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Chapter 1

Introduction

Tits’s alternative is one of the most powerful results describing the structure of

finitely generated linear groups. It tells that a linear group either has a non-

abelian free subgroup or is virtually solvable (see Section 2.2 for more details).

However in case of not virtually solvable group Classical Tits’s alternative does

not tell us where to search for generators of a free group and tells just about an

existence in the group.

By GLd(K) we denote a general linear group, i.e. the group of d× d nonsin-

gular matrices over a field K and let F be a subset of GLd(K) such that 1 ∈ F .

E. Breuillard found the constant N that depends only on d and but neither on

the field K nor on the the set F such that the generators are precisely products

of N elements from F . This thesis is devoted to study the result for SL2(K) and

related results that are presented mainly in Breuillard [2011], see also Breuillard

[2008b], Breuillard [2008a]. Let us state the main result in general precisely.

Theorem 1.0.1 (strong uniform Tits Alternative). For every d ∈ N there is

N = N(d) ∈ N such that if K is any field and F a finite symmetric subset

of GLd(K) containing 1 then either FN contains two elements which generate

a nonabelian free group, or the group generated by F is virtually solvable (i.e.

contains a finite index solvable subgroup).

The proof of this theorem allows us, in principle, to find the constant N . Due

to Grigorchuk and de la Harpe’s examples Grigorchuk and de la Harpe [2001]

N = N(d) tends to infinity with d.
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The proof of Theorem 1.0.1 is divided into an arithmetic and a geometric

steps. After a careful check that all estimates are indeed uniform over all local

fields the geometric step is based on a ”ping-pong method”.

The arithmetic step in Theorem 1.0.1 relies on the following result which is

interesting by itself too. This result can be seen as a non abelian version of the

well-known Lehmer conjecture (unsolved problem in mathematics attributed to

Lehmer (1933)) from number theory. Some preliminary definitions that might be

needed are available in the Section 2.4.

Theorem 1.0.2 (Height Gap Theorem). There is a positive constant ε = ε(d) >

0 such that if F is a finite subset of GLd(Q) generating a non virtually solvable

subgroup Γ then ĥ(F ) > ε.
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Chapter 2

Preliminary Information

In this chapter we recall the results from different branches of mathematics. Some

of them are classical (”ping-pong lemma”, Tits alternative, and Lehmer conjec-

ture) and the other are very recent (escape from subvarieties). All these results

we will use in the next chapters.

2.1 Group Theory

Let us recall some definitions.

Definition 2.1.1. Let G be a group with a subgroup H, and let

G = G0 BG1 B · · ·BGn = H

be a series of subgroups with each Gi a normal subgroup of Gi−1. Such a series

is called a subnormal series.

If in addition, each Gi is a normal subgroup of G, then the series is called a

normal series.

Definition 2.1.2. A group G is solvable if it has a subnormal series

G = G0 BG1 B · · ·BGn = {1}

where all the quotient groups Gi/Gi+1 are abelian.
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2. Preliminary information

Definition 2.1.3. A group G is called virtually solvable if it has a solvable

subgroup of finite index.

Remark 2.1.4. The adverb ”virtually” is used not only in this case: for example,

there are also virtually abelian, virtually nilpotent groups etc. In general for a

given property P , the group G is said to be virtually P if there is a finite index

subgroup H ≤ G such that H has property P . A group G is P by-finite if it has

a normal subgroup of finite index with the property P .

If property P is inherited by subgroups of finite index, being virtually P is

equivalent to being P -by-finite (see Baumslag et al. [2009], p.5, Lemma 6).

Let G be a finitely generated group with generating set S (closed under in-

verses). For g = a1a2 . . . am ∈ G, ai ∈ S, let l(g, S) be the minimum value of m.

Define

γ(n, S) =| {g ∈ G : l(g, S) ≤ n} | .

The function γ is called the growth function for G with generating set S.

If γ is either

(a) bounded above by a polynomial function,

(b) bounded below by an exponential function, or

(c) neither,

then this condition is preserved under changing the generating set for G.

Respectively, then, G is said to have

(a) polynomial growth,

(b) exponential growth, or

(c) intermediate growth.

For a survey on the topic, see Grigorchuk [1991].

Groups with exponential growth will be important for us (see Remark 2.1.7)

thus we give the definitions precisely.

Definition 2.1.5. A group G with finite generating set S has exponential growth

if

h(G,S) = lim inf
n→∞

1

n
log(|γ(n, S)|) > 0.

Definition 2.1.6. G has uniform exponential growth if

h(G) = inf{h(G,S) : S finite set of generators for G} > 0.
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2. Preliminary information

Remark 2.1.7. Finitely generated subgroups of GLn(K) which are not virtually

solvable have uniform exponential growth (see Eskin et al. [2005]).

Lemma 2.1.8 (Ping-pong Lemma for subgroups). Let G be a group acting on a

set Ω and let A and B be two subgroups. Suppose that there exist nonempty sets

S1, S2 ⊂ Ω such that

1. S1 ∩ S2 = ∅ ;

2. S2a ⊂ S1 and S1b ⊂ S2 for all nontrivial a ∈ A and b ∈ B;

3. for all a ∈ A, S1a ∩ S1 6= ∅.
Then the subgroup < A,B > generated by A and B is the free product A ∗B.

Proof. It is enough to show that no product g = a1b1 · . . . · akbk (with k ≥ 1 and

nontrivial ai ∈ A and bi ∈ B) is equal to 1. Indeed, by 3. there exists δ ∈ S1

such that δa1 ∈ S1. Then 2. shows that δg ∈ S2 and so 1. proves that g 6= 1.

The name ”ping-pong lemma” is motivated by the fact that, in the above

argument, the point δa1b1 . . . akbk bounces like a ping-pong between the sets S1

and S2.

We will use another variant of this lemma which is given below.

Lemma 2.1.9 (Ping-pong Lemma). Let G be a group acting on a set X. Let

a1, . . . , ak be elements of G, where k ≥ 2. Suppose there exist pairwise disjoint

nonempty subsets X+
1 , . . . , X

+
k and X−1 , . . . , X

−
k of X with the following proper-

ties:

(X−i )cai ⊆ X+
i for i = 1, . . . , k,

(X+
i )ca−1

i ⊆ X−i for i = 1, . . . , k,

where by (Y )c we denote the completion of Y ⊂ X to X. Then the subgroup

H =< a1, . . . , ak >≤ G generated by a1, . . . , ak is free with free basis {a1, . . . , ak}.

Proof. The proof of this lemma is analogous to the proof of Ping-pong Lemma

for subgroups above.

To simplify the argument, we will prove the statement under the following

assumption:

X 6=
k⋃
i=1

(X+
i ∪X−i ). (2.1)
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2. Preliminary information

Choose a point x in X such that

x 6∈
k⋃
i=1

(X+
i ∪X−i ).

To show that H is free with free basis a1, . . . , ak it suffices to prove that every non-

trivial freely reduced word in the alphabet A = a1, . . . , ak, a
−1
1 , . . . , a−1

k represents

a nontrivial element of G.

Let w be such a freely reduced word, that is, w = bnbn−1 . . . b1, where n ≥ 1,

where each bj belongs to A and where w does not contain subwords of the form

aia
−1
i or a−1

i ai. Induction on j shows that for every j = 1, . . . , n we have

bjbj−1 . . . b1x ∈
k⋃
i=1

(X+
i ∪X−i ).

Thus

wx ∈
k⋃
i=1

(X+
i ∪X−i ).

Therefore wx 6= x and hence w 6= 1 in G, as required.

The argument for the general case is similar to the one given below but requires

more careful analysis. Without the assumption (2.1) we may choose x from some

set such that wx is in the same set but we can always find another element on

which w acts nontrivially.

2.2 Tits Alternative: Classical Variant

The Tits alternative, named for Jacques Tits, is an important theorem about the

structure of finitely generated linear groups. Originally it was stated by Tits in

the form below in Tits [1972].

Theorem 2.2.1 ( Tits Tits [1972]). Over a field of characteristic 0, a linear

group either has a non-abelian free subgroup or possesses a solvable subgroup of

finite index.

Every finite group of order less than 60, every abelian group, and every sub-
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2. Preliminary information

group of a solvable group are solvable. There is a table of solvable groups of order

up to 242 (Betten 1996, Besche and Eick 1999).

The condition that a group is a subgroup of GLn is essential. There are many

famous groups that do not satisfy the Tits alternative:

Thompson’s group F . A finite presentation of F is given by the following ex-

pression:

〈A,B|[AB−1, A−1BA] = [AB−1, A−2BA2] = id〉

where [x, y] = xyx−1y−1 is the usual group theory commutator. Alterna-

tively F has the infinite presentation:

〈x0, x1, x2 . . . |x−1
k xnxk = xn+1 for k < n〉.

Burnside’s group B(m,n) for n ≥ 665, odd. It is a free group of rank m and

exponent n.

Grigorchuk group. It is a finitely generated infinite group constructed by Ros-

tislav Grigorchuk that provided the first example of such a group of inter-

mediate growth.

This means that these groups are not linear.

2.3 Elements of Matrix Analysis

Let k be a local field of characteristic 0. Let || · ||k be the standard norm on kd

which is the canonical Euclidean (resp. Hermitian) norm if k = R (resp. C) and

the sup norm (||(x1, . . . , xd)||k = max{|x1|k, . . . , |xd|k}) if k is non Archimedean.

We will also denote by || · ||k the operator norm induced on Md(k) by the standard

norm || · ||k on kd.

Let Q be a bounded subset of matrices in Md(k). We set

||Q||k = sup
g∈Q
||g||k

and call it the norm of Q. Let k be an algebraic closure of k. It is well known (see
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2. Preliminary information

Lang’s Algebra Lang [1983]) that the absolute value on k extends to a unique

absolute value on k. Hence the norm || · ||k also extends in a natural way to k
d

and to Md(k). This allows one to define the minimal norm of a bounded subset

Q of Md(k) as

Ek(Q) = inf
x∈GLd(k)

||xQx−1||k

We will also need to consider the maximal eigenvalue of Q namely

Λk(Q) = max{|λ|k|λ ∈ spec(q), q ∈ Q}

where spec(q) denotes the set of eigenvalues (the spectrum) of q in k. Define

Qn = Q · . . . ·Q = {A1 · . . . · An|Ai ∈ Q, i = 1..n}.

Finally let Rk(Q) be the spectral radius of Q

Rk(Q) = lim
n→∞

||Qn||1/nk

the limit exists because for n = tq + r, n ∈ N we have

||Qn||
1
n ≤ ||(Qt)

n−r
t ||

1
n ||Qr||

1
n = ||Qt||

1
t
− r
nt ||Qr||

1
n (2.2)

by letting n tend to +∞ for every t we have

lim sup
n→∞

||Qn||
1
n = R(Q) ≤ ||Qt||

1
t

therefore lim supn→∞ ||Qn|| 1n = limn→∞ ||Qn|| 1n . Note that these arguments also

tell us that the limit coincides with infn∈N ||Qn||
1
n
k . The quantities defined above

are related to one another.

Obviously from the definitions that Ek(Q) ≤ ||Q||k and Λk(Q) ≤ Rk(Q).

Lemma 2.3.1. For any n ∈ N the following holds:

Λk(Q
n) ≥ Λk(Q)n, Ek(Q

n) ≤ Ek(Q)n, Rk(Q
n) = Rk(Q)n.
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2. Preliminary information

Proof. The following inclusion for sets ensures the first inequality.

