
Applications of Complex
Multiplication of Elliptic Curves

MASTER THESIS

Candidate:
Massimo CHENAL

Supervisor:
Prof. Jean-Marc

COUVEIGNES

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÉ BORDEAUX 1
Facoltà di Scienze MM. FF. NN. U.F.R. Mathématiques et Informatique

Academic year 2011-2012



Introduction

Elliptic curves represent perhaps one of the most interesting points of
contact between mathematical theory and real-world applications. Altough
its fundamentals lie in the Algebraic Number Theory and Algebraic Ge-
ometry, elliptic curves theory finds many applications in Cryptography
and communication security. This connection was first suggested indepen-
dently by N. Koblitz and V.S. Miller in the late ’80s, and many efforts have
been made to study it thoroughly ever since.

The goal of this Master Thesis is to study the complex multiplication
of elliptic curves and to consider some applications. We do this by first
studying basic Hilbert class field theory; in parallel, we describe elliptic
curves over a generic field k, and then we specialize to the cases k = C

and k = Fp. We next study the reduction of elliptic curves, we describe the
so called Complex Multiplication method and finally we explain Schoof’s
algorithm for computing point on elliptic curves over finite fields. As an
application, we see how to compute square roots modulo a prime p. Ex-
plicit algorithms and full-detailed examples are also given.

Thesis Plan

Complex Multiplication method (or CM-method, for short) exploit the
so called Hilbert class polynomial, and in Chapter 1 we introduce all the
tools we need to define it. Therefore we will describe modular forms and
the j-function, and we provide an efficient method to compute the latter.
After briefly recalling the basic facts we need from Algebraic Number The-
ory, we study quadratic forms with a particular emphasis on their relation-
ship with orders in quadratic fields: it is this connection that provide us
the algorithm we use to compute Hilbert class polynomials, as shown in
Algorithm 3. The main result of Chapter 1, as well as one of the basis of the
CM-method, is Theorem 1.5.12 which explore the reduction of the Hilbert
class polynomial modulo a prime p and the splitting of p.
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In Chapter 2 we introduce the protagonist of our thesis, i.e. elliptic
curves. This is done in rather classical way: we define it as a non singular
projective curve of genus 1 with a distinguished point, and we show that
it can always been written in Weierstrass equation. After the necessary
fundamental properties and definitions, we discuss the twists of elliptic
curves and we exploit in more depth the ring of endomorphisms. Particular
attention will be paid to classification of endomorphism rings.

After studying elliptic curves over a generic field k, it is time to special-
ize to the case k = C which will allow us to introduce the idea of complex
multiplication; this is material of Chapter 3. We start by taking into account
the field of elliptic functions, and we see that this is generated by the par-
ticular case of the Weierstrass function ℘ and its derivative ℘′. We study
lattices and their j-invariant, and we see how to classify elliptic curves over
the complex numbers. The main results are explained in the last two sec-
tions where we explore the structure of the endomorphism ring and the
notion of complex multiplication.

The counterpart of the CM-method is based upon the theory of elliptic
curves over finite fields: this is where Chapter 4 comes in. The most impor-
tant arithmetic quantity associated to an elliptic curve defined over a finite
field Fq is its number of rational points. After introducing the Frobenius
map, we prove a theorem of Hasse that says that if E/Fq is an elliptic curve,
then E(Fq) has approximately q points, with an error of no more than 2

√
q.

We then study the endomorphism ring of an elliptic curve defined over a
finite field.

In Chapter 5 we use our previous results and explore the interaction
between elliptic curves over finite fields and elliptic curves over C. In par-
ticular, given an elliptic curve E over a number field K, we consider the
operation of reducing E modulo a prime p of OK lying above a given ra-
tional prime p. A theorem of Deuring says that any elliptic curve over Fp,
and with a non-trivial endomorphism, can be considered as the reduction
of some elliptic curve over a number field with the same endomorphism
ring. As an application of these results, we consider the problem of finding
an elliptic curve E over a finite field, such that ring of endomorphisms is
given: this is the CM-method, which exploits all the results presented so
far. We see also a method of building an elliptic curve over a finite field
with a given number of rational points. For the sake of clarity, we provide
full-detailed examples and explicit algorithms.

Time for applications of our results has come, and a particular impor-
tant one is to find an efficient way to compute the number of points of an
elliptic curve over a finite field: for instance, in elliptic curve cryptogra-
phy it is important to know the number of points to judge the difficulty of
solving the discrete logarithm problem in the group of points on an elliptic
curve. Therefore, in Chapter 6 we present Schoof’s deterministic algorithm
that computes the number of points in polynomial time.
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We end our thesis by showing how to build a deterministic algorithm
that compute square roots modulo a prime p: this is an important problem
in computational number theory. After considering the cases in which the
problem is easily solved (p ≡ 3, 5, 7 (mod 8)), we study the hard case in
which p ≡ 1 (mod 8). This is a two-part task that use the CM-method as
well as Schoof’s algorithm.

The following diagram displays graphically the interaction between the
topics presented in this thesis.

Hilbert Class
Field Theory

&&

Elliptic Curves
over generic Field

vv ((
Elliptic curves

over C

��

Elliptic Curves
over Fp

nn
��Reduction mod p

and CM-method

((

Schoof’s Algorithm

vv
Computing Square

Roots mod p

Figure 1: Master Thesis Plan
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CHAPTER 1

Fundamentals

Abstract

We start by recalling and discussing the tools that we will need later on:
topics will cover modular forms, ramification theory, orders and quadratic
forms. This will enable us to introduce the Hilbert class field and the
Hilbert class polynomial, which will be useful in later chapters. Since this
is just some preparing material for our main topics of elliptic curves and
complex multiplication, proofs will be in general omitted and references
will be given.

1.1 Modular Forms and j-function

We start by considering the special linear group SL2(Z), that is the
group of all 2× 2 matrices with determinant 1 and integer coefficients

SL2(Z) :=
{(

a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}

An element
(

a b
c d

)
of SL2(Z) acts on a complex number z by

(
a b
c d

)
· z =

az + b
cz + d

Remark 1.1.1. The quotient Γ := SL2(Z)/{±I} is called the modular group
(observe that {±I} is the center of SL2(Z)). This is also referred to as
SL2(Z), the special linear group.

1



1.1 Modular Forms and j-function 2

LetH := {α ∈ C | Im(α) > 0} be the upper half complex plane.

Definition 1.1.2. Let k ∈ Z. A modular form of weight 2k is a function f

meromorphic everywhere on H∪ {∞}, and such that ∀z ∈ H, ∀
(

a b
c d

)
∈

SL2(Z), we have

f (z) = (cz + d)−2k f
(

az + b
cz + d

)
If the form is holomorphic everywhere (which implies k > 0 for non-
constant forms), we say that the form is regular.

A modular form of weight 0 is called a modular function.

In Chapter 3 we will introduce the notion of a lattice L and we will
define its j-invariant j(L).

1.1.1 The j-function

For our purposes, following [1], we anticipate some details here. Let
τ ∈ H and consider the lattice L := Z + Zτ := [1, τ]. Put

G2k(L) = ∑
(m,n) 6=(0,0)

1
(mτ + n)2k

for k > 1; in this case G2k(L) is a regular modular form of weight 2k. We
put

g2(L) = 60G4 g2(L) = 140G6

∆ = g3
2 − 27g2

3 j = 123 g3
2

∆

g2, g3 and ∆ are regular modular forms of weight 4,6 and 12 respectively.
The modular invariant is defined to be j.

Remark 1.1.3. For τ ∈ H, we put j(τ) := j(L).

The main properties of the j-function are given by the following result
[1, Proposition 3.1].

Proposition 1.1.4. The j-function is a modular function, holomorphic in H, and
has a simple pole at infinity.

It follows that j(τ) is invariant under SL2(Z). Therefore we see that

j(τ + 1) = j
((

1 1
0 1

)
τ

)
= j(τ)

This implies that j(τ) is a holomorphic function in q = q(τ) = e2πiτ, de-
fined in the region 0 < |q| < 1. Consequently, j(τ) has a Laurent expansion

j(τ) =
+∞

∑
−∞

cnqn
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which is called the q-expansion of j(τ). The following theorem will be im-
portant in following chapters.

Theorem 1.1.5. The q-expansion of j(τ) is given by

j(τ) =
1
q
+ 744 + 196884q + · · · = 1

q
+

∞

∑
n=0

cnqn (1.1)

where τ ∈ H and cn ∈ Z ∀n >= 0

Proof. See [4, §4.1].

Remark 1.1.6. In the future it will be of particular interest being able to
compute efficiently the values of j(τ). For this purpose, we end this sec-
tion on modular forms by describing a method of computing the complex
values j(τ).

1.1.2 A method to compute j(τ)

We will follow ideas from [3, §12.B]. There are basically two ways to
compute j(τ), either by using the expansion 1.1, or by computing j(τ) in
terms of the Dedekind η-function. This is a modular form defined by

η(τ) = q1/24
∞

∏
m=1

(1− qm)

where q = e2πτ. Since 0 < |q| < 1, this product converges for any τ ∈ H.
By Euler’s identity we have

∞

∏
m=1

(1− qm) =
+∞

∑
m=−∞

qm(3m+1)/2

this product can be expanded as follows

η(τ) = q1/24

(
1 +

∞

∑
m=1

(−1)m(qm(3m−1)/2 + qm(3m+1)/2)

)
Now, the η-function satisfies the functional equations

η(τ + 1) = ζ24η(τ), η(−τ−1) =
√
−iτη(τ)

where ζ24 is the 24-th root of unity in C. If we let ∆(τ) be the discriminant
of L, we have

∆(τ) = (2π)12η(τ)24

Therefore, we can compute j(τ) as

j(τ) =
(256 f (τ) + 1)3

f (τ)
, where f (τ) :=

∆(2τ)

∆(τ)
(1.2)
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1.2 Algebraic Number Theory

1.2.1 Basic tools

We quickly recall some basic notions from algebraic number theory.
Further details and proofs can be found, for instance, in [3, §5].

We define a number field K to be a subfield of the complex numbers C for
which [K : Q] < ∞, where [K : Q] denotes the degree of K over Q. Given
such a field K, we let OK denote the algebraic integers of K, i.e., the set of
all α ∈ K which are roots of a monic integer polynomial. It is known that
OK is a subring of C whose field of fractions is K, and it is a free Z-module
of rank [K : Q]. We will often call OK the ring of integers or the number ring
of K.

If a is a nonzero ideal ofOK, then the quotient ringOK/a is finite. Given
a nonzero ideal a of the number ring OK, its norm is defined to be N(a) =
|OK/a|, which is of course finite.

In general, the rings OK are not UFDs (unique factorization domains)
but they are Dedekind domains:

Theorem 1.2.1. Let OK be the ring of integers in a number field K. Then OK is a
Dedekind domain, which means that

(i) OK is integrally closed in K, i.e. if α ∈ K satisfies a monic polynomial with
coefficients in OK, then α ∈ OK.

(ii) OK is Noetherian, i.e., given any chain of ideals a1 ⊂ a2 ⊂ · · · , there is an
integer n such that an = an+1 = · · ·

(iii) Every nonzero prime ideal of OK is maximal.

The most important property of a Dedekind domain is that it has unique
factorization at the level of ideals. More precisely, any nonzero ideal a in
OK can be written as a product

a = p1 · · · pr

of prime ideals, and the decomposition is unique up to order. Furthermore,
the pi’s are exactly the prime ideals of OK containing a.

When p is a prime of K, the quotient ring OK/p is a finite field by Theo-
rem 1.2.1. This field is called the residue field of p.

Besides ideals of OK, we will also use fractional ideals, which are the
nonzero finitely generatedOK-submodules of K. Such an ideal can be writ-
ten in the form αa, where α ∈ K and a is an ideal ofOK. The basic properties
of fractional ideals are given by the following
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Proposition 1.2.2. Let a be a fractional OK-ideal.

(i) a is invertible, i.e., there is a fractional OK-ideal b such that ab = OK. The
ideal b will be denoted a−1.

(ii) a can be written uniquely as a product a = ∏r
i=1 p

ri
i , where ri ∈ Z and the

pi’s are distinct prime ideals of OK.

We will let IK denote the set of all fractional ideals of K. IK is closed
under multiplication of ideals, and then part (i) of Proposition 1.2.2 shows
that IK is a group. A particular important subgroup of IK is the subgroup
PK of principal fractional ideals, i.e., those of the form αOK for some α ∈ K∗.

Definition 1.2.3. We define the ideal class group as the quotient C(OK) :=
IK/PK. Its cardinality h = |C(OK)| is called the class number.

Remark 1.2.4. An important result is that h < ∞, i.e. C(OK) is a finite
group.

1.2.2 Ramification theory

We next consider ramification, which is concerned with the behaviour of
primes in finite extensions. Suppose that K is a number field, and let L be a
finite extension of K. If p is a prime ideal of OK, then pOL is an ideal of OL,
and hence has a prime factorization

pOL = Pe1
1 · · ·P

eg
g

where the Pi’s are the distinct primes of L containing p. The integer ei,
also written ePi |p, is called the ramification index of p in Pi. Each prime Pi
containing p also gives a residue field extension OK/p ⊂ OL/Pi, and its
degree, written fi or fPi |p, is the inertial degree of p in Pi. The basic relation
between the ei’s and fi’s is given by

g

∑
i=1

ei fi = [L : K] (1.3)

In the above situation, we say that a prime p of K ramifies in L if any of the
ramification indices ei are greater than 1. It can be proved that only a finite
number of primes of K ramify in L.

If K ⊂ L is a Galois extension, the above description can be simplified
as follows:

Theorem 1.2.5. Let K ⊂ L be a Galois extension, and let p be prime in K.

(i) The Galois group Gal(L/K) acts transitively on the primes of L containing
p, i.e. if P and P′ are primes of L containing p, then ∃σ ∈ Gal(L/K) such
that σ(P) = P′.
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(ii) The primes P1, . . . ,Pg of L containing p all have the same ramification
index e and the same inertial degree f , and the relation 1.3 becomes

e f g = [L : K]

Definition 1.2.6. Given a Galois extension K ⊂ L, an ideal p of K ramifies
if e > 1, and is unramified if e = 1. If p satisfies the stronger condition
e = f = 1, we say that p splits completely in L. If p = P ∩ OK, we say that
the prime P lies above p.

A prime p that splits completely is of course unramified, and in addition
pOL is the product of [L : K] distinct primes, the maximum number allowed
by Theorem 1.2.5. The extension L is determined uniquely by the primes of
K that split completely in L.

The following proposition will help us decide when a prime is unrami-
fied or split completely in a Galois extension:

Proposition 1.2.7. Let K ⊂ L be a Galois extension, where L = K(α) for some
α ∈ OK. Let f (x) be the monic minimal polynomial of α over K, so that f (x) ∈
OK. If p is prime in OK and f (x) is separable modulo p, then

(i) p is unramfied in L

(ii) If f (x) ≡ f1(x) · · · fg(x) mod p, where the fi(x) are distinct and irreducible
modulo p, then Pi = pOL + fi(α)OL is a prime ideal of OL, Pi 6= Pj for
i 6= j, and

pOL = P1 · · ·Pg

(splits completely). Furthermore, all of the fi(x) have the same degree, which
is the inertial degree f .

(iii) p splits completely in L if and only if f (x) ≡ 0 mod p has a solution in OK.

1.2.3 Quadratic Fields

In our discussion, we will mostly consider field extensions of degree 2,
called quadratic extensions. Such fields can be written uniquely in the form
K = Q(

√
N), where N 6= 0, 1 is a squarefree integer. The basic invariant of

K is its discriminant dK, which is defined to be

dK =

{
N if N ≡ 1 mod 4
4N otherwise

Note that dK ≡ 0, 1 mod 4 and K = Q(
√

dK), so that a quadratic field is
determined by its discriminant.

We have

OK = Z

[
dK +

√
dK

2

]
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We now describe units and primes (ideals) of K: let’s first consider units.
Quadratic fields can be either real (dK > 0) or imaginary (dK < 0), and

the units O∗K behave quite differently in the two cases.

dK < 0 In the imaginary case, there are only finitely many units. The group
of units O∗K for K = Q(

√
−3) and K = Q(i) are given, respectively,

by {±1,±ω,±ω2} and {±1,±i} (where ω = e2π/3). For all other
imaginary quadratic fields it turns out that O∗K = {±1}.

dK > 0 Real quadratic fields always have infinitely many units, and deter-
mining them is related to Pell’s equation and continued fractions. We
shall not discuss this subject any further.

Remark 1.2.8. For future references, we collect these results in a compact
form. Let D < 0 be a fundamental discriminant (Definition 1.4.1) and let
OK be the ring of integers K = Q(

√
D) (OK is the unique quadratic order

of discriminant D). Then the group of units O∗K has cardinality ρ(D) given
by

ρ(D) =


2 if D < −4
4 if D = −4
6 if D = −3

and the group of units in OK is equal to the ρ(D)-th roots of unity in K.

Before describing the primes of OK, we introduce the following nota-
tion: if D ≡ 0, 1 mod 4, then the Kronecker symbol is defined by

(
D
2

)
=


0 if D ≡ 0 mod 4
1 if D ≡ 1 mod 8
−1 if D ≡ 5 mod 8

(if p 6= 2, the notation (d/p) is the usual Legendre symbol). We will most
often apply this when D = dK is the discriminant of a quadratic field K.
The following proposition tells us about the primes of quadratic fields:

Proposition 1.2.9. Let K be a quadratic field of discriminant dK, and let the non-
trivial automorphism of K be denoted α 7→ α′. Let p be prime in Z.

(i) If (dK/p) = 0 (i.e. p|dK), then pOK ramifies as pOK = p2 for some prime
ideal p of OK

(ii) If (dK/p) = 1 (i.e. the congruence x2 ≡ dK mod p has a solution), then
pOK splits as the product of two distinct ideals in OK, i.e. pOK = pp′,
where p 6= p′ are primes in OK.

(iii) If (dK/p) = −1, then pOK is inert, i.e. it is still a prime in OK.
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Furthermore the primes in (i)-(iii) above give all nonzero primes of OK.

Remark 1.2.10. An important fact, as we shall see better in Theorem 1.5.12,
is that the equation p = N(π) has a solution in OK if and only if (p) splits
as the product of two principal ideals in K.

From this proposition, we get the following immediate corollary which
tells us how primes of Z behave in a quadratic extension:

Corollary 1.2.11. Let K be a quadratic field of discriminant dK, and let p be an
rational prime. Then:

(i) p ramifies in K if and only if p divides dK.

(ii) p splits completely in K if and only if (dK/p) = 1.

We now consider in detail the way in which primes p ∈ Z split in
quadratic fields. This will be useful when computing explicitly reduction
of elliptic curves in Chapter 5, and in particular in Example 5.6.3. Let
K = Q(

√
d), d square-free, and consider the ring of integers OK. Then

we have the following theorem

Theorem 1.2.12. With notation as above, we have

• if p | d, then pOK = (p,
√

d)

• if d is odd, then

2OK =


(2, 1 +

√
d)2 if d ≡ 3 (mod 4)(

2, 1+
√

d
2

) (
2, 1−

√
d

2

)
if d ≡ 1 (mod 8)

prime if d ≡ 5 (mod 8)

• if p is odd and p - d then

pOK =

{
(p, n +

√
d)(p, n−

√
d) if d ≡ n2 (mod p)

prime if d is not a square mod p

1.2.4 Orders in Imaginary Quadratic Fields

What we have said for OK can be extended in more generality to or-
ders in a quadratic field K. But, unlike OK, an order O is usually not a
Dedekind domain. A fact that will be important later is that, in the case of
imaginary quadratic fields, there is a nice relation between ideals in orders
and quadratic forms (to be defined later in Section 1.3). In particular, an or-
der O has an ideal class group C(O), and for any discriminant D < 0, the
form class group C(D) (Definition 1.4.3) is naturally isomorphic to C(O)
for a suitable order O.
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So an orderO in a quadratic field K is defined to be a subsetO ⊂ K such
that it is a subring of K containing 1, it is a finitely generated Z-module and
contains a Q-basis of K.
O is a free Z-module of rank 2. The ringOK is always an order in K, and

for any orderO of K, we haveO ⊂ OK, so thatOK is the maximal order of K.
If we write OK = [1, wK], where wK = dK+

√
dK

2 and dK is the discriminant of
K, then setting f = [OK : O] we have O = Z + fOK = [1, wK]. The index
f = [OK : O] is called the conductor of the order.

Remark 1.2.13. Let α 7→ α′ be the non-trivial automorphism of K, and sup-
pose that O = [α, β]. Then the discriminant of O is the number

D =

(
det

(
α β
α′ β′

))2

The discriminant is independent of the integral basis used, and if we com-
pute D using the basis O = [1, f wK] we obtain the formula

D = f 2dK

Thus the discriminant satisfies D ≡ 0, 1 mod 4.

Remark 1.2.14. We can define in a similar way the norm of an ideal, the
proper and fractional ideals of an order, and the class group C(O) of the
order O. For further details, see [3].

Remark 1.2.15. Sometimes it is useful to compute the class number h(dK)
for a given discriminant dK. This is not always easy to compute, and a
number of tricks have been developed to estimate this. It is interesting to
study how h(dK) grows as |dK| gets large. The best result is due to Siegel,
who proved in 1935 that

lim
dK→−∞

logh(dK)

log|dK|
=

1
2

(1.4)

This implies that, for all ε > 0, there exists a constant C(ε) such that

h(dK) > C(ε)|dK|(1/2)−ε

for all field discriminants dK < 0.

We conclude this section with the following result.

Theorem 1.2.16. (i) If K is an imaginary quadratic field of discriminant dK,
then

h(dK) = 1⇔ dK = −3,−4,−7,−8,−11,−19,−43,−67,−163

(ii) If D ≡ 0, 1 mod 4, then

h(D) = 1⇔ D = −3,−4,−7,−8,−11,−12,−16,
−19,−27,−28,−43,−67,−163
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1.3 Quadratic Forms

Definition 1.3.1. A binary quadratic form f is a function

f (x, y) = ax2 + bxy + cy2

where a, b, c ∈ Z. We will denote it more briefly as [a, b, c]. We say that f is
primitive if gcd(a, b, c) = 1; if moreover f satisfies the condition

|b| ≤ a ≤ c and b ≥ 0 whenever |b| = a or a = c (1.5)

we say that f is reduced.
The discriminant of [a, b, c] is given by D := b2 − 4ac.

To each quadratic form F = [a, b, c] we associate a matrix

M(F) :=
(

a b
2

b
2 c

)
This allows us to define an equivalence relation: two forms F and F′ of
the same discriminant are equivalent, and we write F ∼ F′ if there exists
A ∈ SL2(Z) such that

M(F′) = A−1M(F)A

Remark 1.3.2. We will now define the reduced quadratic forms in an alter-
native way. This will enable us to compute the class number in quadratic
orders by means of reduced quadratic forms.

Let f (x, y) = ax2 + bxy + cy2 be a quadratic form and denote by τ the
root of f (x, 1) in the upper half planeH = {τ ∈ C | Im(τ) > 0}, i.e.

τ =
−b +

√
D

2a

Then the quadratic form [a, b, c] is reduced if τ ∈ D, whereD is the domain

D : = D1 ∪D2 with

D1 = {τ ∈ H | Re(τ) ∈ [−1
2

,
1
2
[, |τ| > 1}

D2 = {τ ∈ H | Re(τ) ∈ [−1
2

, 0], |τ| = 1}

Remark 1.3.3. As τ ∈ H, we see that j(τ) is well-defined. When the context
is clear, we write j([a, b, c]) to mean j

(
−b+

√
D

2a

)
.

