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Chapter 1

Blowing-up of Projective
Spaces.

1.1 Preliminaries

Let X be a noetherian scheme and B a quasi-coherent sheaf of OX -modules

which has a structure of a sheaf of graded OX -algebras. i.e B =
⊕

d≥0 Bd,

where Bd is the homogenous part of degree d with B0 = OX , B1 a coherent

OX -module and B generated by B1 as an OX -algebra.

For an open affine subset U = Spec A of X, B(U) is a graded A-Algebra.

πU : Proj B(U) −→ U is a projective A-scheme. Then B quasi-coherent

implies that Proj B(Uf ) ∼= π−1
U (Uf ) . Hence for two affine open subests U

and V , we have a natural isomorphism π−1
U (U ∩ V ) = π−1

V (U ∩ V ). Thus we

can glue these schemes to obtain a scheme which we denote by Proj B. Also,

there is a natural morphism π : Proj B −→ X with the property that for

every affine open subset U = Spec A, π−1(U) ∼= Proj B(U).

Since a closed subscheme corresponds to a coherent sheaf of ideals, we can

speak of blowing up along a coherent sheaf of ideals I on X .

Definition 1.1.1. Consider a sheaf of graded algebras B =
⊕

d≥0 Id, Id being

the dth power of I with I0 = OX . We define X̃ = Proj B to be the Blowing-

up of X with respect to I. If Y is the closed subscheme corresponding to I,

then we say X̃ is the Blowing-up of X along Y .
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1.1. PRELIMINARIES

Definition 1.1.2. Let f : X −→ Y be a morphism of schemes, I ⊆ OY be a

sheaf of ideals on Y . Let f−1I be the inverse image of the sheaf I. f−1I is a

sheaf of ideals in f−1OY . Using the natural map f−1OY −→ OX , we define

the Inverse Image Ideal Sheaf of I
′ ⊆ OX to be the sheaf of ideals generated

by f−1I.

Let A be a ring. On Pn
A we have the invertible sheaf O(1) and the homoge-

nous co-ordinates (x0, x1, ....., xn) as global sections in Γ(Pn
A,O(1)) generate

O(1). Let X be a scheme over A and φ : X −→ Pn
A be an A-morphism.

Then L = φ∗(O(1)) is an invertible sheaf on X and the global sections

si = φ∗(xi) ∈ Γ(X,L) generate the sheaf L. Conversely

Theorem 1.1.3. If L is an invertible sheaf on X and if (s0, s1, ....., sn) ∈

Γ(X,L) generate L, the there exists a unique A-morphism φ : X −→ Pn
A such

that L ∼= φ∗(O(1)) and si = φ∗(xi).

Proof. Let us define the open subset Xi = {P ∈ X|(si)P /∈ mPLP }

for i = 0, 1, ...., n. If P /∈ ∪iXi, then (si)P ∈ mPLP ∀i which implies that

{si}i=0,...,n do not generate LP , a contradiction. Hence, the {Xi}i cover X.

We prove the theorem by providing a map from Xi to Ui where Ui is the open

subset {xi 6= 0} of Pn
A and then glueing them to obtain a map φ : X −→ Pn

A.

We have that Ui is isomorphic to An
A
∼= spec A[T0, ...., Tn] with Ti = xj/xi

where xi as above. Now consider the ring homomorphism A[T1, ...., Tn] −→

Γ(OX , Xi) given by Tj −→ sj/si. Now si /∈ mPLP ∀P ∈ Xi and because

L is locally free of rank 1, sj/si makes sense as an element of Γ(OX , Xi).

Also this map is well defined. Hence we have a map Xi −→ Ui. By glueing

these maps, we get a A-morphism φ : X −→ Pn
A such that si = φ∗(xi). Any

map φ satisfying the given properties is unique by construction above. Also,

L ∼= φ∗(O(1)).

�

Theorem 1.1.4 (Universal Property of blowing-up). Let X be a noetherian

scheme, I a coherent sheaf of ideals and π : X̃ −→ X the blowing-up with
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1.1. PRELIMINARIES

respect to I. If f : Z −→ X is any morphism such that f−1I.OZ is an

invertible sheaf of ideals on Z, then there exists a unique morphism g : Z −→

X̃ factoring through f .
Z X̃

X

............. ............. ............. ............. ............. ............ ............
g

............................................................................................................................................................................................................... .........
...

f

.......................................................................................................................................
...
.........
...

π

Proof. We may assume without loss of generality that X = spec A is

affine with A noetherian. Further we have that the sheaf of ideals I is given

by the ideal I whose generators are {a1, ....an}. We have the natural morphism

A[x1, ....., xn] −→ S = ⊕d≥0I
d sending xi to ai with kernel {h|h(a1, ....., an) =

0. This induces a closed immersion X̃ −→ Pn−1
A . Let L = f−1I.OZ be the

invertible sheaf. Then the inverse images of {a1, ....., an}, as global sections,

generate L.

By the previous theorem there is a unique morphism g : Z −→ Pn−1
A such

that L = g∗(O(1)) and si = g∗Xi. Then the map g factors through the closed

subscheme X̃ of Pn−1
A . If h is such that h(a1, ....an) = 0, then f(s1, ....sn) = 0

in Γ(Z,Ld) where h is homogenous of deg d. Thus g is a map factoring f .

This forces f−1I.OZ = g−1(π−1I.O eX).OZ = g−1O eX(1).OZ . Thus there is a

surjective map g∗O eX(1) ∼= L.

Since a surjective map of invertible sheaves on a locally ringed spaces is an

isomorphism, we have g∗O eX(1)
∼= L. Further we have that the sections si of

L pull-backs sections xi of O(1). Now by Theorem 1.1.3 we have that g is

unique.

�

Corollary 1.1.5. Let f : X −→ Y be a morphism of noethreian schemes

and let I be a coherent sheaf of ideals on X. Let X̃ be the blowing-up of

I and let Ỹ be the blowing-up of Y with respect to the inverse image sheaf
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1.2. BLOWING-UP OF PROJECTIVE SPACES

J = f−1I.OY . Then there exists a unique morphism f̃ : Ỹ −→ X̃ such that

the diagram

Ỹ X̃

X Y

............. ............. ............. ............. ............. ............ ............
f̃

.......................................................................................................................................... ............

f

.......................................................................................................................................
...
.........
...

.......................................................................................................................................
...
.........
...

is commutative. Also, if f is a closed immersion, then so is f̃ .

Proof. The existence and uniqueness follows from the theorem above.

The only thing that is to be checked is that f̃ is a closed immersion if f is.

X̃ = ProjB where B =
⊕

d≥0 Id and Ỹ = Proj B
′

where B
′

=
⊕

d≥0 Jd. Y

a closed subscheme implies that B
′

is a sheaf of graded algebras on X. Hence

there is a natural surjectove homomorphism of graded rings B −→ B
′

which

gives a closed immersion.

�

Definition 1.1.6. Let Y be a closed subscheme. We call the closed subscheme

Ỹ of X̃ as above to be the strict transform of Y under the blowing-up π : X̃ −→

X.

1.2 Blowing-up of Projective Spaces

Definition 1.2.1. Let us denote by Pn for Pn
Fq

. We define V ⊂ Pn to be

a linear subvariety if φ−1(V ∪ {0}) ⊂ An+1 is a linear subspace, where φ :

An+1\{0} −→ Pn is the natural map.

