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Chapter 0

Introduction

0.1 Statement of the problem, known results and applications

The goal of this thesis is to study different techniques to find an upper bound for the sup-norm of
holomorphic cuspidal eigenforms of weight & over I'y(q), where ¢ is a prime number that tends to
infinity. If fp is such a cuspidal eigenform, it is shown that

_1
15" folloo < a2 %1 foll2

This problem has been recently studied in a more general framework by V. Blomer and R. Holowin-
sky [BH10], and by N. Templier [Tem10]. Namely they studied upper bounds for the sup-norm
of Hecke-Maass eigenforms on arithmetic surfaces. Let f be an Hecke-Maass cuspidal newform of
squarefree-level N and bounded Laplace eigenvalue. Blomer and Holowinsky provided a non-trivial
bound when f is non-exceptional:

_1
[flloo < g7 57| fl2

They proved also that this bound holds true for f = y*/2F, where F is a holomorphic cusp-form
of weight k.

In his article Templier improved this bound and extended this result also for a large class of f. He
used a different approach in that he relies on the geometric side of the trace formula, obtaining

_1
[flloo < g7 28| fl2

In my work I have recovered the same bound as Templier in the case in which f = y*/2F, with F
a holomorphic cusp-form of weight k& and prime level q.

Since f is cuspidal, then it is bounded on any neighborhood of any cusp, so it is uniformly
bounded on the whole hyperbolic plane H. So it is a natural question to try to quantify this
boundness in an effective way. Such bounds play an important role for instance in connection with
subconvexity of L-functions [HMO06, Proposition 4], and in connection with the mass equidistribu-
tion conjecture [Rud05, Appendix].

The problem of bounding cusp forms is also related to bounding periods of automorphic forms
[MVO06], and hence it is implicitly related to the subconvexity problem for automorphic L-functions.



2 Introduction

As one can see in [JK04] the best possible bound for N — oo is

sup S PIF() = 0(1)

2€H peq(v1)

Nothing beyond this average bound is known. For an individual Hecke cusp-form it recovers only
the trivial bound, that comes from the Fourier expansion. On the other hand, since Vol(Fy(N)) is
about N, one might conjecture

_1
1 £llso << N72||f|l2

There is no real evidence for the validity of such a bound, except that it is trivially true for old
forms of level 1. It is a very optimistic and a very strong conjecture, since it would imply the
most optimistic bound for the LP norms, and the Lindelof Hypotesis for automorfhic L-functions
in the level aspect for L(1/2, f), since f(i/v/N) ~ L(1/2, f)N~2||f||2. This shows that in order
to derive some subconvex bound for L(1/2, f) in the level aspect by this method, one would need
already a relatively strong pointwise bound || f]|ec < N‘i_‘SHfHQ.

Note that as I have said above the conjecture holds true when f is an old form that comes from
a level 1 form, so if we consider the prime level ¢, all the oldforms comes from level 1, and so it is
reasonable to consider f a newform.

0.2 Structure of the thesis

This thesis is organized as follows:

The first chapter describes the theory of Modular Forms. In particular it focus on the algebraic
structure of the set of cusp forms for congruence subgroups 8;(I'g(q)). It is shown that this set
is in fact a vector space which has an orthogonal basis made of simultaneous eigenforms for the
Hecke operators T'(n), for all n coprime with ¢q. This space can be decomposed as a direct sum of
two subspaces (newforms and oldforms) which are stable under the Hecke operators T'(n), for n
coprime with ¢, namely 8;(I'o(q)) = 82/4(T'o(q)) @S (I'9(q)). Moreover we will see that there exists
{f1, -+, fa} orthogonal basis of 8§¢/4(T'y(q)) made of eigenforms for all T'(m) such that (m,q) = 1,
and {fn41,---, fs} orthogonal basis of §*(I'y(¢)) made of arithmetically normalized eigenforms
for all T'(m). It is denoted by 8 (T'g(¢)) and it is unique up to permutation. More about that can
be found in [Lan95], [Kob93] and [DSO05].

In the second chapter we shall introduce the main theorem

Theorem 0.2.1 (The Main Theorem). Let g be a prime number and let k > 4 be a fized integer.
Let fo € 8F(To(q)) be an arithmetically normalized newform of weight k. Denote g(z) = y*/2) fo(2)],
where z =z + 1y € H, then

1 1
lgllee < q2q227¢

and some preliminaries that will be used throughout the whole thesis, namely the theory of
the Atkin-Lehner operators [AL70], that together with the study of the Siegel sets will allow us to
restrict the domain of our cusp form fy to &,. Thus our problem becames easier since the area of
investigation is sensitively smaller, and we obtain some useful informations for z.
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The third chapter describes the two trivial methods to find an upper bound for the sup-norm
of our cusp form. Namely, the first method is based on the properties of the coefficients of the
Fourier expansion of fj, while the second one uses the pre-trace formula described in appendix 1.

With chapters four and five we introduce the amplification method. This technique will be no
sufficient in chapter four to improve the previous bounds, but it is so powerful that added to a
Diophantine argument it will allow us to improve the trivial bound, at most for those z which lie
in a certain reagion of our domain G,: it will be splitted into two reagions, one "away from the
cusps” and one ”closed to the cusps”. The amplification method fails for those z which are closed
to the cusps, but in this reagion the trivial bound found with the Fourier coefficients will be good
enough to improve the upper bound for fy(z) in the whole H.






Chapter 1

Modular Forms and Hecke Algebra

In this chapter I want to recall some definitions and basic facts about modular forms and the
Hecke algebra associated to them. In particular I am interested in the cusp forms over I'y(q)
which will be studied in detail.

1.1 Modular Forms

Denote by SL2(Z) the group of all matrices of determinant 1 with coefficients in Z. It is called the
Modular Group, and it is generated by the two matrices

11 0 -1
T—<01>and5—<1 O)
If we consider the hyperbolic plane H = z € C : &z > 0, there is an action of the modular group

on this space given by
a b (2) = az+b
c d Ccz+d

Definition 1.1.1. Let k be an integer. A modular form of weight k is a holomorphic function
f:H — C satisfing the relation

a b

)kf(’yz) for all v = ( e d > € SLy(Z)

IO~ v ar

Moreover it has to be holomorphic at co.

To define this last notion, recall that the traslation matrix T' € SLs(Z), hence
f(Tz)= f(z+1) = f(z), so f is Z-periodic. Since f is also holomorphic it induces an holomorphic
function f., on the punctured disc defined by fo(q) = foo(e(2)) = f(2), where e(z) = €>™*. Also
e:H — D*={qeC:0<|g| <1} is holomorphic and Z-periodic, so we can write fo, as

foo(Q> = Z anq"

neL
—27¥z

The relation |¢| = e shows that ¢ — 0 as Sz — oo. So thinking of co as lying far in the
imaginary direction, we have the following
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Definition 1.1.2. f is said to be holomorphic at oo if fo extends holomorphically to the punc-
tured point ¢ = 0.

Remark 1.1.3. With this property the Laurent series of foo sums over n € N. This means that f
has a Fourier expansion
oo
=Y an(fle(nz)
n=0

Remark 1.1.4. For simplify the notation we call j(y, z) = cz + d where v = ( CCL Z > Moreover

we define f[v], (2) = . z)kf(yz) With this notation f :H — C is a modular form of weight k if

it is an holomorphic function on H, holomorphic at oo and f Y], (2) = f(2) Vy € SLao(Z).
Moreover for all v,7 € SLy(Z) and z € H we have the following:

o (v 2) =3y, 2)i(,2);
o (v)(2) =v(Y)(2);

o VY1, =[x [V, as operators;

Sz
3 (7,2)?

e J(v(») =

Remark 1.1.5. If k is an odd integer then considering v = < _01 _01 ) we have f(z) =

(=1)* f(v2) = —f(2), thus the only modular form of weight k odd is the zero function. For this
reason we will consider k even.

The set of all modular forms of weight k is denoted by My(SL2(Z)). In fact it is a C-vector
space. Moreover the product of a modular form of weight k& with a modular form of weight [ is a
modular form of weight k + [. Thus the sum

M(SLy(Z)) = @ My(SLa(Z
keZ
is a graded ring.

Definition 1.1.6. A cusp form of weight k f is a modular form of weight k whose Fourier
expansion has leading coefficient ag(f) = 0,i.e.

z) = Z an(f)e(nz)
n=1

The set of all cusp forms is denoted by 8 (SL2(Z)) and it is a C-vector subspace of My (SL2(Z)).
Moreover the graded ring

SL2 @ Sk SLQ
kEZ
is an ideal of M(SLy(Z)),
Remark 1.1.7. A cusp form is a modular form such that lim f(z) = 0. The limit point co of H

Jz—00
is called the cusp of SLay(Z).
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1.2 Modular Forms for Congruence Subgroups

Definition 1.2.1. Let N be a positive integer. The principal congruent subgroup of level N
18

F(N)z{vESLQ(Z):'yE((l) ‘1)> (modN)}

In particular I'(1) = SL2(Z). Being the kernel of the natural homomorphism
SLy(Z) — SL2(Z/NZ) T'(N) is normal in SLy(Z). In fact this map is a surjection, hence we have

[SLa(Z) : T(N)] = SLa(Z/NZ)| = N* [ (1 - p12)
pIN

Definition 1.2.2. A subgroup I of SL2(Z) is a congruence subgroup if AN positive integer such
that T'(N) C T, in which case T is a congruence subgroup of level N. In particular any congruence
subgroup has finite index in SLa(7Z).

Besides the principal congruence subgroups, the most important congruence subgroups are

ro) = {r e sta@ia= (5 1) moam}
" T (N) = {7 € SLy(Z) : vy = ( (1) ”{ ) (mod N)}
Note that T(N) € Ty (N) C To(N) € T(1).

Remark 1.2.3. The map

T'\(N) - Z/NZ, < ch Z > b (mod N)

is a surjection with kernel T'(N), hence [I'1(N) : T'(N)] = N.

Remark 1.2.4. Similarly the map

To(N) = (Z/NZ), < ’ Z ) s d (mod N)

is a surjection with kernel T'1(N), hence [Lo(N) : T'1(N)] = (V).

Each congruence subgroup I' contains a traslation matrix of th form

(o 7)

for some minimal h € Z~q. If an holomorphic function f : H — C satisfies the condition
f i (2) = f(2) Vy € T therefore is hZ-periodic and thus f(z) = fu(e(z/h)) where foo : D* = C
(D* is the punctured disc) is holomorphic in D*, so it has a Fourier expansion.
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Definition 1.2.5. We say that f is holomorphic at oo if fo extends holomorphically to 0.

Thus f has a Fourier expansion
F(z) =Y an(fle(z/h)"
n=0

The idea for a congruence subgroup I is to consider H = HU {0} UQ, and then to identify adjoined
points under I'-equivalence. Each I'-equivalence class of points in {oo} U Q is called a cusp of T'.
Since each rational number s takes the form s = «(o0) for some o € SL(Z), then the number of
cusps is at most the number of cosets I'a in SLs(Z), a finite number since [SLy(Z) : I'] is finite.

Definition 1.2.6. Let I' be a congruence subgroup of SLa(7Z), and let k be an integer. A function
f:H — C is a modular form of weight k with respect to I if

1. f is holomorphic;
2. f0le(2) = f(z) ¥y e
3. f ]y is holomorphic at co for all v € SLy(Z).
The modular forms of weight k with respect to T' are denoted by My(T).
Condition (3) means that f should be holomorphic at all cusps.

Definition 1.2.7. A cusp form of weight k with rispect to I is a modular form of weight
k with respect to T' such that the Fourier expansion of f [a] has the first coefficient ag = 0 for all
(NS SLQ(Z).

The cusp forms of weight k with respect to I' are denoted 8y (T").

1.2.8 The congruence subgroup I'y(q)

I want to give some more results about the congruence subgroup I'g(g), where ¢ denotes a prime
number, being the group we are more interested in. These results will be useful later.

Lemma 1.2.9. The index of T'o(q) in SLa(Z) is [SLa(Z) : To(q)) =g+ 1
Proof. In the previous section we have seen that
1
[SLy(Z) : T(N)] = N* | (1 —~ 2)
p
pIN
T4 (V) : T(N)] = N

and
[Lo(N) : D1 (V)] = ¢(N)

Since in this case ¢ is prime, we obtain

[SLy(Z) : T(q)] = q(q” — 1)
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Ti(q) : (@) = ¢
and
Lo(q) : T1(g)] =g —1

The conclusion follows immediately. O

In the next chapter, when we will introduce Hecke operators, we will have to work with the
group

Gula) = { (& ) € Ma(@) 20 b= gl 0 ) =1}
In particular T'g(q) acts on G,,(q) by left multiplication, hence we are interested in I'g(q) \ Gp(q)-

a b

Proposition 1.2.9.1. The set Ay, (q) = {( 0 d

) € My(Z):ad=n,0<b<d, (a,q):l} is a
system of representatives of T'o(q) \ Gn(q).

Proof. We prove first that for all A € G,,(q) 3B € I'p(q) such that BA € A, (q): Let A = < CCL b ),

d
then ad — bc = n, ¢|c and (a,q) = 1. Define v = ﬁ and § = ﬁ, thus ¢|y. Let a and 8 be such
that < : ? > € I'p(q), call it B. So we have ad — By = _(;‘;)5‘3 = 1, hence aa + ¢ = —(a,c).
We have

pa= (3 ; ) (Z Z) B < T e )
Since (a,q) = 1 then (—(a,c),q) = 1. Moreover the determinant is exactly n, and multiplying BA
on the left by the matrix T™ = ( (1) Tf ) we can obtain 0 < ab + fd < —n/(a,c). Note that
T™B € T'y(q).

