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Introduction

Bertini was an Italian mathematician, who lived and worked
in the second half of the nineteenth century. The present disser-
tation concerns his most celebrated theorem, which appeared for
the first time in 1882 in the paper [5], and whose proof can also
be found in Introduzione alla Geometria Proiettiva degli Iperspazi (E.
Bertini, 1907, or 1923 for the latest edition).

The present introduction aims to informally introduce Bertini’s
Theorem on generic smoothness, with special attention to its re-
cent improvements and its relationships with other kind of re-
sults.

Just to set the following discussion in an historical perspec-
tive, recall that at Bertini’s time the situation was more or less the
following:

o there were no schemes,
o almost all varieties were defined over the complex numbers,

o all varieties were embedded in some projective space, that
is, they were not intrinsic.

On the contrary, this dissertation will cope with Bertini’s the-
orem by exploiting the powerful tools of modern algebraic ge-
ometry, by working with schemes defined over any field (mostly,
but not necessarily, algebraically closed). In addition, our vari-
eties will be thought of as abstract varieties (at least when over a
field of characteristic zero). This fact does not mean that we are
neglecting Bertini’s original work, containing already all the rele-
vant ideas: the proof we shall present in this exposition, over the
complex numbers, is quite close to the one he gave. By the way,
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the interested reader can find a detailed description of the origi-
nal Bertini’s theorems in the beautiful and accurate paper [15] by
S. L. Kleiman.

Unless otherwise specified we will work with varieties over
an arbitrary algebraically closed field k. Bertini’s theorem as-
serts (in its weak form) that the generic hyperplane section of
a smooth projective variety preserves the original smoothness;
moreover, the set of hyperplanes satisfying this condition forms
itself a quasiprojective variety (a behavior recalling us that param-
eter spaces of algebraic varieties are usually algebraic varieties
themselves).

For convenience, we informally say that a (local) property Q
of k-varieties is Bertini (or weak-Bertini) if it satisfies condition (B)
below and it is strong-Bertini if it satisfies condition (SB):

(B): If X c PY is a variety satisfying Q then the general
hyperplane section of X satisfies Q.

(SB): Let X be a variety with a finite dimensional linear
system S on it and let X --» S be the corresponding
rational map. If this map induces separable extensions
on residue fields (of closed points), then the generic
member of S satisfies Q, away from the base points of
S and the points in X that are not Q.

Our aim is to show that Q = smoothness is (B) and to con-
vince ourselves, with some examples rather than by way of pre-
cise proofs, that it is also (SB). For most of the time, however,
we will be concerned with the weaker (B), so we will become
familiar with hyperplane sections in any characteristic; those hy-
perplanes H giving a smooth intersection with X will be called
good, otherwise they will be called bad. We will also show that
in characteristic zero smoothness is (SB) (note that the condition
of separability is automatically satisfied). With an explicit exam-
ple and a reference to a theorem of Kleiman, we hope to clarify
that the inseparability of the extensions between residue fields is
exactly the obstruction for smoothness to become (SB) in positive
characteristic.

Let us precise that smoothness is not the unique ”Bertini type”
property. Suppose, indeed, you have a property Q on your variety
X < P™. Then you may ask yourself several questions:

1. Can I find at least one hyperplane H such that X n H satisfies
Q? (sometimes no such one exists)



2. How many H are there such that X n H satisfies Q? (some-
times few such exist)

3. Does the answer to the previous questions depend on the
characteristic of the base field? (sometimes positive charac-
teristic makes life hard)

Here are examples of Q for which one knows that (B) holds:
being reduced, irreducible, normal, Cohen-Macaulay, smooth; and
of course it is very interesting to try to enlarge this list as much
as possible. It is noteworthy that a property Q has a remarkable
hope of being (B) if it is constructible (and the base field is not too
small - finite, for example). This will be made clear later but, for
the moment, just observe that a constructible set of an irreducible
Zariski space either contains an open subset, or is nowhere dense.

In what follows we attempt to give a quick description of
some more recent results regarding Bertini’s Theorem in its sev-
eral materializations. Some of them will be discussed later in this
work, while others just appear in this introduction as a cue for
the reader. The main directions along with the theorem can be
improved are:

. Bertini theorems over F;
II. study on new Bertini properties;
III. deduce some new results in Algebraic Geometry;

IV. Bertini over a ring of integers.

Let us analyze each of them a little more carefully.

§ L. The problem with finite fields. With finite fields, everything
is finite! The number of rational points in the projective space,
the set of hyperplanes... When k is any field, and X < P} is
a smooth quasiprojective variety of dimension m > 0, then one
may consider the set

U = {uePy* | XnHy, is smooth of dimension m — 1 over k(u) }

where Hy < P, is the hyperplane corresponding to the point
u, defined over the residue field k(u). It turns out that U is dense
in P*. If k is infinite, then one can find a hyperplane in U which
is defined over k. Otherwise, if k = Fg, all the finitely many
hyperplanes H over k might give a singular intersection X n H. It
is a question by N. M. Katz to see what happens if one considers
hypersurfaces of degree greater than one, instead of just looking
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at hyperplanes. Let S be the homogeneous ring Fq[xo,...,xn]| of
P™, and for every homogeneous f € Sy, = | J4- Sa let H¢ be the
hypersurface ProjS/f < P™. Define the density

W(P) = lim 12054

d—o0 ﬂ Sd
for any subset P < S. Then Poonen in [18] (2004), answering to
Katz’s question, proves that if X = P™ is smooth and quasiprojec-
tive of dimension m > 0 over F, then the subset

P = {f e Sh | X Hy is smooth of dimension m — 1}

has positive density, equal to (x(m + 1)~!, where C(x is the zeta
function attached to the variety X. So, Poonen makes Bertini’s
statement become true over F 4 by allowing hypersurfaces to play
the role of classical hyperplanes.

Another interesting result in characteristic p > 0 is due to
E. Ballico. In 2003 he proves (see [4]) what follows. He lets k
be the algebraic closure of F,,, but in fact he focuses on good
hyperplanes H < P}’ defined over Fy, where q is a power of p.
In his theorem, X < P} is an irreducible variety of dimension m
and degree d. He proves that if g > d(d — 1)™ then there exists
some hyperplane H — P} defined over Fq and transversal to X.!
Note that X might not be defined over Fy. However, the result
still holds if X is smooth and defined over F: there still exists a
good hyperplane cutting X transversally at all of its k-points (and
not just at Fy-points): this means that for every x € X one has

TX,x ¢ H.

§ II. New Bertini properties and generalizations. Let us first fo-
cus on the problem of finding new Bertini properties. There exist
two properties that we will deal with in this paragraph: weak-
normality (WN), and property WN1. Here and in the follow-
ing a reduced variety X will be said to be WN if every birational
universal homeomorphism Y — X is an isomorphism.? Instead,
WN1 means WN with the extra condition that the normalization
morphism X — X is unramified in codimension one. One al-
ways has that WN1 = WN, and they agree in characteristic zero

! This means that H ¢ X* < PL*. If X is smooth, H is transversal to X if and
only if Txx ¢ H for all x € X. If it is not smooth and H cuts it transversally, then
Tx x ¢ H for all x € Xy

2 Equivalently, X coincides with its weak normalization, the maximal couple
(X, f) among birational universal homeomorphisms Y — X. A universal homeo-
morphism is a Zariski homeomorphism f such that for every y € Y the extension
k(f(y)) < k(y) is purely inseparable (so it is trivial when char k = 0).
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or for varieties of dimension one. Cumino, Greco and Manaresi
showed (see [6]) that Q = WN is (B) for varieties of every dimen-
sion in characteristic zero. By means of an “axiomatic approach”
to Bertini properties, the same authors show (see [7]) that in fact
WN is (SB), again in characteristic zero. The strategy is as follows.
They consider local properties Q of noetherian schemes, satisfy-
ing three particular axioms (Al), (A2), (A3): for instance, Q =
reduced, normal, regular all happen to satisfy them. Afterwards,
they prove (Theorem 1 in [7]) that if Q satisfies these axioms then
Q is (SB). One of their results asserts that:

e WN verifies (A1) in characteristic zero;

¢ WN verifies (A2) and (A3) in any characteristic.

So in characteristic zero, weak-normality is strong-Bertini. In pos-
itive characteristic, the authors show that WN does not always
satisfy (A1l). But this does not imply yet that WN is not strong-
Bertini. However, this is the case: they show (see [8]) that, in
general, WN is not even (B), weak-Bertini, if char k = p. The main
theorem in [8] states that:

Let X c Py be projective, WN, equidimensional, of
dimension at least 2. If the general hyperplane section
X n His WNI1 then X is WN1 as well.

If X is as above, but is not WN1, then (the authors show that)
intersecting X with a suitable linear subspace L < P} (possibly
the whole P}’) gives a weakly normal variety Y = X n L, and
the generic hyperplane section of Y is not WN. The conclusion is
that weak-normality is really a property whose ”Bertini-behavior”
depends on the characteristic of the base field.

An important generalization of Bertini’'s Theorem is a result
nowadays known as Kleiman-Bertini Theorem. It appeared in [16],
in 1974. Even if we will discuss it in Chapter 2, it is worth men-
tioning its content now. We work over k = k of characteristic
zero; the situation (not the most general we will deal with) is as
follows: one is given of a homogeneous space (X, G) and of two
subvarieties Y,Z < X. Then one can consider the translates sY,
for s € G. As a variety, it is isomorphic to Y, but it embeds in
X differently, namely, the point y goes to its translate sy, viewed
inside X. The theorem says that if Y and Z are both smooth then a
general translate of, say, Y meets Z transversally: sY n Z is smooth
for general s € G.
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§ III. New “non-Bertini” results. Bertini’s Theorem has several
immediate consequences. The easiest ones will be described in
Chapter 2. In [1], the book Arithmetic Geometry, Milne presents a
proof of the (highly nontrivial) fact that any abelian variety over
an infinite field is a quotient of a jacobian variety. This proof is
based on a repeated use of Bertini’s Theorem: one starts with an
abelian variety A (of dimension at least 2), and the strategy is to
intersect it as many times as dim A —1 with good hyperplanes. At
every step, one finds a smooth variety of dimension one less than
at the preceding step, so it is possible to apply Bertini again, by
always referring to the same fixed embedding of A into some P™.
Via this procedure, one obtains a curve C < A and a morphism
from its jacobian ] to A; the task reduces finally to showing that
such a map is surjective.

§ IV. Bertini in Arithmetic Geometry. The bravest generaliza-
tion of Bertini’'s Theorem is perhaps that shown in a work of P.
Autissier (see [2], 2001). In this case it is not even necessary to
work over a field and the base scheme is just B = Spec Ok, where
K is a number field. The focus is now the investigation of arith-
metic varieties X over Ok, and here - as for finite fields - the good
locus might not contain any B-rational point. In this case there are
no hyperplanes cutting X transversally. Autissier proves (more
than) the following: starting with X of dimension d > 3, after
a suitable extension L/K one finds an arithmetic variety X’ over
B’ = Spec O, closed in Xp,, such that X’ has dimension d — 1
(it is in fact a hyperplane section of the original X) and for every
p € B such that the fiber X;, is smooth, the fiber Xél is also smooth
for every q above p.
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CHAPTER 1

Linear systems

In this chapter several proofs of Bertini’s Theorem will be pro-
vided, in the modern language of linear systems. Two different
statements will be proved: the first one only holds over the com-
plex numbers, while the second one will turn out to be less gen-
eral than the previous, but it holds for any characteristic of the
(algebraically closed) base field k. Here are the statements.

THEOREM (Bertini 1) Let X be a smooth complex va-
riety and let ® be a positive dimensional linear system
on X. Then the general element of ® is smooth away
from the base locus Bg. That is, the set

{H e ® | Dy is smooth away from By }

is a Zariski dense open subset of .

THEOREM (Bertini 2) Let X < P}’ be a smooth pro-
jective variety over k. Then the set of hyperplanes
H < P} such that XnH is a smooth scheme is a Zariski
dense open subset of P1*.

Before giving any proof, we want to focus on the notion of
linear system as it is understood nowadays, and we wish to ex-
plain the precise meaning of the word general. We begin here to
apologize for confusing this word with its cousin generic. The
subtle difference will be explained later. In this chapter, all that
precedes the section named "Linear Systems’ has to be thought of
as background material, which we include by a pure clarity need.

1
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2 Linear systems

We start with a brief introduction to quasi-coherent and coher-
ent sheaves on a noetherian scheme X. These objects correspond,
locally, to modules and finitely generated modules respectively,
under a certain functor. A quasi-coherent sheaf is constructed
by glueing together (sheaves of) modules, exactly as a scheme is
made up by glueing together (spectra of) rings.

For the definition of linear system, one is most interested in
line bundles. The smallest abelian category containing line bundles
(resp. locally free sheaves) is Cohy (resp. QCohy): this is the
motivation for the first section.

Afterwards, we will relate divisors and line bundles by using
sheaf cohomology (that we have available, because our objects
are regarded in abelian categories). After the definition of linear
system and some remarks, several proofs of Bertini’s Theorem
will be provided, and a particular attention will be devoted to the
case where the base field is of characteristic zero.

1.1 Coherent and Quasi-Coherent Sheaves

In the first part of this section (X, Ox) is any scheme and all
sheaves are sheaves of modules.

For any 0x-module .# and for any x € X, one can consider the
bilinear morphism f : .7 (X) x Ox x — % sending (s, tx) — sxtx.
It induces a natural morphism .7 (X) ®g, (x) Ox,x — Fx-

Definition 1.1.1. An Ox-module . is said to be generated by its
global sections at x € X if 7 (X) ®g, (x) Ox,x — Fx is surjective. If
this happens for every x € X then one says that .% is GENERATED
BY ITS GLOBAL SECTIONS. In other words, for every point x € X the
module .%y is generated over Ox x by a set of germs of .# coming
from .7 (X).

We will sometimes refer to the following:

Proposition 1.1.1. An Ox-module .# is generated by its global
sections if and only if it is an epimorphic image of a free Ox-
module, i.e. there exists a set I together with a surjective mor-
phism of Ox-modules @((I) — Z. If # is generated by a subset
S c F(X), that is, for every x € X the set {sx | s € S} generates
Fx over Ox , then one can just take I = S.

Proof. See [17], Lemma 1.3, p. 158. O
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Definition 1.1.2. An Ox-module .% is said to be QUASI-COHERENT
if every x € X has an open neighborhood U such that there is an
exact sequence of Ox-modules

ol — Ol — Flu — 0.

Quasi-coherence is a property of local nature on X. Informally,
one could translate the definition as follows: a sheaf is quasi-
coherent if, locally, it is the cokernel of an &x-morphism between
free sheaves.

Definition 1.1.3. An &Ox-module .% is said to be FINITELY GENER-
ATED if every point x € X has an open neighborhood U such that,
for some n > 1, there is a surjective morphism of &x-modules
O%lu =~ Z|u.

Definition 1.1.4. An Ox-module . is said to be COHERENT if it
is finitely generated and every Ox-morphism 0%y — #|u has
finitely generated kernel for any open subset U.

The property of being generated by global sections is inde-
pendent of coherence. For instance, M is globally generated but
it might not be coherent. And any nonzero invertible sheaf of
negative degree is coherent but is not generated by its global sec-
tions. In particular, a finitely generated sheaf need not be globally
generated.

A quasi-coherent sheaf is completely determined by the local
affine data, that is, a sheaf of modules .# on a scheme X is quasi-
coherent if and only if on every open affine subset U = SpecA,
there is an isomorphism .|y = .#(U)~, where ~ is the func-
tor sending an A-module M to the sheaf M associated to M on
SpecA. This is a fully faithful exact! functor, whose essential
image is QCoh. Moreover, .# is coherent whenever the same
holds true, and in addition .% (U) is finitely presented over A (or
just finitely generated, when A is noetherian). In fact, when re-
stricted to finitely presented A-modules, the equivalence A-Mod
=~ QCohy restricts to an equivalence with the category Coby,. It
should be clear from these characterizations that any locally free
Ox-module is quasi-coherent, and every locally free &x-module
of finite rank is coherent.?2 However, there are examples show-
ing that the converse of these assertions is false: for instance, the

I Not only it is exact, but it also reflects exactness of sequences of the shape
M—-L-—>N.

2 These assertions are not true for any scheme, but certainly hold for those X
such that the structure sheaf 0 is coherent; in particular, X locally noetherian
is enough.

Some important equivalences
of categories.
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sheaf M on X = Spec A, where M is not a free A-module, is quasi-
coherent but not locally free.

RemMARK 1.1. While proving the above characterizations of coher-
ence, one realizes that for a quasi-coherent &’x-module .# the fol-
lowing implications are true:

Coherent = Finitely generated = .%(U) finitely generated
for every U open affine.

Moreover, these conditions are equivalent whenever X is noethe-
rian.

REMARK 1.2. The Ox-module M, the quasi-coherent sheaf on X =
Spec A associated to M, is an example of a sheaf that is generated
by its global sections: indeed any set I of generators of M will

provide a surjective morphism of &x-modules 63((1) — M. An-
other way to see this: just apply the definition and observe that
for every p € X the canonical map M ®a A, — M, defined by
m® (a/s) — (ma)/s is surjective, because m/s comes from the
tensor m ® (1/s).

We now introduce a characterization of quasi-coherence. First,
by the local nature of this notion, for knowing a quasi-coherent
sheaf on X it is a good start to know its sections over the affine
open subsets U = SpecA < X. In fact, even better is to know
how they restrict from U to any of its distinguished affine open
subsets, i.e. those of the form Spec A¢ for f € A. We call the
open immersion Spec A¢ < Spec A a distinguished inclusion. So,
consider an Ox-module .% and define

F (SpecA)s = F(SpecA) ®a As.

Now consider the following diagram

F (SpecA) Ies F (Spec Ay)

//7
_m ///d)

F (Spec A)¢

Clearly by — ®a A¢f we mean the image of { : A — A un-
der .7 (Spec A) ®a —. Note that .7 (SpecA) is an A-module and
F (Spec A¢) is an A¢-module, so by the universal property of lo-
calization there exists a unique morphism ¢ closing the diagram:
for every distinguished inclusion we have a canonical factoriza-
tion of the restriction map. The following statement holds true.
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Proposition 1.1.2. An 0x-module .# is quasi-coherent if and only
if for every such diagram the canonical morphism ¢ is an isomor-
phism.

The following result will be useful.

TueoreMm 1.1. Let X be a scheme.
(1) The category of quasi-coherent &’x-modules is abelian.

(2) If .7 and ¢ are quasi-coherent Ox-modules, then so too is
F gy ¥, and we can compute its sections on every open
affine subset U < X simply by forgetting sheafification, that
is (7 ®ox 9)(U) = F(U) gy (u) 4 (U).