Let Grd(Pn) be the grassmann variety of linear subvarieties of dimension d

and Gr∗(Pn) =
∐

dGrd(Pn). Let Grd(Pn)(Fq) be the linear subvarieties in Pn

of dimesion d defined over Fq. We construct a projective smooth variety Bn of

dimension n over Fq by successive blowing-up of Pn along linear subvarieties

with a birational map f : Bn −→ Pn.
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1.2. BLOWING-UP OF PROJECTIVE SPACES

1.2.1 Construction of Bn

First we put Y0 := Pn. Let Z0 be the disjoint union of linear subvarieties

of dimension 0 in Pn defined over Fq i.e all the Fq-rational points on Pn. Let

Y1 be the blow-up of Y0 along Z0. Let Z1 be the strict transform of lines in

Pn over Fq and Y2 the blow-up of Y1 along Z1. Construct Yk+1 inductively

as follows. Assume Yk was already constructed. Let Zk be the union of strict

transforms of linear subvarieties of dimension k in Pn defined over Fq. Let

fk : Yk+1 −→ Yk be the blow-up of Yk along Zk. We set Bn = Yn−1 and

f = f0 ◦ ..... ◦ fn−2 : Bn −→ Pn

Hence Bn can be described by the following sequence of blow-ups.

Bn = Yn−1 −→ Yn−1 −→ ..... −→ Y1 −→ Y0 = Pn

The construction is equivariant under the action of PGLn+1(Fq) which is

obtained from the natural action of PGLn+1(Fq) on Pn.

1.2.2 Divisors on Bn

Definition 1.2.2. Let V ∈ Grk(Pn)(Fq). We define a smooth irreducible

divisor for k = n−1 to be DV ⊂ Bn, the strict transform of V . For k < n−1,

consider the strict transform Ṽ ⊂ Yk of V which is a connected component

of Zk. Define the divisor DV ⊂ Bn to be the stict transform of the Pn−d−1-

bundle, f−1
k (Ṽ ) ⊂ Yk+1, over Ṽ .

Proposition 1.2.3. Let V ,W ∈ Gr∗(Pn)(Fq), DV ∩DW 6= φ if and only if

V ⊂W or W ⊂ V .

Proof. If V ⊂ W or W ⊂ V , then clearly DV ∩DW 6= φ. To prove the

other way, let us assume V * W and W * V . Then blowing-up along the

strict transform of V ∩W in Bn, the strict transforms of V and W become

disjoint.

�
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1.2. BLOWING-UP OF PROJECTIVE SPACES

Proposition 1.2.4. Let V ∈ Grd(Pn)(Fq) we have a non-canonical isomor-

phism,

DV
∼= Bd × Bn−d−1

where Bd(resp. Bn−d−1 ) is obtained from Pd(resp. Pn−d−1) in the same way

as Bn.

Proof. Consider the normal bundle NV/Pn of V . It is isomorphic to

OV (1)⊕n−d. Now NV/Pn ⊗ L is a trivial vector bundle over V for some line

bundle L over V . Then, so is NeV /Yd
over Yd where Ṽ is the strict transform

of V . Hence, g−1
d (Ṽ ) is a trivial Pn−d−1-bundle over Ṽ . Ṽ is isomorphic to

Bd. Consider a sequence of regular embeddings Z −→ Y −→ X, the strict

transform of Y in the blow up of X along Z being isomorphic to the blow-up

of Y along Z.

Let x ∈ V be a point which does not lie in any linear subvariety strictly

contained in V defined over Fq. Let g−1
d (Ṽ ) ∼= Ṽ×P(N̆V/Pn,x) is a trivialization.

N̆V/Pn,x is the fiber at x of the conormal bundle N̆V/Pn . For W ∈ Gr∗(Pn)(Fq)

with V ⊂ W ⊂ Pn, we have NV/W ⊂ NV/Pn and hence P(N̆V/W ) ⊂ P(N̆V/Pn).

Thus P(N̆V/W,x) is a linear subvariety of N̆V/Pn,x. Hence the blowing-up of

g−1
d (Ṽ ) along the strict transform of such W ) V coincides with the blowing-

up of g−1
d (Ṽ ) ∼= Ṽ × P(N̆V/Pn,x) along P(N̆V/Pn,x). From this we get the

isomorphism DV
∼= Bd × Bn−d−1.

�

Corollary 1.2.5. For W ∈ Gr∗(Pn)(Fq),W ( V , DW intersects transver-

sally with DV and the intersection DW ∩DV is of the form D̃W ×Bn−d−1 on

DV where D̃W is a divisor on Bd correspoding to the inclusion W ↪→ V ∼= Pd.

Proposition 1.2.6. For W
′ ∈ Gr∗(Pn)(Fq) strictly containing V,DW ′ inter-

sects transversally with DV and the intersection DW ′ ∩ DV is of the form
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1.2. BLOWING-UP OF PROJECTIVE SPACES

Bd × ˜̃
DW ′ on DV where ˜̃

DW ′ is a divisor on Bn−d−1 correspoding to the

inclusion P(ŇV/W ′ ,x) ↪→ P(ŇV/Pn,x) ∼= Pn−d−1.

Corollary 1.2.7. Let H be an R-divisor on Pn, V ∈ Grd(Pn)(Fq), and f :

Bn −→ Pn the nartural map. Also, DV
∼= Bd × Bn−d−1. Let p1 : DV −→ Bd

be the morphism to the first factor. Let f
′

: Bd −→ Pd be the map similar

map to f . Then,

(f∗O(H))|DV
= p∗1(f

′∗(O(H)|DV
)) in H2(DV )

Proposition 1.2.8. For V ∈ Grn−1(Pn)(Fq), we have

f∗O(V ) =
∑

W∈Gr∗(Pn)(Fq),W⊂V DW in H2(Bn)

Proof. When we haveW ⊂ V , the multiplicity of V alongW ∈ Gr∗(Pn)(Fq)

is equal to 1. Hence in the expansion f∗O(V ) =
∑

W∈Gr∗(Pn)(Fq),W⊂V aWDW

we get aW = 1. Hence we have the result.

�

Proposition 1.2.9. For an R-divisorH on Pn, f∗O(H) is PGLn+1(Fq)-invariant.

Proof. We have already seen that the construction of Bn is equivariant

under the action of PGLn+1(Fq). Hence f∗ is also PGLn+1(Fq)-equivariant.

Also PGLn+1(Fq) acts trivially on H2(Pn). From this we can conclude that

f∗O(H) is PGLn+1(Fq)-invariant.

Now H2(Pn) is generated by the class of OPn(1). Let H = αOPn(1) in H2
Pn .

The number of n-1 dimensional linear subvarieties over Fq = |Grn−1(Pn)(Fq)| =

(qn+1 − 1)/(q − 1) = |Pn(Fq)| and for each W ∈ Grd(Pn)(Fq), the number of

elements(linear subvarieties) in Grn−1(Pn)(Fq) containing W = |Pn−d−1(Fq)|.

Thus we have

f∗O(H ) =
α

|Pn(Fq)|
∑

V ∈Grn−1(Pn)(Fq)

(
∑

W∈Gr∗(Pn)(Fq),W⊂V

DW )

10



1.2. BLOWING-UP OF PROJECTIVE SPACES

=
α

|Pn(Fq)|

n−1∑
d=0

|Pn−d−1(Fq)|Dd

which is PGLn+1(Fq)-invariant.

�

Proposition 1.2.10. D be a PGLn+1(Fq)-invariant R-divisor on Bn which is

written as

D = αf∗OPn(1) +
∑n−1

d=0 adDd (α, ad ∈ R) in H 2(Bn)

Then D is positive iff α > 0 and

ad + α |P
n−d−1(Fq)|
|Pn(Fq)| > 0 for all 0 ≤ d ≤ n− 1.

Proof. We are given that

D = αf∗OPn(1) +
n−1∑
d=0

adDd

From the above calculation in the previous proposition, we can rewrite this as

D =
n−1∑
d=0

(α
|Pn−d−1(Fq)|
|Pn(Fq)|

+ ad)Dd

Hence from this expression we can conclude that D is positive if and only if

α > 0

ad + α |P
n−d−1(Fq)|
|Pn(Fq)| > 0 for all 0 ≤ d ≤ n− 1.

