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Introduction

The aim of this thesis is to introduce important objects in arithmetic
geometry like modular forms, modular curves, Shimura curves, etc., and to
study some of their geometric properties. More precisely, for X a Shimura
curve over Q and X → J an Albanese morphism to its Jacobian, consider the
extension: Xsm → J from the smooth locus Xsm of the Cerednik-Drinfeld
model of X over Zp, to the Néron model J of J over Zp. A natural question
to ask is: �When is this extended morphism a closed immersion?�

Thanks to a theorem of Edixhoven, we can in fact reduce this abstract
question to a just a combinatorial problem. Indeed, we will see that there is
a notion of �dual graph� associated to our Shimura curve, and Edixhoven's
theorem allows us to translate this property of being a closed immersion into
a property of �non-disconnectivity� of this graph.

After having de�ned all these objects, we will qualitatively describe the
graphs for the Shimura curves Xpq of discriminant equal to a product of
two primes p and q, and indicate that �generically�, they should be �non-
disconnecting�. We will support this intuition by a theorem of Parent and
Yafaev describing some asymptotic behaviour of these graphs. We will how-
ever conclude our work by showing that if p = 2, then there are in�nitely
many q s such that the corresponding graphs are indeed disconnecting.

The Organization of the Thesis

In Chapter 1, we will recall some basic concepts about abelian varieties,
divisors on curves, jacobians and modular forms.

In Chapter 2, we will introduce the notion of the �dual graph� G attached
to �good� models of �good� curves. There is a torus T associated to such
curves also, and the character group X of this torus turns out to be equal
to H1(G,Z). Then we will show that we get the same result even under
the weaker assumption that the curve is �admissible� in the sense of Jordan-
Livné.

In Chapter 3, we will �rst review some concepts from quaternion algebras.
We will show that there is a way by which Eichler orders in quaternion
algebras can be linked to �enhanced elliptic curves�. Then we will proceed
to discuss about the action of Hecke operators on the character group of
X0(M)Fq .

In Chapter 4, we will �rst explain what Shimura curves are. Using the
results found in Chapter 3, we will then qualitatively determine what G is
for a given Shimura curve. In particular, for the Shimura curves Xpq, it
turns out that there is a theoretically simple fomulation of the corresponding
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dual graph G(Xpq/Fp) in terms of p-isogenies between isomorphism classes of
supersingular elliptic curves in characteristic q and supersingular j-invariants.

In Chapter 5, the �nal chapter, we will �nally come to the heart of the
thesis. We will try to answer the question regarding whether the extended
Albanese morphism Xpq

sm −→ J that we posed above is a closed immersion
or not. As was previously told, it turns out by Edixhoven's theorem that to
answer this question, it is enough to look at the dual graph G(Xpq/Fp) and
examine its non-disconnectivity. Parent-Yafaev theorem indicates that for
p > 3, the answer aymptotically tends to be �Yes�. We will prove that for
p = 2, the answer is �No� for in�nitely many q s.
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1 Some Background Material

This chapter aims at familiarizing the readers with a few concepts from
abelian varieties and modular forms that we will need for understanding
the rest of the material in this thesis, assuming them to possess only some
basic scheme-theoretic vocabulary.

1.1 Some Algebraic Geometry.

In this section we will quickly review the de�nitions of some objects in al-
gebraic geometry beyond schemes-everything from group schemes to Néron
models.

De�nition. Group Scheme. A group scheme over S, or an S-group
scheme, is an S-scheme π : G −→ S together with S-morphisms m :
G ×S G −→ G (group law, or multiplication), i : G −→ G (inverse) and
e : S −→ G (identity section), such that the following identities of mor-
phisms hold:

i)Associativity: m ◦ (m× idG) = m ◦ (idG ×m) : G×S G×S G −→ G.

G×S G×S G
idG×m- G×S G

G×S G

m×idG

?
m - G

m

?

ii)Identity element: m ◦ (e× idG) = j1 : S ×S G −→ G

{e} ×G e×idG- G×G

G

m

?

j
1

-

and m ◦ (idG × e) = j2 : G×S S −→ G.
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G× {e} e×idG- G×G

G

m

?

j
2

-

iii)Two-sided inverse: e ◦π = m ◦ (idG× i) ◦∆G/S = m ◦ (i× idG) ◦∆G/S :
G −→ G.

G
π - {e}

G×G

(idG,i)

?
m - G

e

?

and

G
π - {e}

G×G

(i,idG)

?
m - G

e

?

where j1 : S ×S G −→ G and j2 : G ×S S −→ G are the canonical iso-
morphisms.

A group scheme G is said to be commutative if, writing s : G ×S G −→
G×S G for the isomorphism switching the two factors, we have the identity
m = m ◦ s : G×S G −→ G.

Let (π1 : G1 −→ S,m1, i1, e1) and (π2 : G2 −→ S,m2, i2, e2) be two group
schemes over S. A homomorphism of S-group schemes from G1 to G2 is a
morphism of schemes f : G1 −→ G2 over S such that f ◦m1 = m2 ◦ (f × f) :
G1×SG1 −→ G2. (This condition implies that f ◦e1 = e2 and f ◦ i1 = i2 ◦f .)

Example of a Group Scheme. Given a scheme S, Gm,S := Gm,Z×Spec(Z)
S

is a group scheme, where Gm,Z = SpecZ[t, 1
t
]. When we write Gm, it is un-

derstood that we are talking about Gm,Z.
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De�nition. Variety. For us, a variety over a �eld k will be a k-scheme
which is separated, of �nite type and geometrically integral over Spec(k).

De�nition. Abelian Variety. An abelian variety over a �eld k is a proper
k-variety which is a k-group scheme.

Notation. Given an abelian variety G over k, we de�ne G0 to be the
connected component of G containing 0, i.e., the image of ε : Spec(k) −→ G.

De�nition. Abelian Scheme. For S any scheme, an abelian scheme over S
is a S-group scheme A which is proper, smooth and geometrically connected
over S.

De�nition. Isogeny. An isogeny between two S-abelian schemes is an S-
homomorphism (i.e. a morphism as S-group schemes) which is �nite, �at
and surjective.

De�nition. Semiabelian Scheme. A group scheme which is separated,
smooth, commutative, such that each �ber is an extension of an abelian
variety by a torus is called a semiabelian scheme.

De�nition. Polarization. A polarization of an abelian variety is an isogeny
from an abelian variety to its dual. A principal polarization is an isomor-
phism between an abelian variety and its dual.

De�nition. Model. If S is a scheme, T a scheme over S, and X a scheme
over T , what we call a model for X over S will be a S-scheme X such that
X ' X ×S T .

So X/T has a model over S if �X can be de�ned over S�. Of course
models need not be unique. The question then is to �nd �good� models.
This may have a geometric sense: for instance, if X/T is smooth, proper,
or so, it makes sense to ask the same for its model over S. The notion of a
good model can also have a structural sense, for example, if X/T is a group
scheme, we may want this structure to come from the one already de�ned
over S. Still, the notion of a good model may have a functorial meaning: if
X represents an interesting functor on Sch/T , one can ask for X to represent
�the same functor� on Sch/S.
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De�nition. Néron model. Let R be a Dedekind domain with fraction
�eld K, and let AK be an abelian variety. A Néron model AR = N(AK) for
AK is a smooth group scheme over R whose generic �ber is AK and which
satis�es the following universal property (Néron Mapping Property):
Let XR be a smooth R-scheme, and let φK : XK → AK be a rational map
de�ned over K. Then there exists a unique R-morphism φR : XR → AR
extending φK .

Clearly, this universal property characterizes the Néron model. It is a
deep theorem that Néron models exist.

1.2 Divisors on Curves and Linear Equivalence.

Let X be a projective nonsingular curve over an algebraically closed �eld k.
A divisor on X is a formal �nite Z-linear combination of

∑m
i=1 niPi closed

points of X. Let Div(X) be the set of all divisors on X. The degree of a
divisor

∑m
i=1 niPi is the integer

∑m
i=1 ni. Let Div0(X) denote the subgroup

of divisors of degree 0.

Suppose k is a perfect �eld (for example, k has characteristic 0 or is a
�nite �eld), but not necessarily algebraically closed. We de�ne the group of
divisors of X over k be the subgroup

Div(X) = Div(X/k) = H0(Gal(k/k),Div(X/k))

of elements of Div(X/k) that are �xed by every automorphism of k/k.
Likewise, we de�ne Div0(X/k) to be the elements of Div(X/k) of degree 0.

A rational function on an algebraic curve X is a function X −→ Pk1,
which is locally de�ned by polynomials which have only a �nite number of
poles. For example, ifX is the elliptic curve over k de�ned by y2 = x3+ax+b,
then the �eld of rational functions on X is the fraction �eld of the integral
domain k[x, y]/(y2− (x3 + ax+ b)). Let K(X) denote the �eld of all rational
functions on X.

There is a natural homomorphism K(X)∗ −→ Div(X) which associates
to a rational function f its divisor

(f) = ordP (f).P

8



where ordP (f) is the order of vanishing of f at P . Since X is nonsingular,
the completed local ring of X at P is isomorphic to k[[t]]. We can thus write
f(t) = trg(t) for some g(t) ∈ k[[t]]. Then R = ordP (f).

It is a standard fact in the theory of algebraic curves that if f is a non-zero
rational function, then (f) ∈ Div0(X), i.e., the number of zeroes of f counted
with multiplicity equals the number of poles of f . The Picard group Pic(X)
of X is the group of divisors on X modulo linear equivalence, i.e., a divisor
D ∈ Div(X) represents the same class of divisors in Pic(X) as D + (f), for
any f ∈ K(X)∗. Since divisors of the form (f) have degree 0, the subgroup
Pic0(X) ∈ Pic(X) of divisors on X of degree 0, modulo linear equivalence, is
well-de�ned. Moreover, we have an exact sequence of abelian groups

0 −→ K(X)∗ −→ Div0(X) −→ Pic0(X) −→ 0.

Thus, for any algebraic curve X we have associated to it an abelian
group Pic0(X). Suppose π : X −→ Y is a morphism of algebraic curves.
If P ∈ Div(Y/k) is a point, let π∗(P ) be the sum

∑
eQ/PQ where π(Q) = P

and eQ/P is the rami�cation degree of Q/P . So, if D is a divisor on Y ,
the pullback π∗(D) (which is de�ned linearly from the de�nition of πP ) is
a divisor on X. We can show that Div(Y ) −→ Div(X) induces a homo-
morphism Pic0(Y ) −→ Pic0(X). Furthermore, we obtain the contravariant
Picard functor from the category of algebraic curves over a �xed base �eld to
the category of abelian groups, which sends X to Pic0(X) and π : X −→ Y
to π∗ : Pic0(Y ) −→ Pic0(X).

