S5 |≥ 1,
(5)| S1 |= 3,| S2 |≥ 2,| S3 |≥ 2,| S4 |≥ 2,| S5 |≥ 1,
(6)| S1 |= 4,| S2 |= 3,| S3 |= 2,| S4 |=| S5 |= 1,
(7)| S1 |= 4,| S2 |= 3,| S1 |=| S1 |= 2.
Then the proof is done by getting contradiction assuming each of the cases.
Case (1) is not possible by Lemma 59. Each of the other cases is non-trivial.

3.2 More on planar ocliques

Clearly
−−−−−−−→
B0[N+(0)] is an outerplanar oclique on 7 vertices. Moreover, Sopena

[5] proved that:

Theorem 60 Every oriented outerplanar graph admits homomorphism to P7.

Hence we have an immediate corollary.

Corollary 61 Let O be the class of oriented outerplanar graphs. Then wo(O) =
χo(O) = 7.

Lemma 62 If there is a vertex v that is adjacent to all the other vertices in a
planar oclique on k vertices, then k ≤ 15.

Proof
The planar oclique minus the vertex v is outerplanar. Hence by Theorem 60 we
can oriented 7-color it by a coloring c. Now we give a 15-coloring of the oclique
by,

f(x) = (c(x), σ), where x ∈ Nσ(v) for σ ∈ {+,−}
and f(v) = 0.

It is easy to cheak that this gives a proper oriented coloring. �

Now notice that by deleting vertices of degree 3 from
−→
B0 we get a 14 oclique.

We keep on deleting degree 3 vertex from the obtained new oclique. This way
we can get oclique on k vertices for all k = 1, 2, ...., 15.

Now we make two conjectures.

Conjecture 2 If there exist a planar oclique on k vertices, then there exist a
planar oclique on k vertices containing oclique on (k − 1) vertices.

This is true for k ≤ 15 by the above comment.

Conjecture 3 There is no oriented planar oclique on 16 vertices.



28 CHAPTER 3. PLANAR OCLIQUES

And clearly, Conjecture 1 holds if and only if Conjecture 2 and Con-
jecture 3 both holds.

Lemma 63 If there is vertex v with degree at most 3 in a planar oclique on k
vertices, then there exists a planar oclique on k vertices that contains a planar
oclique on (k − 1) vertices.

Proof
Notice that we can make the neighbors of v pairwise adjacent (if they are already
not) and get another planar oclique on k vertices. Then if we remove the vertex
v we get a planar oclique on (k − 1) vertices. �

We can also ask the question “is there any planar oclique on k vertices, which
does not have a proper subgraph which is also a planar oclique on k vertices,
with minimum degree greater than 3 ?”

Also some more questions:“is there a planar oclique 15 vertices that does

not contain
−→
B0 as a subgraph?” and “what is wo(P) ?

The best bounds known is 15 ≤ wo(P) ≤ χo(P) ≤ 80.
Answer to these questions will help us finding the answer to the conjecture.



Chapter 4

Oriented Chromatic
Number Of Oriented Planar
Graphs

Here we first show the upper bound χo(P) ≤ 80 originally done by Sopena and
Raspaud [4] .

Then we will show that there is no P-bound on at most 15 vertices. Also
we will construct a new example of an oriented planar graph with oriented
chromatic number at least 16. This is an original result proved in this master
thesis.

Then show the lower bound χo(P) ≥ 17. The lower bound follows as a
corollary of a theorem by Marshall [2] ,

Theorem 64 Every P-bound has maximum degree at least 16.

Marshall [2] actually showed that there is no minimal P-bound with max-
imum degree at most 15. For this he proved that minimal P-bound will have
some certain properties (here we put those properties together and call it the
property R2). Then he showed that the only graph with maximum degree at
most 15 is T16. Then he constructed an example of an oriented planar graph
that does not admit a homomorphism to T16.

Here we will not prove the theorem. We will prove that the only oriented
graph on 16 vertices having property R2 is T16. For the proof we will completely
follow the ways of the proof of the theorem given by Marshall [2] .

Then using these we will construct example of an oriented planar graph with
oriented chromatic number at least 17. This example is an original result of this
master thesis. Till now there was no example of an oriented planar graph with
chromatic number at least 17.

29
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4.1 Any oriended planar graph admits a homo-
morphism to Z(5)

Definition 65 An acyclic k-coloring of a graph G is a proper k-coloring of G
such that any 2-chromatic subgraph of G is cycle-free.