�

Lemma 1.2.11. Let D be a PGLn+1(Fq)-invariant R-divisor on Bn. Let

V ∈ Grd(Pn)(Fq). We have the ismomorphism DV
∼= Bd × Bn−d−1. Let

p1 : DV −→ Bd and p2 : DV −→ Bn−d−1 be the projections. Then there

is a PGLd+1(Fq)-invariant R-divisor D
′

on Bd and a PGLn−d(Fq)-invariant

R-divisor D
′′

on Bn−d−1 such that

O(D)|DV
= p∗1O(D

′
) + p∗2O(D

′′
) in H 2(DV )

Proof. To prove this result let us write

D = αf∗OPn(1) +
∑

0≤k≤n−1,k 6=d akDk (α, ak ∈ R) in H 2(Bn)

Then there is no self-intersection and we can consider the case when D =

αf∗OPn(1) and D = Dk cases separately.
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1.2. BLOWING-UP OF PROJECTIVE SPACES

The case D = αf∗OPn(1) is a direct consequence of the corollary 1.2.9 and

proposition 1.2.11. The case D = Dk is a consequence of proposition 1.2.6,

1.2.7 and 1.2.8.

�

Proposition 1.2.12. Let D be an ample PGLn+1(Fq)-invariant R-divisor on

Bn. Then D is positive.

Proof. The proof is by induction on n. The case n = 1 is obvious. Assume

the result proved for upto n− 1. An R-divisor D on Bn is written uniquely as

D = f∗O(H) +
∑

V ∈Gr∗(Pn)(Fq),0≤k≤n−2

aVDV

where H is an R-divisor on Pn. Rewriting this gives

D = αf∗OPn(1) +
n−2∑
d=0

adDd

Using the above proposition 1.2.12 we have D is positive if and only if α > 0

and

ad + α
|Pn−d−1(Fq)|
|Pn(Fq)|

> 0

for all 0 ≤ k ≤ n− 2. Fix V ∈ Grn−1(Pn)(Fq). Then we have DV
∼= Bn−1.

Let us denote by f
′

the map Bn−1 −→ Pn−1 obtained as in the construction

of Bn. Let ′ be the distinction in the case when we are talking in the n − 1

case. Consider the restriction of O(D) to DV . We have

O(D)|DV
= αf∗OPn−1(1) +

n−2∑
d=0

adD
′

d

By induction O(D)|DV
is positive. Thus we have α > 0. We have

ad + α
|Pn−d−2(Fq)|
|Pn−1(Fq)|

> 0

for all 0 ≤ d ≤ n− 2. Hence we are through if we can show that |P
n−d−2(Fq)|
|Pn−1(Fq)| <

|Pn−d−1(Fq)|
|Pn(Fq)| since then we satisfy the above mentioned condition.
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1.2. BLOWING-UP OF PROJECTIVE SPACES

We have the above inequality if and only if

(qn−d−1 − 1)/(q − 1)
(qn − 1)/(q − 1)

<
(qn−d − 1)/(q − 1)
(qn+1 − 1)/(q − 1)

if and only if

(qn−d−1 − 1)(qn+1 − 1) < (qn−d − 1)(qn − 1)

if and only if

qn−d < qn

which is true. Hence we have the proposition.

�

1.2.3 The Drinfeld Upper Half spaces Ω̂d
K

The Drinfeld upper half spaces Ω̂d
K of dimension d overK is the rigid analytic

space obtained by removing all K-rational hyperplanes from Pd
K .

Consider the projective space Pd
OK

over OK . We blow up Pd
OK

along the

linear subvarieties in the special fibre of Pd
Fq

successively, as in the construction

of Bn. We continue this process along all exceptional divisors occuring in the

blow-up. In this way we obtain a formal scheme Ω̂d
OK

over the formal spectrum

Spf OK . The rigid analytic space associated to Ω̂d
OK

is isomorphic to the space

Ω̂d
K .

Let Γ ⊂ PGLd+1(K) be a torsion free discrete subgroup. Then there is a

natural action of Γ on Ω̂d
OK

. Then we take the quotient X̂Γ := Γ\Ω̂d
OK

as a

formal scheme.

Theorem 1.2.13. The relative dualizing sheaf ωbXΓ/OK
is ample and invertible.

For the proof of this theorem refer to the paper by Mustafin and Kurihara.

From this we conclude that X̂Γ can be algebraized to a projective scheme

XΓ over OK . The generic fiber XΓ := XΓ ⊗K is a projectie smooth variety

over K. The rigid analytic space associated to this space is the rigid analytic

quotient X̂Γ := Γ\Ω̂d
K
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Chapter 2

Hard Lefschetz and Hodge
Standard Conjecture

2.1 The Hard Leftschetz Conjecture

Let F be an algebraically closed field of any charasteric and l a prime number

different from characteristic of F . X be a projective scheme over F of dimen-

sion n. Let clXk : Ck(X) −→ H2k
ét (X,Ql(k)) be the cycle map for the l-adic

cohomology where Ck(X) is the group of algebraic cycles of codimension k.

Let us denote by Ck
num(X) ⊂ Ck(X) the subgroup of algebraic cycles numer-

ically equivalent to zero and Nk(X) := Ck(X)/Ck
num(X) a finitely generated

Z-module.

[Assumption] clk induces an isomorphism

Nk(X)⊗Z Ql
∼= H2k

ét (X,Ql(k))

We define Hk(X) to be Nk/2(X)⊗Z R when k is even and 0 when k is odd.

We denote by H∗(X) =
⊕

k H
k(X) which can be considered as a cohomology

with coefficients in R.

Definition 2.1.1. A Q-divisor is a formal sum of divisors with co-efficients

in Q. A Q-divisor is called an ample if it is of the form L = a1L1 + .....+ arLr

with r ≥ 1, a1, ......, ar ∈ Q>0 and L1, ......, Lr ample. An R-divisor is defined

similarly.
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There is a natural map from the group of R-divisors on X to H2(X). Hence

we can identify an R-divisor, a formal sum of R-line bundles and its class in

H2(X).

Definition 2.1.2. By taking the cup product with L, we get an R-linear map

L : Hk(X) −→ Hk+2(X)

We call L the Leftschetz operator.

Conjecture 1 : (Hard Leftschetz Conjecture)

For all k, Lk induces an isomorphism

Lk : Hn−k(X) −→ Hn+k(X)

2.2 Hodge Standard Conjecture

Definition 2.2.1. Assume that the conjecture holds for (X,L) We define the

primitive part P k(X) by

P k(X) = ker(Ln−k+1 : Hk(X) −→ H2n−k+2(X))

for 0 ≤ k ≤ n and in the case of k < 0 and k > 0, we define P k(X) = 0.

Then we have a decomposition called the primitive decomposition

Hk(X) =
⊕
i≥0

LiP k−2i(X) ∼=
⊕
i≥0

P k−2i(X)

for all k.

Definition 2.2.2. We define a pairing 〈, 〉Hk(X) by the composite of the fol-

lowing two maps.

〈, 〉Hk(X) : Hk(X)×Hk(X) H2n(X) R

(x, y) (−1)k/2Ln−kx ∪ y

................................................................................................................. ............ ............................................................................................................................. ............σ

.................................................................................................... ............
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2.2. HODGE STANDARD CONJECTURE

where the map

σ : H2n(X) =
m⊕

i=1

H2n(Xi) =
m⊕

i=1

R −→ R

sends (a1, ......, am) −→
∑
ai for ai ∈ R for 0 ≤ k ≤ n. Otherwise we define

the pairing to be the zero pairing.

The pairing 〈, 〉Hk(X) are non-degenerate by Poincare duality and the Hard

Leftschetz conjecture. Let us denote the restriction of 〈, 〉Hk(X) to P k(X) by

〈, 〉P k(X). For all k with 0 ≤ k ≤ n, 〈, 〉Hk(X) is isomorphic to the alternating

sum 〈, 〉P k−2i(X) for i ≥ 0.