Alternatively, instead of de�ning morphisms by pullback of divisors, one
can de�ne the push forward. Suppose π : X −→ Y is a morphism of al-
gebraic curves and D is a divisor on X. If P ∈ Div(X/k) is a point, let
π∗(P ) = π(P ). Then π∗ induces a morphism Pic0(X) −→ Pic0(Y ). We
again obtain a functor, called the covariant Albanese functor from the cate-
gory of algebraic curves to the category of abelian groups, which sends X to
Pic0(X) and π : X −→ Y to π∗ : Pic0(X) −→ Pic0(Y ).

1.3 An Algebraic De�nition of the Jacobian.

First, we describe some universal properties of the Jacobian of an algebraic
curve X over a �eld k under the hypothesis that X(k) 6= ∅. The Jacobian
variety of X is an abelian variety J such that for an extension k

′
/k, there is
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a (functorial) isomorphism J(X/k
′
) −→ Pic0(X/k

′
).

Fix a point P ∈ X(k). Then we obtain a map f : X(k) −→ Pic0(X/k)
by sending Q ∈ X(k) to the divisor class of Q − P . One can show that if
X has positive genus, then this map is induced by an injective morphism
of algebraic varieties X ↪→ J . This morphism has the following universal
property: if A is an abelian variety and g : X −→ A is a morphism that
sends P to 0 ∈ A, then there is a unique homomorphism ψ : J −→ A of
abelian varieties such that g = ψ ◦ f .

This condition uniquely characterizes J , since if some other pair (J ′, f ′ :
X −→ J ′) has this universal property too, then there will be unique maps
J −→ J ′ and J ′ −→ J whose composition in both directions must be the
identity (use the universal property with A = J and f = g).

The property J ≈ Pic0(J) (Abel-Jacobi) of Jacobians is used very often.

1.4 Modular Forms.

Let N be a positive integer. The principal congruence subgroup of level N is
de�ned as:

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}

De�nition. Congruence Subgroup. A subgroup Γ of SL2(Z) is a congru-
ence subgroup if Γ(N) ⊂ Γ for some N ∈ Z+, in which case Γ is a congruence
subgroup of level N .

Examples of Congruence Subgroups:

(1)Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}

(2)Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
One has an isomorphism: Γ0(N)/Γ1(N) ' (Z/NZ)∗

de�ned by

(
a b
c d

)
7→ d(mod N)
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The upper-half plane is H := {z ∈ C : Im(z) > 0}. We write: H∗ :=
H ∪ {∞} ∪Q.

De�nition. Modular Curve. A modular curve is given as a quotient:
Γ\(H ∪∞∪Q) for some congruence subgroup Γ.

Examples of Modular Curves: People frequently work with the classical
modular curves X0(N) and X1(N), which correspond to the congruence sub-
groups Γ = Γ0(N) and Γ = Γ1(N) respectively.

Important Fact. Modular curves over C de�ne Riemann surfaces.

If g =

(
a b
c d

)
∈ Γ and f : H −→ C is a function, we de�ne

f|[gk](z) := (cz + d)−kf(gz).

De�nition. Modular form. Let k be a non-negative integer and Γ be
a congruence subgroup. A modular form f of weight k for Γ is a function
f : H −→ C such that

1. f is holomorphic on H;
2.f|[gk](z) = f(z)for allz ∈ H, g ∈ Γ;
3. f is holomorphic at the �cusps� (see below for a discussion of this

notion).
If N is an integer such that Γ contains the full congruence group Γ(N),

then f is said to have level N .

We note that with this de�nition, the level of a modular form is not
uniquely determined. We also need to explain the holomorphy condition (3)
at the �cusps� (i.e, the points in H∗ that can be written in the form γ.∞ for
some γ ∈ SL2(Z)). To see this, we remark that Γ contains an element of

the form

(
1 A
0 1

)
: z 7→ z + A, where A can be chosen to be the minimal

positive integer satisfying this property. For an open neighbouhood U = {z ∈
H, Im(z) > M} (M some large enough positive integer) of ∞ in Γ\H∗, the
map qA(z) := e2iπz/A : U −→ C is well-de�ned, and even a biholomorphism
to a center-free disk D\{0}. Now, any f veri�ying condition 2 in the above
de�nition satis�es f(z + A) = f(z), so it induces a holomorphic function F
on D\{0}. By de�nition, holomorphy of f at ∞ means holomorphy of F at
0. The other cusps can be written c = γ.∞ and it follows from the de�nitions
that for γ ∈ SL2(Z) and g in γ−1Γγ,
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f |[γ]k

∣∣∣
[g]k

= f |[γ]k
.

So f|[γk]|[gk] also induces a function on D\{0}. We then say that f is holo-
morphic at the cusps if every f|[γk][gk] above is holomorphic at ∞. Actually
such an f admits an expansion:

f(z) =
∑∞

n=−∞ anqA
n

such that holomorphy at ∞ means an = 0 for n < 0. One similarly says
that f vanishes at ∞ if an = 0 for n ≤ 0.

De�nition. Cusp form. A cusp form is a modular form which vanishes at
all the cusps of Γ\H where Γ is a congruence subgroup.

Notations. One denotes byMk(Γ) the C-vector space of modular forms
of weight k for Γ, and by Sk(Γ) its subspace of cusp-forms.

The spaceMk(Γ) can be identi�ed with the space of �weight-k� di�eren-
tials on Γ\H.
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2 The Dual Graph G of a Curve

2.1 The Case of Regular Curves

Let p be a prime. We consider a curve C over a p-adic �eld K, with uni-
formizer π and residue �eld k. We denote by P the Jacobian Pic0(C) of
C. We �rst suppose that we have a regular minimal model C of C over the
integer ring OK of K, i.e., C is a model of C over OK which is regular and
posesses all other technically �good� properties that we will not discuss here.
We also assume that the multiplicities of all the irreducible components of
Ck := C ×Ok k have 1 as their greatest common divisor. Let Pk := P ×Ok k
be the special �ber of the Néron model of P . Let P 0 = (Pk)

0 denote the
connected component of 0 in this special �ber. Let Pic0(Ck) be the set of
classes of divisors on Ck having degree 0 on each of its connected components.

Lemma 2.1 There is a canonical isomorphism: P 0 ≈ Pic0(Ck)

Proof. The lemma is quite di�cult to prove, and the interested reader is
referred to to [SGA7 I](12.1.12).

�

We know that all singular points of the curve Ck are ordinary double
points, i.e., they have local equation xy = 0. Then P 0 is a semiabelian
scheme over k, i.e., an extension of an abelian variety A by a torus. To be
precise, we write the normalization of Ck as the disjoint union of non-singular
curves Dj. The normalization map qjDj → Ck induces an obvious morphism

Pic0(Ck)→
∏

j Pic
0(Dj) = A

as the Picard functor is a contravariant functor and Pic0(qjDj) ≈
∏

j Pic
0(Dj).

It turns out that the kernel of the above morphism is a torus which we denote
by T (cf.[EGA IV](21.8.5)). Now, to make things easier, we introduce the
notion of a �dual� graph G associated to Ck. G is de�ned as the graph with
the following properties:
� The set J of irreducible components of Ck form the set of vertices of G.
� The set I of singular points of Ck form the set of edges of G.
� The edge corresponding to a singular point i ∈ I connects the two

vertices corresponding to the two components of Ck which meet at i.
� G is an unoriented graph.

Remark. We assumed that all singular points have local equation xy = 0.
This means that each singular point involves exactly two connected compo-
nents. In other words, our graph is well-de�ned, i.e. �every edge links exactly
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two vertices� in G. Also, the implicit �good� properties of Ck ensure that the
graph G is connected.

Proposition 2.2 There is a canonical isomorphism:

X(T ) ≈ H1(G,Z)

where X(T ) is the character group of T .

Proof. For the proof, see [SGA 7 I](12.3.7).

�

We try to calculate H1(G,Z) next. We �rst consider the bouquet G of
circles obtained by identifying all the vertices of G. The quotient map G → G
induces an inclusion:

ı : X := H1(G,Z) ↪→ H1(G,Z) (1)

(It is clear that an equivalence class of loops in G goes to equivalence
class(es) of loops in G when all the vertices of G are identi�ed, showing
that ı is well-de�ned. Further, no non-nullhomotopic loop in G becomes
nullhomotopic in G, which explains the injectivity of ı.)

For each i ∈ I, we give the corresponding edge of G an orientation, i.e.,
we specify one of its end-points as its initial point j1(i) and the other one
as its �nal point j2(i). Equivalently, we give an ordering (j1(i), j2(i)) of the
two irreducible components which pass through i. The resulting orientation
of the edges of G give rise to an isomorphism :

H1(G,Z) ≈ ZI (2)

γa1
1 ∗ .......... ∗ γ

aI
1 ←→ (a1, .........., aI)

where γi is the image of i ∈ I under ı. It is clear that the γis form a minimal
set of generators of H1(G,Z).

By composing the inclusion of (1) and the isomorphism of (2), one gets
a non-canonical inclusion:

e : X ↪→ ZI (3)

We would like to identify X with a subgroup of of ZI . For doing this, we
de�ne

D := {
J∑
j=1

njVj|
∑

nj = 0 and nj ∈ Z}
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.
where V1, V2, .........., VJ are the vertices of G. We call

∑
nj the degree of∑

njVj. It can be easily veri�ed that D is indeed a group and by identifying∑J
j=1 njVj with (n1, ......., nJ) ∈ ZJ , we can view it as a subgroup of ZJ .

Proposition 2.3 The group X corresponds to the kernel of the homomor-
phism α : ZI → D de�ned by α(ei) = j1(i)− j2(i), where ei is the | I |-tuple
with 1 at the ith place and 0s everywhere else, with the identi�cation between
vectors in ZI and loops in H1(G,Z) as in (2).

Proof. That α is well-de�ned is clear:

α(
I∑
i=1

aiei) =
∑

ai(j1(i)− j2(i))

.

Also, it is trivial to check that α is indeed a homomorphism, i.e.,
α(v1 + v2) = α(v1) + α(v2) for all vectors v1 and v2 in ZI and α(0) = 0.