Proof. Part (1): the claim is certainly true in the affine case. For
any scheme X, one knows that Q€ohx < Ox-Mod is a subcategory,
with 0x-Mod abelian. So one only needs to check that Q€ohy
contains the 0 object, is closed under finite direct sums, kernels
and cokernels. The 0 sheaf is certainly quasi-coherent. If .# and
¢ are two quasi-coherent Ox-modules, consider an affine open
subset Spec A of X and assume that .# Mand % ~ N on SpecA.
Then .7 @9 =~ (M @ N)™~ because, by exactness of localization,
one has (M@ N)~(D(f)) = (M@ N)¢ = M @ N¢ for every f € A.
So # @ ¥ is again quasi-coherent. Let us consider a morphism
x : F — ¢ of quasi-coherent sheaves. One has to be sure it has
both a kernel and a cokernel. Let U be any affine subset of X. Use
quasi-coherence: on U, the morphism « is given as an Ox(U)-
linear map of modules 3 : M — N. Define (ker «)(U) = ker 3 and
(coker a)(U) = coker 3. Now, if

0 L MBN P 0

is an exact sequence, then so is the localized sequence

0 L M, B
for every f € Ox(U). So (kerf)s = ker(f¢) and (cokerf)s =
coker(B+). Hence, thanks to Proposition 1.1.2, both (ker )¢ and
(coker 3)+ define quasi-coherent &’x-modules, and moreover these
are exactly the kernel and the cokernel of «, as it is clear by
checking on stalks. Part (2): the question is local on X so one
may assume X = U = SpecA; suppose that .#(U) = M and
%(U) = N, two A-modules (so that # = M and ¥ = N). Then
(F ®ox ) (U) = (Mg, N)(U) = (M®a N)™(U) = M®a N, as
claimed. O

N P 0
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The end of this section is devoted to the definition of the quasi-
coherent sheaf associated to the Proj of a graded ring and to
twisted sheaves, which will be used from now on. Now S is a
graded ring and M a graded S-module. Denote X = ProjS. One

can prove that there is a unique sheaf on X, denoted M, such that

Mlb, (1) = (M(p)™ (L.1)

for every homogeneous f € S;. Equivalently, we define it on the
principal basis of X by M(D(f)) = M(y), the submodule of M¢

consisting of elements of degree 0. This Mis a quasi-coherent Ox-
module, by (1.1) and by our characterization in Proposition 1.1.2.
If S is noetherian and M is finitely generated then it is coherent.

For every d € Z one can consider the graded ring S(d): it is
just S (so it is an S-module) with grading S(d)n = Sgq4n. For
X = Proj S we define 0x(d) = S(d)™~. In particular, when d = 1
one gets the Twisting Sheaf of Serre. If f € S is homogeneous of
degree one, then S(d)(f) = de(f), ie.

HY(D 4 (f), Ox(d)) = FTHY(D (), Ox). (12)

Clearly the &'x-modules x(d) are quasi-coherent, so one can ap-
ply Theorem 1.1 to see that Ox(d) ®s, Ox(e) = Ox(d + e) for
every two integers d,e. Indeed, for every f € S homogeneous of
degree one,

(Ox(d) ®oy Ox(€))(D+(f)) =

Ox(d)(D+(f)) oy (D, (r)) Ox(€)(D+(f)) =

fEOx (D1 (f)) ®s ;, TOX(D(F)) = F47(S(r) @5y, S(r)) =
f47¢Sp) = S(d + €)(r)y = Ox(d + ) (D4 (f)).

In fact, the following general result is true:

THEOREM 1.2. Let S be a graded ring and X = ProjS. If S is
generated by S; as an Sp-algebra and if S is noetherian, then:

(a) Every Ox(d) is an invertible sheaf on X, hence coherent.
(b) For d, e any two integers, Ox(d) ® Ox(e) = Ox(d +e).

Proof. For (a), one has to show that Ox(d) is locally free of rank
one. Take f € Sy, then by the above

Ox(d)|p,(r) = (S(d)(r))",
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the quasi-coherent sheaf on Spec Sy associated to the S-module
S(d)(f)- The claim is that Ox(d)|p, ) is free of rank one. This
will be enough because { D (f) | f € S; } is a covering of X by our
assumption. Let us show that S(d)) is free of rank one over
Sty In fact, S¢r) is the algebra of elements of degree 0 in Sy,
and S(d)(s) is the algebra of elements of degree d in Sy (recall
that deg f = 1). So there is a group isomorphism Sy — S(d)s)
defined by s > f9s. This is well defined for every d € Z since f is
invertible in S¢. Hence S(d)s) is free of rank one over S). Part
(b) follows from the calculation above.

ReMARK 1.3. If X = ProjS where S is generated by S; as an
Sp-algebra, then S; < T'(X, 0x(1)) are global sections generating
Ox (1), i.e. they give a surjective Ox-morphism ﬁ&sl) — Ox(1), so
for such an S we have another example of a sheaf that is generated
by its global sections.

1.2 Divisors and Line Bundles

This section is devoted to introduce the notion of line bundle
by highlighting its (cohomological) relations with divisors. This
can be done for any variety X (thought of as a space with a sheaf
of functions £), but for simplicity we may assume that X is a
noetherian integral and normal scheme (so that we have Weil di-
visors available). By a divisor, one means in fact Cartier divisor,
i.e. a global section of the quotient sheaf .#Z* /0>, where . is
the sheaf of total quotient rings on X (according to complex man-
ifolds, one can call its sections “meromorphic functions”). Recall
that one has the following result:

THEOREM 1.3. Let X be an integral, separated and noetherian
scheme such that &), is a UFD for every p € X. Then the group
Div X of Weil divisors is isomorphic to the group H)(X, .Z>*/6>)
of Cartier divisors, and principal Weil divisors correspond to prin-
cipal Cartier divisors under this isomorphism (so C1X = Ca CI X).

Proof. See [14] II, Proposition 6.11, p. 141. O

Thus, as our interest will be in smooth varieties, we will be
almost always allowed to interchange Weil with Cartier.

A divisor D can be identified with some local data { Uy, f« },
that is, an open covering 4 = (Uy) of X together with a collection
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of nonzero meromorphic functions fy € .# > (Uy) satisfying

]‘:‘;‘ € 0% (Unp). (13)

Here Uyp denotes the intersection Uy n Ug.

A Cartier divisor is said to be EFFECTIVE in case one can choose
the f to be regular functions.

Recall, as an example, that divisors on P}' are completely de-
termined, up to linear equivalence, by their degree, and the de-
gree map induces an isomorphism CI P} = Z. We will see that lin-
ear equivalence of divisors corresponds to isomorphism between
invertible sheaves (line bundles), and this for any scheme X.

By a (complex) vector bundle of rank r over X one means a
surjective morphism of varieties 7w : E — X such that for all x € X
the fiber E, = 7t !(x) is a C-vector space of dimension r, and there
exists an open neighborhood U of x together with an isomorphism
(called trivialization)

¢:Elu —UxC"

where E|y = 7 }(U) and E; < E|y is sent isomorphically to
{y} x C" for every pointy € U.

THeOREM 1.4. Let X be a variety and r a positive integer. Vec-
tor bundles of rank r over X correspond, up to isomorphism, to
locally free Ox-modules of rank r.

Proof. See Appendix. O

Giving a vector bundle (E, ) is, more or less,® the same as giv-
ing a collection of transition functions { gqp : Uyg — GL(1,C) },
i.e. a one-cochain in the Cech complex C*(sl, &*). Explicitly, each
J«p is @ morphism of varieties satisfying g«p(x)gp«(x) = 1 for
all x € Uyp and the so-called cocycle condition

goﬂ/(x) = gaﬁ(X)gﬁy(X) Vx € Unpy- (1.4)

A line bundle is just a vector bundle of rank 1.

Let us give ourselves a complex line bundle L — X, so that its
transition functions take values in GL(1,C) = C*. Let U = (Ug)
be an open covering of X and let f € * (Uy) be nonzero regular
functions. If ¢ : Lju, — Uy x C are trivializations then the

3See () to justify this more or less.
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corresponding transition functions g«p : Ugxp — C* are given by
gop (x) = (pa 0 d’gl)hx where

-1
{x} xC bel, Ly Polr, {x} xC.
More precisely, to get gup(x) one has to evaluate this composi-
tions at (x,1) and look at the second component. Now consider
the new trivializations )« := fx$ « (these are again isomorphisms
by the choice of ). The corresponding transition functions hyp
are defined by

Rap (%) = (Wa 0 WEhIL, = ValL, o dpl!

«(%)

f
= fo(X)balL, o (f5 () bpl ) = doodghlL,
o (X) P ( B (x) B|LX) fB(X)( x B )|
whence the relation ]
Rap = = Jop- (1.5)
B

Of course, we have changed trivializations (and hence transition
functions), but L is still the same. On the other hand, there is no
other way to “deform” a given collection of trivializations without
getting another vector bundle (here another means not isomorphic),
therefore our conclusion is:

Two one-cocycles {g«p } and {hyp} determine the
same line bundle (up to isomorphism) if and only if
there are nonzero holomorphic functions f € 0 (Uy)

satisfying (1.5), if and only if their difference { g«p h;}s }
is a Cech one-coboundary.

This leads us to the relation
Lx = HY(X, 6%) =: PicX (1.6)

where Lx denotes the set of line bundles over X, up to isomor-
phism. This is really a group isomorphism. By Theorem 1.4, we
can view Pic X as the group of isomorphism classes of invertible
sheaves on X.

Definition 1.2.1. To a Cartier divisor D = { Uy, f« } on a scheme
X one can associate the following subsheaf .Z(D) of .# for every
x, we set Z(D)(Uy) to be the (U y)-submodule

Z(D)(Uy) = f10(Uy) © 4 (Uy).

Since fo/fg € 0*(Uyp), we have that fo0(Uxp) = fp@(Uyp),
so that .Z(D) is a well defined object; it is called the INVERTIBLE

SHEAF ASSOCIATED TO D. As a notation, we may also write &(D)
instead of .Z (D).

()
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|

Pic X
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REMARK 1.4. Note that each divisor on X can be viewed as a
closed subscheme D c X, and the inclusion is given by the sheaf
of ideals 0x(—D). In fact, there is an exact sequence

0 — Ox(—D) — Ox — Op — 0.

AsIDE 1.1. Note that, when X is a regular curve over k with function
field K, the global sections of this invertible sheaf are

H'(X, 6x(D)) = L(D)

where L(D) denotes the k-vector space {fe K* | (f)+D >0} u {0}
In this case, the meaning of the space L(D) is clear: it contains those
rational functions ¢ whose order ord,(¢) = vp($p) = —n, at every
point of X, if D is the divisor >, n,p: the functions in L(D) are those
whose poles have order no worse that n,,. For an arbitrary scheme X over
a field k, even if Weil divisors do not coincide with Cartier divisors, we
always have this k-vector space H(X, Ox(D)). Now it contains those
meromorphic functions ¢ € I'(X, .#Z*) such that the divisor (¢) + D is
an effective Cartier divisor, i.e. such that (¢) = —D. This means: take
(¢) to be the image of ¢ under p, (see below); sum (multiply) by D
in HO(X, . > /0%); look at the local data corresponding to this product
and check whether they are nonzero regular functions. Note, finally,
that when Weil = Cartier, the concept of effective Weil divisor is the
same as that of effective Cartier divisor: indeed, a rational function has
positive valuation along a prime divisor Z if and only if it is regular (i.e.
it has no poles) on Z.

Proposition 1.2.1. Let (X, &) be a scheme and D, E be Cartier di-
visors on X. Then

(@) The morphism . induces a bijection

HY(X, .#* /6*) ~ {Invertible Subsheaves of .Z up to =}.

(b) We have (D — E) =~ (D) ® Z(E)!, and
(c) D ~ Eifand only if Z(D) = Z(E).

Proof. The first point is clear: you cannot have an invertible sub-
sheaf ¢ c .# without a collection fy € .#Z* (Uy): simply look at
local generators hy of 7, and take their inverses fo = h;! to be
the local data of some divisor D. To prove (b) just observe that,
HO(X, .#* /6*) being a group, D — E is defined by the quotient of
the defining functions, and thus it goes exactly to .#(D)®.Z(E) L.
For the last part, £ (D) € PicX is trivial if and only the tran-
sition functions {hyp } of the corresponding line bundle are in
BY(4, 0), if and only if hyp are quotients of holomorphic func-
tions, i.e. meromorphic functions defined on the open subsets
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Uy. And the datum of these meromorphic functions is equivalent
to the datum of a single global nonzero meromorphic function
f € .#*(X), which means exactly that D is the divisor of f. So D
is principal if and only if it is in ker .Z. Conclude by (b). O

Remark that the short exact sequence
1— 0" — 5 /0% —1
gives an exact piece in cohomology
HO(X, %) —E2 > HO(X, . * 6% ) —Z—Pic X
and moreover one has an injective group homomorphism

0:CaClX &“—— PicX.

which becomes an isomorphism when, for example, X is an inte-
gral scheme (See [14] II, Proposition 6.15, p. 145 for a proof). As
our varieties will be integral, we will assume that a line bundle
will be of the form .Z (D).

1.3 Linear Systems

From now on, unless otherwise stated, k denotes an alge-
braically closed field, and X is an integral smooth projective vari-
ety over k. Let us briefly summarize what we know: first of all,
for such an X, Weil Divisors coincide with Cartier divisors (con-
sequence of Theorem 1.3); second, linear equivalence of divisors
corresponds to isomorphism of invertible sheaves (consequence
of Proposition 1.2.1); moreover, as X is integral, there is an iso-
morphism Pic X = CaClX, saying that a line bundle . on X can
be written as Ox(D) for some divisor D on X. Here is another
important and nontrivial result that one has to keep in mind.

TueoreM 1.5. Let X be a projective scheme over a noetherian
ring A and let . be a coherent Ox-module. Then H(X,.%) is a
finitely generated A-module.

Proof. [14] II, Theorem 5.19, p. 122. O

The underlying idea of a linear system is the following: giv-
ing an invertible Ox-module % and a set S = H%(X, %) of global
sections is the same as giving a certain collection of effective di-
visors, all linearly equivalent to each other. Let us make this pre-
cise: to an invertible sheaf . on X and a nonzero global section
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s € HY(X,.%), one associates its divisor (called the divisor of ze-
ros), denoted by (s) (or sometimes (s)g, to emphasize it has no
negative part). It is defined as follows: for every point 1 € X such
that Y, = {n} is irreducible of codimension one, one has the
cyclic module .4, = e.0x, and the germ s, writes in the form
e.u for a unique u € Ox . One defines v,,(s) = vy(u), where the
vy in the right hand side is the discrete valuation associated to the
prime divisor Yy. Finally, (s) := >}, vq(s)Yy is clearly effective.

Proposition 1.3.1. Let X be a smooth projective variety over k and
let D be a divisor on X. Consider 0x(D) = .Z (D), the correspond-
ing invertible sheaf. Then

(a) For every nonzero global section s € H (X, 0x(D)), the divi-
sor (s)o is an effective divisor linearly equivalent to D.

(b) Every effective divisor linearly equivalent to D is the divisor
of zeros of some s € H(X, Ox(D)).

(c) Two sections s,s’ € HO(X, &x(D)) share the same divisor of
zeros if and only if s’ = As for some A € k*.

Proof. For (a), use that Ox(D) is a subsheaf of the sheaf .# of
meromorphic functions on X, that now is the constant sheaf K. So
s can be viewed as a rational function f € K*. Assume {U;, f; }
are local data defining D, where f; € K*. Then, by the construc-
tion of Ox(D), we know it is locally generated by f;'. Notice
that there is a local isomorphism ¢ : Ox(D) — O, indeed
Ox(D)(Uy) = f{lﬁx(ui) is isomorphic to Ox(U;) via multiplica-
tion by fi, i.e. f{'h > h. Thus (s)o is locally defined by { U;, fif},
i.e. (s)o = D + (f), showing that (s)g ~ D.

For (b), let E > 0 be an effective divisor such that E = D+(f). Then
(f) = —D, which is equivalent (by Aside 1.1) to f € H(X, Ox(D)).
Finally, the divisor of zeros of f is exactly (f)p = E.

For (c), suppose (s)g = (s)o where, as above, s and s’ correspond
to some f,f’ € K*, and we have (f/f') = 0, as f/f’ is a meromor-
phic function. This says that f/f’ € ker (X, p.) = H(X, %), but
now X is a projective variety over an algebraically closed field,
hence HY(X, Ox) = k, and then f/f’ = A € k*. O

If |D| is the set of all effective divisors linearly equivalent to D,
the Proposition above says that |D| has the structure of a projective
space over k. More precisely, there is a bijective map

(H(X, 0x(D)) — {0})/k* ——ID|
[s] 1 (s) + D.
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Recall: the projectivization of a vector space V, denoted PV, is
by definition the projective variety Proj (Sym V); one can think of
it as the set of hyperplanes in V; it is in fact the dual construction
of (V—{0})/k*, the set of lines through the origin in V. It follows
by the definition that one always has (V — {0})/k* = PV*. Thus
one may assume the following identification:

(H(X, 0x (D)) — {0})/k* = PH(X, Ox(D))*.

Thus, the points of the projective variety PH(X, Ox(D))* act as
parameters for the set of divisors in |D|. A point of |D| is a one-
dimensional subspace of H’(X, Ox(D)), namely, such a line con-
sists of those global sections which differ one from each other by
a nonzero constant, that is, having the same divisor of zeros.

Definition 1.3.1. The set |D|, together with its structure of projec-
tive variety, is called a COMPLETE LINEAR SYSTEM of divisors on X.
A LINEAR SYSTEM on X is a subset ® < |D| which is a linear sub-
space of |D| when this is viewed as a projective variety. In other
words, ® = PV* for some vector subspace V = HO(X, Ox(D)).
The dimension of a linear system PV* is dimy V — 1, so it is fi-
nite by Theorem 1.5. A linear system of dimension one is called a
pencil, while in dimension two it is called a net and in dimension
three a web.

REMARK 1.5. Why does one projectivize the dual? Because to any
inclusion V < H%(X, 0x(D)) there corresponds a surjective mor-
phism HY(X, Ox(D))* — V* and since Proj is contravariant* one
recovers an inclusion PV* < |D|. In what follows, however, one
will identify V to its dual, so PV will mean the linear system PV*.

One can figure a linear system as a continuous family of vari-
eties, moving in some bigger ambient variety, say Py}; the points
that do not move at all when one ranges the set of parameters are
the points in the base locus, which we now define properly.

Definition 1.3.2. A point x € X is called a BASE POINT of D if it lies
in Supp D for every D € ©, where the support SuppD < X of a
divisor D is the union of its prime divisors. We define

Bp = ﬂ Supp D
De®

to be the BASE Locus of ®. In other words, a point x € X is a base
point if it lies in every divisor contained in the system. A divisor

* Proj is actually not a functor, but it behaves like a functor when one restricts
to arrows (of graded rings) that are epimorphisms.
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E which is contained in the base locus, i.e. such that E < D for all
D €9, is called a FIXED COMPONENT of ®.

ExamrLE 1.3.1. Let X = P}. For every integer d > 0 the invertible
sheaf £'(d) has the space of homogeneous polynomials of degree
d as global sections: it is a k-vector space of dimension (™}9).
One can consider, for an arbitrary hyperplane H < P}, the com-
plete linear system |dH| = PH’(P}, €(d)) of dimension (™[%) —1.
It is the projective variety of effective divisors linearly equivalent
to dH (that is, hypersurfaces of degree d), and it gives an example
of a base-point-free linear system. As a notation, one might also
denote |dH| by |0(d)|.

Examrie 1.3.2. Let X be a smooth projective curve over k with
function field K, and let D € Div X. Consider the complete linear
system |D| associated to the k-vector space

LD) = {¢p € K* | (¢) + D >0} U {0}.

Thatis, |[D| = PL(D) = {$d e K* | (¢) + D >0} /k* is a projective
space of dimension {(D) — 1. A point of this projective space is a
class [¢] = {ad | a € k* } where all the a¢ share the same (¢)o.
The correspondence is then

D] =PL(D)  ($) +D «— [¢]

where () = >}, ordp(¢)p. Saying that [¢] is in the base locus
amounts to asserting that (¢) + D < D, for all D, € |DJ, i.e. all
points (prime divisors) p appearing in (¢)+D also appear in every
D). Note that if D is (the divisor of) a point p then |p| = {p},
unless X = P}, in which case every point is linearly equivalent to
each other, so that [p| = P! for every point p € P}.