〈, 〉Hk(X) =
∑
i≥0

(−1)i〈, 〉P k−2i(X) on H
k(X) ∼=

⊕
i≥0

P k−2i(X)

Also the primitive decompostion above is an orthogonal decomposition with

respect to 〈, 〉Hk(X). Hence the pairing 〈, 〉P k(X) is non-degenerate. The prim-

itive decomposition may depend on the choice of L. However the dimension

of P k(X) is independant of the choice of L.

Assume that the the hard leftschetz conjecture holds for (X,L) along with

with assumption. Then

Conjecture 2 : (Hodge Standard Conjecture)

For all k, the pairing 〈, 〉P k(X) is positive definite.

Proposition 2.2.3. Let L,L
′

be ample R-divisors on X. If the Hard Left-

schetz conjecture holds for (X, tL+(1− t)L′) for all 0 ≤ t ≤ 1, then the Hodge

standard conjecture for (X,L) and (X,L
′
) are equivalent to each other. In

particular if the Hard Leftschetz conjecture holds for (X,L) for all ample R-

divisors, then the Hodge standard conjecture for (X,L) for all ample R-divisors

are equivalent.

Proof. For a given pairing 〈, 〉Hk(X), let us denote the difference between

number of positive eigenvalues and negative values by sign(Hk(X), 〈, 〉Hk(X)).
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2.2. HODGE STANDARD CONJECTURE

This is independant of the basis chosen to count the positive/negative eigen-

values.

If we show that the Hodge standard conjecture holds for (X,L) if and only

if

sign(Hk(X), 〈, 〉Hk(X)) =
∑
i≥0

(−1)idimRP
k−2i(X) (∗)

for all 0 ≤ k ≤ n, since sign is locally constant on the set of non-degenerate

quadratic forms over R, the proposition follows.

Hence it is enough to show that the above condition is an equivalence for

the Hodge standard conjecture on (X,L). We have

dimRP
k(X) = dimRH

k(X)− dimRH
k−2(X)

which implies that the right hand side of (∗) is independant of choice of L.

Since

〈, 〉Hk(X) =
∑
i≥0

(−1)i〈, 〉P k−2i(X) on H
k(X) ∼=

⊕
i≥0

P k−2i(X)

we have that for all 0 ≤ k ≤ n

sign(Hk(X), 〈, 〉Hk(X)) =
∑
i≥0

(−1)isign(P k−2i(X), 〈, 〉P k−2i(X)) (∗∗)

Now the Hodge standard conjecture is equivalent to

dimRP
k(X) = sign(P k(X), 〈, 〉P k(X)) (∗ ∗ ∗)

for all k such that 0 ≤ k ≤ n. Hence the equality (∗∗) implies (∗).

Now let us assume (∗). We shall prove (∗ ∗ ∗). The proof is by induction on

k. For the case k = 0, P 0(X) ∼= R and since Ln is positive, the result follows.

Assume (∗ ∗ ∗) proved for k < l ≤ n. Then (∗) implies

sign(H l(X), 〈, 〉Hl(X)) =
∑
i≥0

(−1)idimRP
l−2i(X)

17



2.2. HODGE STANDARD CONJECTURE

= dimRP
l(X) +

∑
i≥1

(−1)isign(P l−2i(X), 〈, 〉P l−2i(X))

now with the equality 〈, 〉Hk(X) =
∑

i≥0(−1)i〈, 〉P k−2i(X), we get the (∗ ∗ ∗) for

l. Hence we get the result.

�

Theorem 2.2.4. Let D be an ample PGLn+1(Fq)-invariant R-divisor on Bn

where Bn be the space obtained by successive blowing up of Projective Space

along linear varieties. Then the hard Leftschetz conjecture and the standard

Hodge conjecture holds for (Bn, D).

Monodromy filtration

Let X be a proper smooth variety over K. Let V := Hw
et(XK ,Ql) where l

is a prime numer. Let IK be the inertia group of K. Then Gal(FQ/FQ) acts

of IK by conjugation. For τ ∈ Gal(FQ/FQ) and σ ∈ IK ,

τ : σ −→ τστ−1

The pro l-part of IK is isomorphic to Zl(1) as a Gal(Fq/Fq)-module. By

Grothendieck’s monodromy theorem, there exists r, s ≥ 1 such that (ρ(σ)r −

1)s = 0 for all σ ∈ IK . Therefore IK acts unipotently on V . Then there is a

unique nilpotent map of Gal(K/K-representations called monodromy opera-

tor N : V (1) −→ V such that ρ(σ) =exp (tl(σ)N) ∀ σ ∈ IK

Definition 2.2.5. There exists a unique filtration M• on V called the mon-

odromy filtration characterized by the following characteristics.

1. M• is an increasing filtration. i.e ...... ⊂Mi−1V ⊂MiV ⊂Mi+1V ⊂ ..... of

Gal(K/K)-representations such that MiV = 0 for sufficiently small i and

MiV = V for sufficiently large i .

2. N(Mi(V (1)) ⊂Mi−2V

3. Let us define GrM
i V := MiV/Mi−1V . Then by above, we can define

N : GrM
i V (1) −→ GrM

i−2V satisfying N r : GrM
r V (1) −→ GrM

−rV is an

isomorphism.

18
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Weight filtration

Let Frq ∈ Gal(Fq/Fq) be the inverse of the q-th power map on Fq. A

Gal(Fq/Fq)-representation is sadi to have a weight k if all eigenvalues of the

action of Frq ∈ Gal(Fq/Fq) are algebraic integers whose conjugates have com-

plex absolute value qk/2.

Definition 2.2.6. There exists a unique filtration W• on V called the weight

filtratoin characterized by the following properties.

1. W• is an increasing filtration. i.e ..... ⊂Wi−1V ⊂WiV ⊂Wi+1V ⊂ .... of

Gal(K/K)-representations such thatWiV = 0 for sufficiently small i and

WiV = V for sufficiently large i .

2. For a lift F̃ rq of Frq ∈ Gal(K/K), all eigenvalues of the action of F̃ rq on

each GrW
i V := WiV/Wi−1V are algebraic integers whose all complex

conjugates have complex absolute value qi/2.

Theorem 2.2.7. Let X be a proper smooth variety over K which has a proper

strictly semistable model X over OK . Let X1, ....., Xm be irreducible compo-

nents of the special fiber of X. Let X be projective over OK with an ample

line bundle L. If for 1 ≤ i1 ≤ ..... ≤ ik ≤ m every irreducible component

Y of Xi1 ∩ ... ∩ Xik
satisfies the assumption above, and the Hodge standard

conjecture holds for (Y,L|Y ). Then

MiV = Wi+wV ∀i

holds for X

Let us accept the notations used in section 1.3. We have that XΓ is a strictly

semistable model of the generic fiber XΓ over OK .

Theorem 2.2.8. Let Γ ⊂ PGLd+1(Fq) be a cocompact torsion free discrete

subgroup. Then we have

MiV = Wi+wV ∀i

for XΓ
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Chapter 3

Cohomology of Varieties
obtained by Blowing-up

3.1 Some Fundamental Thoerems

Let X be a base scheme. let C/X denote the full subcategory of Sch/X

satisfying the following two conditions.

(a) C/X is closed under fiber products.

(b) For any Y −→ X in C/X and an E-morphism U −→ Y , the morphism

U −→ Y −→ X is in C/X.

Definition 3.1.1. An E-covering of Y ∈ C/X is a family of E-morphims

( Ui Y............................................................... ............
fi )i∈I such that Y = ∪i∈Ifi(Ui). The class of all such coverings on

all such objects is called the E-topology on C/X. The category C/X with

the E-topology is called the E-Site over X, written as (C/X)E or as XE .

