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Introduction

0.1. For a smooth complex projective variety X or, more generally, a compact Ké&hler
manifold X, a fundamental result is the so-called “Hodge decomposition” of its singular coho-
mology with complex coefficients. More precisely, we have a decomposition of the cohomology
groups

(1) H'(X,C)= P HP(X,Q%)
pt+g=n

where Q% is the sheaf of holomorphic g-differential forms on X. This decomposition behaves
well with respect to the action of the Galois group of C over R: if we denote by ¢ the complex
conjugation, i.e. the unique non trivial element of Gal(C/R), then ¢ acts on H"(X, C) and trans-
forms a holomorphic g-form in an anti-holomorphic g-form, inducing a map on the cohomology
groups that satisfies HP(X, Q%) = HY(X, Q).

If X is an abelian variety over C, the Hodge decomposition (1) reduces to give the following
canonical isomorphism

(2) HY(X,C) = H'(X,0x) @ H(X, L),

since the cup-product pairings identify H" (X, C) with the 7-th exterior power of H' (X, C) and
(see [Ser59, VII, Th. 10])

HY(X, Q%) = /q\Hl(X, Ox)® ;\HO(X, 0%).

0.2. In the late sixties, Tate asked if a similar result could hold for the p-adic étale cohomol-
ogy of a proper and smooth variety over a complete discrete valuation field K of characteristic
0 and perfect residue field of characteristic p > 0. In [Tat67], he established a “Hodge-like”
decomposition for an abelian variety with good reduction over K, after extending the scalars to
the p-adic completion of an algebraic closure of K.

More precisely, let Ok be the valuation ring of K, S = Spec(Ok), n the generic point of S
and 7 the geometric point corresponding to an algebraic closure K of K. Let Oc be the p-adic
completion of Oz, C its fraction field. Let G = Gal(K/K) be the absolute Galois group of K.
For every r € N, we denote by C(r) the Galois module C twisted by the action of the r-power
of the p-adic cyclotomic character x, and by C(—r) its dual. Let X be an abelian variety over
n with good reduction. Tate proved the existence of a canonical G g-equivariant isomorphism

3) C ®q, Hg (X7, Q) = HY(X, Q%)) @k C(-1) & H'(X, Ox) @k C,

now called the Hodge-Tate decomposition.
We know that there is a canonical isomorphism

Hét(Xﬁa Zp) = HomZp (Tp<Xﬁ)7 Zp)7

ii



INTRODUCTION iii

where T, (X5) is the p-adic Tate module of the abelian variety X3. In this case, (3) is equivalent
to the existence of canonical isomorphisms

H'(X,0x) = Homg (¢,1(Ty(X7), C)

) HO(X, QL) = Homs, ) (T, (Xq), C(1).

The theorem was proved more generally in [Tat67] for p-divisible groups. Using the semi-
stable reduction theorem, Raynaud proved in [SGA 7] (Exposé 9 Th. 3.6 and Prop. 5.6) the
conjecture for all abelian varieties over K, while the proof for the most general statement was
established in 1988 by Faltings in [Fal88].

In this mémoire we present a different proof, due to Fontaine [Fon82|, of the theorem of

Tate and Raynaud as a consequence of a sophisticated, although relatively elementary, analysis

of the module of Kahler differentials Qéf e
K K

avoids completely the notion of p-divisible group as well as the notion of Néron model and it

. The main advantage of this argument is that it

does not involve the semi-stable reduction theorem.

We give an overview of the content of the different chapters.

0.3. Let K be a complete discrete valuation field of characteristic 0, with perfect residue
field of characteristic p > 0. In the first chapter, following [Fon04], we present some classical
results of Tate and Sen: they rely on a fine analysis of the ramification in the cyclotomic Z,-
extension of K, i.e. the unique Zp-extension K, of K contained in the field generated over K
by all the p"-th roots of 1.

Let mg_ be the maximal ideal of Ok, Hx = Gal(K/Ks), I'x the quotient Gx/H.
Let L be the fraction field of the p-adic completion of Ok_ . The crucial point is the funda-
mental theorem of Tate 1.2.6, that states that for every finite extension M of K., we have
Tra/k.. (On) 2 mi,,. Using this result, we will show that L'% = CYx = K and that we have
an isomorphism, for every h € N

H(lzont(FKv GLh(KOO)) = Hxlzont(GK7 GLh(C))
Furthermore, we prove that H?, . (G, C(1)) = H.,.(Gx,C(1)) = 0.

cont

In the next section we study the category of C-representations of G, that is the category
of finite dimensional C-vector spaces equipped with a continuous and semi-linear action of Gk .
They form an abelian category, that we denote by Repc(Gk). In a similar way we define the
notion of L-representation and K.-representation of I'x. According to Sen, we have canonical
®-equivalences of categories of representations

Repc(Gk) = Rep,(T'k) — Repy_ (I'k),

that can be described as follows.

By a first theorem of Sen, every C-representation of G, the C-linear morphism C ®j,
WHr — W is an isomorphism. Hence the functor W — WHE is a ®-equivalence between
Repc(Gk) and Repy (I'k).

Let X € Rep;(Gg/Hk) and let X; be the Ko-vector space obtained by taking the
union of all finite dimensional K-subspaces of X that are stable by Gx. A second theorem
of Sen proves that the functor X +— X defines a ®-equivalence between Repy_ (G /Hg) and
Rep; (G /Hg), quasi-inverse of the functor Y — Y ®x_ L.
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Let Y € Repy_(I'x). We will prove that there exists a unique endomorphism s of the
K -vector space Y such that, for every y € Y, there exists an open subgroup I'y of I'x such
that

Y(y) = exp(log xp(7)s) ()
for every v € I'y. The endomowphism s is now called the Sen endomorphism of Y. We will

see that s provides enough information to classify the representations up to isomorphisms. We
conclude the chapter by giving the abstract definition of Hodge-Tate representations.

0.4. In the second chapter we give the proof of Fontaine of the Theorem of Tate and
Raynaud. Let K be as in 0.3. Let Q%Q? 0K be the module of Og-differentials of Oz. The
first part of the chapter is dedicated to the study of this Galois module: we will construct a
surjective, G g-equivariant and Oz-linear morphism

where T, (G,,) denotes the p-adic Tate module of the multiplicative group over K. The kernel
of £ is given by a ® T)(Gy,), where

_ 1
a= {ae K |v(a) > —v(D) — 7}
qg—1
and D is the absolute different of K. By passing to the limit, we will get a G g-isomorphism
(5) Homz, (Qp. 2 _j0,) = C(1).

This will be obtained as a particular case of more general results on Lubin-Tate formal groups,
that hold also when K is a complete discrete valuation field of characteristic p > 0 and perfect
residue field.

Let X be an abelian variety over 7. In section 2.4, we will use the results presented so far
to give Fontaine’s proof of the decomposition (4). The idea goes as follows: the theorem can be
reduced to showing the existence of a K-linear injective morphism

(6) HY(X, Q/,) = Homg, 6,1 (Tp(X), C(1)).

The first step is to consider a proper model X/S of finite type for the abelian variety X/n. The

group scheme structure on X induces a group structure on the set X(Oy), identified with X (K),

and the translation action of X (K) induces a morphism
0= 0xxr: P'HY(X, Q% )5) = Homzie, (X (K), 20, )
for a suitable non negative integer 7. More precisely, given w € p"H(X, Q%e /S), we set o(w) to
be the Z|Gk]-linear morphism
o(w): ur u(w).
Let V,(X) = Homg(Z[p~ '], X(K)). By composing with
Homz (g (X (K). R _j0,) — Homyig, (Vy(X), Homg, (@ O o, )

and extending the scalars to K, we get a K-linear map that eventually restricts to

0= oxxr: H(X, Q%) = Homg, (¢, (T,(X), Homgz, (Qp, Qg? 0k )
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This is the required injective morphism (6), if we take into account the isomorphism (5). It does
not depend on the choice of r and of X.
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CHAPTER 1

C-representations: the theory of Tate and Sen

1.1. Review of group cohomology

1.1.1. Let G be a topological group. Let M be a topological G-module, i.e. a topological
abelian group endowed with a liner and continuous action of G. Let CZ (G, M) be the group
of continuous n-cochains of G with values in M. Let

dp: C" (G, M) — CUH(G, M)

cont cont

be the boundary map
dnf (g1, s Gnt1) = g1f (g2, s Gnin +Z FG1 59595515+ gnr)+(=1) " f (g1, - gn)-

The sequence C (G, M) is a cochain complex We denote by HZ . (G, M) the n-th cohomology
group of this complex: it is called the n-th continuous cohomology group of G with coefficients

in M.

cont

1.1.2. Given a short exact sequence of topological G-modules
0—+M-—M —-M"—0
we have a six-terms-long exact sequence

0— M% - M'° = M 5 H. (G, M) — H

cont

(G, M) — H.

cont

(G, M").

1.1.3. We can still define the groups H? and H! even when we drop the abelian hypothesis
on M, as in [Ser62]|, Appendix to chap. VII. Let M be a topological group, written multi-
plicatively, endowed with a continuous action of G. H% (G, M) is defined as the group M

cont
of elements of M fixed by G. We denote by Z. (G, M) the subset of the set of continuous
functions of G into M such that

cont

f(9192) = f(91)91(f(g2))

for g1,92 € G: we call f € Z (G, M) a continuous cocycle. We say that two cocycles f and
f' are cohomologous and write f ~ f’ if there exists a € M such that

f(9)=a""f(g9)g(a)

for every g € GG. This defines an equivalence relation on the set of cocycles. The quotient set
has a structure of pointed set: it contains a distinguished element equal to the class of the unit
cocycle f(g) = 1 for every g € G. We denote its class by 1. We denote Z} (G, M)/~ by

H. (G, M) and we call it the cohomology set of G with values in M. This definition coincides
(if we retain just the structure of pointed sets) with the usual one in the abelian case.

1



1.2. STATEMENT OF THE THEOREMS OF TATE AND SEN 2

1.1.4. Let G be a topological group and let H be a closed normal subgroup of G. Any
topological G-module M (abelian or not) can be regarded as H-module, as well as M can be
regarded as G/H-module. Then we can naturally define the restriction map

res: HL (G, M) — HL  (H, M)

cont cont

and the inflation map
Inf: H!

cont

(G/H,MH") - H!

cont (G7 M) .

One has the following inflation-restriction exact sequence of pointed sets (resp. of abelian groups
if M is abelian):

(G/H, M7y L, !

cont

(1.1.4.1) 1—H!

cont

(G, M) = H!

cont (H7 M) :
There is a direct proof, valid for the abelian as well as for the non abelian case, in [Ser62], chap.

VII, §6.

1.2. Statement of the theorems of Tate and Sen

1.2.1. Let K be a complete discrete valuation field of characteristic 0, with perfect residue
field of characteristic p > 0. We fix an algebraic closure K of K and we denote by G the
Galois group of K over K. We denote by Ok the ring of integers of K and by Oz the ring of
integers of K. Let O¢ be the p-adic completion of Oz, C its field of fractions. We denote by v,
the valuation of C extending the valuation of K normalized by v,(p) = 1, and by |.| the p-adic
absolute value.

For any subfield M of C, we denote by Oy its valuation ring and by mj; the maximal ideal
of Ops. If M is a finite extension of K we denote by vys the unique valuation of C normalized
by var(M*) = Z and by ey = vpr(p) the absolute ramification index of M.

1.2.2. Let x, be the cyclotomic character of K, i.e. the continuous homomorphism
Xp: Gk — Z;;

that gives the action of Gx on the group of units of order a power of p. Let log be the p-adic
logarithm, log: Z, — Z,. We denote by Hy its kernel and by I the quotient Gk /Hpk. Notice
that I = Z, as abelian groups.

Let K be the cyclotomic Z,-extension of K: it is the unique Z, extension of K contained
in the subfield of K generated by the roots of unity of order a power of p. By construction we
have that Hy = Gal(K /K ) and T'x = Gal(Ky/K). Let L be the closure of K, in C.

The goal of the first part of this chapter is to present the proof of the following theorems
(originally due to Tate and Sen).

1.2.3. THEOREM. We have:
i) HY . (Hg,C)=CHr =1L;

cont

ii) For everyn > 1, HL (Hg,GLy(C)) = 1.

cont

As a corollary, we have C¢% = LU's and H! . (Gx,GL,(C)) = H . (Tx, GLx(L)). Indeed,
CCOx = (CHx)T'x = LT« while the second statement follows from the inflation-restriction exact

sequence (1.1.4.1).

1.2.4. THEOREM. We have:
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1) Hgont(GK7 C) = HY

cont

(Tk,L)=K;
ii) For every h > 1, the map

Hiont (FK7 GLh(KOO)) - H(lzont(PKﬂ GLh(L)) = Hiont(GKv GLh(C))
induced by GLj(Ko) C GL(C) is bijective.
1.2.5. The proof of theorems 1.2.3 and 1.2.4 relies on the following important result of

Tate, whose proof is a consequence of a detailed analysis of a ramified Z,-extension of K (not
necessarily the cyclotomic Z,-extension of 1.2.2).

1.2.6. THEOREM (Tate, cf. [Fon04], Théoréme 1.8). We keep the notations of 1.2.1. Let K
be a ramified Z, extension of K and let M be a finite extension of Koo. Let Ty : M — Koo
be the trace map. Then Try . (Op) 2 mp .

1.3. The proof of Tate’s Theorem 1.2.6

1.3.1. Let K beasin1.2.1. Let E be a finite extension of K, J the Galois group Gal(E/K),
a € Op such that Op = Ok|a] [Ser62, chap. III, Prop. 12]. We denote by J; the i-th higher
ramification group of K of J [Ser62, chap. IV, §1]. We have

JZ'Z{QE J‘ij(g) Zi-i-l}
where i7(g9) = vp((g — 1)a) for every g € J. We call the integers i such that J; # Ji41 the

ramification numbers of the extension E/K.

1.3.2. PROPOSITION. Let E be a cyclic ramified extension of K of degree p. Let i be the
unique ramification number of the extension E/K. Then we have i < ]% and, for every x € E,

vp(Trp/Kk(2)) = ve(z) + (p — 1)i.

PROOF. Let 7 be a generator of J = Gal(E/K). We have, for every « € E, vg((t — 1)z) >
vp(z) + i, and the equality holds if an only if vg(x) is prime to p. Let P(T) € Z[T] be a
polynomial such that

p—1
(1.3.2.1) pP(T) =) T/ — (T —1)""".
=0
Hence, for every x € E, we have
(1.3.2.2) Trpx(z) = (1 — 1)’ (z) + pP(7)(2)
and
(1.3.2.3) ve(pP(1)(z)) = ep + vE(zx),
since - |
pP(T)(@) =pr+ Y (1+7+...+7 H1—7)() - (1 -7 (a).
j=1

Suppose that p divides i and let 7 € E such that vg(7) = 1. We have vg((7 — 1)P7 (7)) =
(p—1)i+1 and vg(pP(7)(7)) = eg+1 (by (1.3.2.3)), that are both prime to p (as eg is divisible
by p). On the other hand, vg(Trg/ k(7)) = pvk (Trg k(7)) is divisible by p. Therefore we have
the equality eg + 1 = (p — 1)i + 1 (using (1.3.2.2)).
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Suppose that p does not divide i and let y € E such that vg(y) = i. We have
vp((r =17 y)) = (p — V)i +i = pi,
while vg(pP(7)(y)) = e + i is prime to p. As we have again that vg(Trg/k(y)) is divisible by

p, we must have pi < eg + 1.
By (1.3.2.2) we have, in both cases,

vE(Trg/k(2)) 2 vp(z) + min{(p — 1)i,ep} = vp(z) + (p — 1)t
for every x € E. O
1.3.3. LEMMA. Let m,n be integers verifying n > m — 1 > 0. Let ig,41,...,im_1 be integers

verifying ir = ir—1 mod p” for 1 <r < m —1. Then the integers j + i, ;) for j € Z verifying
0<j<p" andvy(j) < m are all distinct mod p™.