Definition 1.3.4. For any quadratic number τ ∈ H we define the discrimi-
nant of τ as the discriminant of the unique primitive positive definite quadratic
form [a, b, c] such that τ is a root of ax2 + bx + c = 0.
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The equivalent definition of the reduced quadratic form enable us to
consider the following proposition:

Proposition 1.3.5. In every class of positive definite quadratic forms of discrimi-
nant D < 0 there exists exactly one reduced form.

For the proof, see [2, §5.3]. We also have the following fact:

Fact 1.3.6. Let f = [a, b, c] be a positive definite binary quadratic form of
discriminant D = b2 − 4ac < 0.

(i) If f is reduced, we have the inequality

a ≤
√
|D|
3

(ii) Conversely, if

a <

√
|D|
4

and − a < b ≤ a

then f is reduced.

Proof. (i) If f is reduced, then

|D| = 4ac− b2 ≥ 4a2 − a2, which implies a ≤
√
|D|
3

(ii) We have

c =
b2 + |D|

4a
≥ |D|

4a
>

a2

a
= a

therefore f is reduced.

In the following section we will discuss the relationship between orders
and quadratic forms. We set up the situation by considering the set C(D) of
reduced quadratic forms of discriminant D, and let h(D) = |C(D)|. Thanks
to condition 1.5, we have that h(D) < ∞. The set C(D) can be given the
structure of an abelian group, under multiplication given by compostition
of equivalence classes. The inverse of the class of [a, b, c] in C(D) is the class
of [a,−b, c].

Definition 1.3.7. A form is ambiguous if it has order 2.

An ambiguous binary quadratic form is one of [a, 0, c], [a, a, c], [a, b, a].
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Remark 1.3.8. We will see that h(D) = h(OK) where K = Q(
√

D). We
deduce that when D < 0 the class number h(D) of Q(

√
D) can be obtained

simply by counting reduced forms of discriminant D (since in that case all
forms of discriminant D are primitive), using the inequalities |b| ≤ a ≤√
|D|/3. This leads to the following algorithm, that outputs the class num-

ber h(D) of quadratic forms of fundamental discriminant D < 0. It will be
useful when discussing an algorithm for building Hilbert class polynomi-
als (see Algorithm 3).

Algorithm 1 Class number h(D) for quadratic forms of fund. disc. D < 0

h := 1;
b := D (mod 2);
B := b

√
|D|/3c;

repeat
q := (b2 − D)/4;
a := b;
if a ≤ 1 then

a := 2;
end if
repeat

if a | q then
if a = b or a2 = b or b = 0 then

h := h + 1;
else

h := h + 2;
end if

end if
a := a + 1;

until a2 > q
b := b + 2;

until b > B
return h
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The following algorithm determines all reduced forms for a fundamen-
tal discriminant −D.

Algorithm 2 Computing all reduced forms of fund. disc. −D

r :=
⌊√

D
3

⌋
;

b := D (mod 2);
while b ≤ r do

m := b2+D
4 ;

for a | m and a ≤ b
√

mc do
c := m

a ;
if b ≤ a then

if b = a or c = a then
store [a, b, c];

else
store [a,±b, c];

end if
end if

end for
b := b + 2;

end while
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1.4 Orders and Quadratic Forms

References: [3, §7.B]

Definition 1.4.1. An integer D is called a fundamental discriminant if one of
the following statements holds

• D ≡ 1 (mod 4) and D is square-free, or

• D = 4m, where m ≡ 2 (mod 4) or m ≡ 3 (mod 4) and m is square-
free.

Remark 1.4.2. Unless otherwise noted, in this section we write D to mean
a negative fundamental discriminant.

Definition 1.4.3. Let C(D) be the set of the classes of primitive quadratic
forms of discriminant D. We call such a set the form class group.

We relate now the ideal class group C(O) of Definition 1.2.3 to the form
class group C(D) as follows.

Theorem 1.4.4. Let O be the order of discriminant D in an imaginary quadratic
field K.

(i) If f (x, y) = ax2 + bxy + cy2 is a primitive positive definite quadratic form
of discriminant D, then

[a, (−b +
√

D)/2] := {ma + n(−b +
√

dK)/2 : m, n ∈ Z}

is a proper ideal of O.

(ii) The map sending f (x, y) to [a, (−b +
√

D)/2] induces an isomorphism
C(D) ' C(O) between the form class group C(D) and the ideal class group
C(O).
Hence the order of C(O) is the class number h(D).

(iii) A positive integer m is represented by a form f (x, y) if and only if m is the
norm N(a) of some ideal a in the corresponding ideal class in C(O) (recall
that N(a = |O/a|)).

Remark 1.4.5. Because of the isomorphism C(D) ' C(O), we will some-
times write the class number as h(O) instead of h(D).
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1.5 The Hilbert Class Field

References: [1] The Hilbert class field of a number field K is the maximal
unramified Abelian extensions of K. Let’s see what this means.

We start by saying that an extension K ⊂ L is Abelian if it is Galois and
Gal(L/K) is an Abelian group. Now, prime ideals of OK are often called
finite primes to distinguish them from the infinite primes, which are deter-
mined by the embeddings of K into C. A real infinite prime is an embedding
σ : K → R, while a complex infinite prime is a pair of complex conjugate em-
beddings σ, σ : K → C, with σ 6= σ. Given an extension K ⊂ L, an infinite
prime σ of K ramifies in L provided that σ is real but it has an extension to
L which is complex. An extension K ⊂ L is unramified if it is unramified at
all primes, finite or infinite.

Remark 1.5.1. This is a very strong restriction, and yet it may happen that
a given field has unramified extensions of arbitrarily high degree. This is
the case, for instance, of K = Q(

√
−2 · 3 · 5 · 7 · 11 · 13).

The following Theorem lead the way to the definition of Hilbert class
fields.

Theorem 1.5.2. Given a number field K, there is a finite Galois extension L of K
such that:

(i) L is an unramified Abelian extension of K.

(ii) Any unramified Abelian extension of K lies in L.

Definition 1.5.3. The field L of Theorem 1.5.2 is called the Hilbert class field
of K. It is the maximal unramified Abelian extension of K and is clearly
unique.

For the Hilbert class field of K we use notation KH. The following result
[1, Theorem 3.1] relates the Hilbert class field to values of the j-function at
points in the upper half complex planeH. It serves also as introduction for
the Hilbert class polynomial.

Theorem 1.5.4. Let K = Q(
√

D), where D is a negative fundamental discrimi-
nant. Then

(i) The Hilbert class field of K can be obtained by adjoining as KH = K(j[a, b, c]),
where [a, b, c] ∈ C(D) is any one of the reduced quadratic forms of discrim-
inant D.

(ii) The minimal polynomial of the j([a, b, c])’s, denoted by HD(X), has integer
coefficients:

HD(X) = ∏
[a,b,c]∈C(D)

(X− j([a, b, c])) ∈ Z[X]
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(iii) There is an isomorphism

C(D)
∼−→ Gal(KH/K)

f 7→ σf

The action of σf on j is given by

σf (j( f )) = j( f−1 · f )

Definition 1.5.5. The minimal polynomial polynomial HD(X) is called the
Hilbert class polynomial, and we refer to the equation HD(X) = 0 as the class
equation.

Remark 1.5.6. We observe explicitly that the Hilbert class field KH is pre-
cisely the splitting field of the Hilbert class polynomial HD(X).

Thanks to the Remark 1.3.3, the class polynomial can be expressed as

HD(X) = ∏
[a,b,c]∈C(D)

(
X− j

(
−b +

√
D

2a

))
∈ Z[X]

Remark 1.5.7. It follows that, if τ ∈ H is a quadratic imaginary number
with discriminant D in KH as in Definition 1.3.4, then j(τ) is an algebraic
integer of degree exactly equal to h(D), where h(D) is the class number of
the imaginary quadratic order of discriminant D. More precisely, the min-
imal polynomial of j(τ) over Z is the equation ∏(X − j(α)) = 0, where α
runs over the quadratic numbers associated to the reduced forms of dis-
criminant D.

Note that j(τ) is indeed a root of this polynomial, since any quadratic
form of discriminant D is equivalent to a reduced form, and since the j-
function is SL2(Z)-invariant.

Remark 1.5.8. We will consider again in more detail Theorem 1.5.4 in Sec-
tion 3.10, where we explore the connection with elliptic curves.

Remark 1.5.9. Sometimes it is useful to build explicitly the Hilbert class
polynomial by approximating to the nearest integer the coefficients of the
polynomial. The following result (discovered by Gross and Zagier in their
paper On singular moduli, 1985) helps us to check if the polynomial we have
found is the correct one.

Proposition 1.5.10. The norm of j in Q(j), i.e. the constant term HD(0), is a
cube of an integer in Z.
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Remark 1.5.11. The class polynomial can in general be defined for any in-
teger D that occurs as the discriminant of some orderO in K. Then the class
polynomial of O is

HO = ∏(X− j(a))

where the product is over representatives a of each ideal class of O. Since
O is uniquely determined by its discriminant D, we will often write HD(X)
instead of HO(X).

We end this chapter with the following result [1, §2,§3] that describes
the behaviour of certain rational primes in the Hilbert class field. It is of
fundamental importance.

Theorem 1.5.12. Let D be a negative fundamental discriminant, consider K =
Q(
√

D) and let KH be the Hilbert class field of K. Then, if p is a rational prime,
p - D, the following statements are equivalent:

(i) p is a norm in K (i.e. the equation p = N(π) has a solution in OK)

(ii) (p) splits completely in KH.

(iii) p splits as the product of two distinct elements in OK.

(iv) HD(X) modulo p has only simple roots and they are all in Z/pZ.

(v) 4p = t2 + s2|D| has a solution in x, y ∈ Z.

1.5.1 The Artin Map

Now we are going to define the Artin symbol to link L to the ideal struc-
ture of OK.

Proposition 1.5.13. Let K ⊂ L be a Galois extension, and let p be a prime of OK
which is unramified in L. If P is a prime ofOL containing p, then there is a unique
element σ ∈ Gal(L/K) such that for all α ∈ OL,

σ(α) ≡ αN(p) (mod P)

where N(p) = |OK/p| is the norm of p.

Definition 1.5.14. The unique element σ of Proposition 1.5.13 is called the
Artin symbol and it is denoted ((L/K)/P) since it depends on the prime P
of L.

Remark 1.5.15. The important property of the Artin symbol is that, for any
α ∈ OL, we have (

L/K
P

)
(α) ≡ αN(p) (mod P)

where p = P∩OK.
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Corollary 1.5.16. Let K ⊂ L be a Galois extension, and let p be an unramified
prime of K. Given a prime P of L containing p, we have:

(i) If σ ∈ Gal(L/K), then(
L/K
σ(P)

)
= σ

(
L/K
P

)
σ−1

(ii) The order of ((L/K)/P) is the degree of inertia f = fP|p.

(iii) p splits completely in L if and only if ((L/K)/P) = 1.

Remark 1.5.17. When K ⊂ L is an abelian extension, the Artin symbol
((L/K)/P) depends only on the underlying prime p = P ∩ OK. In fact,
let P′ be another prime containing p. We have P′ = σ(P) for some σ ∈
Gal(L/K). Then Corollary 1.5.16 implies that(

L/K
P′

)
=

(
L/K
σ(P)

)
= σ

(
L/K
P

)
σ−1 =

(
L/K
P

)
since Gal(L/K) is abelian. It follows that whenever K ⊂ L is abelian, the
Artin symbol can be written as ((L/K)/p).

When K ⊂ L is an unramified Abelian extension, things are especially
nice because ((L/K)/p) is defined for all primes p of OK. Let IK be the set
of all fractional ideals of OK. We saw that any fractional ideal a ∈ IK has a
prime factorization

a =
r

∏
i=1

pri
i , ri ∈ Z

We define the Artin symbol ((L/K)/a) to be the product(
L/K
a

)
=

r

∏
i=1

(
L/K
pi

)ri

The Artin symbol thus defines a homomorphism, called the Artin map,(
L/K
·

)
: IK → Gal(L/K)

Notice that when K ⊂ L is ramified, the Artin map is not defined on all of
IK.
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The Artin reciprocity theorem for the Hilbert class field relates the Hilbert
class field to the ideal class group C(OK) as follows:

Theorem 1.5.18. If L is the Hilbert class field of a number field K, then the Artin
map (

L/K
·

)
: IK → Gal(L/K)

is surjective, and its kernel is exactly the subgroup PK of principal fractional ideals.
Thus the Artin map induces an isomorphism

C(OK)
∼−→ Gal(L/K)

The appearance of the class group C(OK) explains why L is called a
”class field”.

If we apply Galois theory to Theorems 1.5.2 and 1.5.18, we get the fol-
lowing classification of unramified Abelian extensions of K:

Corollary 1.5.19. Given a number field K, there is a one-to-one correspondence
between unramified Abelian extensions M of K and subgroups H of the ideal class
group C(OK). Furthermore, if the extension K ⊂ M corresponds to the subgroup
H ⊂ C(OK), then the Artin map induces an isomorphism

C(OK)/H ∼−→ Gal(M/K)

This corollary is class field theory for unramified Abelian extensions, and it
illustrates one of the main themes of class field theory: a certain class of
extensions of K (unramified Abelian extensions) are classified in terms of
data intrinsic to K (subgroups of the ideal class group).

Theorem 1.5.18 also allows us to characterize the primes of K which
split completely in the Hilbert class field:

Corollary 1.5.20. Let L be the Hilbert class field of a number field K, and let p be
a prime ideal of K. Then

p splits completely in L⇔ p is a principal ideal.



CHAPTER 2

The Geometry of Elliptic Curves

Abstract

Elliptic curves are curves of genus one having a specified base point. Our
ultimate goal is to study the endomorphism ring of such curves, and ana-
lyze their points defined over finite fields. In order to do so, in this chap-
ter we study the geometry of elliptic curves over an arbitrary algebraically
closed field k, postponing to later chapters the specialization to the field of
complex numbers C and to the finite fields Fq, where q = pr is a prime
power.

We start by looking at elliptic curves given by explicit polynomial equa-
tions called Weierstrass equations. Using these explicit equations, we show
that the set of points of an elliptic curve forms an abelian group, and that
the group law is given by rational functions. Then we use the Riemann-
Roch theorem to study arbitrary elliptic curves and to show that every el-
liptic curve has a Weierstrass equation, so the results from the part in fact
apply generally. In the remainder of the chapter we consider the maps
between elliptic curves: in particular, since the points of an elliptic curve
form a group, for each integer m there is a multiplication-by-m map from
the curve to itself. This enable us to define the Endomorphism ring of an
elliptic curve and to consider the so called complex multiplication, which will
be of fundamental importance. We conclude by classifying endomorphism
rings.

20
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2.1 Definition and First Properties

An elliptic curve over a field k is a nonsingular complete curve of genus
1 with a distinguished point O. When char k 6= 2, 3, it can be written as a
plane projective curve

Y2Z = X3 + aXZ2 + bZ3

with 4a3 + 27b2 6= 0, and every such equation defines an elliptic curve over
k. The distinguished point is (0 : 1 : 0).

Definition 2.1.1. An elliptic curve over k can be defined equivalently as:

(a) a nonsingular projective plane curve E over k of degree 3 together
with a point O ∈ E(k);

(b) a nonsingular projective curve E of genus 1 together with a point O ∈
E(k).

(c) a nonsingular projective plane curve E over k of the form

Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3 (2.1)

Definition 2.1.2. The equation 2.1 is said to be a Weierstrass equation for the
elliptic curve E.

We will see in section 2.3 that, if we define an elliptic curve E as in (b),
then it has indeed a Weierstrass equation 2.1: precisely, every such curve
can be written as the locus in P2 of a cubic equation with only one point, the
base point, on the line at ∞. Then, after X and Y are scaled appropriately,
an elliptic curve has an equation of the form 2.1. Here O = [0 : 1 : 0] is the
base point and a1, . . . , a6 ∈ k.

Remark 2.1.3. In this section and in the next, we assume the fact that every
elliptic curve as in (b) can be given a Weierstrass equation, and therefore
we study the curves in such a form.

Proposition 2.1.4. Let k be a field of characteristic 6= 2, 3. Every elliptic curve
(E, O) is isomorphic to a curve of the form

E(a, b) : Y2Z = X3 + aXZ2 + bZ3, a, b ∈ k (2.2)

pointed by (0 : 1 : 0). Conversely, the curve E(a, b) is nonsingular (and so,
together with (0 : 1 : 0) is an elliptic curve) if and only if 4a3 + 27b2 6= 0.

Proof. Let E be an elliptic curve over k, written in the Weierstrass form

Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3 (2.3)
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When k has characteristic 6= 2, 3, a change of variables

X′ = X, Y′ = Y +
a1

2
X, Z′ = Z

will eliminate the XYZ term in 2.3, and a change of variables

X′ = X +
a2

3
, Y′ = Y +

a3

2
, Z′ = Z

will then eliminate the X2 and Y terms. Thus we arrive at the equation:

Y2Z = X3 + aXZ2 + bZ3

The point (0 : 1 : 0) is always nonsingular on E(a, b), and the affine curve

Y2 = X3 + aX + b

is nonsingular if and only if 4a3 + 27b2 6= 0.

2.1.1 The details

We see now the details. To ease notation, we write the Weierstrass equa-
tion for our elliptic curve using non-homogeneous coordinates x = X/Z
and y = Y/Z,

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

always remembering that there is an extra point O = [0 : 1 : 0] out at
infinity.

If chark 6= 2, then we can simplify the equation by completing the
square. Thus the substitution

y 7→ 1
2
(y− a1x− a3)

gives an equation of the form

E : y2 = 4x3 + b2x2 + 2b4x + b6

where
b2 = a2

1 + 4a4, b4 = 2a4 + a1a3, b6 = a2
3 + 4a6

We also define quantities

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a2
4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

j = c3
4/∆

ω =
dx

2y + a1x + a3
=

dy
3x2 + 2a2x + a4 − a1y
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Simple computations show that

4b8 = b2b6 − b2
4, 1728∆ = c3

4 − c2
6

If moreover chark 6= 2, 3, then the substitution

(x, y) 7→
(

x− 3b2

36
,

y
108

)
eliminates the x2 term, yielding the simpler equation

E : y2 = x3 − 27c4x− 54c6

Definition 2.1.5. The quantity ∆ is the discriminant of the Weierstrass equa-
tion, the quantity j is the j-invariant of the elliptic curve, and ω is the in-
variant differential associated to the Weierstrass equation.

Now, a natural question to ask is to what extent is the Weierstrass equa-
tion for an elliptic curve unique. Assuming that the line at infinity, i.e., the
line Z = 0 in P2, is required to intersect E only at the one point [0 : 1 : 0],
we will see in section 2.3 that the only change of variables fixing [0 : 1 : 0]
and preserving the Weierstrass form of the equation is given by

x = u2x′ + r and y = u3y′ + u2sx′ + t

where u, r, s, t ∈ k and u 6= 0. If we perform this substitution and compute
the a′i coefficients and associated quantities for the new equation we obtain
the following quantities:

ua′1 = a1 + 2s u2a′2 = a2 − sa1 + 3r− s2

u4a′4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st u3a′3 = a3 + ra1 + 2t

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 u2b′2 = b2 + 12r

u6b′6 = b6 + 2rb4 + r2b2 + 4r3 u4b′4 = b4 + rb2 + 6r2

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 u4c′4 = c4

u6c′6 = c6 u12∆′ = ∆

j′ = j u−1ω′ = ω

It is now clear why the j-invariant has been so named; it is an invariant of
the isomorphism class of the curve, and does not depend on the particular
equation chosen. For algebraically closed fields, the converse is true, as we
shall see in a moment.

Remark 2.1.6. We have seen that if chark 6= 2, 3, then any elliptic curve
over k has a particularly simple Weierstrass equation. In almost all what
follows in this chapter, we continue to assume chark 6= 2, 3.
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Our elliptic curve has Weierstrass equation of the form

E : y2 = x3 + ax + b (2.4)

and we consider

∆ = −16(4a3 + 27b2) and j = −1728
(4a)3

∆
(2.5)

The only change of variables preserving this form of the equation is

x = u2x′ and y = u3y′

for some u ∈ k
∗

and then

u4a′ = a, u6b′ = b, u12∆′ = ∆

Remark 2.1.7. We will often write E(a, b) as a shorthand notation for an
elliptic curve with a Weierstrass equation given by 2.4.

Theorem 2.1.8. Two elliptic curves E(a, b) and E(a′, b′) defined over k are iso-
morphic (over k) if and only if there exists c ∈ k

∗
such that a′ = c4a and b′ = c6b,

the isomorphism being given by the map

(x, y) 7→ (c2x, c3y)

Proof. This follows directly from Proposition 2.3.1

Proposition 2.1.9. (a) The curve given by a Weierstrass equation is nonsingu-
lar if and only if ∆ 6= 0.

(b) Two elliptic curves are isomorphic over k if and only if they both have the
same j-invariant.

(c) Let j0 ∈ k. There exists an elliptic curve defined over k(j0) whose j-invariant
is equal to j0.

Proof. (a) Let E be given by the Weierstrass equation

E : f (x, y) = y2 + a1xy + a3y− x3 − a2x2 − a4x− a6 = 0

We start by showing that the point at infinity is never singular. Thus
we look at the curve in P2 with homogeneous equation

F(X, Y, Z) = Y2Z + a1XYZ + a3YZ2 − X3 − a2X2Z− a4XZ2 − a6Z3

= 0

and at the point O = [0 : 1 : 0]. Since

∂F
∂Z

(O) = 1 6= 0
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we see that O is a nonsingular point of E.

Next suppose that E is singular, say at P0 = (x0, y0). The substitution

x = x′ + x0, y = y′ + y0

leaves ∆ and c4 invariant, so without loss of generality we may as-
sume that E is singular at (0, 0). Then

a6 = f (0, 0) = 0, a4 =
∂ f
∂x

(0, 0) = 0, a3 =
∂ f
∂y

(0, 0) = 0

so the equation for E takes the form

E : f (x, y) = y2 + a1xy− a2x2 − x3 = 0

This equation has associated quantities

c4 = (a2
1 + 4a2)

2 and ∆ = 0

Assume now E is nonsingular; we show that ∆ 6= 0. To simplify the
computation, we assume that chark 6= 2 and consider a Weierstrass
equation of the form

E : y2 = 4x3 + b2x2 + 2b4x + b6

The curve E is singular if and only if there is a point (x0, y0) ∈ E
satisfying

2y0 = 12x2
0 + 2b2x0 + 2b4 = 0

In other words, the singular points are exactly the points of the form
(x0, 0) such that x0 is a double root of the cubic polynomial 4x3 +
b2x2 + 2b4x + b6. This polynomial has a double root if and only if its
discriminant, which equals 16∆, vanishes.

(a) If two elliptic curves are isomorphic, then the transformation formu-
las show that they have the same j-invariant. For the converse, we
will assume that chark ≥ 5. Let E and E′ be elliptic curves with the
same j-invariant, say with Weierstrass equations

E : y2 = x3 + Ax + B
E′ : y′2 = x′3 + A′x′ + B′

Then the assumption that j(E) = j(E′) means that

(4A)3

4A3 + 27B2 =
(4A′)3

4A′3 + 27B′2

which yields
A3B′2 = A′3B2

We look for an isomorphism of the form (x, y) = (u2x′, u3y′) and
consider three cases:
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Case 1 . A = 0 (and j = 0). Then B 6= 0 since ∆ 6= 0, so A′ = 0, and
we obtain an isomorphism using u = (B/B′)1/6.

Case 2 . B = 0 (and j = 1728). Then A 6= 0, so B′ = 0, and we take
u = (A/A′)1/4.

Case 3 . AB 6= 0 (and j 6= 0, 1728). Then A′B′ 6= 0, since if one
of them were 0, then both of them would be 0, contradicting
∆′ 6= 0. Taking u = (A/A′)1/4 gives the desired isomorphism.