Remark. The category C/X together with the family of E-coverings is a

Grothendieck topoplogy.

The E-site (E/X)E is called the small E-site on X when E = (Zar) or

E = (ét). In the case when all E-morphism is locally of finite type, the big

E-site is the full subcategory (LFT/X)E of Sch/X consisting of objects with

locally finite type structure morphisms.

Definition 3.1.2 (Morphism of sites). Let (C
′
/X

′
)E′ and (C/X)E be sites. A

morphism π : X
′ −→ X of schemes defines a morphism of sites if the following
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3.1. SOME FUNDAMENTAL THOEREMS

conditions are satisfied :

(a) for Y ∈ C/X, YX′ is in C
′
/X

′
;

(b) for any E-morphism U −→ Y in C/X, U(X′ ) −→ Y(X′ ) is an E
′
-

morphism.

π is referred to as a continuous morphism π : X
′

E′
−→ XE .

Since the base change of a surjective family of morphisms is again surjective,

π gives a functor π� : C/X −→ C
′
/X

′
sending (Y −→ Y(X′ )) taking coverings

to coverings.

Definition 3.1.3. π : X
′

E′
−→ XE be continuous. P ′ be a presheaf on X

′
.

We associate the presheaf πp(P ′) = P ′ ◦ π. The presheaf πp(P ′) is called the

direct image of P ′ . πp defines a functor P(X
′

E′
) −→ P(XE). We define the

inverse image functor πp : P(XE) −→ P(X
′

E′
) to be the left adjoint of πp.

Hence

HomP(X
′

E
′ )

(πp(P),P ′) = HomP(XE)(P, πp(P ′))

.

Definition 3.1.4. Let π : X
′ −→ X be a morphism of sites (C

′
/X

′
)E′ −→

(C/X)E . The direct image of a sheaf F ′ on X
′

E′
is defined to be π∗F

′
= πpF

′
.

The inverse image of a sheaf F on XE is defined to be π∗F = a(πpF), the

sheaf associated to the presheaf πpF . There are canonical ismorphisms

HomS(XE)(F , π∗F
′
) = HomP(X

′

E
′ )

(πpF ,F ′) = HomS(X
′

E
′ )

(π∗F ,F ′)

Hence π∗ and π∗ are adjoint functors S(X
′

E′
) � S(XE).

Now let X be a scheme and U an open subscheme of X. Z be the subscheme

with underlying space X\U . Let

Z X U............................................................... ............i ...........................................................................
j

be the inclusions. F is a sheaf on Xét. Let us denote F1 = i∗F and F2 = j∗F

sheaves on Z and U respectively. Since Hom(F , j∗j∗F) ∼= Hom(j∗F , j∗F),

there is a canonical isomorphism F −→ j∗j
∗F corresponding to the identity.
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By applying i∗ we get a canonical morphism φF : F1 −→ i∗j∗F . Define T (X)

to be the category whose objects are triples (F1,F2, φ) with F1 ∈ S(Zét) and

F2 ∈ S(Uét) and φ : F1 −→ i∗j∗F2. A morphism of triples (F1,F2, φ) −→

(F ′1,F
′

2, φ
′
) is a pair (ψ1, ψ2) where ψ1 is a morphism F1 −→ F

′

1 and ψ2 :

F2 −→ F
′

2 and they are compatible with φ and φ
′
.

F
′

1 i∗j∗F
′

2

F1 i∗j∗F2
...................................................................................................................................................
...
.........
...

ψ1

............................................................................................................................................................................... ............
φ

............................................................................................................................................................................... ............
φ
′

...................................................................................................................................................
...
.........
...

i∗j∗(ψ2)

This makes it into a category T(X) which is equivalent to the category of

sheaves S(Xét).

In this context we can define the following functors which are adjoint to the

one below it. We identify the category S(XE) with T(X).

Definition 3.1.5. i∗ : T(X) −→ S(Z) sending the triple (F1, F2, φ) 7−→ F1

i∗ : S(Z) −→ T(X) sending F1 7−→ (F1, 0, 0)

i! : T(X) −→ S(Z) sending the triple (F1, F2, φ) 7−→ ker φ

Definition 3.1.6. j! : S(U) −→ T(X) sending the triple F2 7−→ (0, F2, 0)

j∗ : T(X) −→ S(U) sending (F1, F2, φ) 7−→ F2

j∗ : S(U) −→ T(X) sending the triple F2 7−→ (i∗j∗F2, F2, 1)

j! is called the ”extension by zero” and i! is ”form subsheaf of sections with

support on Z”.

Recall that an object I of an abelian category A is called an injective object if

HomA(� , I) : A −→ Ab is an exact functor. A is said to have enough injectives

if for every M ∈ A there is a monomorphism from M into an injective object.

Definition 3.1.7. Let A be an abelian category with enough injectives and

f : A −→ B be a left exact functor where B is another abelian catogory. We
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define the right derived functors Rif : A −→ B, i > 0 , the unique sequence

of functors satisfying the following conditions :

(a) R0f = f

(b) Rif(I) = 0 if I is injective and i > 0

(c) for any exact sequence 0 −→M
′ −→M −→M

′′ −→ 0 in A, there are

morphisms δi : Rif(M
′′
) −→ Ri+1(M

′
), i ≥ 0 such that

....... −→ Rif(M) −→ Rif(M
′′
) −→ Ri+1f(M

′
) −→ Ri+1f(M) −→ .........

is exact. The associaltion of this long exact sequence to a short exact sequence

being functorial.

Definition 3.1.8. An object M in A is called f -acyclic if Rif(M) = 0 for all

i > 0. If

0 −→M −→ N0 −→ N1 −→ N2 −→ .....

is a resolution of M by f -acyclic objects N i, then the objects Rif(M) are

canonically isomorphic to the cohomology objects of the complex

0 −→ fN0 −→ fN1 −→ fN2 −→ ....

Theorem 3.1.9. The category S(XE) has enough injectives.

Hence we can define the right derived functors of any left exact functor from

S(XE) into an abelian category.

Definition 3.1.10. The functor Γ(X,−) : S(XE) −→ Ab is left exact. Its

right derived functors are written

RiΓ(X,−) = H i(X,−) = H i(XE ,−)

The group H i(XE , F ) is called the ith-cohomology group of XE with values

in F .

Let F � and G� be complexes of sheaves over a scheme X. We write F �⊗G�

for the total complex of the double complex (F r ×Gs). i.e

(F � ⊗G�)m =
∑

r+s=m

F r ⊗Gs
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and

dm =
∑

r+s=m

dr
F ⊗ 1 + (−1)r1⊗ ds

G

Definition 3.1.11. A map A�
1 −→ A�

2 is said to be a quasi-isomorphim if the

induced maps on cohomology Hr(A�
1) ∼= Hr(A�

2) are isomorphic for all r. It is

written as A�
1 ' A�

2

Lemma 3.1.12. Let g : G�
1 −→ G�

2 be a quasi-isomorphism and let F � be a

bounded above sequence of flat sheaves. Then 1⊗ g : F � ⊗G�
1 −→ F � ⊗G�

2 is

a quasi-isomorphism if one of the following two conditions is satisfied :

(a) G�
1 and G�

2 are bounded above.

(b) F � is bounded above.

Proposition 3.1.13. If F � is a complex of sheaves such that Hr(F �) = 0 for

r � 0, then there exists a quasi-isomorphism P � −→ F � with P � a bounded

above complex of flat sheaves.

Theorem 3.1.14. If f : X −→ S be a proper morphism with S quasi-compact.