{|λ|nk , λ ∈ spec(q), q ∈ Q} ⊆ {|λ|k, λ ∈ spec(q), q ∈ Qn}

For the second one we have

Ek(Q
n) = ||gQntg−1||

1
t = ||gQtg−1 · . . . · gQtg−1||

1
t ≤ ||gQtg−1||

n
t = Ek(Q)n.

The last equality is also clear

Rk(Q
n) = lim

t→∞
||Qtn||

1
t = lim

p→∞
||Qp||

n
p = Rk(Q)n, where t =

p

n
.

Corollary 2.3.2. Collecting together all obtained information we have

Λk(Q)n ≤ Λk(Q
n) ≤ Rk(Q

n) = Rk(Q)n ≤ Ek(Q
n) ≤ Ek(Q)n. (2.3)

2.4 Height and Lehmer Conjecture

For any rational prime p (or p = ∞) let us fix an algebraic closure Qp of the

field of p-adic numbers Qp (if p = ∞; set Q∞ = R and Q∞ = C). We take the

standard normalization of the absolute value on Qp (i.e. |p|p = 1
p
). It admits a

unique extension to Qp, which we denote by | · |p.
Now we define the height function on the field of algebraic numbers Q (for

more details see Bilu et al.). To explain the motivation and nature of the function

we introduce the definition step by step.

• First we define the height of a non-zero α ∈ Z by H(α) = |α| and H(0) = 1.

• On rational numbers, the absolute value is no longer adequate: there exist

infinitely many rational numbers of bounded absolute value. To obtain

finiteness, one should bound both the numerator and the denominator.

Thus, for α = a/b ∈ Q, where a, b ∈ Z and gcd(a, b) = 1, we define

H(α) = max{|a|, |b|}.
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2. Preliminary information

• Next, we wish to extend this definition to all algebraic numbers. One idea is

to observe that bX−a is the minimal polynomial of the rational number a/b

over Q. Hence, for α ∈ Q and also for a polynomial P (X) ∈ Z[X] one may

define H(α) = H(P ) = max{|a0|, . . . , |an|}, where P (X) = anX
n + . . .+ a0

is the primitive minimal polynomial of α over Z.

However this definition is not convenient to deal with.

The modern definition of height (due to A. Weil) is motivated by the follow-

ing observation: the height of a rational number α = a/b, originally defined as

max{|a|, |b|}, satisfies the identity

H(α) =
∏
v∈VQ

max{1, |α|v}

where VQ is the set of all equivalence classes of valuations on Q.

Absolute Weil’s height is the logarithm of right-hand side of this identity,

properly generalized to number fields. Now we make some preparation to give a

formal definition of the height. Let K be a number field. Let VK be the set of

equivalence classes of valuations on K. For v ∈ VK let Kv be the corresponding

completion which is a finite extension of Qp for some prime p. We normalize the

absolute value on Kv to be the unique one that extends the standard absolute

value on Qp. Namely |x|v = |NKv |Qp(x)|
1
nv
p where nv = [Kv : Qp]. We identify

Kv, the algebraic closure of Kv with Qp. For x ∈ K absolute logarithmic Weil’s

height the following quantity

h(x) =
1

[K : Q]

∑
v∈VK

nv log+ |x|v.

The height of x does not depend on K. For example, it is the same in all

extensions of K.

We will use of the following basic inequalities valid for any two algebraic

numbers x and y: h(xy) ≤ h(x) + h(y) and h(x+ y) ≤ h(x) + h(y) + log 2.

Let us similarly define the height of a matrix A ∈Md(K) by

h(A) =
1

[K : Q]

∑
v∈VK

nv log+ ||A||v

10



2. Preliminary information

and the height of a finite set F of matrices in Md(K) by

h(F ) =
1

[K : Q]

∑
v∈VK

nv log+ ||F ||v,

where nv = [Kv : Qv]. Note that for v ∈ VK we will use the subscript v instead

of Kv in the quantities Ev(F ) = EKv(F ), Λv(F ) = ΛKv(F ), etc. We define the

minimal height of F as:

e(F ) =
1

[K : Q]

∑
v∈VK

nv log+Ev(F )

and the arithmetic spectral radius (or normalized height) of F

ĥ(F ) =
1

[K : Q]

∑
v∈VK

nv log+Rv(F ).

Let Vf be the set of finite places and V∞ the set of infinite places.For any height

h, we also set h = h∞ + hf , where h∞ is the infinite part of h (i.e. the part of

the sum over the infinite places of K) and hf is the finite part of h (i.e. the part

of the sum over the finite places of K). Note again that these heights are well

defined independently of the number field K such that F ⊂ Md(K). The above

terminology is motivated in Section 3.3.

Definition 2.4.1. Mahler measure of P (x) = a0

∏n
i=1(x− αi) is

M1(P ) = |a0|
∏
i

max(1, |αi|).

Recall that for α ∈ Q with a primitive minimal polynomial P (X) ∈ Z[X]

we have H(α) = H(P ) =
∏

v∈VQ max{1, |α|v}. Now we explain relations between

M1(P ) and h(P ) ( or H(P )). Let P (x) ∈ Z[x] be a minimal primitive polynomial

of α ∈ Q. From the product formula and and from considering the Newton

polygons of the irreducible factors (of degree nv) of P over Qp we have

|a0| =
∏
p<∞

|a0|−1
p =

∏
p<∞

∏
v|p

max(1, |α|nvv ), α ∈ Q.

11



2. Preliminary information

Then from [Waldschmidt, 2000, pp. 74-79], Bombieri and Gubler [2006] we have

M1(P ) =
∏

v max(1, |α|nvv ) thus

H(P )n = M1(P ) therefore h(α) = h(P ) =
logM1

n
=
∑
v

log+ |α|
nv
n
v . (2.4)

Note also that for every coefficient ai, i = 1, . . . , n of P (x) we have

|ai| ≤
(
n

i

)
M1(P ), (2.5)

so there exist C = C(n) ∈ Q where n = degP , such that

1

C
H(P ) ≤M1(P ) ≤ CH(P ).

The first inequality follows from (2.5) immediately when the second is a funda-

mental result that is called Mahler inequality.

Conjecture 2.4.2 (Lehmer conjecture). Mahler measure of any integral polyno-

mial P (x), that is not a product of cyclotomic polynomials, is bounded from below

by a constant strictly bigger then 1.

More specifically

M1(P (x)) ≥M1(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1) ≈ 1.1763.

Essentially, to disprove this conjecture, one should for every ε > 0 find a poly-

nomial P (x) ∈ Z[x] that is not a product of cyclotomic polynomials, such that

M1(P (x)) < 1 + ε.

In terms of height the conjecture states that the Weil height h(x) of an alge-

braic number that is not a root of unity must be bounded below by ε0
deg(x)

, where

ε0 is an absolute positive constant.

2.5 Escape from Subvarieties

The aim of this section is to prove Proposition 2.5.5 which is known as ”escape

from subvarieties” and was proved by Eskin, Mozes, and Oh (see Eskin et al.
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2. Preliminary information

[2005]). This result is explained also in Gill. We will use this result in sections

3.3 and 4.2.

The dimension dim(X) of an irreducible variety X is the length k of the

longest chain {x} = X0 ⊂ X1 ⊂ · · · ⊂ Xk = X of irreducible subvarieties of X.

An irreducible component of a variety V is an irreducible subvariety of V not

contained in any other irreducible subvariety of V . If the irreducible components

of a variety V all have the same dimension, we say V is pure dimensional, and

define the dimension dim(V ) of V to be that of any of its irreducible components.

The degree deg(V ) of a pure-dimensional variety V of dimension r in n-

dimensional affine or projective space is its number of intersection points with a

generic linear variety of dimension n − r. (Here generic means outside a variety

of positive codimention.) It remains to see how to define the dimension and the

degree of a variety V when V is not irreducible. We simply define d(V ) to be

the dimension of the irreducible subvariety of V of largest dimension. As for the

degree, it will be best to see it as a vector: we define the degree
−→
deg(V ) of an

arbitrary variety V to be

(d0, d1, . . . , dk, 0, 0, 0, . . . ),

where k = dim(V ) and dj is the degree of the union of the irreducible components

of V of dimension j.

First we recall the following theorem:

Theorem 2.5.1 (Generalized Bezout theorem). Let X1, X2, . . . , Xs be puredi-

mensional varieties over C and let Z1, Z2, . . . , Zt be the irreducible components of

X1 ∩X2 ∩ · · · ∩Xs. Then

t∑
i=1

degZi ≤
s∏
j=1

degXj

(see [Schinzel, 2000, p. 519]).

Let Γ ⊂ GLn(C) be any finitely generated subgroup and let H denote the

Zariski closure of Γ, which is assumed to be Zariski connected. Let Y = ∪ni=1Yi ⊂
H be an algebraic variety where Yi, 1 ≤ i ≤ n are the irreducible components of

13



2. Preliminary information

Y . Denote by irr(Y ) the number of irreducible components of Y , by irrmd(Y ) the

number of irreducible components of Y of the maximal dimension d(Y ) and by

mdeg(Y ) the maximal degree of an irreducible component of Y . Let S be any

given finite generating set of Γ.

Lemma 2.5.2. If irrmd(Y ) = 1 then there exists an element s ∈ S such that the

variety Z = Y ∩ sY satisfies d(Z) < d(Y ).

Proof. Without loss of generality we may assume that Y1 is the unique irreducible

component of maximal dimension. If for every s ∈ S we have sY1 = Y1 then it

would follow that Y1 is invariant under the group generated by S. However as

this subgroup is Zariski dense and Y1 is a proper closed subvariety it follows that

this is impossible; hence there is some s ∈ S such that sY1 6= Y1. It follows that

d(sY ∩ Y ) < d(Y ).

Lemma 2.5.3. Let Y be a proper subvariety of H. There exists an s ∈ S such

that for Z = Y ∩ sY either d(Z) < d(Y ) or irrmd(Z) < irrmd(Y ).

Proof. Consider the set M of all maximal dimension irreducible components of

Y . If every element of S would have mapped this set into itself it would have

been < S >-invariant and this would contradict the assumption that Γ =< S >

is Zariski dense whereas Y is a Zariski closed proper subset. Hence there is some

s ∈ S so that for some element Yi ∈ M and sYi 6∈ M and it follows that for

Z = Y ∩ sY either d(Z) < d(Y ) or irrmd(Z) < irrmd(Y ).

Lemma 2.5.4. Let Y be a proper subvariety of H. Then there exists an integer

m ∈ N (depending only on irrmd(Y )) and a sequence of m elements s0, s1, . . . , sm−1

of S so that if we define the following sequence of varieties V0 = Y and

Vi+1 = Vi ∩ siVi, 0 ≤ i ≤ m− 1,

then Vm satisfies d(Vm) < d(Y ). Moreover irr(Vm) as well as mdeg(Vm) are also

bounded above by constants depending only on irr(Y ) and mdeg(Y ).

Proof. We shall be applying Theorem 2.5.1 to the intersections of pairs of irre-

ducible varieties. Namely, let W = ∪ni=1Wi be the decomposition of a Zariski

14



2. Preliminary information

closed variety W into irreducible components. Then we have

W̃ = W ∩ sW = ∪ni,j=1Wi ∩ sWj.

Thus given n = irr(W ) and mdeg(W ) we have an estimate both on irr(W̃ ) as

well as on mdeg(W̃ ). Combining this observation with Lemmas 2.5.2 and 2.5.3

one can deduce the result.