To prove that A, (q) is a system of representatives we have to check that two elements of A, (q)
can not represent the same left coset: suppose

[ a B a b\ [z vy
(5 5)(5a)=(0 )<
with A € Ty(q) and B, C € A,(q), then ya = 0, hence v = 0. Soad =1 = a =§ = £1. If

a=0d=1thend=2z2a=zand 0 < b+ 3d =y < z = d which implies § = 0 and A = id. If
« = § = —1 similarly we obtain A = —id. This proves the proposition. O

To conclude this section I want to describe a fundamental domain for I'g(¢) in H. In general
SLy(Z) acts on H as usual, so it is divided into equivalence classes; two points are said to be in
the same equivalence class if there exists v € SLo(Z) that sends one to the other. In particular if
I is a subgroup of SLy(Z), then we say that two points are I'-equivalent if an element of I" send
one to the other. A closed (and usually is also required simply connected) region in H, call it F', is
said to be a fundamental domain for I' if every z € H is I'-equivalent to a point of F', but no
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two distinct points in the interior of F' are I'-equivalent. The most famous fundamental domain of

SLQ(Z)IS
1 1
F:{ZEH:—2§§R27§2and \z|21}

—|1/2 1/2

Remark 1.2.10. If we consider HUoco U Q = H, one can easily see that oo could be send to any
rational number by an element of SLa(Z), so a fundamental domain for H is F' = F U co.

Suppose now to have a subgroup I" of SLy(Z) of finite index; we want to construct a fundamental
domain F’ of T' starting from a fundamental domain F of SLy(Z): since it is of finite index
(with respect to the left multiplication), say [SL2(Z) : I'| = n, there exists ay, -, a;, such that
SLQ(Z) = H?:l OéiF.

Lemma 1.2.11. F' =[], a; 'F.

Proof. First of all we verify that any z € H is I'-eqiuvalent to an element of F’: since F is a
fundamental domain of SLo(Z), there exists v € SL9(Z) such that vz € F. Then for some ¢ we
have v = ;' with 4/ € T, hence vz € o; 'F € F'.
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Now, if two points z; and 2o in the interior of F’ are I'-equivalent, then there exists v € T" such

that 7., = 22. Moreover there exists ¢ and j such that z; = a; 1w1 and z9 = aj_lwz for some w1,

we € F. So we have wy = aj’yozl-_lwl, that is a contradiction because aj’yozl-_l € SLy(Z) and wy,
wy € F. O

In the case of I'g(¢) we have that its fundamental domain is the disjoint union of ¢ + 1 trans-
formation of F'. We want to describe the structure of these transformation:

Proposition 1.2.11.1. Let n be a positive integer. A set of inequivalent cusps for To(n) is given
by the following fractions:

% with qlv , (u,v) =1, u (mod (v,q/v))

Hence the number of inequivalent cusps is

Remark 1.2.12. A proof for the above proposition can be found in [Iwa97, p. 30].

So in the case of ¢ prime we have two cusps that could be represented by oo fmd 0. Note that
oo and 0 are not I'g(g)-equivalent. So the fundamental domain Fy(q) of T'g(g) in H is the following
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1.3 Hecke operators and Petersson inner product

1.3.1 Hecke operators

In a general setting, the Hecke operators are averaging operators over a suitable finite collection of
double cosets with respect to a group, therefore a great deal of the Hecke theory belongs to linear
algebra.
In this section I want to present the theory of Hecke operators in the context of SLo(Z) and of
the congruence subgroup I'g(q).

Assume k to be a fixed integer. For any o € GLJ (R) the operator [l is defined on f : H — C
by

(0] zZ) = BOék/2 L az
Slols(2) = (deta)* =" f (o)

For a positive integer n define
Gn ={a € GLy(Z) : deta = n}
The modular group SLy(Z) acts on G, from both sides, so that G,, = SLa(Z)G,, = G, SLa(Z).

Lemma 1.3.2. The collection

a b
An{<0 d).adn,0§b<d}

is a complete set of right coset representatives of G,, modulo SLa(Z)

The proof is very similar to that we have done in the previuos section to find a system of
representatives of Gy,(¢) modulo T'y(gq).

Definition 1.3.3. Let f € My(SL2(Z)), n be a positive integer, then the operator T'(n) defined by
1
Tw)f == 3 bl
Vi V€A
is called Hecke operator for SLo(Z).

Remark 1.3.4. Usually the exponent of n in this definition is different from —1/2, and it depends
on k. The reason of this normalization will be explain later.

Remark 1.3.5. e Hecke operators maps modular forms to modular forms;
e Hecke operators maps cusps forms to cusps forms;
o T'(n)T(m)=T(m)T(n).
Consider now the congruence subgroup I'g(q);

a b

Recall 1.3.6. A,(q) = {( 0 d

Gr(q) modulo T'y(q).

> cad=mn,0<b<d, (a,q) = 1} is system of representatives of
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Definition 1.3.7. Let f € My(To(q)), n be a positive integer, then the operator T'(n) defined by

T(n)fzjﬁ S i
’YeAn(Q)

is called Hecke operator for I'y(q).

Remark 1.3.8. Hecke operators send modular forms (resp. cusp forms) with respect to I'g(q) to
modular forms (resp. cusp forms) with respect to T'o(q).

To analize more properties about these operators we need to define an inner product in the
space of cusps forms, namely the Petersson inner product.

1.3.9 Petersson inner product

To study the space of cusp forms 8;(Ty(q)) further, we make it into an inner product space. The
inner product will be defined as an integral. Let f and g € 8;(T'g(q)); we define the Petersson
inner product

where z = x + iy and Fy(q) is a fundamental domain of I'g(g) in H.

Clearly this product is linear in f and conjugate linear in g, Hermitian, symmetric and positive
definite.
Remark 1.3.10. d’;;’y is called hyperbolic measure and it is denoted by du(z). It is invariant
under GLT (R) meaning for all @ € GL$ (R) du(az) = du(z) for all = € H. In particular it is
S Ly(Z)-invariant.

Remark 1.3.11. Since QU oo is countable it has measure zero, hence it is enough for integrating
over H.

Remark 1.3.12. For any continuos bouded function ¢ : H — C and any o € SLa(7Z), the integral
Jre(az)du(z) converges. In particular it converges in 8;(To(q)) but not necessary in My(Lo(q)),
so it cannot be extended to it.

I recall that if T is an operator over a inner product space V, then its adjoint T is the unique
operator such that (Tv,w) = (v, T*w) for all v,w € V. The following proposition describe the
adjoints of T'(n) over I'g(q).

Proposition 1.3.12.1. If (n,q) =1 and f,g € 8x(To(q)) then
(T(n)f,9) = (f,T(n)g)
i.e. the Hecke operators T (n) with (n,q) =1 are self adjoints.

An obvious consequence of this result is that 7'(n)’s are normal, and from the spectral theorem
of linear algebra, given a commutative family of normal operators of a finite dimensional inner
product space, the space has an orthogonal basis of simultaneous eigenvectors for the operators. In
our case the eigenvectors are called eigenforms, thus we have the following
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Theorem 1.3.13. 8;(To(q)) has an orthogonal basis of simultaneous eigenforms for the Hecke
operators T'(n) such that (n,q) = 1.

Let f € My(ITo(g)) be an eigenform for T'(n) with n and ¢ coprime, then there exists A(n) € C
such that T'(n)f = A(n)f. Since the operator T'(n) is self adjoint we obtain A(n) = A(n), so the
eigenvalues are all real.

For our task I want to normalize the Fourier coefficients of any cusp forms, to have a good relation
between these coefficients and the eigenvalues. As we have already seen any cusp form has a Fourier

expansion

= Zan(f)e(nz

n>1

We define the normalized Fourier coefficients as

WlF) o all > 1

n 2

Yf(n) =

In particular we obtain

Zd}f n)n'z enz)

n>1

From the definition we compute the action of 7'(m) on the Fourier expansion at infinity of a modular
form:

T(m)f(z) =m™2 > fl]

¥E€Ao(q)
— 12 Z k2 gk Z f <az+b>
d
ad=m 0<b<d
(a,9)=1

o XS ST (n)

ad=m 0<b<dn>0

(a,q)=1
b
:Z¢f s Z o e<anz> Z €<T;)
n>0 ad=m 0<b<d
(a,9)=1
k=1
:Z@z;f(n):b,il 3 a’“e(‘%‘z)d
n= a

dl=n
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k—1
=Y v Y d e (5F)
n>0 m 2 ad=m
B (a,9)=1
dl=n
=5 S (M) () T e
"=
al=n
k—1
=32 3 u(G) (@) T e
"

~ \(dg)=1

From this formula we obtain an important property of the eigenforms, namely

Proposition 1.3.13.1. Let m be a positive integer, f an eigenform for T(m) with eigenvalue
Af(m), then

Ap(m)iy(1) = by(m)
Proof. T(m)f = Ag(m)f hence the coefficient of e(z) is Af(m)1¢(1); on the other hand by the
previous formula we obtain Ag(m)yr(1) =341 m),(d,9)=1 ¥f (5%) = typ(m) O

Remark 1.3.14. If f is an eigenform of T(m) for all m then we can conclude that 1¢(1) # 0
otherwise f is the zero function.

Remark 1.3.15. The relation between Hecke operators and Fourier coefficients of a modular forms
is a proof of the commutativity property of the Hecke operators. We can obtain
nm

T(mTn)= Y T (ﬁ)

dl (n’m); (d7Q):1

In particular if (n,m) =1 then T'(nm) = T (n)T(m). Therefore each T'(n) is the product of Hecke

operators of the form T(p’) for some prime numbers p.

Remark 1.3.16. We have A A A
T =TmTE) - T

Remark 1.3.17. Always from the above formula it follows that

rlmys) =vp() Sy ()

d| (nvm) ) (d7q):1
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1.4 The Structure of 8;(I'¢(¢)): Oldforms and Newforms

As we have seen before there exists a basis of 8x(I'g(q)) consisting of eigenforms for Hecke operators
T(m) with m coprime with ¢. It would be more interesting to have a basis of eigenforms for all
the Hecke operators without exceptions. In this case we are sure that the first coefficient of the
Fourier expansion is non zero. Unfortunately in general it is not possible to find such a basis, but
the problem in partially solved thanks to Atkin-Lehner theory, that we are going to explain.

The basic idea is that we can move from 8y (I'o(M)) to 8;(I'o(IV)) where M|N with two natural
operators:

1. ¢: 8k (Do(M)) = 8k(T'o(IN)) the natural inclusion;
2. For d| 4} , [d] : 8x(To(M)) = 8(Lo(N)) given by f[d](z) = f(dz).

Remark 1.4.1. Hecke operators T'(m) with m coprime with q commute with [d], hence if f is an
eigenform also f[d] is an eigenform. However fld|(z) = 3,5, an(f)e(dnz), hence the first Fourier
coefficient of f[d] vanishes if d > 1.

The theory of newforms remedies to this defect by considering that cusp forms such as f[d] €
S8k(To(N)) are not really of level N but come from lower level. We shall study the case N = ¢
prime, but this results are true for all integers V.

Definition 1.4.2. Let 8¢4(I'y(q)) be the subspace of 8(Lo(q)) spanned by all cusp forms of the

type 1(f) and flq] where f € 8x(To(1)).
Let 87¢“(T'o(q)) its orthogonal with respect to the inner product. Thus we have the orthogonal
decomposition

8k(To(g)) = 87(To(q)) © 83 (Lo (g))

Proposition 1.4.2.1. The subspaces $¢%(To(q)) and 83°*(To(q)) are stable under the Hecke op-
erators T'(m) with (m,q) = 1.

As a consequence, we have that each of this two subspaces has an orthonormal bases consisting
of eigenforms of Hecke operators T'(m) with (m,q) = 1.

Definition 1.4.3. f € 8¢“(I'o(q)) that is an eigenform of T'(m) for all positive integer m is called
newform.

8new(Ty(q)) is called the space of newforms of level q and 83'4(I'y(q)) is called the space of
oldforms of level q.

Theorem 1.4.4 (Main Lemma). Let f € 8x(I'o(q)) sucht that f(z) = > 51 an(f)e(nz) with
an(f) =0 for all n coprime with q, then f € Sgld(Fo(q))

Theorem 1.4.5. 87°“(T'g(q)) has an orthogonal basis of normalized newforms.

Proof. We already know that 8}*(I'g(q)) has an orthogonal basis consisting of eigenforms for T'(m)
for all m coprime with ¢, in particular we know that for all such an m 1 s(m) = Af(m)ips(1), where
¥¢(i) are the normalized coefficient. If 7(1) = 0 then by the main lemma f € 82/¢(T'y(q)) that
is in contradiction with the hypotesis, so ¥¢(1) # 0 and we may assume it to be 1. Now for all
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m € Zxq define g, =T(m)f —¢(m)f € 8§ (Io(q)). It is clearly an eigenform for all T'(n) such
that (n,q) = 1 and vy, (1) = Y1) (1) = Yym)f(1) = ¢r(m) —y(m) = 0, hence by the main
lemma each gy, € 82/4(Ty(q)) N 87 (I'o(q)) = 0, thus

T(m)f =s(m)f for all m € Zx
O

Remark 1.4.6. Note that if f is a normalized newform, i.e. (1) = 1 then the eigenvalues \y(m)
for T(m) are exactly the normalized Fourier coefficients v ¢(m).

Theorem 1.4.7 (Multiplicity One Property). Let f € 8¢*“(I'o(q)) be a non zero eigenform of T'(m)
for all m coprime with q. If g satisfies the same conditions as f and has the same T'(m)-eigenvalues,
then g = cf for some constant c.

This theorem implies that for each eigenvalue there exists exactly one normalized newform
associated to it. The set of normalized newform in the space 8§7°“(I'g(q)) is an orthogonal basis of
the space and it is unique.

Lemma 1.4.8. If f € 8x(I'0(q)) is an eigenform for all T(m), then it is either an oldform or a
newform.