For any complex F � of sheaves on X, there is a quasi-isomorphism F � ' A�(F �)

with A�(F �) a complex of f∗-acyclic sheaves. If Hr(F �) = 0 for r � 0, then we

can take A�(F �) to be a bounded below complex of injectives. If F � ' A�
1 and

F � ' A�
2 with A�

1 and A�
2 complexes of f∗-acyclics, then f∗A

�
1
∼= f∗A

�
2. Now let

α : F �
1 −→ F �

2 be a map of complexes, then we can choose A�(F �
1) and A�(F �

2)

making the following diagram commutative.

A�(F �
1) A�(F �

2)

F �
1 F �

2
...................................................................................................................................................
...
.........
...

∼

............................................................................................................................................................................... ............α

................................................................................................................................................................... ............
β

...................................................................................................................................................
...
.........
...

∼

If α is a quasi-isomorphism, then so is f∗β.

Let S be as above and let f : X −→ S be a compactifiable morphism

with compactification X X S........................................................ ........................
............ j

............................................................... ............
f For any complex of sheaves F � on
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X we write Rcf∗F
� for f∗A�(j!F �) where A�(j!F �) is a complex of f∗-acyclic

sheaves as above. By the above theorem Rcf∗F
� is well-defined upto quasi-

isomorphism. When F � consists of a single sheaf F , A�(j!F �) may be taken to

be the injective resolution of F and Hr(Rcf∗F
�) = Rcf∗F . If Hr(F �) = 0 for

r � 0, then Hr(Rcf∗F
�) = 0 for r � 0 and by the above proposition there

is a bounded above complex of flat sheaves Rcf∗F
� and a quasi-isomorphism

Rcf∗F
� −→ Rcf∗F

�. In this case we always choose A�(j!F �) and hence Rcf∗F
�

to be bounded below.

Theorem 3.1.15 (Künneth formula). Let F and G be sheaves on X and Y

respectively, with F flat. Now consider the following diagram :

X

X ×S Y

S

Y
........................................................................................................................................ .........

...
f

.....................................................................................................................................
...
............

g

.....................................................................................................................................
...
............

p
........................................................................................................................................ .........

...

q
..................................................................................................................................................................................................................
...
.........
...

h

with S quasi-compact. Let f and g be compactifiable. Denote by F � G the

sheaf p∗F ⊗ q∗G on X ×S Y . Then with the above notations, we have the

following canonical quasi isomorphism

Rcf∗F ⊗Rcg∗G ' Rch∗(F �G)

Let F be a sheaf on Xét. Let F be a sheaf on Xét. Then i∗i!F , for a closed

immersion i : Z ↪→ X of smooth S-schemes, is the largest sheaf on X that is

zero outside Z. Let U = X −Z. The functor F −→ Γ(X, i∗i!F ) = Γ(Z, i!F ) =

ker(F (X) −→ F (U)) is a left exact functor, the right derived functors of

which are denoted Hp
Z(X,F ). A smooth S-pair (Z,X) is a closed immersion

i : Z ↪→ X of smooth S-schemes. Then we have the commutative diagram

XZ U

S

........................................................................................ ............

i
....................................................................................................

j........................................................................................................................................ .........
...

.....................................................................................................................................
...
............

.....................................................................................
...
.........
...
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We say (Z,X) has codimension c if Zs has pure codimension c in Xs, for

all s ∈ S. Locally for the étale topology any smooth pair is isomorphic to the

standard pair (Am−c
S ,Am

S ). Let z ∈ Z and X
′

be a neighbourhood of i(z) in

X with an étale morphism X
′ −→ Am

s = spec OS [T1, ....., Tm] with Z ∩X ′ the

inverse image of closed subscheme V (I) where I = < Tm−c+1, ....., Tm >. We

denote Hp
Z(X,F ) for the pth derived functors of i!. Rpi!F is a sheaf on Z. We

have canonical isomorphisms H i(Z,H2c
Z (X,F )) ∼= H2c+i

Z (X,F ) for locally free

sheaves of finite rank on X. Hence

Γ(Z,H2c
Z (X,F )) ∼= H2c

Z (X,F )

Let k be a separably closed field. Let n be an integer coprime to the char(k).

Let us denote Λ for Z/nZ and let Λ(r) be the product of r copies of the

subsheaf defined by the nth roots of unity of the structure sheaf of X. i.e

Λ(r) = ωn ⊗ .....⊗ ωn(r times) where ωn(U) = nth roots of unity in Γ(U,OU ).

Definition 3.1.16. We define the fundamental class to be the canonical class

sZ/X ∈ H2c
Z (X,Λ(c)) that generates H2c

Z (X,Λ(c)). (i.e the map from Λ −→

H2c
Z (X,Λ(c)) sending 1 to restriction of sZ/X is an isomorphism ).

In what follows, Λ denotes the constant sheaf Z/nZ with n prime to char(k).

A prime r-cycle is a closed integral subscheme of codimension r. An algebraic

r-cycle is an element of the free abelian group Cr(X) generated by the set

of prime r-cycles. Let C∗(X) be the graded algebra
∑
Cr(X). An algebraic

cycle is an element of C∗(X). A prime r-cycle W and a prime s-cycle Z is said

to intersect properly if every irreducible componenet of the intersection Z∩W

has codimension r + s. Two algebraic cycles intersect properly and W.Z is

defined if every prime cycle of W intersects every prime cycle of Z properly.

Let H∗(X) =
∑

r H
r(X,Λ[r/2]). H∗(X) is an anti-commutative graded

ring. Let Z be a smooth prime r-cycle and hence a smooth subvariety of X.

We define the cycle map clX : C∗(X) −→ H∗(X) as follows : clX(Z) the image

of the fundamental class sZ/X of Z in X under the map H2r
Z (X,Λ(r)) −→

H2r(X,Λ(r)).
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Theorem 3.1.17. Let E be a vector bundle of rank m over X and let p :

P = P(E) −→ X be the associated projective bundle. Consider the map

Pic(P ) −→ H2(P,Λ(1)) obtained from the kummer sequence. Let ξ be the

image of the canonical line bundle OP (1) on P . Then the morphim of graded

algebras H∗(X)[T ]/(Tm) −→ H∗(P ) which is p∗ on H∗(X) and sending T to

ξ is an H∗(X)-isomorphism.

H∗(P ) is a free H∗(X)-module with basis {1, ξ, ξ2, ...., ξm−1}. Hence there

are unique elements cr(E) ∈ H2r(X) such that

m∑
r=0

cr(E)ξm−r = 0

with c0(E) = 1 and cr(E) = 0 for r > m.

Definition 3.1.18. The cr(E) is called the r-th chern class of E, c(E) =∑
cr(E) the total chern class of E and ct(E) = 1 + c1(E)t + c2(E)t2 + .... +

cm(E)tm the total chern polynomial of E.

3.2 Proof of Results

3.2.1 Cohomology of Blowing-ups

Let X be a projective smooth irreducible variety over F of dimension n.

Let Y1, ......, Yr ⊂ X be mutually disjoint closed irreducible subvarieties of X

of dimension d ≥ 2. Let i : Y = qr
k=1Yk ↪→ X be the closed immersion

and f : X
′ −→ X be the blowing up of X along Y with Y

′ ⊂ X
′

the strict

transform of Y . Let g : Y
′ −→ Y and j : Y

′ −→ X be the canonical maps

that arise during blowing-up.

Theorem 3.2.1. We have the following explicit description of cohomology

groups of X
′
.

Hk(X
′
) ∼= Hk−2(Y )⊕ .....⊕Hk−2−2(d−2)(Y )ξd−2 ⊕Hk(X)

For proof of this theorem refer to SGA5, section VII.

27



3.2. PROOF OF RESULTS

If X,Y1, ....., Yk satisfy assumption in section 2.1, then so do the blow-up

and the strict transform.

