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Rem tene, verba sequentur

The present work deals mainly with two important results in the theory
of universally optimal configurations of points with respect to potential energy
minimisation. Namely, a theorem of Cohn and Kumar published in [CK07]
about universally optimal spherical configurations and a very recent theorem
of Coulangeon and Schürmann contained in [CS10], about periodical point con-
figurations in Rd, which seems to prelude to new results in this theory. Let
us spend some words here to explain the meaning of the above expressions:
what a potential energy minimisation problem is, what a (universally) optimal
configuration of points is, and why the quest for such mathematical objects is
truly worthwile. We will discover a fascinating subject, which shows connections
with many other mathematical topics, such as sphere packing theory, lattice and
coding theory, interpolation, orthogonal polynomials and harmonic analysis.

Genetics of symmetrical figures
We could say that at the origin of our subject there is the observation that
symmetry is all around us, in the physical world as well as in mathematics,
not to mention the artistic human outputs. We can observe it in an enormous
number of different situations, from the beauty of a small snowflake to the
solemn elegance of polychromatic plane ornaments, which can be admired in
the famous Arab or Renaissance buildings, remarkable examples of science in
the service of art. In other times, art is in the service of science, as in the case
of the regular solids drawn by Leonardo da Vinci for Luca Pacioli’s treatise De
divina proportione; and we could go on.

However, while the last examples raise more admiration than wonder, as
they are the product of educated minds, there is no apparent reason why nature
should provide us with such a regular figure as a snowflake. Besides, it is true
that only a few of the many possible symmetric groups are actually realised in
nature, notwithstanding, we see more of them than we apparently have any right
to expect: since symmetry is by its very nature delicate and easily disturbed by
perturbations, any occurrence of it in the natural world demands a mathematical
explanation. This is what L. Fejes Tóth in his classical book Regular figures
[FT64] refers to as the genetics of regular figures: it is not sufficient to recognise
and describe symmetrical structures, we also have to understand the causes and
circumstances that generate them and make them stable.

Let us consider a couple of further examples: certain mathematical objects,
such as the icosahedron, viewed as a finite set of points on S2, have always
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attracted the interest of mathematicians, for their symmetry and elegance, and
they have been a source of deep mathematics since the Grecian times. Coming
forth to more “modern” structures, which are going to appear in the following
chapters, we can mention here the E8 root lattice in R8 and the Leech lattice Λ24

in R24, as examples of extraordinarily rich mathematical objects. They bring
together numerous topics, including sphere packing, finite simple groups, com-
binatorial and spherical designs, error-correcting codes, lattices and quadratic
forms, and so on, thanks to their symmetries and other remarkable properties.
As these objects solve, or seem to solve, a broad range of problems, we would
like to characterise them via the genetics of the regular figures.

Energy minimisation

Unfortunately, in this matter, even if much is known, far more remains to be
discovered, and many natural questions appear to be totally intractable. Nev-
ertheless, a good framework to this subject is to try to present regular figures
as solutions of optimisation problems. Please notice that this approach does
not always work, as conjecturing a symmetrical solution sometimes leads to the
true optimum, but sometimes it is misleading.

Here we will focus on a particular energy minimisation problem, which is a
generalisation of the Thomson problem. Thomson, in his 1904 paper “On the
structure of the atom” asked for the minimal-energy configuration of N classical
electrons confined to the unit sphere S2; in other words, the particles interact via
the Coulomb potential 1/r at Euclidean distance r. This model was originally
intended to describe atoms, before quantum mechanics or even the discovery of
the nucleus. Now, although subsequent discoveries have shown that this atomic
model is far from being adequate, it remains all the same of great interest, both
to describe real-world phenomena∗ and, from a mathematical point of view,
to try to characterise our special symmetrical structures as optimal solutions.
Indeed, if we constrain a finite number of identically charged particles to move
on the surface of a (d-dimensional) sphere, how will they arrange themselves?
They will eventually spread out so as to minimise their electrical potential en-
ergy, assuming that their kinetic energy dissipates according to a force such as
viscosity.

We can hence formulate the problem in these terms: given a finite set C of
points on the sphere, C ⊂ Sd−1, and a potential function f : (0, 4] → R, we
define the potential energy of C as

Ef (C) =
∑
x,y∈C
x6=y

f(|x− y|2)

and we look for the configuration C which is a global minimum for this quantity.
That we call an optimal solution.

∗For example, think of two different liquids separated by colloidal particles which adsorb
on the contact surface: in many cases the particles spread out into a regular arrangement due
to their mutual repulsion.
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Universal optimality

However, we are more interested here in the effect caused by varying the po-
tential function: how will the optimal configuration change as we let f run
into a selected family of functions? Notice that from the physical perspective,
the question appears silly, as the potential is usually given as a datum of the
problem. But in mathematics, the question is critical, as our nice symmetrical
configurations arise as “fixed points”, i.e. arrangements that minimise energy for
a broad family of functions. For the sake of precision, we deal with completely
monotonic potentials, i.e., smooth functions satisfying (−1)kf (k) ≥ 0 for all
integers k ≥ 0, and we call a configuration universally optimal if it minimises
energy for any completely monotonic potential function.

The first two chapters of this thesis are devoted to the study of universally
optimal spherical configurations of points: much work has been done in the last
50 years to try to characterise these arrangements, which by the way seem to be
quite rare objects. For example, on S1 there is an N -point universal optimum
for each N , namely the vertices of a regular N -gon. Instead, in S2, aside from
degenerate cases with three or fewer points, there are only three universal op-
tima, namely the tetrahedron, the octahedron and the icosahedron. Thus from
the Platonic solids, we have to drop out the cube and the dodecahedron: indeed
they are not even optimal, let alone universally optimal, as one can lower energy
by rotating a facet. In higher dimensions, there are the root systems of E8 and
the minimal vectors of Λ24, suitably rescaled to the respective unitary sphere.

How to prove that these configurations are indeed universally optimal? How
to discover such new arrangements, if they exist, besides those listed in Table
1.1? And what properties do they share in order to be universally optimal?
A crucial, though partial, result is given by Cohn and Kumar’s cited theorem,
which relies on the concept of spherical design. A spherical k-design in Sd−1 is
a finite subset C of the sphere such that for every polynomial p : Rd → R of
total degree at most k, the average of p over C is equal to its average on the
entire sphere. Then the theorem states: suppose that in C there are m possible
distances between distinct points, and that C is a spherical (2m−1)-design (that
is, C is a so-called sharp configuration); then C is universally optimal (Theorem
2.4).

The theorem, as we said, is not a characterisation of universally optimal
configurations: the only known case not covered by it is the regular 600-cell in
R4, which needs a different argument to be shewn universally optimal. On the
other hand, extensive computer searches done by Cohn and others in [Exp09]
suggest that Table 1.1 is probably not complete, but anyhow not far from being
complete, with only two more configurations that are conjectured to be univer-
sally optimal. Thus the theorem is a powerful tool, which has the advantage of
relating the search of universal optima to the theory of spherical designs.

Proof techniques: an outline

Theorem 2.4 is a generalisation of a result of Levenshtein [L92], which states
that our configurations are all optimal spherical codes. Indeed, a universal
optimum is automatically an optimal spherical code, since for the potential
function f(r) = 1/rs with s large, the energy is asymptotically determined by
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the minimal distance; unfortunately, the converse is far from being true!
The proof of 2.4 rests on lower bounds for the potential energy of a finite

set of points on Sd−1, which come from linear programming. They were origi-
nally developed by Delsarte for discrete problems in coding theory [D72], then
extended to continuous packing problems in [DGS77, KL78] and adapted for
potential energy minimisation by Yudin and his collaborators Kolushov and
Andreev in [Y92, KY94, KY97, A96, A97]. In those papers, they showed that
certain configurations minimise specific sorts of energy, raising the question of
how generally the techniques could be applied.

To apply the bounds to sharp configurations, we need an auxiliary function
h, chosen from the potential function f through Hermite interpolation. Then
the energy of C is bounded from below by

|C|2α0 − |C|h(1). (∗)

The hypotheses h must satisfy, as well as the condition for (∗) to prove a sharp
bound, are expressed in terms of a family of orthogonal polynomials, the ul-
traspherical, or Gegenbauer polynomials, which are going to play an important
role throughout chapters 1 and 2. We will deal with several other families of
orthogonal polynomials, which arise as the orthogonal polynomials for certain
Borel measures on R.

Finally, the third ingredient in the proof of 2.4 are some properties and
characterisations of spherical designs, a subject which deserves our interest on
its own and which has been greatly developed by Delsarte, Goethals and Seidel
in their classical article [DGS77]: we will make an extensive use of the results
contained there.

The Euclidean case

Slightly adapting the definition of potential energy to infinite sets of points, we
wish to investigate the problem of universal optimality for configurations in the
Euclidean space. Here we choose to deal only with discrete periodic point sets,
i.e. unions of finitely many translates of a given lattice, to avoid some worries of
defining energy in pathological cases. Letting Fourier analysis take the place of
ultraspherical polynomials, we can develop the theory analogously to the case
of the sphere, but unfortunately, the Euclidean case seems much more difficult
than the former, and the degree of advancement is far smaller. Many of the
results we wish to obtain remain conjectures for the moment: we do not even
know whether universally optimal Euclidean configurations do exist, although
Cohn and Kumar have conjectured that the hexagonal lattice in R2, E8 and the
Leech lattice actually are so.

In this perspective, what appears a crucial step is the result of Coulan-
geon and Schürmann, which states that lattices for which all shells are spherical
4-designs are locally universally optimal (among all periodic configurations) if
and only if they are locally universally optimal among lattices; in particular this
holds for D4, E8 and the Leech lattice. This theorem uses earlier results of
Coulangeon [Cou06], Schürmann [S10] and Sarnak and Strömbergsson [SS07];
we devote chapter 3 to prove it. The key technique consists in expanding the
functional Ef (C) into its Taylor series and studying gradient and Hessian in
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order to detect critical points. By the way, this implies dealing with two im-
portant maps associated to lattices, namely the Epstein zeta function ζ(Λ, s)
and the theta series θΛ(s), which are the main sources of information about a
lattice.

Future prospects
As said above, a great deal of work is still to be done both for spherical and for
Euclidean configurations of points: in our wishlist, we must include the com-
plete classification of universally optimal spherical configurations, and the proof
of existence or non-existence of universally optimal Euclidean configurations.
However, the state of the art is in continual evolution, as a good number of
skilful mathematicians is working on it, so it is reasonable to expect new results
on this subject quite soon.
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Chapter 1

Spherical designs and sharp
configurations

In this first chapter, we study the properties of particular finite sets of points
on the unit sphere in Rd, called spherical t-designs, which have essentially the
property that every polynomial on Rd of total degree at most t has the same
average over the design as over the entire sphere. The concept is due to Delsarte,
Goethals and Seidel, in their classical paper of 1977 [DGS77], from which much
of the material of this chapter is taken: sharp configurations, which we are
going to prove being universally optimal, are in fact introduced at the end of
the chapter as an élite type of spherical designs.

We begin introducing the primary tool to handle spherical designs, namely
orthogonal and harmonic polynomials, then we start with generic spherical codes
and end listing the currently known sharp configurations.

1.1 Orthogonal polynomials
Let µ(x) denote a non-decreasing function with an infinite number of points of
increase in the interval [a, b]. The latter interval may be infinite. We assume
that moments of all orders exist, that is,

∫ b
a
xndµ(x) exist for n = 0, 1, 2, . . . .

Definition 1.1. We say that a sequence of polynomials {pn(x)}∞0 , where pn(x)
has exact degree n, is orthogonal with respect to the measure dµ(x) if∫ b

a

pn(x)pm(x)dµ(x) = hnδm,n. (1.1)

One fundamental property of any sequence of orthogonal polynomials is that
they satisfy a three-term recurrence relation.

Theorem 1.2. A sequence of orthogonal polynomials {pn(x)} satisfies

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x) for n ≥ 0, (1.2)

where we set p−1(x) = 0. An, Bn and Cn are real constants, n = 0, 1, 2, . . . ,
and An−1AnCn > 0, n = 1, 2, . . . . If the highest coefficient of pn(x) is kn, then

An =
kn+1

kn
, Cn+1 =

An+1

An

hn+1

hn
,

13



14CHAPTER 1. SPHERICAL DESIGNS AND SHARP CONFIGURATIONS

where hn is the constant appearing in (1.1).

Proof. Determine An such that pn+1 − Anxpn(x) is a polynomial of degree n.
Then

pn+1(x)−Anxpn(x) =
n∑
k=0

bkpk(x) (1.3)

for some coefficients bk. Notice that, if Q(x) is a polynomial of degree m < n,
then by (1.1) ∫ b

a

pn(x)Q(x)dµ(x) = 0.

This implies that bk = 0 for k < n− 1, as can be seen by multiplying both sides
of (1.3) by pk(x) and integrating. This shows (1.2).

It is clear that An = kn+1/kn, and to derive the final result, multiply (1.2)
by pn−1(x) and integrate to get

0 = An

∫ b

a

pn(x)xpn−1(x)dµ(x)− Cn
∫ b

a

p2
n−1(x)dµ(x).

As

xpn−1(x) =
kn−1

kn
pn(x) +

n−1∑
k=0

dkpk(x),

we obtain
An
An−1

hn − Cnhn−1 = 0.

This proves the theorem.

We give here another important result concerning orthogonal polynomials,
the Christoffel-Darboux formula.

Theorem 1.3. Suppose that the pn(x) are normalised so that

hn =
∫ b

a

p2
n(x)dµ(x) = 1.

Then
n∑

m=0

pm(y)pm(x) =
kn
kn+1

pn+1(x)pn(y)− pn+1(y)pn(x)
x− y

, (1.4)

where kn is the highest coefficient of pn(x).

Proof. The recurrence relation (1.2) implies that

pn(y)pn+1(x) = (Anx+Bn)pn(x)pn(y)− Cnpn−1(x)pn(y)
pn(x)pn+1(y) = (Any +Bn)pn(y)pn(x)− Cnpn−1(y)pn(x).

Subtract the two equations and divide by An(x− y) to get

1
An

pn(y)pn+1(x)− pn(x)pn+1(y)
x− y

=

= pn(x)pn(y) +
1

An−1

pn−1(y)pn(x)− pn−1(x)pn(y)
x− y

. (1.5)

We have used the fact that Cn = An/An−1, for hn = 1. Iterating (1.5) and
observing that An = kn+1/kn, we get the required result.
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Proposition 1.4. When hn = 1, then
n∑
k=0

p2
k(x) =

kn
kn+1

(p′n+1(x)pn(x)− pn+1(x)p′n(x)). (1.6)

Proof. Rewrite the right side of (1.4) as

kn
kn+1

(pn+1(x)− pn+1(y))pn(y)− (pn(x)− pn(y))pn+1(y)
x− y

and let y → x.

Corollary 1.5. p′n+1(x)pn(x)− pn+1(x)p′n(x) > 0 for all x.

Now we state and prove a couple of results concerning the zeroes of orthog-
onal polynomials, namely their simplicity and their property of being interlaced
(in the sense specified below).

Proposition 1.6. With {pn(x)}, dµ(x) and [a, b] as above, pn(x) has n simple
zeroes in [a, b] for every n.

Proof. Suppose pn(x) has m distinct zeroes x1, x2, . . . , xm in [a, b] that are of
odd order. Then

Q(x) = pn(x)
m∏
k1

(x− xk) ≥ 0 (1.7)

for all x in [a, b]. If m < n, then by orthogonality∫ b

a

Q(x)dµ(x) = 0. (1.8)

However, the inequality in (1.7) implies that the integral in (1.8) should be
strictly positive. The contradiction implies that m = n and that the zeroes
must be simple.

Denote the zeroes of pn(x) by x1,n < x2,n < · · · < xn,n.

Proposition 1.7. The zeroes of pn(x) and pn+1(x) separate each other, i.e.

xn+1,1 < xn,1 < xn+1,2 < xn,2 < · · · < xn,n < xn+1,n+1.

Proof. From Corollary 1.5,

pn+1(x)p′n(x)− pn(x)p′n+1(x) < 0.

Since xk,n+1 is a zero of pn+1(x), we get

pn(xk,n+1)p′n+1(xk,n+1) > 0.

The simplicity of the zeroes implies that p′n+1(xk,n+1) and p′n+1(xk+1,n+1) have
different signs. Hence pn(xk,n+1) and pn(xk+1,n+1) have different signs. By the
continuity, pn has a zero between xk,n+1 and xk+1,n+1 for k = 1, 2, . . . , and the
result follows.

We limit ourselves to state the following result, which can be proved by
means of the Gauss quadrature formula (cfr. [AAR99])

Proposition 1.8. Let m < n. Between any two zeroes of pm(x) there is a zero
of pn(x).



16CHAPTER 1. SPHERICAL DESIGNS AND SHARP CONFIGURATIONS

1.1.1 Gegenbauer (ultraspherical) polynomials
The most important family of orthogonal polynomials we shall need to deal with
spherical configurations of points are the ultraspherical polynomials {Qk(x), k ∈
N}, defined for a fixed d ≥ 2.

Definition 1.9. The Gegenbauer (or ultraspherical polynomial) Qk(x), of de-
gree k is defined by the recurrence

Q0(1) = 1;
Q1(x) = dx;

λk+1Qk+1(x) = xQk(x)− (1− λk−1)Qk−1(x), with λk =
k

d+ 2k − 2

We give here the first few Gegenbauer polynomials:

2Q2(x) = (d+ 2)(dx2 − 1)

6Q3(x) = d(d+ 4)((d+ 2)x3 − 3x)

24Q4(x) = d(d+ 6)((d+ 2)(d+ 4)x4 − 6(d+ 2)x2 + 3)

120Q5(x) = d(d+ 2)(d+ 8)((d+ 4)(d+ 6)x5 − 10(d+ 4)x3 + 15x).

In what follows the Qk(x)’s will be used together with the classical Gegenbauer
polynomials Cmk (x), which are related to the former by

Qk(x) =
d+ 2k − 2
d− 2

C
d/2−1
k (x) : (1.9)

in particular
C
d/2−1
0 (1) = Q0(1) = 1;

the latter formulation is more suitable to deal with sharp configurations (see
Section 1.6). For d = 2, k ≥ 1, ultraspherical polynomials are related to the
Chebyshev polynomials of the first kind Tk(x) by the relation

Qk(x) = kC0
k(x) = 2Tk(x).