Proposition 2.5.5. Let Γ ⊂ GLn(C) be any finitely generated subgroup and let

H denote the Zariski closure of Γ, which is assumed to be Zariski connected. For

any proper subvariety X of H, there exists N ≥ 1(depending on X) such that for

any finite generating set S of Γ, we have

γ(N,S) 6⊂ X.

Proof. By repeated application of Lemma 2.5.4 at most d(X)+1 times we find el-

ements w1, w2, . . . , wt ∈ γ(n, S), where n ≥ 2 is bounded in terms of the constant

depending only on irr(X) and mdeg(X), so that ∪ti=1wiX = ∅. If γ(n, S) were

contained in X, then it would follow that e ∈ ∪ti=1wiX, as γ(n, S) = γ(n, S)−1

and hence w−1
i ∈ γ(n, S) for each 1 ≤ i ≤ t. Therefore we have γ(n, S) 6⊂ X.

We reformulate Proposition 2.5.5 in more convenient form for us.

Lemma 2.5.6 (see Breuillard [2011]). Let K be a field, d ∈ N. For every m ∈ N
there is N ∈ N such that if X a K algebraic subvariety of GLd(K) such that the

sum of the degrees of the geometrically irreducible components of X is at most m,

then for any subset
∑
⊂ GLd(K) containing Id and generating a subgroup which

is not contained in X(K), we have
∑N * X(K).

15



Chapter 3

Sets of Matrices and Height Gap

Theorem

In this chapter we describe properties of sets of matrices that satisfy some con-

ditions. After using them we deduce properties of height and prove Height gap

theorem 3.3.1.

3.1 Spectral Radius Lemma for Several Matri-

ces

Lemma 3.1.1. Let L be a field and Q a subset of M2(L) such that Q and Q2

consist of nilpotent matrices. Then there is a basis (u, v) of L2 such that Qu = 0

and Qv ⊂ Lu.

Proof. For any A,B ∈ Q we have A2 = B2 = (AB)2 = 0. It follows, unless A

or B are zero, that kerA = ImA and kerB = ImB. Also if AB 6= 0 we get

kerB = ker(AB) = Im(AB) = ImA while if AB = 0 then ImB = kerA. So

at any case kerA = ImA = kerB = ImB. So we have proved that the kernels

and images of non zero elements of Q coincide and are equal to some line Lu say.

Pick v ∈ L2\{Lu} then (u, v) forms the desired basis.

The condition from the previous lemma that Q and Q2 consist of nilpotent

matrices is in fact very strong. It actually means that the set of matrices consists

16



3. Sets of matrices and Height gap theorem

of matrices proportional to a one fixed nilpotent matrix.

Corollary 3.1.2. Let L be a field and Q a subset of M2(L) such that Q and

Q2 consist of nilpotent matrices then there exists a nilpotent matrix N such that

Q ⊆ {λN : λ ∈ L}.

Corollary 3.1.3. The product of two nilpotent 2× 2 matrices is nilpotent if and

only if it is zero.

A principal ideal domain is an integral domain where every ideal is a

principal ideal. In a principal ideal domain, an ideal (p) is maximal if and only

if p is irreducible. An ideal of a commutative ring is said to be irreducible if it

cannot be written as a finite intersection of ideals properly containing it.

A discrete valuation ring R is a principal ideal domain with exactly one

nonzero maximal ideal M . Any generator t of M is called a uniformizer or

uniformizing element of R; in other words, a uniformizer of R is an element

t ∈ R such that t ∈M but t /∈M2.

Given a discrete valuation ring R and a uniformizer t ∈ R, every element

z ∈ R can be written uniquely in the form u · tn for some unit u ∈ R and some

nonnegative integer n ∈ Z. The integer n is called the order of z, and its value

is independent of the choice of uniformizing element t ∈ R.

Lemma 3.1.4. Let k be a local field with ring of integers Ok and uniformizer π.

Let A = (aij) ∈ M2(Ok) such that det(A) belong to (π2) and a11, a22, a21 ∈ (π)

while a12 ∈ O×k . Then a21 ∈ (π2).

Proof. We have a12a21 = a11a22 − det(A) ∈ (π2) and a12 ∈ O×k , hence a21 ∈
(π2).

Lemma 3.1.5. Let k be a local field with ring of integers Ok and uniformizer π

together with an absolute value | · |k, which is (uniquely) extended to an algebraic

closure k of k. Let Q be a subset of M2(Ok) such that Λk(Q) and Λk(Q
2) are both

≤ |π|k. Then there is T ∈ GL2(k) such that TQT−1 ⊂ πM2(Ok).

Proof. Projecting Q to M2(L) where L is the residue field L = Ok/(π) the ma-

trices from Q and Q2 become nilpotent. By Corollary 3.1.2 we have Q|L = {λN}

17



3. Sets of matrices and Height gap theorem

which implies that

Q ⊆ {λN + πA : λ ∈ k,A ∈M2(k)}.

Clearly that we can find the transformation P such that PQP−1 consists of

matrices A = (aij) ∈ M2(Ok) with a11, a22, a21 ∈ (π) and a12 ∈ O×k . Using the

condition Λk(Q) ≤ |π|k we have detA ≤ Λk(Q)2 ≤ |π|2k. Hence by Lemma 3.1.4,

a21 ∈ (π2). Let T = diag(π, 1) ∈ GL2(k). Then clearly TQT−1 ⊂ πM2(Ok).

Remark 3.1.6. If Id ∈ Q then Λk(Q) ≤ Λk(Q
2).

Definition 3.1.7. Let X and Y be two non-empty subsets of a metric space

(M,d). We define their Hausdorff distance dH(X, Y ) by

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

Equivalently

dH(X, Y ) = inf{r > 0, X ⊂ Yr and Y ⊂ Xr}

where

Xr =
⋃
x∈X

{z ∈M,d(z, x) ≤ r}.

Proposition 3.1.8. Let (S, d) be a compact metric space and

X := {K ⊂ S,K is compact}.

Then (X, dH) is a compact metric space.

Proof. Suppose that (X, dH) is not compact. Then for X there exists an open

cover
⋃
Ui that does not have a finite subcover. This means that for every finite

subcover there exists K ∈ X not covered by it. Therefore there exists x ∈ K ⊂ S

not covered. Now consider
⋃
Ũi where

Ũi =
⋃
Vk∈Ui

Vk.

⋃
Ũi is a cover for S. We do not have a finite subcover for S either. This is a

contradiction with the compactness of S.

18



3. Sets of matrices and Height gap theorem

The following lemma ensures us that we can always find a matrix in a set Q2

whose maximal eigenvalue is not much smaller than square of the minimal norm

of the set. Elements with large eigenvalues will be used as generators of a free

group in a ”ping-pong method” (see Section 4.1).

Lemma 3.1.9 (Spectral Radius Lemma). Let Q be a bounded subset of M2(k)

(a) if k is non Archimedean, then Λk(Q
2) = Ek(Q)2;

(b) if k is Archimedean, there is a constant c ∈ (0, 1) independent of Q such

that Λk(Q
2) ≥ c2Ek(Q)2.

Proof. (a): From Section 2.3 and in particular from Lemma 2.3.1 we have

Λk(Q)2 ≤ Λk(Q
2) ≤ Ek(Q

2) ≤ Ek(Q)2.

Assume that Λk(Q
2) < Ek(Q)2. Then we have also Λk(Q) < Ek(Q). Extending

the field k, we may assume that

Λk(Q
2) ≤ |π|kEk(Q)2, Λk(Q) ≤ |π|kEk(Q),

where π is a primitive element of k. Put y = min{||gQg−1|| : g ∈ GL2(k)} The

existence of the minimum is assured by the discreteness of the absolute value on

k. Replacing Q by a conjugate and multiplying it by a suitable scalar, we may

assume that ||Q|| = y = 1. Then both Λk(Q) and Λk(Q
2) do not exceed |π|k, and

Lemma 3.1.5 implies that for some g ∈ GL2(k) we have ||gQg−1|| ≤ |π|k < 1,

contradicting the minimal choice of y.

(b): It is enough to give a proof for a compact set because we can approximate

any set by compacts set. We prove it by contradiction, if such a c did not exist,

then we may find a sequence of Qn such that Λk(Q2
n)

Ek(Qn)2 → 0, in the Hausdorff metric.

We can changeQn into Qn
Ek(Qn)

and thus obtain a sequence of compact sets inM2(k)

such that Ek(Qn) = 1 with Λk(Q
2
n)→ 0 and Λk(Qn)→ 0 and passing to a limit,

we obtain a compact subset Q of M2(k) which exists by Proposition 3.1.8 such

that Λk(Q
2) = Λk(Q) = 0 while Ek(Q) = 1 By Corollary 3.1.2, we can transform

Q to a subset of {[
0 λ

0 0

]
, where λ ∈ L

}
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3. Sets of matrices and Height gap theorem

thus Ek(Q) = 0. This is a contradiction.

Remark 3.1.10. Note that the proof of (b) is not effective because of a compact-

ness argument.

An analogous result with almost the same proof holds in general (see Breuil-

lard [2008a]).

Lemma 3.1.11 (Spectral Radius Formula for Q). Let Q be a bounded subset of

Md(k).

(a) if k is non Archimedean, there is an integer q ∈ [1, d2] such that Λk(Q
q) =

Ek(Q)q.

(b) if k is Archimedean, there is a constant c = c(d) ∈ (0, 1) independent of

Q and an integer q ∈ [1, d2] such that Λk(Q
q) ≥ cqEk(Q)q.

Proposition 3.1.12. Let Q be a bounded subset of M2(k). We have

Rk(Q) = lim
n→∞

Ek(Q
n)

1
n = inf

n∈N
Ek(Q

n)
1
n = lim

n→∞
Λk(Q

2n)
1

2n = sup
n∈N

Λk(Q
n)

1
n .

Moreover if k is non Archimedean, Rk(Q) = Ek(Q), while if k is Archimedean,

then cEk(Q) ≤ Rk(Q) ≤ Ek(Q), where c is the constant from Lemma 3.1.9 (b).

Proof. First we prove the first equality. Since Ek(Q
n) ≤ ||Qn||k for every n ∈ N

then Ek(Q
n)

1
n ≤ Rk(Q). On the other hand,

Rk(Q) = Rk(gQg
−1) ≤ ||gQg−1||k

for every g ∈ GL2(k). Hence Rk(Q) ≤ Ek(Q) and for every n ∈ N we have

Rk(Q)n = Rk(Q
n) ≤ Ek(Q

n), hence Rk(Q) ≤ lim inf Ek(Q
n)

1
n . Thus limEk(Q

n)
1
n

exists and equals Rk(Q). For n > 1, n ∈ N we have

||gQntg−1||
1
nt = ||gQtg−1gQtg−1 · . . . · gQtg−1||

1
nt ≤ ||gQtg−1||

1
t .

Thus the second equality is clear.

It is also clear that as Λk(Q
n) ≤ Ek(Q

n) we have

lim sup Λk(Q
2n)

1
2n ≤ lim sup Λk(Q

n)
1
n ≤ Rk(Q).
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3. Sets of matrices and Height gap theorem

By Lemma 3.1.9 Λk(Q
2)

1
2 ≥ cEk(Q) (where c = 1 if k is non Archimedean) thus

Λk(Q
2n)

1
2n ≥ c

1
nEk(Q

n)
1
n ≥ c

1
nRk(Q)

which forces lim inf Λk(Q
2n)

1
2n ≥ Rk(Q) Hence from two inequalities above we

have that limn→+∞ Λk(Q
2n)

1
2n exists and equals Rk(Q). Since for every n, p ∈ N

we have Λk(Q
np) ≥ Λk(Q

p)n and thus

Λk(Q
np)

1
np ≥ Λk(Q

p)
1
p

by letting n tend to +∞ we indeed get Rk(Q) = supp∈N Λk(Q
p)

1
p .