Proposition 3.2.2. Let x
′ ∈ Hk(X

′
) be a cohomology class on X

′
whose

restriction to Y
′

is zero. Then x
′

is of the form x
′

= f∗(x) for a unique

x ∈ Hk(X)

Proof. Using the above theorem 3.2.1, we can write

x
′

= x0 + x1ξ + ......+ xd−2ξ
d−2 + x

This relation is obtained by the above isomorphism. Then there is a relation

x
′

= j∗(x0 + x1ξ + ......+ xd−2ξ
d−2) + f∗(x)

If we show that x0 = ..... = xd−2 = 0, we prove the result. For that we

consider the restriction OX′ to Y
′
. It is isomorphic to OY ′ (−1). Hence we

have j∗(j∗(1Y ′ )) = −ξ. Hence taking the pull back,

j∗x
′

= j∗j∗(x0 + x1ξ + ......+ xd−2ξ
d−2) + j∗f∗(x)

Rewriting this we get

j∗x
′

= −x0ξ − x1ξ
2 − ......− xd−2ξ

d−1 + g∗i∗(x)

However, since restriction of x
′

to Y
′

is zero and since H∗(Y
′
) is a free H∗(Y )-

module with basis {1, ξ, ξ2, ...., ξd−1}, we have x0 = ..... = xd−2 = i∗(x) = 0

The uniqueness follows from the fact f∗(x
′
) = f∗(f∗(x)) = x.

�

Proposition 3.2.3. If the hard Lefschetz conjecture holds for (X,LX) and

Y,LY , it also holds for (X × Y, p∗1O(LX) + p∗2O(LY )) where p1 and p2 are

projection morphisms.

Theorem 3.2.4. Let L be an ample R-divisor on X. If the hard Lefshcetz

conjecture and Hodge standard conjecture hold for (X,L) and (Y,O(L)|Y ),
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then there exists β ∈ R>0 such that for all 0 < ε < β, the R-divisor L
′

on X
′

of the form

L
′

= f∗O(L)− εY ′

is an ample R-divisor on X
′

for which both the conjectures hold.

Proof. First we note that

H∗(X
′
) ∼= H∗(Y × Pd−2)⊗H∗(X)

as R-vector spaces, which is a consequence of Theorem 3.2.1 .

Let {xi} and {yj} be basis of H∗(X) and H∗(Y ). Then {ε
−(d−2)

2
+kyjξ

k} is

a basis of H∗(Y )ξk for 0 ≤ k ≤ d− 2. Again by Theorem 3.2.1 , we have the

isomorphism

H∗(X
′
) ∼= H∗(Y )⊕H∗(Y )ξ ⊕ .......⊕H∗(Y )ξd−2 ⊕H∗(X)

Using the above, we have

{ε
−(d−2)

2 yj} ∪ {ε
−(d−2)

2
+1yjξ} ∪ ..... ∪ {ε

(d−2)
2 yjξ

d−2} ∪ {xi}

is a basis of H∗(X
′
). Using this basis we have a R-Vector Space isomorphism

Hk(X
′
) ∼= Hk−2(Y × Pd−2)⊕Hk(X)

sending ε
−(d−2)

2
+myjξ

m to c1(OPd−2(1))m

Let us denote by H̃k(X
′
) := Hk−2(Y × Pd−2)⊕Hk(X) and define the map

L̃ : H̃k(X
′
) −→ H̃k+2(X

′
)

as follows : Let p1 : Y × Pd−2 −→ Y and p2 : Y × Pd−2 −→ Pd−2 be the

projection maps. Then

LY×Pd−2 = p∗1(O(L)|Y ) + p∗2(OPd−2(1))

is an ample R-divisor on Y × Pd−2. So we define our operator L̃ as direct

sum of the lefschetz operators LY×Pd−2 and L. Hence by Proposition 3.2.3,

we have that both the conjectures hold for (Y ×Pd−2, LY×Pd−2). Thus L̃ is an

isomorphism. Hence, L̃k induces the isomorphism

L̃k : H̃n−k(X
′
) −→ H̃n+k(X

′
)
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This cleary is analogous to the hard lefschetz conjecture. Let P̃ k(X
′
) be the

kernel of L̃n−k+1 in H̃k(X
′
). P̃ k(X

′
) is isomorphic to P k−2(Y ×Pd−2)⊕P k(X).

Now we define the pairing

P̃ k(X
′
)× P̃ k(X

′
) −→ H̃2n(X

′
)

given by

(a, b) −→ (−1)k/2L̃n−ka∪̃b

Here ∪̃ is the difference between the cup products on H∗(Y ×Pd−2) and H∗(X)

given as follows

∪̃ : ((x0, y0), (x1, y1)) −→ −y0 ∪ y1 + x0 ∪ x1

where ((x0, y0), (x1, y1)) ∈ H̃∗(X
′
) × H̃∗(X

′
) Hence an analogue of Hodge

conjecture holds for L̃

So to prove the theorem, it is enough to show that as ε −→ 0 the ma-

trix representing L
′

with respect to the given choice of basis, converges to

the matrices of L̃ via the isomorphism Hk(X
′
) ∼= Hk−2(Y × Pd−2) ⊕Hk(X)

described above. Similarily the matrices of the cup product pairing between

Hk(X
′
) and H2n−k(X

′
) converges to the matrices respresenting ∪̃ between

H̃k(X
′
) and H̃2n−k(X

′
)

We have L
′

= f∗O(L)− εY ′ and [Y ] = j∗(1Y ′ ) in H2(X
′
). Computing the

cup product

(f∗O(L)− εj∗(1Y ′ ) ∪ (f∗(x) + j∗(y))

for x ∈ Hk(X), y ∈ Hk−2(Y
′
) with g∗(y) = 0. Expanding the above expression

we get

f∗O(L) ∪ f∗(x) + f∗O(L) ∪ j∗(y)− εj∗(1Y ′ ) ∪ f∗(x)− εj∗(1Y ′ ) ∪ j∗(y)

The pull back preserves the cup product. Hence f∗O(L)∪ f∗(x) = f∗(O(L)∪

x) = f∗(L ∪ x). Next consider f∗O(L) ∪ j∗(y) = j∗(j∗(f∗O(L)) ∪ y) =

j∗(g∗(i∗O(L)) ∪ y) = j∗(g∗(O(L)|Y ) ∪ y). Third we have εj∗(1Y ′ ) ∪ f∗(x) =
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εj∗(1Y ′ ∪ j∗f∗(x)) = εj∗(g∗(x|Y )). Finally we have j∗j∗(1Y ′ ) = −ξ. Hence

εj∗(1Y ′ ) ∪ j∗(y) = j∗(εj∗j∗(1Y ′ ) ∪ y) = −j∗(εξ ∪ y). Piecing together all this

we have,

f∗(L ∪ x) + j∗((g∗(O(L))|Y + ξε) ∪ y)− εj∗(g∗(x|Y ))

The first term corresponds to the action of L on H∗(X) and the second

term is analogous to the action of LY×Pd−2 via the isomorphism

Hk(X
′
) ∼= Hk−2(Y × Pd−2)⊕Hk(X)

when ε converges to zero. The third term vanishes trivially when ε −→ 0.

This proves that matrix of L
′

with respect to the given basis converges to

the matix representing L̃. So if we have proved that the matrices of the cup

product pairing between Hk(X
′
) and H2n−k(X

′
) converges to the matrices

respresenting ∪̃ between H̃k(X
′
) and H̃2n−k(X

′
) we finish the proof of the

given proposition.

We shall compute the cup product pairing on H∗(X
′
).