Notice also that if we set

Ck(x) :=
bk/2c∑
i=0

Qk−2i(x),

then Ck(x) is the classical Gegenbauer polynomial Cd/2k (x). From the definitions
it is easy to prove that

Qk(1) =
(
d+ k − 1
d− 1

)
−
(
d+ k − 3
d− 1

)
,

Ck(1) =
(
d+ k − 1
d− 1

)
, for k ≥ 1.

The Gegenbauer polynomials are indeed orthogonal polynomials, namely∫ 1

−1

Qk(x)Ql(x)(1− x2)(d−3)/2dx = adQk(1)δk,l,
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where ad is some positive constant: we will show it in Section 2.2.2.
To any polynomials F (x) ∈ R[x] we associate its Gegenbauer expansion

F (x) =
∞∑
k=0

fkQk(x),

for uniquely determined coefficients fk, which of course are non-zero only for
finitely many k’s. We list here three useful lemmas with standard properties of
Gegenbauer polynomials:

Lemma 1.10. Let

Qi(x)Qj(x) =
i+j∑
k=0

qk(i, j)Qk(x).

Then
q0(i, j) = Qi(1)δi,j and qk(i, j) ≥ 0

for all i, j, k, with qk(i, j) > 0 if and only if

|i− j| ≤ k ≤ i+ j and k ≡ i+ j mod 2.

Lemma 1.11. Let G(x) = Ql(x)F (x)/Ql(1) for some l ∈ N. Then g0 = f1,
and if fk ≥ 0 for all k ∈ N, then also gk ≥ 0 for all k ∈ N.

Lemma 1.12. Let G(x) = xlF (x) for some l ∈ N. Then, for each k ∈ N, the
number gk is a convex linear combination, with strictly positive coefficients, of
the numbers fk+l−2i, for i = 0, 1, . . . ,min(lb 1

2 (k + l)c).

1.2 Harmonic polynomials

Let Sd−1, with surface measure σd, denote the unit sphere in the Euclidean
space Rd, endowed with the usual inner product 〈 , 〉. For every k ≥ 0, let

Hom(k) = Homd(k)

be the linear space of all functions V : Sd−1 → R which are represented by
polynomials

V (ξ) = V (ξ1, . . . , ξd),

homogeneous of total degree k in the k variables ξi.
Let also Harm(k) denote the subspace of Hom(k) consisting of all functions

represented by harmonic polynomials of degree k. Then Harm(k) is invariant
under the orthogonal group O(d) of Rd. Any function V ∈ Hom(k) can be
uniquely written as

V (ξ) =
bk/2c∑
i=0

〈ξ, ξ〉iWk−2i(ξ), Wl ∈ Harm(l).

Therefore we have the following decomposition:
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Theorem 1.13.

Hom(k) =
bk/2c∑
i=0

Harm(k − 2i)

Hom(k)⊕Hom(k − 1) =
k∑
i=0

Harm(i).

Notice that the linear space in the second line consists of all functions on
Sd−1 represented by (not necessarily homogeneous) polynomials of total degree
at most k in d variables.

For the dimensions, we have the following result, cfr. [DGS77], Theorem 3.2:

Theorem 1.14.

dim Hom(k) = Ck(1),
dim Harm(k) = Qk(1),

dim Hom(k)⊕Hom(k − 1) =
(
d+ k − 1
d− 1

)
+
(
d+ k − 2
d− 1

)
=: Rk.

The addition formula relates the Gegenbauer polynomial Qk(x) and any
orthogonal basis {Wk,i, i = 1, 2, . . . , Qk(1)} of Harm(k), with normWk,i = σ

1/2
d ,

as follows:

Theorem 1.15.
Qk(1)∑
i=1

Wk,i(x)Wk,i(y) = Qk(〈x, y〉), for x, y ∈ Sd−1 (1.10)

Proof. See for example [AAR99].

An important invariant associated to a finite (non-empty) set C of Sd−1 is
its characteristic matrix:

Definition 1.16. For any finite non-empty set C ⊂ Sd−1 of cardinality N , for
any orthogonal basis {Wk,i} of Harm(k), with norm Wk,i = σ

1/2
d , and for any

fixed numbering of these, the N ×Qk(1) matrix

Hk := (Wk,i(x))k,i, x ∈ C, i = 1, 2, . . . , Qk(1)},

is called the k-th characteristic matrix. Thus, H0 is the all-one vector of size N .

Definition 1.17. For any C ⊂ Sd−1 of cardinality N , and for any α ∈ R, −1 ≤
α ≤ 1, the N×N distance matrix Dα is defined by its elements Dα(x, y) = 1 for
〈x, y〉 = α, and Dα(x, y) = 0 otherwise, for x, y ∈ C. The sum of the elements
of Dα is denoted by dα.

By how it has been defined, it is clear that Dα is a symmetric matrix.

Theorem 1.18. Let C ⊂ Sd−1, and let A′ be a finite set containing all inner
products of the vectors of C. Then

HkH
t
k =

∑
α∈A′

Qk(α)Dα,

where the Qk(x) are the Gegenbauer polynomials, Hk the characteristic matrices,
and Dα the distance matrices.
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Proof. Just a straightforward verification: the addition formula (1.10) and Def-
inition 1.16 yield

HkH
t
k = (Qk(〈x, y〉))x,y∈C .

Now apply Definition 1.17.

Corollary 1.19.
|Ht

kH0|2 =
∑
α∈A′

Qk(α)dα.

Proof. As |Ht
kH0|2 = Ht

0(HkH
t
k)H0, and H0 is the all-one vector of size N , take

the sum of the elements of the matrices in the formula of Theorem 1.18.

Corollary 1.20. For any polynomial p(x) with Gegenbauer coefficients p0, p1, . . . ,
the following holds:

p0N
2 +

∞∑
k=1

pk|Ht
kH0|2 =

∑
α∈A′

p(α)dα.

Proof. Use the expansion

p(x) =
∑
k

pkQk(x)

with Theorem 1.18 to get

∞∑
k=0

pkHkH
t
k =

∑
α∈A′

p(α)Dα,

then take the sum of the elements of the matrices.

Lemma 1.21.

|Ht
iHj −N∆i,j |2 =

i+j∑
k=1

qk(i, j)|Ht
kH0|2,

where qk(i, j) is as in Lemma 1.10 and ∆i,j denotes the suitable zero matrix for
i 6= j and unit matrix for i = j.

Proof. See [DGS75], Lemma 4.5.

1.3 Spherical codes
Definition 1.22. Let A be a subset of the interval [−1, 1). A spherical A-code,
for short an A-code, is a non-empty subset C of the unit sphere in Rd, satisfying
〈x, y〉 ∈ A for all x 6= y ∈ C.

Thus, an A-code is a set of unit vectors with angles from the prescribed
set arccosA, or a set of points on Sd−1 with distances from the prescribed set
(2− 2A)1/2. We shall use the notation A′ := A ∪ {1}.

Definition 1.23. A polynomial p(x) ∈ R[x] is compatible with the set A if

p(α) ≤ 0 for all α ∈ A.
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Theorem 1.24. Let p(x), with Gegenbauer coefficients f0 > 0 and fk ≤ 0. for
all k, be compatible with the set A. Then the cardinality N of any A-code C
satisfies

N ≤ p(1)/p0.

Equality holds if and only if, for all x 6= y ∈ C and for all k ≥ 1,

p(〈x, y〉) = 0, fkH
t
kH0 = 0.

Proof. This is a consequence of Corollary 1.20, since d1 = N : explicitely, we
have

p0N
2 +

∞∑
k=1

fk|Ht
kH0|2 = p(1)N +

∑
α∈A

p(α)dα

which implies

f0N
2 − p(1)N = −

∞∑
k=1

fk|Ht
kH0|2 +

∑
α∈A

p(α)dα ≤ 0,

whence p(0)N2 ≤ p(1)N . The statement on equality is straightforward.

Example 1.25. For a given β, −1 ≤ β < 0, let A be any subset of the interval
[−1, β]. The polynomial P (x) = x − β is compatible with A, and P0 = −β,
P1 = 1/d > 0. Hence Theorem 1.24 applies, yielding N ≤ 1−1/β. An A-code C
of given dimension r ≤ d achieves ths bound if and only C is an r- dimensional
regular simplex, with β = −1/r.

Before introducing the fundamental notion of spherical design, we prove
another bound for the cardinality of an A-code C. This so-called absolute bound
only depends on the cardinality of A, not on its specific elements.

Theorem 1.26. For given s = |A| < ∞, the cardinality N of any A-code C
satisfies

N ≤ Rs.
.

Proof. Define the annihilator polynomial for A

P (x) :=
∏
α∈A

x− α
1− α

,

and for any y ∈ C define the function Py : Sd−1 → R by

Py(x) := P (〈x, y〉), x ∈ Sd−1.

Thus Py belongs to the linear space Hom(s)⊕Hom(s− 1), whose dimension is
exactly the number appearing in our bound. By definition we have

Py(y) = P (〈y, y〉) = P (1) =
∏
α∈A

1− α
1− α

= 1,

Py(x) = 0 for x ∈ C, x 6= y,

so that the functions Py are linearly independent. Hence their number N = |C|
cannot exceed the dimension of the linear space, which proves the theorem.

Example 1.27. For s = 1, we have N ≤ d+ 1, with equality if and only if C is a
regular d-simplex, as in Example 1.25.
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1.4 Spherical t-designs
The concept on which the recent results about universally optimal configurations
rest is that of spherical design, which is a property of some finite subsets of Sd−1

that can be characterised in several equivalent ways. What follows is one of the
possible definitions:

Definition 1.28. A finite non-empty set C ⊂ Sd−1 is a spherical t-design, for
short a t-design, for some t ∈ N, if the following holds for k = 0, 1, . . . , t :

∀V ∈ Hom(k), ∀T ∈ O(d),
∑
x∈C

V (Tx) =
∑
x∈C

V (x).

Since Hom(k) is spanned by the monomials

xk11 x
k2
2 · · ·x

kd
d , ki ∈ N,

d∑
i=1

ki = k,

Definition 1.28 amounts to requiring that the kth moments of C are invariants
with respect to orthogonal transformations, for k = 0, 1, . . . , t.

Actually, Definition 1.28 is not the most commonly used, although it is that
we find in the original paper of Delsarte, Goethals and Seidel [DGS77], to whom
the concept of a spherical design is due, and indeed it can seem a little abstract
at a first sight: to give the most usual definition, we observe that another way
to express the t-design property is that, for k = 0, 1, . . . , t,

∀V ∈ Hom(k), ∀T ∈ O(d),
1
N

∑
x∈C

V (Tx) =
1
σd

∫
Sd−1

V (x) dσ(x), (1.11)

that is, the kth moments of TC are equal to the corresponding kth moments of
Sd−1, for all T ∈ O(d). Hence we get the simpler equivalent formulation, which
we shall repeatedly use:

Definition. A finite non-empty set C ⊂ Sd−1 is a t-design if for every polynomial
p of degree less or equal than t,

1
N

∑
x∈C

p(x) =
1
σd

∫
Sd−1

p(x)dσ(x), (1.12)

i.e. the average of p on the entire sphere is the same as its average on C.

Since for any V ∈ Harm(k), with k ≥ 1, the integral in (1.11) vanishes,
Theorem 1.13 yields the following important criterion for spherical t-designs:

Theorem 1.29. A finite subset C of Sd−1 is a spherical t-design if and only if

∑
x∈C

W (x) = 0 for all W ∈
t∑

k=1

Harm(k).

As we have said, there are several equivalent characterisations of t-designs:
for example in terms of their characteristic matrices we have the following the-
orem:
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Theorem 1.30. A finite set C ⊂ Sd−1 is a t-design if and only if its character-
istic matrices satisfy any one of the following conditions:

(i) Ht
kH0 = 0 for k = 1, 2, . . . , t, or

(ii) Ht
kHl = n∆k,l for 0 ≤ k + l ≤ t.

Proof. The equivalence of Definition 1.28 and (i) follows from Theorem 1.29
and Definition 1.16.

The equivalence of (i) and (ii) follows from Lemma 1.21.

Remark 1.31. For t ≤ 2, let e := bt/2c and r := e− (−1)t. Then

Ht
eHe = nI and Ht

eHr = 0

are necessary and sufficient conditions for a t-design. This is a consequence of
Theorem 1.30 and Lemmas 1.10 and 1.21.

Theorem 1.32. For any A-code C, let A′ = A∪{1} and denote by dα the sum
of the elements of the distance matrix Dα. Then∑

α∈A′
dαQk(α) ≥ 0,

and equality holds for k = 1, 2, . . . , t if and only if C is a t-design.

Proof. Apply Corollary 1.19 and Theorem 1.30.

Remark 1.33. In other words, theorem 1.32 gives a simple test for spherical
design strength: a configuration C ⊂ Sd−1 is a spherical t-design if and only if∑

x,y∈C
C
d/2−1
i (〈x, y〉) = 0

for 1 ≤ i ≤ t. This shall be essential in Chapter 2.

Example 1.34. Remark 1.31 says that 2-designs C are characterised by

Ht
0H1 = 0 and Ht

1H1 = nI.

Example 1.35. A set C is antipodal whenever −x ∈ C for all x ∈ C, equivalently
−C = C. Antipodal A-codes provide 1-designs, since

A′(C) = −A′(C), dα = d−α,
∑
α∈A′

dαQk(α) = 0 for odd k.

Example 1.36. For d = 3, the six vertices of the octahedron, and also the eight
vertices of the cube, provide a 3-design. Further examples shall be given when
dealing with spherical sharp configurations.

There is no upper bound to the number of points of a t-design, since the
union of disjoint t-designs again is a t-design (this is evident if we think at
the average property). The following theorem, which to some extent is dual to
Theorem 1.24, provides a lower bound for |C|.
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Theorem 1.37. Let p(x), with Gegenbauer coefficients f0 and fk ≤ 0 for all
k > t, satisfy p(1) > 0 and p(α) ≤ 0 for all α ∈ [−1, 1]. Then the cardinality of
any t-design C satisfies

n ≥ p(1)
f0

.

Equality holds if and only if, for all x 6= y ∈ C, and for all k > t,

p(〈x, y〉) = 0, fkH
t
kH0.

Proof. This is a consequence of Theorem 1.30 and Corollary 1.20.

Theorem 1.38. Let C be a (2e)-design (e as above). Then

n = |C| ≥ Re.

Equality holds if and only if A(C) consists of the zeroes of

Re(x) :=
e∑
i=0

Qi(x).

Proof. See [DGS77], Theorem 5.11.

Theorem 1.39. Let C be a (2e+ 1)-design. Then

n = |C| ≥ 2Ce(1).

Equality holds if and only if A(C) consists of −1 and the zeroes of Ce(C). More-
over, in the case of equality, X is antipodal.

Proof. See [DGS77], Theorem 5.12.

Definition 1.40. A t-design is called tight if any of the bounds mentioned in
Theorems 1.38 and 1.39 is attained.

Clearly, a tight t-design cannot be a (t+ 1)-design (check cardinalities). We
conclude this section giving some simple examples of tight t-designs.

Example 1.41. For d = 2 and any t, a tight t-design is nothing but a regular
(t+ 1)-gon.

Example 1.42. For any d, the d+ 1 vertices of a regular simplex in Rd provide
a tight 2-design.

The 2d vertices of the cross polytope provide a tight 3-design. Notice that
the 2d vertices of the cube also provide a 3-design (not a 4-design), but not a
tight 3-design for d ≥ 3.

Example 1.43. For d = 3, the icosahedron is the only tight 5-design.

1.5 Spherical (d, N, s, t)-configurations

Definition 1.44. A (spherical) (d,N, s, t)-configuration is a finite subset C ⊂
Sd−1 of cardinality N , which is a t-design and an A-code with |A| = s.
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Given C ⊂ Sd−1, |C| = N , we denote by s(C) and t(C) the minimum s and
the maximum t for which C is a (d,N, s, t)-configuration. Theorem 1.48 will
provide a criterion for an A-code to be a t-design, in terms of the Gegenbauer
coefficients f0, f1, . . . , fs of an annihilator polynomial p(x) of degree s for the
set A.

Definition 1.45. A polynomial p(x) ∈ R[x] is an annihilator for a finite set
A 6= ∅ with 1 /∈ A if

p(1) = 1, ∀α ∈ A p(α) = 0.

Lemma 1.46. Let C be an A-code, and let p(x) be an annihilator for A with
Gegenbauer coefficients p0, p1, . . . . Then

N(1− np0) =
∞∑
k=1

pk|Ht
kH0|2.

Proof. Apply Corollary 1.20, it is a direct computation.

Theorem 1.47. Let C be an A-code, |C| = N , |A| = s. The Gegenbauer
coefficients of an annihilator p(x) of degree s for A have the following property:

if ∀0 ≤ i ≤ s pi ≥ 0, then ∀0 ≤ j ≤ s fj ≤ 1/N.

If, in addition, fj = 1/N for some j ≤ s, then C is an A-code of maximum
cardinality.

Proof. For any fixed j ∈ {0, 1, . . . , s}, define

G(x) :=
p(x)Qj(x)
Qj(1)

.

Then G(x) is clearly an annihilator for A. Lemma 1.11 implies that g0 = pj
and gk ≥ 0 for all k. Hence Lemma 1.46 gives

1− npj = 1− ng0 ≥ 0.

Furthermore, if equality holds, then the bound of Theorem 1.24 is attained, and
C is an A-code of maximum cardinality.

Theorem 1.48. Let C be an A-code, with |C| = N , |A| = s, and let p(x) be an
annihilator of degree s for A, with Gegenbauer coefficients p0, p1, . . . , ps. If C is
a t-design with t ≥ s, then p0 = p1 = · · · = pt−s = 1/N .

Conversely, if p0 = p1 = · · · = pr = 1/N , and pr+1 > 0, . . . , ps > 0 for some
r ≤ s, then C is an (r + s)-design.