(c) Assume that j0 6= 0, 1728 and consider the curve

E : y2 + xy = x3 − 36
j0 − 1728

x− 1
j0 − 1728

A direct computation yields

∆ =
j30

(j0 − 1728)3 and j = j0

This gives the desired elliptic curve (in any characteristic) provided
that j0 6= 0, 1728.

To complete the list, we use the two curves

E : y2 + y = x3, ∆ = −27, j = 0

E : y2 = x3 + x, ∆ = −64, j = 1728

(Notice that if chark = 2, 3 we have 1728 = 0, so even in these cases
one of the two curves will be nonsingular and fill in the missing value
of j).

Remark 2.1.10. We exhibit explicit equations for elliptic curves E over k
with a given j-invariant j(E) = j ∈ k. Put c = j

j−1728 ; we have

y2 = x3 + 1, j = 0

y2 = x3 + x, j = 1728

y2 = x3 − 27
4

cx− 27
4

c j 6= 0, 1728

Remark 2.1.11. Two elliptic curves can have the same j-invariant and yet
not be isomorphic over k. For example, if c is not a square in k, then

Y2Z = X3 + ac2XZ2 + bc3Z3

has the same j-invariant as E(a, b), but it is not isomorphic to it.
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2.1.2 Twists of Elliptic Curves

Definition 2.1.12. Let C/K be a smooth projective curve. The isomorphism
group of C, denoted by Isom(C), is the group of K-isomorphisms from C
to itself. We denote the subgroup of Isom(C) consisting of isomorphisms
defined over K by IsomK(C).

Remark 2.1.13. The group that we are denoting by Isom(C) is usually
called the automorphism group of C and denoted by Aut(C). However, if
E is an elliptic curve, then we have defined Aut(E) to be the group of iso-
morphisms from E to E that take O to O. Thus Aut(E) 6= Isom(E), since
for example, the group Isom(E) contains translation maps τP : E→ E.

Definition 2.1.14. A twist of C/K is a smooth curve C′/K that is isomor-
phic to C over K. We treat two twists as equivalent if they are isomorphic
over K. The set of twists of C/K, modulo K-isomorphism, is denoted by
Twist(C/K).

Let E be an elliptic curve over a field K, with base point O. If char(K) 6=
2, 3, then the elements of the group Twist((E, O)/K) can be described as
follows:

Proposition 2.1.15. Assume char(K) 6= 2, 3, and let

n =


2 if j(E) 6= 0, 1728
4 if j(E) = 1728
6 if j(E) = 0

Then Twist((E, O)/K) is canonically isomorphic to K∗/(K∗)n. More precisely,
choose a Weierstrass equation

E : y2 = x3 + ax + b

for E/K, and let D ∈ K∗. Then the elliptic curve ED ∈ Twist(E, O)/K) corre-
sponding to D(mod(K∗)n) has Weierstrass equation

ED : y2 = x3 + D2ax + D3b, j(E) 6= 0, 1728,

ED : y2 = x3 + Dax, j(E) = 1728,

ED : y2 = x3 + Db, j(E) = 0,

Proof. See [10, §X.5].

Corollary 2.1.16. Define an equivalence relation on the set K× K∗ by

(j, D) ∼ (j′, D′) if j = j′ and D/D′ ∈ (K∗)n(j)
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where n(j) = 2 (resp. 4, resp. 6) if j 6= 0, 1728 (resp. j = 1728, resp. j = 0).
Then the K-isomorphism classes of elliptic curves E/K are in 1-1 correspondence
with the elements of the quotient

K× K∗

∼
Remark 2.1.17. We will consider in later chapters elliptic curves over a fi-
nite field K, charK 6= 2, 3. In this case,

K∗

(K∗)2
∼=

Z

2Z

In fact, K∗ is cyclic and ∃q ∈ K such that

K∗ = < q >=
Z

(q− 1)Z

(K∗)2 = < q >2=
Z

q−1
2 Z

In this case, a twist of the curve

y2 = x3 + ax + b

is given by
y2 = x3 + ad2x + bd3

where d is not a quadratic residue in K.

2.2 The Group Law

The set of points on an elliptic curve can be given the structure of an
abelian group, with a group law ⊕ that we are going to define. We will
next give the formulas for the addition and doubling of points on the curve

E : Y2Z = X3 + aXZ2 + bZ3, a, b ∈ k, ∆ = 4a3 + 27b2 6= 0

Let E be an elliptic curve given by a Weierstrass equation. Thus E ⊂ P2

consists of the points P = (x, y) satisfying the Weierstrass equation, to-
gether with the point O = [0 : 1 : 0] at infinity. Let L ⊂ P2 be a line. Then,
since the equation has degree 3, the line L intersects E at exactly 3 points,
say P, Q, R. Of course, if L is tangent to E, then P, Q, R need not be distinct.
The fact that L∩ E, taken with multiplicities, consists of exactly 3 points is a
special case of Bézout’s theorem. However, since we give explicit formulas
later in this section, there is no need to use a general theorem.

We define a composition law ⊕ on E by the following rule:
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Composition Law Let P, Q ∈ E, let L be the line through P and Q (if
P = Q, let L be the tangent line to E at P), and let R be the third point
of intersection of L with E. Let L′ be the line through R and O. Then L′

intersects E at R, O, and a third point. We denote that third point by P⊕Q.

Remark 2.2.1. The composition law makes E into an abelian group with
identity element O. All verifications are easy except for the associativity.
This is not difficult but quite time-consuming, so we refer the details to [7]
or [10].

Notation. From here on, we drop the special symbol ⊕ and simply
write + and − for the group operation on an elliptic curve E. For m ∈ Z

and P ∈ E, we let
[m]P = P + · · · p

with m terms if m > 0, and

[m]P = −P− · · · − P

with |m| terms if m < 0. Moreover, [0]P = O.
We now derive explicit formulas for the group operations on E. These

will be useful in the description of Schoof’s algorithm.

Theorem 2.2.2. Let E : y2 = x3 + ax + b be an elliptic curve. The inversion of a
point (x0, y0) on E is the point (x0,−y0), i.e. reflection in the x-axis.

Let P1 = (x1, y1), P2 = (x2, y2) be two points on E. Then the sum P1⊕ P2 =:
(x3, y3) is given by

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

where

λ =

{
(y2 − y1)(x2 − x1)

−1 if x1 6= x2

(3x2
1 + a)(2y1)

−1 if x1 = x2

Proof. The theorem follows from direct manipulation of plane coordinates.
This is not difficult but rather time consuming, and so we avoid the details
here. We refer to [7].

Remark 2.2.3. We can define the morphisms

+ : E× E −→ E − : E −→ E
(P1, P2) 7→ P1 + P2 P 7→ −P
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2.3 Getting The Weierstrass Equation

Let E be a complete nonsingular curve of genus 1 over a field k and let
O ∈ E(k). As promised in the beginning of the chapter, we see now that
E can be written in Weierstrass equation. According to the Riemann-Roch
theorem (see [10, §II.5]), the rational functions on E having no poles except
at O and having at worst a pole of order m ≥ 1 at O, form a vector space of
dimension m over k, i.e., L(m[O]) has dimension m for m ≥ 1. The constant
functions lie in L([O]), and according to the Riemann-Roch theorem, there
are no other. Thus {1} is a basis for L([O]).

Choose x so that {1, x} is a basis for L(2[O]). Choose y so that {1, x, y}
is a basis for L(3[O]). Then {1, x, y, x2} is a basis for L(4[O]) - if it were
linearly dependent, x2 would have to be a linear combination of 1, x, y, but
then it could not have a quadruple pole at O. And {1, x, y, x2, xy} is a basis
for L(5[O]) for a similar reason.

The subset {1, x, y, x2, xy, x3, y2} of L(6[O]) contains 7 elements, and so
it must be linearly dependent: there exist ai ∈ k such that

a0y2 + a1xy + a3y = a′0x3 + a2x2 + a4x + a6

(as regular functions on E/{O}). Moreover, a0 and a′0 must be nonzero,
because the set with either x3 or y2 omitted is linearly independent, and so,
after replacing y with a0y/a′0 and x with a0x/a′0 and multiplying through
by a′20/a3

0, we can suppose both equal 1. The map P 7→ (x(P), y(P)) sends
E/{O} onto the plane affine curve

C : Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

The function x has a double pole at O and no other pole, and so it has
only two zeros. Similarly, x + c has two zeros for any c ∈ k (counting
multiplicities), and so the composite

E/{O} → C → A1, P 7→ (x(P), y(P)) 7→ x(P)

has degree 2. Similarly, the composite

E/{O} → C → A1, P 7→ (x(P), y(P)) 7→ y(P)

has degree 3. The degree of E/{O} divides both 2 and 3, and therefore is l.
If C were singular, it would have genus 0, which is impossible. Therefore
C is nonsingular, and so the map is an isomorphism, and it extends to an
isomorphism of E onto

C : Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3
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Proposition 2.3.1. Let E be an elliptic curve defined over k. Any two Weierstrass
equations for E in the form

Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

(where ai ∈ k) are related by a linear change of variables of the form

X = u2X′ + t, Y = u3Y′ + su2X′ + t

with u ∈ k∗ and r, s, t ∈ k.

Proof. Let {x, y} and {x′, y′} be two sets of Weierstrass coordinate functions
on E. Then x and x′ have poles of order 2 at O, and y and y′ have poles
of order 3 at O. Hence {1, x} and {1, x′} are both bases for L(2[O]), and
similarly {1, x, y} and {1, x′, y′} are both bases for L(3[O]). Thus there are
constants u1, u2 ∈ k∗ and r, s2, t ∈ k such that

x = u1x′ + r and y = u2y′ + s2x′ + t

Since both (x, y) and (x′, y′) satisfy Weierstrass equations in which the Y2

and X3 terms have coefficient 1, we have u3
1 = u2

2. Letting u = u2/u1 and
s = s2/u2 puts the change of variables formula into the desired form.

2.4 The Ring of Endomorphisms

Having examined in some detail the geometry of individual elliptic
curves, we turn now to the study of the maps between curves. Since an
elliptic curve has a distinguished zero point, it is natural to single out the
maps that respect this property.

Definition 2.4.1. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2
is a morphism

φ : E1 → E2

satisfying φ(O1) = O2 (from now on we will indicate simply O without
subfix. In fact, no confusion should arise). Two elliptic curves E1 and E2
are isogenous if there is an isogeny from E1 to E2 with φ(E1) 6= {O}.

We have that an isogeny satisfies either

φ(E1) = {O} or φ(E1) = E2

Thus except for the zero isogeny defined by [0](P) = O for all P ∈ E, every
other isogeny is a finite map of curves.



2.4 The Ring of Endomorphisms 32

Example 2.4.2. For each m ∈ Z we define the multiplication-by-m isogeny

[m] : E→ E

in the natural way. Thus if m > 0, then

[m](P) = P + P + · · ·+ P

where the sum involve m terms. For m < 0, we set [m](P) = [−m](−P),
and we have already defined [0](P) = O. Thanks to Remark 2.2.3, an easy
induction shows that [m] is a morphism, hence an isogeny, since it clearly
sends O to O.

Definition 2.4.3. Let E be an elliptic curve and let m ∈ Z with m ≥ 1. The
m-torsion subgroup of E is the set of points of E of order m:

E[m] = {P ∈ E | [m]P = O}

The torsion subgroup of E, denoted by Etors, is the set of points of finite order

Etors =
∞⋃

m=1

E[m]

If E is defined over a field k, then Etors(k) denotes the points of finite order
in E(k).

The most important fact about the multiplication-by-m map is that it
has degree m2, from which one can deduce the structure of the finite group
E[m].

Aside 2.4.4. We briefly recall the definition of degree of a map between
curves C1, C2 over a field K. Let φ : C1 → C2 be a non-constant rational map
defined over K. Then composition with φ induces an injection of function
fields fixing K

φ∗ : K(C2) → K(C1)

φ∗ f = f φ

where K(C) is the function field of C over K.

Definition 2.4.5. Let φ : C1 → C2 be a map of curves defined over K. If φ
is constant, we define the degree of φ to be 0. Otherwise we say that φ is a
finite map and we define its degree to be

deg φ = [K(C1) : φ∗K(C2)]

We say that φ is separable, inseparable or purely inseparable if the field exten-
sion K(C1)/φ∗K(C2) has the corresponding property, and we denote the
separable and inseparable degrees of the extension by degsφ or degiφ re-
spectively.



2.4 The Ring of Endomorphisms 33

We now prove the following result, which is not only interesting on its
own but will also be fundamental in the discussion of the Tate module of
Section 4.2.

Proposition 2.4.6. Let E/C be an elliptic curve over the field of complex numbers,
and let m ≥ 1 be an integer.

(a) There is an isomorphism

E[m] ∼= Z/mZ×Z/mZ

(b) The multiplication-by-m map [m] : E→ E has degree m2

Proof. It will be easy after we will discuss elliptic curves over k = C. So we
postpone the proof to Proposition 3.9.4, where we will provide full details.

We introduce now an object that will be fundamental to our following
discussion. It will lead the way to introduce the idea of complex multiplica-
tion.

Definition 2.4.7. The Endomorphism Ring of an elliptic curve E over a field
k is defined to be

Endk(E) = {isogenies φ : E→ Eover k}

It is a ring with multiplication and addition given respectively

(φψ)(P) = φ(ψ(P)), (φ + ψ)(P) = φ(P) + ψ(P)

where φ and φ are elements of Endk(E) and P is a point on E. When E is
defined over k , we will write sometimes End(E) to denote Endk(E).

Remark 2.4.8. The maps [m] of example 2.4.2 are elements of End(E), and
we get an injection Z ↪→ End(E).

Most of the time, these maps are the only elements, in which case End(E) ∼=
Z because the maps are distinct. But if End(E) is strictly larger than Z, then
we say that E has complex multiplication.
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2.5 Classification of Endomorphism Rings

In the future it will be useful to dispose of a good criterion for classify
endomorphism rings: given the elliptic curve E, we want now to charac-
terize which rings may occur as the endomorphism ring of E. To set up the
situation, we use the following definitions.

Definition 2.5.1. Let K be a (not necessarily commutative) Q-algebra that
is finitely generated over Q. An orderR ofK is a subring ofK that is finitely
generated as a Z-module and satisfiesR⊗Q = K.

Example 2.5.2. Let K be an imaginary quadratic field and letOK be its ring
of integers. Then for each integer f ≥ 1, the ring Z + fO is an order of K.
In fact, these are all of the orders of K.

Definition 2.5.3. A quaternion algebra is an algebra of the form

K = Q + Qα + Qβ + Qαβ

whose multiplication satisfies

α2, β2 ∈ Q, α2, β2 < 0, βα = −αβ

We have the following result.

Theorem 2.5.4. The endomorphism ring of an elliptic curve E over a field k is one
of the following:

1. the integers Z;

2. an order in an imaginary quadratic field;

3. an order in a quaternion algebra.

If char k = 0, then only the first two cases are possible.
If k is a finite field Fq, then End(E) is always bigger than Z (see Theorem

4.3.1).

Proof. We will prove this for k = C in the Theorem 3.10.3. For other cases,
see [10, §III.9].



CHAPTER 3

Elliptic Curves over C

Abstract

In this chapter we explore the theory of elliptic curves over the field of
complex numbers C. After defining a lattice, we will introduce the ellip-
tic curves which are meromorphic functions having two R-linearly inde-
pendent periods. A particularly important elliptic function is the so called
Weierstrass ℘-function: in fact, the field of elliptic functions is generated
over C by ℘ and ℘′. We will next introduce the j-invariant of a lattice
and see when the toruses C/Λ, C/Λ′ are isomorphic as Riemann surfaces
(Λ, Λ′ lattices). Finally, we see how one can associate an elliptic curve to a
torus C/Λ.

3.1 Lattices and Bases

Definition 3.1.1. Let n ∈ N+. Let 0 < r ≤ n be an integer and consider
(ω1, ω2, . . . , ωr), a free family of the R-vector space Rn. A lattice is every
discrete subgroup Λ ⊂ Rn − 0 is of the form

Λ = Zω1 + Zω2 + · · ·+ Zωr

The integer r is called the rank of the lattice.

We will be interested in lattices of rank 2, so they will have the form

Λ = Zω1 + Zω2, for some ω1, ω2 ∈ C

If the basis the lattice Λ over Z is given by {ω1, ω2}, we also write Λ =
[ω1, ω2].

35



3.2 Elliptic Functions 36

Remark 3.1.2. Since neither ω1 nor ω2 is a real multiple of the other, we can
order them so that Im(ω1/ω2) > 0, i.e. ω1/ω2 lies in the complex upper
half-plane

H = {z = x + iy ∈ C | y > 0}

3.2 Elliptic Functions

Let Λ = [ω1, ω2] be a lattice.

Definition 3.2.1. The interior of any parallelogram with vertices z0, z0 +
ω1, z0 + ω2, z0 + ω1 + ω2 is called a fundamental domain or period parallelo-
gram D for Λ: it is the set

D := {α + t1ω1 + t2ω2, 0 ≤ ti ≤ 1}

We usually choose z0 so that D contain 0.

We want now define functions on C/Λ; this amounts to giving a func-
tion on C such that

f (z + ω) = f (z) (3.1)

as functions on C, for all ω ∈ Λ. This condition is equivalent to require that
f is doubly periodic for Λ.

Definition 3.2.2. If {ω1, ω2} is a basis for Λ, then a function f on C is dou-
bly periodic if {

f (z + ω1) = f (z)
f (z + ω2) = f (z)

Definition 3.2.3. An elliptic function f (with respect to Λ) is a meromorphic
function on C which is Λ-doubly periodic.

Remark 3.2.4. An elliptic function which is entire (i.e. without poles) must
be constant, because it can be viewed as a continuous function on C/Λ,
which is compact (homeomorphic to a torus), whence the function is bounded,
and therefore constant.

We now study the doubly periodic meromorphic functions for a lat-
tice Λ, and next we interpret these functions as meromorphic functions on
the quotient Riemann surface C/Λ. From now on, ”doubly periodic” will
mean ”doubly periodic and meromorphic”.

Theorem 3.2.5. Let f (z) be a doubly periodic function for Λ, not identically zero,
and let D be a fundamental domain for Λ such that f has no zeros or poles on the
boundary ∂D. Then

(a) ∑P∈D ResP( f ) = 0;
here the sum is over the points in D where f has a pole.
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(b) ∑P∈D ordP( f ) = 0;

(c) ∑P∈D ord( f ) · P ≡ 0 mod Λ
in (b) and in (c) the sum are over the points where it has a zero or pole (and
ordP( f ) is the order of the zero or the negative of the order of the pole).

Each sum is finite.

Proof. We assume we know basic results in complex analysis, such as the
residue or Liouville’s theorem.

(a) According to the residue theorem,∫
∂D

f (z)dz = 2πi ∑
P∈D

ResP( f )

Since f is periodic, the integrals of it over opposite sides of D cancel,
and so the integral is zero.

-�
�
�
�
��

-

�
�
�
�
��

α

α + ω1

α + ω2

α + ω1 + ω2

P

(b) f elliptic implies that f ′ and f ′
f are elliptic. We then apply the residue

theorem to f ′/ f , noting that this is again doubly periodic and that
ResP( f ′/ f ) = ordP( f ):

0 =
∫

∂D

f ′

f
(z)dz = 2πi ∑ Residues = 2πi ∑ ordP( f )

(c) We apply the residue theorem to z · f ′(z)/ f (z). This is no longer doubly
periodic, but the integral of it around ∂D lies in Λ. Precisely, let {ai} be the
singular point (zeros and poles) of f inside D, and let f have order mi at ai.
We take integral ∫

∂D
z

f ′(z)
f (z)

dz = 2πi ∑ miai

because

resai z
f ′(z)
f (z)

= miai

On the other hand, we compute the integral over the boundary of the par-
allelogram by taking it for two opposite sides at a time. One pair of such
integrals is equal to∫ α+ω1

α
z

f ′(z)
f (z)

dz−
∫ α+ω1+ω2

α+ω2

z
f ′(z)
f (z)

dz
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We change variables in the second integral, letting u = z− ω2. Both inte-
grals are taken from α to α + ω1, and after a cancellation, we get the value

−ω2

∫ α+ω1

α

f ′(u)
f (u)

du = 2πikω2

for some integer k. The integral over the opposite sides is done in the same
way.

Remark 3.2.6. An elliptic function can be viewed as a meromorphic func-
tion on the torus C/Λ, and part (a) of previous theorem can be interpreted
as saying that the sum of the residues on the torus is equal to 0. Hence:

Corollary 3.2.7. An elliptic function has at least two poles (counting multiplici-
ties) on the torus.

Proof. A holomorphic doubly periodic function is bounded on the closure
of any fundamental domain (by compactness), and hence on the entire
plane (by periodicity). It is therefore constant by Liouville’s theorem. It
is impossible for a doubly periodic function to have a single simple pole
in a period parallelogram because, by (a) of the theorem, the residue at the
pole would have to be zero there, and so the pole could not be simple.

Part (c) means that the sum of orders of the singular points of f on the
torus is equal to 0.

3.3 The Weierstrass Function

We now prove the existence of elliptic functions by writing some ana-
lytic expression. Our goal is to obtain the so called Weierstrass function

℘(z) =
1
z2 + ∑

ω∈Λ′

[
1

(z−ω)2 −
1

ω2

]
where the sum is taken over the set of all non-zero periods, denoted by Λ′.
We have to show that this series converges uniformly on compact sets not
including the lattice points. For bounded z, staying away from the lattice
points, the expression in the brackets has the order of magnitude of 1/|ω|3.
Hence it suffices to prove

Lemma 3.3.1. If λ > 2, then ∑ω∈L′
1
|ω|λ converges

But let’s start with order. Let Λ be a lattice in C. The Riemann-Roch
theorem applied to the quotient C/Λ proves the existence of nonconstant
doubly periodic meromorphic functions for Λ, and - as we announces - we
shall construct them explicitly for Λ. When G is a finite group acting on a
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set S, it is easy to construct functions invariant under the action of G: take
f to be any function f : S→ C, and define

F(s) = ∑
g∈G

f (gs)

then F(g′s) = ∑g∈G f (g′gs) = F(s) because, as g runs over G, so does g′g;
thus F is invariant, and all invariant functions are of this form. When G
is not finite, one has to verify that the series converges - in fact, in order
to be able to change the order of summation, one needs (at least) absolute
convergence.

Recall some basic facts: let D be an open subset of G, and let f0, f1, . . .
be a sequence of holomorphic functions on D. Recall from elementary
Calculus that the series ∑n fn is said to converge normally on a subset
A of D if the series of positive terms ∑n ‖ fn‖ converges, where ‖ fn‖ =
supz∈A| fn(z)|. The series ∑n fn is then both uniformly convergent and ab-
solutely convergent on A. When f0, f1, . . . is a sequence of meromorphic
functions, the series is said to converges normally on A if, after a finite
number of terms fn have been removed, it becomes a normally convergent
series of holomorphic functions. If a series ∑n fn of meromorphic functions
is normally convergent on compact subsets of D, then the sum f of the se-
ries is a meromorphic function on D; moreover, the series of derivatives
converges normally on compact subsets of D, and its sum is the derivative
of f .

Now let ϕ(z) be a meromorphic function on C and write

Φ(z) = ∑
ω∈Λ

ϕ(z + ω)

Assume that as |z| → ∞, ϕ(z) → 0 so fast that the series for Φ(z) is nor-
mally convergent on compact subsets. Then Φ(z) is doubly periodic with
respect to Λ, because replacing z by z + ω0 for some ω0 ∈ Λ merely rear-
ranges the terms in the sum.

To prove the normal convergence for the functions we are interested in
(the Weierstrass Functions), we shall need the following result.

