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Introduction

As Ogg has shown in [12] the good reduction of an elliptic curve can be seen by
the non-ramification of its torsion groups; apparently this result was also known to
Shafarevich. In [15] Serre and Tate generalized this criterion to the case of abelian
varieties, naming it after Néron, Ogg and Shafarevich. This is due to the fact that
the fundamental tool they used to generalize the result to abelian varieties are
the Néron models, introduced by André Néron in [11]. The Néron-Ogg-Shafarevich
criterion can be stated as follows.

Theorem. Let K be a field with a discrete valutation v such that its residue field k
is perfect. Let A be an abelian variety over K and l a prime number different from
the characteristic of k. Then the following are equivalent:

(a) A has good reduction at v;

(b) A[m] is unramified at v for every integer m coprime to char(k);

(c) A[m] is unramified at v for infinitely many integers m coprime to char(k);

(d) Tl(A) is unramified at v.

The proof of this result essentially consists of two lemmas. One of them is due
to some decomposition results for group varieties, while the other comes from the
fact that the maximal unramified extension of K has a Henselian ring of integers.
By mean of the theory of Néron models the proof of the second lemma reduces to
an application of Hensel’s lemma.
The aim of this thesis is to present the proof of this theorem following the guideline
provided by [15]. Our intention is not only to provide the reader with all the theory
needed to appreciate the statement, but moreover to give more details on the original
proof in order to make it clearer to an unexpert mathematician who faces the original
article (for example a master student in mathematics). The theory we expose as
the needed background to understand the Néron-Ogg-Shafarevich criterion has not
only the proof of this result as a final goal. In fact the theorem can be seen as
an opportunity to give an exhaustive, within a certain level, exposition of some
topics in arithmetic. Of course the fact that we wanted to prove a certain statement
influenced our choices. As a consequence of this, the reader should observe that
some canonical results are presented in a slightly more general context to fit in the
hypothesis of the theorem. For example one can appreciate that we developed the
theory of abelian varieties over a non-algebraically closed field (while this is not
the case in [10]) or that we gave the basic notions for ramification theory in the



case of an infinite extension without assuming the base field to be complete. For
what concerns the language, the best environment to set this work turned out to
be the group schemes, the theory of abelian varieties and the claimed decompostion
results are presented in these terms. We are going to use definitions in scheme theory
without recalling them: we refer to [7] for the common langauge, unless otherwise
stated. The basic results in algebraic geometry are not stated but we tried to give
a reference to them even when using the most basic ones.
The content of this work is divided in three chapters. The first one consists of
preliminaries, for algebraic geometry we set the basic definitions and properties
of group schemes providing some examples. For what concerns number theory we
describe ramification in the infinite extension case. In the second chapter we will
talk about abelian varieties, after having defined them we will describe some of their
properties. Here we will define Tate modules and the Galois action on them. Aside
from this we will consider the issue of good reduction, and so we will introduce
abelian schemes and Néron models. The topic of the last chapter is the proof of
the Néron-Ogg-Shafarevich criterion. The first part is essentially devoted to some
decomposition of group schemes that will allow us to prove a lemma needed for the
second part. In the second section we present the proof of the announced criterion
for good reduction of abelian varieties.
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Chapter 1

Preliminaries

In this chapter we will set the background needed in algebraic geometry with group
schemes and in number theory with theory of ramification.

1.1 Group schemes

Group schemes are group objects in the category of schemes. In other words they
are schemes with morphisms that make them behave as groups. In this section,
starting from this definition, we will see that group schemes also have an equivalent
functorial behaviour. We will conclude this introductive section with some examples.

Definition 1.1.1. Let S be a scheme. A group scheme over S (or an S-group
scheme) is a scheme G over S, given by π : G→ S, together with S-morphisms

m : G×S G −→ G (multiplication)

e : S −→ G (identity)

i : G −→ G (inverse)

such that the following diagrams are commutative

G×S G×S G

idG×m
��

m×idG // G×S G

m
��

G×S G m
// G

S ×S G

j1
##

e×idG // G×S G

m
{{

G

G×S S

j2
##

idG×e // G×S G

m
{{

G

G

(idG,i)

��

π // S

e

��

G×S G m // G

G

(i,idG)

��

π // S

e

��

G×S G m // G

5



where j1 and j2 are the canonical isomorphisms.

Definition 1.1.2. A group scheme over S is said commutative if the following
diagram commutes

G×S G
s

��

m // G

idG
��

G×S G m // G

where s is the “switch” morphism that exchanges the two factors of the fiber prod-
uct.

Definition 1.1.3. Let (G,m, e, i) be a group scheme over S. Then a subscheme
j : H ↪→ G is a subgroup scheme of G if there exist S-morphisms mH , eH , iH such
that

m ◦ (j × j) = j ◦mH

e = eH ◦ j
j ◦ i = ih ◦ j

Remark 1. One can define normal subgroup schemes defining properly a conjuga-
tion action as an S-morphism from G×SG×SG to G. Then we say that a subgroup
scheme H is normal if the conjugation factors through H. The details of the con-
struction of this map are cumbersome. Later we will give an equivalent definition
that is simpler to handle.

Definition 1.1.4. Let (G1,m1, e1, i1) and (G2,m2, e2, i2) be two group schemes
over S. A homomorphism of group schemes over S from G1 to G2 is an S-morphism
f : G1 → G2 such that

f ◦m1 = m2 ◦ (f × f).

This automatically implies

f ◦ e1 = e2

f ◦ i1 = i2.

When no confusion will be possible we will refer to an S-group scheme (G,m, e, i)
just by G.
For any integer n, we denote by [n] : G→ G the n-power morphism (n-multiple in
the commutative case). It is given by

[n] = (G
∆n
G // Gn

mn // G)

where ∆n
G is the n-diagonal morphism and mn is the n-th iterate of the multiplica-

tion by m.
Other interesting S-morphisms coming from the group scheme structure are the
translations. To define them we bserve that for every S-scheme T , the base change
GT := G ×S T naturally inherits a structure of group scheme over T (if G is com-
mutative, then GT is commutative). In this situation we give this definition.
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Definition 1.1.5. For any T -rational point x in G(T ), we define the right trans-
lation tx : GT → GT and the left translation xt : GT → GT , as the T -morphisms
given by the compositions

tx = (GT ' GT ×T T
idGT ×x // GT ×T GT m // GT )

and

xt = (GT ' T ×T GT
x×idGT // GT ×T GT m // GT ) .

Then tx is an isomorphism being ti(x) its right and left inverse. Of course, the
same is true for xt.

It is easy to show that every S-group scheme G can be seen as a functor from
SchS to Grp. In fact let T be a scheme over S with structure morphism πT : T → S,
then G(T ), the set of T -rational points of G, is a group: the multiplication of two
T -rational points x and y is given by x∗y = m◦(x, y), the identity element is e◦πT ,
the inverse is given by x−1 = i ◦ x. Functoriality is just an easy check.
Now we will show a sort of converse to this construction, that is a way to associate
to a functor of this kind a group scheme. To do this we introduce some easy notions
of category theory.
Let C be a category, we denote with Ĉ the category of contravariant functors from
C to Set, whose morphisms are natural transformations of contravariant func-
tors. So, for example, given an object C in C we have a contravariant functor
hC = HomC(−, C) which is an object in Ĉ. This kind of contravariant functors
are particularly important because of the following result.

Lemma 1.1.6 (Yoneda Lemma). The functor h : C → Ĉ, associating to C ∈ C the
contravariant functor hC , is fully faithful. Moreover for every C ∈ C and for every
F ∈ Ĉ, we have a canonical bijection F (C)→ HomĈ(hC , F ).

By this we can deduce the following.

Proposition 1.1.7. Let G be a scheme over S. Then the data of a group scheme
structure on G (in the sense of definition 1.1.1) is equivalent to the data of a rep-
resentable contravariant functor from SchS to Grp, together with the choice of G
as a representing object.

Proof. We already showed that G(−) = HomS(−, G) : SchS → Grp is a contravari-
ant functor.
Conversely we assume that the functor hG = HomS(−, G) : SchS → Set can be
lifted to a functor h̃G : SchS → Grp. So for every S-scheme T we have a multipli-
cation map

mT : hG(T )× hG(T )→ hG(T ).