Acyclic chromatic number a(G) of G is the least integer such that G is acyclic
a(G)-colorable.

Theorem 66 The class of forest has acylic chromatic number 2.

It is well known that the class of forest has chromatic number 2. As forests
are cycle free we have the theorem. This result is a well known fact.

Now we reprove some results originally done by Raspaud and Sopena [4] .
They showed that any oriented forest is oriented 4-colorable. Using this they
proved that any oriented graph whose under lying graph is acyclic k-colorable
is oriented k × 2k−1-colorable. The following results of this section are due to
Raspaud and Sopena [4] (except the one by Borodin).

Lemma 67 Any oriented forest
−→
F admits homomorphism Z(2).

Proof
Let c be a proper coloring of the underlying graph F of a directed forest

−→
F .

WOLG we can assume the image of c to be {1, 2}.
Now we define the homomorphism f from

−→
F to Z(2) by the rules below,

• the c(v)th co-ordinate of f(v) , f c(v) = ∗
• for an arc (x, y) we have f(x)c(y) = f(y)c(x) if and only if c(x) < c(y).

�

Remark 68 Note that if image of c was {a, b}, then we would have fixed a < b
and pretend to have a = 1 and b = 2 to do the proof.

Theorem 69 Let
−→
G be an oriented graph such that G has acyclic chromatic

number k. Then there is a homomorphism f :
−→
G −→ Z(k).

Proof
Let c be such an acyclic coloring of

−→
G of G such that the image of c is {1, 2, ..., k}.

Let Vi be the color class of the color i.

Now
−−→
Fi,j =

−−−−−−−→
G[Vi ∪ Vj ] is a forest.

Using Lemma 67 and Remark 68 we have a proper oriented coloring fi,j of
−−→
Fi,j using the proper coloring of the forest to be restriction of c.

Notice that,
−→
Fj,i =

−−→
Fi,j .

Now we will define homomorphism g :
−→
G −→ Z(k).

g(x) = (f1i,1, ...., f
i−1
i,i−1, ∗, f

i+1
i,i+1, ..., f

k
i,k) for x ∈ Vi

�

We will use the following result due to Borodin:

Theorem 70 (Borodin) Every planar graph has acyclic 5-coloring.
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Theorem 71 Any oriented planar graph admits homomorphism to Z(5).

Proof
This clearly follows from Theorem 69 and Theorem 70. �

Corollary 72 χo(P) ≤ 80.

Proof
Z(5) has 5× 24 = 80 vertices. Then it clearly follows from Theorem 71. �

4.2 Example of an oriented planar graph with
oriented chromatic number at least sixteen

Here we give a new example of a graph with oriented chromatic number at least
16.

Definition 73 Let T = {a→ b→ c→ a} and T ′ = {x← y ← z ← x} be two

directed triangles inside a digraph
−→
G satisfying the following:

(i) There are exactly three arcs (a, x), (b, y), (c, z) from T to T ′.
(ii) G[V (T ) ∪ V (T ′)] is a tournament.
We will denote this by T 7−→ T ′.

Remark 74 If T and T ′ are directed triangles in a graph and T 7−→ T ′, then
for any u ∈ V (T ) there is exactly one w ∈ V (T ′) such that v → w. Also for
any x ∈ V (T ′) there are exactly two vertices y, z ∈ V (T ) such that, y → z, x→
y, x→ z.

Remark 75 If T 7−→ T ′ and if we know one arc from T to T ′, then we know
all the arcs between T an T ′.

Remark 76 For any v ∈ V (P7) , P7[N−(v)] 7−→ P7[N+(v)].

This is an original result of this master thesis.

Theorem 77 Let G be a graph with property Q3. Then, | G |≥ 16

Proof
Let, G has property Q3 i.e., for any v ∈ V (G), G[N+(v)] and G[N−(v)] both
has property Q2. Now, | N+(v) |≥ 7 and | N−(v) |≥ 7 by Lemma 40 So,
| G |≥| N+(v) | + | N−(v) | +1 ≥ 15. So, it is enough to show that | G |6= 15.