Proof. If 1¢(1) = 0 then f = 0 because it is an eigenform. Assume 1¢(1) # 0 and assume f is
normalized, hence ¥;(1) = 1. Then T'(n)f = v¢(m)f for all m. f can be write as f = g + h with
g € 8%4(To(q)) and h € 87¢*(To(g)). Thus we have ;(m)f = 1p(m)g + 1;(m)h, so g and h are
eigenforms with the same eigenvalues of f. If h = 0 then f = g is an oldform, otherwise h #% 0

implies 1,,(1) because it is a newform, and T'(m)h = ﬁ’;(gb))h. Hence 9 ¢(m) = 15}’;((%) thus by the

multiplicity one property f = ﬁmh is a newform. O

Resuming, we have seen that

8k(To(g)) = 87(To(q)) & 83 (To(g))

Moreover there exists {f1,-- -, fn} orthogonal basis of §¢'¢(I'¢(¢)) made of eigenforms for all T'(m)
such that (m,q) = 1, and {fn41, -+, fs} orthogonal basis of §7“(I'y(¢)) made of arithmetically
normalized eigenforms for all T'(m). It is denoted by 8 (I'g(¢)) and it is unique up to permutation.






Chapter 2

The Main Theorem

In this chapter I want to introduce the problem, stating the main theorem, and I want to reduce
it using algebraic properties of the cusp forms, that allow us to reduce their domain to a specific
fundamentale domain.

2.1 The main theorem

Let ¢ be a prime number, k > 4 a positive integer, and fo € 87’ (I'o(q)) an arithmetically normalized
newform, which is an eigenform for all the Hecke operators.
Let | foll, be the L%-norm of fj, namely

15oll2 = (fo. fo) = / ol ¥ dpu(z)

Fo(q)

where z = x + iy. We define g(z) = | f(2)|y*/2. Tt will be the main object of my studies, indeed

1fol2 = /F () < Vol Fola)
olq

where Vol,(Fy(q)) is the volume of the fondamental domain Fy(q) with respect to the hyperbolic
measure dy(z), so by definition Vol,(Fy(q)) = fFo(q) du(z).

Remark 2.1.1. Note that giving a bound for g(z) is equivalent of giving a bound for fo(z), since
y depends directly from z.

Lemma 2.1.2. With the above notations we have

Vol (Fo(q)) =< q

Proof. By lemma 1.2.11 we have that

n
Fo(q) = H o 'F
i=1
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where F' is a fundamental domain for SLa(Z), n = [SLa(Z) : T'o(q)], and {«;}; left representatives
of T'o(q) \ SL2(Z). Moreover by lemma 1.2.9 n = g + 1. Therefore we have

/ L du) = (gD [ dut2

1 o) 1 4
/ dp(z) < / / L gy = V3
F rz=—1 y:? y 3

So Vol (Fo(q)) = fFo(q) du(z) =< q. O

Remark 2.1.3. As a consequence of this result we obtain that

1foll3 < llgll3V ol (Fo(9)) = llgll3eq

Therefore the most optimistic upper bound for ||g|lec that we could obtain is

l9lloo <e a2 f1l2

Our purpose is to find an upper bound for ||g||o using different techniques, namely

Now,

e Special properties of the coefficients of the Fourier expansion of fy;
e Relations between fp and the automorphic kernel hy,(z, w);
e The amplification method;

e A geometric approach.

Theorem 2.1.4 (The Main Theorem). Let q be a prime number and let k > 4 be a fized integer.
Let fo € 8T (To(q)) be an arithmetically normalized newform of weight k. Denote g(z) = y* 2 fo(2),
where z =z + 1y € H, then
1 1
lglloc < q2g™ 227
The first step consists to reduce the domain of fj to a subregion of H, called Siegel set, coming
from the invariance of g(z) for a special subgroup Ag(q) of SL2(Z).

2.2 Atkin-Lehner operators and A;(q)

I recall that in our context ¢ is a fixed prime number, and I'y(g) is the congruence subgroup of
SLs(Z) of all the matrices with the third entry divisible by q.

Definition 2.2.1. For M|q, pick a matriz wy; € Ma(Z) such that

(det(wM) =M

wy = o (mod q)
0 =x
0

wym = 0 (mod M)

We call it an Atkin-Lehner matriz.
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Definition 2.2.2. Let wys be an Atkin-Lehner matriz, for M|q, then scaling by 1/v/ M we obtain
a matric Wy = ﬁw M € SLa(R) that is called an Atkin-Lehner operator.
In our context since ¢ is prime, we have that the Atkin-Lehenr matrices are w; that is the

identity, and wy = < 2 _01 ) Therefore the Atkin-Lehner operators are

W1:idanqu:<\% —\éé/q)

Definition 2.2.3. Ay(q) is the subgroup of SLa(R) generated by T'o(q) and all the Atkin-Lehner
operators.

Proposition 2.2.3.1. T'y(q) is a normal subgroup of Ag(q) and Ao(q)/To(q) is an abelian group
of order 2.

Proof. 1t is enough to prove that W, normalizes I'g(q). First note that I/Vq2 = —1id, hence we have
to prove that for V € I'g(q), W,VW, € Ty(q): it V = ( CCL Z >, then one has
_y_ [ — c/q
WqVWq—V—( b —a )
Note that V € I'g(g¢), so g|c, hence the above matrix belongs to I'g(q). O

Remark 2.2.4. Ay(q) has a central role in our discussion; indeed as we have seen the congruence
subgroup T'o(q) is normal in Ag(q), so it is contained in the normalizer of I'o(q) in SL2(R), call
it No(q). Therefore for any p € No(q) and f € My(To(q)), flolk € Mr(p~'To(g)p) = My(To(q))-
In particular if f is invariant under the action of a subgroup of No(q), then one could restrict
the fundamental domain on which f take values. Suppose the subgroup for which f is invariant is
Ao(q), then this restriction of the fundamental domain will be good enough, since [No(q) : Ao(q)] is
finite.

To complete this section we shall see some important properties of the Atkin-Lehner operators
which will be useful later. Atkin-Lehner operators act as usual on 8°(I'g(¢)). in particular

FolWalk(2) = —o— f(Wy.2)

Moreover, for each f € 87“(I'o(q)), f[Wyk is still in 87 (I'o(g)). In fact we can know more about
this action, specially in the case of newform, indeed

Lemma 2.2.5. Let f € 8x(To(q)), and let p be a prime different from q, then

(T(0).N)[Walk = T(p)(f[Welk)

Proposition 2.2.5.1. Newforms are eigenvectors for the Atkin-Lehner operators, with eigenvalues
+1.
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Proof. To prove this proposition we need the following fact:

1. If two newforms have the same eigenvalues for all T'(p) with p prime different from ¢ then
they are equal;

2. If f € 87 (T'9(q)) is an eigenform of T'(p) for all p prime different from ¢, then f is a constant
multiple of a newform f;;

3. If f € 8k(To(q)) is an eigenform for all T'(m) for all m such that (m,q) = 1 then it is either
an oldform or a newform. (Lemma 1.4.8)

Now, form the previous lemma T'(p)(f[Wylx) = (T(0)f) Wyl = Ar(p)f[Welk; hence by fact (3)
f[Wylk is either an oldform or a newform. If f[W,]x € 8%9(To(q)) then f = (f[Wylk)[Wylk is
both a newform and an oldform, hence it is 0. So f[W,]i € 8 (T'o(¢)) by fact (1) and (2) we

have f[Wgl|r = c¢4f for some non zero constant ¢,. Therefore f = (f[Wlp) Wyl = cgf, hence
cqg = 1. O

In particular we obtain the following
Corollary 2.2.6. Let f as above, f[Wylp = cqf, cq = £1, then
cg =14 f€8r(Aq))
Lemma 2.2.7. The operator W,y is hermitian with respect to the Petersson scalar product, i.e.
(fWalk, 9) = (f. 9[Wqlk)
where f and g € 8 (Lo(q))

Proof. 1t is immediate sice [Wy]i[W,]r = [id]; and for an operator L (f[L],g[L]) = (f, g). O

2.3 The Siegel sets
Now we have all the ingredients to define a new fundamental domain for fy,namely

Definition 2.3.1. Let N be a positive integer. A Siegel set Gy is a rectangle of the form

3
Sy = {x+iy€@:x€[0,1) ,ye[;g,oo)}

Note that for N = 1, &7 is more or less the fundamental domain F' of SLo; in particular
F C &4, as we can see in the following picture:
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3/(2q)

12 0 1)2

Definition 2.3.2. Let N be a positive integer. A generalized Siegel set is Gy = Gy U {o0}.
Proposition 2.3.2.1. Let q be our fixed prime number, then

1. For any couple of coprime integers a and c, there exist b,d € Z, M € 1,q and v € T'y(q) such
that
a c\ _ 1/M 0
bd) "M 0 1
2. E — U5EA0((1) 56_q

Proof. 1) If ¢ divides c just take M = 1. Since a and ¢ are coprime then certenly there exist integers
b and d such that ad — bc = 1. Take v = ( Z Z > € I'o(g).

0 1

-1 0

If ¢ does not divides ¢ then take M = q. We have w, ( 1(/)q (1) ) = (

). I claim that
there exist b,d € Z such that
a b 0 —1 b —a
(ea)(19)=(a =) en

i.e. there exist b,d such that ad — bc = 1 and ¢|d. Indeed, certainly there exist £, € Z such that

an —c€ = 1.
Since (g, ¢) = 1 then there exist u,v € Z such that ug +vc=1. So

L = (an — c&)(uq + ve) = a(qun) + c(—&ve +van — Euq)
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Just call d = qun and b = —&vc + van — Eug. B
2) As I have said above, G; contains the fundamental domain F' for SLy(Z) in H. So

H= |J »&

Now,form the first part of the proposition we have that any element p of SLo(Z) can be written as

p:5<1/(f\4 ?),whereSEAo(q). Notealsothatifzé@q,then(1/5\4 ?)z:ﬁé@MC
S,
Hence

i= | 5(1/5” 0)61c J 8,

d€Ao(q) d€Ao0(q)
O

Thanks to this proposition one can concludes that if a function f defined on H is invariant
under some action of Ay(q), then to study the values taken from f in the whole H it is enough to
study the values that it takes on &,. This is exaclty the case of our function g(z) = y*/2|fo(2)|,
namely

Lemma 2.3.3. g(z) is Aog(q)-invariant.

Proof. 1t is enough to prove that g(z) is invariant under v € I'y(¢) and under W,.
Let first v € T'g(g). So

9(7-2) = (3(3.2))*?| fo(7-2)]
It is a general fact that (vy.2) = % and by definition of modular form we have fy(v.2) =
fo(2)j(7, 2)*. Therefore we obtain

S(z k/2
g(r.2) = (M) o)1 2 = 521 fol2)] = 9(2)

Consider now the Atkin-Lehner operator W:
N 1\)"? 1
o0W,2) = Q) P20 = (3 (<)) I )

3(2)\*/? Y/ 1
~(35) - Dl = el )
qlz| 15(We, 2)|
= | fo[Wolk(2)] = y’“/QIfo(Z)I =9(2)
where the second-last equality comes from tha fact that newforms are eigenvectors for Atkin-Lehner
operators, of eigenvalues +1, as I stated in the proposition 2.2.5.1. 0

This important Lemma and the proposition above, allow us to restrict the domain of g(z)
to &,. Indeed if z € H then there exist w € &, and 6 € Ap(g) such that z = d.w. Hence

9(2) = g(dw) = g(w). In particular [|lg||, = ||g ls, ]|,



Chapter 3

Bound via Fourier Expansion and
Pre-Trace Formula

In the previous chapter we have seen how to reduce the domain of our function g(z) to &,. In
this chapter we are ready to apply two techniques to establish a bound for g(z). The first one uses
the Fourier expansion of fy(z) and the behaviour on average of its Hecke eigenvalues; the second
one is a little more sofisticated and uses a particular relation between th functions ¢g(z) and an
automorphic kernel; this relation is called pre-trace formula. I recall

g(z) = |yk/2f0(z)] and &, = {J:-i—iy ceH:z€][0,1),y € [\2/5,00)}

where z = x + 1y.

3.1 Bound via Fourier expansion

Since fy is a cusp form, it decays rapidly at infinity. This allows us to split the Fourier expansion
of fo into a finite sum and a negligible tail. To do this we need the following result which is derived
from the analytic properties of the Rankin-Selberg L-function,

Theorem 3.1.1 (Rankin and Selberg). Let f € 8 (To(q)) be a primitive cusp form, and denote
by Af(n) its Hecke eigenvalues, then

> )] < X (gX)"

1<n<X
Proposition 3.1.1.1. Let 0 <71 <1 be a real number, then uniformly on z € G,
9(2) = ¥*?|fo(2)| <c ¢“(ng)"/?

for all e > 0.
In particular for z € &4, g(z) < ¢*/?7¢.
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Proof. T recall that fo(2) = >_,5; n%wfo (n)e(nz), where 14, (n) are the normalized Fourier coef-
ficients. Moreover, since fy is primitive then ¢z (n) = Ag,(n), if Ag (n) are the Hecke eigenvalues.
So we have

o(2) = 2| S0 T w (menz)| = o2 | () T g mle(ne)| < 02 3 P g )

n>1 n>1 n>1

Focus on the argument in the last formula: the tail of the sum, when ny > ¢¢, is negligible because
of the rapidly decay of the argument. Indeed we have the following

Lemma 3.1.2.
¢f0 (N) < N1/2

Proof. As we know

=Y Ty = 3" 0" gy, (n)e(na)e 2

n>1 n>1

Moreover, since fo is cuspidal, then uniformly on z we have [y*/2 fo(2)| < 1. So consider for a fixed
N

1
/ f(z +iy)e(—Nzx) d:c—Zn 2 wfo n)e _2”"y/:06(x(n—N))dx

n>1

The integral is clearly different from 0 only when n = N, where it assumes the value 1. Hence we
obtain

= N g, (N)e 2N
Therefore it follows that
1
Up(N) < N'F [ e N

=0

< N%eQﬂ'NyL
yk/Q

We can take y = % obtaining
P(N) < N'FNH2 = N2

So we have

PEPPLED SRE. (R

1<n<q¢/y

We apply the Cauchy-Schwarz inequality to this sum, obtaining

) ) (ny)r*
g(Z) <Ly Z |¢fo(n)| Z edmny

1<n<qc/y 1<n<q¢/y
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fronm Rankin-Selberg’s theorem

S pm)P= Y [Ap(m)* < n(gn)

1<m<n 1<m<n
hence we can bound the sum in the first parenthesis as

€ e+1\ €
q q

> n2<<< >
|f0()| y y

1<n<qc/y

For the sum in the second parenthesis we have trivially

)k—l

1<n<q/y

IN

q° k—1
—(q°)
Y

This implies

5 qe qe—‘,-l qu 1 qe
a(2) <<y< ) Tyt <L

Y Yy Y Y
Therefore .
q
9(2) < 775
¢ y! /2

Now, if z = x + iy € &,y then y > n—lq, so we conclude

9(2) <e q(ng)"/?