(f∗(x0) + j∗(y0)) ∪ (f∗(x1) + j∗(y1))

x0 ∈ Hk(X), y0 ∈ Hk−2(Y
′
), x1 ∈ H2n−k(X), y1 ∈ H2n−k−2(Y

′
) with g∗(y0) =

0, g∗(y1) = 0. It is enough to compute

f∗((f∗(x0) + j∗(y0)) ∪ (f∗(x1) + j∗(y1)))

since f∗ is an isomorphism on H2n(X
′
) = R. This gives

= f∗(f∗(x0) + j∗(y0)) ∪ f∗(f∗(x1) + j∗(y1))

= f∗(f∗(x0)∪f∗(x1))+f∗(j∗(y0)∪f∗(x1))+f∗(f∗(x0)∪j∗(y1))+f∗(j∗(y0)∪j∗(y1))

The first term we have f∗(f∗(x0) ∪ f∗(x1)) = f∗(f∗(x0 ∪ x1)). The pullback

preserves the cup product. Hence this is equal to x0 ∪ x1. The second term is

equal to f∗(j∗(y0))∪x1 = i∗(g∗(y0))∪x1 = 0 since g∗(y0) = 0. The third term

is zero due to similar reasons g∗(y1) = 0. Finally we have j∗(j∗(y0)) = −ξ∪y0.
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Hence we have, f∗(j∗(y0)∪j∗(y1)) = f∗(j∗(j∗j∗(y0)∪y1)) = i∗(g∗(−ξ∪y0∪y1)).

Now g∗(ξd−1) = 1 and hence g∗(ξm) = 0 for 0 ≤ m ≤ d− 2. So taking limite

we have the matrix of the pairing

(y0, y1) −→ i∗(g∗(−ξ ∪ y0 ∪ y1)

converging to the negative of the matrix representing the cup product pairing

on Y ×Pd−2 via the isomorphism in the beginning. Hence we prove the result.

�

3.2.2 The Main result

Proposition 3.2.5. For 0 ≤ k ≤ n − 1 and a ∈ Hk(Bn), if the restriction of

a to DV is zero for all V ∈ Gr∗(Pn(Fq)), then a = 0.

Proof. By applying the above proposition 3.2.2 to the Yk’s in the con-

struction of Bn successively, we get that a = f∗a
′

for a
′ ∈ Hk(Pn). Now the

restriction of a to DV is zero. Hence the restriction of a
′

to V is zero. The

restriction map

Hk(Pn) −→ Hk(V )

is an isomorphism. Hence we conclude that a = 0.

�

Theroem 2.2.4 Let D be an ample PGLn+1(Fq)-invariant R-divisor on Bn

where Bn be the space obtained by successive blowing up of Projective Space

along linear varieties. Then the hard Leftschetz conjecture and the standard

Hodge conjecture holds for (Bn, D).

Proof. We prove the theorem by induction on n. The case n = 1 is obvious.

Let us assume that the theorem is proved for all dimensions less than n. By

theorem 3.2.4 , there exists at least one PGLn+1(Fq)-invariant R-divisor on Bn

for which the Hard Lefschetz conjecture and the Standard Hodge conjecture

holds.
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Now consider two ample PGLn+1(Fq)-invariant R-divisors D and D
′

on Bn.

Then tD + (1− t)D′ is also an ample PGLn+1(Fq)-invariant R-divisor on Bn

for 0 ≤ t ≤ 1. Hence, if we prove that the hard Lefschetz conjecture holds for

ample PGLn+1(Fq)-invariant R-divisors D, then we prove that the standard

Hodge conjecture also holds for these divisors.

Let us assume that L is an ample PGLn+1(Fq)-invariant R-divisor on Bn

and a ∈ Hk(Bn) for 0 ≤ k ≤ n− 1, a non-zero cohomology class such that

Ln−k ∪ a = 0

For 0 ≤ d ≤ n − 1, take V ∈ Grd(Pn)(Fq) and DV
∼= Bd × Bn−d−1. Let

p1 : DV −→ Bd and p2 : DV −→ Bn−d−1 be projections. Then by proposi-

tion 1.2.11 ,

O(L)|DV
= p∗1(O(D

′
)) + p∗2(O(D

′′
))

whereD
′
andD

′′
are ample PGLn+1(Fq)-invariant R-divisor on Bd and Bn−d−1

respectively. By using induction hypothesis and above proposition, the hard

Lefschetz conjecture holds for (DV ,O(L)|DV
.

By restricting Ln−k ∪ a to DV , we get

O(L)|DV
∪ a|DV

= 0

But dimension of DV = n − 1. Hence a|DV
∈ Hk(DV ) is in the primitive

part P k(DV ). So by induction hypothesis we can apply the hodge conjecture

for (DV ,O(L)|DV
). Hence we have the pairing 〈, 〉P k(DV ) is positive definite.

Hence we have

(−1)k/2.(O(L)|DV
)n−k−1 ∪ (a|DV

) ∪ a|DV
≥ 0

and again by induction hypothesis, the hard lefschetz conjecture tells us that

the equality holds if and only if a|DV
= 0. Since L ∈ H2(Bn), we have by by

proposition 1.2.12 , L is positive. Hence,

L =
∑

V ∈Gr∗(Pn)(Fq)

aVDV

such that aV > 0.
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Thus we have

(−1)k/2.Ln−k ∪ a ∪ a =
∑

V ∈Gr∗(Pn)(Fq)

aVDV ∪ ((−1)k/2.Ln−k−1 ∪ a ∪ a)

From the above we have

(−1)k/2.Ln−k ∪ a ∪ a =
∑

V ∈Gr∗(Pn)(Fq)

aV (O(L)|DV
∪ a|DV

∪ a|DV
)

However we have assumed that Ln−k ∪ a = 0 which implies that

(−1)k/2.Ln−k ∪ a ∪ a = 0

and also we have that aV > 0 as L is positive. Thus we have that a|DV
= 0 for

all V ∈ Gr∗(Pn)(Fq). The proposition 3.2.5 says that a = 0. Hence we have

contradiction since we assumed that a is a non zero cohomology class. Hence

we have that the leftschetz operator is an isomorphism which proves the hard

lefschetz conjecture in our case and hence the Standard Hodge conjecture as

well.

�

Theorem 2.2.8 Let Γ ⊂ PGLd+1(Fq) be a cocompact torsion free discrete

subgroup. Then we have

MiV = Wi+wV ∀i

for XΓ

Proof . We have that all irreducible components, X1, ....., Xm of the spe-

cial fiber of XΓ are isomorphic to the variety Bd. Now from Proposition 1.2.5

and Corollary 1.2.6, we have that the irreducible components of Xi ∩ Xj is

isomorphic to a divisor of the form DV on Bd. Hence by induction we prove

that the irreducible components Y of Xi1 ∩ Xi2 ∩ Xik
is isomorphic to the

product

Y ∼= Bn1 × ....× Bnk

with n1 + .....+ nk = d− k + 1.
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Let L be the relative dualizing sheaf ωXΓ/OK
. Then by Theorem 1.2.13,

we have that L is invertible and ample. For 1 ≤ i ≤ m, fix an isomorphism

Xi
∼= Bd. The restriction of L to Xi will look like

−(n+ 1)f∗OPd(1) +
n−1∑
d=0

(n− d)Dd

This is an ample PGLn+1(Fq)-invariant divisor on Xi. Now by the theo-

rem 2.2.4, we have that the Hodge standard conjecture holds for (Xi, L|Xi
).

Also, by Kunneth formula, Y satisfies the assumption above. Let pj : Y −→

Bnj be the projection to the i − th factor for j = 1, ..., k. Then again by the

same arguement as above,

L|Y = p∗1O(L1) + ......+ p∗kO(Lk)

where Lj is an ample PGLn+1(Fq)-invariant divisor on Bnj for j = 1, ..., k.

Again by Theorem 2.2.4, we have that the Hodge conjecture holds for (Bnj , Lj)

for j = 1, ....k.

So now by Proposition 3.2.3 and induction the Hodge conjecture holds for

(Y,L|Y ). In other words XΓ satisfies all conditions of Theorem 2.2.7. Hence

we have the theorem.

�
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