Lemma 1.1. Let ® = PV < |D| be a linear system on X. Then
x € X is a base point of ® if and only if sx € m,Ox(D)x for all
s € V. In particular, © is base-point-free if and only if &x(D) is
generated by the global sections in V.

Proof. If Xs = {y € X | sy € Ox(D)y; }, we can write

Bp = ﬂ SuppD = ﬂ Supp (s) = ﬂ(X—Xs),

De® [s]eD seV

since the support of (s) = (s)o is exactly the set of points at which
s vanishes. It follows that a point x € X is a base point if sy ¢
Ox(D)} for any s € V. That is, sx € myOx(D)x for all s € V.
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Suppose the above condition is false for any x € X, i.e. ® is base-
point-free. This is equivalent to saying that for any x € X there is
a global section s € V such that s, does not vanish (is invertible)
in O0x(D)x. Such sections are the required generators of &x (D)«
over Ox . O

The sheaf 0'x (D) is not generated by its global sections in gen-
eral, so a complete linear system might have base points. For in-
stance, consider X a smooth curve of genus > 0 and D the divisor
of any point. As remarked above, |p| = {p}.

It follows from the lemma (and from Proposition 1.1.1) that
one can also define the base locus in this way:

Bo = {x e X | V®k Oxx — Ox(D)xis not surjective } .

We need two quick observations.

— THE DUAL PROJECTIVE SPACE. We know that P} is the set
of vector lines of k™. If one applies the same construction to
the dual vector space (k™*1)* then the result is the space of all
n-dimensional linear subspaces (hyperplanes) of k"+1. This is
called the dual projective space and is denoted Py*. Of course,
every n-dimensional linear subspace of k™*! is of the form

Hao:apxo+aixy+ -+ anxn =0

where not all the a; € k are zero, so that a = (ap,ay,...,an)
is a well defined point of P};. Moreover H, = Hy if and only if
Hy, = AHg for some A € k¥, if and only if a = b in P}’. This remark
allows us to identify Pi* to Py} through H, — a. Summarizing,

Pp* = {Hyperplanes in P\ } = PHO( v, 0(1)).

Finally, note that the vacuous statement "the points on a hyper-
plane H < P{ form a hyperplane’ gets dualized to 'the hyper-
planes through a point p € P} form a hyperplane in P3}*".

— THE "GENERIC ELEMENT”. Let ©® = P" be a linear system of
divisors on X. A general member of © is said to satisfy a property
Q if there is a Zariski dense open subset U — P" such that all di-
visors corresponding to points of U satisfy Q. The generic element
of a linear system is the generic point of the projective space P"
parameterizing the system, and a given property is called generic
if it is a property of the generic point.

Tricky observation: recall that the generic point of an irreducible
scheme is unique, so the contrary of the phrase 'the generic point
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& satisfies Q" is simply & does not satisfy Q’. But if one is not
necessarily dealing with schemes, and has the assertion

"The general member of © satisfies Q’, (1.7)

then this has a more subtle negation. Call Vo < © the set of
divisors satisfying Q. The contrary of (1.7) is then:

"V has empty interior’.

This translates the fact that Vi does not contain any open set of P",
that is to say: there is no dense open subset of P" parameterizing
divisors satisfying Q.

Finally, note the relation between generic and general: a first
remark is that it is not possible to deduce some generic informa-
tion from a general one, in the sense that if some property Q is
true for general points, we cannot deduce that Q is generic; in the
reverse direction, however, one can go

generic ~» general

in this way: let Q be a given property and let X — Y be a mor-
phism, where Y is an irreducible scheme with generic point &.
One then checks whether the generic fiber X; has Q; afterwards,
if Q is constructible, then there is an open neighborhood U of &
where the property holds, that is, Xy has Q for all y € U. Let us
point out that sometimes one confuses generic with general. Just
to make an example: when one says ‘a normal variety is gener-
ically regular’, it means that there is a nonempty open subset
where all the points are regular.

Now we are set to begin our discussion on Bertini’s Theorem.
We give two statements.

THEOREM (Bertini 1) Let X be a smooth complex va-
riety and let ® be a positive dimensional linear system
on X. Then the general element of ® is smooth away
from the base locus Bg. That is, the set

{H e ® | Dy is smooth away from By } (1.8)

is a Zariski dense open subset of .
THEOREM (Bertini 2) Let X < P} be a smooth pro-
jective variety over k. Then the set of hyperplanes

H < P} such that XnH is a smooth scheme is a Zariski
dense open subset of P1*.
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1.4 Comments before the proofs

As a statement, the first one is more general (the associated
line bundle might not be very ample, in particular not globally
generated), but only holds in characteristic zero. The second one,
instead, describes the complete base-point-free linear system as-
sociated to €'(1). Let us see in detail why (Bertini 2) is a particular
case of (Bertini 1), of course when chark = 0 is assumed. The first
step is showing that, for any linear system ® = PV = P" c |D|, of
dimension 1, one has a morphism

X—Bp ——— D.

Fix a basis {ey,...,e;} € V < HY(X, 0x(D)) of V. For any
x € X—Bp the map o« : VQx Ox x — Ox(D)x is surjective, that is,
{sx | s € V} generates Ox(D)x = e.0Ox x over Ox x. One can write
the germs ei(x) = ey € Ox(D)x for some (unique) u; € Ox .
At least one u; is invertible in the ring Ox «, because if every u;
were in the maximal ideal my < Ox x then, for every s € V, one
would have sy € m,Ox (D), that is, ox would not be surjective,
contradicting our assumption. So, define

Yix) = (ep(x),...,er(x)) = (ug(x),..., up(x)).

This is well defined because if we choose another local generator
e’ of Ox(D)y, say e’ = e.v for some (unique) v € Ox , then

(e)(x),...,er(x) = (eo(x)v(x), ..., er(x)v(x)) = (eo(x), ..., er(x)).

This was the first step. Note that the definition of 1\ depends on
the choice of a basis for V. Now start with the closed immersion
i: X — P} and recall that P}* = PHO(P}, (1)) is a complete
linear system on Py} of dimension n. Write

X = Projk[xp,x1,...,xnl/a = Projk[yo,y1,...,Yn] (1.9)

where y; = x; mod a. If #x is the sheaf of ideals corresponding
toi:X < P}, there is an exact sequence

0—)jx—)ﬁpg — 1, 0x — 0.

By a twist, that is, applying — ® €(1), one finds another exact®
sequence

0— Ix(1) — (1) — O0x(1) —0

% Tensoring by an invertible sheaf is an exact functor, because the question is
local and, locally, this sheaf is =~ 0.
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where by Ox(1) we mean (i.0x)(1). Notice that, since i is an
immersion, we have (i.0x)|x = Ox, so (i.0x)(1)|x = Ox(1). By
taking global sections on Py} and then restricting to global sections
on X one gets

HO(PR, 0(1)) — HO(P, (1.0x)(1)) — HO(X, Ox(1)).

Let o denote this composition and let V = im o« = HY(X, Ox(1)).
One can show - this is the second step - that the linear system
© = PV c |0x(1)| is base-point-free, i.e. for all x € X the set
{sx | s € V} generates Ox(D)y over Ox . Once this is done, one
can deduce by (Bertini 1) that the general member of ® is smooth
(away from the empty set!), and the statement about (1.8) becomes
exactly (Bertini 2).

Let us verify that PV is base-point-free. As HY(P}, &(1)) is gener-
ated by the n + 1 global sections xy, ..., Xn, the map « is defined
by xi — y; (but notice that, as global sections, the y;’s might be
linearly dependent over k). If we let U; = D (y;) then we see that
U; = X n D4 (xi) form an open (affine) covering of X. Moreover

ﬁ(1)|D+(xi) = XiﬁPE|D+(Xi) implies that ﬁX(1)|Ui = yiﬁx|ui.

Thus for every x € U; one has Ox(1)x = yiOx,x; in fact, to avoid
the dependance on i one may write &’x (1)x = >}; YiOx x, but this
now holds for every x € X since (U;) is a covering. This says that
the canonical map V® Oxx — Ox(1)x sending v ® u — w.vy is
surjective for every x € X. So ® is base-point-free.

In addition, there is a morphism { : X — ® and one verifies
that by composing

x ¥, 5 Py

one recovers the closed immersion i : X < P}’ one started with.
Again, it is enough to check this fact locally on the covering (U;).
In fact, to the sequence of ring homomorphisms

ﬁ(ul) -<—~—-k[y0, .. .,yn](yi) «—k[Xo, ‘e /Xn](xi)

there corresponds the sequence of morphisms of affine schemes

U; —=—Speck[yo, -, Yn]y) & Speck[xo, - - -, Xn](x;)

which is exactly the local translation of what we want. In particu-
lar, in the above situation the morphism 1 is a closed immersion,
and dim X < dim®.

The existence of the morphism { : X — Bp — D allows to
formulate another definition of the base locus, that we put in the
shape of a proposition, as follows.



1.4. Comments before the proofs 19

Proposition 1.4.1. The base locus of a linear system © on X is the
subset of X at which the rational map X --» © is not defined.

Proof. Assume ® = PV < |D|. The above map is not defined at
x € X if and only if all the sections (in a basis) of V vanish on
x. This happens if and only if they all lie in m,&x(D)x, which
means that the sections in V do not generate Ox (D). Conclude by
Lemma 1.1. O

ExampLE 1.4.1. If X is a smooth curve, then any linear system on
X is base-point-free, because - more generally - for a curve C, any
rational map C --» V, for a subvariety V < Py, is defined at all
the smooth points.

REMARK 1.6. Denote again by 1 the morphism X — P" associated
to some base-point-free ©. Then, if one wants to see the effective
divisors in ® as subvarieties of X, it is enough to consider the
fibers of 1. It means that

D = (¢~ (H) [He P™}.

This will become clear after Lemma 1.2. But if one accepts the fact
that ~ = {(x,H) € X x P™* | {(x) € H}, together with the projec-
tion m: L — P™, is a family (parameterizing the divisors in D)
with members the fibers 7~!(H), then we can already understand
this remark because X xpr H = P ~!(H) =~ n!(H). Finally, what
Bertini says is just that there is a dense open subset U < P"* such
that Y ~!(H) — Bp is smooth for every H € U.

Examrie 1.4.2. Let k be an algebraically closed field. Consider
the 3-uple Veronese embedding of Pi, that is

1 3
P € Py
(t, u) —— (3, t?u, tu?, u3)

Its image C c P3 is called the twisted cubic curve in P}. We claim
that a smooth projective curve X — P} of degree 3 such that X
is not contained in a hyperplane and X = Pi as abstract alge-
braic varieties is of the form X = oC for some automorphism
o € PGL(3,k) of P{. By viewing such an X as a closed subscheme

of P}, we know that we can recover this closed immersion by

i
X € P}
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where ® = PV and V = imH°(P}, 6(1)) = HO(X,0x(1)). By
our assumption that X is not contained in any hyperplane, we
have that « is injective, thus V = H(P$, €(1)), a k-vector space of
dimension 4. So dim® = 3. In addition, © has degree® deg® = 3,
and X = P}, says that V must correspond to a 4-dimensional vector
space W < HO(Pi, 6(3)), which is already of dimension 4, so
V =~ H(PL, 0(3)) and D is complete. Since the closed immersion
i: X < P} is determined by V and the choice of a basis for V
(Theorem 1.6 below), we have that i is the 3-uple embedding up
to the choice of that basis, i.e. up to a linear automorphism of P5.

ASIDE 1.2. We want to say more about the rational map P : X --» D.

When X = Py, we have the base-point-free linear system |€(d)| on X, of

dimension m = ("1%) — 1. So we have a morphism

Py s P

which is constructed in this way: take any basis of H°(P}, &(d)), for
example the set of monomials of total degree d in the coordinates on Py
Then x € Py is sent to the point of P™ whose coordinates are evaluations
of the monomials at x, for instance in lexicographic order. This is exactly
the d-uple Veronese embedding. The Example 1.4.2 above works with
n =1and d = 3; when n = d = 2, we have the following situation: the
2-uple embedding

P, —— P
is exactly the morphism corresponding to the base-point-free linear sys-

tem |0(2)| on P, i.e. the complete linear system of conics. Its image is
called the Veronese surface.

Before passing to the proofs of Bertini’s Theorem, let us de-
scribe the relation between linear systems on a projective variety
X and morphisms to projective space. We have the following re-
sult.

THEOREM 1.6. Let X be a scheme over a ring A. Then

(i) If ¢ : X —» P} is an A-morphism then ¢*(&(1)) is an in-
vertible sheaf on X generated by the n + 1 global section
si = ¢*(xi).

(il) If .Z is an invertible sheaf on X generated by n + 1 global
sections sg,...,sn € HO(X,.Z) then there exists a unique
A-morphism ¢ : X — Pj such that £ =~ ¢$*(£(1)) and

6 The degree of a linear system is the degree of any of its divisors: it is well
defined because the degree of a divisor on a smooth projective curve depends
only on its linear equivalence class.
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si = ¢*(xq) for each i = 0,...,n under this isomorphism of
sheaves.

Proof. See [14], 11, Theorem 7.1, p. 150. O
By the above, giving X — P} is the same as giving a set
S={sp,...,8n € HO(X, Z) gererating ., with .Z invertible } .

Now, by Proposition 1.3.1, giving a morphism X — P} is the same
as giving a base-point-free linear system PV on X and a basis
{s0,...,sn } of V. If another basis is chosen, the new morphism
will differ from the first one by an automorphism of Py}.

If one requires, in addition, that a morphism X — P}’ be a
closed immersion, then one has to add two conditions: the k-
vector space generated by sy, ..., s, must separate points and tan-
gent vectors. However, if one has recourse to ample line bundles,
a characterization of immersions inside the projective space comes
almost for free. A line bundle . on a Y-scheme X is said to be
very ample if there exists an immersion i : X — Py such that
£ ~1i*0(1). When Y = Speck, a line bundle . is very ample on
a k-scheme X if and only if there are finitely many global sections
so,...,5n € HY(X, .2), generating ., such that the induced mor-
phism to Py is an immersion. Summary: we have the following
equivalences of data.

Mars LINEAR SYSTEMS
X --» P} Z; so,...,sneHO(X,.,iﬂ).
X— Py Z;s0,...,5n € H (X, .2) generate .Z.
X — Py Z very ample; sg,...,sn € HO(X, %) generate .Z.
A divisor D on X is said to be very ample in case Ox(D) is
very ample. Hence, very ample divisors are exactly those which
allow embeddings in the projective space (provided that they are
globally generated).
1.5 Bertini in any characteristic
In this section we present the proof of Bertini’s Theorem (Bertini

2), over an arbitrary algebraically closed field k. We need to keep
in mind the following two results.
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Proposition 1.5.1. The second projection Py x P* — P is a
closed map.

Proof. The projective space Py is proper over a point (Spec k) and
properness is closed under base extension. It follows that the
second projection is proper, and hence closed. O

Proposition 1.5.2. Let X and Y be projective varieties of dimension
n and m respectively. Let f : X — Y be a surjective morphism.
Then m < n, and

(Q) For any y € Y, every irreducible component of f~1(y) has
dimension > n — m.

(0) There is a nonempty open set U < Y such that dim f~!(y) =
n—mforallye W

Proof. See [Shafarevich, I, Theorem 7 on p. 76]. O

THEOREM 1.7 (Bertini 2). Let X < Py be a smooth projective
variety over k. Then the set of hyperplanes H < Py} such that
X n H is a smooth scheme is a Zariski dense open subset of P;**.

Proof. Let d be the dimension of X. We look for a dense open
subset U — P}* such that the corresponding hyperplanes H have
the good property of letting X n H be a smooth scheme. We may
assume that d < n — 1. Indeed, if X is a smooth hypersurface, the
required good locus is easily seen to be the open subset P11* — X*
(because x is smooth in X n H if and only if H # Tx x). Moreover,
we may assume that X is not contained in any hyperplane. We
define the set of “bad hyperplanes” at a closed” point p € X to be

By, = {HePy* | pissingularin X n H} < P*.
Now, if we let p range the closed points of X, we can define a set
B ={(p,H)|peXisaclosed pointand He By, } © X x Pi*.

Our strategy is the following:
(1) Showing that B has the structure of a projective variety, and

(2) showing that the first projection 7t; : B — X is surjective, and
that in this case we have dimB <n — 1.

7 Nonsingularity can be checked on closed points.
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Suppose these statements are both proved. Let us explain why
we can conclude. As dim B < n we get that the second projection
m : B — PY* sends B onto a proper closed subset of the dual
projective space. We can then define U = P}* —m,(B) and see that
it is the required dense (in particular, nonempty) open subset in
the statement.

To prove (1), we note that we have a family (see Definition
1.6.1) # < X x Pi* of subvarieties of P1* with base X. Concretely,

#=|J{p}xBp.

peX

The members of this family are the fibers q~!(p) = B, where
q: # — Xis the pullback projection. Hence B = % n J(, where H{
is the universal hyperplane (see (1.15)).

To prove (2), it is enough to show that, for every closed point
p € X, the fiber thl(p) is a projective space of dimension n—d —1.
If this is done then 71; is automatically surjective because n —d —1
is a strictly positive integer, as we assumed d < n—1. In this case,
we can apply Proposition 1.5.2 (U) to see that for every closed
pointp e Xwehaven —-d—1 = dimﬂl_l(p) > dim B — d, hence
dim B < n — 1.8 This would conclude the second step, so our last
claim is that 7]’ Y(p) =~ P41 for every closed point p € X.

To prove our claim, let us fix a closed point p € X, and ho-
mogeneous coordinates xo,...,xn on P} and ap,...,an on PY%;
name W = H(P}, (1)), the k-vector space of homogeneous lin-
ear polynomials. Now, there exists a hyperplane that does not
pass through p; without loss of generality we may assume it is
Hp = V1 (xp). Define a morphism of k-vector spaces

d)P 2

n n
Xi
D aixil D e
i=0 i X0

This is well defined because xo(p) # 0. Note that ¢, is surjective:
indeed, since p is a closed point and k is algebraically closed, the
maximal ideal m;, = Oxp is generated by linear polynomials in
the coordinates x;/xg,...,xn/xo. This says that the image of ¢y,

8In fact, dimB = n — 1. This is not important. However, it follows by
Proposition 1.5.2 (¢): there is a nonempty open subset of X such that all its
points y satisfy n —d — 1 = dim7; ' (y) = dimB — dim X = dim B — d, which
implies dimB =n — 1.
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contains a basis of O, /m%, so ¢p is surjective.
As X is smooth, dimy m, /m% = dim X = d. Note that

Ox p/m3
W =~ k implies that dimy Ox , /m%, =d+1
Combined with the fact that dimy W = n+1 and with surjectivity
of ¢y, it implies

dimy ker ¢y = dimy W — dimy Ox p/m7, (1.10)
=m+1)—(d+1)=n-—d.