By Lemma 2.3.1 have for any q ∈ N that Λk(Q
q)

1
q ≤ Rk(Q) ≤ Ek(Q). If k is

non Archimedean, then this combined with Lemma 3.1.9 (a) shows the desired

identity. If k is Archimedean, then Lemma 2.3.1 gives Λk(Q
q) ≤ Rk(Q)q, which

when combined with Lemma 3.1.9 (b) and (2.3) gives

Ek(Q) ≥ Rk(Q) ≥ Λk(Q
2)

1
2 ≥ cEk(Q).

Remark 3.1.13. Define F ⊂ GL2(C) as follows

F =

{[
0 1

0 0

]
,

[
0 0

1 0

]}
.

For this set we have

lim
n→∞

Λk(Q
2n)

1
2n = 1 6= 0 = lim

n→∞
Λk(Q

2n+1)
1

2n+1 .

Thus 2n in Theorem 3.1.12 is essential.

Note also that if Q belongs to SL2(k) then Ek(Q) ≥ Rk(Q) ≥ Λk(Q) ≥ 1 and

all three quantities remain unchanged if we add Id to Q. The following lemma

explains what happens if these quantities are close or equal to 1.

A similar result with a similar proof holds in general (see Breuillard [2008a]).
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Proposition 3.1.14. Let Q be a bounded subset of Md(k) such that 1 ∈ Q. We

have

Rk(Q) = limn→∞Ek(Q
n)

1
n = infn∈NEk(Q

n)
1
n

Rk(Q) = limn→∞ Λk(Q
n)

1
n = supn∈N Λk(Q

n)
1
n

Moreover if k is non Archimedean, Rk(Q) = Ek(Q), while if k is Archimedean,

then cEk(Q) ≤ Rk(Q) ≤ Ek(Q), where c is the constant from Lemma 3.1.11 (b).

For a real number w, let Mw denote the unique simply connected surface (real

2-dimensional Riemannian manifold) with constant curvature w. Denote by Dw

the diameter of Mw, which is +∞ if w < 0 and 1√
w

for w > 0.

Let (X, d) be a geodesic metric space, i.e. a metric space for which every two

points x, y ∈ X can be joined by a geodesic segment, an arc length parametrized

continuous curve. Let 4 be a triangle in X with geodesic segments as its sides.

4 is said to satisfy the CAT (w) inequality if there is a comparison triangle 4′ in

the model space Mw, with sides of the same length as the sides of 4, such that

distances between points on 4 are less than or equal to the distances between

corresponding points on 4′. The geodesic metric space (X, d) is said to be a

CAT (w) space if every geodesic triangle 4 in X with perimeter less than 2Dw

satisfies the CAT (w) inequality.

Remark 3.1.15. • Any CAT (w) space (X, d) is also a CAT (l) space for all

l > w. In fact, the converse holds: if (X, d) is a CAT (l) space for all l > w,

then it is a CAT (w) space.

• n-dimensional Euclidean space with its usual metric is a CAT (0) space.

• n-dimensional hyperbolic space Hn with its usual metric is a CAT (−1)

space, and hence a CAT (0) space as well.

Define

L =

{[
a b

b c

]
such that b ∈ C and a, c ∈ R

}
and

H = {A ∈ L such that detA = 1 and a, c > 0} .
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Note that for P ∈ SL2(C) and A ∈ H we have the group action

P (A) := PAP ∗

where P ∗ = P
T
. Note also that H can be represented as H3 = C× (0,+∞) due

to

H→ H3,[
a b

b c

]
7→ b+ j

c
.

Using this representation we have the action of PSL2(C) on H3 that may be

written as [
α β

γ δ

]
(z + tj) =

(αz + β)(γz + δ) + αγt2 + tj

|γz + δ|2 + |γ|2t2

where

[
α β

γ δ

]
∈ PSL2(C) and (z + tj) ∈ H3.

Lemma 3.1.16 (Linear growth of displacement squared). Suppose k is Archimedean

(i.e. k = R or C). Then we have for every n ∈ N and every bounded subset Q

of SL2(k) containing Id,

Ek(Q
n) ≥ Ek(Q)

√
n
4 (3.1)

Moreover,

logRk(Q) ≥ c1 logEk(Q) min{1, logEk(Q)}

for some constant c1 > 0. In particular Ek(Q) = 1 if and only if Rk(Q) = 1.

Proof. We use non-positive curvature of hyperbolic space H3.

For x ∈ H3 set L(Q, x) = maxg∈Q d(gx, x) and L(Q) = infx L(Q, x). Fix

ε > 0, set `n := L(Qn) = 2 logEk(Q
n), and let rn be the infimum over x ∈ H3 of

the smallest radius of a closed ball containing Qnx Note first that rn ≤ `n. We

now prove (3.1). Fix ε > 0 and let x, y ∈ H3 be such that Qn+1x is contained

in a ball of radius rn+1 + ε around y. Let q ∈ Q be arbitrary. Since Q contains

Id we have Qnx ⊂ Qn+1x, and qQnx lies in the two balls of radius rn+1 + ε

centered around qy and around y. By the CAT(0) inequality for the median (see

Remark 3.1.15), the intersection of the two balls is contained in the ball B of
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radius t :=
√

(rn+1 + ε)2 − d(qy, y)2/4 centered around the midpoint m between

y and qy. Translating by q−1 we get that Qnx lies in the ball of radius t centered

at q−1m. In particular rn ≤ t. This means d(qy, y)2 ≤ 4((rn+1 + ε)2 − r2
n). Since

q ∈ Q and ε > 0 were arbitrary, we obtain `2
1 ≤ 4(r2

n+1−r2
n). Summing over n, we

get n`2
1 ≤ 4r2

n ≤ 4`2
n, hence (3.1). But by Lemma 3.1.9 (b), Λk(Q

2n) ≥ c2Ek(Q
n)2,

hence

Rk(Q) ≥ Λk(Q
2n)

1
2n ≥ c

1
nEk(Q)

√
1

4n .

Optimizing in n, we obtain the desired bound.

An analogous result with almost the same proof holds in general (see Breuil-

lard [2008a]).

Lemma 3.1.17 (growth of displacement). Suppose k is Archimedean (i.e. k = R
or C). Then we have for every n ∈ N and every bounded subset Q of SL2(k)

containing Id,

Ek(Q
n) ≥ Ek(Q)

√
n
4d (3.2)

Moreover,

logRk(Q) ≥ c1 logEk(Q) min{1, logEk(Q)} (3.3)

for some constant c1 = c1(d) > 0.

3.2 Properties of Matrix Heights

In this section, we prove some properties of matrix heights. We prove them for

any dimension.

Proposition 3.2.1. Let F be a finite subset of Md(Q). Then

(a) ĥ(F ) = limn→+∞
1
n
h(F n) = infn∈N

1
n
h(F n),

(b) ef (F ) = ĥf (F ) and e(F ) + log c ≤ ĥ(F ) ≤ e(F ) where c is the constant in

Lemma 2.1 (b),

(c) ĥ(F n) = nĥ(F ) and ĥ(F ∪ {Id}) = ĥ(F ),

(d) ĥ(xFx−1) = ĥ(F ) if x ∈ GLd(Q).

Proof. We will use results of Section 2.3 and Proposition 3.1.14.
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(a) Since F is finite, there are only finitely many places v such that ||F ||v > 1.

For each such place we have

1

n
log+ ||F n||v → log+Rv(F )

hence 1
n
h(F n)→ ĥ(F ).

The equality limn→+∞
1
n
h(F n) = infn∈N

1
n
h(F n) follows immediately from

limn→∞ ||F n|| 1n = infn∈N ||F n||
1
n
k (see (2.2)).

(b) We have Ev(F ) = Rv(F ) if v ∈ Vf hence ef (F ) = ĥf (F ) while

cEv(F ) ≤ Rv(F ) ≤ Ev(F ) if v ∈ V∞

hence

e∞(F ) + log c ≤ ĥ∞(F ) ≤ e∞(F ).

(c) We have Rv(F
n) = Rv(F )n for every n ∈ N and every place v. Hence

ĥ(F n) = nĥ(F ).

(d) Finally using Rk(xFx
−1) = Rk(F ) we obtain the last equality.

Proposition 3.2.2. Let F be a finite subset of Md(Q) then

(a) e(xFx−1) = e(F ), x ∈ GLd(Q),

(b) e(F n) ≤ ne(F ),

(c) If λ is an eigenvalue of an element of F then h(λ) ≤ ĥ(F ) ≤ e(F ),

(d) If F ⊂ GLd(Q) then e(F ∪ F−1) ≤ (2d− 1)e(F ) and e(F ∪ {1}) = e(F ).

If F is a subset of SLd(Q) then e(F ∪ F−1) ≤ (d− 1)e(F ).

Proof. The first three items are clear (see Section 2.3). For the last, observe that

for any x ∈ GLd(Kv) we have

||x−1||v ≤
1

| det(x)|v

∣∣∣∣det(x)

λd

∣∣∣∣
v

≤ 1

| det(x)|v
||x||d−1

v (3.4)

where λd is the minimal eigenvalue of x. Hence

||(F ∪ F−1)||v ≤ ||F ||d−1
v max

{
1

| det(x)|v
, x ∈ F ∪ {1}

}
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and

Ev(F ∪ F−1) ≤ Ev(F )d−1 max

{
1

| det(x)|v
, x ∈ F ∪ {1}

}
.

So

e(F ∪ F−1) ≤ (d− 1)e(F ) + max{h(det(x)−1), x ∈ F ∪ {1}}

= (d− 1)e(F ) + max{h(det(x)), x ∈ F ∪ {1}}

≤ (d− 1)e(F ) + max{h(λ1) · . . . · h(λd);λi ∈ spec(x); i = 1, . . . , d;x ∈ F ∪{1}}

i.e. e(F ∪ F−1) ≤ (2d− 1)e(F ) .

Remark 3.2.3. Note that the equality in (3.4) (instead of inequality) is stated

in the proof of this result in [Breuillard, 2008b, p.17]. This equality holds just for

d = 2 and does not hold for d > 2 due to the following example:

X :=

3 0 0

0 2 0

0 0 1

 ∈ GL3(Q), X−1 =


1
3

0 0

0 1
2

0

0 0 1


then ||X−1||v = 1 < 9

6
= 1
| det(X)|v ||X||

2
v

We can also compare e(F ) and ĥ(F ) when ĥ(F ) is small:

Proposition 3.2.4. For every ε > 0 there is δ = δ(d, ε) > 0 such that if F is

a finite subset of SLd(Q) containing 1 with ĥ(F ) < δ, then e(F ) < ε. Moreover

ĥ(F ) = 0 if and only if e(F ) = 0.

Proof. This follows immediately from Proposition 3.2.1 (b) and Proposition 3.2.5

below using them for e∞(F ) < 1 we have

e2(F ) = (ef (F ) + e∞(F ))2 ≤ 2(e2
f (F ) + e2

∞(F ))

≤ 2(ĥ2
f (F ) +

4

c
ĥ∞(F )) ≤ 2(δ2 +

4

c
δ) < 2(1 +

4

c
)δ

and for e∞ ≥ 1 we have

e(F ) = ef (F ) + e∞(F ) ≤ ĥf (F ) +
4

c
ĥ∞(F ) ≤ (1 +

4

c
)δ.
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Proposition 3.2.5. Let c1 be the constant from Lemma 3.1.11, then

ĥ∞(F ) ≥ c1

4
e∞(F ) min{1, e∞(F )}

for any finite subset F of SLd(Q) containing 1.