Lemma 3.3.2. For any lattice Λ in G, the series ∑ω∈Λ−{0} 1/|ω|3 converges.

Proof. Let ω1, ω2 be a basis for Λ, and, for each integer n ≥ 1, consider the
parallelogram

P(n) = {a1ω1 + a2ω2 | a1, a2 ∈ R, max(|a1|, |a2|) = n}

There are 8n points of Λ on P(n), and the distance between 0 and any of
them is at least kn, where k is the shortest distance from 0 to a point of
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P(1) ∩ Λ. Therefore, the contribution of the points on P(n) to the sum is
bounded by 8n/k3n3, and so

∑
ω∈Λ−{0}

1
|ω|3 ≤

8
k3 ∑

n

1
n2 < ∞

We know from Corollary 3.2.7 that the simplest possible nonconstant
doubly periodic function is one with a double pole at each point of Λ and
no other poles. Suppose f (z) is such a function. Then f (z) − f (−z) is a
doubly periodic function with no poles except perhaps simple ones at the
points of Λ. Hence it must be constant, and since it is an odd function it
must vanish. Thus f (z) is even, and we can make it unique by imposing
the normalization condition

f (Z) = z−2 + 0 + z2g(z)

with g(z) holomorphic near z = 0. There is such a function, namely, the
Weierstrass function ℘(z), but we can’t define it directly from 1/z2 by the
method at the start of this subsection because ∑ω∈Λ 1/(z + ω)2 is not nor-
mally convergent. Instead, we define

℘(z) =
1
z2 + ∑

ω∈Λ−{0}

[
1

(z−ω)2 −
1

ω2

]

3.3.1 Summing up

The series expression for ℘ shows that it is meromorphic, with a double
pole at each lattice point, and no other pole. Also, ℘ is even, i.e.

℘(z) = ℘(−z)

(summing over the lattice points is the same as summing over their nega-
tives).

We get ℘′ by differentiating term by term,

℘′(z) = −2 ∑
ω∈Λ

1
(z−ω)3

Note that ℘′ is clearly periodic, and is odd, i.e.

℘′(−z) = −℘′(z)

From its periodicity, we conclude that there is a constant C such that

℘(z + ω1) = ℘(z) + C
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Let z = −ω1
2 (not a pole of ℘′). We get

℘
(ω1

2

)
= ℘

(
−ω1

2

)
+ C

and since ℘ is even, it follows that C = 0. Hence ℘ is itself periodic, some-
thing which we could not see immediately from its series expansion.

Proposition 3.3.3. The two series ℘(z) and ℘′(z) converge normally on compact
subsets of C, and their sums ℘ and ℘′ are doubly periodic meromorphic functions
on C with ℘′ = dp

dz .

Proof. Note that ℘′(z) = ∑ω∈Λ ϕ(z), with ϕ(z) = −2
z3 = d

dz (1/z2) and that
∑ω∈Λ ϕ(z + ω) converges normally on any compact disk |z| ≤ r by com-
parison with ∑ 1

|ω|3 . Thus, ℘′(z) is a doubly periodic meromorphic function
on C by the above remarks.

For |z| ≤ r, and for all but the finitely many ω with |ω| ≤ 2r, we have
that∣∣∣∣ 1

(z−ω)2 −
1

ω2

∣∣∣∣ = ∣∣∣∣ −z2 + 2ωz
ω2(z−ω)2

∣∣∣∣ = z(2− z
ω )

|ω|3|1− z
ω |2
≤ r5/2

|ω3| · 1
4

=
10r
|ω|3

and so p(z) also converges normally on the compact disk |z| ≤ r. Because
its derivative is doubly periodic, so also is ℘.

3.4 The Field of Doubly Periodic Functions

Let Λ be a lattice in C. The meromorphic functions on C form a field
M(C), and the doubly periodic functions form a subfield of M(C), which
we will determine in a moment. We shall see that there is a relation between
℘ and ℘′, namely

℘′2 = 4℘3 − g2℘− g3 (3.2)

where g2, g3 are to be determined.

Theorem 3.4.1. The field of elliptic functions (with respect to the lattice Λ) is
the subfield C(℘,℘′) of M(C) generated by ℘ and ℘′, i.e., every doubly periodic
meromorphic function can be expressed as a rational function of ℘ and ℘′.

Proof. If f is elliptic, we can write f as a sum of an even and an odd elliptic
function as usual, namely

f (z) =
f (z) + f (−z)

2
+

f (z)− f (−z)
2

If f is odd, then the product f℘′ is even, so it will suffice to prove that C(℘)
is the field of even elliptic functions, i.e. if f is even, then f is a rational
function of ℘.
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Claim 3.4.2. Suppose that f is even and has a zero of order m at some point
u. Then clearly f also has a zero of the same order at −u because

f (k)(u) = (−1)k f (k)(−u)

Similarly for poles.
If u ≡ −u( mod Λ), then the above assertion holds in the strong sense,

namely f has a zero (or pole) of even order at u.

Proof. First note that u ≡ −u( mod Λ) is equivalent to

2u ≡ 0( mod Λ)

On the torus, there are exactly 4 points with this property, represented by

0,
ω1

2
,

ω2

2
,

ω1 + ω2

2
,

in a period parallelogram. If f is even, then f ′ is odd, i.e.

f ′(u) = − f ′(−u)

Since u ≡ −u( mod Λ) and f ′ is periodic, it follows that f ′(u) = 0, so that
f has a zero of order at least 2 at u. If u 6≡ 0( mod Λ), then the above
argument shows that the function

g(z) = ℘(z)− ℘(u)

has a zero of order at least 2 (hence exactly 2 by Theorem 3.2.5 and the fact
that ℘ has only one pole of order 2 on the torus).

Then f /g is even, elliptic, holomorphic at u. If f (u)/g(u) 6= 0 then
ordu f = 2. If f (u)/g(u) = 0 then f /g again has a zero of order at least 2
at u and we can repeat the argument. If u ≡ 0( mod Λ) we use g = 1

℘ and
argue similarly, thus proving that f has a zero of even order at u, and our
claim is proved.

Now we come back to the proof of the theorem. Let ui, i = 1, . . . , r be a
family of points containing one representative from each class (u,−u)( mod Λ)
where f has a zero or pole, other than the class of Λ itself. Let

mi = ordui f if 2ui 6≡ 0( mod Λ),

mi =
1
2

ordui f if 2ui ≡ 0( mod Λ)

Our previous remarks show that for a ∈ C, a 6≡ 0( mod Λ), the function
℘(z)−℘(a) has a zero of order 2 at a if and only if 2a ≡ 0( mod Λ), and has
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distinct zeros of order 1 at a and−a otherwise. Hence for all z 6≡ 0( mod Λ)
the function

r

∏
i=1

[℘(z)− ℘(ui)]
mi

has the same order at z as f . This is also true at the origin because of The-
orem 3.2.5 applied to f and the above product. The quotient of the above
product by f is then an elliptic function without zero or pole, hence a con-
stant, thereby proving Theorem 3.4.1.

Next, we obtain the power series development of ℘ and ℘′ at the origin,
form which we shall get the algebraic relation 3.2 holding between these
two functions.

We compute the Laurent expansion of ℘(z) near 0. Recall that for |t| <
1,

1
1− t

= 1 + t + t2 + · · ·

On differentiating this, we find that

1
(1− t)2 = ∑

n≥1
ntn−1 = ∑

n≥0
(n + 1)tn

Hence, for |z| < |ω|,

1
(z−ω)2 −

1
ω2 =

1
ω2

(
1(

1− z
ω

)2 − 1

)
= ∑

n≥1
(n + 1)

zn

ωn+2

On putting this into the definition of ℘(z) and changing the order of sum-
mation, we find that for |z| < |ω|,

℘(z) =
1
z2 + ∑

ω∈Λ′

[
1

ω2

(
1 +

z
ω

+
( z

ω

)2
+ · · ·

)2

− 1
ω2

]

=
1
z2 + ∑

ω∈Λ′

∞

∑
m=1

(m + 1)
( z

ω

)m 1
ω2

=
1
z2 +

∞

∑
m=1

cmzm

where
cm = ∑

ω 6=0

m + 1
ωm+2

Note that cm = 0 if m is odd.
Using the notation

sm(Λ) = sm = ∑
ω 6=0

1
ωm (3.3)
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we get the expansion

℘(z) =
1
z2 +

∞

∑
n=1

(2n + 1)s2n+2(Λ)z2n (3.4)

from which we write down the first few terms explicitly

℘(z) =
1
z2 + 3s4z2 + 5s6z4 + · · ·

and differentiating term by term, we get

℘′(z) = − 2
z3 + 6s4z + 20s6z3 + · · ·

Theorem 3.4.3. Let g2 = g2(Λ) = 60s4 and g3 = g3(Λ) = 140s6. Then

℘′2 = 4℘3 − g2℘− g3 (3.5)

Proof. We expand out the function

ϕ(z) = ℘′(z)2 − 4℘(z)3 + g2℘(z) + g3

at the origin, paying attention only to the polar term and the constant term.
This is easily done, and one sees that there is enough cancellation so that
these terms are 0, in other words, ϕ(z) is an elliptic function without poles,
and with a zero at the origin. Hence ϕ is identically zero, thereby proving
our theorem.

Remark 3.4.4. The preceding theorem shows that the points (℘(z),℘′(z))
lie on the curve defined by the equation

y2 = 4x3 − g2x− g3

The cubic polynomial on the right-hand side has a discriminant given by

∆ = g3
2 − 27g2

3

We shall see in a moment that this discriminant does not vanish.
Let

ei = ℘
(ωi

2

)
where Λ = [ω1, ω2] and ω3 = ω1 + ω2. Then the function

h(z) = ℘(z)− ei

has a zero at ωi/2, which is of even order so that ℘′(ωi/2) = 0 for i = 1, 2, 3
by previous remarks. Comparing zeros and poles, we conclude that

℘′2(z) = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

Thus e1, e2, e3 are the roots of 4x3 − g2x − g3. Furthermore, ℘ takes on the
value ei with multiplicity 2 and has only one pole of order 2 mod Λ, so that
ei 6= ej for i 6= j. This means that the three roots of the cubic polynomial are
distinct, and therefore

∆ = g3
2 − 27g2

3 6= 0
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3.5 The j-invariant of a Lattice

Elliptic functions depend on which lattice is being used, but sometimes
different lattices can have basically the same elliptic functions. We say that
two lattices L and L′ are homothetic if there is a nonzero complex number
λ ∈ C− {0} such that L′ = λL. Note that homothety is an equivalence
relation. Homothety affects elliptic functions: if f (z) is an elliptic function
for L, then f (λz) is an elliptic function for λL. Furthermore, the ℘-function
transforms as follows:

℘(λz; λL) = λ−2℘(z; L)

Thus we would like to classify lattices up to homothety, and this is where
the j-invariant comes in.

Definition 3.5.1. The j-invariant j(L) of the lattice L is defined to be the
complex number

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2 = 1728
g2(L)3

∆(L)

Note that j(L) is always defined since, as we have seen, ∆(L) 6= 0.

Remark 3.5.2. The reason for the factor of 1728 is clear from Theorem 1.1.5:
it is exactly the factor needed to guarantee that all of the coefficients of the
q-expansion are integers without any common divisor.

The remarkable fact is that the j-invariant j(L) characterizes the lattice
L up to homothety:

Theorem 3.5.3. If L and L′ are lattices in C, then j(L) = j(L′) if and only if L
and L′ are homothetic.

Proof. It is easy to see that homothetic lattices have the same j-invariant.
Namely, if λ ∈ C∗, then the definition of g2(L) and g3(L) implies that

g2(λL) = λ−4g2(L) (3.6)
g3(λL) = λ−6g3(L) (3.7)

and j(λL) = j(L) follows easily.
Now suppose that L and L′ are lattices such that j(L) = j(L′). We first

claim that there is a complex number λ such that

g2(L′) = λ−4g2(L) (3.8)
g3(L′) = λ−6g3(L) (3.9)

When g2(L′) 6= 0 and g3(L′) 6= 0, we can pick a number λ such that

λ4 =
g2(L)
g2(L′)
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Since j(L) = j(L′), few computations show that

λ6 = ± g3(L)
g3(L′)

Replacing λ by iλ if necessary, we can assume that the above sign is +, and
then 3.8 follows. The proof when g2(L′) = 0 or g3(L′) = 0 is similar.

In order to complete our proof, we state now the following Lemma; for
the proof, see [3, §10.B].

Lemma 3.5.4. Let ℘(z) be the ℘-function for the lattice L, and let

℘(z) =
1
z2 +

∞

∑
n=1

(2n + 1)s2n+2(L)z2n

be its Laurent expansion that we already have encountered in equation 3.4 (the
function s(·) is defined in equation 3.3). Then, for n ≥ 1, the coefficient (2n +
1)s2n+2(L) of z2n is a polynomial with rational coefficients, independent of L, in
g2(L) and g3(L).

Now, suppose that we have lattices L and L′ such that equation 3.8
holds for some constant λ. We claim that L′ = λL. To see this, first note
that by equation 3.6, we have g2(L′) = g2(λL) and g3(L′) = g3(λL). Then
the Lemma implies that ℘(z; L′) and ℘(z; λL) have the same Laurent ex-
pansion about 0, so that the two functions agree in a neighborhood of the
origin, and hence ℘(z; L′) = ℘(z; λL) everywhere. Since the lattice is the
set of poles of the ℘-function, this proves that L′ = λL.

Remark 3.5.5. Besides the notion of the j-invariant of a lattice, there is an-
other way to think about the j-invariant which is useful when we study
modular functions. Given a complex number τ in the upper half plane
H = {τ ∈ C : Im(τ) > 0}, we get the lattice [1, τ], and then the j-function
j(τ) is defined by

j(τ) = j([1, τ])

The analytic properties of j(τ) play an important role in the theory of com-
plex multiplication. An important fact is the following:

Fact 3.5.6. The j-function is surjective.

A complete proof of this impressive result is too long and far beyond
the purposes of this thesis. We refer the proof to [3, §11.A].
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3.6 Quotients of C by Lattices

Let Λ be a lattice in C. Topologically the quotient C/Λ is isomorphic to
R2/Z2, which is a one-holed torus. Write π : C → C/Λ for the quotient
map. Then C/Λ can be given a complex structure for which a function ϕ :
U → C on an open subset U of C/Λ is holomorphic (resp. meromorphic)
if and only if the composite ϕ ◦ π : π−1(U) → C is holomorphic (resp.
meromorphic) in the usual sense. It is the unique complex structure for
which π is a local isomorphism of Riemann surfaces.

We shall see that, although any two quotients C/Λ, C/Λ′ are homeo-
morphic, they will be isomorphic as Riemann surfaces only if Λ′ = αΛ for
some α ∈ C×.

3.7 The Holomorphic Maps C/Λ→ C/Λ′

Let Λ and Λ′ be lattices in C. The map π : C → C/Λ realizes C as the
universal covering space of C/Λ. Since the same is true of π′ : C→ C/Λ′,
a continuous map ϕ : C/Λ → C/Λ′ such that ϕ(0) = 0 will lift uniquely
to a continuous map ˜ϕ : C→ C such that ˜ϕ(0) = 0:

C
ϕ̃ //

π
��

C

π′
��

C/Λ
ϕ
// C/Λ′

Because π and π′ are local isomorphisms of Riemann surfaces, the map go
will be holomorphic if and only if ϕ̃ is holomorphic.

Proposition 3.7.1. Let Λ and Λ′ be lattices in C. A complex number α such that
αΛ ⊂ Λ′ defines a holomorphic map

[z] 7→ [αz] : C/Λ→ C/Λ′

sending 0 to 0, and every holomorphic map C/Λ→ C/Λ sending 0 to 0 is of this
form (for a unique α).

Proof. It is obvious from the above remarks that α defines a holomorphic
map C/Λ → C/Λ′. Conversely, let ϕ : C/Λ → C/Λ′ be a holomorphic
map such that ϕ(0) = 0, and let ϕ be its unique lifting to a holomorphic
map C → C sending 0 to 0. For any ω ∈ Λ, the map z 7→ ϕ̃(z + ω)− ϕ̃(z)
is continuous and takes values in Λ′ ⊂ C; because C is connected and Λ′ is
discrete, it must be constant, and so its derivative is zero:

ϕ̃′(z + ω) = ϕ̃′(z)
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Therefore ϕ̃(z) is doubly periodic. As it is holomorphic, it must be constant,
say ϕ̃(z) = α for all z. On integrating, we find that ϕ̃(z) = αz + β, and
β = ϕ̃(0) = 0.

From Proposition 3.7.1 we get immediately the following

Corollary 3.7.2. The Riemann surfaces C/Λ and C/Λ′ are isomorphic if and
only if Λ′ = αΛ for some α ∈ C×, i.e. if and only if Λ and Λ′ are homothetic.

Corollary 3.7.3. Every holomorphic map C/Λ → C/Λ′ sending 0 to 0 is a
homomorphism of groups.

Proof. Clearly [z] 7→ [αz] is a homomorphism of groups.

The proposition shows that

Hom(C/Λ, C/Λ′) ' {α ∈ C | αΛ ⊂ Λ′}

and the corollary shows that there is a one-to-one correspondence

{C/Λ}/ ≈1:1↔ L /C×

where L is the set of lattices in C.

3.8 The Elliptic Curve E(Λ)

Remark 3.8.1. The Weierstrass equation 2.4 is very similar to the differen-
tial equation 3.5 for the Weierstrass ℘-function (in equation 2.4 set y′ = y/2
and multiply by 4 to get a similar equation). This is no coincidence and we
see why in Proposition 3.8.3.

Let Λ be a lattice in C. As we already mentioned,

Lemma 3.8.2. The polynomial f (X) = 4X3 − g2(Λ)X − g3(Λ) has distinct
roots.

Proof. The function ℘′(z) is odd, so ℘′(ω1/2) = −℘′(−ω1/2), and doubly
periodic, so ℘′(ω1/2) = ℘′(−ω1/2). Thus, ℘′(ω1/2) = 0 and Theorem
3.4.3 shows that ℘(ω1/2) is a root of f (X). The same argument shows that
℘(ω2/2) and ℘((ω1 + ω2)/2) are also roots of f (X). It remains to prove
that these three numbers are distinct.

The function ℘(z)− ℘(ω1/2) has a zero at ω1/2, which must be a dou-
ble zero because its derivative is also 0 there. Since ℘(z) − ℘(ω1/2) has
only one (double) pole in a fundamental domain D containing 0, Theorem
3.2.5 shows that ω1/2 is the only zero of ℘(z)−℘(ω1/2) in D, i.e., that ℘(z)
takes the value ℘(ω1/2) only at z = ω1/2 within D. In particular, ℘(ω1/2)
is not equal to ℘(ω2/2) or ℘((ω1 + ω2)/2). Similarly, ℘(ω2/2) is not equal
to ℘((ω1 + ω2)/2).
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From the lemma, we see that

E(Λ) : Y2Z = 4X3 − g2(Λ)XZ2 − g3(Λ)Z3

is an elliptic curve. Moreover we have c4g2(cΛ) = g2(Λ) and c6g3(cΛ) =
g3(Λ) for any c ∈ C×, and so cΛ defines essentially the same elliptic curve
as Λ.

For any elliptic curve

E : Y2Z = X3 + a4XZ2 + a6Z3

the closed subspace E(C) of P2(C) has a natural complex structure: for
example, in a neighborhood of a point P ∈ E(C) such that y(P) 6= 0 6= z(P),
the function x/z provides a local coordinate.

Proposition 3.8.3. The map

ψ : C/Λ → E(Λ)(C)

z 7→ (℘ : ℘′(z) : 1), z 6= 0
0 7→ (0 : 1 : 0)

is an isomorphism of Riemann surfaces.

Proof. It is certainly a well-defined map. The function ℘(z) : C/Λ→ P1(C)
is 2 : l in a fundamental domain containing 0, except at the points ω1

2 , ω2
2 ,

where it is one-to-one. Therefore, ℘ realizes C/Λ as a covering of degree
2 of the Riemann sphere, and it is a local isomorphism except at the four
listed points. Similarly, x/z realizes E(Λ)(C) as a covering of degree 2 of
the Riemann sphere, and it is a local isomorphism except at (0 : 1 : 0)
and the three points where y = 0. It follows that C/Λ → E(Λ)(C) is an
isomorphism outside the two sets of four points. A similar argument shows
that it is a local isomorphism at the remaining four points.

We show now that the map ψ of Proposition 3.8.3 is a homomorphism
of groups.

Consider ℘(z + z′). For a fixed z′, it is a doubly periodic function of z,
and therefore it is a rational function of ℘ and ℘′. The next result exhibits
the rational function.

Proposition 3.8.4. The following formula holds:

℘(z + z′) =
1
4

(
℘′(z)− ℘′(z′)
℘(z)− ℘(z′)

)2

− ℘(z)− ℘(z′)

Proof. Let f (z) denote the difference of the left and the right sides. Its only
possible poles (in a fundamental domain for Λ) are at 0 or ±z′, and by
examining the Laurent expansion of f (z) near these points one sees that it
has no pole at 0 or −z′, and at worst a simple pole at z′. Since it is doubly
periodic, it must be constant, and since f (0) = 0, it must be identically
zero.
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Corollary 3.8.5. The map z 7→ (℘(z) : ℘′(z) : 1) : C/Λ → E(Λ) is a homo-
morphism of groups.

Proof. The above formula agrees with the formula for the x-coordinate of
the sum of two points on E(Λ): let Y = mX + c be the line through the
points P = (x, y) and P′ = (x′, y′) on the curve Y2 = 4X3 − g4X− g6. Then
the x, x′, and x(P + P′) are the roots of the polynomial

(mX + c)2 − 4X3 + g4X + g6

and so

x(P + P′) + x + x′ =
m2

4
=

1
4

(
y− y′

x− x′

)2

3.9 Classification of Elliptic Curves over C

We finally see that every elliptic curve E over C is isomorphic to E(Λ)
for some lattice Λ. In particular, we show that every elliptic curve over C

arises from a unique Weierstrass ℘-function. More precisely, we have the
following result:

Proposition 3.9.1 (Uniformization Theorem). Let E be an elliptic curve over
C given by the Weierstrass equation

y2 = 4x3 − g2x− g3 (3.10)

where g2, g3 ∈ C and g3
2 − 27g2

3 6= 0. Then there is a unique lattice L ⊂ C such
that

g2 = g2(L)
g3 = g3(L)

Proof. The existence of L follows from the surjectivity of the j-function (Fact
3.5.6) with simple considerations. The uniqueness follows from the from
the proof of Theorem 3.5.3.

Corollary 3.9.2. Let E/C be an elliptic curve. There exists a lattice Λ ⊂ C,
unique up to homothety, and a complex analytic isomorphism

φ : C/Λ→ E(C)

φ(z) = [℘(z, Λ),℘′(z, Λ), 1]

Aside 3.9.3. We are now in position to prove Proposition 2.4.6.

Proposition 3.9.4. Let E/C be an elliptic curve and let m ≥ 1 be an integer.
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(a) There is an isomorphism

E[m] ∼= Z/mZ×Z/mZ

(b) The multiplication-by-m map [m] : E→ E has degree m2

Proof. (a) From Corollary 3.9.2, we know that E(C) is isomorphic to C/Λ
for some lattice Λ ⊂ C. Hence

E[m] ∼=
(

C

Λ

)
[m] ∼=

1
m Λ
Λ
∼=
(

Z

mZ

)2

(b) Since char(C) = 0 and the map [m] is unramified, the degree of [m] is
equal to the number of points in E[m] = [m]−1{O}.

Proposition 3.9.1 is often called uniformization theorem for elliptic curves.
It is a consequence of the properties of the j-function.