O

Remark 3.1.3. This result tells us that if one fizes a real number 0 < n < 1, then he find a
subreagion &,q of our domain &y in which the bound for the supnorm of g(z) is in some sense
‘non-trivial’, namely strictly less then ¢*/%. The problem is that in the remaining part of our domain
with this method we can only find the ’trivial result’. So our aim is to find a method to improve the
result of the above proposition in the reagion &4 — &,q, and then to find a suitable value n which
makes the bound as good as possible.
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3.2 Bound via Pre-Trace formula

The technique that we use in this section is essentially to compare our function fo(z) with the
automorphic kernel

1
o) = D s e

p€lo(q) J

and to find a bound working on this last function.
From appendix 1 we obtain the pre-trace formula

J
Z fj,fj —w) f(2)

]:

where {f1,---, fs} is the orthogonal basis described at the end of chapter 1. C} is a constant
depending only on k, which is the fixed degree. In particular, choosing w = —Z € H one obtains

Now, since fy is by definition an element of this orthogonal basis, then

| fo(2)[?
(fo, fo)

= Crh(z,—2) < h(z,—%)

- Fo(2)2 < (fo, o) h(z—2)

This alows us to study the function h(z,—Z), to give an upper bound for |fy(z)|. For what is
concerning the factor (fy, fo) we have the following

Lemma 3.2.1. Let f be a primitive cusp form with respect to T'o(q), then (f, f) < ¢' ¢
Remark 3.2.2. A proof for this result can be found in [Twa90)].

Definition 3.2.3. For any matriz p € My(Z) we define the following function on H

i(p;2)(z — p-2)

up(2) = y

where z = x + 1y.

Remark 3.2.4. This new function u, is strongly related to the hyperbolic distance between an
element z € H and its image under p,

|z — p.zf?

w(z p2) = 4y (p.z)
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Coming back to our problem, we define the function K(z) = a%k for real x. Hence we obtain

-5 = 3 = Y K(u,(2)

h_ > %
p€lo(q) i(p, 2 (=2 + p.2) p€T0(q)

therefore

9(2)? = ¥ fo(2) > < ¢" T yF|h(z,—2)]

<q"| Y K(u,(2))

p€lo(q)

<q* S K(up(2))

p€T0(q)
At this point our aim is to study this last object
> K(luy(2))
p€o(q)

The idea is to study carefully this sum using the Stiltjes integral, and noting that there is a strictly
positive lower bound for |u,(z)|, for any matrix p € I'¢o(¢) and any z in our domain. This fact
makes our sum finite. First of all we have to define the following function:

Definition 3.2.5. Let z € H and § a positive real number, then

M(2,8) = #{p € To(q) : luy()] < 3}

This function is the heart of our bound, indeed a careful bound of it permits us to give a bound

for the function } . (,) K (|up(2)]) (and so for g(2)), simply using Stieltjes integral.

3.2.6 A Bound for M(z,0)

I recall that M(z,0) is the cardinality of {p € I'o(q) : |u,(2)| < 0}; to bound it we have to split
this set into two subsets, distinguishing the case in which the matrices have the third entry equal
0, and the case in which the third entry is not 0, namely we define

Definition 3.2.7.

M0 =#lo = § ) €To@: fug(a)l < )

Definition 3.2.8.

a

M) =to= () ) €Tula) 20, luy(a) <)

So M(z,0) = My(z,0) + M,(#,0), and we bound separately these two terms.
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Lemma 3.2.9. Let z =x + iy € H and § a positive real number, then

MO(Zv 5) < 5y

Proof. Let v € {p= ( 8 Z > € 'o(q) : |up(2)] < 0}, then a = d = £1. Without lost of generality

1

0 Zl) ) In particular My(z,6) is the double of the possible

Wemayassumea:dzl,so'y:(

choiches for b. We have

z— 2| b+ 2i
_ =ikl bt 2l
y y

|uqy (2)]
and considering the real part of this last inequality we obtain
b < oy
Therefore My(z,0) < 0y. O

Lemma 3.2.10. Let z = x + iy € H and 0 a positive real number, then

(53
M, (z,0) < —
Yyq

Proof. Let v = ( CCL Z > € I'g(q) be such that |u,(z)| < § and ¢ # 0, then a direct computation

gives

1
uy(2)] = b —cl2|* + 2(a — d) +iy(a + d)lg <9
Considering the imaginary part one obtains
la+d| <¢

Considering the real part one has
2 1
|b—c|z|* + z(a — d)|§ <9

Now substitute b = 2¢=1 and note that |cz + d|? = ¢?|z|? + d? + 2cz, so we obtain

Slely > |c2|z)? — cx(a — d) — ad + 1|
= (22| + d* 4 2cdx) — d* — cx(a+ d) — ad + 1]
=|lez+d|> +1 - (a + d)(cz + d)|

We have seen above that |a + d| < 4, so

ez +d* + 1] < dlely + |a + d||cz + d] < |ez + d
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which implies
lcz +d| <

As a consequence we obtain
lcx +d| < 0 and |cly < 0

In particular |¢| < 2.
On the other hand ¢ =0 (mod ¢), so we can say that the number of possible choiches for ¢ is

0
t{c} < —
{eb <,
Let now I be an interval of lenght < 4, containing a + d and cx + d. Then
a—d—2cx=a+d—2(cx+d) el

So, once c is fixed we have to find the triple (a, b, d) such that

(Z Z)GFO(Q)

at+del
a—d—2cx el

Let A:=a+d and D := a—d— [2cz]. Since b depends on the other coefficients of the matrix, then
the number of triples (a, b, d) is equal to the possible choices for the pairs (a, d), which is equivalent
to count the number of pairs (A, D) such that

{A, Del

2A[2cx] + 4bc = D? — 4 — [2cx)? — A?

In particular weaking again our conditions the number of possible pairs (A, D) is
#{(4, D)} < |I]* < §°

Recalling that the number of possible choiches for ¢ is < y% we can conclude that

53
M, (z,0) < —
Yq

O

Remark 3.2.11. Note that the bound for My(z,d) does not depend on the level q. This is reasonable
since the only parameter connacted with q is ¢, which s 0.

Remark 3.2.12. [t is important to note that the buond for My(z,0) is directly proportional to the
imaginary part of z, while the bound for M,(z,0) is inversely proportional to it. So, if we want
to give a simultaneous bound for both, independent on y = Iz, then we have to restrict y to an
interval upper and lower bounded.
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Proposition 3.2.12.1. Let z = x + iy € H and § a positive real number, then

53
M(z,0) < 0y + —
Yyq

Proof. 1t is an immediate consequence of the above two lemmas, indeed

(53
M(z,6) = Mo(z,0) + M(2,0) < oy + v

Corollary 3.2.13. Let z € &, — .Gy, n > g, § a positive real number, then

a€Ao(q)

M(z,6) < 8
3.2.14 A Lower Bound for u,(z)

In the appendix 2 we have seen that it is possible to classify the motions v = ( CCL b > € PSL2(R)

d

depending on the value of the trace, namely

la + d| = 2 < ~ is parabolic (i.e. it fixes exactly one point in R)
la + d| > 2 < v is hyperbolic (i.e. it fixes exactly two points in R)
la +d| < 2 < 7 is elliptic (i.e. it fixes exactly one point in H, and the complex conjugate )

Taking now v € I'g(¢) and z € &4, I want to give a lower bound for u,(z) (i.e. an upper bound for
K (u(z))) with respect to the classification of +, using the following inequality:

(Z)’ — |'7‘Z — 2”](772)‘

U
|uy y
ez +b—Z(cz + d)|
Yy
B |b—c|z|? + az — dZ|
Yy
B |b—c|z|? + z(a — d) +iy(a+ d)|

Y
Now, considering the imaginary part of u,(z), one has
|y (2)] 2 S(uy(2)) = la +d|
This implies that |u,(z)| in strongly related to the classification of motions. In fact we have:
1. If 7 is parabolic or hyperbolic then |u,(2)| > |a + d| > 2, then
1

|ur (2))]

<

| =
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2. If v is elliptict then either |a +d| =1 or |a + d| = 0:
o If |a+ d| =1 then |uy(2)| > |a+d| =1 and so

1

| (2)]

<1

e If |[a+d =0 then a = —d and b = —L:l; hence bubstituting this values into our
formula for u,(z) we obtain

a1+ Pz + 2cda]

|uy (2)] lely
1 (ex 4+ d)? + Py
- lcly
> lely

Now, if ¢ = 0 then 7 is parabolic. So we may assume ¢ # 0. Moreover since v € I'y(q)
then |¢| > ¢ and since z € &, then y > \2/—3; therefore

V3

[uy (2)] 2 ey > -

and in particular
1

[ur (2))]

<

N
oo%
w

3.2.15 The Total Bound

In the discussion above we have seen that K (|uy(2)]) = m is bounded for each v € T'y(q), so
vy

our hope is that also } ) K (|up(2)|) can be bounded.

K(z) = xik is continous and bounded in [@,oo), and M (z,0) is obviously a monotonically

increasing function (with respect to §). So we are in the hypotesis to apply the Stieltjes integral:

> K(u) = [, K@am(.o)

p€lo(q)

Remark 3.2.16. Since |u,| > @ then M(z,8) =0 for all 6 < @, and so the integration starts
from @ instead of 0.

Applying the integration by parts we obtain

& M(z,6)] * M(z,0)
K M =
[ K@) B L«;“‘: [ Aettan
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Now, we have seen in the subsection 3.2.6 that M(z, ) < 62, hence

M(z,6)] * M(z,0) 1] * 1

[ 5 ] v +k‘/\/§ SE dd < 3| +k/\/§ 75k—2d5

0="5 2 0="3 2

B S S L B S
T §k-3 6:@ k—3 |63
__ 3 [T
k-3 |oF3 Y

()<

T k-3\ 3
oy 1 .
Proposition 3.2.16.1. Let 7 <n< 1 be a real number, then uniformly on z € GQ_Uaer(q) .G,y

g(z) <. q1/2+e
for all e > 0.
Proof. So far we have seen that
9(2)* < ¢ > K(juy(2)))
pELo(q)
and in the last proposition we have proved that in fact
> K(u(2))) <1
pELo(q)

Therefore
g(z) < q1/2+6

O
Remark 3.2.17. This method is completely different from the previous one, since it uses algebraic

properties (holomorphic kernel) instead of analytic properties (Fourier expansion), but it gives the
same bound in the reagion G, — &,q.



Chapter 4

The Amplification Method

The aim of this chapter is to try to improve the bound previously found, especially in the reagion
Sy — 6,4, using another method, the so called amplification method.

In general this method takes an established estimate involving an arbitrary object, as a function,
and obtains a stronger (amplified) estimate by trasforming the object in a well chosen manner into
a new object, applying the estimate to that new object and seeing what the estimate says about the
original object. In our specific case the idea is the following: suppose to have a family of functions
{u;j(2)}jer, and suppose that our goal is to find an estimate for a function gy belonging to this
family. Suppose to know an esimate involving this family of functions of the form

S (m)A () () < Fi(n,m)

Jel

for some formula F'(n, m) depending on integers n, m, and some complex numbers \;(m) and Aj(n).
Let a,’s be complex numbers, and N be a positive integer, then one can obtain

YUY i) Pluy(2)]? < Falar,--- ,an)

jel n<N

The trick consists in finding a good estimate for the right hand-side, and then since the terms in
the left hand-side are non negative then one can define the linear form L; = )" _ 5 apAj(n) which
gives N

| Lol uo|* < Fo(ar, - ,an)

The linear form Lg is used to amplify the contribution of the selected function ug, so the goal is to
choose the a,’s that makes Ly big and Fy(aq,--- ,ay) small.

In our case the family of functions will be the orthogonal basis of eigenforms for 8x(I'o(gq))
described in chapter 1, and we will give the bound for the right hand-side of the inequality using
another time the pre-trace formula, and then applying two times some Hecke operators.

For our purposes I recall three important fact: let f be an element of our basis and ¢ a positive
integer, then

L T(0)f =23 ey g mota 10D
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T(l1) o T(l2) = Zdl(h,ﬁz) T(%);

J /7 =\
3. h(z,w):= EweFo(q) W = Ck Zj:l T}fpf](z)fj(_w)

Considering this last equation and applying the Hecke operator T'(¢) to the left hand-side, with ¢
coprime with ¢, we obtain

T w)(z) = 2 3 S -

p€G(q)/To(q) veTo(q)

:6%24 kl

k
pentg 1 (P2 (W + p.2)

ek/Q
i(y,p.2) w+WW)ﬂm@k

and to the right hand-side we obtain

J

1 Y
T(O)(h(-;w))() = Cy ; e OUIOTIED)

Now, let /1 and /5 be two positive integers coprime with ¢q. The idea is to apply both the Hecke

operators T'({1) and T'(¢2) to the equation. In fact we apply T'(¢1) o T'(¢3) to the right hand-side,
and >~ 517, 1) e =17*) to the left hand-side, we obtain

s - ! . (2)]2
Z <d2 > Z J(p, 2)k(=z 4 p.2)k kz<f],fj ()N (€2)[ ()]

d|(£1,62) PEG o145 ()
a2
Consider a positive integer L, and complex variables x1,--- , 27 to which we will assign a value

later, and look at the following sum:

CkZ’ Z 5L'€>‘fj(€) ?

