
Shukhrat Alladustov
sh.alladustov@gmail.com

A STRONG BOUND FOR THE NUMBER OF

SOLUTIONS OF THUE EQUATIONS

Master’s thesis, July 2015

Supervisor: Prof. Yuri Bilu

Leiden University University of Bordeaux



Contents

1 Introduction 3

2 Additional theorems and facts 5
2.1 The Thue theorem about finiteness of solutions . . . . . . . . . . . . . . . 5
2.2 Discriminant of the polynomial . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Simplification of the form F and normalization . . . . . . . . . . . . . . . 8

2.3.1 Decomposition for Z2 . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Classification of polynomials . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Mahler height and the Mahler inequality . . . . . . . . . . . . . . . . . . . 10
2.4.1 Hadamar’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 The Lewis and Mahler estimation . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 The Thue-Siegel principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Some definitions and facts on number fields . . . . . . . . . . . . . 14
2.6.2 Admissible triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 An upper bound for the number of solutions 20
3.1 Large solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Strong gap principle . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Small solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



Chapter 1

Introduction

A Thue equation is a Diophantine equation of the form

F x, y m (1.0.1)

where F x, y Z x, y is an irreducible homogeneous polynomial in two variables of
degree r 3 and m Z is an integer number. It is named after Axel Thue, who in
1909 has shown that equations of this kind has only finitely many integer solutions. We
will discuss the proof later on. Other approaches to the problem were performed also by
Th.Skolem and A.Baker. Th.Skolem used p-adic power series, under weak restrictions on
F and A.Baker used lower bounds for linear forms in logarithms.

Later, there have been put another question: Does there exist an upper bound for the

number of solutions not depending on the polynomial F but only on the degree r and

integer m ? The first results were obtained by C.L.Siegel for a specific case when r 3
and F x, y ax3 by3 Z .

But, the question was answered by J.H.Evertse ( 2 ) in the general case. Evertse’s
method was based on the ideas of Siegel and Baker to reduce the problem to the specific
cases which are more comfortable to work with. Firstly, he considered the equation of
the form axr byr c where he obtained 2rw c 4 as an upper bound for the
number of solutions with w c is an integer number depending on c N . Also, the
equation F x, y 1 with F is a cubic polynomial with positive discriminant was
investigated. As a result in this case, it was obtained that the equation has at most twelve
solutions. Finally, some approaches in equations in number fields and techniques of Pade
approximation were used to obtain the following upper bound for the number of primitive
solutions of the equation 1.0.1

715
r
3 1

2

6 72
r
3 t 1

where t is the number of prime divisors of m .
In our work we consider a particular type of the Thue equations

F x, y 1 (1.0.2)

under the same conditions for F x, y Z x, y as above and we deal with the problem
of finding an upper bound for the number of integer solutions, we describe the method of
E.Bombieri and W.M.Schmidt.
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It is clear that each integer solution of 1.0.2 , if exists, consist of coprime numbers
x, y . Also, if x, y is a solution then x, y is so too. Therefore for simplicity we
consider only one of these solutions, more precisely throughout the thesis we only work
with solutions such that y 0 without mentioning.

As a main result we derive the following relation for the number of solution of 1.0.2 .

Theorem 1.0.1. Let F x, y Z x, y be an irreducible homogeneous polynomial of

degree r 3 . Then for r c , the number of integer solutions of the equation

F x, y 1

which solutions x, y and x, y are regarded the same, does not exceed 215r , where
c 0 is an absolute constant.

Firstly, we classify the polynomials satisfying the above conditions according to the
number of solutions of 1.0.2 . Then it allows us to consider one representative from each
class instead of working with all polynomials. We also show that as such a representative
we can take the polynomials whose leading coe�cient is 1, for this purpose we construct
the so-called auxiliary forms.

Also, we derive a decomposition of Z2 into finitely many smaller sets Z2 n

i 0

Z
i

,
using this decomposition we can only deal with polynomials whose discriminants are big
enough. Here, a key point is the fact that the number of solutions of 1.0.2 does not
exceed the sum of the numbers of solutions in each Z

i

, i 0, ..., n .
The proof of the main theorem is based on two steps, firstly we deal with finding a

bound for the number of solutions x, y whose heights H x, y max x , y is not less
than some fixed number M 0 and then for the solutions x, y with y M , which
we call large and small solutions respectively. Obviously, large and small solutions cover
all the solutions.

In the first case, we need some additional theorems. We state the Lewis and Mahler

estimation and the Thue-Siegel principle in specific cases ( 5 ) with proofs. Also, we
develop the so-called Strong gap principle. Using these approaches we conclude that 3r
is an upper bound provided r su�ciently large.

In the second case, we use an auxiliary polynomial and some tricks to show that the
bound is 212r .