Notice that if f e W and H¢ = V. (f) then, whenever f € ker ¢, we
have that f vanishes in a neighborhood of p in X, and hence on the
whole X (by irreducibility); thus X < H¢. Conversely, if X < H¢
for some f € W then f|x = 0 and f € ker ¢,. Summarizing,

feker¢pp, <= XcH;. (1.11)

However, this will never happen, by our assumption on X. Next,
observe that for f € W our closed point p is in X n Hy if and only
if f(p) = 0, if and only if f is not invertible in a neighborhood of
p, if and only if ¢ (f) € mp /m%. Assume this is the situation and
write then ¢, (f) = yp + m% for yp =y € mp. We can define the
local ring A atpe X n H¢: if R = ﬁx,p/m% and a = yOx p,

A= ﬁXme,p = R/d)p(f)R = ﬁxlp/a.

By definition A is a local ring. When is it regular? The answer
will tell us when p is a regular point of X nH¢. The maximal ideal
of Aisma = mp/a and

m3 = (my/a)? = (mfJ +a)/a (m%, + a)/mfj ~ a/(m%, N a).

For the regularity of A, we are interested in comparing the dimen-
sion dim A to dimy ma /mf\. First, we obtain

2 2
mp my, /my, L) /mg
m2 +a

mA/mi\ =

~

(m2 +a)/m2 ~ a/(m2 a)
and by computing dimensions we get
dimy ma/m3 = d — dimy a/(m%J Na).

By regularity of X at p and by the fact that A =~ Ox ,/a (where a
is principal) we have dim A = d — 1. So A is regular if and only
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if dim A = dimy ma/m3%, if and only if dimy a/ (m% na) = 1. This

happens exactly when y is not contained in m%,

pisregularin X n Hy < 1y, em, —m? (1.12)
) p EMp

P

Now we can use (1.11) and (1.12) to characterize the bad hyper-
planes at p.

B, = {H¢ | p is singular in X n H¢, with fe W}

= {H¢ |yp em}, with fe W}.
But again, y, € m% if and only if ¢ (f) = 0, i.e. f e kerdp. In
addition, it is clear that H¢ = Hjs for every A € k*, so we can
identify B, = P(ker ¢,), proving that dimB, = n — d — 1 thanks
to (1.10). It remains to observe that 7, '(p) = B}, to conclude that
77! (p) is a projective space of dimension n — d — 1, as claimed.
This completes the proof. O

1.6 Bertini in characteristic zero

In this section we present a proof of Bertini’s Theorem for a
pencil over C, and a proof over a field of characteristic zero which
is valid for any linear system. The first one is quite easy; the
second one relies on some fundamental theorems, like the generic
smoothness theorem.

THEOREM 1.8 (Bertini 1). Let X be a smooth complex variety
and let £ be a pencil on X. Then the general element of { is smooth
away from the base locus B. That is, the set

{Ae | D, is smooth away from B} (1.13)
is a Zariski dense open subset of {.

Proof. To any A € £ =~ P! there corresponds an effective divisor
D, on X; let us assume that dim X = d and let us work with
our pencil locally inside a polydisc A = X (the analytic analog of
an affine open subset in the Zariski topology). If f, g are linearly
independent sections generating { inside A, then every divisor D,
has the following local representation, in the analytic topology:

Dy : f(Zl,...,Zd) + )\g(Zl,...,Zd) =0 (1.14)

where z; are the local coordinates on A. Here we are using that a
smooth complex algebraic variety has the structure of a complex
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manifold, so we can work locally in the analytic topology. Let us
see what happens if for some A € P! (different from 0, c0), py is a
singular point for D) outside the base locus of the system. For all
i=1,...,d we then have

f(pa) +Ag(pa) =0
of

dg _
(?Ti(p)‘) + 7\671(197\) = 0.

Note that if f(pa) = 0 = g(pa) then p) € (), pt Dv = B; but
par ¢ B so we get that f and g do not both vanish at p,, hence
neither one does, whence for alli = 1,...,d we must have

__f(pa) of . f(pa) dg
~ g(pa) and 0zq () g(pa) 0z

(pa) =0

Now, let us calculate the derivatives of the ratio f/g, and evaluate
them at p:

0 (f)(p}\) _ Z(pa)g(pa) — F(pa) 22 (pa)

0zi \g g(pa)?

= 0.

Next, call V the locus of singular points (in A) of the divisors
in ¢, and call S the subvariety of A x P! cut out by the equations

f+Ag=0
of ag
— A2 =0
aZi + aZi

where A ranges Plandi=1,...,d. Then Vis the image of S inside
A (under the pullback projection), that is V is locally cut out by
the above equations. But now, by a calculation we made, the ratio
f/g is locally constant on V — B. This means that here it takes only
finitely many values. Translation: there are only finitely many
A € P! such that Dy is singular away from Bgp (in fact, B n A).
Thus D, is smooth away from the base locus for almost all A € P!,
proving that there is a dense open subset U c P! such that the
corresponding divisors are smooth away from B n A. Of course,
we worked locally on A, but there are finitely many such polydiscs
covering our variety X, so the result follows. O

ReMARK 1.7. Note how by tacit agreement we used the map 1 :
X — B — PL If q is a point outside the base locus, we define \(q)
to be the unique A such that q lies on D,. This is unique just by
the linearity condition of (1.14). In fact the key point in our proof
is that \|y/_p has finite image.
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ReMARK 1.8. Perhaps, it is possible to generalize this proof to
a linear system of arbitrary dimension. Bertini himself asserts
(see [5]) that it is so. But the details are not so easy to handle, and
we do not dispose of a precise proof for the moment.

The next subsection is a digression, devoted to formalize what
we already said in the Introduction about varieties “parameter-
izing” collections of varieties: a motivation for this digression is
that a central object in the study of Bertini’s Theorem is the set of
hyperplane sections x of a variety X < Py; such a set is in fact
a variety and, even more, it constitutes an example of a universal
family over Pi}*. We already encountered this family during the
proof of Bertini in any characteristic, and we already used all of
its geometric structure. More precisely, we still have to justify the
fact that the bad hyperplanes form a subvariety B < X x Pi}*. We
just asserted that B is the intersection (inside Py x P1*) between
a family # — X and the universal hyperplane H < Py x Py*.
Hopefully, this will become clearer soon.

1.6.1 Universal Families

In the following two subsections k is a field of any characteris-
tic, at least until the new proof of Bertini’s Theorem in character-
istic zero. It might not be algebraically closed. Some elementary
examples of universal families are provided; the most important
one, that of parameter space, is omitted, but the reader can find a
nice discussion on it in [12].

We now think of P}’ as our big ambient variety. Let B be any
variety, and (Vy)vep a collection of algebraic varieties Vy, < P}.
First, we want to answer this question: what does it mean that
such a collection varies algebraically and continuously with param-
eters? Let us give an intuition on that: it is a possible point of
view to regard a morphism of schemes 7 : X — Y as a collec-
tion of schemes (X ), where X, is the fiber X xy Speck(y); such
a collection of fibers is thought of as a family of schemes varying
algebraically with parameters (the points y € Y) because each fiber
is a pullback of two arrows depending only on y. Thus the answer
to our question is (partially) inside the following definition.

Definition 1.6.1. Let B be a variety. A FAMILY of projective vari-
eties in P} with base B is a closed subvariety ¥ — B x P} together
with the induced projection 7t : ¥ — B. The fibers V;, = 7 1(b)
are called the members of the family.

But what about continuity? The fibers of 7 might be very
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different one from each other (some might be empty, there can
be dimension jumps...). The collection of fibers 7" = (Xy)yey is
a family of subschemes of X with base Y. It turns out that the
right notion to express the continuity of ¥ is flatness. We see its
importance in the definition of a UNIVERSAL FAMILY: a family ¥ —
B is universal if for every flat family ¥’/ — B’ whose members
belong to 7 there exists a unique regular map B’ — B such that
¥' =B’ xg ¥. So in particular any universal family is flat.

1. THE UN1vERSAL HYPERPLANE. Consider the projective variety
1" of hyperplanes in Py, and the subset

H={MHp) |peHand He P{*} c P* x P (1.15)

If z denotes the homogeneous coordinates on P}} and w are those
on P*, then it is clear that 3 is given by the single polynomial

n
f(z,w) = Z ZiWj.
i=0

Thus it defines a hypersurface in P* x P). If one puts B =

¥ and considers the first projection m; : H{ — B, then each
hyperplane H has fiber 7 1(H) =~ H < P}, so 3 may be viewed
as a family of hyperplanes in P} with base Pi'*. Symmetrically, if
one takes Py as base, and considers the projection 7, : H — Py,
then the fiber at a point p € P} is 7, '(p) = {(H,p)|H3p},
which is a hyperplane in Pi'*; so in this case H{ may be viewed
as a family of hyperplanes in Pi'* with base P}}. It is called the

universal hyperplane because it has the following property:

For every flat family ¥’ < B’ x P} of hyperplanes
there exists a unique regular map B’ — P{* such that
v =B’ xppx J. That is, there is a pullback diagram

V! H
B g

where the bottom arrow is the unique morphism send-
ing b € B’ to the member V{ of 7.

2. THE UNIVERSAL HYPERPLANE SECTION. Let X Py be a projec-
tive variety. View H as a family of hyperplanes with base P, i.e.
together with the second projection 7, : H — Py. Define

Ix={(H,p)|lpeXnHand He P} c P* x X.
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Then Ix = 7, '(X) is a subvariety of P* x X and hence it is a
family (of subvarieties of X) over Pi'*. It is called the universal
hyperplane section. Note that

Tx = 3 A (P x X),

the intersection being inside Pi}* x P}}. And, most important, the
fiber at each point H € P1}* is isomorphic to X n H.

With the same spirit, one can define the universal conic ¢ <
P,S< X Pi and the universal line.

1.6.2 Constructible Properties

The next aim is to briefly state some basic facts about con-
structible subsets of Zariski spaces. A Zariski space is a noethe-
rian topological space such that every closed nonempty irreducible
subset has a unique generic point. Afterwards, we introduce con-
structible properties of morphisms of schemes; the reference for
this subject is [EGA, tome IV3]. So in this section all schemes con-
sidered are noetherian. To simplify, one may also assume they are
algebraic varieties.

Definition 1.6.2. Let X be a Zariski space. A subset E c X is said
to be CONSTRUCTIBLE if it is a finite disjoint union of locally closed
subsets of X. It is called locally constructible if X has a covering
X = |J; X such that E n X is constructible in X; for every i. If X is
any scheme, this is the same as asserting that EnV is constructible
for every open affine subset V < X.

REMARK 1.9. If X is a quasi-compact and quasi-separated scheme
(e.g. an algebraic variety), then locally constructible implies con-
structible.

Proposition 1.6.1. The collection of constructible subsets of X co-
incides with the collection ¢ characterized by the following prop-
erties:

(1) any open subset of X is in €’;

(2) the class ¥ is closed under complements (thus it contains
the closed subsets);

(3) the class % is closed under finite unions (and thus under
finite intersections).
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Proof. The collection ¢ contains every constructible set, by how it
is defined. Conversely, open and closed subsets are constructible,
and so are also finite unions of constructible sets, thus constructible
subsets satisfy (1) and (3). So it remains to show that in ¢ we
find all complements E¢ where E is constructible. In fact, as
([ i<i<r(Ui 0 F))€ = (Mi<icr (Ui 1 Fi)€ and a finite intersection
of locally closed is locally closed, it is enough to prove that E€ is
constructible for E locally closed. Let us write E = U n F, where
U is open and F is closed. Then E€ = F¢ U U¢ = F¢ [ [(U° — F€),
which is a union of an open set with a closed subset, hence both
constructible. m

Definition 1.6.3. Let X be a topological space. A subset E < X is
said to be NOWHERE DENSE (in french: rare) if X — E is dense in X.

Note that if E is not closed then its complement X — E contains
(properly) the open subset X — E.

Proposition 1.6.2. Let X be a Zariski space. A subset E X is
constructible if and only if for every closed irreducible subset Y <
X, the intersection E n'Y either contains a nonempty open subset
of Y, or is nowhere dense in Y.

Proof. See [13], Proposition 1.3, p. 2. O

ReMARK 1.10. Assume we have a subset E of an irreducible Zariski
space X with generic point n. In this situation, every nonempty
open subset of X is dense. And E is dense if and only if n € E,
if and only if E contains an open subset. Assume now that E is
constructible: as either E contains an open subset or (aut, in fact)
X — E is dense (= nonempty), one concludes that:

If E is constructible in X = {n } , then either E contains
a nonempty open subset, or X — E does. Equivalently,
either E or X — E is a neighborhood of 1.

* * *

Let us switch to schemes.

Here is the aim of the following discussion: suppose we are
given a morphism of schemes f : X — S of finite presentation, and
a quasi-coherent &x-module .%. First, some notation: if s € S is
any point, we denote by X; the fiber X xs Speck(s) and we set
Fs = F Qg k(s). It is an Ox_-module. Suppose Q is a property

? This is nothing but another notation for j*.# = j=\.% ®;-14, Ox,, if j :
Xs — X is the canonical projection. For instance, if X = SpecB, S = Spec A and
F = M7, then X; = Spec (B ®a k(s)) and .Z, = j*(M™~) = (M ®a k(s))~.
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of schemes. We then look for conditions under which the locus
E={seS|Xs;hasQ}

is locally constructible (and hence constructible, when S is an al-
gebraic variety). If one assumes that f is flat, then very often E
turns out to be open inside S. The formal discussion starts from
the following definition.

Definition 1.6.4. Let Q(X, .#, k) be a relation. It is said to be con-
STRUCTIBLE if the following two conditions hold:

(C1) Assume X is a k-scheme, ¥ is a coherent ’x-module and
k’/k a field extension. Then we have

Q(X, Z,k)is true <= Q(Xys, Z @ k', k') is true.

(C2) Let S be an integral noetherian scheme, with generic point &.
Let u: X — S be a morphism of finite type and .# a coherent
Ox-module. Set, as before, X; = u~!(s) = Xx sSpeck(s) and
Fs = .F Qg K(s) for every point s € S. Put

E={seS|Q(Xs, Zs, k(s)) is true } .

Then one between E and S — E contains a nonempty open
subset (and hence is a neighborhood of &).

Proposition 1.6.3. Let Q be constructible, S any scheme and X
of finite presentation over S. Let .# be a quasi-coherent finitely
presented Ox-module. Then

E={seS|Q(Xs, %, kis)) is true } (1.16)

is locally constructible. If S is irreducible with generic point &
then (as we know by Remark 1.10) one between E and S — E is a
neighborhood of &.

Proof. See [10], Proposition 9.2.3, p. 58. O

ReMARK 1.11. We have a kind of converse of Proposition 1.6.3: if
Q is a property satisfying the conclusion of the Proposition (that
is, the set in (1.16) is locally constructible), then Q satisfies the con-
dition (C2) in Definition 1.6.4. In fact, take S integral and noethe-
rian as in the definition, and use the fact that in an irreducible
noetherian space, a constructible set is either nowhere dense or
it contains a nonempty open subset, according to Remark 1.10.
Thus if it does not contain an open subset, its complement does.
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We have the following results.

Proposition 1.6.4. Let X — S be finitely presented and Q one of
the following properties:

o geometrically regular;
o geometrically normal;
o geometrically reduced.
Then the set {s € S | X5 has Q} is locally constructible in S.
Proof. See [10], Corollary 9.9.5, p. 94. O

As we announced, it turns out that the flatness property often
lets constructible sets become open. In fact, if f : X — S is a
morphism of finite presentation, then the set of points x € X at
which f is flat is open in X. This observation, together with a
strong result (See [10], Theorem 12.1.6, p. 178), allow to prove the
following.

TueorEM 1.9. Let f : X — S be locally of finite presentation.
Then the set of points x € X where f has one of the following
properties: being

1. smooth;
2. normal;
3. reduced;
4. Cohen-Macaulay.
is open in X.
Proof. See [10], Corollary 12.1.7, p. 179. O

* * *

It is time to approach, as promised, the new proof of Bertini’s
Theorem in characteristic zero. Let X be an integral and nor-
mal' algebraic variety over a field k of characteristic zero. At
the very beginning of this section, one took a linear subspace
V c H(X,.Z), where .Z is a line bundle on X, and proved that
k-linear equivalence in V (that is, the operation of identifying v
to Av for all A € k*) corresponds to linear equivalence of effective

19 Normality is required to get the bijection v — D(v), see below.
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Cartier divisors on X. In particular, one constructed the divisor
of zeros (s) = (s)o associated to any global section s € V and by
the above consideration (in fact, Proposition 1.3.1) one identified
(V—={0})/k* = PV* to |D|, where D = (vy) is the divisor of some
nonzero vg € V. This allowed to assert that points in PV* parame-
terize divisors in |D|. Now, as a notation, one writes D(v) instead
of the old (v) + (vp). As always, D(v) can be viewed as a hy-
persurface in X determined by a linear combination of the shape
Aovo + - - - + Arvy, if the vi’s constitute a k-basis of V. Now, writing
v for the class of v modulo k*, then the bijective correspondence
becomes

PV ————|D(vo)|
Vi D(v).

Each divisor E = D(v) in the system has a structure of closed
subscheme of X, given by the sheaf of ideals Ox(—E) = Ox (See
Remark 1.4). More precisely, recall that &x(—E)(U) = fy.0x(U)
if E is defined by local data { U, fy; }.

One considered PV* as a projective space P™*, and this was
the variety of parameters. We now make something a little more
subtle. However, the underlying idea is always the same: putting
all the divisors D(v) together in a new algebraic variety Z, which
will look like a projective bundle at all points outside the base
locus of PV*. In what follows, we denote by P(&’) the X-scheme
called the projectivization of the coherent &x-module &. It is
defined as Proj Sym &, the global Proj of the (graded) symmetric
algebra of &. Let us define

Z={(x,v) e XxxPV*|xeD(v)}c X xx PV* =P(V* ® Ox)

where the last equality holds because Proj behaves well under
base change (Proposition A.0.5). Of course, we called V* the con-
stant sheaf on Speck with values in V* (here we view V and V*
as vector bundles over Speck).

If one shows that Z is a subvariety of X xj PV*, then one
obtains that q : Z — PV* is a family of subvarieties of X with
base PV*, where q is the restriction of the canonical projection
XxPV* — PV*, and where the members of the family are exactly
the closed subschemes D(v). In fact, proving q~!(¥) = D(v) will
require some computation; it is Lemma 1.2.

Proposition 1.6.5. The subset Z is a subvariety of P(V* ®x Ox).

Proof. Let ¢ : V@ Ox — £ be the morphism of (coherent)
sheaves that on every open subset U — X sends v ® f to f.v|y,
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for every v € V and f € Ox(U): just to fix notations, this means
that ¢(U)(v® f) = f.v|y. We can consider the dual

b L — V' @y Ox

and observe that Z = P(coker ¢*). If this is proved and we name
& = coker ¢*, then by exactness of

2* v 0x — & — 0
we get the desired inclusion P(&’) = Z — P(V* @ Ox).
We can prove Z = P(&) affine-locally, so let us fix an open
affine subset U < X. We also fix a basis vy, ..., v, of V and write

vilu = e.f;, for unique f; € Ox(U) (that is, we are translating
Z|u = e.Ox|u). Our claim is then Z|{; = P(&)|u, where

Zlu ={(x,v) eXxx PV* | xe UnD(v) } c U xy PV*
and P(&)[u = P(&]u) = Proj Sym &(U).