Further, the image of α does indeed land inside D too because the de-
gree of any element

∑I
i=1 aiei in the image is equal to deg(α(

∑I
i=1 aiei)) =∑I

i=1 ai deg(α(ei)) =
∑I

i=1 ai (deg(j1(i))− deg(j2(i))) =
∑I

i=1 ai(1− 1) = 0.

Now for the main part of the proof.

First let Γ ∈ X = H1(G,Z), i.e., Γ is a loop in G.
Suppose that Γ is formed by taking the edges n1, n2, ...., nm in order. In

other words, j2(nl) = j1(nl+1) for l = 1, ..., (m − 1) and j2(nm) = j1(n1).
Then,
α(Γ)
=
∑m

i=1(j1(ni)− j2(ni))
= j1(n1) + (−j1(n1) + j1(n2)) + .........+ (−j1(nm−1) + j1(nm))− j2(nm)
= j1(n1) + 0 + 0 + .........+ 0− j2(nm) = 0.

This proves that X ⊂ Kernel(α).

Now, for the other inclusion, let Γ ∈ ZI\H1(G,Z), i.e., Γ is not a loop in
G. It is quite clear that we can decompose Γ as a union of a set L of loops
and a set N of non-loops in such a way that in N , all elements are connected
non-loops and no non-loop is a subset of a loop and the various non-loops
are disjoint from one-another. As α is a homomorphism and image of every
loop under α is 0 by the �rst part of the proof, it follows that α(L) = 0.
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Thus, α(s) = α(L ∪ N) = α(L) + α(N) = α(N). As Γ is a non-loop by
assumption, N is non-empty. In particular, N has a free-end, i.e., a ver-
tex which is an end-point of just one edge, say s occuring with multiplicity
ns 6= 0 in N . Then in the expression α(N) =

∑J
j=1 bjEj, where Ej is the j-th

| J |-tuple (has 1 at the jth place and 0s everywhere else) the coe�cient of
es is ±ns 6= 0, implying that α(N) 6= 0, i.e., Γ ∈ Z\Kernel(α). This proves
the other inclusion Kernel(α) ⊂ X.

This completes the proof.

�

2.2 The Case of Admissible Curves.

Next, we relax the condition that C is regular. Instead, we assume that C is
an admissible curve in the sense of Jordan-Livné [Jor-Liv]. This assumption
implies that the special �ber of C has only ordinary double points as singu-
larities, as in the regular case, but the local equation of the singularities are
now xy = πε. More precisely, still using our previous de�nition of I and J in
this discussion, there is a collection of positive integers εi associated to each
i ∈ I, called the �width� of the corresponding singularity. It turns out that
the special �ber of a regular minimal model for C may be obtained from Ck
by replacing each singular point i ∈ I with εi > 1 by a chain of ni := (εi− 1)
copies of the projective line P1. We will call the model thus obtained the
�derived� regular model corresponding to C.

Proposition 2.4 Let C be a curve such that its minimal model C is an
�admissible curve� in the sense of Jordan-Livné. Let G and Gnew be the dual
graphs of C and the �derived� regular model corresponding to C respectively.
Then,
H1(G,Z) = H1(Gnew,Z).
Thus, we can continue using the recipe that we used in the last section under
the weaker assumption that C is an �admissible curve�, but not necessarily
regular.
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Proof. The above construction results in a �blow-up� of Ck where the sets I
and J are replaced by their analogues Ĩ and J̃ . There is an obvious surjective
map:

Ĩ −→ I (4)

de�ned by
e(i, k) 7→ ei

for i = 1, 2, ........, I and k = 1, .........., ni
where the �e(i,k)�s, k = 1, ......, ni are the singularities arising from the desin-
gularizations of the singular point i.

Note. By abuse of notation, we will often be writing ei for i and (i, k)
for e(i, k) and vice-versa. Also, we will sometimes use the notations I, J, Ĩ
and J̃ both for these sets and their respective cardinalities. Optimally, no
confusion should arise.

We can get a map Φ associated to the map of (4) also:

Φ : ZI −→ ZĨ

being de�ned by

ei 7→
ni∑
k=1

e(i, k)

i = 1, ......., I;
where e(i0, k0) is the |Ĩ|-tuple with 1 at the (#{(i, k) with i < i0} + k0) th
place and 0s everywhere else.
As all the e(i, k) s are �linearly independent�, so any non-trivial element∑I

i=1miei of ZI goes to the non-trivial element
∑I

i=1

∑ni
k=1mie(i, k) of ZĨ .

This means that the map Φ is injective.
Now, let us look at K := Coker(Φ) = ZĨ/Image(Φ). Now, K is clearly

torsion-free because for any vector v ∈ ZĨ , v ∈ Image(Φ) ⇔ nv ∈ Image(Φ)
for all n ∈ Z\{0}. On the other hand, J ⊂ J̃ = J ∪ { all the adjoined P1s}.
So we have a natural injection:

ZJ −→ ZJ̃ (5)

J∑
j=1

mjVj 7→
J∑
j=1

mjṼj,
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where Ṽj is the irreducible component of Ck containing Vj. (This map
makes sense as J < J̃)
As before, in analogy with D, we de�ne D̃ to be

D̃ := {
J̃∑
j=1

mjṼj|
J̃∑
j=1

mj = 0}.

Thus, restricting the map in (5) to the subgroupD of ZJ , one gets an injective
map:

D −→ D̃

J∑
j=1

mjVj 7→
J∑
j=1

mjṼj

Next, we de�ne a map α̃ analogous to the map α de�ned before. That is,
the map

α̃ : ZĨ −→ D̃

is de�ned by:

e(i, k) 7→ j1((i, k))− j2((i, k))

where the j1((i, k)) and j2((i, k)) are the initial and �nal points of the
edge corresponding to e(i, k).
We can prove as before that X = Kernel(α̃), i.e., there is an exact sequence:

0 −→ X
ε̃- ZĨ α̃- D̃ −→ 0.

In the above sequence, ε̃ is just the inclusion map. Let Y be the kernel
of the surjective map α : ZI −→ D and ε : Y −→ ZI be the inclusion map.
Then we have an exact sequence:

0 −→ Y
ε- ZI α- D −→ 0.

Remark. α is surjective because every element
∑J

j=1 ajVj ∈ D (implying

that
∑J

j=1 aj = 0) can be written in the form:
∑I

i=1 bi(j1(i) − j2(i)) =

α(
∑I

i=1 biei). To see this, �rst notice that
∑J

j=1 ajVj =
∑J−1

j=1 ãj(Vj − Vj+1)

for some integers ãj because
∑J−1

j=1 aj = 0. Thus, as α is a homomorphism,to
show that α̃ is surjective, it su�ces to show that given any two elements Vj
and Vk belonging to J , it is possible to �nd an element z ∈ ZĨ such that
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α(z) = Vj − Vk. Now, by the previous remark, we know that the graph G is
connected. So, it must must be possible to �nd a path from the vertex Vj to
the vertex Vk, composed by taking the edges m1, .......,ml in order, say. This
implies that j2(mn) = j1(mn+1) for n = 1, 2, ...., (l − 1) and j1(m1) = Vj and

j2(ml) = Vk. Then, α(
∑l

r=1 emr) =
∑l

r=1(j1(mr)− j2(mr)) = Vj −Vk. Thus,
α is surjective. Similarly, one can prove that α̃ is surjective.

Now we have a commutative diagram:

ZI α - D

ZĨ

τ

?
α̃ - D̃

ι

?

(The diagram is commutative because α is a homomorphism and for the
basis vectors ei, we have
ι(α(ei)) = ι(j1(ei)− j2(ei)) =

∑ni
k=1 j1((i, k))−

∑ni
k=1 j2((i, k))

and
α̃(τ(ei)) =

∑ni
k=1 e(i, k) =

∑ni
k=1(j1((i, k)) − j2((i, k)) making ι(α(ei)) =

α̃(τ(ei)).)

Recall that Y := Kernel(α) and X := Kernel(α̃). Now, let z ∈ Y , i.e.,
α(z) = 0⇒ ι(α(z)) = ι(0) = 0 (since ι is a homomorphism)
⇒ α̃τ(z) = 0 (since the above diagram is commutative)
⇒ τ(z) ∈ Kernel(α̃) = X
Thus, we have an induced map:

κ : Y −→ X

de�ned by

z 7→ τ(z),

i.e., κ is the restriction of τ to Y . Since the maps ε : Y −→ ZI and
ε̃ : X −→ ZĨ are inclusion maps, the following diagram commutes by the
de�nition of κ.
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Y
ε - ZI

X

κ

?
ε̃ - ZĨ

τ

?

Since τ and ε are injective(clearly!), so is τ ◦ε. Then as the above diagram
is commutative, so is ε̃ ◦ κ(= τ ◦ ε), implying that κ is injective too. Now,
let us look at the cokernel of κ. As we are dealing with abelian groups only,
so Coker(κ) = X/Image(κ) is also an abelian group. Now,
rank(Coker(κ)) = rank(X) − rank(Image(κ)). = rank(X) − rank(Y ) (since
κ is injective)

= |Ĩ| − rank(D̃)− |I|+ rank(D) (because of the above exact sequences)
= |Ĩ| − (|J̃ | − 1)− |I|+ (|J | − 1) (see the de�nitions of D and D̃)
= (|Ĩ|− |I|)− (|J̃ |− |J |) = 0. ( as the number of new singular points=the

number of new irreducible components).
This means that Coker(κ) is a torsion abelian group. On the other hand,

we have seen that Coker(τ) is torsion-free (abelian group). Now, the Snake
Lemma implies that Coker(κ) injects into Coker(τ). Thus, Coker(κ) is both
torsion-free and a torsion abelian group, which is possible if and only if
Coker(κ) = 0.

⇔ X/Image(κ) = 0

⇔ X = Image(κ)

⇔ κ is a surjection.

We had seen before that κ is an injective homomorphism too. Combining
this with the result about surjectivity of κ found above, we conclude that κ is
an isomorphism. That is, X ≈ Y , which means that H1(G,Z) = H1(Gnew,Z),
where Gnew is the new graph of the curve.
This means that we can continue to work using our old recipe without wor-
rying about the regularity of C.

�
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3 A Quaternion Viewpoint of Modular Curves

As the name of the chapter suggests, we are going to understand modular
curves from the point of view of quaternions in this chapter. In order to do
this, we need a few basic concepts which we introduce below.

3.1 Some Basic Concepts.

Recall that the modular curve X0(N)C was de�ned as
X0(N)C := Γ0(N)\H∗
where H∗ := { Upper-half plane } ∪Q ∪ {∞}

and Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
We now state the following theorem without proof:

Theorem 3.1 The curve X0(N)C has a proper modular model X0(N)Z over
Z, which is smooth over Z[ 1

N
].