PROOF. Suppose, by contradiction, that there exist j,j" € Z as above and verifying j' +
Gy (it = J i, () +P"a. Let s = wvp(4), " = vp(j'). We can suppose s < s, so that 0 < s < m—2.
But then v,(j — j) = s, while

vp((is —ig) +p"a) > min{s +1,n} = s+ 1,
which is a contradiction, as j' — j = (is — ig) + p"a. O

1.3.4. PROPOSITION. Let n be an integer > 1, E a cyclic totally ramified extension of K of
degree p". Let ~y be a generator of the Galois group Gal(E/K). Then

i) The extension E/K has exactly n distinct ramification numbers
O<to<t1 <...<1%p_1-

ii) Forl1<r<mn-—1, we have i, =r,—1 mod p".
iii) For everyy € E* there exists A\ € K such that

1
(1.3.4.1) up(y = A) = vp((v = Dy) — 1
PROOF. Let K’ (resp. E') be the unique extension of degree p (resp. of degree p"~!) of K con-
tained in E. We argue by induction on n. The ramification numbers of E/K' are iy, ig,...,in1,

since the lower numbering is compatible with the passage to subgroups. Using [Ser62, chap. IV,
Prop. 3], we get that for n > 2, the ramification numbers of E'/K are ig,i1,...4i,—2, and i) fol-
lows.

Let m be a uniformizer of E, so that vg(m) = 1. Let J = Gal(E/K). For every r € N
verifying 1 < r < p", we have i;(y") = iy, and vg(y" — 1)(7) = 4,,() + 1. For every s € Z
verifying v,(s) < n, there exists 75 € E such that vg(ms) = s and vg((v — 1)(7s)) = 5 + iy, (s)-
Indeed, set mo = 1 and define, for every 1 < r < p", m, = wy(m)...7 " }(mw). Then vg(m,) =17
and (y—1)(7,;) = my(m) ...4" "N (7)(y" (7)) —7) /7, so that vp((y—1)(7,)) = 7+, (). For s > p",
let  be the remainder of the division of s by p”. Then there exists A\; € K such that vg = s—r,
and we can take my = \¢m,.. By substituting K with K’, we see that for every s € Z verifying
vp(s) < mn — 1, there exists z5 € E such that vg(zs) = s and ve((7? — 1)(2s)) = 8 + by, (5)+1-

We show ii) by induction on n. For n = 1 there is nothing to prove, so we can assume n > 2.
The induction hypothesis applied to the extension E’'/K shows that

(1.3.4.2) ip =ip—1 modp for 1<r<n-2.
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n—2

On the other hand, the induction hypothesis applied to £/ K’ shows that i,,—1 = i,—2 mod p
Let s =i,—9 — in—1. To conclude we need to show that v,(s) # n — 2.

We argue by contradiction. Let zs be as above, so that vg((7? — 1)(zs)) = 8 + in—1 = in—2-
Let 73 = (1+~y+79%+ ... + 97 H(z). By (1.3.2.1) and (1.3.2.3) we have vg(zs) > s and
vE((y—1)(zs)) = vE((7? —1)(2s)) = in—2. Since the extension E/K is totally ramified of degree
p", {7 hi<r<pn is a basis of E over K. Write x5 = Zflal b,m, for b, € K. Hence

. 4 7
vp(zs) = 0;{%2}0”{? v (br) + 1}
so that p"vg (b,) +r > s for every r. As (y — 1)(x5) = 511 by (v — 1)(my), if vp(r) =n —1 we
have vg (b, (v — 1)(7)) > s + ip—1 = in—2. By 1.3.3 (for m = n — 1) we have

in—2 = vp((y = D(#s)) = _ <pnmir(l i 1{p”vK(br) A () )
<r 3Up (1) <tp—

Therefore there exists r such that in—2 =7 +4,,() mod p", which is impossible as
Up(in—2 = ly,(r)) = vp(r) +1

by (1.3.4.2).

We finally prove iii). For y € E* we have y = flgl bymy, by € K and we can take A = bg.
Indeed, there exists a unique ro, 0 < ro < p”, such that vg(y — A) = vg(by,7r,). By 1.3.3 (for
m = n) we have

ve((y = 1)(y)) = Oglig;?n{UE(brm + %p(r) <wvp(y —A) +in1

sovp(y —A) > ve((y —1)(y)) — in—1. Hence
ML (- D) —

up(y — A) = vp((v = 1)(y)) — . p—1

by 1.3.2 applied to the extension E/E’. O

1.3.5. PROPOSITION. Let n be an integer > 1, E a cyclic totally ramified extension of K of

degree p"™. Then for every x € E we have

n(p—1)
T > —
T @) = (@) +

PROOF. Let iy < i1... < in—1 be the ramification numbers of the extension E/K. From
1.3.2 we deduce that

—1) jig i
v )(—0+—12+...+ ”n1>.
ex \p p p

and the result follows, since by 1.3.4 ii) we have i, > p" for every r. O

vp(Trg (x)) = vp(x) +

1.3.6. Let K be a ramified Z, extension of K. For every r € N, we denote by K, the
unique extension of degree p” of K contained in K. If I'x = Gal(K+/K), we denote by T,
the Galois group Gal(K~/K;). We fix a topological generator o of ' and we let , = 'ygr be
a topological generator of I';.

By 1.3.4, there exists a unique non negative integer rg > 0 and a strictly increasing sequence
of positive integers

0 <t < ool < lpop < tp < ...
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such that K, is the maximal unramified extension of K contained in K, and that, for every r >
70, the ramification numbers of the extension K, /K, are precisely g, 1, . ..,%r—r,—1. Moreover,
we have i, = i,—1 mod p". The sequence (i, ),¢cy is called the sequence of ramification numbers
of the extension K /K.

1.3.7. Let F be a finite Galois extension of K such that FFN K., = K. For every r > 0, let
F.=K,F and Foo = Koo F. Let J = Gal(Fx/K), Jr = Gal(F,./K,;). Let w, be the canonical
isomorphism J =% J,.. For 7 € J, we set i,(1) = iz, (w,(T)).

1.3.8. PROPOSITION. Under the assumptions of 1.3.7, for every T € J the sequence {i,(7)}
18 stationary.

ProoFr. Up to replacing K with K, for a sufficiently large m, we can suppose that the
extension Fo,/F is totally ramified. Let (j,) be the sequence of ramification numbers of this
extension. Using [Ser62, chap. IV, Prop. 3] we have

i (7_) — iT+1(T) if iT+1(T) < jr

' %(irJrl (7—) + (p - 1)jr) if ir+1(7_) > Jr
or, equivalently,

, ir(T) if i, (1) < jp

1.3.8.1 a1 (7) = . . .
R a0 ={ - 054
Therefore we have to show that there exists r such that i,(7) < j,. Otherwise we would have
ir(T) > jr, so that i,41(7) = pir(7) — (p — 1)jr by (1.3.8.1). Hence, by induction,

ir(1) = plio(7) — (p — 1) (Jre1 + Pjr—2 + ... 0" o)

so that ] ) ) ] ) )
j0+,71 ]0+]2 2]14_'”_’_]7' grq < io(7).
p p p
The right-hand term is independent from r, but the left-hand term is > r + 1, since it is the
sum of r + 1 integers > 1 by 1.3.4, which is a contradiction. g

1.3.9. Let E be a finite extension of K. Let r be the unique integer such that m}. =
Dg/x N Ok. We have m}}DE}K C Og. Let {ai1,...,aq} be a basis of O over Ok, {a},...,a}}
the dual basis with respect to the trace form Tr: £ x £ — K, b a generator of m}.. Then
(bai)aj € Op and Trg g ((ba;)a;) = b for every 1 <i < d. As Trg/x(Of) is an ideal of Ok, we
deduce that

Proor oF 1.2.6. Up to replacing M with a finite extension, we can suppose that M is a
Galois extension of K. Up to replacing K with a finite extension contained in K., we can
suppose that M = K F, for a finite Galois extension F of K such that K., N F = K. Using
the notations of 1.3.8, we have by [Ser62, chap. IV, Prop. 4]

vr,(Dryk,) = Y in(7)
TeJ, T#1

for every 7 € N. By 1.3.8 there exist an integer 79 and a constant ¢ > 0 such that vg, (Dp, /k,) = ¢
for r > rg.
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Let e be the ramification number of F,/K, for every r > rg. Let n € N be the smallest
integer such that en > c. We have

m"KT C TI‘FT/KT(OF’I‘) C TrM/KOO(OM)
The first inclusion follows from (1.3.9.1). For the second inclusion, notice that M = F K., and
that J = Gal (M/K) is isomorphic to J, = Gal(F,/K,). Hence, for x € Op C Oy, we have

Trr, k. (2) = 2 gey, 9(x) = 32,y T(x) = Trpp i, () using the isomorphism .
Since vy (MY ) = n/ek, goes to 0 as r goes to co, we have that Uy>,, = mg_, and we conclude
that TrM/KOO(OM> omi, . O

1.4. The cohomology of Gal(K/K): the proof of Theorem 1.2.3

1.4.1. We keep the notations of 1.2.1—1.2.2. Let M be a finite Galois extension of K
and let J = Gal(M/K) be the Galois group of M over K.

1.4.2. LEMMA. Let ¢ be a real number > 1. For every A € M there exists a € Ko such that

IA—a| <csup|(g— 1)
geJ
ProOF. By 1.2.6 the elements in Try; k. (On) have arbitrary small valuation. Therefore,
we can find y € Oy such that x = Try k. (y) satisfies [z > % Let p = % and let a =
Tra k. (1) We have:

Tr(yA 1 1
o= _ LS e = A+ -3 gw)lo -~ DA
ged geJ
and )
A —a| <sup|=g(y)[(g — DAl < esup|(g — 1Al
geJ T geJ
as |g(y)| <1, being y € Oyy. a

PROOF OF PART i) of 1.2.3. Let A € H, ,(Hf, C) = CHx and write A as limit of a sequence

cont

{An}nen C K such that [X — \,| < p™™. As ) is fixed by Hx we have, for every h € H,
(1.4.2.1) [(h = DAn| = [R(A = 2An) + (A= X)) S [RA = Ap)[ = [(A = An)[ <p™.

For every n € N, let M,, be a finite Galois extension of K, containing \,,. Let J,, = Gal(M,,/K).
By (1.4.2.1) we have|(g — 1)\,| < p~" for every g € J,, (as J, < Hg). By 1.4.2 with ¢ = p, we
have that there exists a, € Ko such that |\, — a,| < p!~". Hence the sequences {\, }nen and
{an}nen have the same limit A. Hence A € L. O

1.4.3. Let My (Oc) be the ring of h x h square matrices with coefficients in Oc. We equip
M (O¢) with the p-adic topology. Let |.| be the p-adic absolute value on My,(O¢): we have
|A] < p~" if and only if A € p"M,(O¢).

1.4.4. LEMMA. Let H be an open subgroup of Hyx and let m be an integer > 2. Let f,, €
ZL (H,GL,(C)) be a continuous cocycle verifying |fm(s) — 1| < p=™ for every s € H. Then
there exists by, € GLj,(C) with |by, — 1| < p'=™ such that the continuous cocycle fmy1 defined
by

Frt1(5) = (bm) ™" fm(s)s(bm)

satisfies | fma1(s) — 1| < p~™~ 1 for every s € H.
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PROOF. We can reduce to the case H = Hg. Indeed, if K = FH, we can find a finite
Galois extension K’ of K such that K is a ramified Z, extension of K’.

Being f,, continuous, we can find an open normal subgroup N of Hg such that | f,(g) —1] <
p ™ 2 for g € N (it’s enough to take for N the pre-image of the open ball of radius p~" 2
and center 1). Let J = Hg /N and let M = K" be the corresponding finite Galois extension
of K. By Theorem 1.2.6, there exists y € Ojs such that >
representatives for J in Hg, we let

+esT(y) = p. If T is a system of

me

geT

As fin(g) € 1+ p™Mp(O¢), we can write fi,(9) = 14 p™am(g) for am(g) € Mp(O¢), so that

b= = 3L+ 8" (@)aw) = 5 3 al0) + 2" 3 an(o)av)

geT gET geT

Hence by, € 1 + p™ M (O¢). In particular, b, € GLh((’)C). For every s € Hi we have

mesg 59)(y))-

(14.4.1) S(bn) = = 5 5(fm(9))(59)(®)

o= pfm

By the cocycle condition we also have f,(sg) = fin(g) (mod p™*2) when s € N and g € Hy,
and (1.4.4.1) implies

5(bm) = fm(s) by (mod p™Tt)
ie. foar1 = (bm) Lfim(s)s(by) =1 (mod p™th). O
PROOF OF PART ii) of 1.2.3. Let f € Z} (Hy,GLj(C)). Being f continuous, we can find
an open normal subgroup N of Hy such that |f(s) — 1| < p~2 for every s € N (notice that if f
is a cocycle, then f(1) = 1, so that the inverse image of an open ball centred in 1 is not empty).
Let fo be the restriction of f to N. By 1.4.4 we can find a sequence { fy,}m>2 of continuous

cocycles verifying |f,(s) — 1] < p~™ for every s € N and a sequence {by,}m>2 C GL,(C)
verifying |b,, — 1| < p'~™ such that

Frn+1(8) = by fin(5)5(bm)

for every s € N. Let {8, = [ 115 br} the sequence of products. Then, for every s € N,

Frus1(s) = B! (5)5(Bm)-

Let b be the limit of the sequence {fBp, }m>2; since limy, oo frn = 1, b is an element of GL,(C)
satisfying 1 = b~ !f(s)s(b) for every s € N. In other words, the restriction of f to N is
cohomologous to the trivial cocycle. The inflation-restriction exact sequence (1.1.4.1) implies
that f is in the image of H. . (Hx /N, (GLy(C))N). But Hg /N is the galois group J of the
finite Galois extension CV /CHx and

Heont (; (GL(C))™) = H'(J, GLy(C™))

which is trivial by Hilbert’s Theorem 90 [Ser62, chap. X, Prop. 3]. O
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1.5. The cohomology of Gal(K,/K): the proof of Theorem 1.2.4

1.5.1. Throughout this section, we denote by K., a ramified Z, extension of K. We keep
the notations of 1.3.6. We say that the Z, extension K., /K is regular if it is totally ramified
and if the sequence (i, )ren of ramification numbers verifies

ip —ip_1 =pexg for every r > 1.