As Z(U) = e.Ox(U), we have Z*(U) = Z(U)* = e*.Ox(U), and
regarding the exact sequence

0——>$*(U) ——>V* ®k ﬁx(U) ——>(50(U) ——>0 (1.17)

it is important to know where the generator e* goes under (the
second arrow) ¢*(U). In general, if 6 € £*(U), then 0 is an
Oy-morphism 2|y — Ox|u and ¢*(U)(0) is the linear map in
V@i Ox(U) = (VK Ox(U))* sending vl to 6(U)(d(U)(v®R1)) =
O(UW)(v|lu). In particular, e* goes to the linear map ¢*(U)(e*)
sending vl to ety = e LY Avilu = D Aifi (if v = X3 Ajvy).
In fact, simply by using the definition of the dual basis, one sees
that

d*(U)(e*) = Zv:‘ ® fi.

Thus, looking again at exactness of (1.17), and considering the
ideal (¢*(U)(e*)) generated by e* inside Sym (V* @ Ox(U)) o
V* ® Ox(U), one has

_ Sym (V* @ Ox(U)) _ (Sym V*) @ Ox(U)
Sym AW = ") T (e

Now, P(&)|u = Proj Sym &(U) = Proj Ox(U)[to, ..., t+]/(>; fiti)
where we have made correspond v to the indeterminate t;. To
conclude, let us choose a k-rational point x € U(k), and let us
compare Zy = {(x,V) | D(v) nU>x} and

P(&]u)x = P(&]u) xu Speck(x) = Proj k&)[tf(x)t)
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Finally, choosing v = > ; Ajv; with x € D(v) is equivalent to select-
ing a point in P(&|y ), via the identification A; = fi(x). O

So q: Z - PV* is a family of subvarieties of X. The following
lemma states it is universal, in the sense that what lies above a
point v € PV* is exactly the subscheme D(v).

Lemma 1.2. The members of the family q : Z — PV* are the
subschemes D(v). That is, for every nonzero section v € V we
have Zy = D(v) as closed subschemes of X.

Proof. The claim can be verified locally on any open affine subset
U = SpecA < X. Suppose that vi|y = e.fi with f; € A, for
0 <i<r Thenv = >;Aivi = e ;Aif;, where A; € k are
coefficients.

Zy n (U x PV*) = Zy n (U xy Speck(V))
= PI'Oj A[to, R ,tr]/(}\it]' — )\jtieriti)
= Spec A/fu = Spec Op,)(U). O

ReEMARK 1.12. Perhaps now it is a good moment to revisit Remark
1.6. At that time, it could seem obscure why divisors can be in-
terpreted as preimages of hyperplanes in P" under { : X --» PV¥,
but now, after Lemma 1.2, it should be clear that points of P™ are
exactly the v e PV* we are to consider.

Lemma 1.3. If the linear system PV* is base-point-free, then the
canonical morphism p : Z — X is a projective bundle. In particu-
lar, it is smooth.!!

Proof. The absence of base points says that ¢ is surjective, so
coker ¢* =~ (ker ¢)*. Hence Z = P(coker ¢*) = P((ker ¢)*), where
(ker ¢)* must be locally free of rank r (by looking at the exact se-
quence 0 — kerp — V@ Ox — £ — 0). So Z is a projective
bundle over X, via the morphism p. O

THEOREM 1.10. Let k be a field of characteristic zero and X an
integral algebraic variety over k. Let PV* be a linear system on X
with base locus B. Suppose that X satisfies one of the following
properties Q: being

1. smooth (~ Bertini);

2. normal;

1 This is proved in [EGA IVy, p. 62].
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3. reduced.

Then there exists a dense open subset O < PV* such that for
every rational point v € Q(k) the corresponding divisor D(v) (i.e.
the fiber of q : Z —» PV* at V) satisfies Q away from B.

Proof. The goal is to find Q such that the fibers of q : q~}(Q) — Q
satisfy Q. First, by replacing X with the open subset X — B, one
may assume the linear system is base-point-free. Indeed, working
with X — B we deal with the fibers D(v)|x_p instead of D(v),
and because X — B is open in X one has that P(V*|x_g) is open
in PV*. Thus, a nonempty open subset Q < P(V*|x_p) doing
the job would be open in PV* as well, and saying that D(v)|x_s
satisfies Q is exactly our final claim. So by the absence of base
points we know that the projective bundle Z is smooth over its
base scheme X, namely, the projection p : Z — X is smooth. This
implies that all the fibers of p are smooth, in particular Z itself is
smooth. Hence Z satisfies Q.

o If Q is the smoothness property, this is the situation: there is
morphism of varieties q : Z — PV* over a field of character-
istic zero, and Z is smooth. Hence q~(Q) — Q is smooth
for some nonempty open subset O = PV*. This is exactly
the generic smoothness theorem.

o If Qis any of the above properties, then by Proposition 1.6.4
(which we apply because q is of finite type) the set

E = {V e PV* | Zy is (geometrically) Q}

is constructible. But now, as chark = 0 and Z satisfies Q,
the generic fiber Z, of q is (geometrically) Q. So (see for
example our discussion on generic ~» general) E contains
a nonempty open subset () because it contains the generic
point 1.

This concludes the proof. O

Corollary 1. If, in addition to the assumptions in the Theorem,
dimV > 2, then there are infinitely many members in PV* satis-

fying Q.

Proof. Indeed, then PV* is ”at least” a P! over an infinite field,
so any nonempty open subset contains infinitely many rational
points. O
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FINAL REMARK. Now k is any field and X is an algebraic va-
riety over k. Suppose we are given a k-morphism f : X — P"
(induced by some linear system). In proving Theorem 1.10, and
in the preceding discussion, the central object was the family

q:Z > PV* =P,

We did show that its generic fiber satisfies Q, and then used the
constructibility of Q to see that for some nonempty open sub-
set Q c PV* the fibers of q~1(Q) — Q satisfy Q. We can in fact
generalize this procedure. A hyperplane is a particular linear sub-
variety of the projective space: it has codimension one. But for all
1 < d < r we can consider

Gr(d, 1) = {Linear projective £ c P" of dimension d } .1?
Now we can construct the analog object of our family Z, namely
Z ={(x,L)e X xxGr(d,7) | f(x)e L}.

Here the condition f(x) € £ replaces x € D(v) in the old Z.
This construction is more general because we take linear sub-
varieties (intersections of finitely many hyperplanes) instead of
hyperplanes. One shows that the projection morphism

q:% — Gr(d,r)

satisfies 2, = § 1(L) = f (L) < X for every £ € Gr(d,), the
analog of our old Zy = D(v). One might ask: is there an analog
of Theorem 1.10, for linear subvarieties of P"? The answer is yes,
so here is the result.

THEOREM 1.11. Let k be a field, X a k-scheme of finite type, let
1<d<randf:X — P"ak-morphism.

(1) If Xisirreducible, then § is dominant if and only if dim f(X) >
d.

(2) Suppose chark = 0 or f not ramified. If X is smooth (resp.
geometrically reduced) then so is also the generic fiber of
§. Moreover, if k is infinite, then f~1(£) is smooth (resp.
geometrically reduced) for almost all £ € Gr(d, r).

(3) If dimf(X) > d + 1 and X is geometrically irreducible then
the generic fiber of § is geometrically irreducible.

2 For instance, Gr(1,7) = {[{] | ¢ < P" line} = PH’(P", & (1))*, and Gr(r —
1,7) = {[H] | H € P" hyperplane } =~ PH°(P", 0(1)).
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Proof. See [13], Théoreme 6.10, p. 89. O

Note that the above theorem already answers a question that
one could ask: is there a hope to let the strong Bertini’s Theorem
become true in positive characteristic? The answer provided in (2)
is yes, by requiring that f be unramified. We will discuss again
about this topic later.



CHAPTER 2

Applications and Pathologies

In this chapter we make some remarks and examples of ap-
plication of Bertini’s Theorem: most of all, we will deal with the
version holding in any characteristic, and we will point out some
basic consequences, like the existence of smooth hypersurfaces
of any degree contained in a smooth variety. For example, any
smooth surface will contain (many) smooth curves. A few ex-
plicit computations will be provided, and we will also focus on
bad situations, namely when Bertini cannot hold, because of some
missing hypothesis. We will be able to explain the failure of the
strong Bertini in characteristic zero, with an explicit example in
characteristic 2.

2.1 First positive results

Before beginning with examples, let us describe what we mean
by the dual variety of an algebraic variety X. Assume X c P} =
Projk[xo,...,xn] is a smooth algebraic variety over a field k. We
define the dual variety, as a set, to be

X* = {Txx | x€X]}.

If X is not smooth, then X* is defined to be the Zariski closure
of 8(Xsm) where 8 : X¢m — PP* is the morphism x — Txx and
Xsm is the set of smooth points of X. In any case, X* is a closed
subvariety of P}}*, hence itself a projective variety; it has the re-
duced subscheme structure but it might neither be irreducible nor
of pure dimension.

39
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For example, let X be a curve in P:. Then X* c P%* is the
set of tangent lines through the (smooth) points of X. It need not
be smooth even if X is. As an example, consider a smooth, i.e.
non degenerate conic C = V,(f) in P;. Then C =~ C*. Indeed,
by looking at the gradient map p — V,,f one sees that C* is also
a conic (unless chark = 2). But this is a very special case: in
general, the dual curve of a degree d curve has degree d(d — 1),
so it is not isomorphic to the original curve.

ExampLE 2.1.1. (More on the Space of Conics) Let k = k be a field
of characteristic # 2. Recall that on P?> we have the complete
linear system of conics ® = PH(P?,0(2)) = P°. Let us verify
directly that Bertini’'s Theorem holds. Let us choose, for instance,
the (smooth = non degenerate) conic X given by

f(XO,Xl,XQ) = X% -I-X% +X%

and let us see that, for a sufficiently general H € P?*, the section
H n X remains smooth. So let us take a hyperplane Hq : apxp +
a1x; + axxy = 0, corresponding to the point a = (ap, aj, az) € P2
We may assume a; # 0. We are interested in checking that the set
N of hyperplanes such that their intersection with X is smooth is
a dense open subset of P?*. Let us call Y, = Hq » X. Tt is smooth
atp = («,3,v) € Yq if and only if the Jacobian matrix

of of of
P ap aq ar ap ai; ap

has maximal rank,' i.e. rank Jp = 2. Assuming (3 # 0, this hap-
pens if and only if

20ca; —2PBag # 0 /B # ap/aq
2oeap — 2yap #0 < { o/y # ap/ay
2Bar —2ya; # 0 Y/B # apx/a;

where we have assumed that v # 0 (indeed o« = vy = 0 would lead
to a contradiction). So p = («/p,1,v/B) is a smooth point of Y,
if and only if p # (aop, aj,a2) = a. We deduce that Y, is smooth
precisely when a ¢ Y., which is equivalent to a ¢ X. So we find

X = {Hg | Yq is smooth } =~ P?* — X*

which of course is dense.

!Vocabulary: the good property of having smooth intersection with X is
sometimes referred to as “H intersects X transversally”.
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ExamrLE 2.1.2. More generally, let X < Py} be a smooth hyper-
surface, so that dimX = n — 1, which is the dimension of any
hyperplane H € P1*. Consider, as above,

N = { Hyperplanes H such that H n X is smooth } .

Recall (perhaps, by looking at the proof of Bertini’s Theorem) that
x € H n X is a smooth point if and only if Tx x ¢ H, if and only
if Tx x # H, which is equivalent to H ¢ X*. The first equivalence
comes from the fact that, as X is a smooth hypersurface, Tx x is a
hyperplane, that is, a hypersurface given by a linear form, hence
of dimension n — 1 = dimX, so being contained means being
equal. We conclude that

N =Pp* —X*
and N is not empty because dim X* = dim X < n.

ExaMPpLE 2.1.3. We prove that in Py} there exists “many” smooth
hypersurfaces of any fixed degree. Let us consider the smooth
variety X = P}, over any algebraically closed field k. Consider
the Veronese d-uple embedding

vqa PE —s PEl
where m = (“gd) — 1. Assume that xg, ..., xn are the coordinates
on Py and Ty, ..., Ty are those on Py*. The morphism vq is given,
locally, by a morphism 6 : k[Ty,..., Tm] — k[xo,...,xn] sending
T; to some monomial of degree d in the x;’s. Thus if g(To, ..., Tin)
is any homogeneous polynomial of degree r and V is the hyper-
surface it defines in Py*, then V n Py is the hypersurface given by
the polynomial g(6(Tp),...,0(Tm)), hence of degree dr. Hence, if
H is any hyperplane in Py, the variety H n Py} is a smooth hyper-
surface of degree d inside P}!. There exists one for every positive
integer d. What Bertini says is that the set of these smooth hy-
persurfaces is a dense open subset of the complete linear system
|0(d)| on Py.

ExampLE 2.1.4. As a last example, we prove that Bertini’s The-
orem continues to hold if X has finitely many singular points,
say X°* = {p1,...,pt}. The set of transversal hyperplanes U =
{H|H P Txx forallxe X} < P.* is a nonempty open subset,
because it is obtained as the intersection of finitely many (just by
assumption) open subsets of the dual projective space. Consider

t
W={H[HAX#@}=]J{H|pieH]}.

i=1
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Every {H | p; € H} is a hyperplane in P}*, so U’ is a finite union
of hyperplanes, and hence a closed subset of P}}*. Thus U — U’ is
still open (thus dense), and every Hy inside it satisfies Hy D Tx x
for any point x € X and Hyo n X° = &, thus Hp n X is smooth, and
Bertini’s statement then follows. If, instead, dim X® > 1, then by
the Dimension Theorem we get H n X® # (J for every hyperplane
H, thus H n X is never a smooth scheme.

To conclude this section, we give the following result. It will
be useful later.

THEOREM 2.1. Let X be an integral, normal projective variety of
dimension at least 2. Let Y c X be a closed subset of codimension
one, which is the support of an effective ample divisor. Then Y is
connected.

Proof. See [14], 111, Corollary 7.9, p. 244. O

A consequence of Theorem 2.1 is that when dimX > 2 in
Bertini’s Theorem (any characteristic), the hyperplane sections
Y = H n X are in fact connected, and since they are smooth by
Bertini, they are irreducible. In fact, a hyperplane section is by
definition an effective (it corresponds to the pullback of /(1)) am-
ple divisor on X, once one has fixed an embedding X < P}.

2.2 Something goes wrong: Frobenius

Let X be an algebraic variety. When chark = p > 0, strange
things can happen. In fact, there are two possibilities:

o The field k is infinite. Then one always finds a hyperplane,
defined over k, cutting X transversally. If k, in addition, is al-
gebraically closed, then the (weak) Bertini Theorem applies
and we know that there are many good hyperplanes, inter-
secting a smooth X transversally. But strong-Bertini might
fail. In fact, even for k = k, weak-Bertini might fail as well,
if one does not embed X in Py in the right way (that is, via
a closed immersion).

o If k is finite, we are in a trouble. All the finitely many hyper-
planes might fail to cut X transversally, even if X is smooth.
So even weak-Bertini might be false.

Zariski gave the following example: consider, for any (perfect)
field k of positive characteristic, the pencil of curves inside P
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generated by xP and yP. Then every curve is of the form Cj : xP +
AyP = 0, for A ranging Pl. But then 0 = xP + AyP = (x + Al/Py)P
says that every point in C, is a p-fold point, in particular it is
singular. This is an example of a linear system on P? with (lots
of) singularities outside the base locus (which is one point). So
we proved the possible failure of strong-Bertini, and the above
example applies both to finite and infinite (perfect) fields.

We now illustrate the possible failure of weak-Bertini over
any k = k of characteristic p > 0. Consider any smooth X =
Vi (f1,...,fr) © P™ where fi(xg,...,xn) are homogeneous. We
show that for a particular embedding of X in P™ (via Frobenius)
there is no smooth hyperplane section. More precisely, we con-
sider the composition of a fixed closed immersion with the Frobe-
nius morphism (see Appendix for the construction of the relative
Frobenius F = Fx ). More precisely, call f the composition

X - X(P) = X — pP™,

The point is that f is not a closed immersion (F is not). We show
that there is no hyperplane V4 (h) = H € P™* such that H n X =
f~1(H) is a smooth variety. Let H be any hyperplane, and let us
verify our claim locally, say on U = D. (xp) = Speck[uy, ..., un],
where u; denotes the affine coordinate x;/xo. The corestriction
iU still denoted by f, induces

# - -
K[, . tun] —— K[, .. unl/Fo oo )

1 I
Opp (U) Ox(f (W)

where fi(uy,...,un) = fi(1,uq,...,un). Thus

£1(U A H) = £7L(V(R) = V(F(R) = V(RP)
= Speck[ul,...,un]/( 1,---;frrﬁp)l

which is not even reduced.

2.3 Smooth Complete Intersection

Throughout this section, one refers to weak-Bertini (in any
characteristic). So k is any algebraically closed field. The proofs
of the main assertions in Commutative Algebra can all be found
in [3]. The main topic will be complete intersection in projective
space: one will be able to apply Bertini’s Theorem to show that for
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every r < n there exists a codimension r subvariety Y < P} which
is a smooth irreducible complete intersection (of hypersurfaces of
prescribed degree).

Definition 2.3.1. A closed subscheme Y < P} is said to be a
(global) COMPLETE INTERSECTION if its homogeneous ideal I(Y)
K[xo, ..., xn] can be generated by r = codim (Y, P}}) elements.

REMARK 2.1. We take as a definition I(Y) = T.(#y), for every Y
projective over Spec A. In fact, I, (.#y) is the largest ideal defining
Y inside P .

The aim of this section is resumable in three points.

1. We will show this result:

THEOREM 2.2. A closed subscheme Y c P} of codimen-
sion r is a complete intersection if and only if there are r
hypersurfaces Hy,...,H, in P} such thatY =H; n---n H,,
scheme-theoretically. On the level of sheaves, this means
that 4y = le + -+ er.

2. If Y c Py is a complete intersection of dimension > 0 and
Y is normal, then it is projectively normal; moreover, for
all ¢ > 0, the natural map H(PY, 0(0)) — HO(Y, Oy (D)) is
surjective. When { = 0 this says that Y is connected.

3. For any r < n choose dy, ..., d, = 1 to be arbitrary integers.
Then there exist smooth hypersurfaces H; — Py}, of degree
d;, such that the scheme Y := H; n --- n H,. is irreducible,
nonsingular and of codimension r in P}.

One can already show one direction of Theorem 2.2, the ‘only
if” one. Indeed, if Y is a complete intersection then I(Y) can be
generated by r elements, say I(Y) = (fi,...,f;) where r is the
codimension of Y in P}!. Hence Y = H; n --- n H;, scheme-
theoretically, where H; = V, (f;) for i = 1,...,r. Another way to
see the “only if” part is by considering sheaves: we have I',(.#y) =
I(Y) = (fy,...,fr) and I(Y)~ = Fy, so

Sy = (1)~ = (B (1) =207 =Y A,

as the ideal sheaf of H; = V,(f;) is (fi)~. The next efforts are
devoted to show the converse.

§ Toor I: Some Primary Decomposition. The following holds
for every commutative unitary ring A, if one replaces ‘ideal” by
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‘decomposable ideal’. But we assume that A is a noetherian ring,
thus every ideal a — A admits a primary decomposition, i.e. one
can write

a= ﬂ gi 2.1)
i=1

where g; are primary ideals. Saying that q is primary means that
q # A and, whenever xy € q and x ¢ g, one has y" € q for some
r > 0. (Equivalently, A/q # 0 and every zero divisor of A/q is
nilpotent.) Note that the radical of a primary ideal is necessarily
prime, but the power of a prime need not be primary; we say that

q is p-primary if p = ,/q.