In particular, it makes sense to de�ne a curve X0(N)Qq = X0(N)Z×Z Qq

over Qq.

De�nition. Quaternion Algebra. A quaternion algebra B over a �eld K
is a central simple algebra with center K, which is 4-dimensional as a vector
space over K. (Recall that a central simple algebra is a simple algebra which
has �nite dimension over its center).

Examples:
For any �eld K, the ring of matrices M2(K) with entries in K is a quater-

nion algebra over K. If K is algebraically closed, then all quaternion algebras
over K are isomorphic to M2(K).

For K = R, the well known algebra H of Hamiltonian quaternions is a
quaternion algebra over R. The two algebras H and M2(K) are the only
quaternion algebras over R, up to isomorphism.

When K is a number �eld, there are in�nitely many non-isomorphic
quaternion algebras over K. In fact, there is one such quaternion algebra
for every even sized �nite collection of �nite primes or real primes of K.

One can show that every quaternion algebra over K other than M2(K)
is always a division ring.

The Quaternion algebra �BD�:
Let D = p1p2...p2m be the product of an even number of primes in Z

(including ∞), the various `pi's being distinct. By the theory of quater-
nion algebras over Q, there is a quaternion algebra BD over Q, which up to
isomorphism is characterized by:
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{
BD ⊗Q Ql ≈ M2(Ql) if l - D;
BD ⊗Q Ql ≈ Hl if l | D.

where Hl is the unique quaternion algebra over Ql.
The `pi's are called the rami�cation primes, and D is called the discrim-

inant of BD.
If the pis are �nite, then BD ⊗R ≈M2(R). So, picking a maximal order

OD in BD, one gets an injection:

OD
∗ ↪→ (OD ⊗Z Q)∗ = BD

∗ ↪→ (BD ⊗Q R)∗ ≈ GL2(R).

We also write OD
+ for the inverse image in OD

∗ of the composed map
OD
∗ ↪→ GL+

2 (R), where GL+
2 (R) is the set of matrices in GL2(R) with

positive determinant. Thus we get an inclusion OD
+ ↪→ GL+

2 (R).

Review of Elliptic Curves.

Let E be an elliptic curve over a �eld k of characteristic q. Let E[q] de-
note the group of q-torsion points of E. Only one of the following two cases
can occur:

1)The Ordinary Case.

E[q](k) ≈ Z/qZ
2)The Supersingular Case.

E[q](k) = {0}
There are only a �nite number of isomorphism classes of supersingular

elliptic curves over k and an in�nite number of isomorphism classes ordinary
elliptic curves over k.

In general, there are only two q-isogenies on E/k:
1)Case (a). Frobq : E −→ E(q) (Frobenius).
2)Case (b). Verq : E −→ E(q−1) (Verschiebung, the dual of Frobenius)
The isogeny Frobq is purely radicial radicial, i.e., its kernel has no no-

trivial physical point. If E is ordinary, Verq is étale, and
Kernel(Verq)(k) = E[q](k) = Z/qZ
If E is supersingular, Verq = Frobq.

Upshot. To give (E,CMq) = (E,CM , Cq) ∈ X0(Mq)(k) is equivalent to
giving (E,CM) ∈ X0(M) and{

Cq = Ker(Frobq) (Case (a));

Cq = Ker(Verq) (Case(b)).
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If E is supersingular, Case(a)=Case(b).

De�nition. Eichler Order. Let BD be the unique (up to isomorphism)
quaternion algebra over Q with discriminant D. We take a maximal order S
in BD, i.e., S is a maximal free rank-4 subalgebra of BD. Then, S⊗Q ≈ BD.
An Eichler Order of level M is a subalgebra R ⊂ S such that after �xing an
isomorphism Φ : S⊗Zl −→M2(Zl) for primes l not dividingD, we get an iso-

morphism: Φ|R⊗Zl : R ⊗ Zl −→
{
M∈M2(Zl) :M≡

(
∗ ∗
0 ∗

)
(mod ln)

}
where ln is the largest power of l dividing M and BD ⊗ Zl ' S ⊗ Zl is the
maximal order of BD ⊗ Zl if l | D.

It turns out that every Eichler order can be expressed as the intersection
of two maximal orders, though not necessarily in a unique way.

Theorem 3.2 The Skolem-Noether Theorem. Let A and B be simple
rings, and K = Z(B) be the centre of B. Suppose that the dimension of B
over the �eld K is �nite, that is, B is a central simple algebra (K is a �eld
since any x ∈ K, by centrality, generates a two-sided ideal I 6= 0 so simplicity
of B implies that I = B and hence x is invertible).

Then if f, g : A −→ B are K-algebra homomorphisms, there exists a unit
b in B such that g(a) = bf(a)b−1 for all a in A.

De�nition. Adelization of a Ring. Given a ring R, its adelization Rf

is de�ned to be:

Rf = R⊗ Ẑ

where Ẑ =
∏

l prime Zl is the pro�nite completion of Z.

De�nition. Tl(A). Let A be an abelian variety of dimension g over a �eld
K and l a prime number. Let A[ln] be the kernel of multiplication by ln on
A for all integers n ≥ 1. Then we de�ne Tl(A) as the inverse limit of the
abelian groups A[ln]. Assuming we have a �xed separable closure of K, the
absolute Galois group G of K acts on Tl(A), which is a pro�nite group. In
fact it is more, being also a module over the ring of l-adic integers Zl.

Classical results on abelian varieties show that if K has characteristic
zero, or characteristic p where the prime number p - l, then Tl(A) is a free
module over Zl of rank 2d, where d is the dimension of A. In the other case,
it is still free, but the rank may take any value from 0 to d.
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De�nition. The q-adelic Tate module. Given an enhanced elliptic curve
E = (E,B) (i.e., B is a subgroup of the elliptic curve E ) over Fq, we de�ne:

T (E) := Tq(E)×
∏

l 6=q is prime

Tl(E)

De�nition. The Bruhat-Tits Tree. Given any prime p, there is a notion
of a tree T of PGL(Qp) associated to the set L of homothety classes of
lattices in Qp

2. The vertices of T are simply the elements of L. Given two
elements L1, L2 ∈ L, we may assume that L1 ⊃ L2 after lifting L1 and L2 as
real lattices and multiplying L2 by a suitable α = pk, with k ∈ Z and with
k being of minimal absolute value. Now ](L1/L2) = pn for some n ∈ N. We
call n the distance between L1 and L2. L1 and L2 are said to be connected
by an edge L1L2 if d(L1, L2) = 1.

As any lattice L0 in Qp
2 is isomorphic to Zp

2, there are exactly ]P1(Z/pZ) =
(p + 1) sublattices of index p. So, there are exactly (p + 1) vertices which
are at a distance of 1 from it. Equivalently, every vertex of T is connected
to exactly (p+ 1) other vertices by means of edges.

De�nition. Dual and Inverse of an Isogeny. Let E and E0 be elliptic
curves. If λ : E −→ E0 is an isogeny, then there is an isogeny µ : E0 −→ E
such that µ ◦ λ : E −→ E is just the multiplication map by a minimum
positive integer deg(λ) called the degree of λ. We call µ the dual isogeny of
λ.

We de�ne the inverse λ as λ−1 := 1
deg(λ)

× µ ∈ Hom(E0, E)⊗Q.

So, if σ ∈ End(E0), then λ−1σλ ∈ End(E)⊗Q.

3.2 Our Setting

Given.

Let p and q be distinct prime numbers, and M be a positive integer
prime to pq. We will consider the mod q reduction of the curve X0(qM) in
the sections 3.2-3.5. In 3.6., we will deduce that some analogous facts hold
for X0(pqM) too, by analogy. Let C be the modular curve X0(qM) over Qq

and let C be the regular minimal model of C over Zq. Using the machinery
and terminology developed above, we will study the dual graph G in terms
of CFq in terms of quaternions.
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The Dual Graph of CFq

We know that the curve CFq is just the set of qM -isogenies, i.e., pairs
(E,CMq) of elliptic curves enhanced by a subgroup CMq of orderMq [Deligne-
Rapoport]. By the �upshot� in the review of elliptic curves given above, we
know that CFq is composed of just two copies of the curve X0(M)Fq attached

at the supersingular points (i.e.,those supersingular points which arise from
supersingular elliptic curves over Fq), a supersingular point on the �rst copy
being identi�ed with its Frobenius transform on the second.

We continue using the same notation as in Chapter 2. Then J , the set of
irreducible components of CFq has two elements. I, the set of singular points
of CFq is clearly the set Σ(M) of Fq-isomorphism classes of �enhanced elliptic

curves� E = (E,B), where E is a supersingular elliptic curve over Fq and B
is a cyclic subgroup of E of order M .

For each i ∈ I, the elements j1(i) and j2(i) are the (only) two distinct
elements of J . For our convenience, we will orient the i ∈ I in such a way
that j1(i) and j2(i) are independent of i. The graph of G in this case has
precisely two vertices and all the edges connect the two distinct vertices and
are oriented in the same direction.

3.3 Relating the Character Group corresponding to X0(qM)
with Div0(Σ(M))

Using the above convention, we get that:

Proposition 3.3 The character group X in the case C = X0(Mq) is the
group of degree 0-divisors on the set Σ(M) of supersingular points of X0(M)Fq .

Proof. From Proposition 2.3 of the previous chapter, we know that X =
Ker(α), where

α : ZI −→ D is de�ned by α(i) = j1(i)− j2(i).

Let v =
∑|I|

i=1 nie(i) ∈ Ker(α) ⊂ ZI .

⇔ α(
∑|I|

i=1 nie(i)) = 0

⇔
∑|I|

i=1 ni(j1(i)− j2(i)) = 0

⇔ (
∑|I|

i=1 ni)(j1(i)− j2(i)) = 0 (since j1(i) and j2(i) are independent
of i)
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⇔
∑|I|

i=1 ni = 0 (since j1(i) 6= j2(i) as the two concerned copies of
X0(M)Fq are distinct.)

⇔
∑|I|

i=1 nie(i) is a degree-0 divisor on ZI .