Since hG×SG and hG×hG are naturally isomorphic, the maps mT ’s induce a natural
transformation of functors

µ : hG×SG → hG.

So µ is a morphism in the category ˆSchS and so by Yoneda’s lemma, we can associate
to µ an S-morphism m : G×S G→ G.
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Exactly in the same way, one can build the morphisms e and i. Then using the
group structure on hG(T ) for every T , one can prove that the morphisms m, e and
i satisfy the properties in definition 1.1.1.

Given a functor hG, with abuse of notation, we will refer also to its group-valued
lifting as hG.

Remark 2. Following what proved just before one can easily show that:

1. Saying that H is a subgroup scheme of an S-group scheme G is equivalent to
saying that hH is a subgroup functor of hG, meaning that hH(T ) is a subgroup
of hG(T ) for every S-scheme T .

2. The data of an S-group scheme morphism f : G1 → G2 (in the sense of
the definition 1.1.4) is equivalent to the data of a natural transformation of
group-valued functors hG1 → hG2 .

Remark 3. What is actually holding is an equivalence of categories between the
category of group schemes over S and the category of representable functors from
SchS to Grp. This now can be easily verified.

In view of this, we will naturally confuse a group scheme G with its associated
group-valued functor hG.
This correspondence will allows us to define simply what a normal subgroup scheme
is.

Definition 1.1.8. Let G be a group scheme over S and H a subgroup scheme of
G. We will say that H is a normal subgroup scheme of G is hH(T ) is a normal
subgroup of hG(T ) for every S-scheme T .

The equivalent definitions of group schemes make easier to understand the fol-
lowing examples.

Example 1. To every S-scheme T , we can associate the additive group of the global
section of T , namely Γ(T,OT ). This gives us a group scheme over S, which is called
the additive group over S and is denoted by Ga,S .
If S = Spec(R) is affine, then Ga,S is represented by the affine scheme A1

S =
Spec(R[x]), the group scheme structure morphisms are induced by the ring mor-
phisms

m̃ : x 7→ x⊗ 1 + 1⊗ x
ẽ : x 7→ 0

ĩ : x 7→ −x

Example 2. To every S-scheme T , we can associate the multiplicative group of the
invertible elements of the global section of T , namely Γ(T,OT )×. This gives us a
group scheme over S, which is called the multiplicative group over S and is denoted
by Gm,S .
If S = Spec(R) is affine, then Gm,S is represented by the affine scheme Spec(R[x, x−1])
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(this is the affine punctured line), the group scheme structure morphisms are in-
duced by the ring morphisms

m̃ : x 7→ x⊗ x
ẽ : x 7→ 1

ĩ : x 7→ x−1

Example 3. Let Γ be a group. Then we consider the S-scheme G :=
∐
γ∈Γ S.

This is naturally a group scheme, in fact it is sufficient to observe that G ×S G is
isomorphic to

∐
γ,γ′∈Γ. Then the multiplication map is given by the morphism that

maps identically the component of G×S G indexed by (γ, γ′) to the component of
G indexed by γγ′. In the same way the identity section is the morphism sending
S identically to the component of G indexed by eΓ, the inverse morphism maps
identically the component indexed by γ to the component indexed by γ−1. This
group scheme is called the constant group over S with fiber Γ and it is usually
denoted by G = ΓS .
We want now to understand how G acts functorially on an S-scheme T . Since the
group structure on G(T ) is induced by composition with T → G, we observe that
given an S-morphism T → G, the only thing that matters for the group law is which
are the indeces of G in which the image of T is contained. In this way it appears clear
that, as groups, we have an isomorphism between G(T ) and the group of locally
constant functions from T to Γ.
We want to remark that if ZS is the constant group with fiber Z we have

HomGrpSchS (ZS , G) = HomSchS (S,G) = G(S).

In fact a group scheme morphism ZS → G is univocally determined by a morphism
S → G on the copy of S in ZS indexed by 1.

1.2 Ramification theory

The aim of this section is to extend the concept of ramification for finite extensions
of discrete valued field, to ramification of the action of the absolute Galois group.
Here we are recalling some facts about finite extensions of discrete valuation fields.
Most of them will be useful to understand the infinite case we will describe later,
some of them are proposed mainly for cultural reasons. The main reference for what
stated without a proof is [14, I, §4].
Throughout this section K will be a field with a discrete valuation v, we will denote
by Ov its ring of integers, that is the subring of elements with non-negative valua-
tion. This one is a local ring and we will denote by mv its unique maximal ideal (it
is given by the elements with positive valuation). The residue field of the valuation
v will be k := Ov/mv. We will always assume k to be perfect.1

We consider now a finite extension K ′/K, with degree [K ′ : K] = n.

Proposition 1.2.1. There exists at least one discrete valuation v′ on K ′ such that
v′ |K= v.

1Even though this assumption may be too restrictive for some results proposed in this chapter,
it will be crucial in the last one. This is why we put it here.
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In light of the proposition the ring Ov′ will be the ring of integers of v′, its
maximal ideal will be m′v and k′ will be its residue field.
We recall that to an extension of discrete valuation of this kind we can associate
two positive integers:

e(v′/v) := |v′(K ′) : v(K)|

called the ramification index of v′ at v; and

f(v′/v) := [k′ : k]

called the residue degree of v in the extension K ′/K. Moreover we have that e(v′/v)
and f(v′/v) do not depend on the choice of v′. Assume that v′′ is another extension of
v, the Galois group acts transitively on the set of prime ideals over a given ideal and
so by unique factorization of ideals in Dedekind domains, we have that e(v′′/v) =
e(v′/v). Moreover the transitivity of the action give us an isomorphism between k′′

and k′, establishing f(v′′/v) = f(v′/v). For details see [14, Ch. I, §7, Prop. 19 &
Cor.]. So, when the galois field extension will be understood, we will simply denote
with e and f the ramification index and the residue degree respectively.
Under some further assumptions (i.e. K is complete, K ′/K is separable, . . . ) we
have the following relation.

Proposition 1.2.2.
n = ef

For our purposes we will give the following definition.

Definition 1.2.3. The extension K ′/K is said to be unramified at v if e(v′/v) is
equal to 1.

We now assume K ′/K to be a Galois extension with Galois group Gal(K ′/K).
It is easy to check that, then, the finite extension k′/k is Galois.
We denote by Sv(K

′) the set of equivalence classes of discrete valuations on K ′

extending v. Then Gal(K ′/K) acts on Sv(K
′) by σ[w] = [w ◦ σ].

In this context we give the following definitions.

Definition 1.2.4. The decomposition group of v′ is the subgroup of Gal(K ′/K)
that fixes the class of v′. Namely it is

DK′/K(v′) := {σ ∈ Gal(K ′/K) | σ[v′] = [v′ ◦ σ] = [v′]}

Definition 1.2.5. The inertia group of v′ is the subgroup of Gal(K ′/K) given by

IK′/K(v′) := {σ ∈ Gal(K ′/K) | v′(σ(a)− a) > 0,∀a ∈ Ov′}

To ease the notation, we will write D and I for the decomposition group and the
inertia group respectively. It is easy to check that D and I are actually subgroups
of Gal(K ′/K). Moreover I is a normal subgroup of D.
One sees that the Galois action on K ′ can be restricted to an action on Ov′ . This
naturally induces, by reduction, an action of D on k′. More explicitly, we have the
following statement.
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Proposition 1.2.6. The reduction map

r : D → Gal(k′/k)

is a surjective homomorphism, with kernel I.

Proof. See [14, I, §7, Prop. 20] and [14, IV, §1, Lemma 1].

We introduced the inertia group because this allows us to characterize unramified
extensions.

Proposition 1.2.7. A subextension L of K ′ over K (with discrete valuation induced
by restriction of v′) is unramified at v, if and only if I acts trivially on L.

Proof. As one can see in [14, IV, §1, Cor. 2] the subfield of K ′ fixed by I, is the
maximal unramified subextension of K ′ over K. This is enough to conclude.