Proof. First, suppose C a t−design with t ≥ s. For any fixed j ∈ {0, 1, . . . , t−s},
the polynomial

G(x) :=
p(x)Qj(x)
Qj(1)

is an annihilator for A of degree j + s ≥ t. Hence Theorem 1.30 and Lemma
1.46 yield

0 = 1−Ng0 = 1−Npj



1.5. SPHERICAL (D,N, S, T )-CONFIGURATIONS 25

by use of Lemma 1.11.
Conversely, take the annihilator

G(x) := xrp(x)

for A of degree r+s. Assuming p0 = · · · = pr = 1/N and all pi > 0, we conclude
from Lemma 1.12 that g0 = 1/N , gk > 0 for 0 ≤ k ≤ r + s. Lemma 1.46 then
implies that Ht

kH0 = 0 for 1 ≤ k ≤ r + s, whence C is an (r + s)-design.

Theorem 1.49. Any (d,N, s, t)-configuration C satisfies

t ≤ 2s and N ≤ Rs.

If equality holds in any of the above bounds, then C is a tight (2s)-design.

Proof. Let p(x) be the annihilator of degree s for A. First apply Theorem 1.48:
if t ≥ s, then pt−s 6= 0, hence t− s ≤ s, i.e. t ≤ 2s.

In the case of equality, Theorem 1.38 implies N ≥ Rs, whence equality holds
by 1.26, and C is thus a tight (2s)-design.

For the second part of the theorem, we observe that Theorem 1.18 implies

s∑
k=0

pkHkH
t
k =

s∑
k=0

fk

(∑
α∈A′

Qk(α)Dα

)
=

=
∑
α∈A′

(
s∑
k0

fkQk(α)

)
Dα =

∑
α∈A′

p(α)Dα = D1 = I.

Hence the N ×Rs-matrix

H :=
[
H0 H1 · · · Hs

]
has rank N , proving once again N ≤ Rs of Theorem 1.26.

Now suppose N = Rs, then H is non-singular, and all pk are positive.
Therefore Theorem 1.47 implies that all pk ≤ 1/N . This yields

N

s∑
k=0

pkQk(1) = N = Rs =
s∑

k=0

Qk(1)

whence p0 = p1 = · · · = ps = 1/N , Np(x) = Rs(x), and it follows from Theorem
1.48 that C is a (2s)-design. This concludes the proof; it is interesting to observe
that in case of equality we have

HHt = HtH = NI.

Theorem 1.50. Every (d,N, s, t)-configuration C, which is an A-code with A′ =
−A′, |A| = s, satisfies

t ≤ 2s− 1 and N ≤ 2Cs−1.

If equality holds in any of the above bounds, then C is an antipodal tight (2s−1)-
design.
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Proof. See [DGS77], Theorem 6.8.

For anyA-code C, the valencies vα(x) and the intersection numbers pα,β(x, y)
are defined as follows:

Definition 1.51.

vα(x) : = |{z ∈ C : 〈x, z〉 = α}|, α ∈ A′, x ∈ C,
pα,β(x, y) : = |{z ∈ C : 〈x, z〉 = α, 〈y, z〉 = β}|, α, β ∈ A′, x, y ∈ C.

Definition 1.52. C is distance invariant if for all x ∈ A′ the valency vα(x) is
independent of x ∈ C.
C carries an s-class association scheme if for all α, β ∈ A′ the intersection

number pα,β(x, y) depends only on 〈x, y〉.

We observe that the triangle inequality on the sphere imposes restrictions
on the intersection numbers, namely we have

pα,β(x, y) 6= 0⇒ (2(1− α)(1− β)(1 + 〈x, y〉)) ≥ (1− α− β + 〈x, y〉)2).

For any integer i ≥ 0, let xi have the Gegenbauer expansion

xi =
i∑

k=0

fi,kQk(x.)

The convolution of xi and xj is defined to be the polynomial

Fi,j(x) :=
min(i,j)∑
k=0

fi,kfj,kQk(x).

Lemma 1.53. For 0 ≤ i + j ≤ t and for fixed γ = 〈x, y〉, the intersection
numbers pα,β(x,y) of a (d,N, s, t)-configuration satisfy the linear equation∑

α,β∈A

αiβjpα,β(x, y) = NFi,j(γ)− γj − γi + δ1,γ .

Proof. By Theorem 1.30(ii), the t-design property implies(
i∑

k=0

fi,kHkH
t
k

)(
j∑

k=0

fj,kHkH
t
k

)
= n

min(i,j)∑
k=0

fi,kfj,kHkH
t
k.

Rewrite this using Theorem 1.18 which reads

HkH
t
k = (Qk(〈x, y〉))x,y∈C .

Equate the (x, y)-entries on both sides of the formula above, and use the defi-
nition of fi,k: we get ∑

α,β∈A′
αiβjpα,β(x, y) = nFi,j(〈x, y〉).

This yields the desired formula, since for 〈x, y〉 = γ

pα,1(x, y) = p1,α(x, y) = δα,γ .
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Theorem 1.54. Let C be a (d,N, s, t)-configuration.

(i) If t ≥ s− 1, then C is distance invariant;

(ii) if t ≥ 2s− 2, then C carries an s(C)-class association scheme;

(iii) if t ≥ 2s − 3, then, for any fixed 〈x, y〉 = γ, the intersection numbers
pα,β(x, y) are uniquely determined by pγ,γ(x, y).

Proof. (i) Suppose t ≥ s− 1, and apply Lemma 1.53 with j = 0, x = y, γ = 1:∑
α∈A

αivα(x) = nFi,0(1)− 1; 0 ≤ i ≤ s− 1.

This linear system of s equations with s unknows vα(x) has a Vandermonde,
hence non-singular, matrix. Therefore, the valencies are uniquely determined,
and are independent of x.

(ii) Next suppose t ≥ 2s − 2. Now Lemma 1.53 yields a linear system of
s2 equations for 0 ≤ i, j ≤ s − 1, with s2 unknows pα,β(x, y). The matrix of
this system is the direct product of two Vandermonde matrices, hence is non-
singular. Therefore, for fixed γ = 〈x, y〉, the intersection numbers are uniquely
determined.

The third part of the theorem is proved analogously.

Theorem 1.55. Any tight t-design carries an s-class association scheme, with
s = dt/2e.

Proof. Apply Theorems 1.38, 1.39 and 1.54.

We conclude this section quoting the following non-existence theorem:

Theorem 1.56. The only tight 6-design is the regular heptagon in R2.

Proof. See [DGS77], Theorem 7.7.

1.6 Sharp configurations
Definition 1.57. A finite subset of the unit sphere Sd−1 is a sharp configuration
if there are m inner products between distinct points in it and it is a spherical
(2m− 1)-design.

Remark 1.58. Observe that replacing 2m−1 with 2m+1 in Definition 1.57 would
be impossible, for the following reason: if t1, . . . , tm are the inner products
that occur between distinct points in a configuration and y is a point in the
configuration, then the polynomial

x→ (1− 〈x, y〉)
m∏
i=1

(〈x, y〉 − ti)2

of degree 2m + 1 vanishes on the entire configuration. However, its integral
over the sphere does not vanish, because the polynomial is non-negative on the
sphere and not identically zero. Thus, sharp configurations are spherical designs
of nearly the greatest possible strength given the number of distances occurring
in them. (Some, but not all sharp configurations are actually 2m-designs.)
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Table 1.1 lists all sharp configurations we know, together with the 600-
cell, which is not sharp but to which our techniques nevertheless apply almost
the same way as for sharp configurations. In the table, the columns list the
dimension d of the ambient Euclidean space, then the number N of points, the
largest m such that the code is a spherical m-design, the inner products other
than 1 which occur between points in the code, and the name of the code, if
any exists. If t denotes the largest inner product, then each of these codes
is the unique (d,N, t) spherical code, except for some of those listed on the
last line of the table (the isotropic subspace codes); see Appendix A for details
about uniqueness. Let us describe briefly these configurations, as some of them

Table 1.1: The known sharp configurations, together with the 600-cell

d N t Inner products Name
2 N N − 1 cos(2πj/N) (1 ≤ j ≤ N/2) N -gon
d N ≤ d 1 −1/(N − 1) simplex
d d+ 1 2 −1/d simplex
d 2d 3 −1, 0 cross polytope
3 12 5 −1, ±1/

√
5 icosahedron

4 120 11 −1,±1/2, 0, (±1±
√

5)/4 600-cell
8 240 7 −1,±1/2, 0 E8 roots
7 56 5 −1,±1/3 kissing
6 27 4 −1/2, 1/4 kissing/Schläfli
5 16 3 −3/5, 1/5 kissing
24 196560 11 −1,±1/2,±1/4, 0 Leech lattice Λ24

23 4600 7 −1,±1/3, 0 kissing
22 891 5 −1/2,−1/8, 1/4 kissing
23 552 5 −1,±1/5 equiangular lines
22 275 4 −1/4, 1/6 kissing
21 162 3 −2/7, 1/7 kissing
22 100 3 −4/11, 1/11 Higman-Sims

q q
3+1
q+1 (q + 1)(q3 + 1)

3
(4 if q = 2) −1/q, 1/q2 isotropic subspaces

(q a prime power)

are well-known mathematical objects while some other are more mysterious.
The first six configurations listed in the table are the vertices of certain full-
dimensional regular polytopes (specifically, those regular polytopes whose faces
are simplices), together with lower-dimensional simplices. The next seven cases
are derived from the E8 root lattice in R8 and the Leech lattice in R24. Indeed,
the 240-point and 196560-point configurations are just the systems of minimal
non-zero vectors, suitably rescaled to Sd−1; the others are what in sphere packing
terms are called the kissing configurations, i.e. the points of tangency in the
corresponding sphere packings. Each arrangement with the label “kissing” is
the kissing configuration of the arrangement above it: each configuration yields
a sphere packing in spherical geometry by centring congruent spherical caps
at the points, with radius as large as possible without making their interiors
overlap. The points of tangency of a given cap form a spherical code in a
space of one fewer dimension. In general different spheres in a packing can
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have different kissing configurations, but this does not occur here because the
automorphism group of each configuration acts transitively on it (See [CS99],
in particular Chapter 14, for more details).

Some of the kissing configurations are interesting on their own. For exam-
ple, the sharp configuration of 552 points in R23 comes from an equiangular
arrangement of 276 lines in R23 described by the unique regular two-graph on
276 vertices (see Chapter 11 of [GR01]). It can also be derived from the Leech
lattice Λ24 in the following way: choose any w ∈ Λ24 with |w|2 = 6. Then the
552 points are the vectors v ∈ Λ24 satisfying |v|2 = |w − v|2 = 4. These points
all lie on a hyperplane, but it does not pass through the origin, so subtract w/2
from each vector to obtain points on a sphere centred at the origin.

The Higman-Sims configuration of 100 points in R22 can be constructed
similarly: choose w1 and w2 in Λ24 satisfying |w1|2 = |w2|2 = 6 and |w1−w2|2 =
4. Then there are 100 points v ∈ Λ24 satisfying

|v|2 = |w1 − v|2 = |w2 − v|2 = 4,

and they form the Higman-Sims configuration (on an affine subspace as above).
By the way, one might imitate the last two constructions by using the E8

lattice instead of the Leech lattice and replacing the norms 6 and 4 with the
smallest two norms in E8, namely 4 and 2. This works, but it merely yields the
cross polytope in R7 and the simplex in R6.

Finally, the last line describes a remarkable family of sharp configurations
from [CGS78]. They are the only known sharp configurations not derived from
regular polytopes, the E8 lattice, or the Leech lattice. The parameter q must be
a prime power; when q = 2, this arrangement is exactly the Schläfly configura-
tion (and it is a spherical 4-design), but for q > 2 it is different from all the other
elements in the table. Points in the configuration correspond to totally isotropic
2-dimensional subspaces of a 4-dimensional Hermitian space over Fq2 , with the
distances between points determined by the dimensions of the intersections of
the corresponding subspaces (inner product −1/q corresponds to intersection
dimension 1).

By Theorem 1.50, antipodal sharp configurations are the same as antipodal
tight spherical designs. Much progress has been made for the purpose of clas-
sifying such designs, see [BMV04] for more information. Here, it suffices to say
that Table 1 contains all of the antipodal sharp configurations in at most 103
dimensions.
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Chapter 2

Universally optimal spherical
configurations

2.1 Energy minimisation
As we have said in the introduction, we are interested in sharp configurations
because they turn out to be universally optimal solutions to an energy minimi-
sation problem. More precisely, let

f : (0, 4]→ [0,∞)

be any decreasing, continuous function. Given a finite subset C of the unit
sphere Sd−1, we define the f -potential energy of C to be

Ef (C) =
∑
x,y∈C
x 6=y

f(|x− y|2) (2.1)

Remark 2.1. It is important to notice that:

• since each pair x, y is counted twice in both orders, our potential energy
is twice that from physics: this normalisation is absolutely equivalent and
makes the formulae prettier;

• we view potentials as functions of squared distance between points, rather
than of distance: this fits better to the class of functions we are going to
deal with.

What are the properties we should reasonably require of f? Well, without
loss of generality we can assume that f is non-negative (only distances between
0 and 2 occur on the sphere, and one can clearly add a constant to ensure non-
negativity). Besides, since the force between points is repulsive, the potential
must be decreasing, and it is natural to require convexity as well. The results
shown here require a strongest condition, namely complete monotonicity.

Definition 2.2. A C∞ function f : I → R on an interval I is completely
monotonic if

(−1)kf (k)(x) ≥ 0

31
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for all k ≥ 0, and strictly completely monotonic if strictly inequality always
holds in the interior of I.

For example, all inverse power laws f(r) = r−s with s > 0 are strictly
completely monotonic on (0,∞); another instance is provided by exponential
laws f(r) = e−cr with c > 0. These are by far the most important cases for our
purposes.

It might seem more reasonable to use complete monotonic functions of dis-
tance, rather than squared distance, but squared distance simplifies formulas ap-
pearing later on, and it is more general than using distance: indeed, if r → f(r2)
is completely monotonic on a subinterval (a, b) of (0,∞), then f is completely
monotonic on (a2, b2), but not vice versa.

Definition 2.3. A finite subset C ⊂ Sd−1 is universally optimal if it (weakly)
minimises f -potential energy among all configurations of |C| points on Sd−1 for
every completely monotonic potential function f .

Now we can fully state the main theorem for universally optimal spheri-
cal configurations, namely that sharp configurations and also the 600-cell are
globally universally optimal:

Theorem 2.4 (Cohn and Kumar). Let f : (0, 4]→ R be a completely monotonic
function, and let C ⊂ Sd−1 be a sharp configuration or the vertices of a regular
600-cell. If C′ ⊂ Sd−1 is any set satisfying |C′| = |C|, then

Ef (C′) ≥ Ef (C). (2.2)

Moreover, if f is strictly completely monotonic, then equality in (2.2) implies
that C′ is also a sharp configuration (resp. the vertices of the 600-cell) and the
distances between points of C′ are the same occurring in C. In that case, if C
appears on Table (1.1), but not on the last line, then

C′ = A C for some A ∈ O(d),

i.e. C′ and C are isometric.

Uniqueness does not necessarily hold if the hypothesis that f must be strictly
completely monotonic is removed (consider for example a constant potential
function); furthermore, the configurations from the last line in Table 1.1 are not
always unique.

It is interesting, as a demonstration of the techniques used in the proof of
Theorem 2.4, to prove it in the simplest possible case, namely when |C| ≤ d+ 1
(in which case C is a simplex), while the general proof is in Section 2.6

Proof of special case. Suppose N = |C| ≤ d + 1. Then C is a regular simplex
with inner product −1/(N−1) between distinct points, so the squared Euclidean
distance between distinct points is 2 + 2/(N − 1) =: δ2. For this special case we
only require f to be decreasing and convex.

Let
h(x) = f(δ2) + f ′(δ2)(x− δ2),

so that h is the tangent line to f at δ2. Because f is convex, f(x) ≥ h(x) for all
x ∈ (0, 4], and if f is strictly convex, the equality holds if and only if x = δ2.
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Now suppose that C′ is any subset of Sd−1 with |C′| = N ; then

Ef (C′) =
∑
x,y∈C′
x 6=y

f(|x− y|2) ≥
∑
x,y∈C′
x 6=y

h(|x− y|2),

and the right side equals∑
x,y∈C′
x 6=y

f(δ2) + f ′(δ2)(|x− y|2 − δ2) =

= N(N − 1)f(δ2) + f ′(δ2)
∑
x,y∈C′

|x− y|2 −N(N − 1)f ′(δ2)δ2.

We have ∑
x,y∈C′

|x− y|2 =
∑
x,y∈C′

(2− 2〈x, y〉)

= 2N2 − 2
∑
x,y∈C′

〈x, y〉

= 2N2 − 2

∣∣∣∣∣∑
x∈C′

x

∣∣∣∣∣
2

≤ 2N2,

and since f ′(δ2) ≤ 0, we get

Ef (C′) ≥ N(N − 1)f(δ2) + 2N2f ′(δ2)− δ2N(N − 1)f ′(δ2)

= N(N − 1)f(δ2)

=
∑
x,y∈C
x 6=y

f(|x− y|2)

= Ef (C)

as we wanted to show. When f is strictly convex, then equality holds only if
|x−y|2 = δ2 for all x, y ∈ C′ with x 6= y, in which case C′ is a regular simplex.

Remark 2.5. A useful remark, while testing whether a configuration is univer-
sally optimal, is that we can restrict ourselves to a smaller class of potential
functions. Theorem 9b in [W41] implies that on each compact subinterval of
(0, 4], every completely monotonic function on (0, 4] can be approximated uni-
formly by non-negative linear combinations of the functions r → (4 − r)k with
k ∈ {0, 1, 2, . . . }. For example,

1
rs

=
∑
k≥0

(
s+ k − 1

k

)
(4− r)k

4k+s
.

Thus, a configuration is universally optimal if and only if it is optimal for each
of the potential functions f(r) = (4− r)k.

Before proving the main result, we show here a negative result, namely that
there are no universal optimal configurations in between the simplex and cross
polytope:
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Proposition 2.6. If d + 1 < N < 2d, then there is no N -point universally
optimal configuration on Sd−1.

Proof. An optimal code of this size has the following structure, according to
[B04] (see Theorem 6.2.1 and the remark following it). There are N −d parwise
orthogonal subspaces of Rd whose span is Rd, each containing h+1 points of the
code if its dimension is h. If the code is universally optimal, then each of these
subspaces must contain a regular simplex: because of orthogonality, distances
between points in different subspaces are constant, so within each subspace we
must have a universally optimal code. For the same reason, every union of some
of the component simplices must be universally optimal as well. Thus, without
loss of generality, we can assume that N = d + 2. We can also assume that
d ≥ 4 because the case of d = 3 and N = 5 was dealt with above in this section.