Assume, | G |= 15. Then, by Lemma 40 G[N+(v)] ∼= P7
∼= G[N−(v)],∀v ∈

V (G). Now, fix v ∈ V (G). Let v+ be a vertex in V (N+(v)).
Let A = G[N+(v+) ∩ N+(v)] and B = G[N−(v+) ∩ N+(v)] We know that

A and B are directed triangles. We have, B 7−→ A.
Already, {v, V (B)} ⊆ N−(v+) and more over v is a source for B. As

G[N−(v+)] ∼= P7 there should be another directed triangle in G[N−(v+) ∩
N−(v)]. Call it B′. Also note that, B′ 7−→ B.

Now, B′ ⊆ G[N−(v)] ∼= P7, so there can be 2 cases.
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Case1: B′ = G[N−(v−) ∩ N−(v)], for some v− ∈ V (N−(v)). And let
G[N+(v−) ∩ N−(v)] = A′. Note that, A′ is also a directed triangle. Also,
B′ 7−→ A′.

As, V (B)∪V (B′)∪{v} = N−(v+) we have, V (A′)∪{v−}∪V (A) = N+(v+).
Now, N+(v−) ⊇ V (A′) and G[N+(v+)] ∼= P7. So A ⊆ N−(v−). Also, A 7−→ A′.

Now, as we already know N−(v−) = V (A) ∪ V (B′) ∪ {v+} , so N+(v−) =
V (A′) ∪ V (B) ∪ {v}.

Now, N−(v−) = V (A)∪V (B′)∪{v+} and V (A) ⊆ N+(v+) implies B′ 7−→ A.
Also, N+(v−) = V (A′) ∪ V (B)∪}v} and V (B) ⊆ N+(v) implies A′ 7−→ B.
So we have,

A′

B′

A

B

Now, take any a1 ∈ V (A). We want to find N−(a1). We already have
{v, v+} ⊆ N−(a1).

Since, B 7−→ A we have b1 ∈ N−(a1), for some b1 ∈ V (B).
Since, B′ 7−→ A we have b′1 ∈ N−(a1), for some b′1 ∈ V (B′).
Since, A 7−→ A′ we have a′1 and a′2 ∈ N−(a1), for some a′1 and a′2 ∈ V (A′)

such that, a′1 → a′2.
A is a directed triangle. So, we also have a2 ∈ N−(a1) ∩ V (A).
So, we have N−(a1) = {v, v+, a2, b1, a′1, a′2, b′1}. We know that,G[N−(a1)] ∼=

P7.
Now, {a′1, a′2, b′1} ⊆ N−(v) and {v+, a2, b1} ⊆ N+(v).
So, G[a′1, a

′
2, b
′
1] 7−→ G[v+, a2, b1] and b′1 → v+, where G[a′1, a

′
2, b
′
1] = {a′1 →

a′2 → b′1 → a′1} and G[v+, a2, b1] = {b1 → v+ → a2 → b1}.
Now we look at, N+(a2). We already know {v−, b′1, a′1, a1, b1} ⊆ N+(a2).
Since, B 7−→ A we have b2 ∈ N+(a2), for some b2(6= b1) ∈ V (B).
Since, B′ 7−→ A we have b′2 ∈ N+(a2), for some b′2(6= b′1) ∈ V (B).
Now, {a′1, b1, b′1} ⊆ N−(a1) and {v−, b2, b′2} ⊆ N+(a1).
Also, G[N+(a2)] ∼= G[{a′1, b1, b′1, a1, v−, b2, b′2}] ∼= P7.
So, G[a′1, b1, b

′
1] 7−→ G[v−, b2, b

′
2] where, G[a′1, b1, b

′
1] = {a′1 → b1 → b′1 → a′1}

and G[v−, b2, b
′
2] = {v− → b2 → b′2 → v−}. But we already know b′1 → v−.

That means, b1 → b2.
Now, let a3 ∈ V (A) such that, a3 6= a1, a2. We know, a2 → a1. This implies

a1 → a3.
We know, B 7−→ A, b1 → a1 and a2 → b2. This implies, b2 → a3.
But this contradicts B 7−→ A.
Case2: B′ = G[N+(v−) ∩ N−(v)], for some v− ∈ V (N−(v)). And let

G[N+(v−) ∩ N−(v)] = A′. Note that, A′ is also a directed triangle. Also,
A′ 7−→ B′.

As, V (B)∪V (B′)∪{v} = N−(v+) we have, V (A′)∪{v−}∪V (A) = N+(v+).
Now, G[V (A′), v−, V (A)] ∼= P7 and N−(v−) ⊇ V (A′). So, V (A) ⊆ N+(v−).
Also, A′ 7−→ A.