The mention of the j-function prompts our definition of the j-invariant:
if an elliptic curve E over a field K is defined by the Weierstrass equation
3.10, then the j-invariant j(E) is (as we saw already) the number

j(E) = 1728
g3

2

g3
2 − 27g2

3
= 1728

g3
2

∆
∈ K

Remark 3.9.5. Observe that, if E is the elliptic curve over C corresponding
to the lattice L = [1, τ], then j(E) = j(τ). Recall that, from Theorem 1.5.4
that j(E) is an algebraic integer of degree exactly equal to h(D), where D is
the discriminant of τ, and that HD(X) is the minimal polynomial of j(E).

3.10 The Structure of the Endomorphism Ring

Consider again the map ψ from Proposition 3.8.3 from the complex
torus C/L to the projective plane

ψ : C/L → E(C)

z 7→ (℘ : ℘′(z) : 1), z 6= 0
0 7→ (0 : 1 : 0)

We have just established the following fundamental identification:

Theorem 3.10.1. Let L be a lattice in C. Then the map ψ defines a bijection
between C/L and the elliptic curve E : y2 = 4x3 − g2(L)x− g3(L).

The final theorem we will need about elliptic curves over C concerns
the structure of the endomorphism ring.
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Remark 3.10.2. We already described, in general, what are the endomor-
phism rings for an elliptic curve over a field k (see Theorem 2.5.4). We now
prove it for k = C.

Let E/C be an elliptic curve. We know that, if E(C) ∼= C/Λ for a lattice
Λ, then

End(E) ∼= {α ∈ C | αΛ ⊂ Λ}

Since Λ is unique up to homothety (a fact established in Corollary 3.7.2),
this ring is independent of the choice of Λ. We use this description of
End(E) to completely characterize the endomorphism rings that may oc-
cur.

Theorem 3.10.3. Let E/C be an elliptic curve, and let ω1 and ω2 be generators for
the lattice Λ associated to E by Corollary 3.9.2. Then exactly one of the following
is true:

(i) End(E) = Z

(ii) The field Q(ω2/ω1) is an imaginary quadratic extension of Q, and End(E)
is isomorphic to an order in Q(ω1/ω2).

Proof. Let τ = ω1/ω2. Multiplying Λ by ω1/ω2 shows that Λ is homothetic
to Z + Zτ, so we may replace Λ by Z + Zτ. Let

R = {α ∈ C | αΛ ⊂ Λ}

soR ∼= End(E). Then, for any α ∈ R, there are integers a, b, c, d such that

α = a + bτ and ατ = c + dτ

Eliminating τ from these equations yields

α2 − (a + d)α + ad− bc = 0

This proves thatR is an integral extension of Z.
Now suppose thatR 6= Z and choose some α ∈ R/Z. Then, with nota-

tion as above, we have b 6= 0, so eliminating α gives a non-trivial equation

bτ2 − (a− d)τ − c = 0

It follows that Q(τ) is an imaginary quadratic extension of Q (note that
τ 6= R). Finally, sinceR ⊂ Q(τ) andR is integral over Z, it follows thatR
is an order in Q(τ).

Example 3.10.4. We exhibit some endomorphisms of elliptic curves not in
Z.
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(a) Consider
E : Y2Z = X3 + aXZ2

and let i =
√
−1 = 1

1
4 . Then (x : y : z) 7→ (−x : iy : z) is an

endomorphism of E of order 4, and so End(E) = Z[i]. Note that E
has j-invariant 1728.

(b) Consider
E : Y2Z = X3 + bZ3

and let ρ = e2πi/3 = 1
1
3 . Then (x : y : z) 7→ (ρx : y : z) is an

endomorphism of E of order 3 of E. In this case, E has j-invariant 0.

3.11 Complex Multiplication

We end this chapter by exploring in more detail the following connec-
tions, a topic we introduced in Theorem 1.5.4.

Let K = Q(
√

D) be an imaginary quadratic field, let OK be its ring of
integers, and let C(OK) be the ideal class group of OK.

Remark 3.11.1. If we fix an embedding K ↪→ C, then each ideal Λ of OK is
a lattice Λ ⊂ C, so we may consider the elliptic curve C/Λ.

From Proposition 3.7.1 we have

End(C/Λ) ∼= {α ∈ C | αΛ ⊂ Λ} = OK

Further, Corollary 3.7.2 says that up to isomorphism, the elliptic curve C/Λ
depends only on the ideal class [Λ] ∈ C(OK).

Conversely, suppose that E/C satisfies End(E) ∼= OK. Then Corollary
3.9.2 implies that E(C) ∼= C/Λ for a unique ideal class [Λ] ∈ C(OK). We
have proven the following result.

Proposition 3.11.2. With notation as above, there is a 1-1 correspondence be-
tween ideal classes in C(OK) and isomorphism classes of elliptic curves E/C with
End(E) ∼= OK.

Corollary 3.11.3. (a) There are only finitely many isomorphism classes of el-
liptic curves E/C with End(E) ∼= OK.

(b) Let E/C be an elliptic curve with End(E) ∼= OK. Then j(E) is algebraic
over Q.

Proof. (a) Clear from Proposition 3.11.2, since OK is finite.
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(b) Let σ ∈ Aut(C/Q). Then

End(Eσ) ∼= End(E) ∼= OK

It follows from (a) that {Eσ | σ ∈ Aut(C/Q)} contains only finitely
many isomorphism classes of elliptic curves. Since j(Eσ) = j(E)σ, the
set {j(E)σ | σ ∈ Aut(C/Q)} is finite. It follows that j(E) is algebraic
over Q.

Actually, we can say quite a bit more about the j-invariant of an elliptic
curve having complex multiplication. For [Λ] ∈ C(OK), we denote the
j-invariant of C/Λ by j(Λ).

Theorem 3.11.4 (Weber, Feuter). Let [Λ] ∈ C(OK).

(a) j(Λ) is an algebraic integer

(b) [K(j(Λ)) : K] = [Q(j(Λ)) : Q] = |OK|

(c) The field KH = K(j(Λ)) is the maximal unramified abelian extension of K,
i.e. KH is the Hilbert class field of K.

(d) Let {Λ1}, . . . , {Λh}, be a complete set of representatives for C(OK). Then
j(Λ1), . . . , j(Λh) is a complete set of Gal(K/K) conjugates for j(Λ).

Proof. See [10, §C.11].

Example 3.11.5. Suppose that E/Q is an elliptic curve with complex mul-
tiplication, and suppose that End(E) is the full ring of integers OK in the
field K = End(E)⊗Q. (Note that Theorem 3.10.3 tells us that K is imagi-
nary quadratic). Since j(E) ∈ Q it follows from Theorem 3.11.4(c) that

KH = K(j(E)) = K

and thus K has class number h = 1. Conversely, if K/Q is an imaginary
quadratic field with class number h = 1, then Theorem 3.11.4(b),(c) implies
that

j(Λ) ∈ Q ∀[Λ] ∈ C(OK)

For example, this is true for Λ = OK. Hence C/Λ is (analytically) isomor-
phic to an elliptic curve E/Q satisfying j(E) = j(Λ) and End(E) ∼= OK.

We have seen in Theorem 1.2.16 that there are exactly 9 imaginary quadratic
fields whose ring of integers has class number h = 1, hence there are only 9
possible j-invariants for elliptic curves E defined over Q for which End(E)
is the full ring of integers in End(E)⊗Q.

Let [Λ] ∈ C(OK). Then Theorem 3.11.4 tells us that the Galois group
Gal(KH/K) acts on K(j(Λ)). This action can be described quite precisely in
terms of the Artin map (recall definitions and properties of Section 1.5.1).
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Theorem 3.11.6 (Hasse). Let [Λ] ∈ C(OK) and let KH = K(j(Λ)) be as in The-
orem 3.11.4. For each prime ideal p of OK, let φp ∈ Gal(KH/K) be the Frobenius
element corresponding to p. Suppose that there is an elliptic curve with j-invariant
j(Λ) defined over KH that has good reduction at all primes of KH lying over p.
Then

j(Λ)φp = j(Λ · p−1)

where Λ · p−1 is the usual product of fractional ideals in K.

We shall see explicitly in Chapter 5 how to build the class polynomial.



CHAPTER 4

Elliptic Curves Over Finite Fields

Abstract

In this chapter we specialize to the study of elliptic curves defined over a
finite field k = Fq. The most important arithmetic quantity associated to an
elliptic curve defined over a finite field Fq is its number of rational points.
After introducing the Frobenius map, we prove a theorem of Hasse that
says that if E/Fq is an elliptic curve, then E(Fq) has approximately q points,
with an error of no more than 2

√
q. We then study the endomorphism ring

of an elliptic curve defined over a finite field. We let q be a power of a prime
p, Fq a finite field with q elements, and Fq an algebraic closure of Fq.

4.1 The Frobenius Map

We start by introducing the Frobenius morphism. Let K be a field of
characteristic p > 0, let q = pr. Recall that the Frobenius map

K → K
x 7→ xp

is an isomorphism of K. Let E/K be the elliptic curve E : y2 = x3 + ax + b
defined over K given by a Weierstrass equation. We define the curve E(q)/K
by raising the coefficients of the equation for E to the qth power

E(q) : y2 = x3 + aqx + bq

We define then the Frobenius morphism φq

φq : E → E(q)

(x, y) 7→ (xq, yq)

56
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Since E(q) is the zero locus of a Weierstrass equation, it will be an elliptic
curve provided that its equation is nonsingular. Writing everything out in
terms of Weierstrass coefficients and using the fact that the qth-power map
K → K is a homomorphism, it is clear that

∆(E(q)) = ∆(E)q and j(E(q)) = j(E)q

In particular, the equation for E(q) is nonsingular.
Now suppose that Fq is a finite field with q elements. Then the qth-

power map on K is the identity, so E(q) = E and φq is an endomorphism
of E, called the Frobenius endomorphism. In fact, more is true. Recall
that an isogeny is a map between elliptic curves that sends O to O, the
distinguished point. We have the following

Fact 4.1.1. φq is an isogeny.

The set of points fixed by φq is exactly the finite group E(Fq). This fact
lies at the heart of Hasse’s proof of the estimate for #E(Fq) that we shall see
in a moment.

Aside 4.1.2. Before going any further, we recall some basic facts of maps
between elliptic curves. We need them to prove Hasse’s theorem, but in
order not to burden the discussion too much, we omit the proofs and refer
them to [10, §III].

Let C1/K and C2/K be curves and let φ : C1 → C2 be a non-constant ra-
tional map defined over K. Recall the definitions we gave in the paragraph
Aside 2.4.4. We shall need the following results.

Proposition 4.1.3. Let f : E1 → E2 be a non-zero isogeny of elliptic curves. Then

ker f = f−1(O)

is a finite group. Moreover, if f is separable, then f is unramified, #ker f = deg f
(and K(E1) is a Galois extension of f ∗K(E2)).

Proposition 4.1.4. Let E be an elliptic curve defined over a finite field Fq of
characteristic p, let φ : E → E be the q-th power Frobenius morphism, and let
m, n ∈ Z. Then the map

m + nφ : E→ E

is separable if and only if p - m. In particular, the map 1− φ is separable.

Remark 4.1.5. We have deg φq = q.

In order to prove Hasse’s theorem we need a last definition and result
(see [10, §III.6]).
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Definition 4.1.6. Let A be an abelian group. A function

d : A→ R

is a quadratic form if it satisfies the following conditions:

(i) d(α) = d(−α) for all α ∈ A

(ii) The pairing

A× A→ R, (α, β) 7→ d(α + β)− d(α)− d(β)

is bilinear.

A quadratic form d is positive definite if it further satisfies:

(iii) d(α) ≥ 0 for all α ∈ A

(iv) d(α) = 0 if and only if α = 0.

Fact 4.1.7. Let E1 and E2 be elliptic curves. The degree map

deg : Hom(E1, E2)→ Z

is a positive definite quadratic form.

4.1.1 Number of Rational Points

Let E/Fq be an elliptic curve defined over a finite field. We wish to
estimate the number of points in E(Fq), or equivalently, one more than the
number of solutions to the equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

with (x, y) ∈ F2
q.

Remark 4.1.8. Since each value of x yields at most two values for y, a trivial
upper bound is

#E(Fq) ≤ 2q + 1

However, since a ”random1y chosen"” quadratic equation has a 50% chance
of being solvable in Fq, we expect that the right order of magnitude should
be q, rather than 2q.

Next result, conjectured by E. Artin and proved by Hasse, shows that
this heuristic reasoning is correct. We start with the following lemma,
which is a version of the Cauchy-Schwarz inequality.
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Lemma 4.1.9. Let A be an abelian group, and let

d : A→ Z

be a positive definite quadratic form. Then

| d(ψ− φ)− d(φ)− d(ψ) |≤ 2
√

d(φ)d(ψ)

for all ψ, φ ∈ A.

Proof. For ψ, φ ∈ A, let

L(ψ, φ) = d(ψ− φ)− d(φ)− d(ψ)

be the bilinear form associated to the quadratic form d. Since d is positive
definite, we have for all m, n ∈ Z,

0 ≤ d(mψ− nφ) = m2d(ψ) + mnL(ψ, φ) + n2d(φ).

1n particular, taking

m = −L(ψ, φ) and n = 2d(ψ)

yields
0 ≤ d(ψ)(4d(ψ)d(φ)− L(ψ, φ)2).

This gives the desired inequality, provided that ψ 6= 0, while for ψ = 0 the
original inequality is trivial.

We are now ready to state and prove Hasse’s theorem.

Theorem 4.1.10 (Hasse). Let E/Fq be an elliptic curve defined over a finite field.
Then

| #E(Fq)− q− 1 |≤ 2
√

q

Proof. Choose a Weierstrass equation for E with coefficients in Fq, and let

φ : E → E,
(x, y) 7→ (xq, yq)

be the qth-power Frobenius morphism. Since the Galois group Gal(Fq/Fq)

is generated by the qth-power map on Fq, we see that for any point P ∈
E(Fq),

P ∈ E(Fq)⇔ φ(P) = P

Thus
E(Fq) = ker(1− φ)
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so using Proposition 4.1.4 and Proposition 4.1.3, we find that

#E(Fq) = #ker(1− φ) = deg(1− φ)

In this passage, we stress the importance of knowing that the map 1− φ is
separable. Since the degree map on End(E) is a positive definite quadratic
form (see Fact 4.1.7) and since degφ = q, Lemma 4.1.9 gives the desired
result.

Remark 4.1.11. Hasse’s theorem gives a bound for the number of points in
E(Fq), but it does not provide a practical algorithm for computing #E(Fq)
when q is large. That’s where Schoof’s algorithm comes in, by comput-
ing deterministically #E(Fq) in polynomial time O(log8+o(1)q) elementary
operations (or O(log5+o(1)q), if we use fast exponentiation arithmetic).

Remark 4.1.12. Let E/Fq be an elliptic curve, and let P, Q ∈ E(Fq) be points
such that Q is in the subgroup generated by P. The elliptic curve discrete
logarithm problem (ECDLP) asks for an integer m satisfying Q = [m]P. If
q is small, we can compute P, [2]P, [3]P, . . . until we find Q, but for large
values of q it is quite difficult to find m. This has led people to create public
key cryptosystems based on the difficulty of solving the ECDLP.

4.2 The Trace of the Frobenius Map

We want now to state and prove Theorem 4.2.5, which involves the
trace of the Frobenius map. It is of fundamental importance in our task
to compute the cardinality #E(Fq). We prepare the proof by collecting the
following facts and propositions involving the so-called Tate module.

Also in this case, a complete and accurate treatment of the theory re-
lated to Tate modules would dramatically increase the volume of the present
work, so for practical reasons we limit ourselves to deal with the strictly
necessary. For all the details, we consider reading [10, §III and §IV].

4.2.1 The Tate Module

Let E/K be an elliptic curve and consider an integer m ≥ 2 prime to
char(K) if char(K) > 0. As we have seen in Proposition 3.9.4, we have

E[m] ∼=
Z

mZ
× Z

mZ

the isomorphism being one between abstract groups. However, the group
E[m] comes equipped with considerably more structure than an abstract
group. For example, each element σ of the Galois group Gal(K/K) acts on
E[m], since if [m]P = O, then

[m](Pσ) = ([m]P)σ = Oσ = O
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We thus obtain a representation

Gal(K/K)→ Aut(E[m]) ∼= GL2(Z/mZ)

where the latter isomorphism involves choosing a basis for E[m]. Individu-
ally, for each m, these representations are not completely satisfactory, since
it is generally easier to deal with representations whose matrices have co-
efficients in a ring of characteristic 0. We are going to fit together these mod
m representations for varying m in order to create a characteristic 0 repre-
sentation. To do this, we mimic the inverse limit construction of the l-adic
integers Zl from the finite groups Z/lnZ.

Definition 4.2.1. Let E be an elliptic curve and let l ∈ Z be a prime. The
(l-adic) Tate module of E is the group

Tl(E) := lim←−
n

E[ln]

the inverse limit being taken with respect to the natural maps

E[ln+1]
[l]−→ E[ln]

Remark 4.2.2. Since each E[ln] is a Z/lnZ-module, we see that the Tate
module has a natural structure as a Zl-module. Further, since the multiplication-
by-l maps are surjective, the inverse limit topology on Tl(E) is equivalent
to the l-adic topology that it gains by being a Zl-module.

Remark 4.2.3. The Tate module is a useful tool for studying isogenies. Let

φ : E1 → E2

be an isogeny of elliptic curves. Then φ induces maps

φ : E1[ln]→ E2[ln]

and hence it induces a Zl-linear map

φl : Tl(E1)→ Tl(E2)

We thus obtain a natural homomorphism

Hom(E1, E2)→ Hom(Tl(E1), Tl(E2))

Further, if E1 = E2 = E, then the map

End(E)→ End(Tl(E))

is even a homomorphism of rings.
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Now, For each integer n ≥ 1, let Fqn be the extension of Fq of degree n,
so #Fqn = qn. Let l be a prime different from p = char(Fq). Having in mind
the representation

End(E) → End(Tl(E))
ψ 7→ ψl

choose a Z-basis for Tl(E): we can write ψl as a 2× 2 matrix and compute
its determinant det(ψl) ∈ Zl and trace tr(ψl) ∈ Zl . We need the following

Proposition 4.2.4. Let ψ ∈ End(E). Then

det(ψl) = deg(ψ)

and
tr(ψl) = 1 + deg(ψ)− deg(1− ψ)

In particular det(ψl) and tr(ψl) are in Z and are independent of l.

Proof. See [10, §III.8].

By applying this proposition to an elliptic curve over a finite field, we
are finally in the position to prove Theorem 4.2.5. This enables us to com-
pute the number of points and to deduce an important property of the
Frobenius endomorphism.

4.2.2 The Theorem

Theorem 4.2.5. Let E/Fq be an elliptic curve, let

φ : E → E
(x, y) 7→ (xq, yq)

be the qth-power Frobenius endomorphism, and let

a = q + 1− #E(Fq)

(a) Let α, β ∈ C be the roots of the polynomial T2 − aT + q. Then α, β are
complex conjugates satisfying |α| = |β| = √q, and for every n ≥ 1,

#E(Fqn) = qn + 1− αn − βn

(b) The Frobenius endomorphism satisfies

φ2 − aφ + q = 0

in End(E)
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Proof. We already observed in the proof of Hasse’s theorem that

#E(Fq) = deg(1− φ)

By Proposition 4.2.4 we can compute

det(φl) = deg(φ) = q,
tr(φl) = 1 + deg(φ)− deg(1− φ) = 1 + q− #E(Fq) = a

Hence the characteristic polynomial of φl is

det(T − φl) = T2 − tr(φl)T + det(φl) = T2 − aT + q

(a) Since the characteristic polynomial of φl has coefficients in Z, we can
factor it over C as

det(T − φl) = T2 − aT + q = (T − α)(T − β)

For every rational number m/n ∈ Q we have

det
(m

n
− φl

)
=

det(m− nφl)

n2 =
deg(m− nφ)

n2 ≥ 0

Thus the quadratic polynomial det(T − φl) = T2 − aT + q ∈ Z[T] is
nonnegative for all T ∈ R, so either it has complex conjugate roots or
it has a double root. In either case we have |α| = |β|, and then from

αβ = detφl = degφ = q

we deduce that
|α| = |β| = √q

This gives the first part of (a).

Similarly, for each integer n ≥ 1, the (qn)th-power Frobenius endo-
morphism satisfies

#E(Fqn) = deg(1− φn)

It follows that the characteristic polynomial of φn
l is given by

det(T − φn
l ) = (T − αn)(T − βn)

(To see this, put φl into Jordan normal form, so it is upper triangular
with α and β on the diagonal). In particular,

#E(Fq) = deg(1− φn)

= det(1− φn
l ) from Proposition 4.2.4

= 1− αn − βn + qn
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(b) The Cayley-Hamilton theorem(1) tells us that φl satisfies its charac-
teristic polynomial, so φ2

l − aφl + q = 0. Applying Proposition 4.2.4
gives

deg(φ2 − aφ + q) = det(φ2
l − aφl + q) = det(0) = 0

so φ2 − aφ + q is the zero map in End(E).

Remark 4.2.6. Let E/Fq be an elliptic curve. The quantity

a = q + 1− #E(Fq)

is called the trace of Frobenius, because one can see that it is equal to the
trace of the q-power Frobenius map considered as a linear transformation
of Tl(E). Thus if φ denotes the q-power Frobenius map, then Proposition
4.2.4 gives

tr(φl) = 1 + deg(φ)− deg(1− φ) = 1 + q− #E(Fq) = a.

4.3 The Endomorphism Ring

We want now to describe the endomorphism ring of elliptic curves over
finite fields Fq. We already saw in the Theorem 2.5.4 what happens for a
general field k. If char k = q is prime, we have the following theorem.

Theorem 4.3.1. If E is an elliptic curve over Fq, then EndFq
(E) is either

(i) an order in an imaginary quadratic field, or

(ii) an order in a quaternion algebra.

Remark 4.3.2. In particular, for elliptic curves over a finite field K, EndK(E)
is always bigger than Z.

Definition 4.3.3. In case (i), we say that E is ordinary, or that E has Hasse
invariant 1. In case (ii), we say that E is supersingular, or that E has Hasse
invariant 0.

For the proof of this result, see [10, §V.3].
For completeness, we report here a shortened version of [10, Theorem

V.3.1]:

(1)Every square matrix over a commutative ring satisfies its own characteristic equation.
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Theorem 4.3.4. Let K be a field of characteristic p, and let E/K be an elliptic
curve. For each integer r ≥ 1, let

φr : E→ E(pr)

be the pr-power Frobenius map.

(a) The following are equivalent:

(i) E[pr] = 0 for one (all) r ≥ 1

(ii) End(E) is an order in a quaternion algebra

(b) If the equivalent conditions in (a) do not hold, then E[pr] = Z/prZ for
all r ≥ 1. If further j(E) ∈ Fp, then End(E) is an order of a quadratic
imaginary field.

We end this chapter by providing explicit equations for elliptic curves
over a finite field with given endomorphism ring. Recall Proposition 2.1.15,
and let p ∈ Z be a prime that splits in OK. Call ρ(D) the number of roots
of unity in the quadratic order of discriminant D; so ρ(D) = 2 if D < −4,
ρ(−4) = 4 and ρ(−3) = 6. We have

Proposition 4.3.5. There exist exactly ρ(D) := #O×K twists of elliptic curves
modulo p with complex multiplication by OK, the quadratic order of discriminant
D. These correspond to the factorizations p = (ζπ)(ζπ), where ζ runs over all
ρ(D)-roots of unity (in particular, ζ = ±1 if D < −4).