Now we are going to extend this concept to infinite extensions. We recall that an
algebraic field extension Ω/K (possibly infinite) is said to be Galois if it is normal
and separable. Its Galois group is given by

Gal(Ω/K) := lim←−Gal(F/K)

where F ranges through the finite Galois extensions of K contained in Ω. This
is a topological group, with the profinite topology (for details see [13, Ch.2 §11]).
We recall that there is a Galois correspondence between closed subgroups H ⊂
Gal(Ω/K) and intermediate extensions K ⊂ L ⊂ Ω:

H 7−→ E(H) := {x ∈ Ks | σ(x) = x, ∀σ ∈ Ω}
L 7−→ Gal(Ω, L) := {σ ∈ Gal(Ω/K) | σ(x) = x,∀x ∈ L}.

For details see [13, Th. 2.11.3]. We denote by Ks a separable closure of K. This is
the subfield of a fixed algebraic closure of K given by all the elements separable
over K.

Proposition 1.2.8. The field Ks is normal and separable, hence Galois, over K.

Proof. We know that Ks is separable over K by definition. Moreover every minimal
polynomial of an element in Ks over K is separable, hence it factors completely in
Ks, so Ks is normal.

By the proposition, Ks is a maximal Galois extension of K, this justifies calling
Gal(Ks/K) the absolute Galois group of K.
We now assume the field K to be endowed with a discrete valuation v, with Ov
as its ring of integers and k as its residue field, again we assume k to be perfect.
For every finite Galois extension F/K we can define on F a discrete valuation vF
extending v. We can require, moreover, these discrete valuations to be compatible
with respect to restrictions. That is, for every two finite Galois extensions F ′, F ′′,
we have vF ′ and vF ′′ agree on F ′ ∩ F ′′. By a direct limit argument we can extend
this compatible system of discrete valuations to a valuation v̄ on Ks.
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Remark 4. The valuation v̄ is not discrete. In fact, let π be a uniformizer of v in
Ov. Then for every positive integer m coprime with char(K), there is an element
αm in Ks such that αmm = π, this implies that v̄(αm) = 1/m.

As in the discrete case we have the following notations.

Ov̄ := {a ∈ Ks | v̄(a) ≥ 0}

is a subring of Ks, it is a valuation ring hence local and integrally closed. The ideal

mv̄ := {a ∈ Ks | v̄(a) > 0}

corresponds to the only maximal ideal of Ov̄. The residue field of the extension
Ks/K will be k̄ := Ov̄/mv̄.

Remark 5. The “bar” in the symbol for the residue field is not misleading. In fact
one can easily prove that Ov̄/mv̄ is an algebraic closure of k.

The following definition naturally arises.

Definition 1.2.9. We will call the inertia group of v̄ the subgroup of Gal(Ks/K)
given by

I(v̄) = lim←− IF/K(vF )

with F running through the finite Galois extensions of K.

We will denote, since there is no possible confusion, I = I(v̄). From the definition
it is immediate that

I = {σ ∈ Gal(Ks/K) | v̄(σ(a)− a) > 0,∀a ∈ Ov̄}.

Moreover I is a closed subgroup (see [13, Cor. 1.1.8(b)]), hence by Galois correspon-
dence KI

s = E(I), the set of elements of Ks fixed by the action of I, is a field. We
will denote L = KI

s .

Proposition 1.2.10. The field L is the maximal unramified extension of K.

Proof. By definition I = lim←− IF/K(vF ), with F/K finite Galois extensions. Applying
E(−) to both sides we have

L = E(I) = E(lim←− IF/K(vF )) = lim−→E(IF/K(vF )).

As seen in proposition 1.2.7 the fields E(IF/K(vF )) are unramified at v. Moreover
every unramified extension K ′/K is contained in an unramified finite Galois exten-
sion F/K. Hence E(I) is the compositum of all unramified extensions of K.

This allows us to define unramified extensions in the following way that coincides
with the standard definition for finite extensions.

Definition 1.2.11. A subfield of Ks containing K is unramified at v if I acts
trivially on it.
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By restriction, the field L is a valuation field whose valuation ring is OL :=
Ov̄ ∩ L. This has only one maximal ideal mL := mv̄ ∩ L. Moreover we have the
following result that will be useful in the last chapter.

Lemma 1.2.12. The ring OL is Henselian (it satisfies Hensel’s Lemma).

Proof. Let f ∈ OL[x] be a monic irreducible polynomial, we denote by f̄ the reduc-
tion modulo mL of f . Let us suppose that f̄ has a simple root a modulo mL, that
is

f̄ ′(a) 6≡ 0 (mod mL)

This means that f ′ ∈ OL[x] is not zero and so f is separable, implying that it has
all its roots in Ks. Since f is monic with coefficients in Ov̄, that is integrally closed,
all the roots of f are v̄-integers. Since f and f̄ have the same degree, all the roots of
f̄ (with multiplicities) are obtained bijectively from reduction of roots of f modulo
mv̄. So there is α in Ov̄ that reduces to a. Now let σ be an element of I, then σ(α)
is a root of f , since both σ(α) and α reduce to a modulo mv̄, they are forced to be
equal. Then σ(α) = α for every σ in I, and so α is in OL as required.

13



Chapter 2

Abelian varieties

2.1 Definition and properties

In this section K will be a field and we use the following definitions.

Definition 2.1.1. Let X be a scheme over K. We say that X is a variety if X is
separated, of finite type and geometrically integral. A morphism of varieties is a
morphism of K-schemes between varieties. We will say that a variety is complete if
it is proper as a scheme.

Definition 2.1.2. A variety G over K that is a group scheme over K, is called a
group variety.

Actually the separatedness of a group variety coul be not required in the defi-
nition, in fact, as the following lemma shows, it holds for every group scheme over
a field.

Lemma 2.1.3. Let G be a group scheme over a field K, then G is separated.

Proof. It is enough to prove that ∆(G) is closed in G ×K G (see [7, Ch. 3, Cor.
3.5]). Then we consider the diagram

G×K G
dG // G

G

∆

OO

// Spec(K)

eG

OO

where dG = mG ◦ (idG × iG) is the difference morphism. Then ∆(G) is exactly the
preimage by d of the image of e, since e is a closed map and d is continuous, we
have the desired result.

A nice use of the group structure on a group variety is shown in the following
proposition.

Proposition 2.1.4. Group varieties are smooth.
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Proof. Let G be a group variety over K. By definition X is smooth if and only
if XK̄ is regular. By [7, Ch. 4, Cor. 2.17] it is enough to check that every closed
point of XK̄ is regular, moreover we know that the closed points of XK̄ are exactly
the points in XK̄(K̄) ([3, Cor. 6.4.3]). So we are reduced to show that every x in
XK̄(K̄) is regular. Let x0 in XK̄(K̄) be a regular point (it exists because of [7, Ch.
4, Lemma 2.21]). For every closed point x, we have a closed point x0 − x, given by
the group-law on XK̄(K̄). Then we consider the translation tx0−x : XK̄ → XK̄ . This
is an isomorphism of schemes sending x to x0, since the last one is regular, also x
will be regular.

Among group varieties we focus our attention on the complete ones.

Definition 2.1.5. An abelian variety over K is a complete group variety over K.

The theory of abelian varieties is really wide and there are entire books dedicated
to them, what we want to provide here is just a brief collection of properties that
we will use later. Even though a canonical reference for the subject is [10], for our
aims we do not require K to be algebraically closed. So in most of the cases we will
refer to [18].
We want to show that requiring two varieties to be abelian strongly reduces the
possible morphisms of varieties between them. In a certain sense the subcategory
AbVar ⊂ Var is “not so far” from being full, in fact for two abelian varieties A
and B, the set HomVar(A,B) can be described in terms of HomAbVar(A,B). To
give a first idea of how this is proved we imagine the following easy situation.
We have two groups A and B, and a function between them f : A → B. One
may ask whether f is a homomorphism. Obviuosly there are functions that are not
homomorphisms, for instance every function such that f(eA) 6= eB. But it may
happen that f is just a translation of a homomorphism h by an element y in B.
Explicitly f(x) = h(x)+y, for every x in A. Of course there are functions that do not
satisfy this condition, but showing a procedure to check if this holds, we will give the
idea of the proof of the following proposition. Obviously the first requirement is that
y = f(eA), then we have to check that h(·) = f(·) − y is a group homomorphism.
To do this we can build the function

g : A×A // B

(x, x′) � // h(x+ x′)− h(x′)− h(x)

then h is a homomorphism if and only if g is constantly eB. It is clear that this
cannot hold for every function f , on the other hand this is what is happening for
abelian varieties, and this is due to the fact that we asked them to be complete.