2

y2 15 (2)
V< i fi >

j  1<¢<L
k/2 ¢
¥ y = fi(2)
IC'kZ Z .%'gl.l‘gz)\f(fl))\f.(fz)i
J 1<ty ,02<L ’ ’ V< T i >
k/2 ¢
7 y = fi(2)
= Ci Toaty ) A () () | — =
k—1
_ b0\ 2 yk
= Z Ty Tyqy Z (2) Z - 5> %
1<01,6,<L d|(t1,62) d e (q)J(P,z)( Z+p.z)
T
06\ T
- 2
= Y T Y (;) > K(luy(2))

lgél,ész d|(f1,f2) pEG 210 ( )
T

d
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This equality will allow us to give an upper bound for the right hand-side of the equation given by
the amplification, and choosing in a proper way the variables z;’s we can also find a lower bound
for the left hand-side, as it is required.

Looking to the last formula above, we see that first of all our goal to give an upper bound for
> pec, K(lup(2)]). This situation is similar to that of the previous chapter, but now we have to
sum over all matrices in Gy(q) instead of all matrices in I'g(q).

Remark 4.0.18. I recall that
Gela) = {( . Z ) € My(Z) : ad —be = ¢, glc, (a,q) = 1}

Note that for £ =1 we obtain Gy(q) = T'o(q).
Before starting with this bound, we need some more preliminaries, namely
Definition 4.0.19. Let z € H, ¢ a positive integer, and § a positive real number, then
M(z,0,6) :==t{p € Gu(q) : |up(z)| <}
It is just the generalization of the previous counting function M(z,9).

We have now to find a good estimate of it; this is a very important step of this chapter.

4.1 A Bound for M(z,/,9)

First of all we need a very useful lemma, that we shall use several time in this section:
Lemma 4.1.1. Let v and s two positive integers,(r, s) = cico and ca squarefree, then
card{¢ (mod s):£?=r (mod s)} < s

Proof. Let ¢ be a solution of 22 = r (mod s), then c?cy divides &2 since it divides both 7 and s. ¢z

is squarefree hence c%c% divides €2 thus ccp divides €. So & = kcjcs for k < 61862.

2
Moreover if (cz, %) # 1 then also <c2, QL) # 1 since co divides §— and it is not possible
cjca cica cic2
because (QL, —— ) = 1. So we have that cg is invertible (mod —>).
cic2’ cica cica

This means that finding a solution ¢ (mod s) of 22 = r (mod s) is equivalent of finding a solution

kof 22 = Lc;! (mod —).
250 ( Ze)

Now <c2ch cy L %) = 1, so we can apply the Chinese Remainder theorem to reduce the problem
1 1

of solving the sistem of congruences

2 " 1 h
r° = —5—c; (mod p")
for all thCQSC2 powers of prime. There are at most two solutions for each equation, so the number
1

. . w(=) . .
of total solutions is < 2 °ie2 < ow(s) < 7(s) < s where w is the function that counts the number
of prime divisors of s, hence counts the number of congruences of the above system.
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Suppose now that k is a fixed solution, then kcico = & is a fixed solution of 22 = r (mod s).
We want to count the number of £ (mod b) which are congruent to § (mod -) and that are
1

solutions of #2 =7 (mod s). In this way we can find all the solutions of this congruence.
We have £ = &y + h% for some h € Z, and we impose
1

2
<§0 + h;) = fg (mod s)

162

W2 2h
s|s (42 + - >

K2 s 26k
(2 5 20 o

CiC2 C{C2 CciC2

that means

ie.

s
cfcz

Moreover if ¢; divides | =—, £0_) then it divides also +— and it is not possible because | 4—, = | =
cic2’ Ci1c2 cic2 cic2’ cic2

¢o must divides h? since it does not divides

. In particular co must divides h.

1. So 0%02 must divides h2, thus ¢;co must divides h.
We conclude that s s
§=¢& + (creah1) 5— =& + h1—
C1C2 C1
hence there are at most ¢; possibilities for & once &y is fixed.
Therefore the total number of possibilities for a general solution (mod s) is < sc;. O

We shall study the bound for M(z,¢,0) giving at first a bound with no restriction on ¢, and
then we will study separately the case in which £ is a perfect square.
4.1.2 The general case
We split the problem in two separate bounds: set
M(z,0,0) = My(2,4,8) + M, (z,¢,0)

where My(z,/,6) is the cardinality of the matrices with the third entry ¢ = 0 and M,(z,¢,0) is the
cardinality of the matrices with the third entry non zero.
First we shall find an estimate for M,(z,¢,¢), which require more details:

1 1
lup(2)| = |laz +b— Z(cz + d)|§ =0+ |cz+d? = (cz+d)(a+ d)\@ <6
Considering the imaginary part we obtain
la+d| <9¢

and considering the real part we obtain

|0+ ]cz+d\2 —(cx +d)(a+d)| < eyl
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then
|6+ |cz 4+ d|*| < 6(|cy| + |ex + d|) < lez +d|
therefore

lcz+d| < ¢

In particular one has |cx +d| < § , cy < § and |a —d — 2cx| < 0. Let I be an interval of length
& 6. Define A =a—d and D = a + d. So the problem is equivalent of counting the number of
triple (A, D, c¢) such that
(Del

A€2cx+1

A2=D? — 4 (mod c)

g<e<?
lc=0 (mod q)

Suppose ¢ and D to be fixed, we want to count the number of possibilities for A: Applying
lemma 4.1.1 to our equation A? = D? — 4¢ (mod ¢) and writing (D? — 4/, ¢) = ¢y = cica we have
that the number of solutions for A (mod ¢) are < c“c;.

Let Ap one fixed solution (mod c¢), the number of A € I such that A = Ap (mod ¢) is < % + 1.
Hence the total number of possibilities for A when ¢ and D are fixed is

I 0
HA} < cecl(|c| +1) 0601(2 +1)
Once A, D and c are found, then of course b is determined.

I recall that g|c then ¢ = gm < %, SO

0
mL—=W<<d
Yyq

Remark 4.1.3. Above we have defined (D? — 44, c) = (D? — 4¢,mq) = co = c2ca; note that q can
not divides D? — 40: If it is not true then D? = 40 + hq for some integer h. In my case I have that
D < § < ¢*V0. So we have

(+q< D* < ¢*Y

In our case £ < L and L will be a small power of q, in particular £ < ¢*/2. So we obtain ¢*/? + ¢ <
@*t1/2 that gives a contradiction. Therefore we have that

(D? — 40, m) = ¢
We are ready to count the number of possible choices for the quadruples (4, D, ¢,b), indeed
0
€
My (z,0,6) < Y (mg) Y a(l+ m*q) > 1
1<m<W colm D8, D2—4¢=0 (mod cp)
Using lemma 4.1.1 another time, in the last sum we obtain

5
> h(%h(1+c>

D<«, D2—44=0 (mod cop) 0
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where by = b?by = (44, c). So the total sum becomes
€ 5 € 5
< Z (mq) 201 1+ — ) g [ 14+ —
1<m<W colm mq <o

Since ¢y < m I obtain

€o
1<m<W colm
If we set
Sl (m) = Z Clbl
colm
and )
So(m) = 191
€o
colm

we can write the sum above as

M (z,£,6) < Y (m?q) <1+nfq> (S1(m) + 6S2(m))

1<m<W
) Si(m) 62 Sa(m)
2 e
<O | 30 Sum+s 3o Sm+ d TEa 3 2o
1<m<W 1<m<W 1<m<W 1<m<W
So the problem is reduced to bound » ;. oy Sj(m) and >y, oy ijnm) for j =1, 2.

Lemma 4.1.4.

S1(m) < LV /mr(m)

Proof.

The key point is to give a good approximation for b;. What we know is that ¢ will be of the form
r%s®, where r and s are two primes in [L,2L] (maybe not distinct) different from ¢. a and b are non
negative integers < 2. I prefer working with (¢,m) instead of (4¢, m) for semplicity of notation; in
terms of estimate it doesn’t change the result.
So (¢, m) = r¢s" with ¢ and 1 smaller then a and b respectively. To give an estimate of b; I need
to define the parameter j = £ + 7. In this way

(40, m) < L7

and
by = LU/
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where [ | indicates the floor function.
Moreover I define
P(j) ={m < W (m,0) =1%s"j = € + 11}
The idea is to split the sum over m in five sums with respect to j (j runs from 0 to 4). Note that

j depends only on m, since ¢ is fixed.
¢1 < +/m hence

Si(m) = Z c1by < LU/ Z c < L[j/z]\/ﬁv'(m)

colm colm

Lemma 4.1.5.
Z Sl(m) < W3/2+e
1<m<W

Proof. From the bound above we obtain
Z S1 < Z LY /mir(m)
1<m<W 1<m<W

I recall the notation: (£,m) = r&s", j = € +n, so (4¢,m) < L7. Moreover I have defined P(j) :=
{m < W : (m,£) =rs",5 = £ +n}. The key point is that L7 < (4¢,m)|m, so

LW
EP(j) < 7
Note that for m € P(j) I can write m =< L/h where m = (4¢,m)h. 1 obtain

Yo Sim)y< Y LV mr(m)

1<m<W 1<m<W

— Z Z LY/ /mr(m)

0<j<4 meP(j)

<weSS S Liym

0<j<4 meP(j)
<we S LAY ym
0<j<4 meP(5)
=we >y LA N ViLin
0<5<4 1<h<W/LJ
= We Z /2 a2 Z Vh
0<y<4 1<h<W/Li
— V€ G/2lrdi/2 (22
=we Y LV (Lj)
0<j<4
Lli/2
_ TA73/2+€
—W Z -
0<j<4
<<W3/2+6
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O
Lemma 4.1.6.
Z Si(m) < Wl/2+e
m
1<m<W
Proof. It follows immediatly from the previous lemma, using the Abel summation formula:
Sy (m) 1 w 1
> (Y S [ (3 Sim)gd
1<m<W 1<m<W 1<m<t
By the previous lemma we have
S (m) W3/2+€ w t3/2
we ——dt
Y. o< gt /1 =
1<m<W
— Wl/2te 4 e [Qtl/Q]
< W1/2+€
O
Lemma 4.1.7.
Z SQ(TTL) < W1+E
1<m<W
Proof. By definition ¢; and by are smaller then ,/cy hence
abt
€o
Therefore .
€101
colm
So we can conclude
Z Sy < Z 7(m) < Win(W) < Wite
1<m<W 1<m<W
O

Remark 4.1.8. Fven if for this bound we have used a trivial argument, a better result is not

expected, indeed
Z Sy > Z o_1(m) =W
1<m<W 1<m<W

Lemma 4.1.9. g
Z 2<m) < We
m

1<m<W
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Proof. We use another time the Abel summation formula:

m w
> %)=< > Sz(m))wlﬁ/1 (> SQ(m))t%dt

1<m<W 1<m<W 1<m<t

By the previous lemma we have

1+e w t
) Sam) W +W€/ dt
m 1 t

w
= W* + W< [log(t)]}"
< W*e
Il

Proposition 4.1.9.1. Let z € &, { a positive integer coprime with q, and ¢ a positive real number,
then
M(z,0,8) < (¢6%)0% +7(£)6(1 + )

Proof. So far: we have set
M(z,0,6) = My(z,¢,0) + My(z,¢,0)

and we have proved that
. 0
M (z,6,6) < > (mg)* Y er(l+ miq) > 1
1<m<wW colm D«é, D2—44=0 (mod cop)

In the general case (no restriction on ¢) we have seen that

M*(Z,Z,CS) < (WQq)e Z Sl(m)—l—é Z SQ(?TL)-Fé Z Sl(m) _'_572 Z SZ(m)

m q m
1<m<W 1<m<W 1<m<W 1<m<W

Reminding that W < ¢ and from lemmas 4.1.5 , 4.1.6 ,4.1.7 and 4.1.9 it follows that

2
M*(zygy 5) << (W2q)€ <W3/2+6 + 6W1+6 + ZW1/2+6 + (SqW6>

3/2+e€ 24€
< ((SQC])E (53/2+6 _"_52+6 + o + o )

q q
< (53(])662

a b\ . . .
0 d > is in Gy(q), then d is
determined from a, since ad = £. Therefore the number of choices for (a,d) is < 7(¢). It remains
to count the number of possibilities for b:

For what in concerning Mj(z,¢,0) we note that if a matrix v = <

b—zd
:|az+ Z|<5

|y (2)] ;
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If we consider the imaginary part we obtain
la+d| <6
Moreover a and d have the same sign, since ad = ¢, then
la—d| <l|a+d| <¢
On the other hand, considering the real part we have
|(a —d)x + b < yo

which implies

0] < o(|z +y) < o(1+y)
So

Moy(z,2,0) < 17(£)0(1 4+ y)

The conclusion follows immediatly summing the two results just found. O

4.1.10 A special case

In the previous section we have established a bound for M(z, ¢, ) that depends on §. To do that
we have not put any restriction on the size of §, obtaining

M(z,0,6) < (q6%)6% 4+ 7(€)5(1 + €)

In this section I want to do something a little bit different: suppose we know something more about
d, namely that it can not be too big, and assume that ¢ is perfect square. Then we can find a
better bound for M (z,¢,0). The reason of this technique is the following: thanks to the first rude
but general bound we are able to add an assumption on §, namely that it could be small enough
to allows us to use the second better bound for M(z,/,d) in the next step.