Now, as we already know N+(v−) = V (A) ∪ V (B′) ∪ {v}, so N+(v−) =
V (A′) ∪ V (B) ∪ {v+}.

Now, N−(v−) = V (A) ∪ V (B′) ∪ {v} and V (A) ⊆ N+(v) implies B′ 7−→ A.
Also, N+(v−) = V (A′)∪V (B)∪{v+} and V (B) ⊆ N−(v+) impliesB 7−→ A′.
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So we have,

A′

B′

A

B

After this, if we look at N+(a′1) for some a′1 ∈ V (A′) and do similar things
as in case1 (the arcs are in the opposite direction in this case), we will get a
contradiction to A′ 7−→ B′.

This will end the proof.
�

We know that Cc(
−→
G) is also an oriented graph for an oriented graph

−→
G and

a proper oriented coloring c of it.

Now we will construct an oriented graph
−→
B2 such that if we color it with 15

colors, then Cc(
−→
B2) will have property Q3.

Recall the butterfly graph
−→
B0 defined before.

Notice
−→
B0 is an oriented graph on 15 vertices and has oriented chromatic

number 15. In other words
−→
B0 is an oclique on 15 vertices.

Now notice in
−→
B0, d±(0) = 7. Now for each i ∈ {1, ...., 7}, we can attach 4

directed 4-path
−−→
P (4) such that they are in N−(0) ∩N−(−i), N−(0) ∩N+(−i)

,N+(0) ∩ N−(i) and N+(0) ∩ N+(i). Note that the new oriented graph is an

oriented planar graph. Call this new graph
−→
B1. Note that |

−→
B1 |= 127.

Notice that, to color each of the directed 4-paths we need at least 3 colors.

Now if we are using 15 colors to color the graph
−→
B1, at most 7 colors can be

used to color
−−−−−−−→
B1[N−(0)].

Fix i ∈ {1, 2, ..., 7}. Now notice that, we cannot use the color we used
for −i to color any vertex of the directed 4-paths in N−(0) ∩ N−(−i) and
N−(0) ∩N+(−i). Also, as the two directed 4-paths disagree on −i, we cannot
use a one in both the graphs. So we will have to use 6 colors to color both the
directed 4-paths. So each of the directed 4-paths will get 3 colors.

Similarly we can conclude the same for all the added directed 4-paths. So,

each of these directed 4-paths get 3 colors if we 15 color the graph
−→
B1.

So, in Cc(
−→
B1), where c is a 15 proper coloring of B1, each of these P (4) will

map to a directed cycle by the homomorphism c : B1 −→ Cc(
−→
B1).

Now for each i ∈ {−7,−6, ......,−1, 0, 1, ...., 7} add a disjoint copy of
−→
B1 and

then identify the 0 of this copy with i of
−→
B0. Note that the new graph is oriented

planar graph. Call the new graph
−→
B2. Note that |

−→
B2 |= 1905.

Clearly, for a proper 15 coloring c of
−→
B2, Cc(

−→
B2) will have property Q3.

Now by Theorem 77 we have:

Theorem 78 χo(
−→
B2) ≥ 16

Corollary 79 χo(P) ≥ 16.

Proof
Clearly follows from Theorem 78.
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�

Now we costruct a graph called
−→
B3 by adding a disjoint copy of

−→
B0 to each

vertex v of
−→
B2 and then identify vertex v with the vertex 0 of

−→
B0. Note that,

|
−→
B3 |= 28575 and

−→
B3 is an oriented planar graph.

Now if we have a 16-coloring c of this graph, then the color graph Cc(
−→
B3)

will have δ(Cc(
−→
B3)) ≥ 14. This we will use later on.

4.3 The minimal P-bound has order at least sev-
enteen

Definition 80 A class C of oriented graph is k-complete if the graph obtained
by identifying the isomorphic l-cliques (l ≤ k) of two graphs of C is also in C.

The class of oriented planar graphs P is 2-complete.

Lemma 81 Let C be a k-complete (k ≤ 2) class of oriented graphs and
−→
H be a

minimal C-bound. Let
−→
D ∈ C, and K1 ⊆

−→
D,K2 ⊆

−→
H are k-cliques. Then any

isomorphism ϕ : K1 −→ K2 can be extended to a homomorphism ψ :
−→
D −→

−→
H .