Suppose that the two regular simplices have i+ 1 and d− i+ 1 points. For
the potential function

f(r) = (4− r)k,
the energy of the configuration equals

i(i+ 1)
(

2− 2
i

)k
+ (d− i)(d− i+ 1)

(
2− 2

d− i

)k
+ (i+ 1)(d− i+ 1)2k+1.

For k = 2 that equals

4d(d+ 1)− 4d
i(d− i)

,

from which it follows that the potential energy is minimised exactly when i =
bd/2c or i = dd/2e. As k →∞, the energy is asymptotic to (i+1)(d−i+1)2k+1,
which is minimised exactly when i = 1 or i = d− 1 (and hence not at i = bd/2c
or i = dd/2e, because d ≥ 4). Thus, universal optimality is impossible, as we
wanted to prove.

2.2 More tools: technical interlude
Before addressing the proof of Theorem 2.4, we have to introduce some further
tools.

2.2.1 Hermite interpolation
Hermite interpolation is a generalisation of well-known Lagrange interpolation
in which one computes a polynomial that agrees with a given function not only
at the values, but also up to a certain derivative, at some specified set of points.
More precisely, suppose we are given f ∈ C∞([a, b]), distinct points t1, . . . , tm ∈
[a, b] and positive integers k1, . . . , km. Our aim is to find a polynomial p of
degree strictly less than D = k1 + k2 + · · · + km such that for 1 ≤ i ≤ m and
0 ≤ k < ki,

p(k)(ti) = f (k)(ti),

that is, p and f agree to order ki at ti. We immediately observe that such a
polynomial always exists and is unique, for the linear map

Φ : R≤D−1[X]→ Rk1+···+km = RD

p 7→ (p(t1), p′(t1), . . . , pk1−1(t1), . . . , p(tm), . . . , pkm−1(tm))
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is injective (and hence also surjective).
The following remainder formula will be a fundamental tool when dealing

with spherical configurations (cfr. [D63], Theorem 3.5.1):

Lemma 2.7. With the above notation, for each t ∈ [a, b] there exists ξ ∈ (a, b)
such that

min(t, t1, . . . , tm) < ξ < max(t, t1, . . . , tm) and

f(t)− f(p) =
f (D)(ξ)
D!

m∏
i=1

(t− ti)ki .

Proof. For t ∈ {t1, . . . , tm} the lemma is trivial; otherwise let

g(t) =
f(t)− p(t)∏m
i=1(t− ti)ki

,

and we want to show that g(t) = f (D)(ξ)/D!. Consider the function

s 7→ f(s)− p(s)− g(t)
m∏
i=1

(s− ti)ki

= f(s)− p(s)− f(t)− p(t)∏m
i=1(t− ti)ki

m∏
i=1

(s− ti)ki .

By construction, for each i it vanishes at ti to order ki, and it also vanishes at
t, so it has D + 1 roots in the interval

[min(t, t1, . . . , tm),max(t, t1, . . . , tm)].

By iterated use of Rolle’s theorem, there exists ξ in the interior of this interval
at which the D-th derivative vanishes, i.e.

f (D)(ξ)− g(t)D! = 0,

as desired.

This formula will play a crucial role later, but we also need a stronger result.

Definition 2.8. A function f : [a, b]→ [0,∞) is absolutely monotonic on [a, b]
if it is C∞ and

f (k)(t) ≥ 0 for every t ∈ [a, b] and k ≥ 0.

f is called strictly absolutely monotonic on an interval if it is absolutely mono-
tonic and it and its derivatives are strictly positive on the interior of the interval.

Be careful no to confuse the two definitions of completely monotonicity and
absolutely monotonicity, although they sound similar.

Proposition 2.9. Under the hypotheses above, suppose further that f is abso-
lutely monotonic (resp. strictly absolutely monotonic) on (a, b). Then

f(t)− p(t)∏m
i=1(t− ti)ki

is also absolutely monotonic (resp. strictly absolutely monotonic) on (a, b).
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Cleary, quotients such as the above are defined by continuity when t = ti
for some i so that they become C∞ functions. We underline that the fact that
t1, . . . , tm lie in ∈ [a, b] is a crucial hypotheses.

Before proving Proposition 2.9, it is worthwile to introduce systematic no-
tation for Hermite interpolations. Given a polynomial g with deg(g) ≥ 1, let
H(f, g) denote the polynomial of degree less than deg(g) that agrees with f at
each root of g to the order of that root. Notice that if f is a polynomial, then
H(f, g) is just its remainder modulo g in polynomial division; in other words, if
g(t) vanishes to order k at t = s, then

f(t)−H(f, g)(t) = O((t− s)k) for t→ s.

Therefore the function Q(f, g) defined by

Q(f, g)(t) =
f(t)−H(f, g)(t)

g(t)

extends to a C∞ function at the roots of g. Then Proposition 2.9 states that if
g(t) =

∏m
i=1(t− ti)ki , then Q(f, g) is absolutely monotonic.

Proof of Proposition 2.9. The proof is based on two properties of Q(f, g). The
first is that

Q(f, g1g2) = Q(Q(f, g1), g2),

which follows from the uniqueness of the Hermite interpolation:

Q(Q(f, g1), g2) =
Q(f, g1)−H(Q(f, g1), g2)

g2

=
(f −H(f, g1))/g1 −H(Q(f, g1), g2)

g2

=
f −H(f, g1)− g1H(Q(f, g1), g2)

g1g2
,

but H(f, g1g2) is the unique polynomial of degree less than deg(g1) + deg(g2)
such that

f −H(f, g1g2)
g1g2

extends to a C∞ function everywhere, whence we deduce that

H(f, g1g2) = H(f, g1) + g1H(Q(f, g1), g2)

and consequently
Q(f, g1g2) = Q(Q(f, g1), g2).

The second property is that if g0(t) = (t− s0)n, then

Q(f, g0)(s0) =
f (n)(s0)
n!

:

indeed expanding into Taylor series we have

f(t) = f(s0) + f ′(s0)(t− s0) + · · ·+ f (n−1)(s0)
(n− 1)!

(t− s0)n−1︸ ︷︷ ︸
H(f,g0)

+
f (n)(s0)
n!

(t−s0)n+O(t−s0)n+1.
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To prove the proposition we must show that for n ≥ 0 and t ∈ (a, b),

Q(f, g)(n)(t) ≥ 0.

When n = 0, that follows from Lemma 2.7, which states the existence of ξ ∈
(a, b) (depending on t) such that

Q(f, g)(t) =
f (deg(g))(ξ)

deg(g)!
≥ 0.

When n > 0, given s0 ∈ (a, b), define g0(t) = (t− s0)n. Then

Q(f, g)(n)(s0)
n!

= Q(Q(f, g), g0)(s0) = Q(f, gg0)(s0) ≥ 0.

This completes the proof when f is absolutely monotonic. The case of strictly
absolutely monotonicity works exactly the same way.

Remark 2.10. It follows from continuity that Proposition 2.9 still holds when
the open interval (a, b) is replaced with a half-open or closed interval.

2.2.2 Positive-definite kernels
In this section we develop further the relation between orthogonal polynomials
and spherical designs, partly reviewing what has been said in the first sections
of Chapter 1, and partly adding new details; in particular, we prove that Gegen-
bauer polynomials are orthogonal with respect to the measure (1− t2)(d−3)/2.

Definition 2.11. A continuous function

K : Sd−1 × Sd−1 → R

is a positive-definite kernel if for all k and all x1, . . . , xk ∈ Sd−1, the k×k matrix
whose (i, j) entry is K(xi, xj) is positive semidefinite.

In other words, for all t1, . . . , tk ∈ R,

k∑
i,j=1

titjK(xi, xj) ≥ 0.

The most important particular case is when t1 = · · · = tk = 1: for every finite
subset C ⊂ Sd−1, ∑

x,y∈C
K(x, y) ≥ 0.

Positive-definite kernels K such that K(x, y) depends only on the distance
|x − y| between x and y are particularly important for us. There is a sim-
ple representation-theoretic construction of such kernels, which Schoenberg in
[S42] proved gives all of them.

We have seen in Section 1.2 that as a unitary representation of O(d), the
Hilbert space L2(Sd−1) splits as a completed orthogonal direct sum of infinitely
many finite-dimensional representations:

L2(Sd−1) =
⊕̂
l≥0

Harm(l),
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where Harm(l) is the space of spherical harmonics of degree l, i.e. the restrictions
to Sd−1) of homogeneous polynomials on Rd of degree l that are in the kernel
of the Euclidean Laplacian. Recall also that spherical harmonics of different
degrees are orthogonal, and that every polynomial on Rd has the same restriction
to Sd−1 as some unique linear combination of spherical harmonics.

For each l ≥ 0 and each x ∈ Sd−1, there is a unique reproducing kernel
evl,x ∈ Vl, defined by requiring that for all f ∈ Vl,

〈f, evl,x〉 = f(x).

(Warning: we use Hermitian forms that are conjugate linear in the second vari-
able.) To construct evl,x explicitely, choose an orthonormal basis el,1, . . . , el,dimVl

of Vl and define

evl,x(y) = el,1(x) el,1(y) + · · ·+ el,dimVl(x) el,dimVl(y).

Define the function Kl : Sd−1 × Sd−1 → C by

Kl(x, y) = 〈evl,x, evl,y〉 = evl,x(y).

We have that
evl,Ax = evl,x ◦A−1 for A ∈ O(d).

Since O(d) acts distance-transitively on Sd−1 (i.e., if |x′−y′| = |x−y|, then there
is A ∈ O(d) such that Ax′ = x and Ay′ = y), we have that Kl(x, y) depends
only on the distance between x and y. This implies that it is real-valued, for

Kl(x, y) = Kl(y, x)

follows directly from the definition while Kl(x, y) = Kl(y, x) since |x − y| =
|y − x|. The crucial property of Kl is that it is a positive-definite kernel:

k∑
i,j=1

titjKl(xi, xj) =

∣∣∣∣∣
k∑
i=1

ti evl,xi

∣∣∣∣∣
2

≥ 0.

All convergent non-negative infinite linear combinations of these functions are
still positive-definite kernels, and Schoenberg showed that those are the only
continuous positive-definite kernels that depend only on the distance between
points.

One can compute Kl explicitely: since Kl(x, y) depends only on the distance
between x and y, we can write Kl(x, y) = Cl(〈x, y〉) for some function Cl. To
compute Cl, we use the orthogonality between spherical harmonics of different
degrees: if we fix a point on the sphere and project orthogonally onto the line
through the origin at that point, then the surface measure dσd on the sphere
projects to a constant times the measure

(1− t2)(d−3)/2dt

on the interval [−1, 1], and the orthogonality property amounts to saying that
C0, C1, . . . are orthogonal polynomials with respect to that measure, with Ci
having degree i. The following calculation shows that the measure is propor-
tional to (1− t2)(d−3)/2dt: consider the spherical shell defined by

1 ≤ x2
1 + · · ·+ x2

d ≤ 1 + ε.
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If we set x1 = t, then the remaining coordinates satisfy

1− t2 ≤ x2
2 + · · ·+ x2

d ≤ 1− t2 + ε,

and the volume is proportional to

(1− t2 + ε)(d−1)/2 − (1− t2)(d−1)/2.

Now divide by ε to normalise, then as ε → 0 we find that the density of the
surface measure with x1 = t is proportional to (1− t2)(d−3)/2, as desired.

As we have seen in Section 1.1.1, the orthogonal polynomials obtained this
way are determined up to multiplication by a positive scalar (which we can
normalise with no troubles), and they are exactly the ultraspherical polynomials:

Cλk (t), degCλk = k

(here λ = d/2−1 because usually one prefers to write that the Cλk are orthogonal
with respect to (1− t2)). The normalisation is chosen such that Cλ0 (t) = 1 and
Cλ1 (t) = 2λt.

Whenever we refer to the ultraspherical coefficients of a function, we mean
its coefficients in terms of ultraspherical polynomials (where the parameter λ is
implicit in the context). A positive-definite function will be a function whose
ultraspherical coefficients are non-negative.

One fundamental fact about positive-definite functions is that they are close
under taking products. Equivalently, the product of two ultraspherical poly-
nomials is a non-negative linear combination of ultraspherical polynomials (for
λ ≥ 0). By orthogonality, proving this amounts to showing that∫ 1

−1

Ci(t)Cj(t)Ck(t)(1− t2)(d−3)/2dt ≥ 0 (2.3)

for all i, j, k ≥ 0. Let µ denote the surface measure on Sd−1. Then using the
expansion

Kl(x, y) =
dimVl∑
m=1

el,m(x) el,m(y)

in terms of a choice of orthonormal basis el,1, . . . , el,dimVl for each Vl shows that
(2.3) holds if and only if

dimVi∑
a=1

dimVj∑
b=1

dimVk∑
c=1

∫
ei,a(x)ej,b(x)ek,c(x)dµ(x)ei,a(y) ej,b(y) ek,c(y) ≥ 0

for some (equivalently, all) y ∈ Sd−1. Integrating over y yields

dimVi∑
a=1

dimVj∑
b=1

dimVk∑
c=1

∣∣∣∣∫ ei,a(x)ej,b(x)ek,c(x)dµ(x)
∣∣∣∣2 ,

which is clearly non-negative.
Finally, we call a polynomial strictly positive definite if all its ultraspheri-

cal coefficients are strictly positive (up to its degree). The product of strictly
positive-definite polynomials is strictly positive-definite; the proof rests on the
fact that that in the expansion of Cλi Cλj , the coefficient of Cλi+j is positive (be-
cause all these polynomials have positive leading coefficients).
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2.3 Use of orthogonal polynomials
The proof of Theorem 2.4 involves expansions of polynomials as non-negative
linear combinations of orthogonal polynomials. In this section we prove a the-
orem about such expansions which we will need to find a bound from below for
the energy of a point configuration.

Let µ be any Borel measure on R such every polynomial p is integrable with
respect to µ and if p is not identically zero∫

p(t)2dµ(t) > 0.

Equivalently, for all polynomials p such that p(t) ≥ 0 for all t but p is not
identically zero, ∫

p(t)dµ(t) > 0.

Let p0, p1, . . . be the monic orthogonal polynomials for µ, with deg(pi) = i,
i.e. ∫

pi(t)pj(t)dµ(t) = 0 for i 6= j;

in particular, taking i = 0, we have∫
pj(t)dµ(t) = 0 for j > 0.

We know that for each α ∈ R, the polynomial pn + αpn−1 has n distinct real
roots, which are interlaced with the roots of pn−1. The result we need is the
following one:

Theorem 2.12. Let α be any real number, and let

r1 < r2 < · · · < rn

be the roots of pn + αpn−1. Then for k < n,

k∏
i=1

(t− ri)

has positive coefficients in terms of p0(t), p1(t), . . . , pk(t).

The section is devoted to prove this theorem, which, albeit not conceptually
difficult, involves some technical details. We begin with the easy case, namely
when k = n− 1.

Proposition 2.13. Let α be any real number, and let r = rn be the largest root
of pn + αpn−1. Then

pn(t) + αpn−1(t)

t− r
has positive coefficients in terms of p0(t), p1(t), . . . , pn−1(t).

Proposition 2.13 follows from the Christoffel-Darboux formula (Proposition
1.3), but we prove it directly to illustrate the technique we will apply to the
general case.
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Proof. Define c0, . . . , cn−1 so that

pn(t) + αpn−1(t)
t− r

=
n−1∑
l=0

clpl(t). (2.4)

For l ≤ n− 1 it follows from orthogonality that∫
(pn(t) + αpn−1(t))

pl(t)− pl(r)
t− r

dµ(t) = 0, (2.5)

because the polynomial
pl(t)− pl(r)

t− r
has degree l − 1 < n − 1, hence it is orthogonal to both pn(t) and pn−1(t).
Rearranging (2.5), we get∫

pn(t) + αpn−1(t)
t− r

pl(t)dµ(t) = pl(r)
∫
pn(t) + αpn−1(t)

t− r
dµ(t),

which by (2.4) and by orthogonality yields

cl

∫
p2
l (t)dµ(t) = c0pl(r)

∫
dµ(t).

Since the roots of pn+αpn−1 and pn−1 are interlaced, r is greater than the largest
root of pn−1 and hence greater than the largest root of pl. It follows that pl(r) >
0, and thus c0, . . . , cn−1 have all the same sign. Comparing leading coefficients
shows that cn−1 = 1, hence every coefficient must be (strictly) positive.

Now our aim is to generalise this proof to the case of arbitrary k in Theorem
2.12. The idea is to use orthogonality with respect to a signed measure, because
for k < n,

k∏
i=1

(t− ri)

is the monic orthogonal polynomial of degree k for the signed measure

(t− rk+1) · · · (t− rn)dµ(t),

assuming there is a unique such polynomial, as we will prove below. To verify
that, we simply need to show that it is orthogonal to all polynomials of degree
less than k, which is equivalent to the orthogonality of pn+αpn−1(t) to all such
polynomials with respect to dµ(t). (Notice that for k = n the conclusion is false
unless α = 0). More generally, we prove the following lemma:

Lemma 2.14. Suppose ν is a signed measure that has monotonic orthogonal
polynomials q0, q1, . . . , qM+1, where deg(qi) = i. For i ≤ M , if qi(r) 6= 0 and
(t− r)dν(t) has a unique degree i orthogonal polynomial, then it equals

qi+1(t) + αiqi(t)
t− r

,

where αi is chosen so that qi+1(r)+αiqi(r) = 0 (in particular the above function
is indeed a polynomial).
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Proof. The orthogonality of this polynomial with respect to (t− r) amounts to
the orthogonality with respect to dν(t) of qi+1(t) +αiqi(t) to all polynomials of
degree at most i− 1.

In order to prove Theorem 2.12, we imitate the proof of Proposition 2.13,
by removing successive roots of pn + αpn−1, but theoretically is not obvious at
all that this approach works: in fact, as soon as one introduces linear factors
such as t− s into the measure, it is no longer a positive measure, but rather a
signed measure. This technical difficulty makes a priori many of the properties
of orthogonal polynomials fail, that is, orthogonal polynomials may not exist
or be unique, and the roots of pi and pi+1 may not be interlaced. Besides, the
proof of Proposition 2.13 depends on the positivity of∫

p2
l (t)dµ(t) and

∫
dµ(t),

neither of which is generally positive for a signed measure.
Fortunately, the measures that actually arise in the proof will be considerably

better behaved than a typical signed measure; in particular they will all have
the following property for some M :

Definition 2.15. Let ν be a signed Borel measure on R such that all polyno-
mials are integrable with respect to it. ν is said to be positive definite up to
degree M if for all polynomials f such that deg(f) ≥M∫

f(t)2dν ≥ 0,

with equality if and only if f is identically zero.