We now determine, in each case, the explicit equation of elliptic curves
E modulo p with complex multiplication by an order in a quadratic number
field K = Q(

√
D), where p splits as a product of two elements. We suppose

that p, D are given.
Since p splits in the order of discriminant D, we have ρ(D) | p− 1. Now

let

A := {g ∈ Z/pZ such that g(p−1)/q 6= 1 for each prime q | ρ(D)}

We have

#A =

{
p−1

3 if D = −3
p−1

2 otherwise

Choose a value g ∈ A. We distinguish three cases:

D = −3 The six isomorphism classes of elliptic curves with complex multipli-
cation by the order of discriminant D = −3 are given by the affine
equations

y2 = x3 − gk, 0 ≤ k ≤ 5
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D = −4 The four isomorphism classes of elliptic curves with complex multi-
plication by the order of discriminant D = −4 are given by the affine
equations

y2 = x3 − gkx, 0 ≤ k ≤ 3

D < −4 Set

c =
j

j− 1728
,

where is the j-invariant which corresponds to the order of discrim-
inant D. Then the two isomorphism classes of elliptic curves with
given j-invariant and with complex multiplication by the order of dis-
criminant D can be given by the affine equations

y2 = x3 + 3cx + 2c

y2 = x3 + 3ca2x + 2ca3 (4.1)

where a ∈ Fp, a not a square. For what we have said, one of these
curves will have p + 1 − t rational points, and the other will have
p + 1t rational points.



CHAPTER 5

Reduction modulo p and CM method

Abstract

In this chapter we explore the interaction between elliptic curves over finite
fields and elliptic curves over C. In particular, given an elliptic curve E over
a number field K, we consider the operation of reducing E modulo a prime
p of OK lying above a given rational prime p. A theorem of Deuring says
that any elliptic curve over Fp, and with a non-trivial endomorphism, can
be considered as the reduction of some elliptic curve over a number field
with the same endomorphism ring.

As an application of these results, we consider the problem of finding
an elliptic curve E over a finite field, such that End(E) is given. We refer
to this problem as the Complex Multiplication method (or CM method, for
short). We see also a method of building an elliptic curve over a finite field
with a given number of rational points.

5.1 Reduction of an Elliptic Curve modulo p

We start with the simple case of reducing an elliptic curve whose coef-
ficients are in Q. Consider an elliptic curve in projective coordinates

E : Y2Z = X3 + aXZ2 + bZ3

where a, b ∈ Q, ∆ = 4a3 + 27b2 6= 0. After a change of variables X 7→ X/c2,
Y 7→ Y/C3, Z 7→ Z, we may suppose that the coefficients a, b lie in Z,
and so we may look at them modulo p to obtain a curve E over the field
Fq := Z/qZ.

67
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Suppose for simplicity that char k 6= 2, 3. The reduced curve

E : Y2Z = X3 + aXZ2 + bZ3

may be singular or not. We are interested only in the case in which E is
again an elliptic curve over Fq. This happens if q 6= 2 and q does not divide
∆: we say that the reduction is good. For a point P = (x : y : z) on E,
we can choose a representative (x, y, z) for P with x, y, z ∈ Z and having
no common factor, and then P := (x : y : z) is a well-defined point on E.
Since (0 : 1 : 0) reduces to (0 : 1 : 0) and lines reduce to lines, the map
E(Q)→ E(Fq) is a homomorphism.

If the reduction is bad, i.e. ∆ ≡ 0 mod q, then the curve is singular and
can be cuspidal or nodal. We will not consider these cases.

5.2 A theorem of Deuring

We see now what happens more in general. Let K be a number field and
consider the elliptic curve

E : y2 = x3 + ax + b

where a, b ∈ K. We are interested in the operation of reducing E modulo a
prime p of OK lying above p, i.e. such that p ∩Z = p. This cannot be done
in general, but suppose that a, b can be written in the form α/β, where
α, β ∈ OK and β /∈ p. Then we can define the images a, b in the finite field
Fp := OK/p. If in addition we have

∆ = −16(4a3 + 27b
2
) 6= 0 ∈ OK/p

then
E : y2 = x3 + ax + b

defines an elliptic curve of OK/p, and we say that E has a good reduction
modulo p, or that p is a prime of good reduction.

In the 1940s, Deuring developed a theory concerning the reduction of
elliptic curves. While the full statements of Deuring’s results is beyond the
scope of this thesis, we will state without proof in Theorem 5.2.3 a result
that defines the behaviour of the endomorphism ring of an elliptic curve
under reduction modulo a prime: full statements and proofs can be found
in [4, §13.4]. We start by defining the non-degenerate reduction.

5.2.1 Non-degenerate Reduction

Let A be a local ring without zero divisors, and with maximal ideal m.
Consider an elliptic curve E defined to be an absolutely integral smooth
equation

f (X, Y, Z) = 0
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in projective space and with coefficients in A.

Definition 5.2.1. The elliptic curve E is said to have non-degenerate reduc-
tion modulo m if, when we reduce f mod m we obtain again an absolutely
integral equation, defining again a smooth curve denoted by E.

Remark 5.2.2. If the curve is defined by a Weierstrass equation

y2 = 4x3 − g2x− g3

with g2, g3 ∈ A, and char(A/m) 6= 2, 3, then non-degenerate reduction
means that the discriminant ∆ is a unit in A.

We are now ready for the following Theorem.

Theorem 5.2.3. [Deuring Reduction Theorem] Let E be an elliptic curve over a
number field, with EndE ∼= O, where O is an order in an imaginary quadratic
field K. Let P be a place of Q over a prime number p, where E has non-degenerate
reduction E. Suppose that p splits completely in K, let c be the conductor ofO and
write c = prc0, where p - c0. Then

(i) End(E) = Z + c0OK is the order in K with conductor c0.

(ii) If p - c, then we have an isomorphism

End(E) −→ End(E) (5.1)
λ 7→ λ (5.2)

When E has complex multiplication and good reduction, Deuring dis-
covered a relation between the complex multiplication of E and the number
of points in E(OK/p). We will present a version of this result that concerns
only elliptic curves over the prime field Fp.

To set up the situation, letO be an order in an imaginary quadratic field
K, and let L be the ring class field of O. Let p be a prime in Z which splits
completely in L, p does not divide the conductor of O, and we will fix a
prime P of L lying above p, so that OL/P ' Fp. Finally, let E be an elliptic
curve over L which has good reduction at P. With these hypotheses, the
reduction E is an elliptic curve over Fp. Then we have the following

Theorem 5.2.4. LetO, L, p and P be as above, and let E be an elliptic curve over
L with EndC(E) = O. If E has good reduction modulo P, then there is π ∈ O
such that p = ππ and

|E(Fp)| = p + 1− (π + π)

Furthermore, EndFp
(E) = O, and every elliptic curve over Fp with endomor-

phism ring (over Fp) equal to O arises in this way.
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Proof. Theorem 5.2.3 says that reduction induces an isomorphism

EndC

∼=→ EndFp
(E)

that preserves degrees. It follows that there is some π ∈ EndC(E) corre-
sponding to the Frobenius endomorphism Fp ∈ EndFp

(E) under reduction
modulo p. Since the reduction preserves degrees, we have

deg(π) = deg(Fp) = p

Over the complex numbers, we know that the degree of π ∈ O = EndC(E)
is just its norm, so that N(π) = p. Thus we can write p = ππ in O, i.e. p
splits as the product of two elements in O.

Now, look at the group of rational points E(Fp). We know that the
Frobenius endomorpishm Fp acts trivially on points in Fp. In other words,
P ∈ E(Fp) if and only if Fp(P) = P. Recall from the proof of Hasse theorem
that

|E(Fp)| = |ker(1− Fp)| = deg(1− Fp)

Since the reduction map preserves degrees, it follows that

deg(1− Fp) = deg(1− π) = N(1− π) = (1− π)(1− π)

= p + 1− (π + π)

since p = ππ. This proves the desired formula.
For a proof of the final part of the theorem, see [4, §13, Theorems 13 and

14].

We can restate our theorem in terms of an orderOD with given discrim-
inant D:

Theorem 5.2.5. Let E be an elliptic curve with complex multiplication by an
imaginary quadratic order OD of discriminant D, and let p be a prime number
that splits into a product of two prime elements inOD. Then, there exists π ∈ OD
such that p = ππ and

|E(Fp)| = p + 1− t

where t = π + π.

Remark 5.2.6. We remark explicitly that not all π do the job: if we consider
a unit u ∈ O×D , then N(uπ) = N(π) = p, but in general uπ + uπ 6=
π + π. In the case D < −4, we know that O×D = {±1}; this implies that an
incorrect choice of π gives an opposite value of t in Theorem 5.2.5.

Remark 5.2.7. If the prime p of Theorem 5.2.5 is inert, i.e. if
(

D
p

)
= −1,

then t = 0, so that
|E(Fp)| = p + 1
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We end this section with the following

Theorem 5.2.8 (Deuring Lifting Theorem). Let E0 be an elliptic curve in char-
acteristic p, with an endomorphism f0 which is not trivial. Then there exists an
elliptic curve E defined over a number field, an endomorphism f of E, and a non-
degenerate reduction of E at a place P lying above p, such that we have an isomor-
phism

E0
'−→ E

f0 7→ f
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5.3 The Complex Multiplication Method

We want to solve the following

Problem 5.3.1. Let O be an imaginary quadratic order, and let p = pp be a
split prime in O. We want to construct an elliptic curve E over a finite field
Fq, q = pk, such that End(E) = O.

Remark 5.3.2. Problem 5.3.1 can be easily solved if we content ourselves to
have an analytic model for the curves, instead of an algebraic one. Precisely,
we start from an invertible ideal Λ of O. Since we regard O as a subring of
the field C of complex numbers, following Remark 3.11.1 we can see Λ ⊂ O
as a lattice in C of dimension 2.

The quotient T = C/Λ is a complex torus such that End(T) = O. We
pick an ideal in every class in the class group C(O) and consider the h
associated tori (h = |C(O)|).

Any torus of dimension 2 having O as endomorphism ring is isomor-
phic to exactly one of these h tori: this completely solves the problem of
constructing all elliptic curves with complex multiplication by O except
that we have an analytic model for these curves, and we would like to have
an algebraic model also. This is possible since - as we know very well -
any complex torus can be given the structure of an algebraic curve using
Weierstrass functions. This is the algebraic model which is of interest to us.

We split Problem 5.3.1 into two sub-problems:

(1) construct an elliptic curve E over C such that EndC(E) = O;

(2) reduce the curve E modulo p.

Sub-problem (2) is straightforward from what we saw early in this chapter.
So let us focus on and give an overview of the solution to sub-problem (1).
We use all the results obtained so far in this thesis.

Let D < 0 be an imaginary quadratic discriminant, and let O := OD =

[1, D+
√

D
2 ]Z be the (not necessarily maximal) order of discriminant D in K =

Q(
√

D). Let h = |C(OD)| be the ideal class number of OD.
We know - by a result of Siegel, see the estimate 1.4 - that

log h
log|D| →

1
2

, as |D| → +∞

so that |D| ∈ O(h2ε) and h ∈ O(|D|1/2+ε) for any ε > 0.
By Proposition 3.11.2, we know that there are h isomorphism classes

of elliptic curves over C having complex multiplication by OD, i.e. curves
with OD as endomorphism ring. Namely, let

j : H = {τ ∈ C | Im(τ) > 0} → C



5.3 The Complex Multiplication Method 73

the absolute modular invariant (see Section 1.1). We know from Theorem
1.4.4 that there is an isomorphism between the ideal class group C(OD) and
the form class group C(D) of primitive quadratic forms of discriminant D
(Definition 1.4.3). So consider the reduced quadratic forms

[Ai, Bi, Ci] = AiX2 + BiX + Ci

of discriminant D = B2
i − 4AiCi, representing the ideal classes of OD. Let

τi := −Bi+
√

D
2Ai

run through the roots in H of the reduced quadratic forms
[Ai, Bi, Ci] (recall Remark 1.3.3).

By Remark 1.1.3, the j-invariant of the elliptic curves are given by j(τi).
Moreover, by Theorem 3.11.4, these j(τi) are algebraic integers and they
generate the ring class field KD for OD, the Galois extension of K such that

Gal(KD, K) ∼= C(OD)

where the isomorphism is given by the Artin map; see Theorem 1.5.18.
Thanks to Theorem 1.5.4, the minimal polynomial of the j(τi) over K

HD(X) =
h

∏
i=1

(X− j(τi)) ∈ Z[X]

has coefficients in Z. In the special case that D is a fundamental discrim-
inant (Definition 1.4.1), the ring class field KD is the Hilbert class field of
K.

Collecting our results, we have h elliptic curves (with abuse of nota-
tion, since we should talk about isomorphism classes of elliptic curves)
E1, . . . , Eh, all defined over the Hilbert class field and having endomor-
phism ring isomorphic toOD. For every such curve El and for every prime
p that splits in OD, we may reduce El modulo a prime ideal lying above p.
We obtain an ordinary elliptic curve defined over a finite extension Fq of
Fp.

Namely, suppose p splits inOD as p = pp (and p - D, so p is unramified
in KD), and let

k := min{n ∈ Z>0 | pn is principal} (5.3)

Let q = pk; this is equivalent to ask that 4q = U2 + DV2 with U, V ∈ Z.
Places of the Hilbert class field above p have inertia degree equal to k, so
reducing El modulo such a place produces an elliptic curve El (mod p)
over the finite field Fq with q elements.

By Deuring’s reduction and lifting theorems these h curves are precisely
the elliptic curves over Fq with complex multiplication by OD. They may
be obtained as follows: compute the class polynomial HD ∈ Z[X] and re-
duce it modulo p. It splits completely over Fq, and each of its roots is the j-
invariant of an elliptic curve over Fq with the desired endomorphism ring.

Remark 5.3.3. Call El := El (mod p). The Frobenius element F, seen as an
element of O, is a generator for the principal ideal pk.
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5.4 Examples

We give now a couple of full-detailed examples of this method.

Example 5.4.1. Let D = −2 and consider the quadratic imaginary field
K = Q(

√
−2). For the basic theory seen in Section 1.2.3, the discriminant is

dK = −8 and the ring of integers is OK = Z[
√
−2] = Z + Z

√
−2.

By Theorem 1.2.16, we know that the class number of OK is h = 1, i.e.
OK is a PID. So there is a unique (isomorphism class of) elliptic curve E
such that End(E) = OK. Since a Z-basis for the lattice OK is {1,

√
−2},

following the reasoning in Section 1.1.1 we take τ =
√
−2 ∈ H. Accord-

ing to Theorem 1.5.4, the Hilbert class polynomial HD(X) = X − j(τ) has
coefficients in Z, i.e. j(τ) ∈ Z.

Let q = exp(2πiτ). According to Theorem 1.1 we have

j(τ) =
1
q
+ 744 + 196, 884q + 21, 493, 760q2 + · · ·

By numerically evaluating the first four terms of j(τ), we get

j(τ) ≈ 7999.997

Therefore j := j(τ) = 8000. Since j 6= 0, 1728, Remark 2.1.10 tells us that an
elliptic curve with j-invariant j(τ) is

y2 = x3 − 27
4

125
98

x− 27
4

125
98

By Proposition 2.1.15, we can choose 1/18 ∈ K∗ and consider the elliptic
curve with equation

E : y2 = x3 − 53

4704
x− 53

84672

obtained by multiplying the linear factor by 18−2 and the constant factor
by 18−3. Now, let p ∈ Z be a prime that splits in OK as p = pp. We want
to reduce the curve E over Fq, where q = pk and k as in condition 5.3.
Recalling Proposition 1.2.9, p splits in OK if (dK/p) = 1. Take p = 17; we
have

dK ≡ −8 ≡ 9 ≡ 32 (mod 17)

and so p = 17 splits in OK. We now find p: by Theorem 1.2.12 we have

17 = (17, n +
√
−2)(17, n−

√
−2)

where n is such that −2 ≡ n2 (mod 17). Now, −2 is indeed a quadratic
residue modulo 17 since, by elementary properties of Legendre symbol,(

−2
17

)
=

(
−1
17

)(
2

17

)
= (−1)

17−1
2 (−1)

172−1
8 = 1
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By a direct computation, we find that −2 ≡ 72 (mod 17) and therefore
p = (17,

√
−2− 7).

We want now to find k such that pk is principal; but since OK is a PID,
we have k = 1. Therefore, reduction of E is possible in F17; by standard
techniques(1) we find a generator of p and we can write p = (3 + 2

√
−2).

We finally reduce E modulo 17: we have

4704 ≡ −5 (mod 17), 84672 ≡ −5 (mod 17)

and since
53

5
= 52 ≡ 8 (mod 17)

we have
E : y2 = x3 + 8x + 8

which is the desired equation.

Remark 5.4.2. Observe that sometimes it is useful to obtain also the equa-
tion of the twisted curve of E (see Remark 2.1.17 for the details). To find
such an equation we look for a non-quadratic residue modulo 17, for ex-
ample 3. In fact we have(

3
17

)
=

(
17
3

)
(−1)

3−1
2

17−1
2 =

(
2
3

)
= (−1)

32−1
8 = −1

So we have

8 · 32 = 72 ≡ 4 (mod 17)
8 · 33 = 216 ≡ 12 (mod 17)

and so we have the twisted curve

E2 : y2 = x3 + 4x + 12

Remark 5.4.3. The main step in the CM method is the construction of the
Hilbert class polynomial of the imaginary quadratic order of discriminant
D. In Example 5.4.1, this was easy to compute since the class number was
h = 1. When h > 1 things are more complicated.

We will see in Example 5.5.6 a situation in which h = 3; but before is
better to say a (not so) few words on how one can determine efficiently the
Hilbert class polynomial.

(1)Gauss reduction algorithm for lattices of dimension 2.
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5.5 Building the Hilbert Class Polynomial

We follow the ideas in [1] by showing how to effectively construct the
Hilbert class polynomial HD(X). By Theorem 1.5.4 we know that

HD(X) = ∏
[a,b,c]∈C(D)

(
X− j

(
−b + i

√
d

2a

))
(5.4)

where C(D) is the set of all reduced quadratic forms of discriminant D, and
we have set and d = |D|. We know that deg HD(X) = h := h(D), the class
number.

Now, a simple way to build HD(X) is to compute, for all reduced forms
of discriminant D, a numerical value of the corresponding j. If we work
with enough precision, we are then able to recover HD(X) given by equa-
tion 5.4: in fact, by Theorem 1.5.4 we know that HD(X) has integer coef-
ficients, so it is enough to carry out computations in such a way that the
absolute error of each coefficient is within a value of 0.5 at most. Another
key-point observation that allows us to double-check the correctness of our
result is that, by Proposition 1.5.10, HD(0) is a cube of a rational integer.

Remark 5.5.1. Instead of computing the value j([a, b, c]) for all reduced
quadratic forms of discriminant D, the present remark allows us to halve
the computation. If [a, b, c] is an ambiguous form, i.e. if b = 0 or a = b
or a = c, then j([a, b, c]) is easily seen to be a real number (in any case
b2 − 4ac < 0). If on the other hand [a, b, c] is non-ambiguous, then we have
j([a,−b, c]) = j([a, b, c]) (conjugation in C).

Now, if HD(x) = 0 for some x, then also HD(x) = 0. Hence we can
halve the computation this way:

• [a, b, c] ambiguous −→ we adjoin a factor X− j([a, b, c])

• [a, b, c] non ambiguous −→ we adjoin a factor

(X− j([a, b, c]))
(

X− j([a, b, c])
)
= X2− 2Re (j([a, b, c])) X+ |j([a, b, c])|2

To achieve the accuracy we need to carry out computations, we need to
make some a priori estimate on the size of the coefficients of HD(X), that
we shall see in a moment. For further references, see [1, §7]. The first step is
to evaluate j(τ) as fast as possible: in order to do this, we recall formula 1.2
of Section 1.1.2 which express j(τ) in terms of the Dirichlet function η(τ).
We have a good convergence of the q-expansion for η, so it is convenient
to directly apply this formula to compute a numerical value of j(τ). Now,
the heart of the computation is the evaluation of η(τ), so we have to study
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the optimal choice of the parameters and see how many terms have to be
included for a desired precision, we look at the truncated series

ηM(τ) = q1/24

(
1 +

M

∑
m=1

(−1)m(qm(3m−1)/2 + qm(3m+1)/2)

)
(5.5)

where M is a positive integer and q = exp(2πiτ). We look for an upper
bound on the error resulting on the computation of this truncates series
instead of η(τ): for this it is useful the following Lemma.

Lemma 5.5.2. Let q = e2πiτ = ρeiθ , where τ is a complex number in the upper
half planeH such that 0 < |q| < 1

2 . Then if M is a positive integer,

|η(τ)− ηM(τ)| ≤ 6ρ3M2/2

Proof. Let q = ρeiθ = ρ(cos(θ) + isin(θ)) and assume that 0 < |q| < 1. For
ease of computation it is better to work with the series inside the expression
5.5. Therefore we define

f (q) =
∞

∑
m=1

(−1)m(qm(3m−1)/2 + qm(3m+1)/2)

fM(q) =
M

∑
m=1

(−1)m(qm(3m−1)/2 + qm(3m+1)/2)

Now, let R(q) and RN(q) be the real parts of f (q) and fN(q) respectively,
and let

E(q) = R(ρ)− R(q)

EM(q) = RM(ρ)− RM(q)

We have that E(q) is an alternating series with positive real coefficients. Let
Am := m(3m− 1)/2 and Bm := m(3m + 1)/2; we have

|E(q)− EN(q)| =
∞

∑
m=M+1

(−1)m(ρAm(1− cos(θAm)) + ρBm(1− cos(θBm)))

≤ ρAm(1− cos(θAm)) + ρBm(1− cos(θBm)) |m=M+1

≤ 2(ρ(M+1)(3M+2)/2 + ρ(M+1)(3M+4)/2)

= 2εM+1

Now we can estimate

|R(q)− RM(q)| = |(R(q)− R(ρ)) + (RM(ρ)− RM(q)) + (R(ρ)− RM(ρ))|
= |(EM(q)− E(q)) + (R(ρ)− RM(ρ))|
≤ 3εM+1



5.5 Building the Hilbert Class Polynomial 78

We proceed analogously for the imaginary parts. Therefore, | f (τ)− fN(τ)| ≤
6εN+1. Looking at the term εm, it is not hard to see that εm ≤ ρ3(m−1)2/2 if
we require ρ < 1/4 and m ≥ 5. Then we get the desired formula observing
that |q1/24| < 1.

Put τ = −b+i
√

d
2a . By the identity q = exp(2πiτ) = ρexp(iθ) seen in

Lemma 5.5.2, we obtain

ρ = exp(−π
√

d/a), θ = −πb/a

By the q-expansion of j given by equation 1.1, we get the estimate

|j(τ)| = O(q−1) = O(exp(π
√

d/a)) (5.6)

We deduce an upper bound B on the size of the coefficients of HD(X): the
constant term HD(0) is equal to the product of all values j(τ)

HD(0) = ∏
[a,b,c]∈C(D)

j

(
−b + i

√
d

2a

)

and so, by the estimate 5.6 we have

HD(0) ≈ exp(π
√

d ∑
[a,b,c]

1
a
)

In order to get a bound for all the coefficients, we multiply this by the mid-
dle binomial coefficient (which is the largest) and hence obtain

B =

(
h

bh/2c

)
exp

(
π
√

d ∑
[a,b,c]

1
a

)

Aside 5.5.3. We would like to provide an estimate of log(B). By [5, §XVI.4]
we know that

logh ∼ log(
√

d), for d→ ∞

So for any ε ∈ R+ we have

d1/2−ε ≤ h ≤ d1/2+ε

for d big enough, or better Aεd1/2−ε ≤ h ≤ Bεd1/2+ε.
We now proceed to give an upper and a lower bound for logB.