We say that the extension K. /K is potentially regular if there exists rg > 0 such that Ko /K,
is regular. In this case, for every r > rg, Ko /K, is regular.

1.5.2. LEMMA ([Fon04, Prop. 1.11]). The cyclotomic Z, extension of K considered in 1.2.2
1s potentially regular.

1.5.3. LEMMA ([Fon04, Prop. 1.12]). Let F be a finite extension of K. Then a Z, extension
K /K is potentially regular if and only if FK/F is potentially regular.

1.5.4. For every r € N, let Trg, /i K, — K be the trace map. For x € Ko, let 7 € N

such that = € K,; let

1
tr(z) = o Trg, k(2).

The map tx: Ko — K does not depend on the choice of r: it’s a projector from the K-vector
space K to its subspace K. Indeed, let z € K, C K,.. We have

o Trig (@) = o (7 Tone, (T, (@))) = (5 > T 1')

p"\p P
where 7 is a generator of Gal(K, /K,) < Gal(K,//K), so that Trg, k(7' (x)) = Trg, x(z),
repeated exactly p” " times.

1.5.5. PROPOSITION ([Fon04, Prop. 1.13]). Suppose that K~/ K is reqular. Then there ezists
c € Rog such that for every x € Ko we have

ti(z) — 2| < ef(yo — Dal.

1.5.6. PROPOSITION. Let Ko /K be a potentially regular 7Z, extension. Then the map
ti: Koo — K is continuous. If tg: L — K denotes the extension of tx by continuity and
Loy denotes the kernel of fK, we have a decomposition L = K & Lg. The operator v9 — 1 is
bijective on Lg, with a continuous inverse.

PROOF. Let ry be an integer such that the extension K /K, is regular. We have

tk =p " Trg, /K olk,,

by transitivity of the norm maps: p~" Tr K.,/K 18 clearly continuous (being K,/ K finite) and
tK,, 18 continuous by 1.5.5.

For the second assertion, suppose firstly that K /K is regular. If z € K, then tx(z) = x,
so that %QK = tx and we can write L as sum K & Lg. For every x € L we clearly have
(70 — 1)(z) € Lo and, in particular, (yo — 1)(Lo) C Lo. Let Koo 9 = Koo N Lo and let, for every
r €N, K, o= K,NLy: with this notation K o is the union of K, 9,7 € N (K, o C K;410C ...)
and Ly is the closure of K in L. As the operator vy — 1 is injective (hence bijective) on every
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finite-dimensional K-vector space K, o, it is also bijective on their union K . Let o be its
inverse. For every y € Koo, as trr(0(y)) = tx(o(y)) = 0, we have by 1.5.5

lo(y)| < c.lyl

and o is continuous. We can extend it to a continuous map, denoted again by o, from Ly to
itself, which is a continuous inverse of v9 — 1.

For the general case, let ry be an integer such that the extension K, /K, is regular and let
%\KTO be the continuous extension of ¢ K, tO L. Let L,, be its kernel, o,,: L,, = L, the inverse
of the restriction of v,, — 1. We have

L=K&Ly=K,, & Ly,
and, since L,, C Lg, we can write
Lo=LoNK;, ® Ly,.

The map 9 — 1 is injective on Lo, as Lo N K = 0. Since K,, is a finite-dimensional K-vector
space, Lo N K, is of finite dimension over K, so that vy — 1 is bijective with continuous inverse
on it. As

Yo = 1=70" = 1= (70 — 1)A(70)
for A € Z[yo], we see that 9 — 1 is bijective on L,,, with continuous inverse A(7yo)or,- O

1.5.7. PROPOSITION. Suppose that Ko /K is reqular. Let \ be a principal unit of Ok (i.e. |[\—
1] < 1) but not a root of unity, then vy — X\ is bijective with continuous inverse on L.

PROOF. Since vy — A is obviously bijective on K if A # 1, we can use the decomposition
L = K & Ly and prove the statement for Lg. Let o be the inverse of 79 — 1. We have:

(1.5.7.1) 0o(—A)=00o((-1)—-A+1)=1-(A-1)e

Let ¢ be the constant in 1.5.5. If |\ — 1]c < 1, we have |(A —1)o(y)| < |y| for all y € Ly (see the
proof of 1.5.6), and consequently 1 — (A — 1)p is an automorphism of Ly, with inverse given by
the (convergent) geometric series

S A =1)"

r>0

Hence, by (1.5.7.1), 70 — A has a continuous inverse on Lg. If |[A — 1]c > 1, we replace vy by
Vr = ygr and A by A\?", where r is large so large that |\*" — 1|c < 1 (notice that such r exists,
since A = 1 + z, where v(x) > 1). We then replace K by K, so that 4, — A’" has a continuous
inverse on Lg. Hence the map

(0= N =3 = X

has a continuous inverse, so the same is true for (79 — A)?" and hence for (7o — ) too. 0

1.5.8. REMARK. Using exactly the same argument as in the proof of 1.5.6, we can prove
1.5.7 assuming only that K. /K is potentially regular.
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1.5.9. From now on, we suppose that the Z, extension K, /K is potentially regular. We
denote by L the closure of K, in C, I'x = Gal(Kx/K), Hx = Gal(K/Ky). We will prove
Theorem 1.2.4 as a particular case of the same statement for any potentially regular Z,-extension.

PROOF OF PART i) of 1.2.4. It’s an immediate consequence of 1.5.6. Indeed we have

0
Hcont

but L = K & Ly and 79 — 1 is bijective on Ly, so that Ker(yy — 1) = K. ]

1.5.10. THEOREM ([Sen80, Prop. 3]). Let V be a finite dimensional K -vector space, V C L.
If V is stable by o, then V C K.

PROOF. Let u € Endg (V') be the restriction of vy to V' and let f,(T") be its characteristic
polynomial: we can reduce to the case f,(T) has all its roots in K. Indeed, let K’ be the
extension of K obtained by adding the roots of f,(T) in K. Let K., = K'K,. Then the
extension K. /K’ is potentially regular (see Remark 1.5.3) and we can substitute K by K', V'
by K’ @k V and so on. Moreover, we can suppose that u has only one eigenvalue, say a, by
taking the decomposition of V' as direct sum of its generalized eigenspaces.

Let v be a non zero eigenvector of u. We have yy(v) = av, so that 'ygT (v) = a”"v. We have
that |(y0 — 1)z| < |z|, being the action of ' on L is continuous, so that a must be a principal
unit (i.e. congruent to 1 mod p). By 1.5.7 a must be a root of unity (cfr [Tat67], Prop. 7).
Up to replacing K by a finite extension contained in K., we can suppose that a = 1. Up
to replacing V by V 4+ K (if V does not contain K), we may assume that V = K & V', with
VIiCLy= Ker%\K. But then 79 — 1 is bijective on Lg, so that V' =0 and V = K C K. O

PROOF OF PART ii) of 1.2.4. Let ¢ be the map

v HE

cont

(P, GLa(Koo)) = Hions (Ti, GLa(L))

We first prove that v is injective: let f, f' € Z} .(Tx, GLy(Ks)) be two continuous cocycles
that become cohomologous in GLj,(L). Then there exists b € GLj, (L) such that

(1.5.10.1) F'(v0) =07 f(70)70(b)
and it’s enough to show that b € GLj, (K ). We can rewrite (1.5.10.1) as
(1.5.10.2) %(b) = f(0)”'bf (70)-

Let K’ be the extension of K generated by the coefficients of f(79) and f’(0): it is a finite

extension of K contained in K. Let V be the K’-vector space generated by the coefficients of

b: it’s a finite dimensional K-vector space, contained in L, and (1.5.10.2) shows that it is stable

by 70. Being V closed in L, we can apply Theorem 1.5.10 to get V' C K, so that b € GLj(K).
To prove the surjectivity we need an auxiliary technical result:

1.5.11. LEMMA. For every matriz A € My (L), let v(A) be the minimum of the p-adic valu-
ations of its coefficients. Let r be an integer such that the extension Ko /K, is reqular and let
m be an integer > 5. Let A, € GLy,(L), X, € GLy(K,.) be matrices verifying

3
p—1

V(Am — Xp) > 2

v(Ap —1) > > T
p_
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Then there exist By, € GLy(L) verifying v(By, — 1) > (ﬂ;j)p and Xy, € GLy(K,) such that the
matric

Am+l = B;Ll Amyr (Bm)

verifies v(Apmi1 — 1) > ;’Tpl and v(Ami1 — Ximy1) > pi(;n_—’il).

The proof of the lemma is a direct computation similar to 1.4.4, using 1.5.6, and we omit it.
See [Fon04, Lemme 1.17].

We can now prove that v is surjective: let f € Z1 (U'x, GLy(L)). Being f continuous, there
exists an integer r — that we can choose big enough so that the extension K., /K, is regular
— such that v(f(y,) — 1) > p%”l. Let a5 = f(v,) and let x5 = 1. Using the previous lemma,
we can produce three sequences of matrices: {am }m>5 and {by, }m>5 in GL (L) and {2 }m>s
in GLy(K,) such that, for every m > b5:

3p
1y > 22
'U(am ) p—l’
m
v(am - xm) - p _pl;
(m—2)p
b, —1) > ——:
O(bp, — 1) > b1

Am+41 = b:nlam’}'r(bm)-

The sequence {5, = [[}-5 bk }m>5 converges to a matrix b € GLj;, (L) and the sequences {am }m>5
and {x, }m>5 both converge to the same limit x € GLy (K, ) and we have

= b F(3,)%(b).

Let f’ be the continuous cocycle, cohomologous to f, defined by f/(v) = b= f(7)7(b) for every
v € T'k: by construction we have f'(y,) = z € GLy(K,). For every v € I'x, 7y = ¥, so that

T () = F ) (F ()
or, equivalently

V(£ (V) = F () OV () = 2 f () ().

Hence, the K, subspace V of L generated by the coefficients of f’(v) is stable by ~,. Since V
is finite dimensional over K we can use again Theorem 1.5.10 to deduce f'(vy) € GL (K ) for
every v € 'k, i.e. f is cohomologous to a cocycle with values in GLj, (K ) and it is therefore in
the image of «. O

1.5.12. COROLLARY. We have HY, (T, Lo) = Hly (T, Lo) = 0.

Proor. Indeed, LEK = 0 as we have seen in the proof of part i) of 1.2.4. Let f €
7zl Tk, Lo) be a cocycle. Being f continuous, it is determined by f(70) and under this
identification the group Bl (I'x, Lo) of continuous coboundaries is a subgroup of the image of
70 — 1. Hence H, (T, Lo) C Coker(yp — 1) = 0 by 1.5.6. O
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1.5.13. Let K /K be the cyclotomic Z, extension of K. Let x be a continuous character
of 'y into the group of units of Ox. We can define the space L with a twisted action of 'k

“r = x(s)(s7)

for all s € T'x and all x € L. Following Tate [Tat67], we denote this space by L(x). Let
A = x(7) and suppose that A satisfies the assumptions of Prop. 1.5.7: this is the case, for
example, when x (L) is infinite.

1.5.14. PROPOSITION. We have H*(T'x, L(x)) = HL . (Tk, L(x)) =0

PRrOOF. Indeed, HY(T'k, L(x)) C Ker(yo — A) = 0 by 1.5.7. We can identify H.,,(T'x, L(x))
with a subgroup of Coker(yy — A), which is trivial, again by 1.5.7. O

1.5.15. Let x; be the cyclotomic character x,: Gx — Z, and consider the field C with
the action of G'i twisted by x,. We have

Hgont(GK7 C(XP)) = Héont(Gfﬁ C(Xp)) =0.

Indeed, we have C(x,)%% = (C(x,)7x)I'x = L(x,)'% = 0 by Prop 1.5.14, as the kernel of ¥,
is contained in Hx by definition. The statement for H' follows from 1.5.14 together with the
inflation-restriction exact sequence (1.1.4.1).

1.6. Galois Representations

1.6.1. Let G be a topological group and let F' be a field endowed with a linear topology
and a continuous action of GG, compatible with the field structure. A finite-dimensional F-vector
space V endowed with a semi-linear action of G is called an F-representation of G. We form a
category, denoted Rep;(G), with morphisms given by the G-equivariant maps.

We call unit representation the field F' with the given action of G. If V € Repp(G) we call
the dual representation of V' the F-vector space V* (dual of V') with the action g((¢)(v)) =
g(p(g7(v))) for every g € G, v € V, ¢ € V*. Finally, given Vi, Vs € Repy(G), we can form the
tensor product representation V; ® Vo where the action of G is given by g(vi ®v2) = g(v1) ® g(v2)
for every g € G,v; € V; (i = 1,2). If E = F© is the subfield of F fixed by G, the category
Repr(G) is a Tannakian category over E.

1.6.2. PROPOSITION. For every V € Repr(G), the F-linear morphism
or(V): FRpVY >V
induced by the inclusion VE C V is injective.

PRrROOF. By contradiction, let m be the smallest positive integer such that there exist
V1,02, ..., Um € VE linearly independent over E but not over F. By the minimality of m,
there exist a1 = 1,...,a,, € F* such that Z;Zl a;v; = 0. For every g € G we have

m m
0= g(Zawz) =1 + Zg(ai)vi
i=1 =2

so that >, (g(a;) — a;)v; = 0. Hence, again by the minimality of m, g(a;) — a; = 0 for every
i1=2,...m, i.e. a; € E, that contradicts the independence of the v;’s over E. O



1.6. GALOIS REPRESENTATIONS 14

1.6.3. REMARK. We can prove in a similar way the following strengthened version of 1.6.2.
Let B be an integral F-algebra endowed with a linear topology and a continuous action of
G, compatible with the ring structure. Suppose that B = Frac(B)® = E. Then for every
V € Repp(G), the F-linear morphism

0B r(V): Bogp (Bep V)Y = BopV
is injective.

1.6.4. We say that V € Repp(G) is trivial if V' = " for some n € N (isomorphism as
F-representations of G). By 1.6.2, we see that V is trivial if and only if the map op(V) is
bijective or, equivalently, if and only if we have the equality dimp(V?) = dimp V.

1.6.5. We keep the notations of 1.2.1-—1.2.2: K is the cyclotomic Z, extension of K
contained in K, L = Frac(@ K..), the completion taken with respect to the p-adic topology. For
every r € N we denote by K, the unique extension of degree p” over K contained in K.,. We
have Hx = Gal(K/K) and T' = T'k is the Galois group Gal(K/K). If v is a topological
generator of I, v, = vgr is a topological generator of I, = Gal(K/K,).

We naturally have two ®-functors

(1.6.5.1) Repy_(I') = Rep,(I')
Vi Lok, V
and
(1.6.5.2) Rep/(I') - Repc(Gk)
Wi— C®r W.