Such a ν is therefore a signed measure which behaves positively to a certain
extent; the advantage of dealing with this kind of measures is that many of the
usual properties still hold for orthogonal polynomials of degrees up to M + 1.
More precisely, we have the following

Lemma 2.16. Let ν be positive up to degree M . Then there exist unique monic
polynomials q0, q1, . . . , qM+1 such that deg(qi) = i for each i and∫

qi(t)qj(t)dν(t) = 0.

for i 6= j. For each i, qi has i distinct real roots, and the roots of qi and qi−1

are interlaced.

As we see, this is the analogue of Propositions 1.6 and 1.7, and indeed a
similar proof can be implemented; here we use instead a proof of Simon [S05]:

Proof. The proof consists in finding the orthogonal polynomials for ν by apply-
ing Gram-Schmidt orthogonalisation technique to the basis 1, t, . . . , tM+1:

qi(t) = ti −
i−1∑
j=0

qj(t)
∫
sjqj(s)dν(s)∫
qj(s)2dν(s)

which makes sense for i ≤ M + 1 because the norm of qj is the denominator
is always non-zero. These polynomials are unique, for the quotiens of integrals
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which appear as coefficients in such an expansion are forced by the condition of
orthogonality.

The next step is to prove the three-term recurrence relation. The polynomial
qi(t) − tqi−1(t) is orthogonal to all polynomials of degree less than i − 2, and
hence we can write

qi(t) = (t+ ai)qi−1(t) + biqi−2(t)

for some constants ai and bi. Multiplying by qi−2 and integrating yields

bi

∫
qi−2(t)2dν(t) = −

∫
qi−1(t)tqi−2(t)dν(t),

by orthogonality. The polynomials tqi−2(t) and qi−1(t) differ by a polynomial
of degree at most i− 2, hence∫

qi−1(t)tqi−2(t)dν(t) =
∫
q2
i−1(t);

by the two last equations we deduce that bi < 0, which we will use to conclude
the proof.

We now prove by induction that the roots of qi and qi−1 are interlaced. The
base case of i = 1 is trivial. For the induction step, suppose the roots of qi−1

and qi−2 are interlaced; for each root r of qi−1, we have

qi(r) = biqi−2(r),

by the three-term recurrence relation. By hypothesis, qi−2 alternates in sign at
the roots of qi−1. Since bi is negative, qi and qi−2 have opposite signs at the
roots of qi−1. That implies by continuity that qi(t) has a root between each pair
of consecutive roots of qi−1. Because qi(t) and qi−2(t) have the same sign when
|t| is sufficiently large, qi must also have a root greater than every root of qi−1

and a root less than every root of qi−1. All i roots of qi are now accounted for,
so all the roots of qi are real and interlaced with those of qi−1. Now the proof
is complete.

Now we need to prove this minor variant of Gauss-Jacobi quadrature to
understand the signed measure that appear in our proof of 2.12:

Lemma 2.17. Let α be any real number, and let

r1 < r2 < · · · < rn

be the roots of pn+αpn−1. Then there are positive numbers λ1, . . . , λn such that
for every polynomial f of degree at most 2n− 2∫

f(t)dµ(t) =
n∑
i=1

λif(ri). (2.6)

Proof. It is easy to see that for deg(f) < n there exist coefficients λ1, . . . , λn
such that (2.6) holds, because a polynomial of degree less than n is completely
determined by its values at r1, . . . , rn and the map taking these values to the
integral is linear and injective.
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For deg(f) ≤ 2n− 2, do Euclidean division and write

f = (pn + αpn−1)g + h

with deg(g) ≤ n− 2 and deg(h) < n. By orthogonality,∫
f(t)dµ(t) =

∫
pn(t)g(t)dµ(t) + α

∫
pn−1(t)g(t)dµ(t) +

∫
h(t)dµ(t)

=
∫
h(t)dµ(t),

and f(ri) = h(ri) for each i because pn(ri) + αpn−1(ri) = 0 by definition. It
follows that ∫

f(t)dµ(t) =
n∑
i=1

λif(ri)

holds whenever deg(f) ≤ 2n − 2. What remains to prove is positivity of the
coefficients. For fixed i, let

f(t) =
∏
j 6=i

(t− rj)2.

Then ∫
f(t)dµ(t) =

n∑
i=1

λif(ri) = λif(ri)2

whence it follows that λi > 0.

Let r1 < · · · < rn be the roots of pn + αpn−1, and for 0 ≤ j ≤ n define the
measure µj by

dµj(t) =
j−1∏
i=0

(rn−i − t)dµ(t)

(of course µ0 = µ).

Lemma 2.18. For 0 ≤ j ≤ n − 1, the measure µj is positive definite up to
degree n− j − 1.

In other words, more factors we add, less positive definite the measure µj is.

Proof. If deg(f) ≤ n− 1− j/2, then by Lemma 2.17,

∫
f(t)2

j−1∏
i=0

(rn−i − t)dµ(t) =
n∑
i=1

λif(ri)2

j−1∏
l=0

(rn−l − ri) ≥ 0;

equality holds if and only if f vanishes at ri, . . . , rn−j , which is impossible for a
polynomial of degree at most n− j − 1 unless it vanishes identically.

Let qj,i be the monic orthogonal polynomial of degree i for µj . (Note that
q0,i = pi.) When i = n− j, the polynomial qj,i is simpler, for we have

qj,n−j(t) = (t− r1) · · · (t− rn−j),
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as pointed out in Lemma 2.14. Hence for i < n− j the largest root of qj,i is less
than rn−j , being the roots interlaced.

Equivalently, for i ≤ n− j, the largest root of qj−1,i is less than rn−j+1, so
qj−1,i(rn−j+1) 6= 0. Hence Lemma 2.14 implies that for i ≤ n − j, there are
constants αj,i such that

qj,i(t) =
qj−1,i−1(t) + αj,iqj−1,i(t)

t− rn−j+1
.

Lemma 2.19. For i ≤ j ≤ n and i ≤ n − j, the polynomial qi,j is a positive
linear combination

qi,j(t) =
i∑
l=0

clqj−1,l(t)

of the polynomials qj−1,0, . . . , qj−1,i.

Proof. Define c0, . . . , ci so that

qj,i(t) =
i∑
l=0

clqj−1,l(t).

We argue in the same way as in the proof of Proposition 2.13. For l ≤ i, we
have that∫

(qj−1,i+1(t) + αj,iqj−1,i(t))
qj−1,l(t)− qj−1,l(rn−j+1)

t− rn−j+1
dµj−1(t) = 0 (2.7)

by orthogonality, because

qj−1,l(t)− qj−1,l(rn−j+1)
t− rn−j+1

dµj−1(t)

is a polynomial of degree l − 1, which is less than i. Now from

qj,i(t) =
qj−1,i+1(t) + αj,iqj−1,i(t)

t− rn−j+1
(2.8)

and (2.7) it follows that∫
qi,j(t)qj−1,l(t)dµj−1(t) = qj−1,l(rn−j+1)

∫
qj,i(t)dµj−1(t).

Thus,

cl

∫
q2
j−1,l(t)dµj−1(t) = c0qj−1,l(rn−j+1)

∫
dµj−1(t).

Since l ≤ i ≤ n− j, both integrals are positive by Lemma 2.18. The largest root
of qj−1,l is less than rn−j+1, so

qj−1,l(rn−j+1) > 0.

Thus, c0, . . . , ci all have the same sign, which is positive because ci = 1.

Now Theorem 2.12 follows from applying Lemma 2.19 repeatedly, starting
with qn−k,k.
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2.4 Linear programming bounds

Theorem 2.4 is deduced from the following proposition, which provides a lower
bound for the f -energy of a finite set of points on the sphere through choosing
an auxiliary polynomial h:

Proposition 2.20. Let f : (0, 4]→ R be any function. Suppose h : [−1, 1]→ R
is a polynomial such that

h(t) ≤ f(2− 2t)

for all t ∈ [−1, 1), and suppose there are non-negative coefficients α0, . . . , αd
such that h has the expansion

h(t) =
d∑
i=0

αiC
d/2−1
i (t)

in terms of ultraspherical polynomials. Then for every set C of N points on
Sd−1, the f -energy satisfies

Ef (C) ≥ N2α0 −Nh(1). (2.9)

Proof. We have by assumption∑
x,y∈C
x 6=y

f(|x− y|2) ≥
∑
x,y∈C
x 6=y

h(〈x, y〉),

for |x− y|2 = 2− 2〈x, y〉. On the other hand,∑
x,y∈C
x 6=y

h(〈x, y〉) =
∑
x,y∈C

h(〈x, y〉)−Nh(1)

=
d∑
i=0

αi
∑
x,y∈C

C
d/2−1
i (〈x, y〉)−Nh(1).

Since Cd/2−1
i is a positive-definite kernel, as we saw in 2.2.2,∑

x,y∈C
C
d/2−1
i (〈x, y〉) ≥ 0,

whence we deduce, as Cd/2−1
0 = 1, that∑

x,y∈C
x 6=y

h(〈x, y〉) ≥ α0

∑
x,y∈C

C
d/2−1
0 (〈x, y〉)−Nh(1) = N2α0 −Nh(1).

Remark 2.21. The above bound given by an auxiliary polynomial h is sharp for
a configuration C and potential function f if and only if two conditions hold:

i) h(t) = f(2− 2t) at for every inner product t between distinct points of C;
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ii) whenever the ultraspherical coefficient αi is positive with i > 0, we must
have ∑

x,y∈C
C
d/2−1
i (〈x, y〉) = 0.

In particular, if h is strictly positive definite, C must be a spherical deg(h)-
design, by Theorem 1.32.

This proposition is a generalisation of the linear programming bounds for
spherical codes, due independently to Kabatiansky and Levenshtein in [KL78]
and Delsarte, Goethals and Seidel in [DGS77] (the topic is also developed in
Chapter 9 of [CS99]). One can derive those bounds for spherical codes with
minimal angle θ from proposition 2.20 by setting

f(2− 2t) =

{
∞ if t > cos θ, and
0 otherwise.

(of course f takes values in R ∪∞, but this is not a problem.) The f -potential
energy is thus 0 for a spherical code with minimal angle at least θ and ∞
otherwise; then Proposition 2.20 implies that no such code can exist if N >
h(1)/α0.

Choosing the optimal function h amounts to solving an infinite-dimensional
linear programming problem: we have that the potential energy is a linear
functional of h, and the only restrictions we make on h are the linear con-
straints on its values and ultraspherical coefficients. However, it is not difficult
to approximate the optimal h numerically, by solving a finite-dimensional linear
programming problem in which one imposes the constraint h(t) ≤ f(2− 2t) for
only finitely many t’s.

The bound is usually not sharp (even if it is often quite close), but in the
case of sharp configurations, for every completely monotonic potential function
there does exist an auxiliary function that proves a sharp bound, as we show in
Section 2.6.

2.5 Choosing auxiliary functions
We describe here an explicit choice for the auxiliary function h in Proposition
2.20; although we will not require this function later, it provides an concrete way
to apply Proposition 2.20 and the techniques employed here will be important
in the proof of Theorem 2.4.

Let f : (0, 4] → R be completely monotonic: from the proof of Proposition
2.20 we know that it is more convenient to work with a(t) = f(2 − 2t), as
|x−y|2 = 2−2〈x, y〉. The function a is absolutely monotonic on [−1, 1) because
f is completely monotonic on (0, 4], and it is strictly absolutely monotonic if
and only if f is strictly completely monotonic.

To construct h, we require three inputs:

1) the dimension d− 1 of Sd−1;

2) a natural number m ≥ 1, and

3) a real number α ≥ 0.
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Let
t1 < · · · < tm

be the roots of the polynomial Cd/2−1
m +αC

d/2−1
m−1 . We require that t1 ≥ −1 and

thus {t1, . . . , tm} ⊂ [−1, 1); by Theorem 3.3.4 in [Sz75], that amounts to

α ≤ −Cd/2−1
m /C

d/2−1
m−1

(which is positive because Cd/2i has sign (−1)i).
Let h(t) be the Hermite interpolating polynomial that coincides with a(t)

up to order 2 at each ti, i.e. h(ti) = a(ti) and h′(ti) = a′(ti).

Lemma 2.22. For all t ∈ [−1, 1),

h(t) ≤ a(t).

Proof. By Lemma 2.7, there exists a point ξ such that

min(t, t1, . . . , tm) < ξ < max(t, t1, . . . , tm)

and

a(t)− h(t) =
a(2m)(ξ)

(2m)!

m∏
i=1

(t− ti)2.

The right side is non-negative, hence a(t) ≥ h(t).

Before we can apply Proposition 2.20, we have to show that h is positive
definite, and that it more subtle. Let

F (t) = Cd/2−1
m (t) + αC

d/2−1
m−1 (t) =

m∏
i=1

(t− ti),

then in our notation h = H(a, F 2). We will show that F 2 has a stronger
property called conductivity:

Definition 2.23. A non-constant polynomial g with all its roots in [−1, 1) is
said to be conductive if for all absolutely monotonic functions a on [−1, 1),
H(a, g) is positive definite. It is strictly conductive if it is conductive and for
all strictly absolutely monotonic a, H(a, g) is strictly positive definite of degree
deg(g)− 1.

Lemma 2.24. (i) If g1 and g2 are conductive and g1 is positive definite, then
g1g2 is conductive.

(ii) If g1 is conductive and strictly positive definite and g2 is strictly conductive,
then g1g2 is strictly conductive.

Proof. We know from the proof of Proposition 2.9 that for every absolutely
monotonic function a on [−1, 1),

H(a, g1g2) = H(a, g1) + g1H(Q(a, g1), g2).

The lemma now follows from Proposition 2.9 and the fact that the positive-
definite (or strictly positive-definite) functions are closed under taking (sums
and) products.



2.6. PROOF OF THEOREM 2.4 49

Now for r ∈ [−1, 1), let `r denote the linear polynomial `r(t) = t−r. Clearly
`r is conductive, for H(a, `r) = a(r) ≥ 0, and even strictly conductive if r 6= −1.
Lemma 2.24 implies that if g is conductive and positive definite, then g `r is
conductive.

Consider the partial products

j∏
i=1

(t− ti), j ≤ m.

By Theorem 2.12 they are strictly positive definite for j < m, and positive
definite for j = m because F (t) = C

d/2−1
m (t) + αC

d/2−1
m−1 (t) with α ≥ 0. Then

by Lemma 2.24 and by what we have just said, each product is conductive,
hence also F and still by Lemma 2.24, its square F 2 is conductive as well. As
h = H(a, F 2), we conclude that h is positive definite, as desired.

Remark 2.25. These auxiliary polynomials are seldom optimal, as pointed out
in [CK07]; however, they provide a reasonably good bound, in view of the
simplicity of their construction.

Remark 2.26. One can generalise the construction from this section in the fol-
lowing way: let p0, p1, . . . be any family of orthogonal polynomials such that
each is positive definite. Given m and α, choose t1, . . . , tm to be the roots
of pm + αpm−1. The construction of the correspondent polymonial h and the
proof are essentially the same as before. In fact, the proof of Theorem 2.4 will
be based on this approach.

2.6 Proof of Theorem 2.4
Let f : (0, 4]→ R be our completely monotonic function, define a(t) = f(2−2t)
as in Section 2.4, and let C ⊂ Sd−1 be a sharp configuration with |C| = N . To
prove Theorem 2.4, we shall construct an auxiliary polynomial h that satisfies
the hypotheses of Proposition 2.20 and proves a sharp bound. The case of the
600-cell needs a particular treatment, and shall be dealt with in section 2.7.

Call t1, . . . , tm the possible inner products between distinct points in C, or-
dered so that

−1 ≤ t1 < · · · < tm < 1.

Finally, let h(t) be the Hermite interpolating polynomial that agrees with a(t)
to order 2 at each ti, i.e. h = H(a, F 2), where F (t) = (t− t1) · · · (t− tm).

Remark 2.27. If t1 = −1, it might seem more natural to interpolate only to
first order there: indeed the purpose of second-order interpolation is to avoid
sign changes in h(t)− a(t) when t = ti, and that is clearly not a concern when
t = −1. In fact

Lemma 2.28. For all t ∈ [−1, 1),

h(t) ≤ a(t).

Proof. Identical to that of Lemma 2.22.

Thus, the first hypothesis of Proposition 2.20 is satisfied, and what remains
to show is that h is a positive-definite function and that the bound is sharp to
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have universal optimality. (The bound deived from this function h is not sharp
for the 600-cell, which is why that case must be treated separately).

The sharpness of the bound follows from the fact that C, being a sharp
configuration, is a spherical deg(h)-design. Thus,∑

x,y∈C
C
d/2−1
i (〈x, y〉) = 0

whenever 0 < i ≤ deg(h), and since h agrees with a at the inner products
t1, . . . , tm from C, the conditions for a sharp bound we listed in Remark 2.21
are satisfied.

The proof that h is positive definite is analogous to the one in Section 2.5,
but it involves more elaborate machinery. We will do it by showing that F 2 is
strictly conductive, which will also allow us to deduce uniqueness.

Lemma 2.29. The function F is strictly positive definite.

Proof. The leading coefficient of F (in the usual ti expansion) is 1, which im-
plies that its leading ultraspherical coefficient is positive. For the others, apply
orthogonality to see that the i-th ultraspherical coefficient of F equals a positive
constant (depending on i) times∫

Sd−1
F (〈x, y〉)Cd/2−1

i (〈x, y〉)dσ(x),

where y is an arbitrary point on Sd−1 and dσ(x) denotes the surface measure
on Sd−1.

Now choose y ∈ C: as the leading ultraspherical coefficient of F is positive,
we can take i < deg(F ). Thus, deg(F ) + i ≤ 2 deg(F ) − 1, and since C is
a spherical (2 deg(F ) − 1)-design, it follows that the integral above equals a
positive constant times∑

x∈C
F (〈x, y〉)Cd/2−1

i (〈x, y〉) = F (1)Cd/2−1
i (1),

since by the construction of F each term of the sum vanishes except for x = y.
Both factors are positive, as desired.