⇔
∑|I|

i=1 nie(i) is a degree-0 divisor on ZΣ(M), where Σ(M) is the set
of supersingular points of X0(M)Fq . (since from the previous paragraph,

I = Σ(M) in this case)

�

3.4 Linking Eichler Orders with Enhanced Elliptic Curves

We continue using the same notations as in the previous two sections.
Now for each supersingular E, it is known that the Q-algebra H :=

(End(E)) ⊗ Q is the unique (upto isomorphism) quaternion algebra over Q
which is rami�ed precisely at q and at ∞. Since E is supersingular, the ring
End(E) is a maximal order in H, while its subring End(E) is an Eichler order
of level M in End(E).(accept these statements as facts)

Consider the canonical quotient map λ : E −→ E/B. There is a natural
inclusion:

End(E/B) ↪→ H given by:

σ 7→ λ−1σλ.

Now,

End(E) = {σ ∈ End(E)|σ(B) = B} = End(E) ∩ End(E/B).

So, End(E) is an (oriented) Eichler order.
Next, we describe the set I = Σ(M) in terms of the arithmetic of the

quaternion algebra H. Since all supersingular elliptic curves over Fq are
isogenous, we can start with a �xed E0 and keep track of the isomorphism
classes of enhanced elliptic curves gotten by isogenies from E0.

We consider T (E) as �enhanced� by the distinguished cyclic subgroup B
of T (E)/MT (E). We �x E0 = (E0, B0), and de�ne

R = End(E0), H = R⊗Z Q.
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Let Rf and Hf be the adelizations of these rings. Given any enhanced
supersingular curve E = (E,B), we select a non-zero λ ∈ Hom(E,E0)⊗Z Q.
This homomorphism identi�es T (E) with a sublattice of V (E0) := T (E0)⊗Z
Q. This is because every element λ ∈ Hom(E,E0) ⊗Z Q can be written as
λ̃⊗ r

s
where λ̃ ∈ Hom(E,E0) and r

s
∈ Q. We de�ne λ(T (E)) := T (λ̃(E))⊗ r

s
.

By the de�nition of λ̃, we know that λ̃(E) does indeed land inside E0 and it
is also clear that λ̃(E) is an elliptic curve, so T (λ̃(E)) makes sense. Thus the
de�nition of λ(T (E)) makes sense and so it identi�es T (E) with the sublattice
T (λ̃(E)) ⊗ r

s
of V (E0) := T (E0) ⊗Z Q. Now, we can �nd a unique element

(see below for knowing the reason)
g ∈ Hf

∗/Rf
∗

such that one has the equality of enhanced lattices g.T (E) = T (E0)(after
identifying T (E) with λ(T (E), of course!). This means that g.T (E) and
T (E0) coincide as lattices of V (E0) and the induced isomorphism

g : T (E)/MT (E) ≈ T (E0)/MT (E0)
carries B to B0.
(From the de�nition of the adelic Tate module and the fact that both

T (E) and T (E0) are sublattices of T (E) ⊗Z Q, it is clear that there should
be an element g ∈ Hf

∗ such that as sets,

g.T (E) = T (E0) (6)

If there are two `g's, say g1 and g2 satisfying (6), then we should have:
g1
−1.T (E0) = g2

−1T (E0).

⇔ g2
−1g1 ∈ Rf

∗ = (End(E0)⊗ Ẑ)∗.

⇔ There exists a unique g ∈ Hf
∗/Rf

∗ such that (6) holds.

The assertion about the induced isomorphism carrying B to B0 is obvi-
ous.)

Now, two distinct `λ's in Hom(E,E0) ⊗Z Q can give rise to the same
sublattice in V (E0) := T (E0)⊗Z Q(corresponding to a unique g ∈ Hf

∗/Rf
∗)

if and only if they di�er by an element of (End(T (E0) ⊗Z Q))∗ = H∗. So,
because of the ambiguilty in the choice of λ, g is well-de�ned only in

H∗\Hf
∗/Rf

∗. Hence, we have the following theorem:

Proposition 3.4 This construction provides a bijection ΦE0 from the set
Σ(M) of supersingular points of X0(M)Fq to the coset space H∗\Hf

∗/Rf
∗.

Proof. It was seen above that a given element E ∈ Σ(M) corresponds to a
unique Tate-adelic module T (E) (follows from the de�nition of T (E)), which
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in turn, corresponds to a unique sublattice of V (E0). Now this sublattice
is uniquely determined by a unique g ∈ H∗\Hf

∗/Rf
∗. This completes the

proof.

�

Variant. The set Σ(M) is naturally isomorphic to the set of right ideal
classes of the Eichler order R of level M in H.

Proof. It is possible to identify the indicated set of ideal classes with the
coset space above. For a proof, see [Vig,p.87]. So, the above assertion then
becomes just a reassertion of the statement of Proposition 3.4 above, which
we proved just now.

Proposition 3.5 Let B and B
′
be maximal orders of a quaternion algebra

of discriminant q (i.e., it is rami�ed at q and ∞) such that S = B ∩ B′ is
an Eichler order of level M in B. Then there is an enhanced elliptic curve
E over Fq and an isomorphism

κ : (S,B) ≈ (End(E),End(E)),

i.e., an isomorphism B ≈ End(E) which carries S to End(E). More-
over, let E

′
be another such enhanced elliptic curve and let κ

′
: (S,B) ≈

(End(E
′
),End(E

′
)) be be another such isomorphism. Then, the pair (E

′
, κ
′
)

is isomorphic to either (E, κ) or to (E(q), κ(q)).
[ We say that (E, κ) and (E

′
, κ
′
) are isomorphic if there is an isomorphism

E ≈ E
′
for which the induced isomorphism ι : End(E) ≈ End(E

′
) satis�es

κ = κ
′
ι. The `(q)'s in superscripts stand for the image under the Frobenius

map, of course.]

Proof. As before, we �x an enhanced supersingular curve E0. Let

R = End(E0), A = End(E0) and H = R⊗Q.

After choosing and �xing an isomorphism B ⊗ Q ≈ H, we assume that
B, B

′
and S are orders in H.

We divide the proof into various steps:

Step 1: Constructing an injection κ : End(E)⊗Q −→ H.
We �rst consider all pairs (E, κ) consisting of an enhanced elliptic curve

E and an injection κ : End(E) ⊗ Q −→ H (which doesn't necessarily map

28



End(E) to S and End(E) to B). For every non-zero λ ∈ Hom(E,E0)⊗Z Q,
we get such an injection κλ which maps e ∈ End(E) ⊗ Q to λeλ−1. It
follows from the Skolem-Noether Theorem that every κ is of the form κλ.
Also, the choice of λ is unique upto multiplication by an element of Q∗:
λ1 ∈ Hom(E,E0) ⊗Z Q and λ2 ∈ Hom(E,E0) ⊗Z Q give isomorphic pairs
(E1, κ1) and (E2, κ2) i� there exists an isomorphism ι : E1 −→ E2 such that
λ1 and λ2 di�er (multiplicatively) by an element of Q∗.

Now, we just saw that the construction

(E, λ) 7→ T (E) ⊂ V (E0)

gives rise to a one-one correspondence between the set of isomorphism
classes of pairs (E, λ) and the set Hf

∗/Rf
∗ of �enhanced� lattices in V (E0).

If we mod out by Q∗, we obtain a 1-1 correspondence between Hf
∗/Rf

∗Q∗
and the set of isomorphism classes of pairs (E, κ) with E an elliptic curve
and κ an injection End(E)⊗Q ↪→ H.

Step 2 : A Necessary and Su�cient Condition (*).
We take g ∈ Hf

∗ and look at the associated pair (E, κ). Under κ, End(E)
and End(E) go to the ordersH∩(gRfg

−1) andH∩(gAfg
−1) ofH respectively.

Thus, κ maps End(E) to R and End(E) to A i� both the equalities below
hold:

H ∩ (gAfg
−1) = Bf and H ∩ (gRfg

−1) = Sf . (∗)

Step 3 : Veri�cation that condition (*) holds.
We examine these equalities locally at each prime l, i.e., for g now in Hl

∗,
we verify for which gs, if any, the following two equalities hold:

H ∩ (gAlg
−1) = Bl and H ∩ (gRlg

−1) = Sl. (∗∗)

(∗) holds i� (∗∗) holds. We divide the set of all primes into three disjoint
sets for this purpose:

Case(a) : l = q.
When l = q, (∗∗) is satis�ed trivially. This is because the quaternion

algebra Hq over Qq has a unique maximal order [Vig.,Lemme 1.5,p.34] and
so every g ∈ Hq

∗ takes Aq to Bq and Rq to Sq.
Notice that there are two classses in Hq

∗/(Rq
∗Qq

∗): On Hq
∗, we have

a valuation v : H∗q −→ Z. By de�nition, R∗q = {a ∈ Hq
∗ | v(a) = 0}.

So, it makes sense to de�ne a quotient map: v : Hq
∗/Rq

∗ −→ Z, de�ned
by a 7−→ v(a). Zq ⊂ Rq is rami�ed in Rq, i.e., there exists π ∈ Rq such
that π2 = ±q, so v(q) = 0 (mod 2) (actually, v(q) = 2). So v(Zq

∗) =
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2Z and v(Qq
∗) = 2Z. Therefore, v induces Hq

∗/(Rq
∗Qq

∗) ≈ Z/2Z. So,
| Hq

∗/(Rq
∗Qq

∗) |=| Z/2Z |= 2.

Case(b) : (l, qM) = 1.
When l is prime to qM ,

Al = Rl and Bl = Sl.

So the two equalities in (∗) become the one and the same equality and this
equality can be satis�ed because all maximal orders in M2(Ql) are conjugate
[Vig.,2.4.,p.39]. Also, the set of `g's for which the equality is satis�ed form
a single class in Hl

∗/(Rl
∗Ql

∗). This is because the normalizer of M2(Zl) in
GL(2,Ql) is GL(2,Zl)Ql

∗.

Case(c) : l |M .
Lastly, let l | M , and let n > 0 be such that ln is the largest power of l

dividing M . Then the two Eichler orders Rl and Sl are each intersections of
a unique pair of maximal orders of Hl ≈M2(Ql) [Vig.,2.4,39]: Sl = Bl ∩Bl

∗

and Rl = Al ∩ Al
′
, where A

′
= End(E/B). So, g ∈ Hl

∗ thus conjugates Al
to Bl and Rl to Sl i� it conjugates Al to Bl and Al

′
to Bl

′
.

We may think of Al, Bl, Al
′
and Bl

′
as vertices a, b, a

′
, b
′
of the tree ∆

associated to SL2 over Ql. To do so, we notice that the vertices of ∆ are
the lattices in Ql ⊕ Ql, taken modulo homothety. The map sending the
lattice L ⊂ Ql ⊕ Ql to the maximal order End(L) of M2(Ql) sets up a 1-1
correspondence between the vertices of ∆ and the maximal orders in M2(Ql)
[Vig.,p.41].