The object of the theory of Sen is to construct two functors in the opposite direction defining
®-equivalences of categories

Repy_(I) = Rep(I') = Repe(Gi).
1.6.6. THEOREM ([Sen80, Th. 2]). Every C-representation of Hy is trivial

PRrROOF. By 1.6.2 we have to show that, for every W € Repc(Hgk), the map oc(W) is
bijective. Let {wi,...,w,} be a C-basis of W. We can define a continuous cocycle f: Hx —
GL,(C) by the assignment g — M, where M, is the matrix representing the action of g on W
in the basis {wi,...,wy}, so that the i-th column is given by the coefficients of g(w;). Let b
be the matrix of base-change for another basis of W: the corresponding cocycle is given by the
formula f’(g) = bf(g)b !, so that f and f’ are cohomologous and the map does not depend on
the choice of {wy,...,wp}. By 1.2.3 (i), HL . (H, GLy(C)) is trivial, so that we can choose
a basis formed by elements {w;}_, fixed by Hy. Hence, given w = Z?:l biw; € W, we have
w € WHE if and only b; € CHx = L (by 1.2.3 (i)). Therefore W« is the L-vector space of

basis {w;}? | and the statement follows. O

1.6.7. COROLLARY. The functor W — WHE defines a ®-equivalence between the category
Repc(Gk) and the category Repy (T'), quasi-inverse of the functor (1.6.5.2).
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PRrOOF. By 1.6.6, the functor W ~ Wk defines a ®-equivalence between Repg(Hx) and
the category of finite-dimensional L-vector spaces, where a quasi inverse given by

X—C®rX.

If W € Repc(Gr), WK is naturally an L-representation of I' = G /Hy and C ®p W1k
is isomorphic to W as (trivial) representation of Hp, but also as representation of Gg. If
Y € Rep,(T), (C®. Y)x = CHx @, Y =Y, by definition of the action of Gk on a tensor
product. ]

1.6.8. Let V € Repg_(I') and let {v1,...,v,} be a K -basis of V' as vectors space.
Let My be the matrix representing the action of vy on V in the basis {v;}. Let K, be the
field generated over K by the coefficients of My: the integer r is called the degree of the basis
{v1,...,v}. Since K, is complete and the action of I" over V' is continuous, the K,-vector space
generated by {vi,...,v,} and contained in V is stable for I'.

1.6.9. THEOREM ([Sen80, Th. 3]). Let X € Rep(I'). Let Xy be the union of the sub-K-
vector spaces of finite dimension of X that are stable by I'. The L-linear map

Lok, Xy—X
induced by the inclusion Xy C X is bijective.

PROOF. As in the proof of 1.6.6, we fix a basis {z1,...,z,} of X over L and we consider
the continuous cocycle f: I' = GLj (L) that maps v € I' to M., where M, represents the action
of v on X in the basis {z1,...,2p}: f does not depend on the choice of the basis. By 1.2.4 (ii),
the map

Il

cont

(T, GLy(Ko)) — HE

cont(F7 GLh(L))

is surjective, so we can suppose that f takes value in GLj(K ). In other words, we can choose
the x;’s such that the sub-K.-vector space Y of X is stable for I'; in particular Y € Repg__ (I').
Since the L-linear map L ® . Y — X induced by the inclusion Y C X is clearly bijective, to
complete the proof of the theorem it is enough to show that ¥ = Xj.

First of all, we have Y C X. Indeed, let r be the degree of the basis {x1,...,2,}. For every
s > r, the K -vector space generated by the z;’s is of finite dimension over K, stable by I' and
Y is clearly equal to the union of those space.

Let x € Xy, x = ZLI ciz; with ¢; € L. For every v € I, v(x) = Z?Zl ¢i(y)x;, for suitable
coefficients ¢;(y) € L. Let V be the K,-subspace of L generated by ¢;(vy) for i = 1,...,h
and v € T' is of finite dimension over K. Write (a;;(7))i<ij<n for the matrix M,. Then
(aij(y))<ij<n € GLa(Ky) and

h h
&) = (a())zi =Y v(e)ai;(y)a
i=1 i=1
so that V' is also the K vector space generated by v(¢;) fori =1,...,hand v € I'. It is therefore
stable by I' and, being finite-dimensional, it is contained in K, by 1.5.10. Hence ¢; € K, and
zeyY. U

1.6.10. COROLLARY. The functor X — Xy defines a ®-equivalence between the category
Rep(I') and the category Repy,__ (T'), quasi-inverse of the functor (1.6.5.1).
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Proor. It follows directly from 1.6.9 that the functor defined by the composition X +— X
Xt ®k., L is naturally isomorphic to the identity functor. On the other hand, (L ®gk. V)¢ is

isomorphic to V' for every V € Repy_ (I') by construction, since given a K .-basis {vy,...,vp}
of V, {1®wv;}_, is an L-basis of L®f__ V such that the K., sub-vector space that they generate
is stable by I'. O

1.7. The study of Repy_(I')

1.7.1. THEOREM ([Sen80, Th. 4]). Let Y € Repy_(I'). There exists a unique Koo-linear
endomorphism s of Y such that, for every y € Y, there is an open subgroup I'y of I' satisfying

Y(y) = exp (log xp(7)-5)(y)

for every v € I'y. Moreover, the characteristic polynomial of s has coefficients in K.

PRrROOF. Let {y1,...,yn} be a K basis of Y. We first prove the uniqueness of s. Let s, s’
be two endomorphisms of Y having the required properties. Then there exists an open subgroup
I'; of ' such that for every v € I,

Y(yi) = exp (log xp(7)-5) (i) = exp (log xp(7)-5") (3:)

for i =1,...,h. Hence exp (log xp(7)-s) = exp (log xp(7).s’) for every v € ', and s = ¢'.

Let 79 be the degree of the basis {y1,...,yn}, Y’ the K, -sub-vector space of Y generated
by the y;’s and stable by I': T, acts linearly on Y’ (since I, fixes K,,) and the action on the
y;’s is given by a continuous homomorphism I'y; — GLp (K, ), v — M. For v sufficiently close

to 1 (but different from 1), M, is close to I}, in GLj(K,,) and the series log(M,) converges to

log vy
log(xp (7))

the choice of 7. Indeed, let 7o be a topological generator of I'. Let v = 7 and let 7/ = 'yg be
another element in I' such that log~’ is defined. Then

an endomorphism log(y) € Endg, (Y'). The endomorphism s = does not depend on

l !
,Yoog xp(7") )

log(v") = log( = log xp(7") log 7o

log(y') _ _log(v)
logxp(v') — logxp(7)
Let s be the unique K4, endomorphism of Y that restricts to sg on Y.

so that the quotient is independent from -y.

1.7.2. LEMMA. There exists r > ro such that the endomorphism exp(log xp(77).s) of Y is well
defined for every v € T'y.

We postpone the proof of the lemma. Writing out the definition of s, for every y € Y’, we
have
v(y) = exp (log xp(7).5)(y)-
For a general y = Z?:l ciy; with ¢; € K, the formula is satisfied if v € I’y = I" N T, where I"
is an open subgroup of I' which fixes all the ¢;’s. This proves the existence part of the theorem.
Let M be the matrix of s in the basis {y1,...,yn}. For every v € I, we have

(v(w1), - v(yn)) = exp(log xp (VM) (Y1, - - Yn)-
As vy9 = voy we have, for every v € I,

(Y1) - -5 70(v(yn))) = exp(log xp(v)v0(M)) (Y1, - -, Yn)

so that M and ~y(M) are similar, that implies that the characteristic polynomial of s is fixed
by o, i.e. it’s coefficients are in K. O
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PROOF OF LEMMA 1.7.2. It’s enough to show that there exists an open subgroup I', of I’
such that the series

(log(xp(1)))"
n!

exp(log xp(7)-5) = Y

n>0

converges in the ring Endg__(Y) for every v € I',.
Let {y1,...,yn} be a K-basis of Y. For every b € Q, let Y}, be the Og__-sub module of Y’
defined by

= {Xh:c,yZ €Y |vp(e) > b}.
i=1

Let a € Q be such that s(Yp) C Y,. Recall that (see [NS99, chap. II, Prop. 5.5])
« | 2y ifp#2
ety = { p’Z, iftp=2.

Let rx be the unique integer such that log x,(I'x) = p"%Z,: we have rg > 1if p # 2 (resp.
rig > 2 if p = 2) and the equality holds if and only if K is absolutely unramified, i.e. vx(p) =
ex = 1 (see [NS99, chap. II, Prop. 5.4-5.5]). Let r be the smallest non-negative integer such

(log(xp(7)))"

+3"(YYO) - Yn(r—i—'rK—p%l-I—a)
as vp(nl) = 237 L a;i(pP—1) ifn =37 ap’, 0 < a; < pis the p-adic expansion of n ([NS99,
chap. II, Le ma 5.6]). Therefore the series exp(log x;(7).s) converges. O

1.7.3. Let E be any field. We denote by Sg the category whose objects are couples (Y, s),
where Y is a finite-dimensional E-vector space and s € Endg(Y'), and morphisms f: (Y1,s1) —
(Ya, s2) are E-linear maps from Yj to Y3 such that spo f = fos;.

We set the unit object to be (E,0) and we define the tensor product (Y1,s1) ® (Y2, s2) by
(Y1 ®p Y2, s1 @idy, +idy, ® s2). The dual of (Y, s) is (Y*, —s') where Y* is the dual vector space
of Y and s’ is the transpose homomorphism of s. With these definitions Sz has a structure of
Tannakian category over FE.

1.7.4. Let E be a field containing K. Let Y € Repy_(I'). Let Yz = F ®k_ Y and
let sg be the F-endomorphism of Yy deduced by scalar extension from the endomorphism s of
1.7.1. We have therefore defined a ®-functor

Y (Ye,sE)
from Repy_ (') to Sg.

1.7.5. THEOREM. In the notations of 1.7.4, let Y1,Y> € Endg__(I'). The canonical E-linear
map

E ®k Homgep, () (Y1,Y2) = Homs, (Y15, s1,8), (Y2,5, 52,5))

18 an isomorphism.
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PROOF. We can reduce to the case Y7 = K. Indeed we have the following canonical
isomorphisms:

HornRepKOO () (Y1,Y2) = HomRepKoo (F)(Kom Yi'® Y2)
Homs,, (Y1,p, Y2,p) = Homs, (E, Y], ® Y2 ).

We put Y = Y. For every §{ € Hompgep, (1)(Koo,Y), the map & — £(1) allow us to identify
the K-vector space Homgep, (r)(Koo, Y) with HY _(T,Y) = Y'. Moreover, we can identify
Homg, (E,YE) with Kersg. Indeed, if ¢: (E,0) = (Yg, sg) is a Sg-morphism, then sg o ¢ =

po0 =0, so that ¢(1) € Ker sg. We are therefore reduced to prove that the canonical map
0: FEQ®k vyl - Kersg

is bijective. By definition of sg, we see that it is enough to prove the statement for £ = K.
Up to replacing Y by Kers we can assume s = 0, Kers = Y. By 1.6.2 g is injective. We
fix a Koo-basis {y1,...,yn} of Y. Let rg be its degree. Being s = 0, by 1.7.1, there exists r
—that we may assume r > ro— such that v(y;) = y; for i = 1,...,h and v € T',. Let Y, be
the K,-sub-vector space of Y generated by yi,...,yn: by construction, Y, is stable by I, that
acts on it by means of the finite quotient Gal(K,/K). As in the proof of 1.6.6, we can define a
1-cocycle f: Gal(K,/K) — GLj(K,) describing the action of Gal(K, /K) on Y, with respect to
{y1,...,yn}. By Hilbert’s Theorem 90 [Ser62, chap. X, Prop. 3], we have

H'(Gal(K,/K),GLy(K,)) = 1.

Hence we can assume that Gal(K,/K) acts trivially on yi,...,yp, so that I fixes a basis of ¥’
and the map p is therefore surjective. O

1.7.6. LEMMA. Let E be a field and let Z1, Zy be finite-dimensional E-vector spaces. Let Ej
be an infinite subfield of E, L a sub-Ey-vector space of the E-vector space Lg(Z1, Z2) of E-linear
applications from Zy to Zs. The E-vector space Ly = E ® L contains an isomorphism if and
only if L already contains one.

PROOF. Let f € Ly be an isomorphism, f: Z; — Z,. Let {f1,..., fn} be an E-basis of Lg
formed by elements of L. Let h be the dimension dimg Z7 = dimg Zs and fix an E-basis of Z;
and an E-basis of Zy. For j = 1,...,n, let A; € My(E) be the matrix of f; with respect to
those basis. Let P(Xy,...,X,) be the polynomial

P(Xl,...,Xn) = det(X1A1 + Xo+ ... —l—XnAn) € E[Xl,. . ,Xn]

If f=53" Xifi, \i € E, we have P(A1,...,\,) # 0, so that P is not identically zero. Being
Ey an infinite field, there exist pi,...,u, € Ep such that P(ui,...,u,) # 0 and the element
Yoy pifi is an element of L, isomorphism of Z; over Zs. ]

1.7.7. COROLLARY. Two K -representations of I', Y1 and Ya, are isomorphic in Repy,_ (T')
if and only if (Y1 g,s1,8) and (Yo g, S2.g) are isomorphic in Sg.

1.7.8. Let W € Repa(Gk). Then we dispose of the L-representation of I' W& and of
the Ko-representation of I' (WXx) ;. We denote by Agen(W) the object of Sk_ formed by the
K -vector space underlying (W) ¢ and by the endomorphism sy, s defined in 1.7.1.

Agen defines a faithful ®-functor

Asen: Repo(Gr) = Sk
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By 1.7.7 we see that the knowledge of Age,(W) determines — up to isomorphisms — W as
C-representation of G,

1.8. Classification of C-representations

1.8.1. We keep the notations of 1.2.1—1.2.2. Let W be a C-representation of Gx. In the
notations of 1.7.8, we call Sen weights of W the eigenvalues of the endomorphism sy, ¢ in K. By
1.7.1, the characteristic polynomial of sy s has coefficients in K. Hence the set of Sen weights
of W is stable by Gx.

Let X be a subset of K which is stable by Gx. We say that a C-representation W of G
is of type Sx if its Sen weights are in X. We say that W is of type S% if it is of type Sx and if
s, is semi-simple.

1.8.2. We denote by C(K) the set of the orbists of K for the action of G. For every
indecomposable object W in Rep (G ), there exists a unique A € C(K) such that W is of type
Sa.

Let W be an indecomposable object of type S4. We can write its Sen endomorphism sy, as
80-Sy = Sy-S0, With sg semi-simple and s, unipotent. Let V be the K, ,-vector space underlying
(WHK) 'V the vector space V ®. K. We denote again by sg the endomorphism of V deduced
by scalar extension. Then we have:

i) a decomposition of V as a direct sum of the eigenspaces of sg;
ii) a nilpotent endomorphism log s, of V.

1.8.3. The C-representations of Gk of type Sy correspond to representations of the
additive group G,. Indeed, to give an action of the additive group G, over a K.-vector space
V' comes down to give a nilpotent endomorphism v of V' (so that A € Ko, = G,(K) acts over
V via exp(Av)). Let K [logt] be the algebra of polynomials in the variable log¢ and coefficients
in K. For every d > 1, we denote by Z,(0;d) the sub Z,-module of K [logt] formed by the
polynomials in log ¢ of degree < d with coefficients in Z,. Hence we see that, up to isomorphisms,
there exists a unique indecomposable C-representation of Gk of type Sfg; of dimension d over
C, namely

CH(0;d) = C ®z, Z,(0;d)

where the nilpotent endomorphism v is _B%gt'
Notice that C¥(0;d) is not simple, as C*(0;d) D CK(0;d —1) D ... > CK(0;1).