REMARK 2.2. Because a finite intersection of p-primary ideals is p-
primary, one can always find a primary decomposition in which
all the radicals /q; are distinct; if, in addition, for every i =
1,...,mone has q; P ﬂ#i qj, then the decomposition is said to
be minimal (we always have one such, of course).

THEOREM 2.3. Given a minimal decomposition like in (2.1),
with p; = /i, one has the following identification:

{p1,p2,...,pm } = { Primes associated to a } = Assa(A/a).

Proof. See [3], Theorem 4.5, p. 52. O

Definition 2.3.2. A prime ideal p c A is said to be an ASSOCIATED
PRIME for a in case p = Ann (x + a) for some x € A. The mini-
mal elements in Assa (A/a) are called ISOLATED/ MINIMAL PRIMES,
while all others are called EMBEDDED PRIMES.

ExamrLe 2.3.1. Consider the ideal a = (x%,xy) in A = k[x,y].
Then we obtain a as p; N p3, where p; = (x) = q1 and po = (x,y).
The ideal q; = p% is po-primary because it is a power of the maxi-
mal ideal p,. Hence q; N g2 is a (minimal) primary decomposition
for a and Assa(A/a) = {p1,p2}, where p; is isolated and p; is
embedded (in this case it is easy to see, as p; < p2). The geometric
meaning of the terminology isolated /embedded prime is the follow-
ing: consider the closed subvariety X of A? defined by the ideal a.
Then, in this example, X = V(x) is the y-axis, which is irreducible
and thus corresponds to the unique irreducible component (that
is, minimal prime in the usual sense) given by (x). Instead, the
embedded ideal (x,y) corresponds to the origin, clearly lying in
X. So we have to keep in mind that an isolated /minimal prime
corresponds, ideally, to an irreducible component of the variety
defined by a, and an embedded prime corresponds to a variety
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embedded in some irreducible component. Algebraically, an iso-
lated prime p is characterized by the properties

p D a, and for every b > a onehas p D b.

As Assa(A/a) = {Isolated primes} | [ { Embedded primes}, an
embedded prime is characterized by

p D a, and for some b O a one has p O b.

Finally, because any prime ideal p © a also contains an isolated
prime associated to a, we have that

{Isolated primes associated to a } = { Minimal primes above a }

and we are very happy with this, because we recover the usual
correspondence between minimal primes above a and irreducible
components of the variety Spec A/a.

§ TooL II: Cohen-Macaulay rings and unmixed ideals. Let A
be a ring and M an A-module. We say that a finite sequence
{x1,...,%} < A is reqular for M if x; is not a zero divisor in
M (that is, there exists m # 0 such that x;.m = 0) and for all
i=2,...,r the element x; is not a zero divisor in M/a; M, where
ai = (x1,...,%i—1). The latter condition means that there exists a
nonzero m + a;M, namely m ¢ a; M, such that x;. m € a;M.

Definition 2.3.3. Let (A, m) be a local ring and M an A-module.
One writes depth , M for the depth of M, the maximum length
of a regular sequence {x1,...,%; } © m for M. If A is noetherian
(and local) one defines its depth in the same way, and we call A
a CoHEN-MAcAULAY local ring if depth A = dim A. A noetherian
(not necessarily local) ring A is said to be Cohen-Macaulay (and
we write CM) in case every localization A, at a prime (equiva-
lently, maximal) ideal of A is a CM local ring. This suggests that,
on the scheme side, the CM property will be stalk-local, and in
fact it is so.

Definition 2.3.4. Let A be a noetherian ring and a an ideal with
associated primes Assa (A/a) = {p1,...,pm }. Then a is said to be
UNMIXED if it shares its height with all of its associated primes, i.e.
hta =htp; foralli=1,..., m.

Now let us consider the following property.

(t) Every ideal a = A of height r and generated by r
elements is unmixed.
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One has the following results.

THEOREM 2.4. A noetherian ring A is CM if and only if ()
holds in A.

THEOREM 2.5. A noetherian ring A is CM if and only if the
polynomial ring A[x] is CM. In particular, if A is CM (e.g. a field)
then the ring A[xy,...,xn] is also CM.

Proof. (of Theorem 2.2) Recall that we have some Y c Py} of codi-
mension r. We still have to show thatif Y = H; n-- - n H; scheme-
theoretically, where H; = V. (fi) are hypersurfaces, then Y is a
complete intersection. We have to show that, if a = (fy, ..., f;) and
b = I(Y), then a = b. By Theorem 2.5, the ring S = k[xo,...,Xn]
is CM, so (f) holds in S by Theorem 2.4. This implies that the
ideal a < S, which is of height r because codim (Y,Py) = r, is
unmixed. Hence every p € Asss(S/a) has height r. Now, we are
in a situation where a and b define the same projective k-scheme
and in fact b = Iy = Iy, + - + Fn, = a (this translates the
scheme-theoretic equality), so that the fi’s all belong to b and
hence a = b. For every j = 0,1,...,n we have Ax;) = brxy) and

this implies that x;\jj b < a for some positive integer Nj. Indeed,

for every d > 0 and for every homogeneous element « € by there

exists some o’ € aq such that oc/xjd = o /xlfi. This implies that
d d

X (¢ — ') = 0, that is, x]doc = X; o’ € a. This holds for every d

and for every «, thus there is some N;j » 0 such that x;\lj b c a. By
setting N = max; N; one gets that

Sfbcac b.

Now we denote by a bar the reduction mod a. Let us notice that
b = b/a is an ideal of S/a satisfying §TB = 0. Let us suppose, by
contradiction, that b is nonzero. Then there exists some nonzero
element @ € b and by the above we have S\ & = 0, which says

SN c{xeS|xaea}=Ann(«+a)=pe Asss(S/a).

As S is prime, we have in fact that S is contained in the minimal
prime p. But as it is maximal we must have S, = p, which is a
contradiction because n+1 = htS, > r = hta. Thus we conclude
that a = b. O

So Theorem 2.2 is proved and the first part of our purpose is
complete. Let us pass to part 2, about projectively normal vari-
eties.
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Definition 2.3.5. Let A be a ring. A projective A-scheme Y c P}
is said to be PROJECTIVELY NORMAL if its homogeneous coordinate
ring S(Y) = Alxo, ..., xn]/I(Y) is normal (integrally closed), where
I(Y) = T (A).

Let us show that a normal complete intersection Y < P} of
strictly positive dimension must be projectively normal. We will
use the following result, applied to the affine cone C(Y) < A},

THEOREM 2.6. Let X be a smooth variety over an algebraically
closed field k and let Y X be a local complete intersection sub-
variety. Then Y (is CM and) is normal if and only if it is regular
in codimension one.

Proof. See [14], 11, Proposition 8.23, p. 186. O

Let us call r the codimension of Y in P} and, using our hy-
pothesis, let us write Y = H; n --- n H;, remembering that I(Y) =
(f1,...,fr). By considering the projection 0 : AR*! — {0} — P}
then the affine cone C = C(Y) over Y is defined to be

C=0"(Y)u{0} =SpecS(Y) c A}

Here S(Y) is k[xo, ..., Xxn]/I(Y), the homogeneous coordinate ring
of Y. It coincides with the affine coordinate ring of C. Thus our
goal is to prove that C is normal. If one shows that it is a local
complete intersection in A**! then one is left to prove that it is
regular in codimension one. In fact, C is even a global complete
intersection, because its ideal I(Y) = (fy,...,f;) is generated by
T elements, where codim (Y,P}) = r = codim (C, AL‘H) because
dimC = dimY + 1. It remains to prove that C is regular in codi-
mension one. Of course Y has this property because it is normal
by assumption, but we will not use this, we will just use that Y
is normal. Let us start by noticing that if we corestrict 0 to, say,
D (xo) we obtain

0/P+(x0) . D(xg) —> D (x0).

This corresponds to the ring homomorphism

X1 Xn 1 RS Xn 1
MLV IR SRS [N T |
Now if we write y; for the class x; mod I(Y) then C — {0} =
0-1(Y) = |J; D(yi) and the corestriction of 0 to Dy (yi) = Y is
D(yi) —» D4 (yi), and this holds for all i = 0,...,n. By the above,
we remark that C — {0} is, locally on each D(y;), the product
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of the affine schemes D (yi) xx Gm, where we identify G, to
Speck[t, t1]. Hence

O(D(yy) = O(D- (y) ¥k Gm) = O(D (u1)) @k O(Grm)
— 6(D () & K[t 7] = O(D4 (y)[t, 7]

and the latter is a normal ring as, in general, if A is normal then
A[t] is normal, and the same holds for any localization of A. Here
of course we used that each (D (yi)) is normal. So we conclude
that C — {0} is normal. At the origin, we have that

dim0cp =dimC =dimY +1>1

so we get that C is regular in codimension one, as claimed.

To conclude part 2, we need the following result (which holds,
more generally, if one replaces the field k with any ring A):

THEOREM 2.7. A projective k-scheme Y < P} is projectively
normal if and only if it is normal and, in addition, the natural
map HY(PY, 0(¢)) — HO(Y, Oy (1)) is surjective, for every ¢ > 0.

Proof. See [Hartshorne, II, Ex. 5.14(d)] O

So in particular we have that for a closed projectively normal
subvariety Y c P} all the morphisms HO(P, 0(0)) — HO(Y, Oy (1))
are surjective. When ¢ = 0 we have that H(P}, &) = k surjects
onto HO(Y, Oy) = Oy(Y), hence dim Oy (Y) < 1, which says exactly
that Y is connected. Indeed, if it were not connected, one could
decompose Oy(Y) as a direct sum of copies of k. Part 2 is now
complete.

To prove the third point of our initial goal, we will iterate, in
some sense, the reasoning we did in Example 2.1.3. So now we
are assuming that r < n and we have r positive integers dy, ..., d..
We want to construct a smooth irreducible complete intersection
Y c Py given by the intersection of r hypersurfaces of the given
degrees. To start with, we define the integer m; = ("{%) — 1. In
Example 2.1.3 we saw that if we consider the d;-uple embedding
v1 : P — P." then (by Bertini) there is (in fact, there are many)
a hyperplane in P! that pulls back to a smooth hypersurface
H; < P} of degree di. Now, vz(H;) < P.? is a smooth variety,
and again by Bertini there is a hyperplane H < P such that
H n vy(Hjp) is smooth of dimension dim H; — 1. The preimage of
this intersection under v, is some H; n H,, where Hj is a smooth
hypersurface of degree d,. Note that Bertini also ensures that
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the dimension drops by exactly one at each step. One can go on
like this r times, and at the end Y := H; n --- n H, is smooth of
codimension r in P. So it is a normal complete intersection of
positive dimension (because r < n) and by part 2 we get that Y is
connected; as it is smooth, it is also irreducible, as claimed.

SummARry: Thanks to Bertini, we have just proved that
for every r < n there exists a codimension r subva-
riety Y < Py which is a smooth irreducible complete
intersection, given by intersecting r hypersurfaces of
prescribed degree.

2.4 Moving singularities: failure in char 2

Throughout this section, one refers to the (stronger) version of
Bertini in characteristic zero (a general member of a linear system
is smooth away from the base locus), and one shows that it may
fail in positive characteristic.

In the following example one deals with a linear system of
cubics of dimension 2 (a net), all of whose members are singu-
lar, with singular points (inside and) outside the base locus. Let
k o [F, be an algebraically closed field of characteristic 2. Let us
name T the scheme P@ZF2 = {Py,...,P7} (see Figure 2.1 below). One
defines ® to be the linear system (over k) of all the cubics passing
through the P;’s.

®
J‘/ \\
AP N
/AT
¢ o o

Figure 2.1: The projective plane over [F».

FINAL GoAaL. First, it will be shown that © is a net with
base locus equal to T, and the associated morphism
P — T — P} is inseparable of degree 2. After that, we
will see that all the curves C € © are singular: either
C consists of three lines passing through (exactly) one
of the P;’s, or C is an irreducible cuspidal cubic curve
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with cusp S ¢ T. Furthermore, associating to C € ©
its (unique) singular point gives a 1-1 correspondence
between © and P%.

We recall the following:

Definition 2.4.1. A morphism of, say, integral schemes f : X — Y
is said to be purely inseparable if it is injective and if for every
x € X, the extension of residue fields k(f(x)) < k(x) is purely
inseparable. It is called INSEPARABLE if K(Y) < K(X) is insepara-
ble (i.e. we drop the injectivity? and we just have to check at the
generic point).

Let us construct explicitly ©. Before that, let us list the points
inT:

Py = (1,1,0) Ps = (1,0,1) Ps = (0,1,1) Py = (1,1,1).

If x,y, z are homogeneous coordinates on P2, the generic cubic
C < P% is given by the vanishing of the polynomial
3 2 2 3
a1x” + axx“y + azx“z + agy” + asxyz+
agxz® + a7xy2 + agz® + agyzz + aloyzz.
Imposing that € passes through Py, Py, P3 forces a; = a4 = ag =
0. Passing through P, gives a; + a; = 0, which means a; =
ay. Similarly, for Ps we get az = as, while Pg gives a9 = ayg

and passing through P forces a5 = 0. Thus, after renaming the
survived coefficients, we get that the general member of D is

f(x,y,z) = a(xzy + xyz) + b(xzz + xzz) + c(yzz + yzz) (2.2)

so that © is a two-dimensional linear system, generated by the
three cubics appearing in the expression of f. One easily sees that

Bp=CinCnC =T,

where C; are the generators of ©. Therefore there is a morphism

Vv:P:—T P
(x,y,z) —— (x%y + xy?, ¥’z + xz%,y°z + yz?)

2The reason is that we want that a composition Z — X 5 X®, with F
the relative Frobenius, be an inseparable morphism, but it has no hope to be
injective whenever the first arrow is not injective.
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and one has to show it is inseparable of degree 2: it is enough to
do this locally, for example in the open subset U = D, (z) =~ A%,
where z = 1. The coordinates on U are s = x/z and t = y/z. The
restriction of \ becomes

(P —T)nlU) — Vo(y?2 +y) — AL

2 2 2
(x,y,1)1 (R )

More precisely, we have

XZy —l—xgz _ x? +yx
y2+y  y+1’

thus the induced morphism on function fields is defined as fol-
lows:

j:k(s,t) C——>k(x,y)

xX+y

y+1 x
x+1 x
y+ly

One has to show that k(s,t) = k(j(s),j(t)) =t K < k(x,y) =: Lis
an inseparable extension of degree 2. First, let us notice that

S t

t ot

. . x+1+x+y
t = = .
yj(t) +i(s) o

By replacing this value of x in, say, j(s), we get
0=(s) +i(s) = () + 7Y

)y +1) + 3 +yjts) + yH(t) + yj(ts) +j(s)* + yij(s)
y+1

X

whence the relation
Vi GO) + D) +i()G(s) +1) =0 ~ y*+c=0

with ¢ =j(s)(§(s)+1)/j(t)(j(t)+1) € K. So the minimal polynomial
of y over K is u? + ¢ = (u + +/c)?, which is inseparable of degree
2.

Let us pass to the second part of the final goal, regarding sin-
gularities in ©. First, let us show that every curve in ® is singular,
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by building the system
r of 2 2
—=ay +bz"=0
ox Y Vay =+vbz
of 2 2
<%=ax +czf=0 ~ Vax =./cz
Vbx =4/cy
ZZ:bxz—i—cyz:O

which gives the singular point S = (1/c,v/b, 4/a). One notes that
every P; is singular for exactly one cubic in ®, obtained by letting
a,b,c lie in F,. For example, P; is singular on the cubic curve
y?z + yz? which, in addition, is a union of three lines. More pre-
cisely:

Points 1IN Fp COEFFICIENTS EqQuaTtioN
P; a=b=0,c=1 yz(y + 2)
P> a=c=0,b=1 xz(x + z)
P3 b=c=0,a=1 xy(x +y)
Py a=0,b=c=1 z(x+y)(x+y+z)
Ps b=0,a=c=1 ykx+z)(x+y+2)
P c a=b=1 x(y+z)(x+y+z)

I
I o

-
\]
o
on
I
o
Il
—_

(x+y)x+2)(y +2)

During the computations, one easily notices that the unique
way of getting a union of three lines is in fact by choosing a, b, ¢
in Fr. So the 7 above equations classify all cubics with a sin-
gular point in T, and any other cubic will be singular in S =
(v/c, /b, 1/a) but will never split into three lines. Finally, two dif-
ferent triples of coefficients will necessarily give rise to different
singular points, so one concludes that the association

D —— PL
C|—>'SC

is a bijection, and the singularities in ® move all over.

2.5 Kleiman-Bertini Theorem

The aim of this section is to explain a generalization of Bertini’s
Theorem due to Kleiman (see [16] for the result in its original
form, or: [14], III, Theorem 10.8; or [12], Theorem 17.22 on page
219).
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From now on, the base field k is assumed to be algebraically
closed, and all schemes considered are integral k-varieties. A ho-
mogeneous space is a couple (X, G) where X is a variety and G is a
group variety acting on X, in such a way that the group G(k) acts
transitively on X(k). Let us start by giving the friendly statement
presented in [12], even if it will be generalized later:

THEOREM 2.8 (Kleiman-Bertini, special case). Let (X, G) be a
homogeneous space. Let Y — X be a smooth subvariety and g :
Z — X a scheme over X. For s € G, define V; = sY xx Z < Z, the
pullback of the diagram

A

lg
sY &—— X

where sY is isomorphic to Y but is included in X in a different
way, namely the embedding sY — X sends y — sy. Then, for a
general s, the singularities of V; are all contained in the singular
locus of Z, that is (Vs )sing = Vs M Zsing-

As a consequence, consider the case where g is an inclusion.
So what we have is two subvarieties Y, Z of X and one of them is
regular. But if both are regular, then sY n Z is regular for general
s € G. In words: the general translate of a smooth subvariety
of a homogeneous space meets transversally any other smooth
subvariety.

Kleiman starts its paper by proving the following;:

Lemma 2.1. Given a diagram of integral schemes

YAYA

the following facts are true:

(1) if q is flat then there is a dense open subset U — S such
that for every s € U, either p~1(s) xx Z is empty, or it is
equidimensional of dimension dimp~!(s) + dim Z — dim X.
(Here, of course, p~!(s) = W xs Speck(s) = W.)
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(2) If q is smooth and Z is regular, then p~1(&) xx Z is regular,
where ¢ is the generic point of S. If chark = 0 then p~!(s) x x
Z is regular for s ranging a dense open subset of S.

Essentially, everything that is inside Kleiman’s paper follows
from the above lemma. First of all, the following theorem (gener-
alizing slightly Theorem 2.8). Recall that if s € G then for every
X-scheme f : Y — X the translate sY is (isomorphic to) Y, viewed
as an X-scheme via the map y — sf(y).

THEOREM 2.9 (Kleiman-Bertini). Let (X, G) be a homogeneous

space. Consider Y LX< Ztwo maps of integral k-varieties (k
any algebraically closed field).

(1) There exists a dense open subset U < G such that for every
s € U, either sY xx Z is empty or it is equidimensional of
dimension dimY + dim Z — dim X.

(2) If chark = 0 and both Y, Z are regular then there is a dense
open subset U — G such that for every s € U the variety
sY xx Z is regular.

Proof. The strategy is to recover the hypothesis of the Lemma:
Kleiman shows that in the diagram

GxY VA
/ K /
G X
the morphism q sending (s,y) — sf(y) is flat (so (1) follows) and
in fact - thanks to regularity of Y - it is smooth (so (2) follows,
as pl(s) = {s} x Y = sY). The smoothness of q is proved by

showing that, in addition to flatness, its fibers are geometrically
regular and equidimensional. O

As a particular (and important) situation, consider when both
Y,Z c X are subvarieties of a homogeneous space (X, G). Then
the pullback along X becomes the scheme-theoretic intersection,
and we get that:

(1) for general s € G, the scheme sY n Z is purely of dimension
dimY + dim Z — dim X.