As R and S are Eichler orders of level M and ln ||M , the vertices a and
b are at a distance n from each other, as are the vertices a

′
and b

′
. We know

from the Elementary Divisor Theorem that it is possible to �nd a basis e1, e2

of Ql ⊕ Ql so that a is represented by the lattice Zle1 ⊕ Zle2 and b by the
lattice Zle1 ⊕ lnZle2. Similarly, there is a basis f1, f2 of Ql ⊕Ql such that a

′

is represented by the lattice Zlf1 ⊕ Zlf2 and b
′
is represented by the lattice

Zlf1⊕ lnZlf2. If g ∈ GL(2,Zl) maps e1 to f1 and e2 to f2, then g conjugates
Al to Bl and Al

∗ to Bl
∗. On the other hand, if h also conjugates Al to Bl

and Al
∗ to Bl

∗, we have
h−1g ∈ N(Al) ∩N(Bl) = (Al

∗Ql
∗) ∩ (Bl

∗Ql
∗) = (Al

∗ ∩Bl
∗)Ql

∗ = Rl
∗Ql

∗.
Hence, the set of `g's conjugating Al to Bl and Al

∗ to Bl
∗ again make up

a single class in Hl
∗/(Rl

∗Ql
∗).

Step 4 : The Conclusion. After examining each local classs, we conclude
that the g in Hf

∗ which conjugate Af to Bf and Rf to Sf form exactly two
classes in Hf

∗/(Rf
∗Q∗). These classes are interchanged by left multiplication
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by any element of Hf
∗ which is trivial outside the prime q and has odd valu-

ation at q. It is a fact that this multiplication corresponds to the Frobenius
map.

�

3.5 The Action of Hecke Operators on the Character

Group X.

De�nition. The nth Hecke correspondence Tn. For an integer N , we
consider a model of the curve X0(N) (over Q). If n is an integer which is
coprime to N , we de�ne the correspondence Tn (which is an endomorphisn
on the set of divisors of X0(N)) on this curve by the following recipe:

Tn(E,CN) :=
∑

Cn
(E/Cn, CN + Cn/Cn) =

∑
Cn

(E/Cn, CN(mod Cn))

where the sum is taken over all cyclic isogenies of degree n in E. If
gcd(n,N) > 1, Tn is de�ned by a similar sum, but now the Cns have no other
choice than running through the set of isogenies such that Cn ∩ CN = {0}.

Note that as CN + Cn/Cn is again a cyclic isogeny of degree n in E, it
makes sense to de�ne Tn

r for r ≥ 1 using linearity of Tn. Let J0(N) be
the jacobian of X0(N). By Albanese functoriality, the Tn as de�ned above
induces an operator on J0(N), which by abuse of notation, we will call Tn
too. Abel-Jacobi theorem tells us that J0(N) can be ideti�ed with Pic0(X).
Under this identi�cation, we now de�ne what the �induced� Tns turn out to
be.

If x ∈ J0(N), then x =
∑
ni(Pi) for some closed points Pi in X0(N) with∑

ni = 0. We de�ne

Tn(x) :=
∑

niTn(Pi).

The Tns on the right hand side of the equation are the usual Tns on X0(N)
as de�ned in above. Let T be the subalgebra of End(J0(N)) generated by
the Tns. It is clear that one may extend the actions of individual Tn to T by
linearity. Thus T acts on J0(N) and hence on its Néron model J0(N) at each
prime dividing N . As before, we concentrate on the case N = qM , with q a
prime and M coprime to q. It is a fact that there is an exact sequence

0 −→ T −→ J0(N) −→ A −→ 0,
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where T is a torus and A is an abelian variety. So T acts on T too and
by functoriality, it acts on its character group X = X(T ) = Hom(T,Gm).
Using the same notations as before, we recall that there is an isomorphism
X ≈ H1(G,Z) and an incusion X ↪→ ZI . Also, I = Σ(M) in our case, i.e., the
set of isomorphism classes of supersingular elliptic curves over Fq enhanced
by a cyclic subgroup of order M . So, let us try to determine the induced
action of Tns on Σ(M).

We �rst consider the case when n is prime to q. The Tns operate on Σ(M)
in the evident way, i.e., via the same �modular rules� which de�ne the Tns
over Q. We give here the rule for Tn when n is a prime number r 6= q; we give
the expression for Tr(E), where E is an elliptic curve E which is enhanced
by a cyclic of subgroup M .

We distinguish cases according as r is prime to M or a divisor of M . In
the former case, we have the standard expression

Tr(E) =
∑
C

E/C

,

where the sum is taken over all the subgroups C of order r in E and where
E/C is the elliptic curve E/C with the evident subgroup of order M . In the
case where r divides M , the enhancement of E provides E, in particular,
with a subgroup D of order r. We have

Tr(E) =
∑
C 6=D

E/C

Now, if ω ∈ H0(J0(N),Ω1), then one de�nes Tn(ω) as follows:

Tnω(x) =
∑

Tn(x)=
∑
y

ω(y) ∈ H0(J0(N),Ω1).

Therefore Tn de�nes an element in End(H0(J0(N),Ω1))=End(S2(Γ0(N))).
Thus T acts on End(S2(Γ0(N))).

3.6 Comparison with the Curve X0(pqM).

We recall that p is a prime number which is coprime to qM . Also, we will con-
tinue to understand that �enhanced elliptic curves � are elliptic curves which
are enhanced by cyclic subgroups of order M . We will compare X0(pqM)
with X0(qM) by replacing the M in sections 3.2-3.5 with a pM . (We can
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clearly do this because we assumed that p and q are distinct primes and
(M, pq) = 1.)

We again use X to denote the group Div(Σ(M)) of degree-0 divisors on
the set of supersingular points of X0(qM)Fq . Let L be the analogue of X

with qM replaced by pqM , i.e., the character group associated to X0(pqM)Fq
. The analogue of Proposition (3.3) for X0(pqM) describes L in terms of
supersingular elliptic curves which are enhanced by cyclic subgroups of order
pM . We can regard such objects as p-isogenies

E1 −→ E2,
where E1 and E2 are enhanced by subgroups of order M .
We have two natural degenracy maps α̃, β̃ : X0(pqM) ⇒ X0(qM),
de�ned by :

α̃ : (E,CqM , Cp) 7−→ (E,CqM),

and
β̃ : (E,CqM , Cp) 7−→ (E/Cp, (CqM + Cp)/Cp).

These two induce maps α̃∗, β̃∗ : L ⇒ X, which can be realized explicitly
by the maps sending E1 −→ E2 to E1 or E2. These two combine to make a
single degeneracy map

δ : L −→ (X ⊕X).

Let Y be the kernel of δ. Then we have an exact sequence:

0 −→ Y −→ L −→ (X ⊕X) −→ 0.

We will try to �nd relations between the above sets and the above maps
in the next chapter.
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4 Bad Reduction of Shimura Curves

In this chapter, we will introduce Shimura curves, and we will make a �quater-
nionic description of their dual graphs� anologous to that of Chapter 3 for
modular curves. We will describe those graphs in terms of supersingular el-
liptic curves (see Theorem 3.3). That will allow us to make a concrete study
of those graphs in Chapter 5. We will also describe Ribet's theorem, linking
character groups in the Shimura curves setting to the more familiar analogue
in the case of modular curves.

4.1 Basic De�nitions.

Let D = p1p2...p2m be the product of an even number of (�nite) primes in Z,
the various `pi's being distinct. As we saw in Chapter 3, BD ⊗ R ≈M2(R).
So, picking a maximal order OD in BD, one gets an injection:

OD
+ ↪→ OD

∗ ↪→ (OD ⊗Z Q)∗ = BD
∗ ↪→ (BD ⊗Q R)∗ ≈ GL2(R) (see 3.1).

We denote the composition of the above maps OD
∗ ↪→ GL2(R) by i.

Now, consider the Riemann surface i(O+
D)\H. Shimura has proved that

this is a compact Riemann surface. (Thinking of the caseBD ≈M2(Q), OD
+ =

SL2(Z), one obtains the classical modular curves over C, which are not com-
pact.) We de�ne XD/C , the Shimura Curve associated to BD to be this
compact Riemann surface i(O+

D)\H. This Riemann surface has the following
modular interpretation: it parameterizes principally polarized abelian sur-
faces whose ring of endomorphisms contains a maximal order in the quater-
nion algebra BD.

It is a fact that such a XD/C has a �modular� model over Q (proved by
Shimura), and also over Z[1/D] (proved by Deligne-Rapoport) and even over
Z (proved by Cerednik-Drinfeld).

Variation. We take BD as above. ForN coprime toD, we de�ne OD
0(N)

to be the set of x ∈ OD , for which upon identifying OD ⊗ Zl with M2(Zl)

for l - D, one gets x ≡
(
∗ ∗
0 ∗

)
(mod ln) , ∀l - D, ln ‖ N .

Again, one builds in the same way as above, a curve X0
D(N)/Q (by

replacing OD by OD
0(N), which we will call a Shimura curve of discrim-

inant D and level N .
We �nally note that Jac(X0

D(N))Q ≈ (J0(ND))D-new. (Recall that
J0(ND) is isogenous to

∏
(Jf )

ef , where f runs through the (�nite) set of
newforms of some level M dividing ND, and Jf is the sub-abelian variety of
J0(ND) corresponding to f as de�ned by Shimura. Then, J0(ND)D-new is
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isogenous to
∏

(Jφ)eφ , where φ runs through the newforms of some level M
divisible by D (and dividing ND, of course).)

4.2 Our Setting.

Let p and q be distinct primes, and let M be an integer prime to pq. Let
B be an inde�nite quaternion algebra over Q of discriminant pq. (Up to
isomorphism, B is unique.) Let O be an Eichler order of level M (i.e.,
reduced discriminant Mpq) in B. Let Γ∞ be the group of elements of O
with reduced norm 1. After �xing an embedding B →M2(R), we obtain in
particular an embedding Γ∞ → SL2(Z) and therefore an action of Γ∞ on the
Poincare upper half- plane H. Let C be the standard model over Q of the
compact Riemann surface Γ∞\H, and let J be the Jacobian Pic0(C). The
curve C is furnished with Hecke correspondences Tn with n ≥ 1. In analogy
with the situation in Chapter 3, we again write Tn for the endomorphism of
J induced by Tn via Pic functoriality.