Lower bound By Fact 1.3.6(i), we have that a ≤
√

d/3 and so

∑
1
a
≥ h

√
3
d
∼
√

3h

Therefore ∃c > 1 constant such that logB > c
√

d, for d large enough.
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Upper bound We estimate ∑ 1
a : following ideas from [6, §5.10], we have

that there are not too many a’s which are small. This is because

#{reduced forms[a, b] such that a is fixed} ≤ τ(a)

where τ(a) is the number of positive divisors of a. So we have

∑
1
a
≤

d

∑
a=1

τ(a)
a

=

=
d

∑
a=1

(
a

∑
v=1

τ(v)

)(
1
a
− 1

a + 1

)
+

1
d + 1

d

∑
a=1

τ(a)

By a known result in Analytic Number Theory we have

d

∑
a=1

τ(a) = dlogd + (2γ− 1)d + O(
√

d)

where γ is the Euler’s gamma. By limiting ourselves to the estimate
dlogd we have ∫ d

a=1

loga
a

da =
(logd)2

2
< logd.

It follows that

∑
1
a
= O(logd)2

Now, the middle binomial coefficient is smaller than the sum of all
the binomial coefficients, i.e.(

h
bh/2c

)
≤ 2h

Therefore
B ≤ 2hexp(Θπ

√
d(logd)2)

for some constant Θ, and finally we get

logB = O(
√

d(logd)2) = O(h(logh)2)

By taking the base 10 logarithm of this bound B, we get the required
decimal precision: the number of digits we need to consider in our compu-
tations is given by

Prec(D) =

⌈
log( h

bh/2c) + π
√

d

log10 ∑
[a,b,c]

1
a

⌉
+ v0 (5.7)



5.5 Building the Hilbert Class Polynomial 80

where v0 is a positive constant that takes into account the rounding error
and the error made in our estimate of |j(τ)|; typically one considers v0 =
10.

Now we want to determine M in equation 5.5 such that it approximates
η(τ) with the desired accuracy. In order to do so, we apply Lemma 5.5.2.
The hypothesis hold: if [a, b, c] is a reduced form of negative discriminant
D then

d = 4ac− b2 ≥ 4a2 − a2

which implies that a ≤
√

d/3. Hence

ρ = exp(−π
√

d/a) ≤ exp(−π
√

3) ≈ 4.33× 10−3 < 1/2

so we can apply Lemma 5.5.2. We obtain M by solving the following equa-
tion

log10(6ρ3M2/2) = Prec(D)

Simple algebra says that

M =

⌈√
a

2
3

Prec(D)log10 + log6

π
√

d

⌉
(5.8)

Then to calculate an accurate numerical value of j(τ) we compute ηM(τ) by
equation 5.5 and apply the result to equation 1.2: in order to do so we need
to compute ∆(τ) and ∆(2τ). In general, ∆(kτ) is obtained by computing
ηM(qk) to the order M, obtained by replacing a with a/k in equation 5.8.

We now show an algorithm that computes the Hilbert class polynomial;
with these remarks in mind, this procedure runs through all positive a, b
such that b ≤ a ≤

√
d/3 and a divides b2−D

4 , and constructs a polyno-
mial whose roots are the j-invariants associated with the reduced forms
[a, b, b2−D

4a ]. The algorithm is closely related to Algorithm 1.

Remark 5.5.4. Since b is even if and only if D is even, we can reduce the
number of iterations by initially checking the parity of D.
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Algorithm 3 Computing Hilbert Class Polynomial

HD := 1;
b := |D| (mod 2);
B := b

√
|D|/3c;

while b ≤ B do
t := b2−D

4 ;
a := max(1, b);
while a2 ≤ t do

if a | t then
j := j((−b +

√
D)/(2a));

if a = b or a2 = t or b = 0 then
HD := HD · (X− j);

else
HD := HD · (X2 − 2Re(j)X + |j|2);

end if
end if
a := a + 1;

end while
b := b + 2;

end while
Round coefficients of HD to the nearest integer;
return HD (mod p);
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5.5.1 Examples - continued

Example 5.5.5. Let D = −23 and consider the quadratic imaginary field
K = Q(

√
−23). It is easy to see (otherwise just run Algorithm 1) that the

class number is h(−23) = 3, and therefore there are 3 reduced quadratic
forms [a, b, c] of discriminant −23. The condition |b| ≤ a ≤

√
−D/3 tells

us that a = 1, 2. Easy computations then show that the 3 forms are

f1 = [1, 1, 6], f2 = [2, 1, 3], f3 = [2,−1, 3]

Call τ1, τ2, τ3 the corresponding τ-values. We have ( h
bh/2c) = 3, and there-

fore

Prec(−23) =

⌈
log3 + π

√
23

log10
(1 +

1
2
+

1
2
)

⌉
+ 10 = 25

In order to get this level of precision we must compute ηMi(τi) to order Mi
corresponding to τi, i = 1, 2, 3. Precisely,

M1 =

⌈√
2
3

25log10 + log6
π
√

23

⌉
= 2

M2 = M3 =

⌈√
4
3

25log10 + log6
π
√

23

⌉
= 3

We want to compute

H−23(X) = (X− j(τ1))(X− j(τ2))(X− j(τ3))

By writing a few lines code with any programming language, we can com-
pute in sequence

ηMi(τi), ∆(τi), ∆(2τi), f (τi)

and finally we get a numerical approximation of j(τi) (observe that ∆(2τi)
can be computed noting that changing τ into 2τ changes q into q2).

After taking real parts and rounding to the nearest integer we get

H−23(X) = X3 + 3, 491, 750X2 − 5, 151, 296, 875X + 12, 771, 880, 859, 375

which is the desired result. We can double-check our computations observ-
ing that H−23(0) is indeed the cube of a rational integer:

23, 3753 = 12, 771, 880, 859, 375

We apply these results to give an example of the CM method when the
class number is h > 1.
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Example 5.5.6. Let D = −23 and consider the quadratic imaginary field
K = Q

√
−23. The discriminant of the field is dK ≡ −23 ≡ 1 (mod 4), and

therefore the ring of integers is OK = Z[ 1
2 + 1

2

√
−23]. We want to find an

elliptic curve over a finite field with this ring of integers as its endomor-
phisms ring. By the considerations made in Section 5.3, we have to find a
prime p that splits in OK as p = pp, p ∈ OK. Then we compute H−23(X)
(mod p): it splits completely over Fq, q = pr, and each of its roots are the
j-invariant of an elliptic curve over Fq with the desired ring of endomor-
phisms.

In our case we can consider p = 59. In fact, having in mind the equiva-
lence given by Theorem 1.5.12, we can write

4 · 59 = 122 + 23 · 22

Reducing modulo 59 the Hilbert polynomial obtained in Example 5.5.5, we
obtain

H−23(X) ≡ X3 + 12X2 + 28X + 33 (mod 59)

Theorem 1.5.12 allows us to split it into linear factors:

H−23(X) ≡ (X− 20)(X− 42)(X− 44) (mod 59)

Take for instance j0 = 20. We apply the formula given by Remark 2.1.10.
Take c = j0

j0−1728 and we have

E : y2 = x3 − 27
4

cx− 27
4

c in F59

Computing in Z/59Z we get

c = 20 · (−1728)−1 = 20 · 20 = 46

(−27) · 4−1 = 32 · 15 = 8

and since 8 · 46 = 14 we obtain

E : y2 = x3 + 14x + 14

which is a curve over F59 with the desired endomorphism ring.
Even if it is not of interest in this example, we compute explicitly also

a twist of this curve. Take r = 29 ∈ F59 (which is not a square). Then by
Proposition 2.1.15 we have the twisted curve

Ẽ : y2 = x3 + 33x + 13
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5.6 CM Method - Alternative

With the same tools already developed, we can devise a method to build
elliptic curves over a finite field with a given number of points. This is very
similar to the CM method. In fact we use the Deuring Lifting Theorem that
allows us to consider every elliptic curve over Fp as the reduction of some
elliptic curve over a number field K with the same endomorphism ring.
Our task is to construct a curve having exactly N rational points over Fp,
with p given prime number. Of course, N is required to belong to the Hasse
interval, i.e. p + 1− 2

√
p ≤ N ≤ p + 1 + 2

√
p.

Suppose we have found the imaginary quadratic field K of fundamen-
tal discriminant D where p splits as the product of two elements. If we look
at elliptic curves over K with complex multiplication by the full ring of in-
tegersOK in K then we are able to apply Theorem 5.2.5 which immediately
gives us the desired cardinality over Fp. To find such a field K we choose a
fundamental discriminant D < 0 such that 4p = t2 + s2|D| has a solution
for t = p + 1− N and s any integer. Finding a suitable discriminant D for
the prime p is easy: set t = p + 1− N and then

D =
t2 − 4p

s2 =
(p + 1− N)2 − 4p

s2

and we look for s such that s2 divides (t2 − 4p) and D < 0 is fundamental
and small as possible. Then, by Theorem 1.5.12 (p) splits into two distinct
ideals in K as p = ππ, with π ∈ OK. If we next find the equation of
an elliptic curve E over C with EndC(E) ' OK then by Theorem 5.2.5 the
reduction of E modulo p will give us a curve with p + 1− t = N rational
points over Fp. To get such a curve we proceed as usual by means of the
Hilbert class polynomial.

Remark 5.6.1. In the case D < −4, in the reduction process we obtain one
elliptic curve E (mod p). By Remark 5.2.6 we have

#E(Fp) = p + 1± t

If #E(Fp) = p + 1− t we are done. Otherwise we twist the curve with
the known formulas (cf. Proposition 2.1.15) and get the curve with the
desired number of points. To see whether we wrote down the right curve,
we can pick a random point on the curve and see if it is annihilated by N.
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We can sum up the CM method for a known number of points:

Input prime p, number of points N.

Output elliptic curve E/Fp such that #E(Fp) = N.

1. Set t := p + 1− N;

2. Determine D (fund. discriminant) such that 4p = t2 + s2|D|, s ∈ Z;

3. Build HD(X);

4. Find j0 such that HD(j0) ≡ 0 (mod p);

5. Write the equation of an elliptic curve E/Fp with invariant j0;

6. Pick randomly a point P ∈ E

7. If [N]P 6= O, the desired curve is the twist Ẽ.

8. If [N]P = O, E is likely to be the desired curve. To be sure, let N′ :=
p + 1 + t and compute [N′]P. If [N′]P 6= O then E is the desired
curve, otherwise we unfortunately pick a point annihilated by both
N, N′ and we must repeat step 6 with a different point Q.

Remark 5.6.2. The bad case in point 8. may happen only if the GCD is
(N, N′) 6= 1.

Example 5.6.3. We want to build an elliptic curve over the field F17 with
N = 24 points. Observe that 24 lies in the Hasse interval of possible cardi-
nalities [d17+ 1− 2

√
17e, b17+ 1+ 2

√
17c] = [10, 26]. Set t = 17+ 1− 24 =

−6. We look for a fundamental discriminant D such that

D =
t2 − 4p

s2 =
−25

s2

In order to have D as small as possible we are forced to choose s = 2, and
so D = −8. The quadratic field having−8 as discriminant is K = Q(

√
−2),

andOK = Z[
√
−2]. Following Example 5.4.1 we find that the elliptic curve

over F17 with complex multiplication given by OK is

E1 : y2 = x3 + 8x + 8

and the twisted curve is

E2 : y2 = x3 + 4x + 12

In Example 5.4.1 we found that p = pp, where p = (3 + 2
√
−2). We know

that one of the Ei has Frobenius endomorphism corresponding to p, and
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the other one has Frobenius endomorphism corresponding to −p (as p =
(±p)(±p), see Proposition 4.3.5). The one with Frobenius p has cardinality
the norm of p− 1:

p + 1− t = pp+ 1− (p+ p) = (p− 1)(p− 1)
= N(p− 1) = N(2 + 2

√
−2) = 12

and the other has cardinality the norm of p+ 1:

p + 1 + t = pp+ 1 + (p+ p) = (p+ 1)(p+ 1)
= N(p+ 1) = N(4 + 2

√
−2) = 24

Pick a random point on E1, say P = (10, 3). Computer calculations tell us
that ordE1

P = 24. Therefore

#E1(F17) = 24
#E2(F17) = 12



CHAPTER 6

Schoof’s Algorithm

Abstract

In this chapter we will present Schoof’s deterministic algorithm to com-
pute the number of Fq-points of an elliptic curve that is defined over a
finite field Fq and which is given by a Weierstrass equation. The algorithm
takes - as we shall see - O(log8+o(1)q) elementary operations (bit opera-
tions). If we use fast exponentiation arithmetic, the total cost will be re-
duced to O(log5+o(1)q).

6.1 Motivation

Let E be an elliptic curve defined over a finite field Fp. For many appli-
cations, it is important to have an efficient way to compute the number of
points in E(Fp), where p has usually many decimal digits. For instance, in
elliptic curve cryptography it is important to know the number of points to
judge the difficulty of solving the discrete logarithm problem in the group
of points on an elliptic curve.

So it is a major problem to study an efficient way of computing #E(Fp)
for large primes. Before 1985, approaches to counting points on elliptic
curves such as the naive one (which we will consider in a moment) and
baby-step giant-step algorithms were not practical and had an exponential
running time. In 1985, René Schoof from university of Amsterdam pub-
lished, in his paper [8], an efficient way to determine #E(Fp). It was a
theoretical breakthrough, as it was the first deterministic polynomial time
algorithm for counting points on elliptic curves.

87
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In the 1990’s, Elkies and Atkies improved Schoof’s algorithm by study-
ing elliptic curves over C. The so called Schoof-Elkies-Atkin (SEA) algo-
rithm can deal the problem of computing #E(Fp), where p has hundreds of
digits, see [9].

6.2 The Setup and the Naive Method

Let p 6= 2, 3 be a prime and let E be an elliptic curve over Fp given by a
Weierstrass equation

y2 = x3 + Ax + B (6.1)

for some A, B ∈ Fp. The curve is not singular, so 4A3 + 27B2 6≡ 0 (mod p).
We know that the set E(Fp) of rational points of E consists of the solutions
(a, b) ∈ F2

p satisfying the curve equation and the point at infinity O. Using
the group law on elliptic curves restricted to this set we know that this
set E(Fp) forms an abelian group, with O acting as the zero element. The
number of points in E(Fp) with given X-coordinate x ∈ Fp is 0, 1 or 2.

Let
(
·
p

)
denote the usual quadratic symbol(1). There are

1 +
(

x3 + Ax + B
p

)
rational points on E with X-coordinate equal to x. For a discussion involv-
ing the complexity of Legendre symbol, see Appendix A.1. Including the
point at infinity, the set of rational points E(Fp) of E therefore has cardinal-
ity

#E(Fp) = 1 + ∑
x∈Fp

(
1 +

(
x3 + Ax + B

p

))
The 1 in this equation stands for the point at infinity O = [0 : 1 : 0]. If we
group altogheter the ones in the previous equation, we get

#E(Fp) = 1 + ∑
x∈Fp

(
1 +

(
x3 + Ax + B

p

))
= 1 + p + ∑

x∈Fp

(
x3 + Ax + B

p

)
Remark 6.2.1. The same argument holds if we consider a finite field Fq
with q = pr, where p 6= 2, 3 is prime and r ∈ N (and we use Jacobi’s
symbol instead of Legendre’s).

(1)Recall that an integer a is a quadratic residue modulo p if it is congruent to a perfect
square modulo p and is a quadratic nonresidue modulo p otherwise. The Legendre symbol
is defined as follows:(

a
p

)
=


1 if a is a quadratic residue modulo p and a 6≡ 0 (mod p)
−1 if a is a quadratic non-residue modulo p

0 if a ≡ 0 (mod p).
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Remark 6.2.2. We deduce a first trivial bound #E(Fp) ≤ 2p + 1 (see Re-
mark 4.1.8). We can use this equation to compute the number of points in
E(Fp): we then have to compute p Legendre symbols. Now, every Leg-
endre symbol is computed using fast exponentiation, and therefore by the
result in Appendix A.1, the total running time is O(qlog3q) if we use the
elementary multiplication algorithm.

So this naive counting algorithm is not polynomial time: the size of the
result is the number of digits in #E(Fq) and this is ≤ log10(3q + 1) + 1. An
efficient counting algorithm should run in time polynomial in log q, and
this is the case of Schoof’s algorithm.

6.3 The Idea Behind the Algorithm

To set up the situation, let E/Fq be an elliptic curve defined over a finite
field Fq, where q = pr for p 6= 2, 3 a prime and r an integer ≥ 1, and
consider its Weierstrass equation

y2 = f (x) := x3 + Ax + B

with A, B ∈ Fq. Hasse’s theorem 4.1.10 says that

#E(Fq) = q + 1− t (6.2)

with
|t| ≤ 2

√
q (6.3)

We start by quickly describing the ideas behind Schoof’s Algorithm,
which computes #E(Fq) in polynomial time, i.e., it computes #E(Fq) in
O(logcq) steps, where c is fixed, independent of q. Its approach is to com-
pute the cardinality #E(Fq) by making use of Hasse’s theorem on elliptic
curves along with the Chinese remainder theorem and division polynomi-
als.

Hasse’s theorem simplifies our problem by narrowing down #E(Fq) to
a finite (even if large) set of possibilities. We want to compute the value t as
seen in equation 6.2: it is enough to compute t modulo N where N > 4

√
q.

While there is no efficient way to compute t (mod N) directly for general
N, it is possible to compute t (mod l) for l a small prime, rather efficiently.
We choose S = {l1, l2, ..., lr} to be a set of distinct primes such that ∏ li =
N > 4

√
q. Given t (mod li) for all li ∈ S, the Chinese remainder theorem

allows us to compute t (mod N).
Now, in order to compute t (mod l) for a prime l 6= p, we make use

of the theory of the Frobenius endomorphism φ and division polynomials.
Note that considering primes l 6= p is no loss since we can always pick a
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bigger prime to take its place to ensure the product is big enough. Let

φ : E(Fq) → E(Fq)

(x, y) → (xq, yq)

be the q-power Frobenius map, so Theorem 4.2.5(b) tells us that

φ2 − tφ + q = 0 (6.4)

in End(E). In particular, if P ∈ E(Fq)[l] (the group of l-torsion points, see
Definition 2.4.3), then

φ2(P)− [t]φ(P) + [q]P = O

so if we write P = (x, y) (we assume that P 6= O), then

(xq2
, yq2

)− [t](xq, yq) + [q](x, y) = O

One could try to compute these points (xq2
, yq2

), (xq, yq) and [q](x, y) as
functions in the coordinate ring Fp[x, y]/(y2 − f (x)) of E and the search
for a value of t which satisfies the equation. However, the degrees get very
large and this approach is hopeless.

A key observation is that, since the point P = (x, y) is chosen to have
order l, we have [q]P = [q]P, where q is the unique integer such that q ≡ q
(mod l), 0 ≤ q < l.

Now, note that φ(O) = O and that for any integer r we have rφ(P) =
φ(rP). Thus φ(P) will have the same order as P: since P = (x, y) ∈ E[l], we
have also φ(P) ∈ E[l] and so [t](xq, yq) = [t̄](xq, yq), where t ≡ t̄ (mod l)
with 0 ≤ t < l. Hence we have reduced our problem to solving the equa-
tion

(xq2
, yq2

) + [q̄](x, y) ≡ [t̄](xq, yq) (6.5)

Remark 6.3.1. We can compute the trace t of the Frobenius endomorphism
modulo l by checking which of the relations

(φ2 − tφ + q)P = 0

hold on E[l].

Remark 6.3.2. For ease of notation, when the context is clear we will often
write mP instead of [m]P for the multiplication-by-m map.

Remark 6.3.3. Of course, we don’t know the value of t, so for each integer
n between 0 and l we compute [n](xq, yq) for a point (x, y) ∈ E[l]/{O} and
check to see whether it satisfies

[n](xq, yq) = (xq2
, yq2

) + [q](x, y)
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However, the individual points in E[l] tend to be defined over large exten-
sion fields of Fq, so we instead work with all of the l-torsion points simul-
taneously. To do this, we use the division polynomial (Definition 6.5.2)

ψl(x) ∈ Fq[x]

whose roots are the x-coordinates of the nonzero l-torsion points of E. (For
simplicity, we assume that l 6= 2.) This division polynomial has degree
1
2 (l

2 − 1) and is easily computed using the recurrence described in Defini-
tion 6.5.2. We then perform all computations in the quotient ring

Rl = Fq[x, y]/
(
ψl(x), y2 − f (x)

)
Thus anytime we have a nonlinear power of y, we replace y2 with f (x), and
anytime we have a power xd with d ≥ 1

2 (l
2 − 1), we divide by ψl(x) and

take the remainder. In this way we never have to work with polynomials
of degree greater than 1

2 (l
2 − 3).

Our goal is to compute the value of t (mod l) for enough primes l to
determine t. Hasse’s theorem says that |t| ≤ 2

√
q, so it suffices to use all

primes l ≤ lmax such that
∏

l≤lmax

l ≥ 4
√

q (6.6)

The preceding discussion is the idea behind the following algorithm which
computes #E(Fq).

Algorithm 4 Schoof’s Algorithm

A := 1;
l := 3;
while A < 4

√
q do

for n = 0, . . . , l − 1 do
if (xq2

, yq2
) + [q](x, y) = [n](xq, yq) in the ring Rl then

Break out the loop;
end if

end for
A = l · A;
nl = n;
l := next largest prime;

end while
Use the Chinese remainder theorem to find an integer a satisfying a ≡
nl( mod l) for all the stored values of nl ;
return #E(Fq) = q + 1− a

Even before going to the detailed description of Schoof’s algorithm, we
can discuss its complexity already.
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6.4 The Complexity

We prove that the running time of Schoof’s algorithm is O(log8q). We
begin by verifying three claims, having in mind the pseudo-code algorithm
4.

(a) The largest prime l used by the algorithm satisfies l ≤ O(logq).

By classical results in analytic number theory, we know that the prime
number theorem implies the statement

lim
X→∞

1
X ∑

l≤X,lprime
log l = 1

Hence ∏l≤X l ≈ eX, so in order to make the product larger than 4
√

q,
it suffices to take X ≈ 1

2 log(16q).

(b) Multiplication in the ring Rl can be done in O(l4log2q) bit operations.

Elements of the ring Rl are polynomials of degree O(l2). Multiplica-
tion of two such polynomials and reduction modulo ψl(x) takes O(l4)
elementary operations (additions and multiplications) in the field Fq.
Similarly, multiplication in Fq takes O(log2q) bit operations. So basic
operations in Rl take O(l4log2q) bit operations.

Remark 6.4.1. A bit operation is a basic computer operation on one or
two bits. Examples of bit operations include addition, multiplication,
and, or, xor, and complement. Observe that, if we use fast exponenti-
ation methods, we can reduce multiplication in Rl to O((l2logq)1+ε)
bit operations, at the cost of a larger big-O constant.

(c) It takes O(logq) ring operations in Rl to reduce xq, yq, xq2
, yq2

in the
ring Rl .

In general, the square-and-multiply algorithm (see [10, §XI.1]) allows
us to compute powers xn and yn using O(logn) multiplications in Rl .
We note that this computation is done only once, and then the points

(xq2
, yq2

) + [q mod l](x, y) and (xq, yq)

are computed and stored for use in step (4) of Schoof’s algorithm.

We now use (a), (b), and (c) to estimate the running time of Schoof’s
algorithm. From (a), we need to use only primes l that are less than
O(logq). There are O(logq/log logq) such primes, so that is how
many times the A-loop, steps (2)-(9), is executed. Then, each time
we go through the A-loop, the n loop, steps (3)-(5), is executed l =
O(logq) times.
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Further, since l = O(logq), claim (b) says that basic operations in
Rl take O(log6q) bit operations. The value of [n](xq, yq) in step (4)
can be computed in O(1) operations in Rl from the previous value
[n− 1](xq, yq), or we can be inefficient and compute it in O(logn) =
O(logl) = O(log logq) Rl-operations using the double-and-add algo-
rithm.