Proposition 4.1.10.1. For § < ¢°vV{ and £ a perfect square
M(z,0,8) < T(£)6(1 +¢€)

Proof. As in the general case we can reduce the counting lemma to count the number of possible
choices for the parameters D, A, b, ¢, such that

(Del
Ace2cx+1
A% = D? — 40 — 4be

where I is an interval centred in 0 of length < 6, and £ is a perfect square less then L < ¢'/2. The
added assumption that distinguishes the general case from that is

§ < ¢V < ql/2
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From the above conditions,in particular from the third one, we obtain the weaker condition
(D-A)(D+A) =40 (mod q)

Since 44 is a square then we have two possibilities: either D + A and D — A are both squares or
they are both non-squares.
1) If they are both squares then

{D—A=a2 (mod q) (4.1.1)

D+ A=p% (mod q)

for some 0 < «, 8 < ¢'/2. Moreover if a or 8 are equal to 0 or ¢*/2 then 4¢ = 0 (mod ¢), but this
is in contraddiction with the size of £. So 0 < «, 8 < ¢*/2.
Therefore

4= (D—-A)(D+A)=a*6? (mod q) (4.1.2)

from which it follows that
(af +2V0)(af —2V€) =0 (mod q)

This means that either o8 + 2v/¢ =0 (mod ¢) or af — 2/ =0 (mod q).
Since af < (ql/2 —1)2and ¢ < ¢'/? then a8 + 2v/¢ < q therefore a8 = £2v/¢. 1 recall that V7 is a
product of almost two primes, then the possibilities for o and 3 are at most 16.
Let now « and f be fixed, then the above sistem (4.1.1) gives a unique solution for D an A
(mod ¢). For each such a solution (mod ¢) we want now to count the number of integral solutions.
But since both D and A belong to an interval of length § < ¢ then there are at most one integral
solution.

2) If they are both non squares (mod ¢) then there exists a positive integer

1
o < q4\/EJFE

N

<q (4.1.3)

such that z( is a quadratic nonresidue (mod ¢). So from (4.1.2) it follows that
2o(D — A)zg(D + A) = 423 (mod q)

Now, zo(D 4 A) are quadratic residues (mod ¢), so as above there exists 0 < a, 8 < ¢'/? such that

zo(D + A) = 3% (mod q) (4-14)

{mo(D —A)=a? (mod q)
As above, if o or 8 are equal to 0 or ¢/2 then 4&3 = 0 (mod ¢). Another time, because of the
size of 13 < ¢'/? and ¢ < ¢/2, this gives a contraddiction. So 0 < a, 8 < ¢*/2.
We obtain that
(a8 + 2Vlxo) (a8 — 2Vlxg) =0 (mod )

But of + 20z < (ql/2 —1)2 + 2¢M4qM* < g, so aff = £2V/lzy. Now, since a and 8 are divisors
of 2v/0x the number of possible choices for them is < 7(z9) < ¢°. Fix o and 3, then as in the
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previous case there exists a unique solution (mod ¢) for D and A in (4.1.4), and so a unique
solution for D and A in Z.

So far, we have proved that the contribution of D and A in the counting lemma is at most ¢°.
Now, suppose ¢ to be fixed, then there are < ¢¢ solutions for D and A and b is given from this
solutions. This allows us to say that the counting lemma can be reduce to count the number of
possible choices for ¢, that is < §. So we can conclude that

M (2,0,0) < ¢

for § < ¢°V/Z.
As in the general case

My(z,£,0) < 17(£)6(1 +y)
and so

M(z,0,0) < 1(0)d(1+y)

O

Remark 4.1.11. The problem of finding the best bound for the first quadratic nonresidue in the
interval [1,q — 1] for a large q is very famous, and one can find references in [LWO08]. Anyway, I
want to justify without details the above formula (4.1.3): probabilistic heuristics suggests that this
number, call it ng, should have size O(logq), and indeed Vinogradov conjectured that ng = Oc(q°)

Jor any € > 0. Using Polya-Vinogradov inequality one can get bound ngy < \/qlogq and can improve
it to \/q using smoothed sums. Combining this with a sieve theory argument one can boost this to

1 1
ng K q2ve log? q. Finally, inserting Burgess’s amplification trick one can boost this to ng K q4\/5+6.

4.2 A bound for ZpEGe(q) K(Ju,(2)])

So far we have found a general bound for M (z,¢,0), namely
M(z,0,8) < (¢6%)°6% + 7(£)d(1 + y)
and if 0 is small enough and ¢ a perfect square we have that
M(z,0,0) < 7(£)0(1 4+ y)

In fact for our purposes we can simplify this bound. Indeed, as I remarked several times, we are
interested in an upper bound for g(z), where z € &, — &,4, for same 0 < n < 1. This is the reagion
in which we have not found a non-trivial bound for our function. So we may assume y < ni
Moreover we will see later that ¢ will be smaller then a small positive power of ¢, in particular
T(¢) < ¢°. With these two reductions the second term 7(¢)d(1 + y) is negligible with respect to the
first one in both the general and the special case. So we may assume for the general case

M(z,4,68) < (¢6%)0% < ¢°5°
and if § < ¢°v/¢ and ¢ a perfect square then
M(z,¢,0) < ¢
Now we have all the ingredients to bound }_ ¢, () K (|up(2)]).
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Proposition 4.2.0.1.

€

> Ku(:)) < i

pEG(q)

Moreover, if £ is a perfect square we have

Z K(Ju,(2)

p€G(q)

Proof. The idea is to split the sum into two sums in which one of the two will be negligible. For

this reason define
o1 = Z K(’up(zﬂ)
PEG(q),|up(2)|<U

and

o2 = > K (fup(2)])

PEG()up(2)|>U

where U will be choosen such that Sy will be negligible: using the Stieltjes integral we have

> 1 (265 szé
oy = | —dM(z(,6 :{ ]
/U ok ( ) Tkt

q65€ oo 666
< {5,{ QL +k/U de

Note that in the above computation we have used the general bound for M(z,¢,d). From the
appendix 2 we have that for all p € Gy(q),

Juy(2)| > VI

So the parameter U has to be > v/£. To make oy negligible we need to make ¢¢ disappear from
the numerator. Since k& > 4 by our initial hypotesis, then it is enough to take U = ¢°v/¢. So we

may restrict to study
a= Y K(ule)
PEG(q),lup(2)|<qVe

Since |u,(2)| > v/ for all p € Gy(q) then
K (Juy(z)]) < ¢~
for all p € Gy(g). So we can conclude that

S K(ule)]) < MMz, Vi)

PEG(q),|up(2)|<q V'
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Since § = ¢“V/{ < q, if £ is a perfect square then we can use the better bound for M(z,¢,§) and we
obtain

> K(|Jup(2)]) < €7F2M (2, 0,VEq")
PEG(q),up(2)|<q V'
< fk/QqE\/z

q
< f(k—1)/2

€

If ¢ is not a perfect square we have to use the general bound for M (z, /¢, d) obtaining

> K(|up(2)]) < M (2, VEg")
PEG(q),lup(2)|<q°VE
2
< €7k/2q6 <\/zqe>

€

q
< —
51
O
4.3 The Amplifier
So far we have found the following equality
256 [ e\
j _ 162
CkZ| Z :reAfj(f)IQ W = Z Loy Tty Z <(12> Z K(Jup(2)])
j o 1<I<L? 7293 1<61,6,<L? d|(£1,62) PEG 112y (@)

d2

and we have established an upper bound for > () K (Jup(2)]), which is ekﬁ%'

PEG 110,
—

Let’s define the amplifier: Let f be a cuspform c;lf level g, and L a positive real number. Let
A= {p prime : (p,q) = 1,p € [L,2L]}
be a large set of primes. Define

sgn(Ap(€)), if £ € AUA?
Ty =
¢ 0, otherwise

where A¢ (/) is the eigenvalue of f with respect to T'(¢).
The main property of this amplifier is that

Lemma 4.3.1.

I BRE2YNGI A
1<¢<L?
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Proof. Let £ € A, then by the remark 1.3.17 we have that
Afo (@2 —Afo (62) =1

In particular
maz{| A, ()], A g (%)} =

N | =

Therefore
| Y wdpy (01> > 1> (L) > L
1<e<L? LeA
O

Before proving the bound for g(z) we need to introduce another variable, that will be useful
during the proof: for all £ positive integers we set

Yo 1= E Loy Toy

00
d|(b1,62), (="15%

Lemma 4.3.2. y, = 0 for £ > L* and |ys| <2 for all £ # 1. Moreover y; < ﬁ

Proof. Since { = %, where d|(¢1,/2), then it follows from the definition of x, that y, = 0 for
(> L*.

Now, |ye| < #{01,02 € AUA?: (=40}

Note that ¢1 and #o are either primes or square of primes. So £ # 1 could only be either of the form

p', with 1 < i <4, or p'¢?, with 1 <i,j < 2. We now study each case:
e ¢ = p then the only possibilities are ¢; = p?, ¢5 = p, d = p, and the symmetric case;

¢ = p? then the only possibilities are £1 = ¢y = p>.d =p, and {1 =ty = p, d = 1;

¢ = p3 then the only possibilities are £; = p?, fo = p, d = 1, and the symmetric case;

¢ = p* then the only possibility is ¢ = £y = p?.d = 1;

if £ is divisible by two different primes, then d = 1 and ¢; and ¢ are uniquely determined up
to symmetry.

For what is concerning v, it occurs whenever ¢; = ¢y = d = p, for each prime p € A and i = 1, 2.
So there are < A =< ﬁ possibilities for #1 and /5 so that £ = 1. O

Lemma 4.3.3. The number of £ such that y; # 0 is K ZOL;L.

Proof. ¢ = %, so a direct computation gives that y, is not zero only if £ is of the kind

{p,p?. 0", 0", pa, ¢, P’ 0"}
where p and ¢ are primes in [L,2L]. So for each prime in this interval we have 4 possibilities
(p, %, p3, p4) and for each pair of primes we have other 4 possibilities (pq, P2q, p2q2). Let m(L) be

the function that counts the number of primes less then L, then the number of £ such that y, # 0
2
is at most 4(m(2L) — (L) + (m(2L) — 7(L))?) < m(2L)* < ;&7 O
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Proposition 4.3.3.1. Let 0 < n <1 be a real number, then uniformly on z € &, Uang (@) .Gy

g9(2) <c q'/*F

Proof. As a consequence of the equation at the begining of this section, one has

| Z xé}‘fo(£)|2‘yk/2f0(z)‘2 < (fo, fo) Z Ty, Tp, Z <£Cll§2>2 Z K(Ju,(2)])

1<e<L? 1<t ,02<L2 d|(£1,¢2) pGGz142 (9)
d?

< Y Y (“2) S K(u)

1<01,62< L2 d| (£1,L2) PEG 11, (9)
d2
k=1
< g™t T wT Y K(ju(2))
1<t LA pEG(q)

At this point, we split the sum dividing the case in which £ is a perfect square from the other:

< gite Z ygﬁ Z K (Juy(z) Z ygﬁ o Z K (Jup(2)

1<e<L3 pEG(q) 1<t LA pEG(q)
{ square

From previous section we obtain

<gte | S s ae gy S owts qee

1<tk L3 1<e< LA
£ square

< g'te Z yol? Z e

1<t L3 1<l LA
{ square

Since |y,| is bounded for ¢ # 1, and y; < ﬁ from lemmas 4.3.2 and 4.3.3, it follows that

< g (y1 + L3y, # 0})
L L2
1+e 13/2
<4 (logL * logL>
L7/2
log L

< gt

By lemma 4.3.1 we conclude that

2
2

—€ € L
L g(2)* < Z zdp(0)| 9(2)* < ¢'* oo L
1<0<L2 &
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Hence 3/
L
1/2+€
9(z) <q log L
Since L has to be bigger then 1 the proposition is proved. O






Chapter 5

The Diophantine Argument

In this chapter we shall use essentially the same ideas of the previous one, adding a Diophantine
argument to improve the bound for M(z,1,¢*v/L). More precisely, for all z in a certain reagion
of our fundamental domain we shall use Dirichlet approximation on ¥z to introduce two new
parameters (H and Q) that will allows us to improve the upper bound for ZlL:l M(z,1,¢°VL).
First of all we recall the Dirichlet theorem and we use it to find an important property for all

2 € 64 = Usey(q) 9Gna:
Let H and @ be fixed positive integers, Q < H.

Theorem 5.0.4 (Dirichlet’s approximation theorem). For all x € R there exists s and t € Z

coprime, 1 <t < H such that

1
<
—tH

S
xr — —

Proof. The proof uses the pigeonhole principle: consider for all t = 1,--- , H the integers ta — [ta].
All this integers are smaller then 1. Divide the interval [0, 1] into H intervals of length 1/H, and
call them Gy,---,Gg. So if at least one of the ta — [ta]’s belongs to Gy, then call s = [ta] and
we have done. Otherwise by the pigeonhole principle there exist t; # to such that ¢;a — [t1a] and
taor — [t2a] belong to the seme subinterval G;. In particular [tja — [t10] — taa — [t2a]| < %, and the
conclusion follows immediatly. O

We want to establish if a real number x in well approximated or not, with respect to the size
of ¢, indeed

Definition 5.0.5. Let v € R, and let 3 be an approximation as in the Dirichlet theorem. We say
that x is well approximated if 1 <t < Q. We say that x is not well approximated if t > Q.