Proof. By Lemma 3.1.17 we have

ĥv(F ) ≥ c1

4
ev(F ) min{1, ev(F )} for every v ∈ V∞.

We may write

e∞(F ) = αe+(F ) + (1− α)e−(F )

where e+ is the average of the ev greater than 1 and e− the average of the ev

smaller than 1. This means

e+
∑

v∈V∞,ev>1

nv =
∑

v∈V∞,ev>1

nvev

and similarly for e−. Applying Cauchy-Schwarz, we have

ĥ∞(F ) ≥ c1(αe+ + (1− α)(e−)2).

If αe+(F ) ≥ 1
2
e∞(F ), then ĥ∞(F ) ≥ c1

2
e∞(F ), and otherwise (1 − α)e− ≥ e∞

2
,

hence

ĥ∞(F ) ≥ c1(1− α)(e−)2 ≥ c1

4
e2
∞.

At any case

ĥ∞(F ) ≥ c1

4
e∞(F ) min{1, e∞(F )}.

3.3 Height Gap Theorem

In this section, we prove Theorem 3.3.1. This result can be seen as a non abelian

version of Lehmer conjecture.
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3. Sets of matrices and Height gap theorem

Theorem 3.3.1 (Height Gap Theorem). There is a positive constant ε = ε(d) >

0 such that if F is a finite subset of GLd(Q) generating a non virtually solvable

subgroup Γ then ĥ(F ) > ε. Moreover, if the Zariski closure of Γ is semisimple,

then

ĥ(F ) ≤ inf
g∈GLd(Q)

h(gFg−1) ≤ Cĥ(F )

for some absolute constant C = C(d) > 0.

Height gap theorem is stated above for any d ∈ N but it will be proved just for

d = 2 (for a general case see Breuillard [2008a]). So we hereafter assume d = 2.

We may assume that F = {Id, A,B} with A semisimple (in fact both A

and B can be taken semisimple). Moreover A has an order that exceed d1, and

bc 6∈ {0,−1, e
2ıπ
3 , e

4ıπ
3 } after we conjugate A and B in the form (3.5) below. The

general case follows from this as we will show in the next lemma.

Lemma 3.3.2. For every m ∈ N, there exists N(m) ∈ N with the following

property. Let F be a finite subset of SL2(Q) containing 1 and generating a non-

virtually solvable subgroup such that the sum of the degrees of the geometrically

irreducible components of that group is at most m. Then there exists A,B ∈
FN(m) such that A and B are semisimple, generate a non-virtually solvable group,

A has an order that exceeds m, and bc 6∈ {0,−1, e
2ıπ
3 , e

4ıπ
3 } after we conjugate A

and B in the form (3.5).

Proof. The proof of this lemma follows directly from Eskin-Mozes-Oh’s ” Escape

from subvarieties ” (see Lemma 2.5.6) applied to
∑

= F×F in SL2×SL2 ≤ GL4

with X = X1 ∪X2 ∪X3 ∪X4 where

X1 = {(A,B), A or B has order at most d1},
X2 = {(A,B), tr(A) or tr(B) is 2},
X3 = {(A,B), A and B generate a virtually solvable subgroup },
X4 the Zariski closure of {(gAg−1, gBg−1), g ∈ SL2, A diagonal , bc ∈

{0,−1, e
2iπ
3 , e

4iπ
3 }}.

X3 is a proper subvariety of SL2 × SL2 because there are pairs of matrices

that generate groups which are not virtually solvable. X4 is a proper subvariety

of SL2 × SL2 too because the first matrices of pairs are semisimple.
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3. Sets of matrices and Height gap theorem

From the properties of height that were observed in Proposition 3.2.4, ĥ(F )

is small if and only if e(F ) is small. So we may as well replace ĥ(F ) by e(F )

in Theorem 3.3.1. Since e(F ) is invariant under conjugation by any element in

GL2(Q), we may assume that A is diagonal, i.e.

A =

[
λ 0

0 λ−1

]
, B =

[
a b

c d

]
. (3.5)

Let deg(λ) be the degree of λ as an algebraic number over Q. The following

proposition is extremely important for us:

Proposition 3.3.3 (small normalised height implies small height of matrix co-

ordinates). For every β > 0 there exists d0, ν > 0 such that, if F = {Id, A,B}
are as in (3.5) and if e(F ) ≤ ν and deg(λ) ≥ d0 then

max{h(ad), h(bc)} ≤ β.

In order to prove this statement, we need

• to give local estimates at each place v;

• to show by the equidistribution theorem that when these estimates are put

together the error terms give only a negligible contribution to the height.

Let K be the number field generated by the coefficients of A and B. Let

v ∈ VK be a place of K. We set sv = logEv(F ) and δ = λ−1 − λ.

Lemma 3.3.4 (Local estimates). For each v ∈ VK we have

max{|a|v, |d|v,
√
|bc|v} ≤ Cve

4sv max{1, |δ−1|v}

where Cv is a constant equal to 1 if v is a finite place and equal to a number

C∞ > 1 if v is infinite. Moreover there are absolute constants ε0 > 0 and C0 > 0

such that if v is infinite and sv ≤ ε0, then

max{|ad|v, |bc|v} ≤ 1 + C0(
√
sv +

√
sv
|δ|v

+
sv
|δ|2v

).
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Proof. In order not to overburden notation in this proof we set sv to be some

number arbitrarily close but strictly bigger than logEv(F ) and we can let it tend

to logEv(F ) at the end.

If v is infinite, then Qv = C and SL2(C) = KAN where

• K = SU2(C),

• A is the group of diagonal matrices with real positive entries, detA = 1,

• N is the group of unipotent complex upper triangular matrices.

As K leaves the norm invariant, there must exist a matrix P ∈ AN such that

max{||PAP−1||, ||PBP−1||} ≤ esv . Since P ∈ AN we may write p =

[
t y

0 t−1

]
with t > 0 and y ∈ C. Then we have, setting δ = λ−1 − λ

PAP−1 =

[
λ tyδ

0 λ−1

]
, PBP−1 =

[
a+ cyt−1 bt2 + dyt− ayt− cy2

t−2c −yct−1 + d

]
. (3.6)

Claim : There is u0 > 0 such that if 0 ≤ u ≤ u0 and ||B|| ≤ eu then

max{|a− d|, |b+ c|} ≤ 2
√

2u, (3.7)

max{|a|2 + |b|2, |d|2 + |c|2} ≤ 1 + 4u, (3.8)

max{|a|, |b|, |c|, |d|} ≤ 1 + 2u. (3.9)

To prove this recall that for the operator norm in SL2(C) we have

|a|2 + |b|2 = ‖BT e1‖2 ≤ ‖B‖2 ≤ e2u (3.10)

analogous |c|2 + |d|2 ≤ e2u thus for u ≤ 0, 5 we have

max{|a|2 + |b|2, |d|2 + |c|2} ≤ e2u ≤ 1 + 4u

and thus

max{|a|, |b|, |c|, |d|} ≤ eu ≤ 1 + 2u.
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3. Sets of matrices and Height gap theorem

So (3.8) and (3.9) are proved. From (3.10) we also have

|a|2 + |b|2 + |c|2 + |d|2 ≤ 2e2u

therefore

|a− d|2 + |b+ c|2 = |a|2 + . . .+ |d|2 − 2 ≤ 2e2u − 2 ≤ 8u

for u ≤ 0, 5 and hence (3.7). It is reasonable to explain the meaning of (3.7).

The conditions ||B|| ≈ 1 and B ∈ SL2(C) tell us that B∗B ≈ Id and therefore[
a c

b d

]
= B∗ ≈ B−1 =

[
d −b
−c a

]
.

Let now ε > 0 and assume that sv ≤ ε. From (3.6) we get

|λ|2 + |λ−1|2 + |tyδ|2 ≤ 2e2ε

hence |tyδ|2 ≤ 2e2ε − 2 ≤ 8ε if ε is small enough. So |tyδ| ≤ 2
√

2ε. Now since

||PBP−1|| ≤ eε we have |t−2c| ≤ 2 as soon as ε ≤ 1
4
. Hence |yct−1| ≤ 4

√
2ε
|δ| and

max{|a|, |d|} ≤ 1 + 2ε + 4
√

2ε
|δ| Finally for some absolute constant C > 0 we have

|ad| ≤ 1 + C(ε+
√
ε
|δ| + ε

|δ|2 ).

On the other hand, |cy2| = |t−2c(ty)2| ≤ 16ε
|δ|2 and

|d− a||yt| ≤ 2 max{|a|, |d|}|yt| ≤ 12
√

2ε

|δ|
+

32ε

|δ|2

Also by (3.7) we have |bt2 + (d− a)yt− cy2 + (t)−2c| ≤ 2
√

2ε and

|bc+ |t−2c|2| ≤ 2|bt2 + (t)−2c| ≤ 4
√

2ε+
24
√

2ε

|δ|
+

96ε

|δ|2
,

and by (3.8) we have |t−2c|2 ≤ 1 + 4ε hence up to enlarging the absolute constant

C we also have |bc| ≤ 1 + C(
√
ε+

√
ε
|δ| + ε

|δ|2 ).

Without the assumption that sv is small, we can make a coarser estimate:

31
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|t−2c|2 ≤ 2e2sv , |tyδ|2 ≤ 2e2sv , hence |cyt−1| ≤ 4e4sv

|δ| and

max{|a|, |d|} ≤ 4e4sv

|δ|
+ 1 + 2sv ≤ 4e4sv max{1, 1

|δ|
}

and |ad| ≤ 16e16sv max{1, 1
|δ|2}. Similarly, we compute |bc| ≤ 20e16sv max{1, 1

|δ|2}.
If v is finite and Kv is the corresponding completion, with ring of integers Ov

and uniformizer π, we have SL2(Kv) = KvAvNv where

• Kv = SL2(Ov),

• Av = {diag(πn, π−n), n ∈ Z},

• Nv is the subgroup of unipotent upper-triangular matrices with coefficients

in Kv.

Hence, we also get a P ∈ AvNv satisfying (3.6) with y ∈ Kv and t = πn for some

n ∈ Z.

We first assume that v is finite. Recall that the operator norm in SL2(Kv) is

given by the maximum modulus of each matrix coefficient. Hence we must have

|t−2c|v ≤ esv and |tyδ|v ≤ esv . It follows that |cyt−1|v ≤ e2sv |δ−1|v and hence

|a|v ≤ max{esv , e2sv |δ−1|v}. Similarly, |d|v ≤ max{esv , e2sv |δ−1|v}. Hence |ad|v ≤
max{e2sv , e4sv |δ−1|2v}. Moreover ad − bc = 1, hence |bc|v ≤ max{1, |ad|v} ≤
max{e2sv , e4sv |δ−1|2v}.

We now put together the local information obtained above to bound the

heights. Let n = [K : Q] and Vf and V∞ the set of finite and infinite places

of K. Set ε0, C0 and C∞ the constants from the previous lemma. For A > 0 and

x ∈ Q we set

hA∞(x) =
1

[K : Q]

∑
v∈V∞,|x|v≥A

nv log+ |x|v (3.11)

where the sum is limited to those v ∈ V∞ for which |x|v ≥ A. We have:

Lemma 3.3.5 (Global estimates). For some constant C2 satisfying 2 ≤ C2 ≤
2 + (2 logC∞ + 16)/ log 2, we have for all ε1 ∈ (0, 1

2
) and all ε ≤ min{ε0, ε

2
1}

max{h(ad), h(bc)} ≤ Cε,ε1e(F ) + 6C0

√
ε

ε1

+ 2hf (δ
−1) + C2h

ε−1
1∞ (δ−1) (3.12)
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3. Sets of matrices and Height gap theorem

where Cε,ε1 = (16 + 2 logC∞
ε

+ 2| log ε1|
ε

) and δ = λ+ λ−1.