Proof
Let k = 2. Let Ki = {xi → yi} (for i = 1, 2) and ϕ(x1) = x2, ϕ(y1) = y2.

Now there exists a
−→
G1 ∈ C such that for any homomorphism h from

−→
G1 to−→

H there is (x′, y′)∈ A(
−→
G1) such that, h(x′) = x2 and h(y′) = y2.

Now for each arc (x, y) ∈ A(
−→
G1) we paste the arc (x1, y1) of

−→
D and get a

new graph
−→
G2 (say).

By, 2-completeness
−→
G2 ∈ C. Hence there is a homomorphism g

−→
G1 to

−→
H

such that for some (x1, y1) ∈ A(
−→
G1), g(x1) = x2 and g(y1) = y2

Now restrict g to the
−→
D pasted to the arc (x1, y1) to get the required homo-

morphism.
Similarly for k = 1. �

Definition 82 An oriented graph
−→
G has property Rn if for any k-clique =

{ai, a2, ...., ak} (k ≤ n) each of the subgraphs
−−−−−−−−−−−→
G[∩ki=1N

σi(ai)] have a directed
cycle in them, where σi ∈ {+,−} for all i = 1, 2, ..., k.

b

a

PP P P

In the above diagram P is a directed path of length k for some integer k.
We can identify the arc (a, b) of the oriented planar graph above with an arc

(x, y) of any planar graph and still have a planar graph by 2-completeness of P.
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Call this R2-fication of length k of the arc (x, y).

If we do this for all the arcs of some oriented planar graph
−→
G , then it is

called the R2-fication of length k of the oriented planar graph
−→
G .

Lemma 83 The minimal P-bound has property R2.

Proof
Let the minimal P-bound be on l vertices. Now by Lemma 81 for each arc (x, y)

we have some
−−−−→
D(x, y) ∈ P such that for any homomorphism from

−−−−→
D(x, y) to the

minimal P-bound some arc of
−−−−→
D(x, y) will map to (x, y). Now by R2-fication

of length l of
−−−−→
D(x, y) for all (x, y) ∈ A(minimal P-bound) we have the lemma

because by pigeon hole principle, the image of path P will contain a directed
cycle.

�

Corollary 84 Endpoints of each arc in an oriented graph
−→
G having property

R2, agrees and disagrees on at least 6 vertices.

Proof
A directed cycle has at least 3 vertices. The rest follows from Lemma 83. �

Remark 85 Property R2 implies property Q3.

Theorem 86 The only oriented graphs on 16 vertices having property R2 is
T16.

Before we prove the theorem we will prove some lemmas.

Fix
−→
G to be the minimal P-bound (we fix on this for this section). From

the previous section we know that |
−→
G |≥ 15. If possible let |

−→
G |= 16.

Now as
−→
G has property Q3 and P7 is the smallest graph with property Q2,

we have | N±(
−→
G) |≥ 7.

Now as |
−→
G |= 16 we have at least one of

−−−−−−→
G[N+(v)] and

−−−−−−→
G[N−(v)] isomorphic

to P7 for any v ∈ V (
−→
G).

Let
−−−−−−→
G[N+(v)] ∼= P7. Now for any x ∈ N−(v) we have directed cycles in

both
−−−−−−−−−−−−−−→
G[N+(x) ∩N+(v)] and

−−−−−−−−−−−−−−→
G[N−(x) ∩N+(v)] (by property R2). And those

directed cycles are
−−−−−−−−−−−−−→
G[N+(y) ∪N+(v)] and

−−−−−−−−−−−−−→
G[N−(y) ∪N+(v)] for some y ∈

V (
−−−−−−→
G[N+(v)].
Now define a map h+v from N−(v) to N+(v) that maps x to y (x, y are as

above).

If
−−−−−−→
G[N−(v)] ∼= P7, then we define h−v in a similar way.

Note that this map is well defined. Also x and h±v (x) completely agree or

completely disagree on the vertices of V (
−−−−−−−−−−−−−→
G[N±(v) \ h±v (x)].

If they agree, then θ±v (x) = 1 and if they disagree, then θ±v (x) = −1.
That is,

[h±v (x), w] = θ±v (x)[x,w], (4.1)

for all w ∈ V (
−−−−−−−−−−−−−→
G[N±(v) \ h±v (x)]
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Lemma 87 Let
−→
G be the minimal P-bound. Let u, v, w be vertices of a triangle

in
−→
G . Then, |

−→
G |≥ max{S1(u, v, w), S2(u, v, w)}+ 11,

where,

S1(u, v, w) = {a ∈ V (
−→
G) | u, v, w agree on a}

S2(u, v, w) = {a ∈ V (
−→
G) | u, v disagree with w on a}.