Hence the total number of bit operations required by Schoof’s algo-
rithm is

A loop · n loop · bit operations per Rl operation

i.e.
O(logq) ·O(logq) ·O(log6q) = O(log8q)

bit operations.

This completes the proof that Schoof’s algorithm computes #E(Fq) in poly-
nomial time.

Remark 6.4.2. If we use fast arithmetic methods, we have that the total cost
of Schoof algorithm is actually

T = O(log5+o(1)q)

The memory space used by the algorithm is

M = log3q

because we need to store the division polynomials ψl . They have degree
(l2 − 1)/2 and coefficients in Fq.

6.5 The Division Polynomials

Remark 6.5.1. From now on, we will just consider the problem of comput-
ing #E(Fq) for q prime. In fact we have seen in Theorem 4.2.5(a) how one
can easily compute #E(Fq), with q = pr, once #E(Fp) is known.

Schoof idea to compute easily t modulo primes l relies on the introduc-
tion of the so called division polynomials ψn for the curve E. By their very
definition, these polynomials ψn cancel exactly on n-torsion points. Let
E[n] = {P ∈ E(Fp) | nP = 0}. We want to define ψn := ψn(x, y) ∈ Fq[x, y]
in such a way that

ψn(x, y) = 0⇔ (x, y) ∈ E[n]
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Definition 6.5.2. These polynomials are defined recursively as follows for
n ∈ Z≥−1.

ψ−1(x, y) = −1, ψ0(x, y) = 0, ψ1(x, y) = 1, ψ2(x, y) = 2y,
ψ3(x, y) = 3x4 + 6Ax2 + 12Bx− A2,
ψ4(x, y) = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3),

ψ2n(x, y) = ψn(ψn+2ψ2
n−1 − ψn−2ψ2

n+1)/2y (n ∈ Z≥1),
ψ2n+1(x, y) = ψn+2ψ3

n − ψ3
n+1ψn−1 (n ∈ Z≥1).

For practical reasons, we now define the polynomials fn(x) ∈ Fq[x] as
follows. First we eliminate all y2-terms from ψn: using the elliptic curve
equation we can replace y2 with x3 + Ax + B. More generally we can re-
place y2k with (x3 + Ax + B)k. This allows us to express the division poly-
nomials as elements ψ′n(x, y) of Fq[x] or yFq[x].

fn(x) = ψ′n(x, y) if n is odd, (6.7)
fn(x) = ψ′n(x, y)/y if n is even. (6.8)

These polynomials, by definition, also have the property that fn(x) = 0 if
and only if x is the x-coordinate of a point of order n. From the recursive
formulas for ψn given above, one easily deduces that

deg fn =
1
2
(n2 − 1) if n is odd, q - n,

deg fn =
1
2
(n2 − 4) if n is even, q - n

Proposition 6.5.3. Let P = (x, y) ∈ E(Fq) with P /∈ E[2] and let n ∈ Z≥−1;
then

nP = 0⇔ fn(x) = 0 (6.9)

Proof. See Lang, Elliptic curves: diophantine analysis.

Proposition 6.5.4. Let P = (x, y) ∈ E(Fq); let n ∈ Z≥1 with nP 6= 0; then

nP =

(
x− ψn−1ψn+1

ψ2
n

,
ψn+1ψ2

n−1 − ψn−2ψ2
n+1

4yψ3
n

)
(6.10)

(By ψk we mean ψk(x, y)).

Proof. See Lang, Elliptic curves: diophantine analysis.

These explicit formulas will enable us to do the computations on l-
torsion points of E(Fq) that we need in our algorithm.
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6.6 Algorithm Implementation

We are now ready to see the algorithm in detail. After computing a
number L for which condition 6.6 holds and after making a list of the poly-
nomials fn (for n ∈ [1, L]), our second step is to compute t (mod l) for
different primes l ≤ L. For the case of l = 2 we devise an ad hoc procedure,
so we consider this case first. For l > 2 we will proceed differently, by mean
of the Frobenius endomorphism and the division polynomials.

6.6.1 The case l = 2

Let l = 2. As usual, assume q is odd. Then we have

#E(Fq) = q + 1− t ≡ t mod 2

Now, by Lagrange’s and Sylow’s theorems, #E(Fq) is even if and only if
there exists a subgroup of order 2. So in particular

t ≡ 0 mod 2⇔ ∃P ∈ E(Fq) such that 2P = O

Now, by definition of addition in the group, any element of order 2 must be
of the form P = (x0, 0). Therefore, t ≡ 0 mod 2 if and only if the polynomial
x3 + Ax + B has a root x0 ∈ Fq. Thanks to a basic result in algebra, this is
true if and only if gcd(xq − x, x3 + Ax + B) 6= 1. To sum up,

t ≡
{

1(mod 2) if gcd(xq − x, x3 + Ax + B) = 1
0(mod 2) if gcd(xq − x, x3 + Ax + B) 6= 1

6.6.2 The case l > 2

We now proceed to see the part of the algorithm in which the computa-
tion modulo primes l 6= 2 is made explicit. Recall equation 6.5:

(xq2
, yq2

) + q(x, y) ≡ τ(xq, yq)

where we called τ := t. By the Remark 6.3.1, we can compute t (mod l) by
checking which of the relations

φ2
l + q = τφl (τ ∈ Z/lZ) (6.11)

holds on E[l]. These tests can be effected by computations with polynomi-
als in Fq[X, Y]: let l be a prime not equal to 2 or p and let P = (x, y) ∈ E[l]
not equal to 0. By Proposition 6.5.4 the relation 6.11 holds for (x, y) if and
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only if

(xq2
, yq2

) +

(
x−

ψq−1ψq+1

ψ2
q

,
ψq+2ψ2

q−1 − ψq−2ψ2
q+1

4yψ3
q

)
=

=

 0 if τ ≡ 0 ( mod l),(
xq −

(
ψτ−1ψτ+1

ψ2
τ

)q
,
(

ψτ+2ψ2
τ−1−ψτ−2ψ2

τ+1
4yψ3

τ

)q
)

otherwise

(6.12)

(By ψk we denote ψk(x, y) as before). By Proposition 6.5.3 the point P =
(x, y) is in E[l] if and only if ψl(x, y) or, equivalently, fl(x) = 0. Using
formula 6.1 and the addition formulas of Theorem 2.2.2, the relation 6.12
can be transformed into relations of the form

H1(x) = 0 and H2(x) = 0

for some polynomials in Fq[X]. This comes from the fact that P = (x, y)
satisfies 6.12 if and only if −P = (x,−y) does. The final test boils down to
testing whether

H1 ≡ 0 (mod fl) and H2 ≡ 0 (mod fl) (6.13)

in Fq[X].This test is done for every τ ∈ Z/lZ, until a value of τ is encoun-
tered for which 6.6.2 holds; then we have that t ≡ τ( mod l). Note that
testing 6.11 is equivalent to testing whether φ2

l + k = τφl , holds on E[l],
where k ≡ q (mod l) and 1 ≤ k < l.

We will use now formula 6.12; since we use the addition formulas of
Theorem 2.2.2 to evaluate 6.12, we distinguish the cases where the points
are distinct or not: first test whether there is a nonzero point P = (x, y) in
E[l] for which φ2

l P = ±kP holds. Here k ≡ q (mod l) and 1 ≤ k < l. So we
must test Whether

xq2
= x− ψk−1ψk+1

ψ2
k

(x, y)

holds or, using fm(X) rather than ψm(X, Y)

xq2
=

 x− fk−1(x) fk+1(x)
f 2
k (x)(x3+Ax+B) if k is even

x− fk−1(x) fk+1(x)(x3+Ax+B)
f 2
k (x) if k is odd

Note that the denominators in the above expressions do not vanish on E[l].
In order to simplify notation, put

gk(x) :=

{
(xq2 − x) f 2

k (x)(x3 + ax + b) + fk−1(x) fk+1(x) k even
(xq2 − x) f 2

k (x) + fk−1(x) fk+1(x)(x3 + ax + b) k odd
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We find that
φ2

l P = ±kP if and only if gk(x) = 0

and we can test whether a point like P exists in E[l] by computing gcd(gk(x), fl(x)).
We have two cases:

Case 1 If gcd(gk(x), fl(x)) 6= 1, we have that a point P exists in E[l] with
φ2

l P = ±qP.

Case 2 If gcd(gk(x), fl(x)) = 1, we have that τ 6= 0 in 6.11, and we test
equation 6.5 for various values of τ. In testing 6.11 for these values
we can, when adding φ2

l (x, y) and q(x, y), apply the version of the
addition formulas where the two points have distinct X-coordinates.

We now discuss the two cases in detail. Case 1. This is the case where for
some nonzero P ∈ E[l] we have that φ2

l P = ±qP. We’ll see that, in this
case, t ∈ {0,−2w,+2w}, where w2 ≡ q (mod l). If φ2

l P = −qP, for some
nonzero P, we have by 6.4 that tφl P = 0, whence, since φl P 6= 0, that t ≡ 0
(mod l). If φ2

l P = qP for some nonzero P, we have by 6.4 that

(2q− tφl)P = 0 and φl P =
2P
t

P

(Note that t 6≡ 0 (mod l) since l 6= 2, p). From this, by squaring both sides,
we deduce that 4q2 = t2φ2

l = t2q, i.e. t2 ≡ 4q (mod l). Therefore, q is
a quadratic residue. Let w ∈ Z with 0 < w < l denote a square root of
q (mod l); this number may be computed by successively trying 1, 2, . . ..
Once w is found, we have 4w2 = t2, so that t = ±2w. Now

(φl − w)(φl + w) = φ2
l − q = 0 so φl P = ±wP

and therefore the eigenvalues of φl acting on E[l] are w and −w. We can
decide Case l by the following computations.

If ( q
l ) = −1 we clearly have that t ≡ 0 (mod l); if not, we compute w, a

square root of q (mod l) with 0 < w < l and we test whether w or−w is an
eigenvalue of φl ; if this is not the ease, we conclude that t ≡ 0 (mod l) and
if indeed a nonzero point P exists with φl P = ±wP, we test whether either
φl P = wP or φl P = −wP holds. In the first case we have t ≡ 2w (mod l);
in the second case, t ≡ −2w (mod l). Put

hw(x) :=

{
(xq − x) f 2

w(x)(x3 + ax + b) + fw−1(x) fw+1(x) w even
(xq − x) f 2

w(x) + fw−1(x) fw+1(x)(x3 + ax + b) w odd

Computing explicitly, with w2 ≡ q (mod l), we have that

• if gcd(hw(x), fl(x)) = 1, we have φ2
l P = −qP so that t ≡ 0 (mod l);
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• if gcd(hw(x), fl(x)) 6= 1, then t ≡ ±2w (mod l) and we test the y-
coordinate of φl P = ±wP to determine the sign, like follows.

So suppose we know that φl P = ±wP: we need test the y-coordinate of
φl P = wP. Equation 6.10 gives for the y-coordinate,

yq ≡
ψw+2ψ2

w−1 − ψw−2ψ2
w+1

4yψ3
w

(mod ψl , q)

Put

rw :=

{
4(y2)(q+3)/2 f 3

w(x)− fw+2(x) f 2
w−1 + fw−2(x) f 2

w+1(x) w even
4(y2)(q−1)/2 f 3

w(x)− fw+2(x) f 2
w−1 + fw−2(x) f 2

w+1(x) w odd

where, as usual, y2 = x3 + ax + b. Notice that rw(x) is also a polynomial in
x only since all exponents of y are even.

• If gcd(rw(x), fl(x)) = 1 then there is no P ∈ E[l] for which φl P = wP,
so t ≡ −2w (mod l)

• If gcd(rw(x), fl(x)) 6= 1 such a point exists and t ≡ 2w (mod l).

Case 2. This is the case where φ2
l P 6= ±qP for any P ∈ E[l]. In this case we

will test which of the relations 6.11 holds with τ ∈ Z/lZ×. We have with
P = (x, y) and k ≡ q (mod l) and 0 < k < l, that

φ2
l P+ qP =

(
−xq2 − x +

ψk−1ψk+1

ψ2
k

+ λ2, yq2 − λ

(
−2xq2 − x +

ψk−1ψk+1

ψ2
k

+ λ2

))
,

where

λ =
ψk+2ψ2

k−1 − ψk−2ψ2
k+1 − 4yq2+1ψ3

k

4ψky((x− xq2)ψ2
k − ψk−1ψk+1)

Note that the denominator of λ does not vanish on E[l] since ψk has no
zeros on E[l] and since we are in Case 2. Let τ ∈ Z with 0 < τ < l; we have

τφl P =

(
xq −

(
ψτ+1ψτ−1

ψ2
τ

)q

,

(
ψτ+2ψ2

τ−1 − ψτ−2ψ2
τ+1

4yψ3
τ

)q)
In a way analogous to the computations above one can test, by computa-
tions in Fq[X], which of the relations 6.11 holds by trying τ = 1, . . . , l − 1.
The computations involve evaluating polynomials modulo fl(X) and test-
ing whether they are zero fl(X). We do not give all the details here, since
they are quite long, but it is not difficult to fill in the details. Long story
short, testing whether φ2

l + q = τφl , holds on E[l] boils down to testing
whether

((ψk−1ψk+1 − ψ2
k(Xq2

+ Xq + X))β2 + ψ2
k α2)ψ

2q
τ + ψ

q
τ−1ψ

q
τ+1β2ψ2

k
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and

4Yqψ
3q
τ (α((2Xq2

+ X)β2ψ2
k − ψk−1ψk+1β2 + ψ2

k α2)−Yq2
β3ψ2

k)+

− β3ψ2
k(ψτ+2ψ2

τ−1 − ψτ−2ψ2
τ+1)

q
(6.14)

are zero mod fl(x). Here

α = ψk+2ψ2
k−1 − ψk−2ψ2

k+1 − 4Yq2+1ψ3
k

and
β = ((X− Xq2

)ψ2
k − ψk−1ψk+1)4Yψk

By the expressions 6.14 we understand the polynomials in Fq one gets after
eliminating Y using 6.14 and, if necessary, by dividing the expressions by
Y. The result is a polynomial in Fq[X].

This completes the description of the second step of the algorithm.

6.7 Putting all Together

To sum up, the steps of the algorithm are

Step 1 Compute a number L for which condition 6.6 holds and of making a
list of the polynomials fn for n = 1, 2, . . . , L.

Step 2 Computation of t (mod l) for every prime l ≤ L not equal to p.

Step 3 Computation of t from the values of t mod l obtained using the Chi-
nese Remainder Theorem and the estimate 6.3

Remark 6.7.1. Step 3 is straightforward. This completes the description of
the algorithm.

6.8 Improvements

In the 1990s, Noam Elkies, followed by A. O. L. Atkin, devised im-
provements to Schoof’s basic algorithm by restricting the set of primes
S = {l1, . . . , ls} considered before to primes of a certain kind. These came
to be called Elkies primes and Atkin primes respectively. A prime l is called
an Elkies prime if the characteristic equation: φ2− tφ+ q = 0 splits over Fl ,
while an Atkin prime is a prime that is not an Elkies prime. Atkin showed
how to combine information obtained from the Atkin primes with the in-
formation obtained from Elkies primes to produce an efficient algorithm,
which came to be known as the Schoof-Elkies-Atkin (SEA) algorithm. The
first problem to address is to determine whether a given prime is Elkies or
Atkin. In order to do so, we make use of modular polynomials, which come
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from the study of modular forms and an interpretation of elliptic curves
over the complex numbers as lattices. Once we have determined which
case we are in, instead of using division polynomials, we proceed by work-
ing modulo the modular polynomials fl which have a lower degree than
the corresponding division polynomial ψl (degree O(l) rather than O(l2)).
This results in a further reduction in the running time, giving us an algo-
rithm more efficient than Schoof’s, with complexity O(log6 q) for standard
arithmetic and O(log4 q) using fast exponentiation techniques.



CHAPTER 7

Computing Square Roots in Finite Fields

Abstract

An important problem in computational number theory is the computation
of square roots modulo a prime p. As an application of Schoof’s results, we
give an algorithm to compute the square root of x ∈ Z mod p, whenever
x is a square mod p. This algorithm is deterministic and for fixed x ∈ Z it
takes O(log8 p) elementary operations; here the O-symbol depends on x; in
general, the algorithm takes O((|x|1/2+εlog p)8) elementary operations for
any ε > 0. If we apply fast multiplication techniques, the algorithm will
take O((|x|1/2log p)5+ε) elementary operations for any ε > 0.

Let p be an odd prime number, and suppose that
(

a
p

)
= 1. Then by

definition, there exists an x such that x2 ≡ a (mod p). Our task is to find
such a square x. A brute force search would take time O(p) and, even for p
moderately large, this is of course not practical. We need a faster algorithm
to do this. We distinguish two cases:

1. p ≡ 3, 5, 7 (mod 8) (easy)

2. p ≡ 1 (mod 8) (hard)

101
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7.1 The First Case

7.1.1 p ≡ 3 (mod 4)

There is an easy solution which comes to mind that works for half of
the primes p, i.e. primes p ≡ 3 (mod 4). In this case a solution is given by

x = a(p+1)/4 (mod p)

Indeed, since a is a quadratic residue, we have a(p−1)/2 (mod p), hence

x2 ≡ a(p+1)/2 ≡ a · a(p−1)/2 ≡ a ( mod p)

as claimed.

7.1.2 p ≡ 5 (mod 8)

A less trivial solution works for half of the remaining primes, i.e. primes
p ≡ 5 (mod 8). Since we have a(p−1)/2 ≡ 1 (mod p) and since Fp is a field,
we must have

a(p−1)/4 ≡ ±1 (mod p)

Now, if the sign is +, we can easily check as above that

x = a(p+3)/8 (mod p)

is a solution. Otherwise, using p ≡ 5 (mod 8), we know that 2(p−1)/2 ≡ −1
(mod p). Then one can check that

x = 2a · (4a)(p−5)/8 (mod p)

is a solution.

7.2 The Second Case

The only remaining case is p ≡ 1 (mod 8). For this, we will devise
a deterministic algorithm that computes a square root of d ∈ Z modulo
p. This is a direct application of Schoof’s algorithm for counting rational
points on elliptic curves over finite fields.

Remark 7.2.1. This approach, even if it does solve the problem in a deter-
ministic way, is not actually of practical use since it depends very badly on
the size |d|: the algorithm works in fact in polynomial time in |d|log p.

Remark 7.2.2. This approach works in general for primes p ≡ 1 (mod 4),
not just p ≡ 1 (mod 8).
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Let p be a rational prime, and let d ∈ Z be a quadratic residue modulo
p. We want to compute

√
d (mod p). We may assume d < 0: in fact if d > 0

we can compute
√
−1 and then we obtain

√
−d. Let K = Q(

√
d) and con-

sider the ring of integers OK. By the results of Section 5.3 we can construct
an elliptic curve E over Fp if p splits in OK, and by Schoof’s algorithm we
can compute #E(Fp) in deterministic polynomial time in log p. Write

#E(Fp) = p + 1− t

By schoof’s algorithm we can deduce the value t and therefore we obtain
the equation of the characteristic polynomial

P(X) = X2 − tX + p

Remark that t is the trace of the Frobenius map φ:

t = Tr(φ)

Now, consider the ring Z[φ]; we have of course Z[φ] ⊆ OK. Moreover,
p splits in Z[φ] since P(X) has two distinct roots, t and 0 modulo p. We
deduce a ring homomorphism

Ψp : Z[φ] → Z/pZ

φ 7→ t

Now,
√

d ∈ OK; there are two cases to consider.

Case 1
√

d ∈ Z[φ]. We can write
√

d = a + bφ

and look for integers a, b ∈ Z. We deduce
√

d = a + bt (mod p)

i.e. Ψp(
√

d) = a + bt.

Case 2
√

d /∈ Z[φ]. Therefore Z[φ] ( OK and we can consider the conduc-
tor

θ := [OK : Z[φ]] 6= 1

Recall that θ is prime to p if and only if t ≡ 0 (mod p). From Remark
1.2.13 we have

∆φ = θ2∆

where ∆, ∆φ are the discriminant of OK and Z[φ], respectively. Now,
∆φ is the discriminant of the characteristic equation and so ∆φ = t2 −
4p. Therefore

θ2 =
t2 − 4p

∆
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Now, θ
√

d ∈ Z[φ] and so we can write

θ
√

d = a + bφ

with a, b ∈ Z and we deduce

√
d =

a + bt
θ

(mod p)

Example 7.2.3. Take d = −2, p = 11. We have K = Q(
√
−2), OK =

Z[
√
−2], ∆ = −8. By Example 5.4.1, an elliptic curve having ring of endo-

morphism given by OK is

E : y2 = x3 − 53

4704
x− 53

84672

We want to reduce it modulo 11. This is possible since 11 splits in OK:

∆ = −8 ≡ 3 ≡ 52 (mod 11)

Now,
4704 ≡ −4 (mod 11), 84672 ≡ 5 (mod 11)

and since −53 ≡ −4 (mod 1)1, we have

−53

4704
≡ 1 (mod 11)

−53

84672
≡ −52 ≡ 8 (mod 11)

So we obtain the curve over F11

E : y2 = x3 + x + 8

By Schoof’s algorithm, we get

#E(F11) = 6 = 11 + 1− t

so t = Tr(φ) = 6. The characteristic polynomial is

P(X) = X2 − 6X + 11

and so ∆φ = t2 − 4p = −8. Therefore θ = 1, Z[φ] = OK and so
√
−2 ∈

Z[φ].
We want to find two integers a, b ∈ Z such that a + bφ =

√
−2. By a

trace reasoning, we have

0 = Tr(
√
−2) = Tr(a + bφ) = 2a + bt = 2a + 6b
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We find a = −3b and −3b + bφ =
√
−2. Now, by a norm reasoning we get

2 = N(
√
−2) = N(b(φ− 3)) = b2(φ− 3)(φ− 3) =

= b2(p + 9− 3t) = 2b2

So b2 = 1; take b = 1, a = −3. We have
√
−2 = −3 + φ. By applying the

ring homomorphism Ψp to this identity we obtain

Ψp(−3 + φ) = −3 + t = 3

which is a square root of −2 modulo 11.



APPENDIX A

Appendix

A.1 Algorithm for Fast Exponentiation

A very important problem is exponentiation: given a mod N with a ∈
[0, N[ and an integer e ≥ 1, compute ae mod N.

Computing ae and then reducing modulo N is not a good idea because
ae might be very large. Another option would be to set a1 = a and compute

ak := (ak−1 × a)%N

for 2 ≤ k ≤ e. This requires e − 1 multiplications and e − 1 Euclidean
divisions, and most important we never deal with integers bigger than N2.
The complexity of this method is thus c× e× log2N, where c is a positive
constant, using elementary school algorithms. However, we can do much
better: we write the expansion of e in base 2

e =
K

∑
k=0

εk2k

and we set b0 = a, bk = b2
k−1%N for 1 ≤ k ≤ K. We then notice that

ae ≡
K

∏
k=0

bεk
k mod N

So we can compute ae%N at the expense of clog e multiplications and Eu-
clidean divisions between integers ≤ N2. The total number of elementary
operations is thus c log elog2N with this method. The algorithm above is
called fast exponentiation and it makes sense in any group.
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A first interesting consequence is that for p an odd prime and a an inte-
ger such that 1 ≤ a ≤ p− 1, we can compute the Legendre symbol(

a
p

)
≡ a

p−1
2 mod p

at the expense of clog3 p elementary operations using elementary multipli-
cation. If we use quasi-linear integer multiplication the running time is
(logp)2+o(1). So testing quadratic residues is achieved in polynomial deter-
ministic time.
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