(2) If chark = 0 and both Y, Z are regular then for general s € G,
the scheme sY n Z is smooth.
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As another consequence, there is our old friend.

Corollary 2 (Bertini). Let k be algebraically closed of characteristic
zero. Suppose P is a linear system on an integral scheme Z. Then
a general element in the system is smooth away from the base
locus and the singularities of Z.

Proof. Here the homogeneous space X is (P",PGL(r,k)). By re-
placing Z by Z — (B U Zsing) (the base locus B and the singu-
lar locus Zging being both closed in Z), we may assume that Z is
smooth and the system is base-point-free. Then we have a mor-
phism 1y : Z — P" and by construction the elements of the linear
system are the preimages of the hyperplanes H < P" under 1,
that is: Dy = P }(H) = H xpr Z is the divisor corresponding
to H. The two arrows appearing in Kleiman-Bertini Theorem are
then H < P" « Z where H is a fixed hyperplane. Because the
action of PGL(r, k) is transitive on hyperplanes, we can conclude
that for general H the element Dy, is smooth. O

ReMARK 2.3. Every result that has been deduced in characteristic
zero up to now (look at all the items labelled (2)) is still true if
one replaces ‘regular’ (or smooth) by: reduced, normal, Cohen-
Macaulay.

One might ask: what is the hurdle that one has to clear to
let Bertini’s Theorem (Corollary 2) become true over a field of
positive characteristic?

Answer: ’Ramification. In fact, inseparability.

Just to be clear:

Definition 2.5.1. A morphism f : S — T of k-varieties is said to
be UNRAMIFIED if for all s € S, and letting t = f(s), one has that
mg = m0s (via Oy — O5) and the extension k(t) < k(s) is finite
and separable.

TaeoREM 2.10 (Bertini for k = k and chark = p). Let Z be a
regular integral scheme and P" a base-point-free linear system on
Z. Then a general element of the system is regular if Z separates
infinitely near points, that is, if the associated morphism{ : Z — P"
is unramified.

Proof. See [16], Corollary 12, p. 296. O
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REMARK 2.4. In the previous section, when we dealt with the lin-
ear system of cubics passing through P%z, we proved that the mor-
phism P> — T — P? is inseparable by looking at the generic point
of the projective plane. So in particular it is not unramified. This
fact agrees with the above theorem.

2.6 Abelian varieties are quotients of jacobians

In this section the reference is [1]. The motivation for this short
discussion is just that we have a chance to use Bertini’s Theorem in
order to prove something nontrivial, and moreover the proof here
presented is an example of how Bertini can be useful in “reduction
steps”. The aim is showing:

TueoreM 2.11. Any abelian variety A over an infinite field k
is a quotient of a jacobian variety.

An abelian variety is a geometrically integral and projective
algebraic group. Note that if dim A = 1 then A is an elliptic curve,
thus it is isomorphic to its own jacobian and the above statement
is satisfied.

Let C be a nonsingular projective curve of genus g > 0 and
let ] be its jacobian. We first describe the universal property of an
important arrow mapping to the jacobian. We will need it during
the proof of Theorem 2.11. So, the situation is the following.

The map F : C(k) x C(k) — J(k) sending (Q,P) — [Q] — [P]
happens to be defined over k even if C has no rational points. To
prove this, one has to show that for every Galois extension of k
and for every o in the Galois group, one has oF = F. This k-
morphism is universal in the following sense: for any map 6 :
C x C — A to an abelian k-variety A, satisfying 6(A) = 0, there
is a unique homomorphism { : ] - A such that 6 = {p o F. We
will deal with a smooth curve C < A so our 6 will be the map

(Q,P)—»Q—"P.

Lemma 2.2. Let X be a nonsingular projective k-variety of dimen-
sion at least 2, and let us fix a closed embedding X — Py. Let
Z < X be a hyperplane section relative to this embedding and V
a nonsingular variety with a finite morphism 7 : V — X. Then
n=1(Z) is geometrically connected.

Proof. One may assume k = k, because closed immersions, finite
morphisms, hyperplane sections all remain what they are after
base extension. So, one has to show that 7~1(Z) is connected. As
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Z is ample on X (by definition), t~!(Z) is ample on V (the pullback
of an ample line bundle by a finite morphism between complete
varieties is still ample). By Theorem 2.1, which we apply because
dimV > dimX > 2 and because 7t 1(Z) < V is again ample, we
can conclude. O

Proof. (of Theorem 2.11) We may assume dimA = d > 2. As
A is projective, we may fix a closed embedding A — Py}. Let 1
denote the algebraic closure of k. Bertini says that there exists a
dense open subset U;  PT** such that every hyperplane H € U,
gives a smooth connected (again by Therorem 2.1) intersection
HnA;. Because k is infinite, U; (k) is nonempty (it is even infinite).
So one can choose a good hyperplane H; with coordinates in k,
and this will give a nonsingular (geometrically connected) variety
AnH; < P, of dimension d—1. To this new subvariety of P}’ (and
to its induced embedding) one applies the same procedure, in
order to find a new open subset U, — Pi** and a new hyperplane
H, defined over k, such that A n H; n Hy < P} is nonsingular,
of dimension d — 2. In total, if one does so d — 1 times, one ends
with a nonsingular curve C c A obtained by intersecting A with
a linear subspace { = H; n--- n Hg_1 < P{. Now, remembering
Lemma 2.2, one discovers that for each nonsingular variety V with
a finite morphism 7t : V — A, one can say for sure that 7~!(C)
is geometrically connected. One has to use the above Lemma
with smaller and smaller hyperplane sections: at the first step
one sets Z; = A n Hy, then one looks at m1(Z;) — Z; and sets
Z, =71 nHy, andsoon,until Z4_1 = C.

Now, by the universal property of the map F: C x C — ],
there is a morphism { : ] — A where ] is the jacobian of C
(note that C might not have a rational point). Let us call A; the
abelian subvariety 1 (J) < A. Let us assume, by contradiction, that
A1 # A. Itis a theorem that A; has a complement, that is, there
exists an abelian subvariety A, < A such that A; + A; = A, the
intersection AjNA; is finite and the map 7 : A; xA; — A sending
(P1,P2) — P14 Py is an isogeny (a surjective morphism with finite
kernel), so in particular it is finite. The inverse image 7, YAy =
{(P,Q)e A1 x Ay | P+ Q € Ay} decomposes (note that Q € Ap)
as a disjoint union of the following m := § (A1 n Ay) irreducible
components:

mlA) = [] (A1-Q) x{Q}.

QEAlﬂAz

Thus, if m > 1, then because C A1 one has that 7, L(C) is also
disconnected, and this is a contradiction. But if m = 1 (that is, ;
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is an isomorphism) one cannot conclude yet. However, one can
choose an integer s coprime to chark, and consider the composi-
tion

A1 x Ay LM x Az (P,Q) ————(P,sQ)
dst
T
A P +sQ

In this case m~1(A1) = {(P,Q) € Ay x Ay | P +sQ € A } says that
each such Q satisfies sQ € A;. Now, because s is coprime to
chark, the degree of 1 x s is the power s24™A2 and this is strictly
bigger then 1. So, by the decomposition

mlA) =[] (Ai—sQ) x{Q}

Q€A2|SQEA1

one sees that there are deg (1 x s) > 1 components. Hence, as
above, because C = A; one can conclude that neither 7t=1(C) is
connected, contradiction. O

REMARK 2.5. The main result of this section remains true over
finite fields, and the strategy of proof is exactly the same, pro-
vided that one applies Bertini’s Theorem for finite fields, replac-
ing hyperplanes with hypersurfaces of higher degree (this is done
in [18], and explained roughly in the Introduction.)

2.7 Arithmetic Bertini Theorem

The main object of study in this section will be arithmetic va-
rieties over the ring of integers of a number field. One will start
with some notations and definitions, in order to make some sim-
ple but useful remarks.

Definition 2.7.1. An ARITHMETIC VARIETY of dimension m is an
integral scheme X, projective and flat over Z, such that the generic
fiber X is regular of dimension m — 1. If K is a number field and
B = Spec Ok, an arithmetic variety over Oy is a B-scheme X that is
an arithmetic variety and whose generic fiber Xy is geometrically
irreducible over K.

Proposition 2.7.1. Let Y be a Dedekind scheme and f : X — Y a
morphism, with X a reduced scheme. Then f is flat if and only if
every irreducible component of X dominates Y (i.e. its image is
dense in Y).
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Proof. See [17], Proposition 3.9, p. 137. ]

REMARK 2.6. Let us prove that an arithmetic variety X over O is
both projective and flat over B = Spec Ox. Because X is projective
over Z, there is a closed immersion ¢ : X — P for some n. The
module M = H(X, $* & (1)) is finitely generated over Z (Theorem
1.5) so one has a surjection Zm M sending (ay, ..., an) to the
sum »; ¢*(sj)a; where s; € HO(P}, ©(1)) are the global sections
determining ¢. Thus one has a commutative triangle

X © P(M)

]

P

and since ¢ is a closed immersion, so must be 6. Note that M is
locally free over Ok because it is projective.
For flatness one proceeds as follows. If f : X — B is the structural
morphism, there is a commutative triangle

Tk

SpecZ

where o is separated and h is proper (because it is projective), so
f is proper. Hence f(X) is either the whole B or it is one point. But
if it is one point, then the same is true for h(X), by commutativity
of the triangle, and this is impossible as h is flat. So now apply
Proposition 2.7.1 to the morphism f, to see that it must be flat.
Indeed, f(X) = B says that the unique irreducible component of
X dominates B. Remark, finally, that an arithmetic Ok-variety is
necessarily horizontal, that is, it is flat and surjects onto the base.

* * *

The Arithmetic Bertini Theorem proved by Autissier in [2] is
too advanced for our comprehension (it requires the theory of
heights). So our final goal is to show the ”algebraic part”, which
is however an important tool in the proof of Autissier main re-
sult. In the classical Bertini Theorem one calls good a hyperplane
H giving a smooth intersection X n H. Recall that such a hyper-
plane section can be viewed as an element of the universal family

Ix < P x X, namely, as the set of those couples (H, p) where p
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ranges X N H. Next, in this arithmetic version, one will call good
those hyperplanes with two properties instead of just one (we
describe them below): this will make our good locus relatively
small.

— MAIN CcHARACTERS. We fix a number field K and denote
B = SpecOk. This will be the base scheme, replacing the base
field of classical Bertini Theorem. We also fix a locally free Ok-
module M of rank n + 1 (this replaces the vector space k" *!). By
P we mean the projective bundle P(M) = Proj (Sym M) and by
P* its dual, both projective spaces of dimension n, not over a field
but over Ok (and, as usual, points in P have to be thought of as
hyperplanes in P*). Let 3 : P — B be the structural morphism and
H < P xg P* the universal hyperplane. Our best friend will be an
arithmetic Ok-variety X < P* of dimension d > 3, with structural
morphism f : X — B. By Xy, we will always mean the fiber f~1(b).
Note that these fibers are all of dimension d — 1 (a flat morphism
of irreducible algebraic varieties has fibers of constant dimension.
See [Liu, Remark 3.15, p. 139] for the details); moreover, Xy, is
nonsingular over k(b) for all but finitely many b € B: indeed
these bad points form a closed subset (of a scheme of dimension
one), essentially by the openness condition in Theorem 1.9, and
because saying that f is smooth at x € X amounts to asserting that
f is flat at x and x is a smooth point in the fiber X¢(), over the
field k(f(x)). Finally, the bad b € B are collected in a finite locus
J, that is:

] = {be B | Xp is singular over k(b) } < B.

Here is a short preview of the future discussion: as usual, we
are interested in answering questions like:

o is there a smooth hyperplane section X n H?

o how many hyperplane sections are smooth?

— PreviEw. For the first question: it turns out (Proposition
2.7.2) that what one can do without extending the base B is to find
a closed horizontal subset Z — P containing the bad locus (where
we still have to specify what will be good/bad for us); in other
words, we will be able to lock the bad hyperplanes inside a quite
small (= closed) subset Z. This is already very nice, but it would
count for nothing if there were no B-valued points inside the good
locus (in that case, no good hyperplane would be defined over B):
this of course can happen, because we do not work over a field,
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so an open subset of a projective space might have no rational
points. Instead, what one can do by (suitably) extending the base
is to find a (arithmetic) hyperplane section X’ < X, over some
B’ = Spec O such that the only singular fibers X;, of f' : X’ — B’
correspond to those b’ above points in | (thus there are finitely
many of them).

For the second question: the answer is that one good hyper-
plane section is guaranteed if one fixes a suitable extension. If one
wants a (infinite) family of good hyperplane sections one has to
perform subsequent extensions Kc Lj c L, < ...

Let us start with the details. First, let us “visualize” the hy-
perplanes inside P*. These are exactly the fibers H{y = I xp
Speck(y) < P* of H{ — P at all points y € P.

Another important object is the universal hyperplane section
H = H xpr X = H n (P xpg X) € H (a universal family over
P whose members are the sections X n 3(). If one calls 7 the
composition H' < H — P then 7 is the morphism defining the
family . More precisely, if y € P is any point, then H;, = 7' (y)
coincides with the hyperplane section X n (.

In the sequel, one will work inside the open subset

Up={yeP|misflaton I } < P.

— INTERLUDE. Before going on, it is perhaps useful to set up
a comparison with the usual Bertini Theorem, just to check the
analogies.

Bertini over k Bertini over Ok
Main character: X c Py projective X < P* arithmetic
Hyperplanes: rHcPY) P (3, c P¥)

Univ. Hyp. Section: ~ H n (PR* xx X)  Hn (P xg X) = H’

Hyperplane Sections: XnHcP} XnHy =3, < P*

As it was announced, there is more than a single condition to
define a good y € P. Let us see this in detail, by looking at the
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following arrows:

Uo—B> B y L b
& N I
F! X 3, Xb

One calls good those y € Uy such that: either

e one has B(y) € B —J, and 3] is smooth and geometrically
irreducible over k(y), or

ee wheny e B71(b) for b € J, then in this case n(Xyp) = n(3¢,).

By resuming conditions e and ee, one recovers a good locus

W'=WuUWbCU0<:P
be]J

where Wy, = {y e Uy n B71(b) | n(Xp) = n(3) }-

— Notation: If B is any scheme and f : X — Y is a B-morphism,
one will denote by fy, the morphism f x 1: X — Yy,.
A quasi-coherent sheaf .# on X is said to be f-flat at x € X in
case Fy is flat over Oy ¢(y) (via Oy (x) = Ox,x). Let us recall the
following result, whose proof can be found in [EGA 1V3, p. 138].

TaeOREM 2.12 (Fibral Flatness Criterion). Let B, X, Y be locally
noetherian schemes, .%# a quasi-coherent sheaf on X, f : X —» Y a
B-morphism, and x € X. Assume that

h

Y ———— B YrH——>>»
f g
X X

is commutative. Then, if .7 is coherent and .% # 0, the following
are equivalent:

(1) The sheaf .# is g-flat at x and %y, is fp-flat at x.

(2) The morphism h is flat at y and .7 is f-flat at x.
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Coming back to our situation, there is a commutative square

B

P———B
- [s
:]_C/ —G> X
and if one denotes P, = B~!(b) = {np}~ and T = f o 0, one can
use the criterion to show that for every b € B the generic point 1y

of Py, lies in Uy: that is, 7t is flat at every x € w1 (np). It is enough
to consider

P—B>B MrFH——>D>»
e

T
H’ X

for b € B fixed and x € H{, such that 7, (x) = ny. So, taking
the coherent sheaf .7 = 0'y/, the statement says that the following
are equivalent:

(1) The morphism Ogp — Oy « is flat, and 7, : Hy, — Py is
flat at x.

(2) The morphism Og 1, — Op, r, is flat and m is flat at x.

Let us verify that (1) is true: H' — B is flat because it is a
composition of flat morphisms (7 is flat because f is and 3 is
flat because o is; and o is flat because H’ is a universal family).
Finally, Op, ., — Ox is flat as Op, y, is a field. Hence (2) is true,
in particular 7 is flat at all points x € H{ such that m,(x) = 1y,
which means exactly that np € Up. And this holds for all b € B.

Proposition 2.7.2 (Autissier). The locus P — W’ is contained in a
closed horizontal subset Z = P, purely of codimension one. Hence
the good locus W' contains the nonempty open subset P — Z.

Proof. One has to show that n, € W’ for all b € B. If this is
done, one can conclude because W' is constructible (union of con-
structible subsets of P) and a constructible set which is a neigh-
borhood of all the generic points contains an open subset.

Start with b € B — J. Let us note that f : X — B is birational
projective and B is normal so, according to Zariski Main Theorem
(cfr. [Hartshorne, p. 280]) the fibers Xy, of f are geometrically con-
nected. Those coming from b € B — | are also smooth over k(b),
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so they are geometrically irreducible as k(b)-varieties. Hence, by
classical Bertini’s Theorem, the generic hyperplane section
is smooth and geometrically irreducible over k(ny) (recall that
dim Xy, > 2) and this says that n, € W.

If b € ] then n(H;,) = n(Xyp), sonp € Wh. O

REMARK 2.7. Note that one can discard the second condition defin-
ing W/, in the following sense: instead of considering the loci W,
one might take the whole fiber Py, for those y € Up such that
B(y) = b € J. This is a situation more close to the usual Bertini
Theorem but the good locus become quite larger, so it is morally
not so hard to find good hyperplanes. Instead, by considering W'
as above, one gets more information.

THEOREM 2.13 (Autissier). There exists a finite extension L/K
and a closed subscheme X’ < X, such that, by letting B’ =
SpecOr and g : B’ — B, the morphism induced by the inclusion
Ok < O1, one has:

e the scheme X' is an arithmetic variety over O, of dimension
d-1;

e for every b’ € B/ such that g(b’) € B —J, the fiber X, (of the
structural morphism f’ : X’ — B’) is smooth and geometri-
cally irreducible over k(b’);

e for every b’ € B’ such that g(b’) € ], n(Xy,,) = n(Xgvr))-

Morally, Autissier’s theorem says that in the hyperplane sec-
tion X’ the only bad points come from (= live above) points of X
which were already bad at the beginning.
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APPENDIX A

Appendix

This chapter is devoted to fill the (main) gaps here and there
left throughout the previous work. Giving complete proofs or def-
initions at the right moment would have diverted attention from
the discussion.

Proor oF THEOREM 1.4

THEOREM — Let X be a variety and v a positive integer. Vector
bundles of rank v over X correspond, up to isomorphism, to locally free
Ox-modules of rank .

Proof. Let us use the identification C" = A". Start with a complex
vector bundle 7t : E — X of rank r. Consider the sheaf I'(—, E) of
sections of E, defined as follows: for every open subset U < X

NWE)={U-5E|mos=1y}.