In order to deal with the partial products

j∏
i=1

(t− ti),

we must express F in terms of orthogonal polynomials. Recall that the ultras-
pherical polynomials Cd/2−1

i are orthogonal with respect to the measure

dµ = (1− t2)(d−3)/2dt

on [−1, 1]. Let p0, p1, . . . denote the monic orthogonal polynomials with respect
to (1− t)dµ(t). These polynomials are a special case of Jacobi polynomials, but
we will require only on fact about them: they are non-negative linear combina-
tions of the ultraspherical polynomials Cd/2−1

i . This follows from Lemma 2.14
and Proposition 2.13.
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Lemma 2.30. There exists a constant α such that F = pm + αpm−1.

Proof. We simply need to show that F is orthogonal to al polynomials of degree
at most m−2 with respect to the measure (1− t)dµ(t), and this is equivalent to
showing that (1 − t)F (t) is orthogonal to all such polynomials with respect to
dµ(t). Let then p be any polynomial of degree at most m−2. Since C is a sharp
configuration, it is a spherical (2m − 1)-design. It follows as in the previous
proof that ∫

(1− t)F (t)p(t)dµ(t)

equals a positive linear combination of

(1− t1)F (t1)p(t1), . . . , (1− tm)F (tm)p(tm), (1− 1)F (1)p(1).

Each of these vanishes because F vanishes at t1, . . . , tm. Therefore,∫
F (t)p(t)(1− t)dµ(t) = 0

as desired.

Combining Lemma 2.30 with Theorem 2.12 shows that for j < m the poly-
nomial

j∏
i1

(t− ti)

is strictly positive definite, and the case j = m is given by Lemma 2.29; now
to conclude that F and F 2 are conductive it suffices to follow the argument in
Section 2.5, using Lemma 2.24 iteratedly.

With the above Lemmas, we have eventually shown that h = H(a, F 2) is
positive definite, which was what we wanted to use the (sharp) bound given
by Proposition 2.20: therefore we have proved the universal optimality of sharp
configurations.

To prove the additional uniqueness results when f is strictly completely
monotonic, we use the following lemma:

Lemma 2.31. If a satisfies a(k)(t) > 0 for all k ≥ 0 and t ∈ (−1, 1) (i.e. a is
strictly absolutely monotonic), then a(t)− h(t) has at most deg(h) + 1 roots in
[−1, 1), taking into account multiplicities.

Proof. By Rolle’s theorem, a(t) − h(t) has at most one more root than a′(t) −
h′(t). Repeated differentiation reduces to the case in which deg(h) = 0, which
is trivial: if h = C constant, then a(t)−C has at most one root, for a is strictly
completely monotonic.

Conclusion. Thus, counting multiplicities, the only roots of a(t)−h(t) in (−1, 1]
are at t = ti for some i; then from Remark 2.21 it follows that if C′ is another
potential energy minimum with |C′| = |C|, then the bound of Proposition 2.20
being again sharp, all inner products between distinct points of C′ occur among
t1, . . . , tm. Therefore we have that C′ is a spherical code with the same param-
eters as C, and each sharp configuration listed in Table 1.1 except on the last
line is known to be the unique spherical code with its parameters, of course up
to orthogonal transformations. See Appendix A for details.
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Even when the spherical code is not unique, we can still conclude from the
fact that a is strictly absolute monotonic that C′ must be sharp. The key
observation is that F 2 is strictly conductive (by 2.29, 2.30 and 2.24), except in
the trivial case when C consists of two antipodal points. This implies that h is a
strictly positive-definite polynomial of degree 2m−1. Then the sharpness of the
bound in Proposition 2.20 implies that C must be a spherical deg(h)-design (by
Theorem 1.32), hence by definition a sharp configuration. Furthermore, each
of t1, . . . , tm must occur as an inner product in C′, from switching the role of C
and C′.

2.7 The 600-cell
The final configuration of points is given by the vertices of the regular 600-cell.
The construction given in the previous section does not work in this case, and
overall the 600-cell appears to be intrinsically more complicated than the sharp
configurations. The fundamental problem is that it is only a spherical 11-design,
but the polynomial h constructed as above would have degree 15 (or 14 if we
use the alternate construction for antipodal configurations). Recall that being a
spherical deg(h)-design was crucial to have a sharp bound: in fact, h does turn
out to be a positive-definite function also in this case, but it proves a suboptimal
bound.

Fortunately, what saves the proof is that although the 600-cell is not a spher-
ical 12-design, all spherical harmonics of degrees from 13 to 19 do indeed sum to
0 over it. The degree 12 spherical harmonic is the only problem, and it can be
solved by requiring that the 12th ultraspherical coefficient of h vanishes. The
fact that spherical harmonics of degree 13 through 19 do sum to 0 over the
600-cell can be checked using the distance distribution from Table 2.1, which
tells for each vertex how many others have a given inner product with it.

For the 600-cell, we have m = 8 and {t1, . . . , tm} = {−1, 0,±1/2, (±1 ±√
5)/4}; we order the inner products so that t1 < · · · < t8, that is,

t1 = −1, t2 = (−1−
√

5)/4, t3 = −1/2, t4 = (1−
√

5)/4,

t5 = 0, t6 = (−1 +
√

5)/4, t7 = 1/2, t8 = (1 +
√

5)/4.

Let h(t) be the unique polynomial of degree at most 17 such that h(ti) = a(ti)
for 1 ≤ i ≤ 8, h′(ti) = a′(ti) for 2 ≤ i ≤ 8, and α11 = α12 = α13 = 0, where αi
denotes the i-th ultraspherical coefficient of h. Notice that we do not require
that h′(−1) = a′(−1).

If h(t) ≤ a(t) for all t and h is positive definite, then it proves a sharp
bound (as said above, because α12 = 0). We are going to prove that these two
conditions hold, although no simple reason is known why it should happen; the
computations that follow can be done performed on a computer algebra sysem,
and they use exact arithmetic in Q(

√
5).

2.7.1 Proof that h is positive definite
We want to show that h(t) is a non-negative linear combination

h(t) =
17∑
i=0

αiC
1
i (t)
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Inner product Count
±1 1

(±1±
√

5)/4 12
±1/2 20

0 30

Table 2.1: The distance distribution of the 600-cell

of the ultraspherical polynomials C1
i (t) (indeed, here d/2 − 1 = 4/2 − 1 = 1).

Each ultraspherical coefficient of h(t) is a linear function of a(ti) and a′(ti) for
1 ≤ i ≤ m. In other words,

αi = αi(a(t1), . . . , a(t8), a′(t1), . . . , a′(t8))

=
8∑
j=1

uj a(tj) +
8∑
j=1

vja
′(tj).

As we have explained in Remark 2.5, it suffices to consider the potential func-
tions

f(r) = (4− r)k, k ∈ {0, 1, 2, . . . , };

then we have

a(t) = f(2− 2t) = (4− (2− 2t))k = 2k(1 + t)k,

and up to rescaling, that amounts to taking a(t) = (1 + t)k, with a′(t) =
k(1 + k)k−1. Our linear combination thus becomes

8∑
j=1

(uj(1 + tj)k + vjk(1 + tj)k−1). (2.10)

If v8 > 0, then the last expression is positive for all sufficiently big k; to
prove that it is non-negative for all k, we calculate a bound l such that (2.10)
is guaranteed to be positive for all k ≥ l and then check non-negativity for
0 ≤ h < l.

Let then

χ(x) =

{
x if x ≤ 0
0 if x > 0.

If we choose l so that
8∑
j=1

(χ(uj)(1 + tj)l + χ(vj)l(1 + tj)l−1) + v8l(1 + t8)l−1 ≥ 0, (2.11)

then
8∑
j=1

(uj(1 + tj)k + vjk(1 + tj)k−1) ≥ 0

for all k ≥ l, i.e., once the asymptotically dominant term becomes bigger than all
the negative terms, it continues to do so forever, because whenever k increases,
the dominant term increases by a larger factor than any other term does.
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To prove that h is positive definite, one deals with eighteen cases, one for
each ultraspherical coefficient of h. In each case, one computes the coefficients

u1, . . . , u8, v1, . . . , v8

explicitely (they are in Q(
√

5)). Then one checks that v8 is positive, and that
(2.11) holds with l = 32. Finally, one checks that the ultraspherical coefficient
is non-negative for k ∈ {0, 1, . . . , 31}. These calculations have been done by
Conway and Cumar using a computer algebra system.

2.7.2 Proof that h(t) ≤ a(t)

The simple proof of the inequality h(t) ≤ a(t) we have given in the case of
the sharp configurations no longer holds for the 600-cell. Here, we will use
Proposition 2.9. Let

F (t) = (t+ 1)
m∏
i=2

(t+ ti)2,

and let h̃ be the usual Hermite interpolation H(a, F ) of a (without requiring
any ultraspherical coefficients to vanish). By Proposition 2.9,

a(t)− h̃(t)
F (t)

= Q(a, F )(t)

is absolutely monotonic on [−1, 1) (cfr. the remark at the end of 2.9). Let q(t)
be the quadratic Taylor polynomial for this quotient around t = −1. Then it
follows from absolute monotonicity that

a(t)− h̃(t)
F (t)

≥ q(t)

for all t ∈ [−1, 1). Thus,

a(t)− h(t)
F (t)

≥ q(t) +
h̃(t)− h(t)

F (t)
.

The right side of the inequality is a quadratic polynomial. If we verify that it is
nonnegative over [−1, 1), then a(t) ≥ h(t) over that interval, because F (t) ≥ 0.
To check this, it suffices to check that it is non-negative at t = ±1 and has non-
positive leading coefficient. Each of these computations amounts to verifying
that a certain explicit linear combination of a(t1), . . . , a(t8), a′(t1), . . . , a′(t8),
a(2)(−1) and a(3)(−1) is non-negative. This can be proved using the method
from the previous subsection, with l = 36.

2.7.3 Proof of uniqueness

Finally, we must prove uniqueness when the potential function f is strictly
completely monotonic, so that a is strictly absolutely monotonic. In that case,
again by Proposition 2.9,

a(t)− h̃(t)
F (t)
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is strictly absolutely monotonic on (−1, 1), which implies that

a(t)− ˜h(t)
F (t)

> q(t)

for t ∈ (−1, 1). Thus, a(t)−h(t) has roots only at t = ti for some i. Uniqueness
follows, because the vertices of the regular 600-cell are the only (4, 120, (1 +√

5)/4) spherical code, as proved in [B78].
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Chapter 3

Optimality in the Euclidean
space

3.1 Periodic point configurations

The question of universally optimality can be posed in the same terms also
in more general settings than a finite number of points on Sd−1: for instance,
definition (2.1) makes sense for any finite set in Rd. However, if we want to deal
with infinite and possibly unbounded discrete sets in Rd, then the definition of
potential energy could rise convergence problems in pathological cases, that is
why we shall confine ourselves to periodic point configurations.

Definition 3.1. A discrete set C ⊂ Rd is a periodic configuration if it is a union
of finitely many translates of one given full-rank lattice of Rd. More precisely, C
is a N -periodic configuration if there exist a (full-rank Euclidean) lattice Λ ⊂ Rd
and vectors t1, . . . , tN in Rd, with ti − tj /∈ Λ for i 6= j, such that

C =
N⋃
i=1

(ti + Λ).

The point density δp of such a C is the number of points per unit volume∗,
and if C is represented as an N -periodic configuration, then

δp(C) =
N

vol(Rd/Λ)
. (3.1)

Given a potential function f : (0,∞)→ [0,∞), define the f -potential energy of
C to be

Ef (C) =
1
N

∑
1≤i,j≤N

∑
x∈Λ

x+ti−tj 6=0

f(|x+ ti − tj |2). (3.2)

This is the average over all points in C of the sum over all distances to other
points: of course summing over all pairs of points in C would give a divergent
sum, and even thus the sum may be infinite, in which case we say that the
∗We use this name and this notation to avoid confusion with the associated sphere packing.

57
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f -energy of C is infinite. With this definition, it is also clear that the f -energy
does not depend on the choice of Λ and t1, . . . , tN made to represent C.

Let CR denote the set C ∩ BR(0) = {x ∈ C, |x| ≤ R}. The following lemma
clarifies the link with the definition of f -energy for finite sets:

Lemma 3.2. Let C be a periodic point configuration in Rd. If the f -energy of
C is finite, then it equals

lim
R→∞

1
|CR|

∑
x,y∈CR
x 6=y

f(|x− y|2).

The result holds even without assuming that f is non-negative, as long as f(x) =
O((1 + |x|)−d/2−δ) for some δ > 0.

Proof. Suppose that C =
⋃N
i=1(ti + Λ) as above, and say a point is of type j if

it is in tj + Λ. To each point x ∈ C we associate the sum∑
y∈C
y 6=x

f(|x− y|2). (3.3)

This sum depends only on the type of x, and the definition of Ef (C) equals the
average over all types of this quantity.

All these sums must converge, either because we assume that Ef (C) is finite,
or else, if f is not assumed to be non-negative, by its bound. Let ε be small,
and choose K such that for x of each type∑

y∈C
|x−y|>K

∣∣f(|x− y|2)
∣∣ ≤ ε.

In particular, summing in (3.3) only over y such that |x−y| ≤ K yields a partial
sum which differs from the total sum by less than ε.

In the sum ∑
x,y∈CR
x 6=y

f(|x− y|2)

we can concentrate on the points x ∈ BR−K(0), since the number in BR(0) \
BR−K(0) is negligible compared to the number in BR−K(0) (the latter being
O(Rd) and the former O(Rd−1) as R → ∞). Each point carries a bounded
contribution into the sum, so omitting the points in BR(0) \ BR−K(0) changes
the sum by O(Rd−1).

For each x ∈ CR−K , ∑
y∈CRy 6=x

f(|x− y|2)

is within ε of ∑
y∈C
y 6=x

f(|x− y|2).
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The number of points of each type in CR−K are equal, up to a factor of 1 +
O(1/R). Thus, for R large,

1
|CR|

∑
x,y∈CR
x6=y

f(|x− y|2)

is O(1/R) pplus a quantity that differs from Ef (C) by less of ε. Choosing ε
arbitrarily small and R accordingly large completes the proof.

Now we would be happy to determine whether there exist universally op-
timal point configurations, i.e. periodic configurations which minimise Ef for
every completely monotonic function f . Unfortunately, at this time no such
configuration is known, but some exceptional structures as the hexagonal lat-
tice, the root lattice E8 and the Leech lattice Λ24 are conjectured to be examples
(cfr. Conjecture 3.5 below). Recent experiments show that also the root lattice
D4 and the periodical non-lattice configuration D+

9 could be universally optimal
(see [CKS09]).

3.2 A bound and a conjecture

We are ready to state the Euclidean analogue of Proposition 2.20, in terms of the
Fourier transform of Rd. We normalise the Fourier transform of an L1 function
h : Rn → R by

ĥ(t) =
∫

Rd
h(x)e2πi〈x,t〉dx

Proposition 3.3. Let f : (0,∞)→ [0,∞) be any function. Suppose h : Rd → R
satisfies h(x) ≤ f(|x|2) for all x ∈ Rd \ {0} and is the Fourier transform of a
function g ∈ L1(Rd) such that g(t) ≥ 0 for all t ∈ Rd. Then the f -potential
energy of every periodic configuration in Rd with density δp satisfies

Ef (C) ≥ δp(lim inf
t→0

g(t))− h(0).

Without loss of generality we can assume that g and h are bot radial func-
tions (replace g with the average of its rotations about the origin).

First we need the following Lemma:

Lemma 3.4. Let C be a periodic point configuration in Rd, with point density
δp. If ε > 0 is sufficiently small (depending on C), then

lim
R→∞

∫
Bε(0)

|
∑
x∈CR e

2πi〈x,t〉|2

|CR|
dt = δp

Proof. We shall prove that for ε > 0 small enough, if g is any radial, smooth
function, with support in Bε(0), then

lim
R→∞

∫
Rd

|
∑
x∈CR e

2πi〈x,t〉|2

|CR|
g(t)dt = δpg(0).
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This will suffice to prove the lemma, because the characteristic function of a
small ball can be bounded above and below by such functions. Using the identity∣∣∣∣∣ ∑

x∈CR

e2πi〈x,t〉

∣∣∣∣∣
2

=
∑

x,y∈CR

e2πi〈x−y,t〉

we expand the numerator of the integrand, getting∫
Rd

|
∑
x∈CR e

2πi〈x,t〉|2

|CR|
g(t)dt =

1
|C|

∑
x,y∈CR

ĝ(x− y).

Now if C is the disjoint union of translates t1 + Λ, . . . , tN + Λ of the lattice Λ,
then it follows from Lemma 3.2 that

lim
R→∞

1
|CR|

∑
x,y∈CR

ĝ(x− y) =
1
N

N∑
j,k=1

∑
z∈Λ

ĝ(z + tj − tk).

Notice that this quantity is not quite the same as that considered in Lemma
3.2, because here we allow x = y or z + tj − tk = 0 in the sum, but the extra
terms amount to ĝ(0) on each side.

Now it suffices to use the Poisson summation formula, which states that for
every Schwartz function h : Rd → R and every v ∈ Rd,∑

z∈Λ

h(z + v) =
1

vol(Rd/Λ)

∑
t∈Λ∗

ĥ(t)e−2πi〈v,t〉,

where as usual
Λ∗ = {t ∈ Rd : 〈t, z〉 ∈ Z for all z ∈ Λ}

is the dual lattice of Λ. Taking h = ĝ yields

1
N

N∑
j,k=1

∑
z∈Λ

ĝ(z + tj − tk) =
1

N vol(Rd/Λ)

∑
t∈Λ∗

g(t)

∣∣∣∣∣∣
N∑

i,j=1

e2πi〈vj ,t〉

∣∣∣∣∣∣
2

.

If the support of g is sufficiently small, then only the t = 0 term contributes to
the right hand side, and it equals δpg(0), for N/ vol(Rd/Λ) = δp.

Proof of Proposition 3.3. Define

` = lim inf Rd 3 t→ 0g(t).