Proof

For vertices x, y ∈ V (
−→
G) we define,

Ax,y = {z ∈ V (
−→
G) | x, y agree on z}

Dx,y = {z ∈ V (
−→
G) | x, y disagree on z}

And let,
M = N(u) ∩N(v) ∩N(w)
Now consider six sets Ax,y and Dx,y such that {x, y} ⊆ {u, v, w}.
Now if z ∈ M , then z is exactly in three of the above sets otherwise in at

most one of them.
Hence we get,∑
{x,y}⊆{u,v,w}(| Ax,y | + | Dx,y |) ≤

3 |M | +(|
−→
G | − |M |) = 2 |M | + |

−→
G |

(4.2)

Now if z ∈ M , then it is at least in one of the three sets Au,v, Au,w, Aw,v
and if z ∈ S1(u, v, w), then it is in all three of the sets.

Hence we have,
2 | S1(u, v, w) | + |M |= 3 | S1(u, v, w) | +(|M | − | S1(u, v, w) |) ≤
| Au,v | + | Au,w | + | Aw,v |

(4.3)

Similarly we get,
2 | S2(u, v, w) | + |M |= 3 | S2(u, v, w) | +(|M | − | S2(u, v, w) |) ≤
| Au,v | + | Du,w | + | Dw,v |

(4.4)

Now for all (x, y) ∈ A(
−→
G) we have Ax,y ≥ 6 and Dx,y ≥ 6 by Corollary 84

From these equations we get,

2 | Si(u, v, w) | + |M |≤ 2 |M | + |
−→
G | +18 where, i = 1, 2

But, |M |≤|
−→
G | −3

Hence the lemma follows. �

Remark 88 The first three inequalities of the above lemma holds for any ori-
ented graphs.

Corollary 89
−→
G cannot be a tournament on 16 vertices.

Proof
If possible let

−→
G be a tournament on 16 vertices. Then for any x ∈ V (

−→
G)

{| N+(x) |, | N−(x) |} = {7, 8}.
Without loss of generality let | N+(x) |= 8 and | N−(x) |= 7. Then the

function h−x : N+(x) −→ N−(x) is not injective.
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Let h−x (y) = h−x (z) = w, for some y, z ∈ N+(x) and w ∈ N−(x).
This means, either x, y, w all three agree on N+(x) \ {w} or two of them

disagree with the third on N+(x) \ {w}.
−→
G is a tournament implies x, y, w are vertices of a triangle.
Now using Lemma 87 we are done. �

This implies δ(
−→
G) = 14. Now pick a vertex (∞, 1) of

−→
G such that ((∞, 1)) =

14. Call the only non-adjacent vertex to it, (∞,−1).

Now notice,
−−−−−−−−−−→
G[N±((∞, 1))] ∼= P7.

Set h±(∞,1) = h± and θ±(∞,1) = θ±.

Lemma 90 h+ and h− are inverse to each other.

Proof
Let v be a vertex of N−((∞, 1)).

If v is not adjacent to h+(v), then h−(h+(v)) = v (it has no other option).
Let v and h+(v) are adjacent and h−(h+(v)) 6= v. Now by Corollary 41 v, v′

agree (disagree) on at most 3 vertices of N−((∞, 1)). But h+(v) and v′ agree
or disagree on all the vertices of N−((∞, 1)) \ {v′}. So v, h+(v) agree (disagree)
on at most 3 vertices of N−((∞, 1)) \ {v′}. But v, h+(v) agree or disagree
on all the vertices of N+((∞, 1)) \ {h+(v)}. By property R3, v, h+(v) should

agree (disagree) on at least 6 vertices of
−→
G . This will force v, h+(v) to agree

(or disagree) on exactly 4 vertices of N−((∞, 1)) (including v′) and (∞,±1).
These six vertices should induce 2 disjoint directed triangle. But there is no
arc between (∞,±1) and the remaining 4 vertices agree with each other on
(∞, 1). So these six vertices cannot induce two disjoint directed cycles. This is
a contradiction.

The other case is symmetric. So we are done. �

Lemma 91 For u ∈ V (N−((∞, 1))) and u, h+(u) adjacent, we have θ+(u) =
−θ−(h+(u)).