Proposition 2.1.6. Let A and B be two abelian varieties, then a morphism of
varieties f : A → B is given by f = ty ◦ h, where ty is the translation by a point y
in B and h is a morphism of group schemes.

Proof. We will reproduce the argument we wanted to apply for groups. Let y =
(f(eA)) and we define h := tiB(y) ◦ f . Then we want to show that h is a homomor-
phism of group schemes. To do this we consider the morphism

g = (A×A
(h◦mA)×(iB◦mB◦(h×h))

// B ×B mB−→ B) .
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Now it will be enough to prove that g is constantly eB. To do this we require the
following lemma.

Lemma 2.1.7 (Rigidity). Let X, Y and Z be varieties with X complete with a
K-rational point. Let f : X×Y → Z be a morphism of varieties. If there exist y0 in
Y (K) and z0 in Z(K) such that f(X × {y0}) = {z0}, then there exists a morphism
g : Y → Z such that the following diagram is commutative.

X × Y f
//

π2
��

Z

Y

g

;; .

Where π2 is the canonical projection.

We want to apply this to g. We have

g({eA} ×A) = g(A× {eA}) = {eB},

and so g factors through both the projections to A, let say by g1 and g2 respectively.
Let us take a point x in A. This is the image of a morphism Spec(κ(x))→ A. Since
eA is a K-rational point of A, that is a morphism Spec(K) → A, we have the
following diagram that shows us how to see x as a point in A× {eA}.

Spec(κ(x))

''

x

��

π

**

A× {eA}

��

// Spec(K)

eA
��

A×A
π1

��

π2 // A

��

A // Spec(K)

.

Then it is not misleading to call (x, eA) the image of Spec(κ(x)) in A× {eA}. Now
we know that g(x, eA) = eB and that g factors through the first projection, so
g1(x) = g(x, eA) = eB. If we take now z in A × A we have g(z) = g1(π1(z)) = eB
by what we have just proved.

Remark 6. The assumption of Y complete is not necessary in the proof. We just
phrased the proposition in these terms to consider all the objects in the class in
which this property holds.

Corollary 2.1.8. An abelian variety is a commutative group scheme.

Proof. Let us consider an abelian variety A and the inversion morphism i : A→ A.
By the proposition 2.1.6 this is a morphism of group schemes. This is equivalent to
the fact that A is commutative.
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Remark 7. Rigidity lemma is a classical tool in the theory of abelian varieties
and it is proved, in the case of algebraically closed field, in [10]. As announced, we
cannot make this assumption (at a certain point we will discuss of Galois actions),
so we slightly changed the hypothesis to be still able to prove this result, in fact we
required X to have a K-rational point. This is not too restrictive since our main
(and only) application of rigidity lemma is for abelian varieties and these have at
least one rational point: eA : Spec(K)→ A.

Proof of lemma 2.1.7 (Rigidity). Let x0 be a point in X(K). We consider the mor-
phism (x0, idY ) : Y → X × Y , this is given by the diagram:

Y

��

(x0,idY )

&&

idY

$$
X × Y

π1

��

π2 // Y

��

Spec(K)
x0 // X // Spec(K)

.

Now we define g = f ◦ (x0, idY ). We want to check that f = g ◦ π2, from [7, Ch.
3, Prop. 3.11] it is enough to check that the two functions agree on an open dense
subset of X×Y . Moreover we observe that X×Y is irreducible from [17, Tag 038F]
and so every open subset of it would be dense. Let U be an affine open neighborhood
of z0 in Z. Then we consider the set W = π2(f−1(Z \ U)), by continuity of f and
completeness of X the set W is closed. Since f(X × {y0}) = {z0}, we have y0 /∈W
and so the set V ′ = Y \W is open and non-empty. We consider now a point t in
X × Y lying in the open subset V = π−1

2 (V ′). We assume now by contraddiction
that t is in f−1(Z \ U), then π2(t) would be in W and this is not possible. So t is
mapped by f to U . Moreover t can be seen as a point of X × {π2(t)} and we claim
that the morphism from X×{π2(t)} to U can have as a possible image only a single
point. So f acts the same way on every point t with the same π2(t). Since the map
(x0, idY ) is a section for the second porjection, we have

f(t) = f ◦ (x0, idY ) ◦ π2(t) = g(t)π2(t).

We are left to check the claim. We observe that X ′ = X × {π2(t)} is a base change
of a complete variety, then by [7, Ch. 3, Prop. 3.16] it is complete. Now, from [7,
Ch. 3, Cor. 3.21] we know that Γ(X ′,OX′) is a field, let us call it k. We know that
U is affine, let us say U = Spec(R). Now we consider

HomVarK (X ′, U) ' HomAlgK (R,Γ(X ′,OX′)) ' HomVarK (Spec(k), U).

And the only morphisms in the last set are sending everything to a single point.

This situation of rigidity does not apply for any variety let us think at the
following example.
We take X = Y = Z = A1

K and we consider the morphism f : A1
K × A1

K → A1
K

that is defined on closed points by (x, y) 7→ xy, for y = 0, z = 0 we have the
condition of the lemma. But f does not factor through the projection, for instance
f(1, 1) = 1 6= 2 = f(2, 1).
We our now interested in giving an example of an abelian variety.
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Example 4 (Elliptic curves). An elliptic curve over K is a smooth curve E of
genus 1 having a K-rational point O. Elliptic curves are the first example of abelian
varieties. A canonical reference on the subject is [16]. Here we will briefly check
that this definition actually gives an abelian variety. As in [16, III, Prop. 3.1] by
Riemann-Roch theorem one can show that elliptic curves are projective plane curves
described by a homogeneous polynomial of degree three. Since projective implies
proper (see [7, Ch. 3, Th. 3.30]), elliptic curves are complete varieties in our sense.
In [16, III §2] it is described a procedure to endow E(K) with a group structure with
O as the identity. Given two points P and Q in E(K) if we denote by P ∗Q the third
point of intersection of the line through P and Q with E, then P +Q will be given
by P +Q = O ∗ (P ∗Q). The figure 2.1 gives an insight of this construction. From

P

Q

P ∗Q

P +Q

(a) P 6= Q

P

P ∗ P

2P

(b) P = Q

Figure 2.1

the formula deriving from this algorithm [16, III, 2.3], one sees easily that for every
extension of fields K ⊂ K ′ also E(K ′) = EK′(K ′) is a group which contains E(K)
as a subgroup. This is enough to show that we have a K-group scheme structure on
E. In [16, III, Prop. 3.4] it is shown that there is a group structure on E(K) arising
from an isomorphism

E −→ Pic0(E)

P 7−→ [P −O].

This gives exactly the same group as in the “geometrical” construction.

For an abelian variety A over K and an integer n coprime with the characteristic
of K it is useful to understand what is the structure of its n-torsion, namely the
group

A[n] := Hom(Z/nZ, A(Ks))

where KS denotes a separable closure of K. To do this we will give a short overview,
following [18, V], on a particular kind of morphisms between abelian varieties: the
isogenies.

Definition 2.1.9. Let A and B be to abelian varieties, a morphism of varieties f :
A→ B is called an isogeny if it satisfies one of the following equivalent conditions.
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1. f is surjective and dim(A) = dim(B);

2. ker(f) is a finite group scheme and dim(A) = dim(B);

3. f is a finite, flat morphism.

The equivalence of this properties for a morphism of varieties is proved in [18,
Prop. 5.9].
If we denote by K(A) = Frac(Γ(U,OA)), where U is an open subset of A, the
function field of A, the fact that an isogeny is surjective implies that we have a
homomorphism f∗ : K(B)→ K(A). This translates into a finite extension of fields,
we define the degree of an isogeny the number [K(A) : f∗K(B)]. We are now
interested in isogenies for which this extension is separable.