Lemma 5.0.6. Assume H2 > 24 » =z + 1y € Gy — U 0.6,4. Then any approximation 3 of

n ’
d€Ao(q)
x in the sense of Dirichlet theorem satisfies

NGTRS 773/2(11/2

Proof. Let z € 64 — G,
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Assume that there exists £ such that /2t < 1*/2¢*/2. Then by proposition 2.3.2.1 there exists

t
b,d € Z such that
s b\ 1/m 0
(7 a)=ma (")

for some v € T'y(q) and m € {1, ¢}.
I claim that

1 Z
zeva<O 1>6nq

If the claim is true then we have that z € (s Ao(q) 06,4 because these three matrices belongs to
Ap(q); this clearly conclude the proof of the lemma. It only remains to prove our claim:
It is clearly equivalent of proving that

(0 (50 T en

Since m € {1, ¢} it suffices to prove that

s b 1 Z
Ze(t d)(o 1)6’7

. 1 Z Y . . . . . 0.
because the matrix 0 1 is just a horizontal translation, and the matrix < Tg 1 > is the

multiplication by m. So if an element w € &,,4, then mw € &, because m < ¢. For these reasons

. N s b\ V3
it suffices to prove that & <t d> z| > TR

It follows immediatly with a direct computation, namely:

71 o~
~ s b _ Sz
R (( ¢ d > z) = 7‘ izt s (5.0.1)

V3
24 (5.0.2)
|s — tx]? + qéi]g
V3
> (5.0.3)
H2+q512
2 2
. ‘fmm {H 77tq} (5.0.4)
q
> ‘/5 (5.0.5)

The first inequality comes from z € &, — &,; the second by Dirichlet theorem; the third follows

from the general fact T Jlr T > %{W};

the last one follows directly from the hypotesis and from the
]
assumption /2t < 773/2q1/2. ]
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From now on we assume

2Q% < 1%g (5.0.6)
2
# < 12 (5.0.7)

Remark 5.0.7. The first inequality allows us to apply the Lemma above, and the second one with
the Lemma itself allow us to say that RNz is not well approximable in the sense of Dirichlet, for any
z=r+1iy € Gy — U 0.6,q.

d€Ao(q)

Before going on I want to recall the situation and our goal:
as in the previous chapter we shall use the amplification method; we have found the following
equality that allows us to find an upper bound for g(z) = |y*/2 fo(2)| studying the right hand-side:

Y Y wn0F - > am Y ()T X K

1<0<L 1<01,6,<L d|(£1,0) pEG 111, (q)
a2

v fi(2)

V< [ fi >

The central point of our computation in to give an upper bound for
M(z,0,qV0) = #{y € Gu(q) : [uy(2)| < ¢V}
Indeed I remind that by section 4.1 we have obtain that

Y K(u(2)) < > K(Jup(2)]) < %%M(z,&qe\/??)

pEG(q) PEG(q),|up(2)|<qeVe

because |u,(z)| > v/ from the appendix, and so

K(us())) < 57

While in the previous chapter I have studied directly M (z, £, ¢°v/L), now the approach is a little
bit different: we want to find an upper bound for

Z M(z,¢,¢V1)

1<4<L

Now we can go on: first of all we need to lemmas used to count the number of matrices involved
in our sum with the third entry equal 0.

Lemma 5.0.8. Let 1 < L < n?¢*>~. For all z € H — U56Ao(q) 06,), the only parabolic matriz

. Vi 0
v € Gy(q) such that |u(2)| < VLg is + ( 0 i > .
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Proof. Let v = < Z Z ) be a parabolic matrix, i.e. |a + d| = 2v//. Then 7 fixes a cusp, call it a.
Moreover by lemma 2.3.2.1 there exists o € Ap(q) such that o(c0) = a.
Consider 0~ 1yo = 7/, then 7/(00) = oo and it is a conjugate of v, hence it is parabolic; so we have

Ve or

that v/ = ( 0 VI > for some r € Z. In particular [ is a square. So to conclude it is enough to

prove that r = 0.
Define w = 0~ !(z). Then as I have already proved

[y (w)| = Jus (2)] < VL4

In particular w ¢ Uaer(q) §6,), because z is not in it, and o € Ay(g). As a consequence if w = 2'+y/
I« V3

then ¢ < g

So we have

_ Wow+r = Vol _ Vi +rl il

- y/ - y/ - ? - |T‘77q

|ty ()]

In particular |r|ng < v/Lqg¢ hence |r| < v/Ly~1¢¢' < 1 by the hypotesis. So 7 = 0 and the lemma
is proved. O

Lemma 5.0.9. Assume vV Lg® < min {Q,M}. Forallz=xz+iyec &Sy — U(Ser(q) 0.6y, the only

matric y = ( 8 Z ) € Gy(q) such that |u(2)| < VLg* is ( \é@ \% )

Proof.

|(a —d)x + b+ iy(a+ d)| < VI
)

s (2)] =

In particular considering the imaginary part we have that |a 4+ d| < VLg¢. Now, dety =ad ={ > 0
hence a and d have the same sign and so

la—d| < |a+d < VL <Q

Claim: |a —d| =0

Since 1 < |a —d| < @, then it follows that |(a — d)z + b| > 4 because as we have seen, with
our assumptions on L any approximation (in the sense of Dirichlet) of Rz = x is a not well
approximation, indeed: suppose |(a — d)z + b| < 7 then |z — dfbal < m. By our initial

assumpitions |a — d| < ¢°v/L < Q and by lemma 5.0.6 we have
2|d —a| > n3q > 2Q

then |d — a] > @, which gives a contraddiction.
On the other hand, considering the above inequality for |u,(z)|, and considering the real part we
obtain

1
(a —d)z +b] < VLgy < \quE%
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Therefore we have

VLg*
nq
and so v/ Lg¢ > 41, in contraddiction with our hypotesis. Hence a—d = 0, then 7 is parabolic and the

1
ﬁﬁ\(@-d)x+b|§

conclusion follows immediatly from the previous lemma, that can be applied since v Lg¢ < ng. O
We have now all the ingredients to prove the following
Proposition 5.0.9.1. Let z € H — Usc 4y(q) 9Sng, then

1)
L
I1/2 HILY2 [1/2
D Mz VO <L |~ +1 + = +1
(=1 Q q H

L 1/2 1/2 1/2
> M(z,0,¢V0) < ¢*L/? (LQ + 1) <HI; e 1)

. H
=1, 1S a square

Proof. i) The counting problem is invariant by conjugation by Ay(g), so we may assume z € &,.
Moreover z = x + iy and by lemma 5.0.6 we may assume }a: — ﬂ < t% with Q <t < H.

If ¢ = 0, by lemma 5.0.9 v = < \é@ \% >, and it is possible only if ¢ is a square,then the

contribution of such matrices is at most L/2.
If ¢ > 1 we have for some 1 </ < L

2 _
_ |0+ |cz + d| (cz+d)(a+d)] < \/?qe
cy

[ur (2))]

Considering the imaginary part we obtain
la+d| < Vig*
and considering the real part we have
[0+ |cz +d|? — (cx +d)(a+ d)| < Vigey

and so
104 |ez + d*| < VI (Jex + d| + cy) < VEqE|ez + d|

which gives
ez + d| < Vg

As a consequence we have

ez + d| < Vig*
Vi
Y

c K
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and
la —d—2cx| = |a+d —2(cx + d)| < Vi

Let I be an interval of length < \EqE centered in 0 and sucht that a — d € 2¢cx + 1.
For each such integer ¢ we are reduced to counting the number of quadruples of integers (a, b, d, ¢)
such that
a—d¢e2x+1
a+del
1</¢<L
ad =0+ bc

L1/2qe

Note that there are at most possible choices for ¢, since it is divisible by gq.

Set u :=[2cx]; A=a—d—wand D := a+d. Thus we need to count the number of quadruples
(A, D,b,¢) such that
Ael
Del
1<¢<L
2Au + 4bc = D? — 40 — u? — A?

First we look for the equation satisfied by (A, b). All the possible integers D? —4¢ —u? — A? belong
to an interval K of length < Lg%¢, because of the size of each summand. So we want to count the
number of pairs (A,b) such that

Ael
beZ
2Au +4bc € K
Let J = [—%,%],SOQZE%-FJ.
Consider
Au+2bc e K
{xe‘;—i-,]

Multiplying the second equation by 2Ac we obtain

Au+2bc e K
AuE%—i—c.I.J

which gives

A
%—l—bcéc.I.J—i—K

Multiplying this condition by % we obtain the weak condition that (A, b) has to satisfy

t
As+bte -K+tI.J
c
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This last interval has length

t 1 t L/?
< 7Lq26+tL1/2q67:q6 7Lqe_|_7
c tH c

t L1/2
L I
< q < + H

Let £ be an element of this interval. Since s and ¢ are coprime, s is invertible mod ¢ and so there
is a unique solution of As + bt = £ (mod t). Therefore the number of solutions of A is at most

|]‘ L1/2qe
< B+l 41
We can conclude that the total number of pairs (A, b) satisfying our conditions is at most

t /2 /2
A =L+ ——+1 )¢ | ——+1
H(AD)} < g ( It >q ( : +>

Once A and b have been given, we choose D € [ arbitrarily, and thus ¢ is given. I recall that
Q<t<H.
To conclude the proof consider

> M(z, 4, VL) <<ZZ 26( +L]1{/2+1> (l/lﬂ—f-l)

1<¢<L

. L1/2 L1/2 1
=¢ ( . +1> <H+1>§1+w;c;1

Since D € I then #{D} < LY2¢°. Moreover ¢ < 7‘1 and it is divisible by ¢. So writing

¢ = mq and noting that
Ll/Qqe

i
S|
A
Qm

we obtain

/2
< ¢ (t + 1>

H
i m=1
/2 [ [ 11/2 s
<@ | == +1) || +1| L+ L2
t H q
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ii) For this inequality the steps until the bound for the number of choices for the pair (A,b) is
the same. Then instead of choosing D € I arbitrarily, we observe that

2Au + 4be 4+ u? + A% = D* — 40 = (D — 2V0)(D + 2V/0)

If the left hand-side is # 0 then the number of possibilities for the pair (D, /) is < ¢° because
D? — 4 < ¢°L < q and the number of possible pairs (D, f) depends linearly from the number of
possible divisors of D? — 4/ that is < (D? — 4£)¢ < ¢°.
If the left hand-side is O then |a 4+ d| = 2v/¢, then ~ is parabolic and from lemma 5.0.8 v =
( Vi 0
0 V¢
a—d—u=—usoif Ais fixed then also ¢ is fixed.
Therefore can conclude that

) so we have that the number of pairs (D,/) is at most < LY/2. Moreover A =

L

/2 HI/? /2
Z M(z,¢, qe\/z) < q4EL1/2 <Q + 1) ( p +—+1

. H
(=1, 1s a square

Proposition 5.0.9.2. Let z € Sg — Uscay(q) 9Gnq- Assume
20 < ytg < 2L < B2
n
and

LY2¢¢ < min {Q, %}

for some € arbitrary small. Then, uniformly

_ 1/2 f{Ll/Q L1/2
k-1 1/2 5¢ L
E (2 E K(lup(2)]) < LY*q (—i—l) ( . —I——i—l)

1<e<L pEGy(q)

and the same summation with ¢ restricted to be a perfect square

% e Ll/2 HL1/2 L1/2
> ¢ > K(lup(2)]) < g (Q +1 PR T +1

1<¢<L, £ square pEG(q)

Proof. This result follows from the previous proposition, applying Abel summation formula:
at the bigginig of this chapter I have recall that

Y K< Y Kl < g M ba VD)

pEG(q) PEG(q),|up(2)|<q Ve

hence
1

ST Y E(u) < Y Mt Vi)

1<¢<L pEG(q) 1<(<L
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Applying Abel summation formula we obtain

1 . . 11 F . 1
E MM(Z%Q Vi) < E M(z,0,¢°V0) L1/2+2/1 E M(z,0,¢°V0) sgﬁds
1<6<L 1<6<L 1<t<s

/2 L1/2 H 1 L 4 s1/2 gl/2 H
PRI e I R S Vo R 1 55/ B R I SR DR VE S I
< q 0 + I7 + p + + 54 L 52\ 0 + I + qS + s

To conclude the proof it is enough to show that the second term is bounded by the first one, indeed:

L o1 (412 /2
5€ e 0 172 _
q /1 $1/2 ( 0 +1 H + 7 S +1]ds=

1 (L 1 H L/1 H 1
5¢ - 1/2 [ - £ 1d 5e - L ——d
Q) <H+Q>+ HWQA<H+q)+§”8

1 H\ L (1 H
ﬁﬂ<+>++<+>L+ﬂﬂ
q Q \H ¢

/2 /2 H
K Q H q

So the first part of the theorem is proved.
For the second part the coputation is exactly the same, so the theorem is proved. ]

To conclude this chapter finding a bound for g(z) we need other two steps: the first one consists
on finding a formula that describe an upper bound for g(z) depending on the variables @, H and L
for all z € &4 — ;e Ao(q) 06,)4. Note that this variables depend all from 7. Then, considering the
bound via Fourier coefficients studied in the second chapter, for z € ;¢ Ao(q) 06,4 we shall give to
each parameter a value that allows us to improve the trivial bound for the sup-norm of g(z).

For the first goal we shall use the amplification method, with the same amplifier used in the
previous chapter. Let’s recall the definition of the amplifier: Let f be a cuspform of level ¢, and L
a positive real number. Let

A :={p prime : (p,q) =1,p € [L,2L]}

be a large set of primes. Define

sgn(Af(0)), if £ € AUA?
€Ty =
¢ 0, otherwise

where A¢(¢) is the eigenvalue of f with respect to T'(¢).

Proposition 5.0.9.3. Let z € Sq — Usc ay(q) 9Gnq- Assume

%SHQ

2Q% < n’q <
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and

2 <min{Q. 77}
¢ < min Q,H

for some € arbitrary small. Then

,3/2 HI3/? ,3/2
2 —1/2 1+e
g9(z)* < L™ %q ( 0 —l—l) ( . + % +1

Proof. As we have seen in the proof of the proposition 4.3.3.1 we have

Y OP [0 <dt Y T Y Kl

1<e<L? 1<t L4 p€Gy(q)

Since |y¢| is bounded and it vanishes for £ > L3 if £ is not a square, it becomes

<g" S Y K@D +dt Y Y K

1<e< L3 PEG(q) 1<t< L, £ square pEG(q)

Note that now the sum is over all £ < L3, while in the previous proposition it is over £/ < L. So
both in the hypotesis and the formulas we have to substitute L with L* in the case of ¢ square,
and L? in the case of ¢ not square. Using the previous proposition we obtain

wqtte (e (B2 +1 HLY? + e ) (B (BEL L,
1 Q q H Q q H
L3/2 HL1/2 L3/2 L3/2 HI?2 L3/2
1+e 3/2 = I
<q (L (Q +1>< . +g 1 +L 0 +1 . + g Tl

L3/2 HL1/2 L3/2
< g'ter’? <Q+1) ( p + 7 +1

We have also seen that

| D @A (O > L

1<e<L?