1.8.4. Let W be a simple object of Repc(Gx) and let A be the unique conjugacy class of
K such that W is of type Sa. Then, for every d > 1, we can define the indecomposable object
of type Sa

W ®z, Zy(0;d).
On the other hand, we see that a C-representation W’ of Gk is indecomposable of type S4 if

and only if there exists d € N* (necessarily unique) such that W' = W ®z_ Z,(0;d). Then W’
is simple if and only if d = 1.
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1.8.5. We fix a topological generator o of I'. For every r € N, let a, be the Oz-sub-module

of K )
a, = {a € K |vp(a) > —T‘—TK‘FH}
where r is the integer defined in the proof of 1.7.2. Let A € C(K) and set P4(X) = [[,ea(X —
a) € K[X] be the minimal polynomial of any o € A over K. Let K4 C K be the field
K[X]/(P4(X)) and denote by 8 the image of X in K4. Let dq be the number of elements in
A. Let r4 be the smallest integer r such that an element o € A belongs to a,. By construction,
it is the smallest » € N such that
1

p—1

for every v € I',. We can therefore define a continuous homomorphism g4: I'y, — K by

vp(Blog xp(7)) = vp(B) + vp(log(xp(7)) >

0a(y) = exp(Blog xp(7))-

We denote by M[A] the field K4 endowed with the linear and continuous action of I',, given
by 04.

Let N[A] = Ka[l'] ®f,[r,,] M[A] be the induced K-linear representation of I'. It is a
K 4-vector space of dimension p™4, since {7y ® 1}o<i<pra is a basis of N[A] over K. We denote
by NoolA] = Ko @k N[A] the K-representation of I' deduced by N[A] by scalar extension.
We choose a simple sub-object of Noo[A] in Repy_(I') and we denote it by K.[A]. We set
C[A] to be the C-representation of Gk corresponding to K [A4], i.e.

ClA] = C ok, KolA]

1.8.6. THEOREM. In the notations 1.8.5, let W be a C-representation of G.

i) W is simple if and only if there exists A € C(K) such that W = C[A]; then W is
of type St and has dimension dap®4 over C, where s4 is an integer 0 < s4 < 1y
verifying dimg, (K« [A]) = dimc(C[4)).

ii) W is indecomposable if and only if there exists A € C(K) such that W = C[A;d] =
ClA]| ®z, Zy(0;d); then W is of type Sa and has dimension d.dap*4 over C.

iii) There exist natural integers (hA,d(W))AeC(FLdeN*’ almost all zero, uniquely deter-
mined, such that

w= P Clada™)
AeC(K),deN*

1.8.7. LEMMA ([Fon04, Prop. 2.12]). Let F be a field, E a subfield of F, E a separable
closure of E, Gg = Gal(E/E), n: Gg — Q/Z a continuous homomorphism and b € F. Let
E = EKem, N the degree of the cyclic extension E'/E, o the generator of Gal(E'/E) such that
n(o) =1/N mod Z. Let Ag p(n,b) be the associative and unitary E' ® g F'-algebra generated by
an element ¢ satisfying

(1.8.7.1) N =120
c(u®z)=(oc(u)®z)c ifuecE andx € F.

Then the algebra Ag r(n,b) is a central simple algebra. The center of Ag p(n,b) is F' and of
dimension N? over its center. Ag r(n,b) isomorphic to an algebra of square matrices with
coefficients in a skew field Dg p(n,b).
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Theorem 1.8.6 is then a consequence of the previous discussion and of the following

1.8.8. PROPOSITION. In the notations of 1.8.5, let n: Gx — Q/Z be the unique character of

Gk that factors through I' and that maps vy to p%a' Let b= QA(’ygTA). The K s-algebra
Ex= EndRepKoo ) (NOO [A])
is identified with Ak i ,(n,b). The skew field Dy = Dk i ,(n,b) has rank P54, where s4 is an
integer verifying 0 < sp < r4. We have
dimg_ (K«[A]) = dimc C[A] = dap®™.
Moreover, C[A] is a simple object of Repc(Gk) of type S4 and
EndRepKoo 1) (Koo [A]) = EndRepC(GK)(C[A]) = Da.

PROOF. Let M [A] = Koo ®x M[A]. For every s € N we set Ms[A] = K; ® M[A] and

Ns[A] = K; @ N[A]. We have then the following inclusions:
MIA] € M,[4] € M| 4]

N N N

N[A] C N4[A] CN[A].
To simplify the notation, we set » = r4. For every s > r we have the topological generator
Y5 = 'ygs of I's C T',. By construction, «s acts on M[A] by multiplication with the element
W = exp (Blog xp(1))-
Let f € Endgep, (r,)(M[A]). Then for every v € I's, we have f(y(z)) = vf(z) if and only
if (3 (z)) = A8 f(x), ie. f satisfies (7" "z) = b f(x) for every = € K[A]. But we have
Ki= K@), since

o logt?”
log(xp (75 ))
and log(xp(’ygs)) € K*. Hence, the natural injection K4 — Endgep, (r,)(M[A]) is an isomor-
phism.
Let {e1,...,eq} be a basis of K4 over K, seen as ring of endomorphisms Endgep, . (1) (M[A]).

Let f € Endgep,_ (r,)(Moo [A]). Then there exists s > r such that f(M[A]) C M,[A]. Since
f is Koo-linear, we also have f(M;[A]) C Ms[A], so that the restriction fs of f to M;[A] is an
element of Endgrep, (r,)(Ms[A]). Since I's acts trivially on K, we have
Endrep, (r,)(Ms[A]) = Ks ®k Endgrep, (r.)(M[4]) = K ®k Ka.

We can therefore find Aq,...,\; € K, such that fs, as element of Endgep, (rs)(M;[A]), can be
written as fs = Zle Ai ® e;. Adding the further condition that fs commutes with the action of
~r, we have y,(A\;) = \; for every i = 1,...,d, i.e. A\; € K, so that
(1881) EndRepKoo () (MOO[A]) = KT QK KA.

By construction, every element of Ny [A] can be written in a unique way as x = f;gl vé (i),
with x; € M[A]. Let f € E4. Then f(z) = f;gl 78(p(z)) where ¢ is the restriction of f to
M [A]. Therefore the application

Es— HOIHRepKOO(Fr)(Moo[A]aNOO[A])’ f =
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is bijective. Let ¢ be the unique element of E4 defined by c¢(z) = 7o(z) for every x € M[A] (so
that c(Az) = Ae(x) = Myo(z) for every A € Ko, © € M[A]). Then, using (1.8.8.1), every element
of F4 can be written in a unique way as Zf;gl cf;, for fi € K, @k Ka. We see therefore that
E4 is an algebra over K, ® g K4 generated by an element ¢ satisfying the conditions (1.8.7.1)
of 1.8.7. As ¢?" = b, we have that the dimension of E4 over its center K 4 is p*". The skew field
D4 has rank p?*4 over K4 for a suitable 0 < s4 < r and for any simple sub-object K.,[A] we
have therefore

EndRepKoo ™) (Koo {A]) =Da
and dimg__ (Kx[A]) = dap®A. The statement for C[A4] is clear. O

1.9. Hodge-Tate representations

1.9.1. We keep the notations of 1.8.5. Let W € Repc(Gk). We say that W is deployed
(fr. déployée) over K if the Sen weights of W are in K. Let aé( = a9 N K be the fractional ideal
of Ok formed by the elements of p-adic valuation > —rg + p%l. Every simple C-representation
of G of type Sag has dimension 1 over C and the ring of its endomorphisms is reduced to K
(see 1.8.8).

Among the representations of type Saé< we have the representations of type S7'. These latter
are called C-representation of type Hodge-Tate (or simply C-representation Hodge-Tate). Thus
W € Repc(Gk) is Hodge Tate if it is semi-simple and its Sen weights are in Z.

Let V be a p-adic representation of G, i.e. V € Repr(GK). By base-change we get the
corresponding C-representation, namely

C®q, V € Repc(Gk).
We say that V' is Hodge-Tate if C ®q, V' is Hodge-Tate.

1.9.2. We fix a generator ¢ of the Tate module Z,(1) = Tp(Gp,)(K). For every i € N we
denote by Z,(i) the i-th power Zp(1)®i and by Z,(—1i) its Z,-dual. For every Z,-module M, we
denote by M (i) the i-th Tate twist of M, i.e. M (i) = M ®z, Zy(i). For x € M and u € Zy(i),
we write zu for x ® u € M (7). The map x — xt’ is a Z,-linear bijection between M and M (i),
depending on the choice of ¢.

The group G acts over Z,(i) for every i € Z: we have g.u = Xé(g)u for every g € G
and u € Zy(i). Similarly, if M is a topological Z,-module endowed with a linear and continuous
action of Gk, we have an induced linear and continuous action on M (7). Namely, we have

g(xt) = X;(g)g(x)ti for every g € G,z € M.

We can therefore identify C(i) = C®z, Zy(i) with C[{i}] defined in 1.8.5 for every i € Z. Indeed,
for A = {i} we have that I" acts on K = K4 via ga, that turns out to be x;. This identification
is not canonical, depending on the choice of a generator t of Z,(1), but is Gx-equivariant.
Similarly, for every d € N, C[{i};d] is isomorphic to C(i) ®z, Z,(0;d).

Hence, by Fontaine’s classification theorem 1.8.6, for any Hodge-Tate object W in Repc(G k)
there exist non negative integers hy(W), almost always zero and uniquely determined by W,

such that
W= Z C(q)aM),
qEZ

The integer hy (W) is called the multiplicity of ¢ as a Hodge-Tate weight of .
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1.9.3. Let Bgr = C[t™, 1/tM] be the polynomial algebra in the variable t(). Let ¢ be a
generator of Zy(1). Then t = (e,)nen Where &, is a primitive p-th root of 1in K and €) | = ey,.

For p # 2, we denote by m; the unique uniformizer of Q,(e1) such that
2

(Wt)p_l +p=0, wvler—1—-m)>—0.
p—1
If p =2 we set m; = 3 — 1. Then the map
Z,(1) = Zpt — Bur, A+ AmtV
is injective and commutes with the action of Gxg. We can identify Byt with C[t,t’l] =
P,z C(i). By 1.2.4, we have Bg{f = Frac(Bpr)°% = K.

1.9.4. For every C-representation W of Gk, we set Dyr(W) = (Bpr ®c W)%%. By
1.6.2—1.6.3, the canonical map

(1.9.4.1) 0: Bur ®K DHT(W) — Bt ®c W

is injective and dimc(Dgr (W)
and only if dimc(Dyr(W)) =

) < dimc(W). Therefore, the representation W is Hodge-Tate if
dimc (W), that is if and only if (1.9.4.1) is an isomorphism.

1.9.5. LetV e Repr(GK). Then the dimension inequality in 1.9.4 can be stated as
(1.9.5.1) Y " dimg (C(i) ®g, V)% < dime(C g, V) = dimg, V.
1€Z
V' is Hodge-Tate if and only if the equality holds in (1.9.5.1).



CHAPTER 2

The Hodge-Tate decomposition Theorem for Abelian Varieties

2.1. Lubin-Tate formal groups and differential modules

2.1.1. Let K be a complete discrete valuation field with perfect residue field k of charac-
teristic p > 0, Ok the ring of integers of K. We fix a separable closure K of K and we denote
by Gk the absolute Galois group of K over K. Let Oc be the p-adic completion of O and let
C be its field of fractions.

Let E and Ky be discrete valuation fields and let £ — Ky — K an injective homomorphism
such that E has finite residue field kg, a uniformizer of F is a uniformizer of Ky, K is a finite,
separable and totally ramified extension of K. Namely,

i) If K has characteristic 0, we take for E any finite extension of Q, contained in K. If
7 is a uniformizer of E, then Kj is the subfield of K obtained by adjoining 7 to the
fraction field of the ring of Witt vectors W (k).

ii) If K has characteristic p, we have E = kg((T)) C k((T)) = Ko = K.

We fix a uniformizer m of £. We denote by v the valuation of C, extending the valuation of
K, normalized by v(m) = 1. Given any subfield L of C, we denote by O = {z € L|v(z) > 0}
its valuation ring, by Uy, = {x € L|v(x) = 0} the group of units of O, and by m;, = {z €
L|v(z) > 0} the maximal ideal. If I is a sub-Or-module of L which is free of rank 1, we denote
by v(I) the valuation of a generator of I.

2.1.2. LetT € Ok[[X,Y]] be a formal power series in the variables X and Y and coefficients
in Ok . We say that I is a one-parameter commutative formal group law over O if the following
identities are satisfied:

(1) T'(X,T(Y,Z2)) =T(T'(X,Y), Z) [associativity];

(2) T(X,0) = X, T(¥,0) = Y

(3) I'(X,Y) =T'(Y, X) [commutativity];
It follows immediately that there exist a unique G(X) € Og[[X]] such that I'(X,G(X)) = 0
and that T'(X,Y) = X +Y mod (X,Y)2 If T and I are one-parameter commutative formal

group laws over O, a morphism from I" to I is a power series f in one variable over O with
no constant term such that f(I'(X,Y)) = I'(f(X), f(Y)).

2.1.3. Let I' be a one-parameter commutative formal group law over Ok and let z,y € mg.
Then the series I'(x, y) converges and its sum belongs to mg. Under this composition law, mg
is a group which we denote I'(mg). We put

F(mg) = lim  D(mg)
KDL
L/K finite

24
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If we equip Ok|[[T]] with the T-adic topology and we consider Ok with the m-adic topology,
we have a canonical isomorphism

my — Homeont 04 (Ok[[T]], Ok), =z 0u(T — ),

the identification being compatible with the group structure induced by I'. By passage to the
inductive limit from the finite case we get

(2.1.3.1) I'(mz) = Homeont,0 (Ok[[T]], Of)-

2.1.4. We equip Og]|[T]] with the T-adic topology. Let Q}QK[[T]] Jo, De the module of
continuous Op-differentials of O [[T]]: it is a free Og[[T]]-module of basis dT". Let I" be a
one-parameter commutative formal group law over Ok . An invariant differential with respect
to the formal group law I is a differential form

w=a(T)dT € Qb 1750
satisfying
(2.1.4.1) aT(X,Y))dI'(X,Y) = a(X)dX + a(Y)dY
or, equivalently,
(2.1.4.2) aoT(X,Y)I'x(X,Y) = a(X)

where 'y (X,Y) is the partial derivative of I' with respect to the first variable. We denote by
wr the sub module of Q}QK“T” Joy Of the invariant differentials. We say that a(X)dT € wr is
normalized if a(0) =1

2.1.5. PROPOSITION. We keep the assumptions of 2.1.4. There exists a unique normalized
invariant differential with respect to the formal group law I, given by the formula
. dT

wr 15 a free Og-module of rank 1, generated by w.

w

PROOF. Suppose a(T")dT is an invariant differential on I'. Putting X = 0 in (2.1.4.2) gives
a(Y)T'x(0,Y) = a(0)

as I'(0,Y) =Y. Since I'x(0,7) =1 mod (T), we see that T'x(0,7)~ € Ok|[[T]]. Hence a(T)
is determined by «(0) and every invariant differential is of the form aw with a € Ok and

w=Tx(0,7)71dT.