Let ε > 0, and choose η > 0 such that g(t) ≥ ` − ε whenever |t| ≤ η. Given C
with density δp, by Lemma 3.2, the f -potential energy of C is

Ef (C) = lim
R→∞

1
|CR|

∑
x,y∈CR
x 6=y

f(|x− y|2).

On one hand we have, since h(x) ≤ f(|x|2) for all x 6= 0,

1
|CR|

∑
x,y∈CR
x 6=y

f(|x− y|2) ≥ −h(0) +
1
|CR|

∑
x,y∈C

h(x− y);
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on the other hand,

1
|CR|

∑
x,y∈C

h(x− y) =
1
|C|

∑
x,y∈CR

∫
Rd
g(t)e2πi〈x−y,t〉dt

=
∫

Rd
g(t)
|
∑
x∈CR e

2πi〈x,t〉|2

|CR|
dt

≥
∫
Bη(0)

(`− ε)
|
∑
x∈CR e

2πi〈x,t〉|2

|CR|
dt.

In the limit as R→∞, Lemma 3.4 implies that the potential energy is at least

−h(0) + δp(`− ε),

if η is small enough, and since ε can be taken arbitrarily small, we have

Ef (C) ≥ δp`− h(0)

as desired.

Now let Λ2,Λ8 and Λ24 denote the hexagonal lattice in R2, the E8 root
lattice in R8 and the Leech lattice in R24 respectively:

Conjecture 3.5. Let d ∈ {2, 8, 24} and let f : (0,∞) → R be completely
monotonic and satisfy f(x) = O(|x|−d/2−ε) as |x| → ∞ for some ε > 0. Then
there exists a function h that satisfies the hypotheses of Proposition 3.3.

As a result, Λd would have the least f -potential energy of any periodic
configuration in Rd with the same density, i.e. the three lattices would be
universally optimal.

3.3 Local optimality

As an attempt to prove universal optimality for the three lattices listed above,
as well as for D4 and any other periodic configuration, it seems reasonable to
ask whether universal optimality holds at least locally (the exact meaning of
locally here shall be explained later).

Among the completely monotonic potentials f , it is worthwile to put forward
two families of functions, namely the inverse power laws ps(r) = r−s and the
exponential laws fc(r) = e−cr, which will play a considerable role later. Indeed,
when C = Λ is a lattice, the ps-energy (s > d/2) is

Eps(Λ) =
∑

06=x∈Λ

|x|−2s = ζ(Λ, s),

the Epstein zeta function of Λ; similarly, the fc-energy of Λ is

Efc(e
−cr,Λ) =

∑
06=x∈Λ

e−c|x|
2

= θΛ(ic/π)− 1,

where θΛ is the usual theta series of Λ.
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Thus for lattices, optimality with respect to energy minimisation is reduced
to optimality with respect to their zeta and theta series. Investigations on this
subject have been conducted by Sarnak and Strömbergsson in [SS07] and by
Coulangeon in [Cou06], in connection with the theory of spherical designs. In
particular, one has the following criterion of local optimality among lattices:

Theorem 3.6 (Coulangeon [Cou06]). Lattices for which all shells are 4-designs
achieve a local minimum (among lattices) of the map

Λ 7→ Efc(Λ)

for big enough c.

The aim of the remaining part of this chapter is to prove a result of Coulan-
geon and Schürmann contained in [CS10], which states that lattices satisfying
the conditions of Theorem 3.6 are locally universally optimal not only among
lattices, but actually among all periodic configurations of points (see Theorem
3.17). Their proof combines ideas of previous papers of theirs, [Cou06] and
[S10], with results due to Sarnak and Strömbergsson, [SS07], and applies in par-
ticular to the lattices A2, D4, E8 and to the Leech lattice Λ24: in other words,
what we are going to prove in the next paragraphs is a local version of Cohn
and Kumar’s Conjecture 3.5.

3.3.1 A parametrisation of periodic configurations

Since most of the quantities we will handle, such as energy and point density,
are invariant under isometries of Rd, we may identify two isometric N -periodic
configurations; in particular, the N -tuple (t1, . . . , tN ) can be defined up to trans-
lating all its components by a common vector.

Notation 3.7. In what follows, we denote by RNd∗ the set of N -tuples u =
(u1, . . . , uN ) of vectors in Rd subject to the condition

ui − uj /∈ Zd for i 6= j

and by RNd∗ /T the same up to translation.
For any u = (ui, . . . , uN ) ∈ RNd∗ , we define a standard periodic configuration

Ωu =
N⋃
i=1

(ui + Zd). (3.4)

Hence, every N -periodic configuration can be written as AΩu for some A ∈
GLd(R) and u ∈ RNd∗ . Moreover, the matrix A above is determined up to left
multiplication by O(d) by its associated positive definite form Q = AtA, and
under this settings we have

|Ax|2 = Q[x] := xtQx

(notice that we use column vectors.) Furthermore, we denote by Sd the set of
d× d real symmetric matrices and by Sd>0 the cone of positive definite ones.
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We thus get a parametrisation

Sd,N>0 := Sd>0 × RNdT → O(d)\LN/T (3.5)

(Q,u) 7→ C = AΩu, A such that AtA = Q. (3.6)

Finally, in order to make comparisons between the energy of differentN -periodic
sets, it is necessary to require the same point density, otherwise such a compari-
son would make no sense, for clearly, by shrinking or expanding a given periodic
configuration with scaling factor, one can achieve any energy. Therefore we re-
strict to N -periodic configuration of point density N , which amounts, by (3.1)
to consider the space Pd,N>0 := Pd>0 × RNd∗ /T, where P stands for the set of
positive definite quadratic form of determinant 1.

By (3.2), the computation of Ef (C) involves evaluating potential function
over the set of non-zero elements in

C − C = {x− y : x, y ∈ C};

here a problem is that a given element in C − C admits several representations
as a difference of two elements in C. However, the situation can be controlled
when C is actually a lattice, as we show in the following lemma:

Lemma 3.8. Let C =
⋃N
i=1 ti + Λ be an N -periodic configuration in Rd. For

x ∈ C, set
Cx = {y − x : y ∈ C}.

The following are equivalent for C:

(i) C is a lattice;

(ii) C − C = C;

(iii) Cx = C for all x ∈ C;

(iv) for any k ∈ {1, . . . , N}, there is a uniquely determined permutation σk of
{1, . . . , N} such that

∀i ∈ {1, . . . , N} tσk(i) ≡ ti − tk mod C.

Proof. The equivalence of (i), (ii) and (iii) follows from the caracterisation of
lattices as discrete additive subgroups of Rd.

For (iii)⇒(iv), we have that for fixed k, the difference ti − tk lies in

Ctk = C =
N⋃
j=1

tj + Λ,

so there exists a uniquely determined index σk(i) such that ti−tσk(i) ∈ tσk(i)+Λ.
Moreover, σk(i) = σk(j) if and only if ti − tk ≡ tj − tk mod Λ, which means
that ti − tj ∈ Λ, so that σk is a bijection. Finally, (iv) clearly implies that any
pairwise difference of elements in C is still in C, which shows that (iv)⇒(ii).

Before going on, we make a further assumption on the potential functions f
that will appear in the following sections, besides being completely monotonic
on (0,∞):
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Assumption 3.9. There exists ε > 0 such that f(x) = O(x−
d
2−ε) as x tends

to infinity.

This is meant to ensure that formula (3.2) converges, though not strictly
necessary.

Remark 3.10 (Bernstein’s Theorem). As in Chapter 2 we were able to restrict
to functions of type r → (4 − r)k (see Remark 2.5), which turned out to be
useful in the proof of Theorem 2.4 for the 600-cell, here we can use Bernstein’s
theorem (Theorem 12b in [W41]): any completely monotonic function on (0,∞)
can be written as

f(x) =
∫ ∞

0

e−cxdα(c)

(Stieltjes integral), for some weakly increasing function α : [0,∞) → R. This
allows us to deal only with exponential laws fc(r) = e−cr, c > 0 (inequalities
are preserved thanks to Fubini’s theorem); we will consider separately the case
of inverse power laws ps(r) = r−s, s > 0, which is interesting on its own.

3.3.2 Local study of f-potential energy

3.3.2.1 Local expression for the energy

The f -potential energy of an N -periodic configuration C = AΩu depends only
on the associated periodic form (Q,u), namely one has

Ef (C) = Ef (Q,u) =
1
N

N∑
i=1

∑
x∈Ωu
x 6=ui

f(Q[ui − x]). (3.7)

We want to do a local study of Ef , i.e. to expand it in a neighbourhood of a
given N -periodic configuration

C0 = A0Ωu0 =
N⋃
i=1

(t0i + Λ0),

where we set L0 = A0Zd and t0 = A0u0, i.e. t0i = Au0
i for 1 ≤ i ≤ N . We

also assume that C0 has point density δp(C0) = N (i.e. det Λ = 1) and we let
X0 = (Q0,u0) be the corresponding periodic form, with Q0 = At0A0.

The variety Pd,N>0 = Pd>0 × RNd∗ /T is locally homeomorphic in a neighbour-
hood of X0 = (Q0,u0) to its tangent space at X0, which is identified with
TQ0 × RNd/T where

TQ0 = {K ∈ Sd : Tr(Q−1
0 K) = 0}.

The isomorphism is obtained via the matrix exponential through the map

(K,u) 7→ (Q0 exp(Q−1
0 K),u0 + u).

Notice that the tangent space

TQ0 × RNd/T
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at X0 comes equipped with its standard SLd(R)-invariant scalar product

〈(K,u), (L,v)〉X0 := Tr(Q−1
0 KQ−1

0 L) +
N∑
i=1

utivi (3.8)

which defines the Riemannian structure of Pd,N>0 . To study how Ef varies locally
around X0, it is sufficient to consider the f -energy of (Q0 exp(Q−1

0 K),u0 + u)
for small enough H ∈ TQ0 and u ∈ RNd/T. Thus (3.7) becomes

1
N

N∑
i=1

∑
x∈Ωu0+u

x 6=u0
i+ui

f
(
Q0 exp(Q−1

0 K)[u0
i + ui − x]

)
. (3.9)

In the internal sum, each term u0
i +ui−x can be written as u0

i −u0
j +ui−uj for

some j ∈ {1, . . . , N} and some v ∈ Zd. The condition u0
i − u0

j + ui − uj + v 6= 0
is satisfied as soon as u0

i − u0
j + v itself is non-zero, provided that the ui are

close enough to 0 (this is the case for instance if the ui’s satisfy |ui| < ρ0/2,
where ρ0 := min0 6=x∈Ωu0−Ωu0 |x|). Thus, assuming that u lies in a suitable
neighbourhood of 0, we can rewrite (3.9) as

1
N

N∑
i,j=1

∑
0 6=w∈u0

i−u0
j+Zd

f
(
Q0 exp(Q−1

0 K)[w + ui − uj ]
)
. (3.10)

Making a little change of coordinates in order to simplify notation, the above
equation becomes

Ef (H, t) :=
1
N

N∑
i,j=1

∑
0 6=w∈t0i−t0j+Λ0

f
(

exp(H)[w + ti − tj ]
)

(3.11)

where

- t = A0u and t0 = A0u0;

- H ∈ {H ∈ Sd : Tr(H) = 0} ;

- the scalar product (3.8) on Tid takes the simpler form

〈(K,u), (L,v)〉 = Tr(KL) +
N∑
i=1

utivi.

Remark 3.11. Notice that the definition of Ef depends on the representation of
C0 as a periodic configuration, i.e. on the choice of A0 and u0. Moreover, with
this setting Ef (C) = Ef (0,0).

To go further in our simplification of the expression for Ef , the two main ingre-
dients will be:

• using the additive structure of C0 (if any);

• using the translation invariance of energy.
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These conditions are met in particular when C0 is a lattice, in which case we
obtain the following lemma:

Lemma 3.12. If C0 =
⋃N
i=1(t0i + Λ0) is a lattice, then

Ef (H, t) =
1
N2

∑
06=w∈C0

N∑
i,k=1

f
(

exp(H)[w + ti − tσk(i)]
)
, (3.12)

where σk is the bijection of Lemma 3.8.

Proof. Since C0 − C0 = C0, any coset t0i − t0j in the inner sum of (3.11) can be
written t0k + Λ0 for a uniquely defined k. More precisely, using Lemma 3.8(3),
we obtain

Ef (H, t) =
1
N

N∑
k=1

∑
0 6=w∈t0k+Λ0

N∑
i=1

f
(

exp(H)[w + ti − tσk(i)]
)
, (3.13)

where σk is the permutation defined by the condition that t0σk(i) ≡ t0i − t0k
mod Λ0 for all i ∈ {1, . . . ,m} (see Lemma 3.8). Notice that the tj are replaced
by tσk(i) and that the change from index j to k causes a reordering of terms.

Because of the translation invariance of energy, Ef (H, t) is not modified if all
the components of t0 are translated by a common vector α ∈ Rd; in particular,
we can choose α = −t0j for some j ∈ {1, . . . ,m}. Applying this to (3.13), we get
for any j ∈ {1, . . . ,m} the expression

Ef (H, t) =
1
N

N∑
k=1

∑
0 6=w∈t0k−t

0
j+Λ0

N∑
i=1

f
(

exp(H)[w + ti − tσk(i)]
)

=
1
N

N∑
k=1

∑
0 6=w∈−t0

σk(j)+Λ0

N∑
i=1

f
(

exp(H)[w + ti − tσk(i)]
)
.

(Ej)

Adding up the (Ej)’s for j = 1, . . . , N and then averaging, together with noticing
that

N⋃
j=1

−t0σk(j) + Λ0 =
N⋃
j=1

−t0j + Λ0 =
⋃
t0j + Λ0 = C0

we get the final expression

Ef (H, t) =
1
N2

N∑
k=1

∑
06=w∈C0

N∑
i=1

f
(

exp(H)[w + ti − tσk(i)]
)

=
1
N2

∑
06=w∈C0

N∑
i,k=1

f
(

exp(H)[w + ti − tσk(i)]
)
.
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3.3.2.2 Taylor expansion of Ef

We compute here the Taylor development of order 2 of (3.12), viewed as a
function on the tangent space Tid × RNd/T. To do that, we need to compute
the gradient and the Hessian of Ef at the lattice C0, i.e. at (0,0) in our notation,
and then we will have

Ef (H, t) = Ef (0,0)+〈gradEf (0,0), (H, t)〉+ 1
2

hessEf (0,0[H, t])+o(|(H, t)|2).

(3.14)
We do these computations in the following lemma: here f is either an inverse
power law ps(r), or an exponential fc(r).

Lemma 3.13. Assume as above that C0 =
⋃N
i=1 t

0
i +Λ0 is a lattice in Rd. Then

(i) for an inverse power law ps(r) = r−s, one has

〈gradEps(0,0), (H, t)〉 = −s
∑

06=w∈C0

H[w]|w|−2s−2

hessEps(0,0)[H, t] = s
∑

0 6=w∈C0

|w|−2s−4
{s+ 1

2
(H[w])2 − 1

2
H2[w]|w|2

+
1
N2

N∑
i,k=1

[
2(s+ 1)

(
wt(ti − tσk(i))

)2 − |w|2|ti − tσk(i)|2
]}

;

(ii) for an exponential law fc(r) = e−cr, one has

〈gradEfc(0,0), (H, t)〉 = −c
∑

06=w∈C0

H[w]e−c|w|
2

hessEfc(0,0)[H, t] = c
∑

06=w∈C0

e−c|w|
2
{ c

2
(H[w])2 − 1

2
H2[w]

+
1
N2

N∑
i,k=1

[
2c
(
wt(ti − tσk(i))

)2 − |ti − tσk(i)|2
]}
.

Proof. Using the Taylor expansion of the matrix exponential

exp(H) =
∞∑
k=0

Hk

k!

we write

exp(H)[w + ti − tσk(i)] = (I +H +
H2

2
+ hot)[w + ti − tσk(i)]

= |w|2+H[w] + 2wt(ti − tσk(i))︸ ︷︷ ︸
L(H,t)

+ |ti − tσk(i)|2 + 2wtH(ti − tσk(i)) +
1
2
H2[w]︸ ︷︷ ︸

S(H,t)

+o
(
|(H, t)|2

)
.

Then, we expand the expressions for ps and fc, getting

exp(H)[w + ti − tσk(i)]−s = |w|−2s

(
1 +

L
|w|2

+
S
|w|2

)−s
+ o
(
|(H, t)|2

)
= |w|−2s

(
1− L+ S

|w|2
+
s(s+ 1)

2
L2

|w|4

)
+ o
(
|(H, t)|2

)
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and

e−c exp(H)[w+ti−tσk(i)] = e−c|w|
2
e−c(L+S+o(|(H,t)|2))

= e−c|w|
2
(

1− c(L+ S) +
c2

2
L2

)
+ o
(
|(H, t)|2

)
.

Finally, for a fixed w ∈ C0, we have to add the terms

exp(H)[w + ti − tσk(i)]−s resp. e−c exp(H)[w+ti−tσk(i)],

corresponding to all pairs (i, k). Since σk is a permutation, the terms 2wt(ti −
tσk(i)) appearing in L add up to zero, as do the terms 2wtH(ti−tσk(i)) in S, and
the terms 2wt(ti − tσk(i))H[w] appearing in the expansion of L2. Altogether,
this gives the formulae of the lemma.

Remark 3.14. There are two important facts to underline in the previous cal-
culations, that happen when C0 is a lattice:

- the gradient of the potential energy at C0, which is a priori a linear form
in the variable (H, t) ∈ Tid×RNd, has actually a trivial component in the
translational direction;

- the Hessian splits into the sum of a quadratic form in H and a quadratic
form in t.

In other words, when studying local perturbations of energy within the set of
periodic configurations around a lattice, it is possible to separate purely trans-
lational moves (i.e. with H = 0) and purely lattice moves (i.e. with t = 0).
This observation will play an important role in the proof of Theorem 3.17.

3.3.3 Proof of the main result
In this section, we will state and prove the recent result of Coulangeon and
Schürmann [CS10]. They have succeeded in showing that under some rather
general conditions, a lattice which is locally optimal among lattices regarding
energy minimisation, is actually locally optimal among all periodic sets.

One problem in giving a precise meaning to “optimal” or “critical point”
for the energy is that a given periodic configuration admits infinitely many
representations as C =

⋃N
i=1 ti + Λ, for various N ’s and Λ’s. To overcome this

problem, we adopt the following definition:

Definition 3.15. Let f be a completely monotonic function.