Proof
If possible let the theorem not be true. Then u, h+(u) will agree or disagree

on V (
−→
G) \ {u, h+(u), (∞, 1), (∞,−1)} which is a contradiction because

−→
G has

property R2. �

Lemma 92 For u, v ∈ V (N±((∞, 1))) we have θ±(u) = θ±(v).

Proof

It is enough to prove one case. The other case is symmetric.
We have,
[h+(z), h+(w)] = −[h+(w), h+(z)] = −θ+(w)[w, h+(z)]
= θ+(w)[h+(z), w] = θ+(w)θ−(h+(z))[h−(h+(z)), w]
= θ+(w)θ−(h+(z))[z, w]

(4.5)

Now let, X± = {z ∈ V (
−−−−−−−−−−→
G[N−((∞, 1))] | θ+(z) = ±1}
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If one of the sets are empty, we are done. If not, then choose v from the set
which contains even number of vertices.

This will give us, | N−((∞, 1))∩N+(v)∩X+ |6=| N−((∞, 1))∩N−(v)∩X+ |.
If θ−(h+(v)) = 1 by 4.5 we get,
| N+((∞, 1)) ∩N+(h+(v)) |=
| N−((∞, 1)) ∩N+(v) ∩X+ | + | N−((∞, 1)) ∩N−(v) ∩X− |
=| N−((∞, 1)) ∩N+(v) ∩X+ | +(3− | N−((∞, 1)) ∩N−(v) ∩X+ |) 6= 3,
which is a contradiction.
If θ−(h+(v)) = −1, then we have a similar way of getting contradiction for

| N+((∞, 1)) ∩N−(h+(v)) |. �

Lemma 93 For each vertex v ∈ N−((∞, 1)), θ+(v) = θ−(h+(v)).

Proof
If possible let for all v ∈ N−((∞, 1)), θ+(v) = 1 and for all w ∈ N+((∞, 1)), θ−(w) =
−1.

Now let all vertices in N±((∞, 1)) have the same name for both T16 and
−→
G

(notice that we know for both they induce P7).
Now by 4.5 we know that h+ is an anti-autopmorphism. We assume h+(n,−1) =

(−n, 1).
Hence we have,
N−((0,−1)) ⊇ {(1, 1), (2, 1), (4, 1), (1,−1), (2,−1), (4,−1)}
= {(1, 1), (2, 1), (4, 1)} ∪ {(1,−1), (2,−1), (4,−1)}
= {(1,−1), (1, 1), (2, 1)} ∪ {(2,−1), (4,−1), (4, 1)}
And,
N+((0,−1)) ⊇ {(3, 1), (5, 1), (6, 1), (3,−1), (5,−1), (6,−1)}
= {(3, 1), (5, 1), (6, 1)} ∪ {(3,−1), (5,−1), (6,−1)}
= {(3,−1), (5,−1), (3, 1)} ∪ {(6,−1), (5, 1), (6, 1)}
that is, both in and out neighbors of (0,−1) contains a set of vertices that

can be written as union of two directed cycles in two different ways. So none of
them can be P7. Which is a contradiction.

Now, let If possible let for all v ∈ N−((∞, 1)), θ+(v) = −1 and for all
w ∈ N+((∞, 1)), θ−(w) = 1.

But this case is symmetric. �

Corollary 94 G is 14-regular.

Proof
From Lemma 91 and Lemma 92 we have v ∈ N∓((∞, 1)) and h±(v) are not
adjacent. So no vertex have degree 15. �

Now we prove Theorem 86
Proof

From the previous lemmas we have h+ is an isomorphism. We can assume

h+((n,−1)) = (n, 1). Now if θ+((n,−1) = θ−((m, 1)) = 1, then
−−−−−−−−−−→
G[N+((n, 1))]

is not a tournament hence not P7. This is a contradiction.

So θ+((n,−1) = θ−((m, 1)) = −1. Which implies that,
−→
G [V (

−→
G)\{(∞,−1)} =

T16[V (T16) \ {(∞,−1)}].
By Lemma 44 we have {N+((∞, 1)), N−((∞, 1))} = {N+((∞,−1)), N−((∞,−1))}
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So (∞, 1) and (∞,−1) either completely agree or completely disagree on all

the other vertices of
−→
G .