Definition 2.1.10. An isogeny f is called separable if it satisfies one of the following
equivalent conditions.

1. The field extension K(A)/f∗K(B) is separable;

2. f is an étale morphism;

3. ker(f) is an étale group scheme.

See [18, Prop. 5.6].
The introduction of isogenies to study the n-torsion is justified by the following
result.

Proposition 2.1.11. Let A be an abelian variety over a field K. Let n 6= 0 be an
integer, then [n] : A→ A is an isogeny of degree n2 dim(A). If, moreover, n is coprime
with the characteristic of K then [n] is separable and the group A[n] = ker[n](Ks)
is a free Z/nZ-module of rank 2 dim(A).

Proof. For the proof we refer to [18, Prop. 5.9] and [18, Cor. 5.11].

We are now interested in a divisibility result for the rational points on an abelian
variety. In [18, Cor. 5.10], it is proved that A(K̄) is a divisible group, unfortunately
this result in not so useful for our aims. This is beacause in what follows we will be
interested in a Galois action on the rational points of an abelian variety (more in
general of a group scheme), this will prevent us from using anything related to the
algebraic closure. But we can obtain the needed result adding a little argument on
étale morphisms.

Proposition 2.1.12. For every n coprime with the characteristic of K, the group
A(Ks) is n-divisible.

Proof. The isogeny [n] induces multiplication by n on A(Ks). We know that [n] is
étale and surjective. So we are reduced to prove the following lemma.

Lemma 2.1.13. Let X and Y be two noetherian schemes over a field K. We denote
by Ks a separable closure of K. Let f : X → Y be an étale surjective morphism of
K-schemes. Then the induced map

f : X(Ks)→ Y (Ks)

is surjective.
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Proof. Let y : Spec(Ks) → Y be a Ks-rational point. We consider the fiber Xy =
X ×Y Spec(Ks). Since f is surjective the fiber will be non-empty and by [6, Cor.
17.6.2 (c’)] it has a point z such that κ(z) is a separable extension ofKs implying that
κ(z) = Ks. Then z gives a Ks-rational point on X×Y Spec(Ks) and by composition
a Ks-rational point on X that is send by f to y.

2.2 Tate modules

In this section we will show how to associate to a group scheme over K, for every
prime number, a Galois module. The importance of these modules is that they
encode tha arithmetic of the group scheme relatively to a given prime number. Here
we will always consider K to be a field, Ks will be one of its separable closure, and
G a commutative group scheme over K. Let now l be a prime number, then for
every positive integer n the set

G[ln] = Hom(Z/lnZ, G(Ks))

is a commutative group. Moreover, for every n, we have the following homomorphism

[l] : G[ln+1] −→ G[ln] (2.1)

that sends a point to its l-multiple. It is clear that {G[ln]}n is an inverse system.

Definition 2.2.1. The Tate-l-module of G is

Tl(G) := lim←−G[ln]

We remark now that {Z/lnZ}n is a direct system with transition maps

Z/lnZ −→ Z/ln+1Z
1 7−→ l.

This morphism is exactly the one inducing [l] by funcoriality of Hom(−, G(Ks)).
Then we have the following equivalent description of the tate module.

Tl(G) = lim←−Hom(Z/lnZ, G(Ks)) = Hom(lim−→Z/lnZ, G(Ks)) = Hom(Ql/Zl, G(Ks))

in fact, the last direct limit comes from considering the canonical isomorphism

lim−→Z/lnZ −→ Ql/Zl
Z/lnZ 3 xn 7−→ xnl

−n

We will now provide some examples of Tate modules, considering a field K with
characteristic p ≥ 0.

Example 5. Let G = Ga,K , and let l 6= p be a prime number. Then for every
positive integer n, the group G[ln] is exactly the ln-torsion of Ks and so is trivial.
This tells us that Tl(Ga,K) = 0. On the other hand multiplication by p kills every
element in G(Ks), so the module Tp(Ga,K) = 0 is trivial too.

20



Example 6. Let G = Gm,K . We observe that there are no non trivial p-th roots of
unity in Ks and so Tp(Gm,K) = 0. We now take a prime number l 6= p. We assume
that, for every n, we have a primitive ln-root of unity ζn. Then every element of
G[ln] is uniquely definied by a power of an element of ζn and so by an element of
Z/lnZ. If we require, moreover, the system of primitive roots to be compatible, in
the sense that ζ ln+1 = ζn, for every n, then it is clear that the Tate module Tl(Gm,K)
is isomorphic to Zl.

Example 7. LetG = A be an abelian variety. Then, as a consequence of proposition
2.1.11, we have that for every prime l 6= p, the Tate module Tl(A) is a free Zl-module
of rank 2 dim(A).

In the previous examples we described some Tate modules via non-canonical
isomorphisms! Even if this tells us everythiing on their structure as groups, the
isomorphisms make us lose control on another structure we have on Tl(G), in fact
Tate modules have a galois action. The aim of the next section will be to give a
first insight on the galois modules behaviour of tate modules and to study their
ramification.

2.3 Tate modules as Galois representations

In this section we will show how to endow a Tate module with a non-trivial action
of the absolute Galois group of the field they are defined on. Moreover we will show
how, in the case of abelian varieties and of the multiplicative group, this action
corresponds to a non-trivial representation of the absolute Galois group.
Let Ω/K be a Galois extension with Galois group Gal(Ω/K). Every element σ
in Gal(Ω/K) can be seen as a K-algebras morphism σ : Ω → Ω. This induces a
K-morphism of schemes

Specσ : Spec Ω −→ Spec Ω.

If we consider a K-scheme X, then we have naturally an action of Gal(Ω/K) on
X(Ω). In fact, if we take an element σ in Gal(Ω/K) and a point P in X(Ω), we can
define the Ω-rational point σ(P ) := P ◦ Spec(σ) as in the diagram:

Spec Ω

σ(P )

55
Specσ

// Spec Ω
P // X .

Our interest now is in the case X = G is a group scheme over K. We know, then,
that G(Ω) has a group structure. One may wonder on whether the Galois action
commutes with the group scheme operations. Let P and Q be two rational points
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in G(Ω) and σ an element in Gal(Ω/K). We consider the following diagram.

Spec Ω

σ(P )

%%

σ(Q)

  

Specσ

##

Spec Ω

P

  

Q

$$

(P,Q)

$$

G×K G //

��

m

!!

G

��

G

G // SpecK

.

We know that
σ(P ∗Q) = m ◦ (P,Q) ◦ Specσ,

while on the other hand

(σ(P ) ∗ σ(Q)) = m ◦ (σ(P ), σ(Q)).

As we can see in the diagram above, the universal property of the fiber product
tells us that (P,Q)◦Specσ = (σ(P ), σ(Q)), and so we can conclude that the Galois
action commutes with the group operation on G(Ω).
We consider now the case in which G is a commutative group scheme over K.
Then if Ks is a separable closure of K, we have an action of Gal(Ks/K) on G(Ks).
The fact that the action commutes with the group operation, immediately tells us
that the Galois action can be extended to G[m]. Since, moreover, the Galois action
commutes with taking integer multiples of points in G(Ks), we have a Galois action
also on Tl(G), for any prime number l. This means that we have a homomorphism
of groups

ρ : Gal(Ks/K) −→ Aut(Tl(G)).

An important case will be when we consider G = A to be an abelian variety over K,
and l a prime number not dividing the characteristic of K. As seen in the example
7, the l-Tate module Tl(A) is a free Zl-module. Multiplication by an element of Zl
is just a compatible componentwise multiplication by integer numbers, this implies
that the Galois action and the Zl-module structure on Tl(A) are compatible. This
amounts to say that the homomorphism of groups ρ is actually a homomorphism

ρ : Gal(Ks/K) −→ GL2 dim(A)(Zl).

This is an example of what is called a Galois representation. Now we will provide
another example, a Galois representation associated to the multiplicative group, in
this case we will assume the base field to be K = Qp, for a certain prime number
p, to do concrete computations.