(i) A periodic configuration C0 is said to be f -critical if it is a critical point
of Ef (C) on Pd,N>0 for any N .

(ii) A periodic configuration C0 is said to be locally f -optimal if it locally
minimises Ef (C) on Pd,N>0 for any N .

With this terminology, a periodic configuration is locally universally optimal
if it is locally f -optimal for every complete monotonic function f , or equivalently,
thanks to Bernstein’s theorem, for every exponential function fc, c > 0.

We need one more lemma, whose proof can be found in [V01], Theorem 3.2,
which is a further characterisation of the spherical designs that enter in the
main theorem:
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Lemma 3.16. Let D be a finite subset of the sphere rSd−1 of radius r in Rd
and k an even positive integer. Assume that D is symmetric about the origin,
i.e. D = −D. Then the following are equivalent:

(i) D is a k-design†;

(ii) there exists a constant ck, depending only on r, k and the cardinality of
D, such that for all y ∈ Rd,∑

x∈D
(x · y)k = ck(y · y)k/2. (3.15)

Now we are ready to state the main result of this section:

Theorem 3.17. (i) Let C0 be a lattice, all shells whereof are 2-designs. Then,
viewed as a periodic configuration, C0 is f -critical for any completely mono-
tonic function f .

(ii) Let C0 be a lattice, all shells whereof are 4-designs. Then, viewed as a
periodic set,

(a) C0 is locally ps-optimal for every s > d
2 ;

(b) C0 is locally fc-optimal for every big enough c > 0.

Proof. For any fixed positive integer N , write C0 as an N -periodic set
⋃N
i=1 t

0
i +

Λ0. We consider Ef (as in (3.11)) depending on the particular choice of Λ0

and t0 to study locally the energy in a neighbourhood of C0 within Pd,N> 0. In
particular we use the Taylor expansion of Ef around (0,0) obtained previously.

(i). We have to show that for every completely monotonic function f , the
gradient of f at (0,0) is orthogonal to Tid×RNd. Thanks to Bernstein’s theorem,
it is enough to show it for exponential functions fc. For any α > 0, set

C0(α) = {w ∈ C0 : |w|2 = α}.

These shells of the lattice C0 are assumed to be 2-designs (if non-empty). Using
Lemma 3.16(ii), this is equivalent to the relation∑

w∈C0(α)

wwt =
α|C0(α)|

d
id (3.16)

for any positive real number α, that is, the constant c2 in Lemma 3.16(ii) equals
α|C0(α)|

d (this can be seen taking traces in (3.15)). Therefore, we have

〈gradEfc(0,0), (H, t)〉 = −c
∑

0 6=w∈C0

H[w]e−c|w|
2

= −c
∑
α>0

∑
w∈C0(α)

H[w]e−cα

= −c
∑
α>0

e−cα
∑

w∈C0(α)

Tr(wwtH)

= −c
∑
α>0

e−cα Tr
((

α|C0(α)|
d

id
)
H

)
= 0

†a spherical k-design on rSd−1 is defined the same way as a design on the unit sphere, i.e.
every polynomial of degree ≤ k must have the same average on it as on the entire sphere.
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since Tr(H) = 0 for every H ∈ Tid.
(ii). Now to prove local optimality with respect to f it is enough to prove

that the Hessian Ef (0,0) is positive definite. By Proposition 1.2 in [Cou06] the
hypothesis that all shells of C0 are 4-designs translates into

∀H ∈ Sd(R),
∑

06=w∈C0(α)

H[w]2 =
α2|C0(α)|
d(d+ 2)

((TrH)2 + 2 Tr(H2)), (3.17)

provided that C0(α) is non-empty. But since all non-empty shells of C0 are also
2-designs, this implies that

∀H ∈ Sd(R),
∑

06=w∈C0(α)

H2[w] =
α|C0(α)|

d
Tr(H2). (3.18)

When f = ps is an inverse power function, putting (3.17) and (3.18) into
the expression for hessEps(0,0) obtained in Lemma 3.13(i) yields

hessEps(0,0)[H, t] =
s(s− d/2)
d(d+ 2)

ζ(C0, s)(TrH)2 +
s

N2
Ψs(t)

where

Ψs(t) =
∑

06=w∈C0


N∑

i,k=1

[
2(s+ 1)

(
wt(ti − tσk(i))

)2 − |w|2|ti − tσk(i)|2
] |w|−2s−4.

Unless H is zero, the first term s(s−d/2)
d(d+2) ζ(C0, s)(TrH)2 is positive because s >

d/2. As for Ψs(t), we can rewrite it as

Ψs(t) =
∑
α>0

∑
0 6=w∈C0(α)


N∑

i,k=1

[
2(s+ 1)

(
wt(ti − tσk(i))

)2 − α|ti − tσk(i)|2
]α−s−2.

As each non-empty shell of C0 is a 2-design, we can further simplify to

Ψs(t) =
∑
α>0

(
2(s+ 1)

d
− 1
)
|C0(α)|−s−1

N∑
i,k=1

|ti − tσk(i)|2

which is clearly positive for s > d/2, unless ti = tσk(i) for every 1 ≤ i, k ≤ N ; but
since for every pair (i, j) with 1 ≤ i, j ≤ N there exists k such that σk(i) = j
(namely k = σj(i)), the last condition implies that ti = tj for all (i, j) and
consequently t ≡ 0 mod T. This proves (ii) in case (a).

When f = fc is an exponential potential, then the same kind of computations
as before yields

hessEfc(0,0)[H, t] =
Tr(H2)
d(d+ 2)

∑
06=w∈C0

c|w|2
(
c|w|2 − (d/2 + 1)

)
e−c|w|

2
+

c

N2
Υc(t)

where

Υc(t) =
∑

0 6=w∈C0


N∑

i,k=1

[
2c
(
wt(ti − tσk(i))

)2 − |ti − tσk(i)|2
] e−c|w|

2
.
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If H 6= 0, the first term

Tr(H2)
d(d+ 2)

∑
06=w∈C0

c|w|2
(
c|w|2 − (d/2 + 1)

)
e−c|w|

2

is positive as soon as c is strictly greater than d+2
2 min C0 , where

min C0 = min
06=C0
|w|2.

On the other hand, since all non-empty shells of C0 are 2-designs, the expression
of Υc(t) reduces to

Υc(t) =
∑
α>0

(
2cα
d
− 1
)
|C0(α)|e−cα

N∑
i,k=1

|ti − tσk(i)|2.

This quantity is positive for any c > d
2 min(C0) , for then it is a sum of positive

terms. This proves (ii) in case (b).

Consequence. In the previous proof we have found that, when the 4-design
condition is satisfied on every shell of C0, the Hessian of the fc-potential energy
splits into a sum

hessEfc(0,0)[H, t] =
Tr(H2)
d(d+ 2)

∑
0 6=w∈C0

c|w|2
(
c|w|2 − (d/2 + 1)

)
e−c|w|

2
+

+
c

N2

∑
α>0

(
2cα
d
− 1
)
|C0(α)|e−cα

N∑
i,k=1

|ti − tσk(i)|2, (3.19)

with the first term belonging to purely lattice moves and the second to purely
translational ones. Setting u = c/π, we can rewrite (3.19) as

hessEfc(0,0)[H, t] = y

 Tr(H2)
d(d+ 2)

G(y) +
2π
N2d

F (y)
N∑

i,k=1

|ti − tσk(i)|2
 (3.20)

where

F (y) =
∑
α>0

(
πyα− d

2

)
|C0(α)|e−πyα

G(y) =
∑
α>0

πα

(
πyα−

(
d

2
+ 1
))
|C0(α)|.

In view of the next corollary, it is important to notice that

F ′(y) = −G(y). (3.21)

Corollary 3.18. A lattice all shells whereof are 4-designs is locally universally
optimal among all periodic configurations if and only if it is locally universally
optimal among lattices.
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Proof. One implication is obvious; conversely, if C0 is locally universally optimal
among lattices, then under the notation of (3.20) this means thatG(y) > 0 for all
y > 0. But then (3.21) implies that F (y) is strictly decreasing on (0,∞); hence
F (y) is positive for every y > 0, since, as we have observed before, it is certainly
positive for any big enough y, e.g. y > d

2πmin C0 . Therefore also the translational
component of hessEf (0,0) is strictly positive unless (H, t) = (0,0), and that
allows to conclude.

This principle applies in particular to D4, E8 and to the Leech lattice Λ24,
for which the 4-design condition is well-known to hold (see for example [Cou06]).
As a result, we have:

Theorem 3.19. The root lattices D4, E8 and the Leech lattice Λ24 are locally
universally optimal, i.e. they locally minimise the f -energy on Pd,N>0 for any N
and for any completely monotonical potential function f .

Proof. Applying Corollary 3.18, it is enough to prove that these lattices are
locally universally optimal among lattices, and this has been done by Sarnak
and Strömbergsson in their paper [SS07], Proposition 2. The computations on
pages 138-139 show that the H-part of the Hessian

H 7→ Tr(H2)
d(d+ 2)

∑
06=w∈C0

c|w|2
(
c|w|2 −

(d
2

+ 1
))

e−c|w|
2
.

is positive for any c > 0.

Conclusion. What we have treated in the previous sections is undoubtedly a
major advancement in the theory of universally optimal Euclidean configura-
tions of points. Hopefully, in a not too distant future someone will be able to
show whether globally universally optimal Euclidean configurations exist or not,
and to provide a list of them.

FINIS OPERIS



Appendix A

Uniqueness of spherical codes

Uniqueness of the N -gon is trivial.
For the simplex, cross polytope, icosahedron, and the 600-cell, uniqueness

can be proved via analysing the case of equality in the Bőrőczky bound (see
[B78], p. 260, or [BD01] for another proof for the 600-cell).

For the (24, 196560, 1/2), (23, 4600, 1/3), (8, 240, 1/2), and (7, 56, 1/3) spher-
ical codes, uniqueness was proved by Bannai and Sloane in [BS81], resumed in
Chapter 14 of [CS99].

For the (6, 27, 1/4), (5, 16, 1/5), (22, 275, 1/6), (21, 162, 1/7), and (22, 100,
1/11) codes, uniqueness follows from results in the theory of strongly regular
graphs: in each case, there are only two distinct inner products other than 1,
so one can construct a graph out of the vertices by making edges correspond to
one particular inner product (one gets one of two complementary graphs, which
encode the same information). Using Theorem Theorem 1.54 and Lemma 1.53
one shows that these graphs are strongly regular and determines their parame-
ters. In each case, there are unique strongly regular graphs with these param-
eters (see [CGS78]). It follows that the Gram matrices of the corresponding
configurations of points are uniquely determined, hence the configurations are
themselves determined up to orthogonal transformations.

For the (23, 552, 1/5) code, uniqueness follows from the uniqueness of the
regular two-graph on 276 vertices. In any (23, 552, 1/5) code, the linear pro-
gramming bounds show that only the inner products −1 and ±1/5 occur. Such
a code thus gives rise to an arrangement of 276 equiangular lines in R23, which
corresponds to a regular two-graph on 276 vertices. Goethals and Seidel proved
in [GS75] that it is unique, which implies the uniqueness of the (23, 552, 1/5)
code.

Finally, the last remaining case is the (22, 891, 1/4) spherical code: a proof
based on the techniques of Bannai and Sloane can be found in [CK04.2].

73



74 APPENDIX A. UNIQUENESS OF SPHERICAL CODES



Bibliography

. . . Let us come to those references to authors which other
books have, and you want for yours. The remedy for this is very
simple: You have only to look out for some book that quotes them
all, from A to Z as you say yourself, and then insert the very
same alphabet in your book, and though the imposition may be
plain to see, because you have so little need to borrow from them,
that is no matter [. . . ] At any rate, if it answers no other purpose,
this long catalogue of authors will serve to give a surprising look
of authority to your book . . . (Cervantes, Don Quixote, Preface.)

[A96] N. N. Andreev, An extremal property of the icosahedron, East. J. Approx.
2 (1996), 459–462. MR1426716 (97m:52022)

[A97] N. N. Andreev, Disposition of Points on a Sphere with Minimal Energy.
Proc. Steklov Inst. Math. 219 (1997), 20–24.

[A99] N. N. Andreev, A spherical code (Russian), Uspekhi Mat. Nauk 54 (1999),
255–256; transl. in Russian Math. Surveys 54 (1999), 251-253. MR1706807.

[AAR99] G. E. Andrews, R. Askey and R. Roy, Special functions. Cambridge
Un. Press, 1999.

[BMV04] E. Bannai, A. Munemasa and B. Venkov, The non-existence of certain
tight spherical deisgns, Algebra i Analiz 16 (2004), 1–23

[BS81] E. Bannai and N. J. A. Sloane, Uniqueness of certain spherical codes,
Canad. J. Math. 33 (1981), 2, 437–449.

[B04] K. Bőrőczky, Jr., Finite packing and covering, Cambridge Tracts in Math-
ematics 154, Cambridge Univ. Press, Cambridge, 2004.

[B78] K. Bőrőczky, Packing of spheres in spaces of constant curvature, Acta
Math. Acad. Scientiarum Hung. 32 (1978), 243–261.

[BD01] P. Boyvalenkov and D. Danev, Uniqueness of the 120-point spherical
11-design in four dimensions, Arch. Math. (Basel) 77 (2001), 4, 360–368.

[CGS78] P. J. Cameron, J. M. Goethals and J. J. Seidel, Strongly regular graphs
having strongly regular constituents, J. Algebra 55 (1978), 257–280.

[C10] H. Cohn, Order and disorder in energy minimization. Proceedings of
the International Congress of Mathematics, Hyerabad, India, 2010. arXiv:
math.MG/1003.3053v1.

75



76 Bibliography

[CCEK07] H. Cohn, J. H. Conway, N. Elkies and A. Kumar, The D4 root system
is not universally optimal. Experimental Math. 16 (2007), 313–320. arXiv:
math.MG/0607447v3.

[CK07] H. Cohn and A. Kumar, Universally optimal distribution of points on
spheres. J. Amer. Math. Soc. 20 (2007), 99–148.

[CK04] H. Cohn and A. Kumar, The densest lattice in twenty-four dimen-
sions. Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 58–67, arXiv:
math.MG/0408174v1.

[CK04.2] H. Cohn and A. Kumar, Uniqueness of the (22, 891, 1/4) spherical
code, preprint, 2004, arXiv: math.MG/0607448.

[CKS09] H. Cohn, A. Kumar and A. Schürmann, Ground states and formal
duality relations in the gaussian core model, Physical Review E 80 (2009).

[CS99] J. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
third edition, Grundlehren der Mathematischen Wissenschaften 290,
Springer-Verlag, New York, 1999.

[CS10] R. Coulangeon and A. Schürmann, Energy minimization, periodic sets
and spherical designs. Preprint, May 2010. arXiv: math.MG/1005.4373v1.

[Cou06] R. Coulangeon, Spherical designs and zeta function of lattices. Int.
Math. Res. Not. 2006. Art. ID 49620, 16.

[C73] H. S. M. Coxeter, Regular Polytopes. Dover Publications, reprint 1973.

[D63] P. J. Davis, Interpolation and approximation, Blaisdell Publishing Com-
pany, New York, 1963.

[D72] P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips
Res. Rep. 27 (1972), 272–289.

[DGS75] P. Delsarte, J. Goethals and J. Seidel, Bounds for systems of lines,
and Jacobi polynomials, Philips Res. Repts. 30, 91*–105* (1975).

[DGS77] P. Delsarte, J. Goethals and J. Seidel, Spherical codes and designs,
Geometriae Dedicata 6 (1977), 363–388.

[E02] W. Ebeling, Lattices and codes. A course partially based on Lectures by
F. Hirzebruch, second edition, Advanced Lectures in Mathematics, Friedr.
Vieweg & Sohn, Braunschweig, 2002.

[Exp09] B. Ballinger, G. Blekherman, H. Cohn, N. Giansiracusa, E. Kelly and A.
Schürmann, Experimental study of energy-minimizing point configurations
on spheres, Experiment. Math. 18 (2009), 257–283.

[FT64] L. Fejes Tóth, Regular figures. Pergamon Press, MacMillan, New York,
1964.

[GR01] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in
Mathematics 207, Springer-Verlag, New York, 2001.



Bibliography 77

[GS75] J. Goethals and J. Seidel, The regular two-graph on 276 vertices, Discrete
Math. 12 (1975), 143–158.

[KL78] G. A. Kabatiansky and V. I. Levenshtein, Bounds for packing on a
sphere and in space, Probl. Inf. Transm. 14 (1978), 1–17.

[KY94] A. V. Kolushov and V. A. Yudin, On the Korkin-Zolotarev construction,
Discrete Math. Appl. 4 (1994), 143–146.

[KY97] A. V. Kolushov and V. A. Yudin, Extremal disposition of points on the
sphere, Anal. Math. 23 (1997), 25–34.

[L92] V. I. Levenshtein, Designs as maximum codes in polynomial metric spaces,
Acta Appl. Math., 29 (1992), 1–82.

[SS07] P. Sarnak and A. Strömbergssohn, Minima of Epstein’s zeta function
and heights of flat tori, Invent. Math. 165 (2006), 1, 115–151.

[S42] I. J. Schoenberg, Positive definite functions on the sphere, Duke Math. J.
9 (1942), 96–108.

[S10] A. Schürmann, Perfect, strongly eutactic lattices are periodic extreme,
Adv. Math. (2010).

[S05] B. Simon, Orthogonal polynomials on the unit circle, Part 1: Classical
theory, American Math. Soc. Colloquium Publications 54, American Math.
Soc. Providence, RI, 2005.

[Sz75] G. Szegő, Orthogonal Polynomials, Fourth edition, AMS Colloquium
Publications 23, American Math. Soc., Providence, Rhode Island, 1975.

[V01] B. Venkov, Réseaux et designs sphériques, Réseaux Euclidiens, De-
signs sphériques et Formes Modulaires, Monogr. Enseign. Math. 37,
L’enseignement Mathématique, Geneva, 2001, 10–86.

[W41] D. V. Widder, The Laplace Transform, Princeton University Press,
Princeton, New Jersey, 1941.

[Y92] V. A. Yudin, Minimum potential energy of a point system of charges
(Russian), Diskret. Mat. 4 (1992), 115–121; transl. in Discrete Math. Appl.
3 (1993), 75–81. MR1181534 (93f:31008).