Since w is normalized, it only remains to show that it is invariant. To prove this, we differentiate
the relation

NXxX,ry,z)=rrX,Yy),2)
with respect to X to obtain
Ix(X,T(Y, 2)) = Ix(D(X,Y), 2)I'x (X, Y).
Putting X = 0 gives the desired result. O
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2.1.6. Let g be the cardinality of the residue field kg and let F; be the set of formal power
series f € Og[[T]] such that f(T) =T mod (T?) and f(T) =T? mod (7).

2.1.7. THEOREM ([LT65, Th. 1 and 2]). (i) For each f € Fy there exists a unique Fp(X,Y) €
Og[[X,Y]] such that

Fi(X,Y)=X+Y mod (X,Y)?
FF(X,Y)) = Fr(f(X), f(Y))

The series Fy defines a one-parameter commutative formal group law over OF.
(ii) For each a € O and f,g € Fr there exists a unique [al¢4(T) € Og[[T]] such that

[al,g(T) = aT mod (X,Y)* and f(lalsg(T)) = [als,4(9(T)).

The series [a] 7.4 is a formal homomorphism from Fy to Fy.
(ii) The map a — [a|f = [a]t,f defines an isomorphism from Op to Endo, (Fy), inverse of
the morphism 2221 c; X'+ ¢1. Under this isomorphism,

(75 (T) = f(T).

The Fy’s for f € Fy are canonically isomorphic by means of the isomorphisms [1]7,. We
call any one-parameter commutative formal group law over Og of the form Fy, for f € Fr, a
Lubin-Tate formal group over Op.

2.1.8. Let f € Fr and let I' = F} be the corresponding Lubin-Tate formal group. By
2.1.7, I'(my) is canonically equipped with an Og-module structure. For a € Op, x € mz we
write a.x = [a]¢(z). For every n > 0, let

be the set of 7"-torsion points of I'(mz). It is naturally an Op/7n"Og-module. Moreover, the
maps I'n+1(my) — Dpn(mye) given by 2 — m.2 are Op-linear and I'0(Of) = 0. We call the
projective limit

T (T) = lim Do (1)
the Tate module of T'.

2.1.9. PROPOSITION. Under the assumptions of 2.1.8, T(') is a free Og-module of rank 1.

PROOF. According to 2.1.7, we may choose f(X) = 7X 4+ X% Firstly, we prove that I'(m)
is m-divisible. With this choice of f, the map

[(mz) = I(mg)

is given by x — mx 4 x9. For every a € my, the polynomial f(X) — « is separable and so
solvable in K. All its solutions belong clearly to mz. To prove that T (T) is a free Og-module
of rank 1, it’s enough to show that, for every n > 1, I'zn(my) is isomorphic to Og/(7") as
Op-module. We proceed by induction on n. For n = 1, I'x(my) is the set of solutions of the
equation f(X) = 0: it has therefore ¢ elements and it is isomorphic to Og/(7). Consider the
sequence

(2.1.9.1) 0 = I'x(mzz) = Den(mzz) 5 Tpnot (mzz) — 0.
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Since I'(my) is w-divisible, (2.1.9.1) is exact. By induction hypothesis, I';n-1(mz) = Og /(7" 1),
and the sequence (2.1.9.1) cannot split, since I'xn (my) contains an element of order exactly 7"
it is enough to divide a generator of I';n—1(my) by 7. O

2.1.10. Let I' be a Lubin-Tate formal group law over Op. Let u € I'(mz): according to
2.1.3.1, u corresponds to ¢, € Homeont,0,(OE[[T]], Of). Let

be a continuous differential form. We denote by u*(w) the pull-back ¢, (a(T"))dy,(T'): it is a well

defined element in Q}D? /O Indeed, by construction, the Og-linear and continuous morphism

¢y factors through a finite extension L/K
vu: Op[[T]] = OL

where u = ¢, (T) € my, C mg. Since L is complete, ¢, (a(T)) = a(u) converges in Or, and we
can consider a(u)du as an element in Q}QL oy~ We denote by u* (w) its image by the canonical
map
1 1
Q0,10 7 Qoo
Restricting to the sub-module of invariant differentials, we have a map:

(,): T(mg) X wr — Q}Q?/OK (u,w) = (u,w) = u*(w).

2.1.11. PROPOSITION. The pairing (,) is Og-bilinear and it is compatible with the action of
Gk, i.e. for any g € Gk, v € I'(my), w € wr we have (g(u),w) = g((u,w)).

PROOF. Indeed, for u,u’ € T'(my) and w € wr, (u+u',w) = (u,w)+ (v, w) by (2.1.4.1). The
fact that (au,w) = a(u,w) for any a € Op, w € wr, u € I'(my) follows from the identification
of O with Endp, (") in 2.1.7. The linearity in the second variable and the compatibility with
the action of Gk are clear. O

2.1.12. Let I' be a Lubin-Tate formal group over Og. Let Gk act trivially on wr and
consider the K-vector space
?@(QE TW(F) KOg Wr-
By 2.1.9 and 2.1.5, it is a K-vector space of dimension 1, endowed with a semilinear continuous
action of Gg.
Let o € K ®0, Tx(I') ®0, wr. Then «a can be written (in a non-unique way) as

a
a= —QQURw
7TT

with u = (up)nen € Tr(I'), @ € O, r € N and w € wr. It follows immediately from 2.1.11 and
from the definition of T,(I") that the element au}(w) depends only on «, so that the map

(2.1.12.1) (kr =& K ®0, Tx(T) ®0, wr — QE?/OK
a= §®u®w»—>aur(w)

is well defined, Og-linear and compatible with the action of G .
Let Dk, be the different of the extension K /Ko and let ax r be the Og-module

_ 1
aKr = {a € Klv(a) > —v(Dg/k,) — q—il}
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2.1.13. THEOREM ([Fon82, Thm. 1]). Under the assumptions of 2.1.12, the map § is sur-
jective and

Ker(§) = agr ®o, Tx(I') ®0, wr.

2.2. The proof of Theorem 2.1.13

2.2.1. Let K be as in 2.1. For any field extension L/K, we denote by Dy, k the different

of L/K and by dp,/x: Or — Q%QL/OK the universal derivation.

2.2.2. LEMMA. Let K C M C L be a tower of finite and separable field extensions, u the
canonical map Q%DL/(’)K = Q%,)L/OAI' Then, for any w € Q%QL/OK7 we have:

v(Ann(u(w))) = max{0, v(Ann(w)) — v(Dp/ k) }-

PROOF. Let b be a generator of O, as an Of-algebra and let w = ady kb € Q}QL/OK be a
non-zero differential form. Since Q}QL /0K is generated by dr /b and is killed by Dy, /g, we have
v(Ann(w)) = v(Dr k) — v(a). By definition u(w) = adp, /b, hence

o(Ann(u(w))) = max{0, v(Dy ar) — 0(a)}.
By [Ser62, chap. III, Prop. 8], we have

v(Drm) = v(Dryk) — v(Dyyic)
and we can conclude. O

2.2.3. LEMMA. Let K C M C L be a tower of finite and separable field extensions. Let
L Qé]ﬂ/OK — Q}QL/OK be the map induced by the inclusion Oy C Op. Then, for every w €
Ol , we have
Om/OKk

Anng, (¢(w)) = O Annp,, (w).

PROOF. It is enough to consider the case where L/M is unramified or totally ramified. If
O /Oy is étale, then Q%DJW/OK ®o,, O = Q}QL/OK by [EGA IV, 0.20.5.8] and the statement
is clear.

Suppose now that L/M is totally ramified. Let b be a uniformizer for L: it is a root
of an Eistenstein polynomial P(X) = > I ja; X' € Opn[X], with —ag = b a uniformizer for
M. Let w = adpygb € Q%,)M /0K be a non-zero differential and let a be its annihilator. Let
v(w) = adp kb € QéL/OK be the image of w. As b= "1, a;(V')’, we have

dr/xb = (a1 +2a2t' + ...+ ()" ")dp kb = P'(V)dyxV,
so that t(w) = aP'(V)d;, xb'. Hence ¢ € Annp, (¢(w)) if and only if
(2.2.3.1) v(caP' (b)) > v(Drk).

Since Dy, p = (P'(b')) by [Ser62, chap. III, Cor. 2 to Prop. 11] and since Dy, /x = Dr/mDy/i
by [Ser62, chap. III, Prop. 8], (2.2.3.1) is equivalent to v(c) > v(Dyy/k) — v(a) = v(a), i.e.

Annp, (v(w)) = Opa.
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1
2.2.4. The modules QOL/OK

of K contained in K form an inductive system and we have

for K C L varying in the set of finite and separable extensions

th}QL/OK = Q}Qf/@[{’

that makes clear the fact that Qbﬁ /O
1 . 1 . . . . K K
QOL/OK — hngOL/OK is injective. 1 1
Letw € QO? O L a finite and separable extension of K such that w € QOL J0x C QO? Ok

is a torsion Oz-module. By 2.2.3, the canonical map

a the annihilator Annp, (w) C Op. Then the annihilator Ann(w) of w in Q}Q? ey is simply given

by Oa: in particular Ann(w) is a principal ideal of O and its valuation is the valuation of a.

2.2.5. LEMMA. Let w,w' € Q}Of/o}(' Then we have Ann(w) C Ann(w') if and only if there

exists ¢ € O such that W' = cw.

PROOF. It is clear that w’ = cw for some ¢ € O implies the inclusion between the annihi-
lators.

Assume Ann(w) C Ann(w’). The case ' = 0 is trivial, so we can assume w’ and w both
non-zero: indeed w’ # 0 implies Ann(w’) — and a fortiori Ann(w) — different from O, so
that also w is non-zero. Let L be a finite and separable extension such that w,w’ € Q}QL /O If
b is a uniformizer of L, we can write w = adb and w’ = da’db, with a,d’ € Of.

As ' and w are both non-zero, we have v(a) < v(Dp k) and v(a') < v(Dp k), while
v(Ann(w)) = v(Dr/x) — v(a) and v(Ann(w')) = v(Dg k) — v(a’). The assumption Ann(w) C
Ann(w’) implies

v(Drk) —v(a) > v(Dr/k) —v(a’) hence wv(a’) > v(a)
so that o’ € aOp, i.e. there exists a ¢ € O such that W' = cw. O

2.2.6. We consider again the notations of 2.1.12: I' is a Lubin-Tate formal group over Of
and T, (") is its Tate module. We fix a generator (m,),en of Tx(I') over Og: for every r > 1,
7 is a generator of the rank one Og/7n"-module I'zr (mz).

Let E, be the field E[r,]. From [LT65, Theorem 2| and [CF67, VI, §3], we know that the
field extensions E, = E[I'zr(m3)] of £ depend only on the uniformizer 7 of E and are totally
ramified, finite, abelian Galois extensions of E. Moreover, m, is a uniformizer of E,..

2.2.7. PROPOSITION. For every r > 1 we have v(Dg, /) =17 — q_%.

Proor. By [CF67, p. 152], we have:
i) the Galois group Gal(E,/E) is canonically isomorphic to the quotient

Ug/UY) = Ug/(1+ 7" Op);

i) ep, p=[E:E]= ¢ q—1);

Under the isomorphism UE/U](ET) = G = Gal(E,/E), the subgroup Ug)/Ug) maps onto the

ramification group G,i_;. Hence, from the filtration

qi,

Ug/Uy S0P o) - v o) =1,
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we get that a complete set of ramification groups for the extension E,/E is given by

G = Go;
Gi=...=Gg—2=Gy1;
Gq = = Gq2_1,
1=Gy-1.
The corresponding upper numbering is G* = Ggi—q and

G°: G =q—-1 [G":GT=q¢q
By [Ser62, chap. IV, Prop. 4], we have

ve,(Pg,/E) = Y ic(s
s#1

where ig(s) = vg, (s(m) — m,) for s € G. Moreover:

vg, (Dg,/E) = Z Z i(s)

=0 seGi\Gi+1

and the function ig(s) is constant for s € G* \ G'*! and equal to ¢* for every i. For i > 1 we
have that #G* = ¢"~% and that #G*\ G'*! = (¢ — 1)¢" "1, where #S denotes the cardinality
of the (ﬁnite) set S. Hence:

r—1
Z Y ials)=(g=2¢"+D dla-1)g T =q (g —1) = D).
i=0 seGn Gt i1

As v(Dg,/p) = vE, (DE, k), we deduce that

eE /E

1 1
v(Dg, /E) =

mqri (r (‘1_1)_1)_7”_41_71

O

2.2.8. COROLLARY. Let wg be a generator of the module of invariant differentials wp. Then
for any non-negative integer r we have:

(2.2.8.1) v(Ann(7; (wp))) = max {O, r— qll - U(DK/KO)}

PROOF. The statement is evident for r = 0 (since ugp = 0), so we can assume r > 1. By
passing to the limit in 2.2.2, we have

v(Ann(v(w))) = max{0,v(Ann(w)) — U(DK/KO)}
where v is the canonical map v: Qé? /Ox, — Ql O /O . We can therefore assume that K = K.
Let P, be the minimal polynomial of m over E: it is an Eisenstein polynomial. Since the
uniformizer 7 of E is a uniformizer of K, then K, = K|[m,| = K ®g E, is a field extension of K,
totally ramified, with 7, as uniformizer.
Since Ok, = Ok|m,], dm, generates Q}OKT 0k and we have:

v(Ann(dm,)) = v(P (7)) = v(Dg, k).
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By 2.1.5, we know that wy is of the form «(7")dT with «(T) invertible in Og[[T]]. Hence, for
every r > 1,
7 (wo) = a(m,)dm,
with a(m;) unit. Therefore v(Ann(m)(wo))) = v(Dg, k) and the statement follows from 2.2.7.
O

PrROOF OF THEOREM 2.1.13. We first prove the surjectivity of the map £. Let wy be a
generator of wr and let u = (7, )nen be a generator of T, (T'). Let w € Q}D?/OK and let r be an
integer such that

1 *
v(Am(w)) <7 = ——= —v(Pg/K,) < v(Ann(m;(wo)))

by 2.2.8. Hence Ann(w) 2 Ann(7}(wp)), so that there exists ¢ € O such that w = c.7(wo) (by
2.2.5) and

c

w:£<7®u®wo>,

™

proving the surjectivity of &.
We now determine the kernel: any element a € K ® T(I') ® wr can be written in a unique

way as a®@u®wp, with a € K. Let r € N such that r > q%—l—v(DK/KO) and such that 7"a € Oz.
The element « is in Ker(€) if and only if v(Ann(£(a))) < 0 (the annihilator taken in K). Hence

1
v(r"a) >r— i U(DK/KO),

so that o € Ker¢ if and only if @ € a ® T, (T") ® wr. O

2.3. Consequences and corollaries
2.3.1. We keep the assumptions of 2.1.12. Let TW(Q}Q?/OE) be the 7-Tate module of the
Og-module Q%’)f/ow ie.
Tx(Qo_s0,) = Homo, (E/Or, Qp_j0,)

and let VW(Q}DF/OK) be the E-vector space

2.3.2. COROLLARY. Let a be the mw-adic completion of a. We have the following canonical
isomorphisms of Op-modules (resp. Og-modules, C-vector spaces)

(2.3.2.1) Q}%/OK = (K /a) ®0, Tx(T) @0y wr,
(2.3.2.2) Tﬂ(Qé)?/OE) = R0, Tx(I) ®o, wr,
(2.3.2.3) VW(Q}%/OK) = C Qo Tx(I') ®0, wr

that commute with the action of G .