Example 8. We will consider the Tate module Tl(Gm,K) as in the example 6. We
assume the field K to be Qp for a certain prime number p, and then Ks will be
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Q̄p an algebraic closure of Qp. Let l be a prime number. We assume we fixed a
compatible sequence of primitive ln-th roots of unity as in the example 6. Then
for every n, an element σ in the Galois group Gal(Q̄p/Qp) acts sending each ζn to
another primitive ln-th root, in other terms

σ(ζn) = (ζn)aσ,n

where aσ,n is coprime with l and well defined modulo ln, that is we can consider
aσ,n as an element of (Z/lnZ)×. The compatibility in the choice of the ζn’s tells us
that then, for each n,

laσ,n+1 ≡ aσ,n (mod ln).

This means that the action of σ is univocally determined by an element in (Zl)×.
Resuming, we have a surjective homomorphism

ρ : Gal(Q̄p/Qp) −→ (Zl)× ' Aut(Tl(Gm,Qp))

σ 7−→ (aσ,1, aσ,2, . . . , aσ,n, . . .).

If we assume K to be a field with a discrete valuation v, it will be meaningful
to ask whether a Tate module Tl(G) is unramified at v looking at the action of the
inertia group I(v̄).

Definition 2.3.1. We say that Tl(G) is unramified at v if ρ(I(v̄)) = {1}.

When G = A is an abelian variety, is not easy to discuss the ramification of the
associated Tate modules by direct computation. What we will do in the last chapter
is to show a criterion that relates this to another property of the abelian varieties:
good reduction.
Coming back to example 8, we are able to compute for which prime numbers l the
Tate module Tl(Gm,K) is unramified over p.
We first consider the case l 6= p. We will show that for each n the root ζn is contained
in an unramified extension, this will prove, thanks to proposition 1.2.10, that the
inertia group I acts trivially on Tl(Gm,Qp). We claim that the maximal unramified
extension of Qp is given by all the m-th roots of unity, with (m, p) = 1 and so
Tl(Gm,Qp) is unramified. Similarly, one sees that Tp(Gm,Qp) is ramified.
To prove our claim we observe that there is a one to one correspondence between
unramified finite extensions of Qp and finite extensions of Fp (this is an easy check
using Hensel’s lemma). For every n the field Fp has a unique finite extension of degree
n, given by the splitting field of the polynomial xp

n − x. The corresponding field
extension of Qp will be the splitting field of xp

n − x over Qp, that is the cyclotomic
extension obtained adding the (pn − 1)-th roots of unity. Taking the compositum
of all those extensions, we observe that the maximal unramified extension of Qp is
obtained adding all the (pn−1)-th roots of unity for every n. If now m is an integer
coprime with p, we have

pϕ(m) ≡ 1 (mod m)

this shows that every m-th root of unity is a (pϕ(m) − 1)-th root of unity, proving
our claim. When we refer to the module Zl with the Galois action just described,
we use the notation Zl(1).
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2.4 Abelian schemes

Let us consider an elliptic curve over Qp described by the Weierstrass equation

E : y2 = x3 + ax+ b

with a and b in Zp. What happens if we look at the equation modulo p? We will
obtain a curve Ẽ over Fp described by

Ẽ : y2 = x3 + āx+ b̄.

If the curve we obtained after reduction is non-singular, then it is still an elliptic
curve, this will allow us to study the arithmetic of Ẽ on a finite field to recover
information on the original curve E. For motivations and a complete and detailed
discussion on the subject we suggest to look at [16, VII]. This situation, the non-
singularity of Ẽ, has the right to be addressed as “good”. In fact we say that an
elliptic curve E over Qp has good reduction at p if there is an equation for E with
coefficients in Zp such that when reduced modulo p describes an elliptic curve over
Fp. To have good reduction we require an equation over Zp (a scheme Ep over
Spec(Zp)?), that describes E over Qp (the generic fiber Ep × Qp ' E?) and such
that its reduction is an elliptic curve (the special fiber Ep×Fp is an elliptic curve?).
From this observation is reasonable to think of good reduction as the existence of a
“family” of elliptic curves parametrized by the points of Spec(Zp).
We want an object to describe this situation for abelian varieties, we will intro-
duce abelian schemes, these are schemes over a base S, that in a certain sense are
parametrized collections of abelian varieties.
In this context we will use definitions and properties from [9, Ch. 6].

Definition 2.4.1. A group scheme X over S is called an abelian scheme if it is
smooth, proper and with connected geometrically connected fibers.

Now we want to check that with this definition a fiber Xs = X ×S κ(s) of an
abelian scheme X is an abelian variety over κ(s). First of all, as we observed in
the first section, Xs naturally inherits a structure of group scheme. Moreover by [7,
Ch. 3, Prop. 3.16] the base change of a proper morphism is still proper, so Xs will
be complete and of finite type. A point in which Xs (or any of its base change) is
not reduced would contraddict smoothness, so Xs is geometrically reduced. Finally
assume by contraddiction that a certain base change X ′s of Xs is reducible. Since
Xs is geometrically connected, X ′s has two irreducible components intersecting in a
point. The existence of such a point contraddicts smoothness.
In [9, Ch. 6, §1] it is shown that an equivalent statement of rigidity lemma for
abelian schemes is holding. Starting from this it is possible to reproduce what we
did in the section 2, and obtain the following results.

Corollary 2.4.2. Let X be an abelian scheme over S and G a group scheme over
S. Then every morphism of schemese f : X → G is the composition of a translation
and a homomorphism of group schemes.

Corollary 2.4.3. An abelian scheme is a commutative group scheme
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After we defined abelian schemes we come back to the problem of reduction. We
fix a base field K with a discrete valuation v. As usual we will keep the notation as
in section 1.2.

Definition 2.4.4. Let A be an abelian variety over K. We say that A has good
reduction at v if there exists an abelian scheme Av over Ov, such that

A ' Av ×Ov K

For elliptic curves we can always transform the equation to obtain coefficients
in Ov and then check what happens modulo mv, in a certain sense we always have a
candidate to check good reduction. For abelian varieties the lack of an equation, in
general, prevent us to aplly such an argument. What we are going to use are Néron
models.

2.5 Néron models

When dealing with Néron models one usally works over a base scheme S that is a
Dedekind scheme and K its field of rational functions, as in [1]). A Dedekind scheme
is a noetherian normal scheme of dimension ≤ 1. For our purposes we assume K to
be a field with a discrete valuation v and the base scheme to be S = Spec(Ov) since
we do not need so much generality. For valuation theory we will follow the notation
we used in chapter 1.2.

Definition 2.5.1. Let X be a separated, smooth scheme of finite type over K. A
model for X relative to v is an Ov-scheme Xv such that

X ' Xv ×Ov Spec(K).

Néron models are a class of models satisfying a particular universal property.

Definition 2.5.2. Let X be a separated, smooth scheme of finite type over K. A
Néron model for X relative to v is a separated, smooth model for X of finite type
satisfying the Néron mapping property. That is for every smooth Ov-scheme Y , and
for every K-morphism f : YK → X, there exist a unique Ov-morphism fv : Y → Xv

that extends f (meaning that the base change of fv by K is f).
In other terms the functor from the category of smooth Ov-schemes to Set given
by

Y 7−→ HomK(YK , X)

is representable by Xv.

An immediate consequence of the definition is that a Néron model for a given
scheme is unique up to a unique isomorphism. Another straightforward application
tells us that

X(K) = Xv(Ov).

What we are interested in is the behaviour of Néron models with respect to field
extensions. Following the same notation as in 1.2 we consider a finite extension
K ′ over K with a discrete valuation v′ extending v. Then we have the following
property on N’eron models.
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Proposition 2.5.3. Let Xv be a Néron model relative to v for a smooth, separated
K-scheme of finite type XK . If K ′/K is a separable and unramified extension of
discrete valuation fields, the Ov′-scheme Xv′ = Xv ×Ov Spec(Ov′) is a Néron model
for X ′K = X ×K Spec(K ′) relative to v′.