For simplicity, we simply write C for the curve CQp and J for JQp . A model
C for C over Zp as considered in Chapter 2 was constructed by Cerednik in
[Cer]; and by Drinfeld in [Drin]. Drinfeld gave a modular-theoretic interpre-
tation of Cerednik's construction. It follows, in particular, from their work,
that J has purely toric reduction at p. Let Z be the character group of the
torus at (JFp)

0.
Recall that we can de�ne the dual graph G of the �ber at p of C, and that

Z is isomorphic to H1(G,Z) (cf. Proposition 2.2).
Let T̃ be the formal polynomial ring Z[T1, T2, ...] generated by the com-

muting indeterminates Tn. There is a standard action of T̃ on J , in which
Tn ∈ T̃ acts as Tn on J .

The objective of this section is, as we said in the forewords, to to relate Z
to the T-modules L, X⊕X, Y , etc. of Chapter 3 (Since the Hecke operators
Tn on J0(Mpq) make T a quotient of T̃, every T module is naturally a T̃-
module.)

4.3 Figuring out G
Now let H be the quaternion algebra over Q with discriminant q. Let R be
a Eichler order of level M in H. Let S ⊂ R be the Eichler order of level Mp
in H gotten by intersecting R with the evident Eichler order in M(2,Zp):{(

a b
c d

)
∈M(2,Z)|p divides c

}
.
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Let V be the set of isomorphism classes of locally free rank-1 left R-
modules, and let E be the set of isomorphism classes of locally free rank-1
left S-modules. We have canonically
V = Rf

∗\Hf
∗/H∗,

E = Sf
∗\Hf

∗/H∗.
The inclusion of S into R de�nes a degeneracy map
α : E −→ V .
A second degeneracy map
β : E −→ V
is obtained by considering the Eichler order T of H which has level M ,

contains S, agrees with R locally at all places except for p, and is distinct
from R. The order T is given adelically as mRm−1, where m is trivial except
at p, where it is the diagonal matrix diag(1,p). The analogue of α for T is a
map from E to the double coset space

mRf
∗m−1\Hf

∗/H∗.
We get β by identifying this space with V via multiplication by m−1 on

(Hf )
∗. Hence β maps the class of x in the double-coset space de�ning V

to the class of m−1x in the double-coset space de�ning V . Then we get the
following theorem,which we state without proof, and that will be our main
result for this chapter:

Theorem 4.1 The set of edges of G is canonically the set E. The set of
vertices of G is the disjoint union V ×{1, 2} of two copies of V. A given edge
e ∈ E connects the vertex (α(e), 1) with the vertex (β(e), 2).

It follows from the above theorem that the character group Z, a priori
the group H1(G,Z) is the kernel of the map ω : ZE −→ ZV × ZV induced
by (α, β) : E −→ V × V . An element of Kernel(ω) visibly has degree 0 as
a formal linear combination of elements of E . Writing (ZE)0 and ZV0 for the
group of degree-0 divisors on E and V , we get:

Corollary 4.2 The character group Z is the kernel of the degeneracy map
ω0 : ZE0 −→ ZV0 × ZV0
induced by (α, β).

Now, we compare the groups Z and Y (see Chapter 3). By de�nition,
Y is the kernel of a natural degeneracy map δ : L −→ X ⊕ X, where L
and X are the groups of degree-0 divisors on the sets Σ(Mp) and Σ(M)
of supersingular points on X0(Mp) and X0(M) in characteristic q. Z has
an analogous description ( Corollary 4.2) with E0 replaced by E and Σ(M)
replaced by V . Taking �rstM = Mp and thenM = M in Proposition 3.4, we
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�nd that Σ(Mp) and Σ(M) are double-coset spaces of the type de�ning E and
V , but with the orders S and R replaced by orders of the form End(E0, Cp)
and End(E0). Hence, E0 is (as usual) a supersingular elliptic curve E0 in
characteristic q which has been enhanced by a cyclic subgroup of E0 having
order p. To compare the pairs (E ,V) and (Σ(Mp),Σ(M)), Ribet shows that
there exists a E0, Cp such that End(E0, Cp) = S and End(E0) = R, hence
proving that there are (E ,V) = (Σ(Mp),Σ(M)). This leads to:

Theorem 4.3 There is a T̃-isomorphism Z ≈ Y .

In the statement of this theorem, we understand that the actions of T̃ on
Z and on Y to be the standard (Pic) actions.

De�ne T to be the quotient of the torus cut out by the space Spq−new of
forms on Γ0(pqM) which are new relative to p and q(i.e., forms in S2(Γ0(pqM))
whose exact level is a multiple of pq). It can be proved that it is also the
quotient of T cut out by Y . Also, since J has purely toric reduction, EndQ(J)
operates faithfully on Z. Therefore, the above Theorem implies:

Corollary 4.4 There is a unique injection T −→ End(J) mapping the nth

Hecke operator in T to the nth Hecke operator on J .

4.4 De�nition of G(Xpq/Fp).

Now, to make things easier for us in the next chapter, we sum up the various
results that we obtained in this chapter and which are going to be useful for
understanding the material of the next chapter.

Consider the special case M = 1From what we have said above, one sees
that V ≈ Σ(1) and E ≈ Σ(p). By Proposition 4.4, we know that G in this
case has two copies of V as its set of vertices and the set E as its set of
edges. We de�ne Xpq to be the Shimura curve associated to the quaternion
algebra Bpq. It is a fact that at p, Xpq/Fp is a union of projective lines with
ordinary double points as singularities, so J(X)0

Fp is purely toric, i.e., it is

a torus: J(X)0
Fp ≈ Gm

g/Fp, where g is the dimension of the torus. We

de�ne G(Xpq/Fp) to be the �dual graph� associated to this Shimura curve
Xpq. Recalling the de�nition of Σ(1) and Σ(p), from what we said just now,
it follows that:

Theorem 4.5 Let Vpq and Epq be the set of vertices and edges of the graph
G(Xpq/Fp). Then we have:
Vpq ≈ V1 ∪ V2

where V1 = {supersingular elliptic curves in characteristic q}/ ≈.
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E1 ∈ V1 and E2 ∈ V2 are linked by an edge if and only if there is an
isogeny E1 −→ E2 of degree p, i.e.,
Epq = {(E, Cp) | E is a supersingular elliptic curve in characteristic q, Cp ⊂

E is a p-isogeny}/ ≈

Remark. Remembering the concept of dual isogenies, we see that there is
a p-isogeny E1 −→ E2 if and only if there is a p-isogeny E2 −→ E1. So, this
graph G(Xpq/Fp) is symmetric or bipartite.
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5 Is G(Xpq/Fp) non-disconnecting?

5.1 Edixhoven's Theorem.

Now, it's time that we come back to the question that we promised to at-
tempt to answer in our �Introduction�:

Question. Let X be a Shimura curve over Q and X → J be an Albanese
morphism to its Jacobian. Consider the extension: Xsm → J from the
smooth locus Xsm of the Cerednik-Drinfeld model of X over Zp, to the Néron
model J of J over Zp. When is this extended morphism a closed immersion?

Thanks to a theorem of Edixhoven, we can translate this abstract question
into the simple combinatorial language of graphs and the property of their
being �non-disconnecting�. To answer this question (or even understand it
properly), we �rst need to introduce and recall a few concepts.

De�nition. Albanese Morphism. Let X be a curve over a �eld k, and
suppose that X(k) 6= ∅. Let P ∈ X(k) be arbitrary. Then the Albanese
morphism Φ(P ) from X to its jacobian J is de�ned as the morphism sending
Q to the divisor class (Q− P ). (Recall that Jac(X) ≈ Pic0(X).)

For the rest of this section, we �x a discrete valuation ring D with fraction
�eld K, uniformizer π and residue �eld k.

De�nition. Nodal Curve. Let X be a �at curve over Spec(D). We will
say that X/D is a nodal curve if all the singularities are ordinary double
points, i.e., if the point of X outside the smooth locus have local equation
xy = 0 in the their �ber.

De�nition. Non-disconnecting. A graph G is non-disconnecting if even
after removing any arbitrarily chosen edge E from it, the graph G\E is
connected. It is disconnecting otherwise.

Now, we have necessary vocabulary to understand our original question
and Edixhoven's result which answers when and to what extent the concerned
extended morphism is a closed immersion.

Theorem 5.1 (Edixhoven.) Let X be a proper and �at curve over Spec(D),
which is regular, generically smooth, and nodal. Suppose that the �bre XK
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of X is smooth over K, geometrically irreducible and has non-zero genus.
Let P be a given point in X(K). Let fK : XK −→ JK be the usual closed
immersion sending Q to (Q − P ). Let f : Xsm −→ J be the induced mor-
phism from the smooth locus Xsm of X to the Néron model J over D of JK.
Then f is a closed immersion if and only if the dual graph of the curve Xk

is non-disconnecting where k is some algebraic colsure of k.

Note that if X/D is as in the above de�nition, then its smooth locus
(that is, the largest open subscheme of X which is smooth over D) is the
complement in X of a �nite set of singular points of Xk. (Recall that Xk ⊂
X.)

Let us restrict ourselves to the case when X is a Shimura curve Xpq,
where Xpq is de�ned as in the previous chapter. So, now, we have a new
motivation for looking at the graph G(Xpq/Fp) and examining its disconnec-
tivity properties, and that's what we precisely intend to do next, as the name
of this chapter indicates. In the light of Edixhoven's theorem, determining
whether this graph is non-disconnecting or not, would give us the answer to
the following quesion too:

Question. Let Xpq be the Shimura curve associated to the quaternion
algebra Bpq. If P ∈ X(Zp),look at the closed immersion fP/Qp : X −→
J sending Q to (Q) − (P ). Send this map to the naturally �derived� map
fP/Zp : X/Zp −→ J/Zp where J , of course, is de�ned as above. When is
fP/Zp a closed immersion?

5.2 Some Basics.

We still focus on the dual graph G(Xpq/Fp) of the Shimura curve Xpq, where
p and q are some �nite primes. We concluded our last chapter by saying that
the set of vertices of the bipartite graph G(Xpq/Fp) is given by two copies V1

and V2 of supersingular elliptic curves in characteristic q and its set of edges
is given by the set of p-isogenies between these classes of elliptic curves. Here
we are going to talk about how exactly we determine whether there is the
number of edges,if any, between any two vertices in the two di�erent copies
of the graph.