PROOF. Isomorphism (2.3.2.1) simply follows from 2.1.13. As E/Op = %(#OE)/OE we
have:

) 1
TW(Q%’)?/OE) = @HOI’HOE (ﬁOE/OEa Q%Q?/OK)
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Moreover ) )
Homo,, (ﬁOE/OEﬁ}of/oK) = (ﬁa/a) ®0p Tx(T') ®op wr

using (2.3.2.1) together with the fact that T,(I') and wr are free rank one Og-modules (hence
torsion-free) and that the morphisms are Opg-linear. Therefore

: 1 ~
Ta(b,j0,) = lim (—-0/a) @0, Ta(l) @0, wr = & @0, Tr(L) B0 wr-

Finally, for (2.3.2.3) we write £ = lim L Op. As above we have:

. 1
VW(Q%’)?/OE) = Homoe, (E, Qbf/OK) = lim Homo,, (ﬁoE’Qéf/0K>'

To get the isomorphism with C ®o, Tx(I') ®o, wr, we use again (2.3.2.1). The morphisms ¢
of Theorem 2.1.13 is compatible with the action of G, so isomorphisms (2.3.2.1), (2.3.2.2) and
(2.3.2.3) commute clearly with the action of Gg. O

2.3.3. Assume that K is of characteristic 0, that £ = Q, and m = p, so that ¢ = p and
Ky = Frac(W (k)). For this special case (see [LT65, §1, p. 380]), the Lubin-Tate formal group I"
over Q, is the formal multiplicative group @m, i.e. the completion along the unit section of the
multiplicative group G, over Z,,. For f(T) = (14+T)? -1 € Zy[[T]], the group law I' = T'f(X,Y")
is the power series X +Y + XY. By 2.1.5, we have a canonical generator of wr, namely the
unique normalized invariant differential form wg = %

We can identify the Tate module T,(I') with the points in K of the Tate module of the

multiplicative group G,,. More precisely we have, for any n € N,
15 pn(B) K LK 51

and T,(G,,) is the projective limit Hm fun (K), where the transition maps are given by raising
to the p-th power. As the map

is an isomorphism between the group I'(mz) and U%) (with standard multiplication), the points
of p™-torsion with respect to the formal group law correspond to the point of p"™-torsion with
respect to the standard multiplication in K. Therefore

Tp(I) = Tp(Gm) = r&lﬂp” (K)
is the free Zy,-module of rank 1 formed by the sequences (g, )nen of elements of Oz such that
eo=1andel | =ep.
Notice that, by definition, the character x: Gx — Autz, (T,(I')) = Z, giving the action of
Gk on the Tate module of I' is nothing else but the cyclotomic character x,, giving the action
of G on the group of units of order (a power of) p.

2.3.4. For any Zy,-module M endowed with a linear action of Gk and any i € Z, we write
M (i) for the tensor product

i

M ®z, Tp(Gm)®

with the convention Tp(G,,)®" = Z, and, for i > 0, Ty(G,,)® " is the dual of Tp(G,,)®".
In this setting, we can reformulate Theorem 2.1.13 in the following way:
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2.3.5. THEOREM. The map &: K (1) — Q!

O /O defined by

de,

r

p"a® (en)nen > a.

for a € O, r € N is surjective with kernel a(1) and induces canonical isomorphisms:

(2.3.5.1) Q%,)?/K >~ (K /a)(1),
(2.3.5.2) Tp(Q%Q?/K) = Homy, (Qy/Zy, Qé?/oK) >~ (1),
(2.3.5.3) Vp(%?/K) = Homg,, (Q,, Q}QWOK) =~ C(1).

2.4. Applications to Abelian Varieties

2.4.1. Let K be a complete discrete valuation field of characteristic 0 with perfect residue
field k of characteristic p > 0, Ok the valuation ring of K, S = Spec(Og). We note by 7 the
generic point of S and by 7 a geometric point corresponding to an algebraic closure K of K.
We denote by Gk the absolute Galois group of K over K. f: X — Spec(K) be a morphism of
schemes. We call proper Og-model of X any scheme X proper over S such that X, = X.

2.4.2. PROPOSITION ([EGA 1V, 2.8.5]). Let f: X — S be a morphism of schemes and let
X, = f~1(n) be the generic fibre of X. Let v: X, — X be the canonical morphism. Let Z be a

closed subscheme of X,. Then there exists a unique closed subscheme 3 of X, flat over S and
such that «=1(3) = Z.

The scheme 3 is the schematic closure of Z by the composite morphism Z — X, 5 X,
where the first arrow is the canonical injection; its underlying space is the closure in X of Z.

2.4.3. From now on, let X be an abelian variety over K and let ¢: X — P% be a closed
immersion. Let ¢: PR — IP’%K be the canonical morphism. By 2.4.2, there exists a unique
scheme X, flat and proper over S, such that i=1(X) = X.

2.4.4. Let u: Spec(Ox) — X and let w € HO(X, Q%E/O?). We denote by u*(w) € Q%/)f/OK

the image of u*w by the canonical Og-linear map
In this way we obtain a pairing:
(2.4.4.1) HY(X,Qx/0,.) * X(Og) = Qo_0,
by
(w,u) = (w,u) = u*(w).

The map (2.4.4.1) is clearly Og-linear in the first variable and it is compatible with the action
of G. More precisely, for any g € Gg, w € HY(X, Q%C/OK), u € X(O%) we have

(w; g-u) = g({w, u)) = g(u"(w)).



2.4. APPLICATIONS TO ABELIAN VARIETIES 34

2.4.5. By construction, we have the fibre product diagram:

x -".x
1]
n S
that allow us to identify H(X, Q%UK) with K ®0, HO(X, Q;WOK). Indeed, let (U;)icr be an
affine open covering of X and consider the canonical exact sequence:
(2.4.5.1) 0— H(%,Q%)0,) = 8w, DVx/0x) = [[E Wi, /05
i 0.

where U;; = U; N Uj. Since K is flat over Ok, the latter induces an exact sequence
(24.5.2) 0= HY(X,Q%/0,) @0k K = [[H (Ui, 9 )0,) ®0x K = [[H (Ui, % j0,) @0 K
i i
On the other hand, (U; N X = U; ®o, K)icr is an affine open covering of X and we have, for
every ¢ € 1,
H (Ui, 30, ) @0y K = B (Ui ®0, K, Uy )
Hence (2.4.5.2) implies that
HY(X, Q/x) = K ®o, H(X, Qx0,)-

2.4.6. By the Valuative Criterion of Properness [EGA II, 7.3.8] we have a canonical
identification of X (K) with X(O%): in this way ¥(Oz) inherits a structure of abelian group,
even though X is not a group scheme over S.

2.4.7. PROPOSITION. Under the assumptions of 2.4.4, there exists a non negative integer g

such that for every w € p"oHO(X, Q%E/OK) and every ui,us € X(Ox) = X(K) we have:
(wyu1 +ug) = (w,u1) + (w, uz)

PRrOOF. Let 9 be an Og-model of X x X over K such that the canonical projections
p1,p2: X X, X = X and the group multiplication m: X x, X — X extend to maps from 2) to
X. We can construct Q) as follows: if 1: X x, X — P} is a projective embedding of the product
X X, X, we can consider the composite map

idxm

XXX — X X3 X xp X = X Xg X xg X.

Let Q) be schematic closure of the composite morphism, so that we have the diagram

XXy X — X x, X xp X — Pg ——1

o] |

@%%XS}:XS%HP?;K—'S

We get the required extensions
pLx,p2x,mx: Y — X

by mean of the other projections.
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We know ([BLR90, §4.2, Prop.1]) that the everywhere regular differential forms on X are

precisely the invariant forms, so that for any w € HO(X, Qﬁ( / ) we have:

m*w — pijw — psw =0

in HO(X, Q! ). Let w € HO(X,QL,, ) and consider the form ' € H(Q), Q} ) defined

XxX/K X/0k 9/0k
by
W' =miw — pi xw — P xw.
The natural map
(2.4.7.2) H(), 2y 0,.) = HOX x5 X, x/5) = K X0, H(D,2,0,.)

corresponds to taking the pull-back of a differential form on ) via the map o of (2.4.7.1). Let
q1 be the canonical map X — X. Then, by definition, my o 0 = ¢1 o m. Similarly,

P1x°0=4q1°p1
b2 x©0 = q1°p2,
so that
1®w' = o'W =m*(qjw) - pi(giw) — p3(giw) = 0.
The kernel of (2.4.7.2) is the torsion submodule of the Ox-module H(Q), Q. ). Since

9/Ok’"
— S 1s proper and the sheal of diflerentials 1S coherent, , 1s of finite
S i d the sheaf of diff .IQS-AD/OK. h H° Q%/OK' f fini
type. Therefore there exists an integer rg > 0 such that
p"° [HO(QJ’ Q%/OK)TorS] =0.
The restriction
(2.4.7.3) pHO(X, Q%E/OK) — pHY(D), Q%/OK), w W' =miw — pi xw — Ph xw

vanishes.
Let ui,uz € X(Ox) and denote by u1 x and up x the corresponding K-points of X. Let vy

Uy, x XUu2,x

vx: Spec(K) =N Spec(K) x Spec(K) X xg X

and let v € Y(O%) be the corresponding point of ). We have:
Uy =Prx0Cv; U2 =DP2x0OU;

U, x =P1OoVUX; UXx = P20°UX;

Uy + Uy = myx ov.

By (2.4.7.3), we get for any w € p"*HO(X, Q%E/OK),

(u1 + u2)*w = v"(Myw) = V" (p] xW + P3 xw) = UjW + UsW.
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2.4.8. Let r > ry be a non negative integer such that p"HY(X, Q%e/OK) is torsion free or, so
that the restriction of the canonical map

HY (X, )0,) = K @0, H(X, Q% 0,.) = (X, Qi)
to p"HO(X, Q;/OK) is injective. We can restrict the map (2.4.4.1) to
PH(X, Q% j0,) X X(K) — ng/oK.
By 2.4.7, this pairing is Z[G g|-linear in the second variable. The associated homomorphism
(2.4.8.1) PPHY(X, Q% 0,.) = Homgg,  (X(K), Q. e»
is Og-linear.

2.4.9. Let
Tp(X) = Tp(Xy) = Homz(Qp/Zyp, X(K))
be the p-adic Tate module of X. Let V,,(X) = Homgz(Z[p~'], X (K)). We have a natural inclusion
of Tp(X) in Vj(X): given any « = (ap)nen € Tp(X) we can define a map ¢, : Z[p~!] - X (K)
by the assignment p~" + a,, for n > 0. Let V,(Q, /O ) be Homz, (Q,, Q}Q?/OK) as in 2.3. We
have the isomorphism

(2.4.9.1) Homgz, (Qp, Q}Df/OK) >~ Homgz(Z[p™ '], Q}D?/OK)-
We can compose the Og-homomorphism (2.4.8.1) with the map:

- Y
(2.4.9.2) Homgz (X (K), Qo_s0,) = Homgzg,q(Vo(X), Vo(Q_0,.))
to get
P (X, Qy/0,) = Homgzig, (Vo(X), Vo(Q_0,.))
and then, by extending the scalars to K:
0= -t HO(X, QX/K) K ®ox p "HY(X, Qae/o ) = Homgq, 1 (V,(X), V(Qo /OK))

2.4.10. REMARK. The map ¢ in (2.4.9.2) is injective, as X (K) is a p-divisible group (in the
classical sense).

2.4.11. For any w € HO(X, Qﬁ(/K) we can take the restriction of the morphism of Z|Gk]-
modules

0(w): Vp(X) = Vp(Qp_ /OK)
to Tp(X) C Vp(X) = V(4 —JOx ). By continuity, o(w)|r, (x) is Zp linear and, in the end, we
get a K-linear map:

0% = 0%k x,  H(X, Q) = Homg, i, (Tp(X), Vo(Q_0,.)) = Homg, g, (Tp(X), C(1))
since V,(Q5,__ /O ) is Z,|G]-isomorphic to C(1) by Theorem 2.3.5.

2.4.12. PROPOSITION. The restriction map
Homy g, (Vp(X), C(1)) — Homgy g, (Tp(X), C(1))

induced by the inclusion T,(X) C V,(X) is injective
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PROOF. Let X[p™] be the subgroup of p-primary torsion of X (K). The quotient D,(X) =

X(K)/X[p™®] is a uniquely p-divisible abelian group and we have a canonical isomorphism
between Homgz(Z[p~!], D,(X)) and D,(X) given by

e (l), x€DyX)— (pp: 11— x).
Therefore, the exact sequence
0— X[p™] = X(K) = Dy(X) =0
leads to the exact sequence
(2.4.12.1) 0 — Homgz(Z[p~'], X[p™]) — V,(X) — Dy(X) — 0.
Moreover, we have a canonical isomorphism:
(2.4.12.2) Homy (Z[p™'], X[p™]) = Q, ®z, Tp(X).

Indeed, given any Z-linear map ¢: Z[p~] — X[p™], let zyp € X[p"] be ¢(1). Then for any n € N,
xn = o(1/p") € X[p™t"], with pz,, = x,_1, defining in this way the element p~" @ (p" @y, )nen €
Qp ®z, Tp(X): it is easy to check that the map is an isomorphism.
By applying Homy g, (-, C(1)) to (2.4.12.1) we get
(2.4.12.3)
0 = Homgig, ) (Dy(X), C(1)) = Homg(Vy(X), C(1)) % Homyg, (T,(X), C(1))

Homgg,)(Tp(X), C(1)) = (Homgz(T,(X), C(1)))“* = Homg g, (Qp @z, Tp(X), C(1)),

so that Homgy g, )(Dp(X), C(1)) is identified with the kernel of a.
Since

XK= U xom= U x®"
KDLDK HAGk
L finite, Galois H open

also Dp(X) = UJ(Dp(X))H for H varying in the set of open normal subgroups of Gg. Given
[ € Homgg,(Dp(X), C(1)) we have

FUD(X)NH) C (c1) =0

by Tate’s Theorem (cfr. 1.5.15), for any open normal subgroup H of Gk. Hence f(D,(X)) =
U A(Dp(X)T) =0. O

2.4.13. PROPOSITION. The maps Q())( and ¢ do mot depend on the choice of v and on the
choice of the Ox-model X.

PRrROOF. The K-linearity gives immediately the independence from r. It is clearly enough
to check the independence of the map p from the choice of X. Let X; and X, be two proper
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Ox-model of X and suppose that the identity map idx extends to a morphism f: X; — X,:
X — Xy

/7

X — X
n——>S.