If (∞, 1) and (∞,−1) completely agree then we can identify them and get
an oriented graph on 15 vertices having property Q2. Which is not possible by
Theorem 77. So (∞, 1) and (∞,−1) disagrees completely. Then we are done.

�

Therefore, on 16 vertices T16 is the only candidate for being the minimal
P-bound.

But Marshall in his paper [2] has constructed an oriented planar graph G9

which does not admit a homomorphism to T16. This is shown by some explicit
calculations which we skip here.

Assuming that example we have the following,

Theorem 95 The minimal P-bound is at least on 17 vertices.

4.4 Example of an oriented planar graph with
oriented chromatic number at least seven-
teen

Take an oriented planar graph
−→
G and do R2-fication of length l on it. Call the

new oriented planar graph
−−−−→
G1,l,R2

. If we repeat this process k times, then the

new oriented planar graph is called
−−−−→
Gk,l,R2 .

Let there be a m-coloring (for some m ≤ l) ck of the graph
−−−−→
Gk,l,R2

and ck−1

be the restriction of ck to
−−−−−−−→
G(k−1),l,R2

. Note that, if Cck(
−−−−→
Gk,l,R2

) = Cck−1
(
−−−−−−−→
G(k−1),l,R2

),

then the oriented graph Cck(
−−−−→
Gk,l,R2) has property R2.

Now let
−→
H =

−→
B3 t G9 (G9 is the oriented planar graph that Marshall [2]

constructed and proved that it does not admit a homomorphism to T16). Of

course
−→
H is a oriented planar graph with oriented chromatic number at least

16. Now let
−−−−−→
Hk,16,R2

=
−→
Hk Now we claim that,

Lemma 96 χo(
−→
H9) ≥ 17

Proof
We have

−→
B2 ⊆

−→
B3 ⊆

−→
H0 ⊆ ...... ⊆

−→
H9

Now χo(
−→
H9) ≥ χo(

−−→
B3) ≥ 16.

Let, if possible, c9 be an proper oriented 16-coloring of H9. Then the re-

striction ck of it to
−→
Hk is also an oriented 16-coloring. Now Cc0(

−→
H0) has at least

14× 8 arcs. Now Cc9(
−→
H9) can have at most 8 more arcs (then it will become a

tournament).

So at least for some k ∈ {1, 2, ...., 9} we have Cck(
−→
Hk) = Cck−1

(
−−−→
Hk−1) Then

Cck(
−→
Hk) is an oriented graph on 16 vertices with property R2.

That means Cck(
−→
Hk) = T16 which will give us a homomorphism from

−→
Hk

to T16. But then the restriction of that homomorphism to G9 will give us a
homomorphism from G9 to T16. This is a contradiction. Hence proved. �
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Chapter 5

Conclusion

We saw that the oriented chromatic number of the class of oriented planar
graphs is between 17 and 80. It is more likely that χo(P) is closer to 17 than
80.

It maybe possible to use the results proved in Section 2.4 to improve the
lower bound.

Another potential way to improve the lower bound can be by finding χo(H9).
It maybe possible to run a computer programming to find out this number. I
think this number is more than 17.

We can also look for more properties that the minimal P-bound must have.
It will be nice to know if the minimal P-bound is vertex transitive/arc transitive.

We end with a question Marshall [2] asked:
“Is the Paley tournament P19 a P-bound?”

41



42 CHAPTER 5. CONCLUSION



Bibliography

[1] P.Hell and J.Nesetril, Graphs and homomorphisms, 1st Ed., Oxford Uni-
versity Press, New York, 2004.

[2] T.H.Marshall, Homomorphism bounds for oriented planar graphs, Wiley
periodicals, Inc. J Graph Theory 55, 175-190, 2007.

[3] O. V. Borodin, On acyclic colorings of planar graphs, Discrete Math 25
(1979), 211236.

[4] A. Raspaud and E. Sopena, Good and semi-strong colorings of oriented
planar. graphs, Inform Proc Letters 51 (1994), 171174.

[5] E. Sopena, Oriented graph coloring, Discrete Math 229, 359-369, 2001.

[6] V. Albiero and E. Sopena, Combinatorial construction of timestamp sys-
tems and interpolation systems, Proc. FPSAC95, Formal power series and
algebraic combinatorics, Marne-la-vall e, France, 1995, 1118.

[7] W.F.Klostermeyer and G.MacGillivray, Analogues of cliques for oriented
coloring. 211236.

43