Proof. Recall that sv = logEv(F ). If v ∈ V∞ and sv ≥ ε then according to

Lemma 3.3.4 we have log+ |ad|v ≤ 2 logC∞ + 16sv + 2 log+ |δ−1|v hence

1

n

∑
v∈V∞,sv≥ε

nv log+ |ad|v

≤
(

16 +
2 logC∞

ε

)
1

n

∑
v∈V∞,sv≥ε

nvsv +
2

n

∑
v∈V∞,sv≥ε

nv log+ |δ−1|v

Fix ε1 < 1
2
. On the other hand, if sv ≤ ε ≤ min{ε0, ε

2
1} and |δ|v ≥ ε1 then

log+ |ad|v ≤ C0(
√
sv +

√
sv
|δ|v + sv

|δ|2v
) ≤ 3C0

√
ε

ε1
and, as nv ≤ 2,

1

n

∑
v∈V∞,sv≤ε,|δ|v≥ε1

nv log+ |ad|v ≤ 6C0

√
ε

ε1

.

While if sv < ε and |δ|v ≤ ε1 ≤ 1
2

then log+ |ad|v ≤ C2 log+ |δ−1|v for some

absolute constant C2 satisfying 2 ≤ C2 ≤ 2 + (2 logC1+16)
log 2

, hence

1

n

∑
v∈V∞,sv<ε,|δ|v≤ε1

nv log+ |ad|v ≤
1

n

∑
v∈V∞,sv≤ε,|δ|v≥ε1

nvC2 log+ |δ−1|v

When v ∈ Vf , from Lemma 3.3.4, we get∑
v∈Vf

nv log+ |ad|v ≤
∑
v∈Vf

16nvsv +
∑
v∈Vf

2nv log+ |δ−1|v.

But
2

n

∑
v∈V∞,sv≥ε,|δ|v≥ε1

nv log+ |δ−1|v ≤
2| log ε1|

ε

1

n

∑
v∈V∞,sv≥ε

nvsv.

Putting together the above estimates, we indeed obtain (3.12) for ad. The same

computation works for bc.

Theorem 3.3.6 (The equidistribution of small points, Bilu [1997]). Suppose

(λn)n≥1 is a sequence of algebraic numbers (i.e. in Q) such that h(λn) → 0 and

deg(λn)→ +∞ as n→ +∞. Let O(λn) be the Galois orbit of λn in Q. Then we
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have the following weak* convergence of probability measures on C

1

#O(λn)

∑
x∈O(λn)

δx −→w∗

n→+∞ dθ (3.13)

where dθ is the normalized Lebesgue measure on the unit circle {z ∈ C, |z| = 1}.

We now draw two consequences of this equidistribution statement :

Lemma 3.3.7 (bounding errors terms via the equidistribution theorem I). For

every α > 0 there is d1, ν1 > 0 and ε1 > 0 with the following property. If λ ∈ Q
is such that h(λ) ≤ ν1, deg(λ) ≥ d1 then

hε
−1
1∞

(
1

1− λ

)
≤ α

where h
ε−1
1∞ was defined in (8).

Proof. Consider the function

fε1(z) = Id|z−1|>ε1 log |1− z|.

It is locally bounded on C. By Theorem 3.3.6, for every ε1 > 0, there must exist

d1, η1 > 0 such that, if h(λ) ≤ η1 and deg(λ) ≥ d1 then∣∣∣∣∣ 1n∑
x

fε1(x)−
∫ 1

0

fε1(e2πıθ)dθ

∣∣∣∣∣ ≤ α

3

On the other hand we verify that θ 7→ log |1− e2πıθ| is in L1(0, 1) and∫ 1

0

log |1− e2πıθ|dθ = 0.

Hence we can choose ε1 > 0 small enough so that∣∣∣∣∫ 1

0

fε1(e2πıθ)dθ

∣∣∣∣ ≤ α

3
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thus now we have that ∣∣∣∣∣ 1n∑
x

fε1(x)

∣∣∣∣∣ ≤ 2α

3
. (3.14)

Let P ∈ Z[X] be the minimal polynomial of λ, that is

P (X) =
∑

0≤i≤n

aiX
i = an

∏
x∈O(λ)

(X − x).

As P (1) ∈ Z\{0} we have log |P (1)| = log |an|+
∑

x∈O(λ) log |1− x| ≥ 0. So

∑
|1−x|≤ε1

log
1

|1− x|
≤

∑
|1−x|>ε1

log |1− x|+ log |an|.

Recall that from (2.4) we have h(λ) = 1
n
(
∑

x∈O(λ) log+ |x|+ log |an|). Hence

1

n

∑
|1−x|≤ε1

log
1

|1− x|
≤ h(λ) +

1

n

∑
|1−x|>ε1

log |1− x|. (3.15)

Combining inequality (3.14) and choosing η1 ≤ α
3
, we get

hε
−1
1∞

(
1

1− λ

)
≤ α

Using the product formula and again applying the equidistribution theorem,

we obtain a similar estimate for the finite places.

Lemma 3.3.8 (bounding errors terms via the equidistribution theorem II). For

every α > 0 there exists ν0 > 0 and A1 > 0 such that for any λ ∈ Q if h(λ) ≤ ν0

and d = deg(λ) > A1, then

hf

(
1

1− λ

)
≤ 2α. (3.16)

Proof. We apply the product formula to µ = 1− λ, which takes the form h(µ) =

h(µ−1) hence hf (µ
−1) = h∞(µ) − h∞(µ−1) + hf (µ). But hf (µ) = hf (1 − λ) =

35



3. Sets of matrices and Height gap theorem

hf (λ) ≤ η0 and

h∞(µ)− h∞(µ−1) =
1

[K : Q]

∑
v∈V∞

nv log |µ|v

=
1

[K : Q]

∑
v∈V∞,|1−λ|≤ε

nv log |1− λ|v +
1

[K : Q]

∑
v∈V∞,|1−λ|≥ε

nv log |1− λ|v (3.17)

The first summand is estimated in Lemma 3.3.7 and the second summand is small

because of Theorem 3.3.6. Hence (3.17) becomes small (for example ≤ α).

hf (µ) ≤ 1

[K : Q]

∑
v∈V∞

nv log |µ|v + hf (λ) ≤ α + η0 ≤ 2α.

Recall also the following result (which can also be deduced from the equidis-

tribution theorem).

Theorem 3.3.9 (Zhang’s theorem Zhang [1995]). There exists an absolute con-

stant α0 > 0 such that for any x ∈ Q, we have

h(x) + h(1− x) > α0

unless x ∈ {0,−1, e
2ıπ
3 , e

4ıπ
3 }.

Remark 3.3.10. The constant α0 is calculated explicitly by Zagier (see Zagier

[1993]) and it is equal to 1
2

log(1
2
(1 +

√
5)) = 0.2406 . . . .

Now we are ready to proof Proposition 3.3.3.

Proof of Proposition 3.3.3. Since

hf

(
1

λ− λ−1

)
≤ hf (λ) + hf

(
1

1− λ2

)
and similarly

hA∞

(
1

λ− λ−1

)
≤ hA∞(λ) + hA∞

(
1

1− λ2

)
,
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it follows from the last two lemmas that we can find ε1 > 0, ν > 0 and d0 ∈ N so

that 2hf (δ
−1) + C2h

ε−1
1∞ (δ−1) ≤ β

3
as soon as h(λ) ≤ e(F ) ≤ ν and deg(λ) ≥ d0.

Then choose ε so the 2C1

√
ε
ε
≤ β

3
and finally take ν even smaller so that Cε,ε1,ν ≤

β
3
. Now apply Lemma 3.3.5 and we are done.

And now using all results we proof Theorem 3.3.1.

Proof of Theorem 3.3.1. From the irreducibility of cyclotomic polynomials and

Kronecker’s theorem we have that for every d0 ∈ N there is ν0 > 0 and d1 > 0

such that if h(λ) < ν0 and λ is not a root of 1 of order at most d1 then deg(λ) ≥ d0.

Let β = α0

2
where α0 is given by Theorem 3.3.9. Proposition 3.3.3 yields d0 > 0

and ν = ν(α0

2
) > 0 such that max{h(ad), h(bc)} ≤ β as soon as e({Id, A,B}) ≤ ν

and deg(λ) ≥ d0. By Lemma 3.3.2, if we have some nice A,B ∈ FN(d1). Suppose

that

e(F ) ≤ min{ν, ν0}
N(d1)

, (3.18)

then e({Id, A,B}) ≤ min{ν, ν0} and λ is not a root of 1 of order at most d1.

Hence deg(λ) ≥ d0 and by Proposition 3.3.3, h(ad) + h(bc) ≤ 2β = α0. Then

according to Theorem 3.3.9, bc ∈ {0,−1, e
2ıπ
3 , e

4ıπ
3 } which is impossible by our

choice of A,B (see Lemma 3.3.2). Thus we reached a contradiction. So the

assumption (3.18) was not true. Therefore

e(F ) ≥ min{ν, ν0}
N(d1)

> 0

is the desired gap. This ends the proof of Theorem 3.3.1.

Here we are going to use our previous height estimates once again to show the

following proposition. Observe that the minimal height e(F ) coincides with the

infimum of h(gFg−1) over all adelic points g = (gv)v.

Proposition 3.3.11 (Simultaneous quasi-symmetrization). There is an abso-

lute constant C > 0 such that if F is a finite subset of SL2(Q) generating a

non-virtually solvable subgroup, then there is an element g ∈ SL2(Q) such that

h(gFg−1) ≤ Ce(F ) + C.

37



3. Sets of matrices and Height gap theorem

Proof. As we may replace F by a bounded power of it, Lemma 3.3.2 above allows

us to assume that F contains a semisimple element. Let F = {Id, A,B1, . . . , Bk}
with A semisimple. Conjugating by some g ∈ SL2(Q) we may assume that A is

in diagonal form and we write each Bi in the form (3.5) with entries ai, bi, ci, di.

Changing F into F 2 if necessary, we may assume that both b1 and c1 are not

zero (otherwise F would be contained in the group of upper or lower triangular

matrices). We may further conjugate F by the diagonal matrix diag(t, t−1), where

t ∈ Q is a root of t4 = c1/b1 so as to ensure b1 = c1. Then

h(B1) ≤ h(a1) + h(d1) + 2h(b1) + log 2.

On the one hand, since a1d1 − b1c1 = 1 we have b2
1 = a1d1 − 1 and

2h(b1) = h(b2
1) ≤ h(a1d1) + log 2 ≤ 2e({A,B}) + log 2C∞.

On the other hand, by Lemma 3.3.4 applied to {A,Bi} we have max{|ai|v, |di|v} ≤
Cve

2sv max{1, |δ−1|v} for every place v where δ = λ−λ−1 and sv = sv({A,Bi}) =

logEv({A,Bi}). Applying Lemma 3.3.4 to {A,B1Bi} we get

max{|(B1Bi)11|v, |(B1Bi)22|v} ≤ Cve
2sv max{1, |δ−1|v}

with sv = sv({A,B1Bi}) = logEv({A,B1Bi}). We compute the matrix entry

(B1Bi)11 = a1ai + b1ci. We get

|ci|v = |((B1Bi)11 − a1ai)b
−1
1 |v ≤ Cve

2sv max{1, |δ−1|v}max{1, |b−1
1 |v}.