This amounts to saying that every point x € U is sent to a point
of the C-vector space Ex. Note that I'(U, E) is an &x(U)-module:
first, it is an abelian group since we can add two sections s, t over
U by declaring that (s+t)(x) be the element s(x) +t(x), sum of two
vectors in Ex. We can also multiply by a regular function f : U —
Al, simply by evaluating: (fs)(x) = f(x)s(x) € Ey. It is easy to
check the compatibility of restrictions. Now we show that I'(—, E)
is locally free. Recall that, together with (E, ), we are given an
open covering (U;) of X on which E is trivial, i.e. we have a family
of trivializations E|y, — U; x A". If A" = SpecC[xy, ..., %], we

67
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can consider the local coordinate sections

Xiiui —>Ui x AT
pr— (pei)

where e; is the vector with all zeros except for a 1 in the i-th
component. This is a section: when composed with the projection,
we get the identity on U;. Moreover, any section s € I'(Uj, E) can
be written as f1x1 + - - - 4 f;x, for some regular functions f;, so we
can define a morphism of &’x(U;)-modules

MU, E) — Ox(Uy)"
s+— (f1,..., ).

This is the required isomorphism. Note that we have been able
to check the locally free property on the open covering on which
E becomes trivial, just because these special subsets U; speak to
us and say: “We trivialize E, so if you look at sections of the
projection U; x A" — U; then you are done”. The way they say
this is through the commutative diagrams

Elu; -~ U x AT

1

% pr

U

So, our argument simply says: such a section of pr is identified
by a n-tuple of regular functions.
Now start with a locally free Ox-module .# of rank r, and an open
covering 4 = (U;) of X, so that .# |y, is a free Ox|y,-module of
rank r for every i. Denote T; the isomorphism .7 |y, = O] Y and
notice that 4 can be chosen to be finite, since a variety is quasi-
compact. Construct the disjoint union F = [ [(U; x AT), on which
we will set an equivalence relation once we will have a suitable
family of transition functions. For every i,j we have a couple of
isomorphisms
o Ti T ar T T
</|ui—>ﬁu,l J|uj—>ﬁuj
and if we restrict each of them to Uj; we get two new isomor-
phisms
7 fi T
7 |U.1j ﬁuﬁ :
f
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Hence, gi; = fifj’ L e Aut.z |U‘u’ ~ Aut ﬁ{lﬁ. That is, for every
i,j we can identify each gij to an r x T matrix Aj; with entries in
Ox(Uy;). Call again gy; the morphism of varieties Uj; — GL(r, C)
sending a point x € Uj; to the matrix Aij(x). These gi; are tran-
sition functions, so we can glue the U; x C" together along their
intersections, by identifying (x,v) € U; xC" to any (y,w) € U; xC"
whenever x = y and w = gy5(x)v. The quotient of F that we get,
together with the fibration [(x, V)] + x, is the required vector bun-
dle on X. O

CecH COHOMOLOGY

Let X be a topological space and Y = (Uy)xea an open cover-
ing. Put a well-ordering < on A and define X;, for i > 0, to be
the set of simplexes U = [Uy,,..., Uy, ] i.e. the set of those sets
{Ugg, ..., Uy, } such that Uy, «, # &. One can also interpret a
simplex as a set of indices { «p, ..., &; } such that g < -+ < 4.
For any (pre)sheaf .# on X, define the (additive, say) group of
Cech i-cochains to be

Ci(ﬂ,f) = H y(uag...oq) = H y(uag...oci)

xXo<--<&Xj Qezi

In fact i-cochains are functions s : ¥; — ]—[0(0<"'<“i F(Ung...ot;)-
For any i > 0 there is a group homomorphism J' : C'(4, &) —
CH1(4,.7) defined by sending s = (s(x, ..., &i))ag<-<a; to the
function d's € Ct1(4l, F) taking the (i+1)-simplex { «p, ..., oti11 }
to the element

i+l

D (=D¥s(og, B i) U g,

k=0

One can show that 0'*! 0 0! = 0 so that C*(4,.%) is a complex.
Let us make some examples in low dimension: if i = 0 then
CO8t, F) = [[o Z (Ug), so that a 0-cochain s = (s(«)) is a func-
tions: A — [ [, Z(Uy). Applying ¢° gives a 1-cochain ?°s send-
ing the one-simplex { «, 3 } to the element s(&)|u,, — s(B)u,, €
F (ucxﬁ)-

One verifies that the transition functions of a vector bundle
are a Cech one-cochain in the complex C*(4, 0x). First, ¢ =
(gap) * Z1 = [lacp Ox(Uap) is an element of clw,og) =
[Ta<cp Ox (Uap). It goes under o' to a function taking the two-
simplex { «, 3,y } to the element

c(B,¥v)elo,y) el B)Uapy = 9Bv Ty G [Ungy
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But the cocycle condition

Jooy (X) = Gap(X)gpy (x)  Vx € Uapy
says exactly that the c is a Cech one-cocycle.

* * *

SOME RELATIVE CONSTRUCTIONS

Definition A.0.2. A morphism of schemes f : X — Y is said to be
affine if there exists an open affine cover (Y;) of Y such that f=1(Y;)
is affine for every i.

If f is finite type then it is affine (in fact, finite type is equiva-
lent to proper and affine). An affine morphism is quasi-compact
and separated.

§ I. THE GLOBAL Spec.

We start with the following

INITIAL DATA: A noetherian scheme X and a quasi-
coherent sheaf of Ox-algebras /. That is: if U < X
is open, then </ (U) is an Ox(U)-algebra, and if U is
affine then .o/ |y = o/ (U)"~.

In this situation, one proves that there exists a unique scheme over
X, denoted Spec <7, together with its structural morphism

:Specss — X,

satisfying the following properties: for every open affine subset
U < X, one has p~1(U) = Spec.«7(U), and for every inclusion
V < U of open affine subsets of X, the inclusion 3 ~1(V) — g~1(U)
corresponds to the restriction o/ (U) — o7 (V).

— Translation: the object Spec & € Sch(X) is constructed ad
hoc to satisfy this: if U = SpecB < X is an open subscheme,
then .7 (Spec B) is some B-algebra Ay, by our assumption on .27.
Well, Spec <7 is constructed so that above Spec B there lies exactly
Spec Ay.

Spec Ay & Spec &/

U = SpecB—— X
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Note the analogy with vector bundles: the philosophy is again
to construct a space by glueing “prescribed” fibers. The following
result is a characterization of affine morphisms.

Proposition A.0.3. If .o/ is a quasi-coherent Ox-algebra and {3 :
Spec/ — X is the structural morphism, then (3 is affine and
A = By Ospec.s- Conversely, if f: Y — X is affine, then & := f, Oy
is a quasi-coherent ’x-algebra, and Y =~ Spec &7 as X-schemes.

By the above Proposition, (Spec.<Z, 3) satisfies the following
universal property:

UP: Given a morphism 7 : Y — X, the X-morphisms
Y — Spec./ are in Y-functorial bijection with mor-
phisms o; making the following diagram commute:

ﬁx 7T*ﬁY

X7t

o

— Translation: If one considers the functor F : Sch(X) —
Sh(X) sending the X-scheme 7 : Y — X to 7.0y, then one is
just asserting that the object 3 : Spec &/ — X represents F, that is,
F = homx(—, Spec .«/). This natural isomorphism comes from the
universal property that (Spec <7, 3) does satisfy.

REMARK A.1. If X = SpecB is affine and &/ = A for some B-
algebra A, then the canonical morphism Spec A — X satisfies the
universal property above.

Proposition A.0.4. Start with a couple (X, /) with the usual as-
sumptions. Assume there exists an object (Spec.«Z, 3) satisfying
UP. Then, for every open subset U < X, the morphism

Spec o xx U= (Spec;z%)|u~—~E|—u--—> u

satisfies the UP with respect to (U, </ |y).

The latter Proposition, together with Remark A.1, shows that
(Spec <7, 3) exists for all open subschemes U of any affine scheme
X = Spec B. In fact, such an object exists in general.
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REMARK A.2. In terms of the UP described above, one sees that
the natural isomorphism &7 = B4 Ospec .~ (let us call it ¢) of Propo-
sition A.0.3 comes from

B

X <t SpeC o/

P /

Spec &/

That is, the identity map on Spec.<Z over X corresponds to
B+Ospec.v under homx(—, Spec.«). It follows that in a situation
like in the diagrams

7T

P Ox —————> T, Oy
0

§ 0 &
id i)

Spec o ~———Spec s o ———> B+OSpecs

one recovers x = &, as the composition
¢
o > B*ﬁSpecd > B*e*ﬁY:ﬂ*ﬁY-

Good behavior under base change. Let f : Z — X be any mor-
phism, and &/ a quasi-coherent Ox-algebra. There is a natural
Z-isomorphism

Z xx Spec .o/ =~ Specf*d/.

This means that the canonical projection Z xx Specs/ — Z is
exactly the structural morphism Specf*.s/ — Z.

ExamrLE A.0.1 (Total spaces and vector bundles). Let .# be a lo-
cally free sheaf on X, of finite rank r. To .# we can associate
the (graded) sheaf of Ox-algebras

S(#) =Sym .7~

which (is also locally free and) assigns to each open subset U <
X the Ox(U)-algebra Sym .#(U)*. Then SpecS(.#) is a vector
bundle on X: for every p € X there exists an open neighborhood
U of p such that B~}(U) = (SpecS(F))|lu = AJ],. This vector
bundle is called the GEOMETRIC VECTOR BUNDLE associated to .%,
and we denote it V(.#). Every vector bundle on X arises in this
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way (see Theorem 1.4). Note that for every open subset U of X
one has

F(U, ﬁSpecS(ﬂ)) = r( {,lz ﬁA{J) = ﬁX(u)[Xll"'IXT] = Sym Q(U)*

If, more generally, .# is any quasi-coherent O'x-module, then so
is Sym .#* and thus the latter may be computed affine-locally
(Proposition 1.1.2). In this case we call Spec Sym .#* the ToTAL
SPACE of .7.

ExamMpLE A.0.2. In the above example, take .7 = 0% (direct sum
of n copies of Ox). We define the trivial geometric vector bundle
to be the X-scheme

V(0%) = AX = Spec Sym (0%)*.

It generalizes the affine n-space over a ring Ax = Spec A[x1,...,xn].!

Suppose we have a morphism f : X — Y for some scheme Y. We
can consider the Oy-algebra S(OV) = Sym (0 )*. Then, by what
we said about the good behavior under base change, we have a
natural isomorphism A¥ = X xy Ay:

X xy AY = X xy SpecS(0y) = Specf*S(OY)
= Spec f*(Sym (Oy)*) = Spec Sym (0%)* = AX.

We used that f* commutes with Sym and that f*0y = Ox.

§ II. THE GLOBAL Proj.

Exactly in the same way as Spec specializes to Spec when X
is affine (see Remark A.1), we now perform a construction that
will specialize to Proj of a graded ring when X is affine. More
precisely, we will generalize the following fact: when we take the
Proj of a graded ring S = @ 4 Sa, we get naturally a morphism
Y = ProjS — SpecSg. We now replace SpecSy by an arbitrary
noetherian scheme X. To globalise our Proj we need also to replace
the Sp-algeba S by a sheaf of graded algebras . on X. At the end,
we would like a structural morphism Proj.” — X.

INITIAL DATA: A noetherian scheme X and a quasi-
coherent sheaf of graded &x-algebras . = @ 4-0-7a,
satisfying .y = Ox. Then, for any affine open subset
U = SpecA c X, we have .7 (U) = A® Py Fa(U).

!When X = SpecA, of course A} = A}, indeed A} = Spec Sym O3* =
Spec Sym A™ = Spec (Sym A™)~ = SpecA[x, . ..,xn], the last equality holding
by Remark A.1.
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To construct Proj.” — X, let us fix an affine open subset U =
Spec A of X. Let us look at the scheme Proj.#’(U) and its structural
morphism oy : Proj.#(U) — U. Now we use the quasi-coherence
of .7: for every distinguished inclusion U¢ < U, where U¢ =
Spec Ay for some f € A, we have an isomorphism

y(U) A Af = Y(U)f = Y(Uf)
Hence, remembering that Proj commutes with tensor product,
Proj.# (Ug) = Proj (. (U) ®a A¢) = Proj.#(U) xy Us = o (Us).

In addition, for every inclusion U < V of open subsets of X,
the restriction ./ (V) — .(U) coincides, in zero degree, with the
restriction Ox (V) — Ox(U); this induces a commutative diagram

Proj.7(U) Proj.7 (V)
ou Oov
u ¢ %

Finally, one can check that for every two open affine subsets U
and V there is a natural isomorphism o;j(u NnV)x 0\71(11 N V).
All these information allow to glue the schemes Proj.(U) — U
together to get a global object

0:Projs — X.

One can show that, by the construction, Proj .’ comes equipped
with an invertible sheaf ¢(1), which comes from glueing the var-
ious €(1) on Proj.~(U).

ReEMARK A.3. One often requires that .; be coherent and generate
< as an .%p-algebra. In that case, any homogeneous part .74 is
also coherent. To see this, fix an open affine subset U < X. Then,
for any d > 1, the typical element of .74(U) is a product of d
elements of .71 (U), so we see that /4|y is finitely generated over
0 = Ox. It follows (by Remark 1.1, for example, and using that
X is noetherian) that .#4 is coherent. One can show that if .#] is
coherent, the structural morphism Proj.” — X is proper.

Proposition A.0.5. Let g : Z — X be a morphism of noethe-
rian schemes and let . be a quasi-coherent sheaf of graded 0x-
algebras as in our assumptions. Then Proj . xx Z =~ Proj g*.¥ as
Z-schemes.
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We have a characterization of projective morphisms similar to
the one we gave for affine morphisms. It is just the following
definition.

Definition A.0.3. A morphism of schemes f : X — Y is said to
be projective (and we say that X is projective over Y) if there is
a Y-isomorphism X = Proj.” for some quasi-coherent sheaf of
graded Oy-algebras, which is generated in degree 1 over .%.

ExamrLE A.0.3. For any scheme Y, the projective n-space over Y,
defined to be Py = P} xgpecz Y, can be obtained as the global Proj

of the sheaf S(07) = Sym (07 ):
P} = Proj S(07 ™).

ExaMPLE A.0.4 (Projectivization and Projective Bundles®). Let X be a
noetherian scheme and & a coherent &’x-module. Define

P(&) = Proj S(&*) = Proj Sym &.
It is an X-scheme called the PROJECTIVIZATION of &.

ExamrLe A.0.5. Any n-dimensional vector space V over a field k
may be viewed as a vector bundle V — Speck = X. Writing V and
V* for the corresponding constant sheaves, we have their projec-
tivizations, which are related but completely different spaces (as
V and V* themselves, in fact). The first one, P(V), is of course
a projective space of dimension n, and its k-rational points cor-
respond to one-dimensional quotients (hyperplanes) of V; dually,
the k-rational points of P(V*) correspond to one-dimensional sub-
spaces of V. Summary:

P"* = P(V) = Proj S(V*) and P™ = P(V*) = Proj S(V).

In general, if & is a locally free Ox-module of rank n + 1, then
P(&) is a PROJECTIVE BUNDLE: above any affine open subset U =
Spec A c X there lies (under the structural morphism) exactly the
U-scheme P{j = P},.

REMARK A.4. Any closed subscheme Z — P¥ can be written as
Z = Proj.”, for some quasi-coherent sheaf ./ of graded Ox-
algebras. More generally, if & is coherent, any closed subscheme
Z c P(&) is the Proj of something; conversely, any quasi-coherent
sheaf .7 of graded Ox-algebras, generated by a coherent .73, is an
epimorphic image of Sym .77, and such a surjection Sym .7 —
% induces a closed immersion X = Proj . — P(.#7).

2See Example A.0.1.
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Finally, a comparison between Spec and Proj: a projective
bundle is a particular case of the projectivization construction, ex-
actly like a vector bundle is a particular case of a total space (the
only observation here is ‘locally free of finite rank” = "coherent’).

THE FROBENIUS MORPHISM

Let k be any field of characteristic p > 0 and denote by ¢ :
k — k the Frobenius endomorphism sending x — xP. For an
algebraic variety X over k, consider the map f : X — X which
is the identity on points and, at the level of structure sheaves, is
defined as follows:

fi(U) : Ox(U) —— Ox(U)

a b————> P,

Note that Fx = (f,f*) is a morphism of ringed spaces but not
a morphism of k-varieties, unless k = IF,,, because i might not
preserve the structure of k-algebra. Fx is called the ABSOLUTE
FroBENIUS of X; note that it commutes with any morphism f : X —
Y of k-schemes, in the sense that foFx = Fyof. We now change the
structure of k-algebra on k to make Fx into a k-morphism. To do
so, call k’ the field k whose structure of k-algebra is defined by a
new multiplication by scalars, namely, for every A € k and x € k/,
we set A - x = ¢(A)x = APx. For a finitely generated k-algebra A,
define a k-algebra structure on

AP) — A @ k'
by letting A(a ® n) = a ® (Ap), and note that the map

p: A(p)————————————————————————>- A

a@pr———puab

is a k-morphism, indeed, p(A(a ® 1)) = p(a ® (Ap)) = Ap(a® p).
For X = Spm A and X(P) = Spm A(P), define Fxpe: X — X®) to
be the k-morphism corresponding to p. It is called the RELATIVE
FroBeNT1US of X. For example, if A = k[x1,...,xn], then p: AP) =
A — A sends x; ® 1 — xP and hence >, ayx¥ — >, a,xPY.

We now define the relative Frobenius of an arbitrary algebraic
variety X. In what follows S denotes the base variety Spmk =
Spmk’and o : X — S the structural morphism. Define X(P) = Xy
Defining the new structure of k-algebra on k'’ is the same (in the



77

category of schemes over S) as viewing k — k' as a base change,
relative to which we have a pullback diagram

X(P) = X xg S——> X

| !

S S

Moreover, coming back to the absolute Frobenius of X, we know
that the following square commutes:

F

X X X
F

S > S

Putting all this together, we use the universal property of pullback
in the diagram

to deduce the existence of a unique canonical morphism Fy . :
X — X)), making all commutative. We call it the relative Frobe-
nius of X. If (X;) is an open affine covering of X, then Fy  results
from the glueing of the affine relative morphisms Fx ;i : Xi —

Xgp). Note that, because pullback is functorial, so is X X)),
In fact, for any k-morphism f : X — Y there is a commutative
diagram

X f Y

FX/kl lFY/k
£(p)

X(®) v(P)

Fix a field extension K/k. Then the functor —(P) commutes with
this base extension, i.e. (X(P))x = (Xx)®). Moreover Fy /x induces
a map on rational points X(K) — X(®)(K). If X is AL or P} then
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this map is simply (t1,...,tn) — (t},...,tR), or (to,...,tn) —
(ty,...,th), defined on K-rational points. In particular, by reduc-
ing to the standard affine covering on X = P}, we see that Fx . is
defined on k[xo,...,xn] by >, avx¥ — >, ayxP".

Lemma A.1. Let X = V(I) ¢ AX be an algebraic variety over
k = Fp. Then X(®) = Spmk[xy, ..., xn]/IP) where I(P) is the ideal
generated by polynomials Y., abx¥, where >, ayx¥ € 1. The
relative Frobenius Fy . : X — X(P) is induced by x; — x!.

Proof. See [17], Lemma 2.25, p. 95. O
Corollary 3. Let X be an algebraic variety over k = IFp,.

(a) We have X = X(P) and Fx = Fx/x (absolute and relative
Frobenius coincide).

(b) Let k be the algebraic closure of k. Let Fx : X(k) — X(k) be
the map induced by composition with Fx. If X = V(I) is a
closed subvariety of A}l = Spmk][xy,...,xn], then we have
Fx(ty, ..., tn) = (t],...,th).

Proof. See [17], Corollary 2.26, p. 95. O
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