Proof. Firstly from stability by base change we obtain that Xv′ is separated, smooth
and of finite type. We want to remark that, since K ′/K is separable and unramified,
the morphism Spec(Ov′) → Spec(Ov) is étale. Our aim is to prove now the Néron
mapping property for Xv′ . We take a smooth Ov′-scheme Y and a morphism YK′ →
XK′ . By composition with the projection, this induces a morphism YK′ → X.
Moreover Y is smooth over Ov, in fact the composition of a smooth morphism with
an étale morphism is smooth (see [7, Ch. 4, Cor. 3.24; Prop. 3.38]). So by Néron
mapping property of Xv we have a unique morphism Y → Xv, now by base change
we obtain a morphism Y → Xv′ . By construction this morphism is unique.

We have that for abelian varieties there exist a Néron model.

Proposition 2.5.4. Let A be an abelian variety over K. Then there exist a Néron
model Av for A relative to v.

Proof. See [1, Ch.1 , §3, Cor. 2].

The first thing one notices is that Néron mapping property trasports the group
scheme structure from A to Av. This apply to every group scheme in general.

Proposition 2.5.5. Let X be a group scheme, separated, smooth and of finite type
over K. Let Xv be a Néron model for X. Then Xv is naturally a group scheme.

Proof. This is essentially Néron mapping property. The morphism m : X×KX → X
is lifted to a morphism Xv×OvXv → Xv. The same argument applies for the identity
section and the inversion morphism. The fact that the required diagrams commute
is due to the unicity of such liftings.

Néron models for abelian varieties can be used to check their good reduction. If
an abelian variety A has good reduction at v, the abelian scheme Av whose generic
fiber is A is a Néron model for A. This is shown in [1, Ch. 1, §2, Prop. 8]. Now
our interst is in understanding when a Néron model for A tells us that it has good
reduction.

Proposition 2.5.6. Let A be an abelian variety over K. Let Av be a Néron model
for A relative to v. Then if Av is proper A has good reduction at v.

Proof. Since Av is a model for A, it is enough to show that Av is an abelian scheme.
We already know that Av is proper and smooth, what is left to prove is that the
fibers are geometrically connected. We know that there are two fibers, the generic
one which is an abelian variety hence geometrically connected, and the special one.
A straightforward use of the result in [4, Prop. 5.5.1] tells us that the special fiber
Av ×Ov k, being proper, is connected up to base change with a complete extension
of the base field K. Applying this argument to every base change we obtain the
geometrically connectedness.
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Chapter 3

The Néron-Ogg-Shafarevich
Criterion

3.1 Decomposition of group schemes and their torsion

Remark 8. Here for the first time we will talk about exact sequences of group
schemes. To add some rigor to this we should be able to take kernels and cokernels
(more in general quotients) in the category of group schemes. While the definition
of kernel comes pretty natural (either functorially, either with a fiber product)
cokernels are more difficult to handle. The good environment to take in account is
the category of abelian sheaves on fppf topologies. Group schemes will form a full
subcategory of this one, cokernels (and kernels) will be intended in this category.
Here no further detail will be given about this question, the subject is covered
enough in [18, IV].

In this section we will collect some decomposition results for group schemes.
Later we will compute the torsion for the objects appearing in these decompositions.
Finally we summarize all the section in one lemma that will be fundamental in the
proof of the Néron-Ogg-Shafarevich criterion.
Now we are providing a tool that will be useful throughout this section, to prove it
one should use étale cohomology, a subject we are not going to treat, that is why
our proof will be just a sketch. We will refer to [8] for the notation and for a more
detailed argument.

Lemma 3.1.1. Let
0 −→ G′ −→ G −→ G′′ −→ 0

be a short exact sequence of commutative group schemes over a separably closed field
K = Ks. We assume moreover G′ to be quasi-projective (for example affine) and
smooth. Then

0 −→ G′(K) −→ G(K) −→ G′′(K) −→ 0

is a short exact sequence of groups.

Proof. As we noticed in example 3, for every K-group schemes H we have

HomSchK (Spec(K), H) = HomGrpSchK (ZSpec(K), H) = HomflK (ZSpec(K), H),
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where the last term are the homomorphism in the fppf sheaves category. So what
we want to show is that Ext1

flK
(ZSpec(K), G

′) = 0. That is, in the notation of [8],

H1
flK

(Spec(K), G′) = 0. Since G′ is smooth and quasi-projective, we can apply the
étale-flat comparison theorem ([8, III, Th. 3.9]). Hence we have

H1
flK

(Spec(K), G′) ' H1
étK

(Spec(K), G′).

Now a Čech cohomology argument shows that H1
étK

(Spec(K), G′) = 0.

Definition 3.1.2. Let T be a group scheme over S. For every point s in S let κ(s)
be a separable closure of its residue field. We say that T is a torus if for every point
s in S

T ×S Spec(κ(s)) ' Tn(s)
m,κ(s)

where the function n : S → N is locally constant.

Definition 3.1.3. Let U be a group scheme over S. We say that U is a unipotent
group if there exists a finite chain of normal subgroup schemes

1 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 ⊂ Un = U

such that Ui+1/Ui is isomorphic to Ga,S fore every i = 0, 1, ..., n.

Even if we defined these group schemes over any base S, for the rest of the section
we are only considering group schemes over a perfect field K. Now we question their
m-divisibility and compute their m-torsion when m is an integer coprime with the
characteristic of the field K. The reader should be aware that we are using the
notation G[m] = Hom(Z/mZ, G(Ks).

Lemma 3.1.4. Let T be a torus over K. Let m be an integer coprime with char(K).
Then the group T (Ks) is m-divisible and T [m] is a free Z/mZ-module of rank
dim(T ).

Proof. As T is defined over Spec(K), and this topologically is just a point, by
definition TKs is isomorphic to Gn

m,Ks
. Since the dimension of Gn

m,Ks
is n, we have

dim(T ) = dim(TKs) = n. Now

T (Ks) = TKs(Ks) = Gn
m,Ks(Ks) = (K×s )n.

Knowing that m is coprime with char(K), the polynomials Xm − α, for α ∈ Ks,
are separable over Ks. Hence they have m distinguished roots in Ks. This shows
that T (Ks) is m-divisible. The same argument for α = 1 shows that T [m] is a free
Z/mZ-module of rank n = dim(T ).

Lemma 3.1.5. Let U be a commutative unipotent group over K. Let m be an
integer coprime with char(K). Then the group U(Ks) is m-divisible and it does not
have elements of order m.

Proof. From the definition we have a chain of normal subgroup schemes

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = G.
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Such that for every index i we have a short exact sequence

0 −→ Ui −→ Ui+1 −→ Ga,K −→ 0.

Then we apply lemma 3.1.1 and denoting Wi = Ui(Ks), for every index i, we obtain
a short exact sequence

0 −→Wi −→Wi+1 −→ Ks −→ 0.

We will now prove our lemma by finite induction on i.
For i = 0 we have that

0 −→W0 −→W1 −→ Ks −→ 0

is exact, then W1 is isomorphic to Ks and so it is m-divisible and m-torsion free.
What is left to prove is the inductive step. Assume that Wi is m-divisible and
m-torsion free. We have the following diagram

0 //Wi
//

mi
��

Wi+1
//

mi+1

��

Ks
//

m

��

0

0 //Wi
//Wi+1

// Ks
// 0.

where the rows are exact, the vertical maps are giving the m-multiple and the
squares are commutative. This allows us to use snake lemma. Then we have a long
exact sequence

0 −→ kermi −→ kermi+1 −→ kerm
d−→

d−→ cokermi −→ cokermi+1 −→ cokerm −→ 0.

Since Ks is m-divisible and m-torsion free, kerm = 0 and cokerm = 0. Since, by
inductive hypothesis, Wi ism-divisible andm-torsion free kermi = 0 and cokermi =
0. In the long exact sequence this implies that kermi+1 = 0 and cokermi+1 = 0,
that is Wi+ 1 is m-divisible and m-torsion free.

The following are the two decomposition results we are going to use.

Theorem 3.1.6 (Chevalley). Let K be a perfect field. Let G be a group variety over
K. Then there is an exact sequence

1 −→ H −→ G −→ B −→ 1 (3.1)

where B is an abelian variety, and H is an affine group variety.