At �rst, we recall some basic facts about elliptic curves that we again
need here. First, there are �nitely many supersingular elliptic curves over a
�eld, as they all belong to Fp2 (if p is the characteristic of this �eld). Second,
the j-invariants j = 0 and j = 1728 are special. The only elliptic curves
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which may have some special automorphism (i.e., some automorphism other
than multiplication by ±1) are the elliptic curves with j-invariant equal to 0
or 1728. If E has j-invariant 0, then End(E) contains a non-trivial third root
of unity. And if E has j-invariant 1728, then End(E) contains a non-trivial
fourth root of unity.

Now, given a q, let j0, j2, ..., jg be the set J of j-invariants representing the
classes of supersingular elliptic curves over Fq. As we saw in the last chapter,
the set of vertices of G(Xpq/Fp) is given by two copies, say V1 and V2, of the
elements of J . Let Eji denote the isomorphism class of supersingular elliptic
curves corresponding to the j-value ji. Let Cr,l be the vertex corresponding
to the j-value jl in the copy Vr;r = 1, 2 of J . We outline here a method to
determine whether there is an edge between C1,l and C2,m, or equivalently,
detemining whether there is a p-isogeny between the isomorphism classes Ejl
and Ejm . Due to the symmetry of the dual graph G(Xpq/Fp), it is clear that
it is su�cient to look at the Mestre-Oesterlé graph G(Xpq/Fp) with V and E
as its set of vertices and edges respectively, where V is de�ned as the set J
of supersingular j-invariants in characteristic q, and there is an edge e ∈ E
connecting jl and jm if and only if there is a p-isogeny between the isomor-
phism classes Ejl and Ejm .

We want to know about the edges emanating from the vertex jl ofG(Xpq/Fp).
The idea is to look at the modular polynomial Φp(X, Y ) and consider its re-
duction modulo q when Y = jl is substituted. (Recall that Φp(X, Y ) is
the bivariate symmetric polynomial such that Φp(X, jl) is the polynomial
whose roots are the j-invariants of elliptic curves linked by a p-isogeny to
an elliptic curve with j-invariant equal to jl). Suppose that jl 6= 0, 1728.
Let jl,1, ..., jl,(p+1) be the roots of Φp(X, jl) in Fq2 occuring with multiplity
α1, ..., αp+1 respectively. It is a fact that there are αk edges from jl to jl,k;
k = 1, ..., (p + 1), in G(Xpq/Fp). If there happens to be multiple number
of p-isogenies φ : E1 −→ E2 between the corresponding classes of supersin-
gular elliptic curves which are isomorphic (that is, (E1, φ) = (E1, φ ◦ ι), for
ι ∈ Aut(E1)), then they will be counted as just one single edge in G(Xpq/Fp)
and the derived graph G(Xpq/Fp).

Note that the p-isogenies in a elliptic curve E over Fq lie in E[p](Fq) ≈ Fp2

if p 6= q. So,it is clear that the number of p-isogenies is given by the number
of elements in P(E[p]) ≈ P1(Fp) which is equal to (p + 1). So, if there is
no special automorphism on E, i.e. if j 6= 0, 1728, then we must have p + 1
edges emanating from each vertex and the same number of edges going into it.
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As the name of this chapter indicates, we aim to examine the property of
non-disconnectivity of the graph G(Xpq/Fp) in this chapter.

5.3 The Asymptotic Case.

We give here a theorem which lets us guess something about the asymptotic
behaviour of G(Xpq/Fp) when p is su�ciently large compared to q. We con-
tinue using the same notations as before and introduce some more. We write
the bipartite graph G(Xpq/Fp) as a union V1∪V2 and enumerate the vertices
of Vr as {Cr,0, ..., Cr,g} for r = 1, 2 as before. Each js ∈ J corresponds to an
elliptic curve Ejs and we set w(js) := card(Aut(Es)/{±1}). One knows that
at most two w(js) s are di�erent from 1, in which case they are equal to 2 or
3 (at least if p and q do not divide 6, see previous section). The Eisenstein
vector Eis for X0(q)Fq is de�ned to the vector (w(j0)−1, ...., w(jg)

−1)t ∈ 1
12

ZS.

For v = (vi)i∈S ∈ CS, we de�ne the weight W (v) as
∑

i∈S(vi). The weight
W (Eis) =

∑
(w(Cr))

−1 is approximately equal to q/12.

Theorem 5.2 (Parent-Yafaev) Fix a prime q > 3. As the prime p tends
to in�nity, the edges of G(Xpq/Fp) are equidistributed in the following sense.
If C1,l and C2,m are elements of V1 and V2 respectively, the number of edges
from C1,l to C2,m is:

(p+1)
W (Eis)

× 1
w(C1,l)w(C2,m)

+Oq(
√
p).

Now, from the preceeding paragraph, we know thatW (Eis) ≈ q
12
and that

each of w(C1,l) and w(C2,m) are lesser than or equal to 3. Thus, if p >> q,

then the number of edges from C1,l to C2,m is ≥ 12(p+1)
q
× 1

3×3
+ Oq(

√
p),

which in turn is greater than 4(p+1)
3q

, which in particular is greater than 1.
So,if p >> q, then there are multiple edges between each pair of vertices C1,l

and C2,m ,0 ≤ l,m ≤ g. And it is clear that removing one edge from such
a graph G(Xpq/Fp) will not a�ect its disconnectivity properties. Thus the
graph formed by removing one of its edges will also be connected in such a
case. In other words, G(Xpq/Fp) is non-disconnecting when p is su�ciently
larger than q.

5.4 Guessing about the behaviour of G(Xpq/Fp) for odd
p and q

The asymptotic behaviour leads us to guess that the graph G(Xpq/Fp) is
always non-disconnecting when p and q are odd and large enough. It would
be interesting if one can really prove or disprove this conjecture.
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5.5 The Answer to the p = 2 Case.

In this section, we will settle the question of connectivity for graphs of the
form G(X2q/F2), q being an odd prime. We �rst claim that the following
proposition holds and then proceed to prove it.

Proposition 5.3 The graph G(X2q/F2) is disconnecting whenever q ≡ −1(mod
3) or q = 3 and is hence disconnecting for in�nitely many primes q.

Let us see what the general method for determining edges outlined in
Section 2 yeilds for the particular case p = 2.

The modular polynomial Φ2(X, Y ) is given by:
Φ2(X, Y ) = X3 +Y 3−X2Y 2 +24.3.31.XY (X+Y )−24.34.53(X2 +Y 2)+

34.53.4027.XY + 28.37.56(X + Y )− 212.39.59.

In this case, the number of edges emanating from each vertex and going
into it = 2 + 1 = 3. Mestre and Oesterlé made the following computations
for the case p = 2 for determining whether the edges emanating from jl ∈ J
and ending at jm ∈ J in G(X2q/F2) (This method doesn't take special auto-
morphisms into account):

Case 1 :If jl and jm are both distinct from 0 and 1728, then the multi-
plicity (possibly 0) of edges between them is equal to the multiplicity of the
the factor (X − jm) in the factorisation of the polynomial Φ2(X, jl) (mod q).

Case 2 : If jl = 0(mod q), then we have Φ2(X, jl) = Φ2(X, 0) = (X −
54000)3 (mod q) and so there are three edges from 0 −→ 54000. Also,
Φ2(X, 54000) = XP (X), where P (X) = X2−2835810000X+6549518250000.
So, there is one edge 54000 −→ 0 (and only one if q does not divide the con-
stant term of P ). The other 2 edges emanating from j = 54000 end at the
root(s)of P (X) mod q.

Case 3 : If jm = 1728(mod q), then we have Φ2(X, jm) = Φ2(X, 1728) =
(X − 1728)(X − 663)2 (mod q) and there is one edge from jm = 1728 to jl =
1728 and another two edges from jm = 1728 to jl = 663. Also, Φ2(X, 663) =
(X − 1728)Q(X), where Q(X) = X2− 82226316240X − 7367066619912. So,
there is one edge from jm = 663 to jl = 1728. The other 2 edges emanating
from j = 663 end at the root(s) of Q(X) mod q.
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Proof. With the above information at hand, we try to see whether the graph
G(X2q/F2) is disconnecting or not, for an arbitrary but �xed q. Notice that a
graph is necessarily disconnecting if it has a vertex which is the end-point of
just one edge. Can we use this obvious fact in our case? Well, we know that
there are 3 edges emanating and going into each vertex. So this situation
would be possible i� we can �nd an edge jr −→ js in G(X2q/F2) which has
three 2-isogenies associated to it which are all isomorphic. In particular, we
will have Φ2(X, jr) = (X−js)3 (mod q). We try to �nd some similar equation
above and see that Φ2(X, 0) = (X − 54000)3 (mod q). If we will succeed in
showing that the three 2-isogenies associated to the three edges 0 −→ 54000
found by the above method in G(X2q/F2) are indeed isomorphic, then we
will have proved that the graph G(X2q/F2) is always disconnecting when it
has a vertex corresponding to the j-value 0.

For a supersingular elliptic curve E corresponding to the j-value 0, we
know that End(E) contains Z[ω], with ω a primitive third root of unity. So, if
Φ : E −→ E

′
is a 2-isogeny, then so are Φ◦ω and Φ◦ω2. Now, Z[ω]⊗F2 ' F4

de�nes a subring of End(E[2]) 'M2(F2) and ω has no nontrivial eigenspace
in E[2], so it acts without �xed point on P1(E[2]) ' P1(F2). In other words,
(E,Φ), (E,Φ ◦ ω) and (E,Φ ◦ ω2) are the 2-isogenies emanating from E.
Therefore, they are isomorphic and the three edges 0 −→ 54000 are actually
counted as 1 in G(X2q/F2). Hence, G(X2q/F2) is disconnecting whenever 0
occurs as j-value.

So let's see for which values of q, we get 0 as a j-value.
Z[ω] = Z[x]/(x2 + x+ 1),
⇒ Z[ω]⊗ Fq ≈ Fq[x]/(x2 + x+ 1).
Now, j = 0 represents a class of supersingular elliptic curves in charac-

teristic q.
⇔ q is inert or rami�ed in Z[ξ3].
⇔ 3 - (q − 1).
⇔ q 6≡ 1 (mod 3).
So, whenever q 6≡ 1(mod 3), the graph G(X2q/F2) is disconnecting. So,

it is always disconnecting for q ≡ −1 (mod 3)and for q ≡ 3. By Dirichlet's
theorem, we know that there are in�nite number of `q's such that q ≡ −1
(mod 3). Hence, G(X2q/F2) is disconnecting for in�nite number of primes q.

�
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