Similarly for |bi|v. Hence,

||F ||v ≤ Cv max
i=1,...,k

{|ai|v, |di|v, |bi|v, |ci|v}

≤ Cv max
i=1,...,k

Ev({A,B1, B1Bi})2 max{1, |δ−1|v}max{1, |b−1
1 |v}

In particular, this means that

h(F ) ≤ 2 logC1 + 2e(F 2) + h(δ) + h(b1) ≤ 7e(F ) + 4 log 2C∞.
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Corollary 3.3.12. There exists a constant Cqs > 0 such that if F is as in the

proposition, then there is an element g ∈ SL2(Q) such that

h(gFg−1) ≤ Cqse(F ).
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Chapter 4

A Strong Tits Alternative for SL2

Main result is proved in this chapter. First we find geometric conditions for ”ping-

pong” (see Lemma 4.1), on which geometric part of the proof of A strong Tits

alternative for SL2 4.2.1 is based. After using it and all technic for arithmetic

part of the proof (developed earlier) A strong Tits alternative for SL2 4.2.1 is

proved.

4.1 Ping-pong

Here we state and prove a ping-pong criterion, which gives a sufficient condition

on the finite set F for it, or a bounded power of it, to contain two free generators

of a free subgroup.

Let k be a local field of characteristic zero with its standard absolute value.

We set Ck = 2 if k is Archimedean (R or C), and Ck = 1 if k is non Archimedean

(finite extensions of the p-adic numbers Qp). Let F ⊂ SL2(k) be a finite set

containing 1 such that Λk(F
k1) > Ck||F ||k (see Section 2.3 for notation, it is

important to require a strict inequality here when k is non Archimedean). Let

k1 ∈ N be a positive integer and let A ∈ F k1 be such that Λk(A) = Λk(F
k1). Then

A is semisimple and admits two distinct eigenvectors v+ and v− in k2
q where kq

is either k or some quadratic extension of k. Since we may always replace k by

kq, there is no loss of generality in assuming that v+ and v− lie in k2. Let dk be
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the canonical (Fubini-Study) projective distance on P1(k) namely

dk(u, v) =
||u ∧ v||k
||u||k||v||k

(4.1)

where by ∧ we define usual wedge product. That is an antisymmetric variant of

the tensor product. It is an associative, bilinear operation. Thus, for all u, v ∈ V
and a, b, c, d ∈ k, we have

(au+ bv) ∧ (cu+ dv) = (ad− bc)u ∧ v. (4.2)

Lemma 4.1.1 (geometric conditions for ping-pong). Let k2, k3 ∈ N be two posi-

tive integers. Assume that there is B ∈ F k2 such that

dk(Bv
ε; vε

′
) ≥ ||F ||−k3

k , (4.3)

dk(v
ε; vε

′
) ≥ ||F ||−k3

k (4.4)

for each ε, ε′ ∈ {±}. Then Al and BAlB−1 generate a free subgroup of SL2(k)

as soon as l ≥ (k2 + 1)(k3 + 1).

Proof. We will show that Al and BAlB−1 that satisfy (4.3) and (4.4) satisfy then

the conditions of Lemma 2.1.9 and thus generate a free group.

Note that for all u, v ∈ P1(k) we have

dk(Bu,Bv) ≤ ||B||2dk(u, v)

for B ∈ SL2(k). Note also that when v is an eigenvector then γv for γ ∈ k

is an eigenvector too. Thus without loss of generality, we may assume that

||v+||k = ||v−||k = 1. Let λ, λ−1 be the eigenvalues of A, where we have chosen

|λ|k ≥ 1. By the assumption on A we have

|λ|k = Λk(A) = Λk(F
k1) > Ck||F ||k ≥ 1. (4.5)

We may assume that v+ corresponds to λ and v− to λ−1. Let P ∈ GL2(k) be
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defined by Pe1 = v+ and Pe2 = v−. Note that

| detP | = ||v+ ∧ v−|| = ||v
+ ∧ v−||

||v+||||v−||
= dk(v

+, v−). (4.6)

Also ||P || = 1 if k is non Archimedean, and ||P ||2 ≤ 2 if k is Archimedean, so in

general ||P ||2 ≤ Ck. Moreover using (4.6) and (4.4) we have

||P−1|| = ||P ||
| detP |k

≤ C
1
2
k ||F ||

k3 . (4.7)

Set A′ = P−1AP,B′ = P−1BP, and F ′ = P−1FP. Then A′ = diag(λ, λ−1). For

u, v ∈ P1(k) we have

dk(Pu, Pv) =
||Pu ∧ Pv||
||Pu||||Pv||

≤ | detP |||P−1||2dk(u, v) ≤ Ckdk(u, v)

| detP |
.

Hence for i, j ∈ {1, 2} and taking into account (4.4) and (4.3) we get

dk(B
′ei, ej) ≥

1

Ck
dk(v

+, v−)dk(BPei, P ej) ≥
1

Ck

1

||F ||2k3
. (4.8)

By (4.7) we also have

||F ′|| ≤ ||F || ||P ||
2

| detP |
≤ Ck||F ||k3+1.

Let m ≤ 2l be positive integers to be determined shortly below. Let

U+
A = {x ∈ P1(k), dk(x, e1) ≤ |λ|−2l},

U−A = {x ∈ P1(k), dk(x, e2) ≤ |λ|−2l},

U+
C = {x ∈ P1(k), dk(x,B

′e1) ≤ |λ|−m},

U−C = {x ∈ P1(k), dk(x,B
′e2) ≤ |λ|−m}.

In order to apply Lemma 2.1.9 we need to show that

• these four sets are disjoint,
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• A′l maps (U−A )c into U+
A ,

• A′−l maps (U+
A )c into U−A ,

• C ′ = B′A
′lB

′−1 maps (U−C )c into U+
C ,

• C ′−1 maps (U+
C )c into U−C .

If for instance U+
A ∩ U

−
C 6= ∅, then d(B′ei, ej) ≤ Ck

|λ|m for some i, j, which in turn

would contradict (4.8) since (4.5) gives |λ|m > C2
k ||F ||2k3 as soon as m ≥ 2k3.

The same holds in other situations as soon as m ≥ 2(k3 + 1).

Now since A′ is diagonal, A
′l maps (U−A )c into U+

A , and A
′−l maps (U+

A )c into

U−A . Finally let us check the last two conditions. If x ∈ (U−C )c then

dk(x,B
′e2) > |λ|−m and dk(B

′−1x, e2)||B′||2 > |λ|−m.

So B
′−1x ∈ (U−A )c as long as |λ|2l−m ≥ ||B′||2. Then A

′lB
′−1x ∈ U+

A and

dk(C
′x,B′e1) ≤ ||B

′||2

|λ|2l
≤ |λ|−m.

And similarly if x ∈ (U+
C )c.

So the above works as soon as

m ≥ 2(k3 + 1) (4.9)

because we need that |λ|m > C2
k ||F ||2(k3+1),

2l −m ≥ 2k2(k3 + 1) (4.10)

because we need that |λ|2l−m > C2k2
k ||F ||2k2k3+2k2 ≥ ||F ′||2k2 ≥ ||B′||2.

Adding the inequalities (4.9) and (4.10) we have that l ≥ (k2 + 1)(k3 + 1).

Remark 4.1.2. A similar ping-pong lemma holds with the ping-pong players Al

and BAlB (instead of BAlB−1) if we assume similar lower bounds on dk(B
δvε, vε

′
)

for δ ∈ {0,±1,±2} and ε, ε′ ∈ {±}. This allows us to find the ping-pong players

in some F n, that is without having to take inverses of elements of F .
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4.2 A Strong Tits Alternative

First let us state Theorem 1.0.1 for SL2 that will be proved here.

Theorem 4.2.1 (strong uniform Tits Alternative). There exists an absolute con-

stant N ∈ N such that if K is any field and F a finite symmetric subset of SL2(K)

containing 1 then either FN contains two elements which generate a nonabelian

free group, or the group generated by F is virtually solvable (i.e. contains a finite

index solvable subgroup).

We first assume that F has coefficients in Q.

We will show that if F generates a non virtually solvable subgroup of SL2(K)

for some number field K then for at least one place v ∈ VK the conditions of the

ping-pong Lemma 4.1.1 are satisfied, with k1, k2, and k3 bounded and independent

of K. This will be done by finding an appropriate prime and a place above it

where F will satisfy the requirements of Lemma 4.1.1.

Let F be a finite subset of SL2(Q) which generates a non virtually solvable

subgroup and contains 1. According to Lemma 3.3.2, as one may change F

into a bounded power of itself if necessary, we may assume that F contains two

semisimple elements which generate a non virtually solvable subgroup. Now, from

Corollary 3.3.12, after possibly conjugating F inside SL2(Q) we may assume that

h(F ) ≤ Cqse(F ) where Cqs > 0 is the universal constant given by Corollary 3.3.12.

The last important ingredient in the proof of Theorem 4.2.1 is the product

formula on the projective line P1(Q) (see [Bombieri and Gubler, 2006, 2.8.21]),

that is for all (u; v) ∈ P1(Q)2

∏
v∈VK

dv(u, v)
nv

[K:Q] =
1

H(u)H(v)
. (4.11)

Recall that

logH(u) = h(u) =
1

[K : Q]

∑
v∈VK

nv log ||(u1, u2)||v

represent u ∈ P1(K) if (u1, u2) ∈ K2. This formula is straightforward from the

usual product formula and the definition of the standard distance (see (4.1))
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because

log
∏
v∈VK

dv(u, v)
nv

[K:Q]

=
1

[K : Q]

∑
v∈VK

nv(log ‖u ∧ v‖ − log ‖u‖ − log ‖v‖) = − logH(u)− logH(v)

= log
1

H(u)H(v)
. (4.12)

Lemma 4.2.2. Let f(x) ∈ Q[x] and α be its root. Then

h(α) ≤ h(f) + log deg f.

Proof. Consider the polynomial f(x) = xn + an−1x
n−1 + · · · + a0 then for α we

have αn = −an−1α
n−1 − · · · − a0.

max{1, |α|nv} ≤

n|f |v max{1, |α|n−1
v }, if v is archimedean;

|f |v max{1, |α|n−1
v }, if v is non-archimedean.

Then we have

max{1, |α|v} ≤

n|f |v max{1, |α|v}, if v is archimedean;

|f |v max{1, |α|v}, if v is non-archimedean.

So h(α) ≤ h(f) + log n.

Lemma 4.2.3 (Height of F controls heights of eigenobjects). Let A ∈ SL2(Q)

and v ∈ P1(Q) an eigendirection of A, then h(v) ≤ h(A) + 2 log 2.

Proof.

(A− λId)v =

[
a11 − λ a12

a21 a22 − λ

]
v = 0

We take vT = (a12, a11 − λ) and denote µ = a11−λ
a12

. Tacking into account that λ

is an eigenvalue of A have

f(µ) = a2
12µ

2 + a12(a22 − a11)µ− a12a21 = 0.
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By Lemma 4.2.2 we have h(µ) ≤ h(f) + log 2.

Consider f(x) = a12x
2 + (a22 − a11)x− a21. We have

|f |v ≤

max{1, ‖A‖v}, if v is non-archimedean;

max{1,
√

2‖A‖v}, if v is archimedean.