Proof. For the proof we refer to [2].

Theorem 3.1.7. Let K be a perfect field. Let H be a commutative affine group
variety over K. Then H has a decomposition H = T ×K U where T is a torus and
U is a unipotent group.

Proof. See [19, Th. 9.5].
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Finally we will put together all the results seen in this section.

Lemma 3.1.8. Let G be a commutative group variety over a perfect field K. Let
H be an affine commutative group variety and let B be an abelian variety such that

1 −→ H −→ G −→ B −→ 1 (3.2)

is a short exact sequence. Let T and U be respectively a torus and a unipotent group
such that H = T ×K U . Then for every integer m coprime with the characteristic
of K we have that G[m] is a free Z/mZ-module of rank dim(T ) + 2 dim(B).

Proof. From lemma 3.1.1 the functor Hom(Spec(K̄),−) is exact. So, applying this
to (3.2), we obtain that

0 −→ H(K̄) −→ G(K̄) −→ B(K̄) −→ 0

is exact. We now apply the functor Hom(Z/mZ,−), this gives us the exact sequence

0 −→ H[m] −→ G[m] −→ B[m] −→ Ext1(Z/mZ, H(K̄)).

Since H(K̄) = T (K̄)×U(K̄) is m-divisible, since it is the product of two m-divisible
groups, then Ext1(Z/mZ, H(K̄)) is trivial. To prove this we consider an m-divisible
group M . From [m] : M � M we obtain a long exact sequence applying the
functor Hom(Z/mZ,−) and its derived functor Ext1(Z/mZ,−). At this point is
just a matter of computing the homomorphisms between the extension groups we
obtained. Then we have a short exact sequence

0 −→ H[m] −→ G[m] −→ B[m] −→ 0. (3.3)

Now H[m] = T [m]× U [m] so by lemmas 3.1.4 and 3.1.5 we deduce that H[m] is a
free Z/mZ-module of rank dim(T ). By proposition 2.1.11 we know that B[m] is a
free Z/mZ-module of rank 2 dim(B), and so by exactness of the sequence (3.3) we
have the stated result.

3.2 The proof of the criterion

In this section we will show the Néron-Ogg-Shafarevich criterion for good reduction
of abelian varieties. It explains how the good reduction of an abelian variety A at a
discrete valuation v, is related to the non-ramification of some torsion group. Here
we will keep the notation we used for ramification theory in section 1.2 and the
terminology of section 2.4 for good reduction and Néron models.

Theorem 3.2.1. Let K be a field with a discrete valutation v such that its residue
field k is perfect. Let A be an abelian variety over K and l a prime number different
from the characteristic of k. Then the following are equivalent:

(a) A has good reduction at v;

(b) A[m] is unramified at v for every integer m coprime to char(k);

(c) A[m] is unramified at v for infinitely many integers m coprime to char(k);
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(d) Tl(A) is unramified at v.

Proof. Since (d) is equivalent to the fact that Aln is unramified for every positive
integer n, we have that (b) ⇒ (d) ⇒ (c). For every integer m coprime with char(k)
we define A[m]I to be the set of elements of A[m] invariant by the action of the
inertia group I = I(v̄). Our aim now is to prove that if A has good reduction at
v, then A[m] is equal to A[m]I . In order to do that we denote by Av the Néron
model of A relative to v (we have seen that it exists in section 2.4), we recall that
this is a commutative smooth group scheme of finite type over Ov. We denote with
Ã = Av ×Ov k the special fiber of Av, this is a commutative group scheme over k,
moreover Ã is smooth, separated and of finite type. We want to remark that Ã do
not need to be connected. We introduced this object because of the following result.

Lemma 3.2.2. There is an isomorphism between A[m]I and Ã[m].

Proof of 3.2.2. Let L be the fixed field of I, that is the maximal unramified ex-
tension of K. Let OL be its ring of v̄-integers. We recall that lemma 1.2.12 shows
that OL is an henselian ring. Then its residue field is k̄. We want to show now that
Av(OL) is equal to A(L): this essentially come from the properties of Néron models.
We consider a morphism Spec(L) → A, since A is of finite type, this morphism
factors through Spec(K ′) → A, with K ′ finite over K. Moreover K ′ is unramfied
over K and so, denoting OK′ = K ′ ∩ Ov̄, we have that Spec(OK′) is étale over
Spec(Ov). By the fact that Néron models commute with étale base change, we ob-
tain a unique morphism Spec(OK′) → Av extending it. Composing with the map
Spec(OL) → Spec(OK′) we finally obtain a morphism Spec(OL) → Av. Consider-
ing the unicity of the lift, we obtain A(L) = Av(OL). Now the reduction OL → k̄
induces a homomorphism of groups

r : A(L) = Av(OL) −→ Ã(k̄).

Then r is surjective because Av is smooth and OL is henselian. In fact, reducing
ourselves to the affine case, this is exactly multivariate hensel lemma, with the
smoothness condition ensuring us that we are in the condition to apply it. More-
over multiplication by m is an étale endomorphism of Av, and since, again, OL is
henselian, the kernel of r is uniquely divisible by m. Applying the left-exact funtor
Hom(Z/mZ,−) to

0 −→ ker(r) −→ A(L) −→ Ã(k̄)

we show that r induces an isomorphism

AI [m] = Hom(Z/mZ, A(L)) −→ Ã[m] = Hom(Z/mZ, Ã(k̄)).

If now we assume tha A has good reduction at v we have that Ã is an abelian
variety (it is the fiber of an abelian scheme), this implies that Ã[m] is a free Z/mZ-
module of rank 2 dim(Ã). Since dim(A) = dim(Ã) we have an isomorphism between
A[m] and Ã[m], then the lemma implies that A[m]I=A[m], and so (a) ⇒ (b).

Now we prove (c)⇒(a). We will write Ã0 to denote the connected component of Ã
containing the identity. We observe now that since Ã has finitely many connected
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components (it is of finite type), the index of Ã0(k̄) in Ã(k̄) is finite, we call this
number c. To see this we take two points x and y in the same connected component
Ã′, then the image of the translation t−y : Ã′ → Ã contains the identity e and x−y.
Moreover the translation is continuous and so its image should be connected, then
x− y is in Ã0(k̄).
We now assume that (c) holds, we want to prove that A has good reduction at v.
By hypothesis, there exists an arbitrarly large integer m such that A[m] = A[m]I .
We take m ≥ c and we consider the exact sequence

0 −→ Ã0[m] −→ Ã[m] −→ Ã[m]

Ã0[m]
−→ 0. (3.4)

Now, from the hypothesis and form lemma 3.2.2 we have A[m] = A[m]I ' Ã[m],
so Ã[m] is a free Z/mZ-module of rank 2 dim(A), from lemma 3.1.8 we have that

Ã0[m] is a free Z/mZ-module of rank dim(T ) + 2 dim(B). Since Ã[m]/Ã0[m] has
less than m elements, its rank as a Z/mZ-module is 0. Then (3.4) tells us that

dim(T ) + 2 dim(B) ≥ 2 dim(A). (3.5)

Now Since dim(Ã) = dim(Ã0) beacuse translations are isomorphisms of schemes
and dim(Ã) = dim(A) beacuse base change witha field preserves dimension. Finally
dim(Ã0) = dim(U) + dim(T ) + dim(B) (this comes from the decopositions), and so
dim(A) = dim(U) + dim(T ) + dim(B). Adding this to (3.5) we get U = T = 0. So

Ã0 is an abelian variety, hence proper, implying Ã is proper (see [7, Ch. 3, Lemma
3.15]). As we showed in proposition 2.5.6, we conclude if we show that Av is proper.
Since geometrically connectedness is ascending and properness is descending (see
[5, Prop. 2.7.1]), we can assume Ov complete. Then by [4, Cor. 5.5.2], there exist
two open disjoint subschemes Z and Z ′ of Av sucht that, Av = Z ∪ Z ′, where Z is
proper and Ã ⊂ Z. Since A is connected, Z ′ = ∅ and so Av = Z is proper.
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