In this situation we say that X; dominates X5. The commutativity of the above diagram implies
that

o, s HO(X, Q}(/K) =+ K Q0 pTHO(%bQ%EZ/OK) — Homgg,,) (Vo (X), V})(Q%’)?/OK))
| 7| H
0%z H(X, Q% ) — K ®0, pP"HY(%,, Q% /) — Homyq, (Vo (X), V,(Q2 )
Ox x,* 13X /K Ok P 15%%%, /0K ZIGgI\Vp VPO /O
also commutes, proving that Z)g@%z = ng,%l‘ In the general case, if X1 and Xy are two models of

X, we can construct a third Og-model of X, say X3, forcing the existence of maps X3 ﬂ) X1

and X3 ]%—2> X2 extending the identity idx. Indeed, let ¢: X — P’ be a projective embedding
of X. Arguing as in (2.4.7.1), we can consider the composite map

X B kX xx X = X1 x0, Xo.
and we let X3 be the schematic closure of the composite morphism. O
2.4.14. THEOREM. Let X be an abelian variety over K. Then
0%+ HO(X, Q) — Homy,¢(T,(X), C(1))
defined in 2.4.11 is an injective K-linear map, functorial in X.

2.4.15. The same argument used in the proof of 2.4.13 allow us to prove that the map gg(
just defined is actually functorial in X: given any homomorphism of abelian varieties f: X — Z,
it’s enough to choose two Og-models for X and Z respectively, say X and 3, such that f extends
to a morphism f: X — 3.

2.4.16. The map Qg( is K linear by construction and functorial by 2.4.15. Since the
restriction map Homgq,1(V,(X), C(1)) — Homgg,)(T,(X),C(1)) is injective by 2.4.12, it’s
enough to prove that g defined in (2.4.9) is injective. On the other hand, g is the scalar extension
to K of the composition between the map (2.4.8.1) and the injective map v of (2.4.9.2). Hence,
we are reduced to prove the following

2.4.17. PROPOSITION. The map
erO(:ﬂ Q%{/OK) — Homgg (X(K), Q%’)?/OK)
defined in (2.4.8.1) is injective.

We dedicate section 2.5 to the proof of this result.
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2.5. The Proof of Proposition 2.4.17

The independence from the choice of the Ox-model X given by 2.4.13, allow us to use the
following desingularization lemma:

2.5.1. LEMMA. Let X be a projective variety over K, of dimension d. Let u € X(K) be a
reqular point of X. Then there exists a proper Og-model X of X such that if © denotes the
closed point in the closure of u in X, the my-adic completion of Ox 5 is isomorphic to the ring
of formal powers series in d variables over Ok .

PROOF. Let ¢ be a closed immersion ¢: X — P, so that:
X =Proj(K[Xo,...,Xn)/I)

for a homogeneous ideal I of K[Xo, ..., X,]. We choose homogeneous coordinates (Xo;...; Xy)
of P} so that w is the point (1:0...:0): being u a regular point of X, the Jacobian criterion
implies — up to a variable reordering — that we can find homogeneous polynomials Fi, ..., F,,_4
in I, locally defining X, such that the (n — d) x (n — d) minor
OF;
(2.5.1.1) ( (u))
8Xd+j 1<i,j<n—d

of the Jacobian matrix at u is invertible. By a linear change of variables we can further assume
that such minor is the identity matrix I,,_g4.

Let J be the homogeneous ideal of K[X),...,X,] generated by
X; for1 <i<d

2.5.1.2 ! T
( g ) XZX] for i,j > 1.

If ry =degF;, 1 <i<n—d, we have
(2.5.1.3) F=X""Xs, (mod J), forl1<i<mn-—d
by (2.5.1.1) and (2.5.1.2). Let 7 be a uniformizer of Ox. We choose non negative integers s;
such that
7 F; € Og[Xo,..., Xyp], forl1<i<n-—d.

Let s € N such that s > s; for every 1 < i <n — d and we set:

Xo = X,
(2.5.1.4) X;=n%X] for1<i<d,

X, =7n°X! ford+1<i<n.
With this choice, a straightforward computation shows that we can find (n — d) homogeneous
polynomials G; in the variables X/ such that:
Fi = 7T5Gi

Gi = (X0)" ' X},

(2.5.1.5) for1<i<n—d.

(mod 7Ok [X]),...X}])
We adopt the linear change of coordinates (2.5.1.4) in P% and consider the open immersion
(2.5.1.6) % = Proj(K[Xy, ... X,]) = Proj(Og[X), ... X)]) =Pp,.

Let X be the schematic closure of X — Pp, = via (2.5.1.6). Let w be the closed point of the
closure of u in X. We place ourselves in the principal affine open neighbourhood of @ (resp. u)
Dy (Xp) =Py, \ Vi (Xp) (vesp. Dy (Xg) NPY), so to have affine coordinates x; = Xj/X.
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Let m, C Ox, be the maximal ideal of the local ring of X at u. The ring Ox, is regular
and local of dimension d. By construction, the K-vector space m, /m? is generated by x1, ..., z4.

Let mz C Ox,, be the maximal ideal of the local ring of X at u. Let Iy o, be the ideal of
Oklx1, ..., 2,] defining X in Dy (X() = Ap, . It is generated locally at @ by the de-homogenized
polynomials X "G(X/), written in the variables ;. Then myg is generated by 7 together with
the images of z1,..., 2, modulo Iy, . The local ring Oy is a regular local ring of dimension
d + 1. Indeed, Oxy has dimension at least d 4 1, since when we invert m we obtain a ring of
dimension d. The equality in the dimension and the regularity follow from the fact that mg/ m%
is generated by 7, z1,...,zq by (2.5.1.5).

We have

63{7@ = OKH{L‘l, Ce ,:L'dH

Indeed, any element of Oy 7 can be expanded as a power series in the x; with coefficients in O,
so we have a surjective map

Ox[lz1, ..., 24]] = Oxm

and we conclude by [EGA IV, 0.17.3.5 (ii)], being Ok|[z1,...,zq]] a regular local ring of di-
mension d + 1 = dim Ox 5 = dim Ox 3. 0

2.5.2. Let e € X(K) be the unit section of X and let X be the proper Og-model of X
provided by Lemma 2.5.1, so that

Oxe = Ok[[T1,...,T,]]
where ¢ = dim X and € is the closed point of the closure of e in X. Let ﬁ% /0 be the
Xe K

module of continuous Og-differentials of (535,5, i.e. the separated completion of the (/’)\x’g—module

of Ok-differentials Q% 10 (see [EGA IV, 0.20.7.14.2]). By [EGA IV, 0.20.4.5], we have the
Xe K

canonical isomorphism
Ol — i Ol nol
Q@x,E/OK - @QOx,e/OK /méQox,E/OK'
If we take the composition with the (injective) canonical map

1 Ol
(2.5.2.1) QOX,E/OK — Qéx,é/oK

we have an injective Og-linear morphism

(2.5.2.2) P"H (X, Q% )0,.) = Q%m 0"

Indeed, a global section w € p"H(X, Q%E/OK) c H(X, Qﬁ(/K) is mapped to 0 in the stalk

Qéx e if and only if it is mapped to 0 in Q%,)X I that implies w = 0, since the everywhere
defined 1-form over an abelian variety are determined by the value in e.

2.5.3. We equip (53575 with the m = (11,...,T,)-adic topology and O with the p-adic

~

topology. To give a continuous Og-linear map f: Oxz — Ox amounts to give g elements
Tf1,...,2f4 in the maximal ideal mz of O%. Therefore we have a canonical map

)

(2.5.3.1) — Homgz(Homeon, 04 (Ox2, Oxc), 2o_j0,)

1
Ox2/0k



2.5. THE PROOF OF PROPOSITION 2.4.17 41

given by
d d
o1
W= z;ai(Tl, . Ty)dT; € Q@e,a/OK = (f — z;@i(l‘f,l, oo xpg)day;)
1= 1=
as oi(xf1,...,2f,4) converges in O for every i and f.

Let 9 be the composition of (2.5.2.2) with (2.5.3.1):
19: pTHO(%’ Q;/OK) — HOI’HZ (Homcom’oK ((/D\x’g, O?), Q%Qf/OK)
Using the natural inclusion
Homeon, 0, (O, Og) € 2(0g) = X(K)
we see that for every w € p"H(X, Q% /OK)’ Y(w) corresponds to the restriction to the subset

Homeont, 0, (Ox2, O) of (w, —) € Homye, (X (K), Q%O?/OK% image of w through (2.4.8.1). To
complete the proof of 2.4.17 is therefore enough to establish the following

2.5.4. LEMMA. The canonical map
~ N .
Q(’?x,g/oK — Homg (Homeont,0, (Ox2, Ox), QO?/OK)
18 injective.

2.5.4 can be restated in the following purely algebraic form:

2.5.5. LEMMA. Let w = Z;-i:l a;(Th,...,T,)dT; be a formal power series in d variables with
coefficients in Ok . be a non-zero continuous differential form. Then there exist x1,...,24 € Mz
such that

d
Z a;(zy, ..., xg)da;
i=1
: 1
is a non-zero element of QO?/OK.

Proor. We first verify the statement for g = 1. Let w = a(T)dT = Y5 a;T'dT with
a; € Ok. Let v be the valuation of K normalized by v(K*) = Z and let

s = l;élﬁf}l}(%) eN.

As s € N, there exists a smallest non negative integer ig satisfying v(a;,) = s. Then, for any
x € mg such that v(z) < % we have:

v(a(z)) = s +igv(x) < s+ 1.

It’s enough to choose x to be a uniformizer for a finite (ramified) extension L of K, contained

in K such that v(Dr k) = s+ 1. Then by 2.2.3 the annihilator of dz in O is OxDr,/k, so that

a(z)dz is not zero as element of QF, 0K O
K

The general case is a consequence of the following statement:
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2.5.6. LEMMA. Let a1,...,a4 be g formal power series in g variables, o; € Og|[[T1,. .., Ty]]
and suppose that at least one of them is non zero. Then there exist g formal power series
P1,- .., pg 1 one variable T over O with no constant terms such that

g
Z ai(@l) ) (109)90;
=1

is a non zero element of Ok [[T]], where ¢, denotes the formal derivative of ¢; with respect to
the variable T .

ProOOF. We look for the ¢;’s of the form ¢; = a;T + b;T? with a;,b; € Og. Let A\ =
Y9 ai(er,- .., pg)pk; we have

g
A=) ai(aT+bT?... a7+ b,T?)(a; + 2b:T).
i=1
Write «; in the form «; = ZmZO o m With o, homogeneous of degree m in the variables
Ti,...,Ty. If v is the smallest integer such that there exists j with o, # 0, we have the
following expansion for A:

g g
A= (Z aiai7r(a1, e ag))TT + (Z aiai,r-i-l(al, .. ,ag)—i—
=1 i=1

g
—I—Z2bjaj7r(a1,..., -{-ZCLZ j 6T . ag)>T7"+1+
=1

We now have three possibilities:
i) fF =37 Tio,(Tu,...,Ty) # 0, being Ok infinite, we can find a1,...,a4 in Ok
such that F'(ai,...,aq) # 0. For this choice of the a;’s, A # 0 for any choice of the b;’s.
ii) If F =0 we look at the next term in the expansion of \: if

g
G=> Titip1(Th,..., Ty) #0,
i=1
we can use again the fact that Ok is infinite to find a;’s such that G(a,...,a4) # 0.
If we set b; = 0 for every j we see that A # 0.
ili) If F = G =0, we have, by taking the derivative of F' with respect to Tj:

aazr
(2.5.6.1) o (Th, ..., T, +ZT Tl,...,Tg) =0

for every 1 < j < g. Moreover

g g ‘
A= <Zb] (204]‘,7“(@17 ce 7ag) + Zazaa%T (a1, o ,ag)>)T7”+1 + ...
7=l i=1

so that if we substitute (2.5.6.1), we get

g
<Zb Qi al,...,ad)>Tr+1+...
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It is enough to choose a j such that o, # 0 to find a;’s in Ok such that a; (a1, ..., a4) #
0. If we set b; =1 and b; = 0 for 7 # j we see that \ # 0.

O

2.6. Connections with Tate’s conjecture

2.6.1. Let K be asin 2.4.1, X an abelian variety over K, T},(X) = T),(X5) the p-adic Tate
module of X.

2.6.2. THEOREM (Tate-Raynaud). Under the assumptions 2.6.1, there exist canonical, bijec-
tive, K-linear homomorphisms

ok : H'(X, Ox) — Homg, ¢,.(Tp(X), C),
0%+ HY(X, Q) — Homyg, (g, (Tp(X), C(1))
where QOX is the homomorphism defined in 2.4.11.
PROOF. Let g be the dimension of X. By 2.4.14 we have:
(2.6.2.1) d = dimg (Homg, () (T,(X), C(1))) > dimg H(X, Q) = g.

Equality holds in (2.6.2.1) if and only if 0% is an isomorphism. Let X be the dual abelian variety
of X. If we interchange the roles of X and X, we get from the injection

92‘(3 HD(X,Qk/K) — HomZP[GK](Tp(X), C(1))
the inequality

A

d = dimK(HomZp[GK](Tp(X)a C(l))) >g.

The Weil pairing

Tp(X) x Tp(X) — Zp(1)

is a perfect Zy-linear pairing, compatible with the action of G (see [Mum?70, p. 186]). It
induces a canonical isomorphism

(2.6.2.2) Tp(X) 22 Homg, (T,(X), Zy(1)).

Let W = Homg, (T,(X),C(1)) and W = Homg, (T,(X),C(1)). By (2.6.2.2) we have W =
Tp(X) ®z, C and W Tp(X) ®z, C, so that there is a canonical non-degenerate G g-pairing

(2.6.2.3) W x W — C(1).

By (1.5.15), we have H? . (Gg,C(1)) = H. . (Gx,C(1)) = 0. By 1.6.2, WK @ C and
WEK @ C are C-subspaces of W and W. Since they are paired into C(1)“%, they are orthogonal
with respect to the pairing (2.6.2.3). Their dimensions are d’ and d respectively, and by (1.9.5.1)
we have d + d' < 2g = dimc/(T,(X) ®z, C), as required.

In order to get the morphism gk we use again duality for abelian varieties. First of all,
recall that there is a canonical isomorphism between the tangent space at 0 to the dual abelian
variety X and H'(X, Ox) ([Mum?70], Corollary 3, p. 130). Hence

H!(X, Ox) = Homg (H'(X, Q% ), K).
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The spaces HO(X, Qk/K) and HO(X, Q;{,/K) are mapped injectively onto subspaces of W and W

which are orthogonal with respect to the pairing to C(1). Hence we have
Home (HO(X, Q% ) C(1)) = W,
so that H'(X,0x) = WY @k C(—1). But then
WK @ C(=1) = Homg, () (Tp(X), C(1)) @k C(—1) = Homg, g, (Ty(X),C)
providing the required isomorphism

ok H'(X,0x) & Homg, (¢, (Tp(X), C).
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