,3/2 HI/? ,3/2
2 lter—1/2
g(2)* < ¢ L (Q + 1) ( . + 7 +1

Therefore

O]

At this point we are ready to prove the main theorem: I recall that from proposition 3.1.1.1 we
have
9(2)* < ¢t
for z € U5€A0(q) 06,4, 0 < 1 < 1 real number. So our aim is to find n, @, H, L satisfying all the
conditions used in our computation, and that make smaller as possible

L3/2 HL1/2 L3/2
max{n, L~/? (Q + 1> ( . t t 1]}
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Theorem 5.0.10 (The Main Theorem). Let g be a prime number, k > 4 an integer, both fized.
Let fo € 8F(To(q)) be an arithmetically normalized newform of weight k. Denote g(2) = y*/% fo(2),

where z = x + 1y € H, then

1 _ 1
g]lec < q2g 227¢

Proof. As 1 said above, our aim is to find n, Q, H, L satisfying all the conditions used in our
computation, and that make smaller as possible

L3/2 HL1/2 L3/2
~1/2
max{n, L ( 0 + 1) ( . + gt 1)}

First of all I want to study the situation for z € &, — U5€Ao(q) §G,,: the bound for g(z)? in this

reagion is
1,3/2 HI/? ,3/2
LV = — 41 = 41
( i )( LB

where the parameters have to satisfy:

{2Q2 < n’q

29 < 2
1<

and ng
L2 € . { 7}
¢ < min<Q, 7

Moreover 0 < n < 1.

To simplify our computation I write all the parameters as a rational power of ¢. It is always
possible since they are all bigger then 0. Moreover to choose a rational exponent is not reductive
since Q is dense in R. Moreover I define a common denominator for the rational exponent, say «,
to make our new system of conditions just a system of inequalities in Z. So we put
H = qa/oz’ Q= qb/a7 L = qc/oz7 n= qd/a )

With this choice the conditions becomes

2b < 3d+ «
a—d<2a
2c < b
2c<d+a—a
d<0

that is equivalent to

(2 < 3d+a—1
a—d+1<2a
2c+1<b
a<d+a—1-2c
(d <0
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My choice is to make L as big as possible, so that L=/2 becomes small. For this reason from the

above conditions (the first and the third) I choose the limit case

_a+3d-3
B 4
This implies
a+3d—-1
b= ———
2
The second and the fourth conditions gives possible the choice
a—d+1
a=———
2

At this point i want to study

,3/2 HI/? L3/2
L7V =~ +1 ——+1
< i )( i

More precisely I want to find the term with higher weigth between

5/2 715/2
{L_1/25£7£7ﬁ7[1/ ’L/ H}
H Q ¢ HQ Qg
Note that the last term is negligible because it is bounded by the third one. So writing this term
in terms of exponentials we obtain

—cc—bcta—a c—a bc a-+b

}

and between these terms I want to find the bigger; it is clearly equivalent of finding the smaller
between

{20/ a o a2« o

)
{g,b—c,a—c—a,a—c,a+b—§c}

Substituting a, b, ¢ with the values above depending only on d and « it turns out that the smaller

term is
c a+3d—3
2a 8

and so
—a—3d+3

9(2)? < ¢' ¢ sa

for z € Gq - U5€Ao(q) (5677(].
For 2 € Use 4y () 963q we have

a
9(2) < ¢" T =q¢'Tqa

So we want to find d and « so that

{d —a—3d+3
max{—, ———M—
o’ S«

}
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is smallest as possible.

d _—a—3d+3
5 TOTMES > 11d+3
o 8o
So once d is fixed, if we choose o > —11d + 3 then we have to make smaller as possible
d__ d
o —11d+3

This is an increasing function of d < 0, so as d is smaller the functions is smaller. For this reason
we can say that

d
9(2)? < g g < ¢ lim gEE = gltegTr
d——o0
If we choose o < —11d + 3 then we have to make smaller as possible
—a—3d+3
8

Once d is fixed this happens for « = —11d 4 3 and so the result becomes the same. Therefore we
can conclude that
1/24€ —2
9(2) < ¢/ q 2






Appendix A

Pre-Trace Formula on ['j(q)

The relation between the basis of eigenform of 8;(I'g(¢)) and an automorphic kernel plays a central
role in this thesis. In the following appendix we shall describe it, inspired by a similar relation that
one can find in [Lan95, Appendix Zagier].

Let Fy(q) be a fundamental domain for I'g(¢) in H. We fix an even weight k£ > 4, and let Tj,(m)
be the Hecke operator on 8;(I'0(q)). Let h(z,w) be a function of two variables z and w in H,and
assume that h is a cusp form of weight k£ as a function of each variable.If f € 8x(I'o(q)) we define
f * h as a function of w by

(f * h)(w) = /F TG Z0)(32) du) (A.0.1)

where du(z) = dxzdy denote the hyperbolic measure. This operation is merely the Petersson inner

product of f and h, viewed as function of the first variable z.
We know from the first chapter that there exists an orthogonal basis B = {f1,---, fs} of
S8k(To(gq)) made of eigenforms for the Hecke operators {T'(m) : (¢,m) = 1}, i.e

+oo
fi(2) = an(fi)e(nz) = T(m) fi = \i(m)f,

n=1
where \;(m) are the eigenvalues of f; with respect to Tj(m). Define
1 1
h(z,w) =
2 Gt e

v€lo(q)

(A.0.2)

Proposition A.0.10.1. h(z,w) is a holomorphic cusp form in each variable separately.
Proof. 1 divide the proof in four steps:

e h is holomorphic;

e h[plp = h for all p € To(q);

e hla] is holomorphic at infinity for all « € SLy(Z);



68 Pre-Trace Formula on I'y(q)

e h vanishes at each cusp, i.e. the Fourier expansion of hla]; has the first coefficient equal 0
for all & € SLy(Z).

I shall prove this for z and w separately.

1 1
h =
B0 2 GG )
v€To(q)

i) As a function of z: both J(j(7, 2)) and I((w +~.z)) are strictly bigger then 0. So WW

£ converges,

which is a rational polynomial is holomorphic on H. For k£ > 4 E’yEFo (@) mm

and so h is holomorphic.
As a function of w the argument is exactly the same.
ii)As a function of z: let p € I'g(g), then for all v € T'y(q)
1 p—
iy p-2)i(p,z)  jlyp,2)

Hence
1 1 1
3(ps 2)k j(v, p-2)* (w + yp.2)k

hlpl(z,w) = )

v€Tlo(q)

_ Z 1 1

i k k
oy 1P ) (Wt pz)

As a function of w: Let p = ( :f : > € I'p(q), and v = < CCL 2 ) running through I'y(¢), then

we have
1 1 1
Wpl(zw) = D s ;
e 1A (e w)T (pw +.2)
oy ! 1 1
- k k k
Tt (cz+d)F (rz+s) (% %)
S 1
N [(cz + d)(uw + v) + (az + b)(rw + s)]*
7€l (a)
-y 1
- (o / k
g P 2w+ py.2)]
= h(z,w)
(s v
where p’ = I

iii) As function of z: for all @ € SLs(Z) the trasformed function h[m]i(z,w) is holomorphic and
weight-k invariant under o~ 'I'g(¢)c, and therefore it has a Laurent expansion

hla]w(z, w) = Zane(%)

neL
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So it is enough to show that
lim hlag(z,w) =0

)6(5) -0

for all @ € SLy(Z).

This proves also (iv): )e(é) — 0 is equivalent of y — 400, where z = x + iy as usual. Now,
1 1 1 1 1
hlale(zw) = Y ———5- - =Y - . .
G M@ as)t (waaaz)f 4 (e, 2)F (w+qa.z)

Concentrate for a moment on j(ya, z): it tends to 0o as y tends to 400, so if the third entry of yo

is not 0, then
1 1
lim =0
; 2 k
Ty T 709

since w + ya.z does not tend to 0, because ya.z € H. If the third entry of v« is 0 then v € T'g(q)
and so a € T'g(q). So hla]x = h which tends to 0 as y tends to +oo.
As a function of w: as in the case of z it is enough to prove that

lim hla]g(z,w) =0

N—r+00

for all @ € SLy(Z), where w = £ + in:

ifa:(s U),considero/z<u U)ESLQ(Z).
rou ros

As in (ii) one has

1 1
hlali(zw) = ) e e T
ot Jjlay, 2)F (w+ a'y.z)
and it tends to 0 as n tends to +o0o. This proves also (iv). O
Th A.0.11. Let Gy = =02
eorem U, . Let k= m, then

(1) Vf € 8x(To(q)) we have
(f xh)(w) = Cp f(w)

(ii) We have the identity

J —

_ fi(2) fi(—w)
Coln(z,w) = S LML)
k Zz; (fi, fa)

Proof. Note first that if v = < g 2 ) € I'p(g) then

(cz+d) " f(2)y" = f(12)S(v2)"
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where z = z +iy: J(vz) = S() - and since f € Si(To(q) then

lcz+d[?
1
£ = £l (2) = g f0)
g O = Rl 093G
= f(r2)S(2)"

Therefore from ( A.0.2 ) we have

v€lo(q)
1
= F(r2)S(y2)t ———
Wg;(q) (72)S(72) @7
Hence
1 dxdy
f+h)(w) = / f(v2)S(y2)* -
Fem) = [l 2 090
1 dzxdy
= F(2)3(2)"
veFo(q)/FO(q) (cw+2)h y?

v
= 2/00 / f(x+ iy)y*—2 ! d
y=0 =—00 (—’U) +x— zy)k

xdy

The first equality comes from the I'g(q)-invariance of dzdy/y?, and the second one comes from the
fact that the upper half plane H is equal to the union of transforms of the fundamental domain under
Lo(q), disjoint exept for boundary points of measure zero, and exept for the fact that +v € T'g(q)
give the same transform, whence the factor of 2. Cauchy formula and the fact that f is a cusp

form, hence holomorphic and sufficiently small at infinity, imply that

o 1 2ms
, _ (k=1) (9;
|t i) e = i+ w)
where f*~1) denotes the (k — 1)-derivative of f. Therefore
4mi & b9 (1) ey
Fem) = G [y

4 © 1 d\F2
- wonil, @ () S e

47 1
(k—1)! (24
4 1
(k—1)!(2¢

= Cirf(w)

S~—
T
no
e R

£ (42)

~—
T
(V]

G) [ e
0
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This proves the first part. Part (i) follows essentially from linear algebra. The function h, being
a cusp form with respect to z and w, can be written as

J

hm(z,w) = Z cifi(z)

j=1
where ¢; depends on w. So, applying the Petersson scalar product one obtains
<h’(*a ’LU), f]> =G <f]7 fj>
On the other hand

(h(w), f) = / Bz, w) T (2 du(2)

z€Fu(q)

_ / h(z, w) f;(2)y*du(z)
= (f; xh)(—w)

= Cpfj(—w)

So we obtain

(h(-w), f5) _ Crfi(—w)
(fis fi) (fis fi)

Cj =
and we can conclude that y
fi(2) [ (—w)
h(z,w)=C e
) =G ; i 1)






Appendix B

Classification of motions in M>(R, /)
and a Lower Bound for |u,(z)|

In this appendix we want to classify the elements of My(R,¢), the 2x2 matrices with entries in R
and determinant ¢, and then to deduce from that a lower bound for |u,(z)|, where p € G¢(q). This
is a generalization of the classification of motion for SLy(R) that one can find in [Iwa97].

B.1 Classification of motions

Let p = < CCL Cbl ) € My (R, ¥), and consider the conjugacy class

p={g 'pg:ge SLyR)}
Remark B.1.1. Two elements of the same conjugacy class have the same trace

Remark B.1.2. The number of fized points in H under the action of two elements of the same

conjugacy class is invariant, indeed: suppose that p.z = z, then g 1pg.(g71.2) = g~ 1.2

So this are two equivalent criterium for our classification.
b . .
Let p = ( Z d ), and let z be a fixed point for p. If ¢ = 0 then %‘H’ = z. Therefore p fixes just
one point in R.

If ¢ # 0 then Zjig = z, which gives the equation

¢+ z2(d—a)—b=0
Looking at the discriminant (a 4 d)? — 4¢ we can classify:
o la+d| = 2v/¢ then p fixes one point in R, and we say that p is parabolic;
o |a+d| > 24/¢ then p fixes two distinct points in R, and we say that p is hyperbolic;

e la+d| < 21/¢ then p fixes one point in H, and we say that p is elliptic;
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B.2 A Lower Bound

In this section I want to prove the following
Proposition B.2.0.1. Let p € Gy(q), z € H, then |u,(2)| > VZ.

a

Proof. Let p = ( . Z > € Gy(q) and consider

b= clz]* + az — dz|

|up(2)]

Considering the imaginary part we have

If rho is parabolic or hyperbolic, then
[up(2)| = [Sup(2)] = |a+d| > Ve

It remains to study the case in which p is elliptic: first of all note that if p is elliptic, then ¢ # 0,
otherwise it would be parabolic. In particular ¢ > ¢, since p € Go(q).

Remark B.2.1. p € Ms(R,¥), and g € SLy(Z), then |ug-1,4(2)| = uy(g-2)|

Proof. Set w := g.z;

) = 9™ pg-2 — 2lli(g™ " pg. 2)|
Sz
_ g7 pw — g7 wllj(g™"p, 9-2)i (g, 2)]
Sz
_ |pw —w||j(p, w)j(g,2)]
Szlj(g~ w)
_ lpw — w[lj(p, w)|
Sw

|u z

gflpg(

= up(w)] = lu,(9(2))]

This allows us to study |u,(z)| taking for p any elliptic motion. So take

_ Vlcost? {lsind
p= —VIlsing V/lcost

for some ¥ £ 0 Hence we find

B 1V{(cos V.2 4 sin ) — ZV/0(—sin .z + cos 0|
)
VI sind(1+ [2]?) + cosd(z — 2)|
Y

|up(2)]
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So considering the imaginary part
£)2 0
ISu,(2)| = M = 2| cos V|V > Vi
Yy

So we conclude
()] > ()] > VE
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