Therefore we have h(f) ≤ h(A) + 1
2

log 2 We can take vT = (1, µ) and thus

‖f‖v ≤

max{1, ‖µ‖v}, if v is non-archimedean;√
1 + |µ|2v, if v is archimedean.

Therefore we have h(v) ≤ h(µ) + 1
2

log 2. Collecting together all inequalities we

have h(v) ≤ h(A) + 2 log 2

Let us introduce some notation. Suppose A ∈ SL2(Q) is semisimple with

eigendirections v+
A and v−A in P1(Q) and suppose B ∈ SL2(Q). Then, assuming

A and B have coefficients in a number field K, we set for each place v ∈ VK :

δ+,−
v (B,A) = log

1

dv(Bv
+
A , v

−
A)

where dv is the standard distance on P1(Kv) and Kv is the completion of K

at v. Note that as dv ≤ 1 we have δ+,−
v (B,A) ≥ 0. If dv(Bv

+
A , v

−
A) = 0 we set

δ+,−
v (B,A) = 0. We define similarly δ+,+

v (B,A), δ−,+v (B,A), and δ−,−v (B,A) in the

obvious manner and we set

δv(B,A) = δ+,−
v (B,A) + δ+,+

v (B,A) + δ−,+v (B,A) + δ−,−v (B,A).

For a finite subset F of SL2(Q), we also define

δv(F ) =
∑

δv(Id, A) + δv(B,A)

where the sum runs over all pairs (A,B) of elements of F with A semisimple and

B in ”nice position”. with respect to A; namely such that Bv+
A 6∈ {v

+
A , v

−
A} and

Bv−A 6∈ {v
+
A , v

−
A}. If this set of pairs is empty we set δ to be 0. However, in our
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case, it will be non empty if not for F itself then for a bounded power of it (see

Lemma 4.2.5 below). We also define the corresponding global quantity:

δ+,−(B,A) =
1

[K : Q]

∑
v∈VK

nvδ
+,−
v (B,A),

δ(B,A) =
1

[K : Q]

∑
v∈VK

nvδv(B,A),

and

δ(F ) =
1

[K : Q]

∑
v∈VK

nvδv(F ).

Proposition 4.2.4 (Height of F controls adelic distance between eigenobjects).

With the above notation, for every B ∈ SL2(Q) in nice position with respect to a

semisimple A ∈ SL2(Q) (or for B = Id), we have

δ(B,A) ≤ 8h(A) + 4h(B) + 16log2

In particular for any finite subset F in SL2(Q)

δ(F ) ≤ 12|F |2(2h(F ) + 3log2).

Proof. From the product formula (4.11) above we have

δ+,−(B,A) =
1

[K : Q]

∑
v∈VK

nvδ
+,−
v (B,A) =

1

[K : Q]

∑
v∈VK

nv log
1

dv(Bv
+
A , v

−
A)

=
1

[K : Q]

∑
v∈VK

nv log dv(Bv
+
A , v

−
A) = h(Bv+

A) + h(v−A).

On the other hand, we easily compute

h(Bv+
A) =

1

[K : Q]

∑
v∈VK

nv log ‖Bv+
A‖v

≤ 1

[K : Q]

∑
v∈VK

nv(log ‖B‖v + log ‖v+
A‖v) ≤ h(B) + h(v+

A).
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From Lemma 4.2.3, we get

δ+,−(B,A) ≤ h(B) + 2h(v+
A) ≤ h(B) + 2h(A) + 4 log 2.

Note that analogous estimation holds for every δ±,±(B,A). Now taking into

account that

δ(B,A) = δ+,−(B,A) + δ+,+(B,A) + δ−,+(B,A) + δ−,−(B,A).

we obtain desired bounds. Also we have

δv(F ) =
∑

δv(Id, A) + δv(B,A)

≤
∑

4h(Id) + 8h(A) + 16 log 2 + 4h(B) + 8h(A) + 16 log 2

≤ 12|F |2(2h(F ) + 3log2).

Lemma 4.2.5. There is an integer n0 ≥ 2 such that if F is a finite subset of

SL2(C) containing 1 and generating a non virtually solvable group, then for any

semisimple A ∈ F there exists B ∈ F n0 which is in nice position with respect to

A.

Proof. This is another occurrence of the escape trick described in Lemma 2.5.6.

The subvarieties

XA = {B ∈ GL2, Bv
+
A ∈ {v

±
A} or Bv−A ∈ {v

±
A}}

are conjugate to each other in GL2. The group generated by F clearly can not be

contained in any XA(C) otherwise it would be virtually solvable. Thus by Lemma

2.5.6 there is N such that for each semisimple A in F , FN is not contained in

XA(C).

Note that since we assume that F generates a non virtually solvable group,

then according to Theorem 1.2, h(F ) ≥ e(F ) ≥ ε for some fixed ε. Therefore,
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there exists a constant Dqs > 0 such that

δ(F ) ≤ Dqs|F |2h(F ).

We have for all n ∈ N

δ(F n) ≤ Dqs|F n|2h(F n) ≤ Dqs|F |2nnh(F )

We may write with obvious notation

δ =
∑

p∈{∞}∪P

δp = δ∞ + δf

We fix n = n0 as in Lemma 4.2.5 and let D′qs = Dqsn0 so that δ(F n0) ≤
D′qs|F |2n0h(F ) and h(F ) ≤ Cqse(F ). For each p ∈ {∞}∪P we set ep = ep(F ), hp =

hp(F ) and δp = δp(F
n0).

Claim : There exists a constant C
′′
> 0 such that for any set F in SL2(Q)

containing 1 and generating a non virtually solvable subgroup, there exist p ∈
{∞} ∪ P and a place v|p such that, max{δv, hv} ≤ C

′′ |F |2n0ev and ev >
ep
2
.

Moreover if p =∞, we may assume that e∞ ≥ 1
2
e.

We now prove this claim. Suppose first that e∞ ≥ 1
2
e, then

δ∞ + h∞ ≤ Cqs(D
′
qs|F |2n0 + 1)e∞.

We also have

e∞ =
1

[K : Q]

∑
v∈V +

∞

nvev +
∑
v∈V −∞

nvev

 ≤ 1

[K : Q]

∑
v∈V +

∞

nvev +
e∞
2

where V +
∞ = {v ∈ V∞, ev ≥ e∞

2
}. Therefore

e∞ ≤
2

[K : Q]

∑
v∈V +

∞

nvev

49



4. A strong Tits alternative for SL2

Hence ∑
v∈V +

∞

nv(δv + hv) ≤ 4Cqs(D
′
qs|F |2n0 + 1)

∑
v∈V +

∞

nvev.

So for at least one v ∈ V +
∞ we have

max{δv, hv} ≤ δv + hv ≤ 4Cqs(D
′
qs|F |2n0 + 1)ev.

Now suppose e∞ = e
2
, then

ef =
e

2
> 0 and

∑
p∈P

δp + hp ≤ 2Cqs(D
′
qs|F |2n0 + 1)

∑
p∈P

ep

hence there must be one p ∈ P for which

ep > 0 and δp + hp ≤ 2Cqs(D
′
qs|F |2n0 + 1)ep.

As this is an average over the places v|p as before there must be some place v|p
for which

ev ≥
ep
2

and max{δv, hv} ≤ δv + hv ≤ 4Cqs(D
′
qs|F |2n0 + 1)ev.

So we have justified the claim.

End of the proof of Theorems 4.2.1. Let us recall what we have so far. We

started with a set F in SL2(Q) containing 1 and generating a non virtually

solvable subgroup. We found the constant n0 ≥ 2 as in Lemma 4.2.5. We

also found a constant C
′′

such that for some prime p and a place v|p one has

max{δv(F n0), hv(F )} ≤ C
′′|F |2n0ev(F ) and ev(F ) ≥ 1

4
ep(F ) > 0 (with e∞ ≥ e

2
in

case p =∞). Set D
′′
F := C

′′|F |2n0 .

Suppose first that v ∈ Vf . Recall that we had Λv(F
2) ≥ Ev(F )2 by Lemma

3.1.9. Let A0 ∈ F 2 be such that Λv(A0) = Λv(F
2). Then

Λv(A0) ≥ Ev(F )2 ≥ ||F ||
2

D
′′
F

v > 1

and hence if k1 ∈ N is the first even integer strictly larger that D
′′
F , we have

Λv(A) > ||F ||v if A = A
k1
2

0 ∈ F k1 . Moreover we have δv(F
n0) ≤ D

′′
F ev(F )
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therefore for every B ∈ F n0 which is in nice position with respect to A0 (and

there are such B’s according to Lemma 4.2.5) we have

δv(Id, A0) + δv(B,A0) ≤ D
′′

F ev(F ).

Fix one such B. We have

dv(Bv
ε
A, v

ε′

A) ≥ Ev(F )−D
′′
F ≥ ||F ||−D

′′
F

v

and also

dv(v
ε
A; vε

′

A) ≥ Ev(F )−D
′′
F ≥ ||F ||−D

′′
F

v

for all ε, ε′ ∈ {±}. Therefore we are in a position to apply the ping-pong lemma

4.1.1 to the pair A and B with k1 as above (≤ D
′′
F + 2), k2 = n0 and k3 = D

′′
F .

This ends the proof in the case when v ∈ Vf .
Suppose now that v ∈ V∞. We have Ev(F ) ≥ exp( e

2
) ≥ exp( ε

2
) where ε is the

constant from Theorem 3.3.1 Now Lemma 3.1.16 shows that there is a constant

n1 = n1(ε) ∈ N such that Ev(F
n1) ≥ 2

c2
where c is the constant in Lemma 3.1.9

Then by Lemma 3.1.9

Λv(F
2n1) ≥ c2Ev(F

n1)2 ≥ 2Ev(F
n1) ≥ 2Ev(F ) ≥ 2||F ||

1

D
′′
F .

Observe that after possibly changing n0 we may assume that it is larger than

2n1. Pick A0 ∈ F 2n1 such that Λv(A0) = Λv(F
2n1). Finally if k′1 is the smallest

integer strictly larger than D
′′
F , we set A = A

k′1
0 ∈ F k1 where k1 = 2n1k

′
1. We

have Λv(A) > 2||F ||v. Moreover δv(F
n0) ≤ D

′′
F ev(F ) therefore for every B ∈ F n0

which is in nice position with respect to A0 (and there are such B’s according to

Lemma 4.2.5) we have

δv(Id, A0) + δv(B,A0) ≤ D
′′

F ev(F ).

Fix one such B. We have

dv(Bv
ε
A; vε

′

A) ≥ Ev(F )−D
′′
F ≥ ||F ||−D

′′
F

v
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and also

dv(v
ε
A, v

ε′

A) ≥ Ev(F )−D
′′
F ≥ ||F ||−D

′′
F

v

for all ε, ε′ ∈ {±}. Therefore we are in a position to apply the ping-pong lemma

4.1.1 to the pair A and B with k1 as above (≤ 2n1(D
′′
F +1)), k2 = n0 and k3 = D

′′
F .

There are several ways to see that Theorem 4.2.1 for SL2(Q) imply the same

theorem for SL2(C). One can use the remark made in the introduction that

both results are equivalent to a countable union of assertions expressible in first

order logic. By elimination of quantifiers for algebraically closed fields, we know

that two algebraically closed fields of the same characteristic satisfy the same

statements of first order logic (see [Fried and Jarden, 2005, chp. 9]). Hence the

validity of Theorems 4.2.1 over Q is equivalent to its validity over C.
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