Actually, this result can be applied to obtain a bound for the number of solutions of
1.0.1 too, more precisely if the number of solutions of (1.0.2) does not exceed N

r

then
N

r

rt is an upper bound for the number of solutions of 1.0.1 , where t is the number of
prime factors of integer m .



Chapter 2

Additional theorems and facts

2.1 The Thue theorem about finiteness of solutions

As we mentioned before, we first show that 1.0.1 has only finitely many solutions under
fixed coe�cients. For this we need the following theorem due to Thue.

Theorem 2.1.1 (Thue). Let ↵ C be an algebraic integer number of degree r 2 , then
for any " 0 and c 0 the inequality

↵
p

q

c

q
r
2 1 "

can have only finitely many solutions with p Z and q N .

This result will be directly used in the proof of the following theorem.

Theorem 2.1.2. Let

F x, y a
0

xr a
1

xr 1y ... a
r

yr Z x, y , r 3

be an irreducible polynomial with a
0

0 and let m Z be any integer, then the number

of integer solutions of the equation

F x, y m (2.1.1)

is finite.

Proof. We consider the following two cases separately:
1) m 0 then the equation has no integer solutions except trivial one, because F is

an irreducible homogeneous polynomial of degree r 3 .
2) Suppose m 0 . We consider the polynomial f z F z, 1 then we have that

f z a
0

zr a
1

zn 1 ... a
r 1

z a
r

Z z is also an irreducible polynomial in one
variable, let ↵

1

, ...,↵
n

be its roots. Then we have the factorization

F x, y yrf
x

y
a
0

x ↵
1

y ... x ↵
r

y

So, solutions of (2.1.1) satisfy the relation

x ↵
1

y ... x ↵
r

y
m

a
0

(2.1.2)
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6 2.1. The Thue theorem about finiteness of solutions

Product of r numbers equals to m

a0
therefore there exists k , 1 k r with

x ↵
k

y r m

a
0

(2.1.3)

Take � 0 such that � min ↵
i

↵
j

, i j , it is possible since ↵
1

, ...,↵
r

are the
di↵erent roots of the irreducible polynomial. The inequality (2.1.3) then implies

x ↵
i

y ↵
k

↵
i

y x ↵
k

y ↵
k

↵
i

y x ↵
k

y � y r m

a
0

(2.1.4)

for all i 1, ..., r, i k .
It is clear that if y is bounded then the number of solutions is finite. Therefore,

throwing away finitely many solutions, if needed, one can assume that

y
2 r m

a0

�

Then from (2.1.4) we obtain that

x ↵
i

y
1

2
� y , i 1, ..., r, i k.

Thus, for the product of r 1 components the following relation holds

i k

x ↵
i

y
1

2
� y

r 1

Now, applying this fact in 2.1.2 we obtain

x ↵
k

y
c

y r 1

, c
m

a
0

1

2

�
r 1

or equivalently, for almost all the solutions x, y we have that

↵
k

x

y

c

y r

(2.1.5)

But, by the Thue theorem the last inequality has only finitely many solutions x, y Z ,
y 0 for any integer n 2 and c 0 . We have that all, but finitely many integer
solutions of 2.1.1 satisfy the relation 2.1.5 , which implies that the number of solutions
cannot be infinite.

Corollary 2.1.1. Let F be as in the definition of the last theorem. Then the equation

F x, y 1 (2.1.6)

has only finitely many solutions.

Proof. The proof follows from considering the two equations

F x, y 1.

Each of these equations is a particular case of the Theorem 2.1.2 with m 1 and
m 1 , therefore the number of solutions of 2.1.6 is also finite.
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2.2 Discriminant of the polynomial

Let F x, y a
0

xr a
1

xr 1y ... a
r

yr be an irreducible homogeneous polynomial with
integer coe�cients, of degree r 3 . Suppose ↵

1

, ...,↵
r

be the roots of the polynomial

f x F x, 1 a
0

xr a
1

xr 1 ... a
r

then we have
F x, y a

0

x ↵
1

y ... x ↵
r

y

Now, we define the discriminant D F of the polynomial F using the determinant of
the Vandermonde matrix

V

1 ↵
1

↵2

1

... ↵n 1

1

1 ↵
2

↵2

2

... ↵n 1

2

... ... ... ... ...
1 ↵

r

↵2

r

... ↵n 1

r

as D F a2r 2

0

detV 2 , more precisely

D F a2r 2

0

i j

↵
i

↵
j

2 (2.2.1)

Let us see what happens if we change x, y by A x, y , where A is a matrix with

non-zero determinant of the form A
a b
c d

GL
2

Z and A x, y ax by, cx dy .

Consider the polynomial F
A

x, y F ax by, cx dy . Then

F ax by, cx dy b
0

xr b
1

xr 1y ... b
r

yr

for some integers b
0

, ..., b
r

.
Evaluating F

A

at 1, 0 we can see that

b
0

F a, c (2.2.2)

Consider the equation

F
A

x, 1 a
0

ax b r a
1

ax b r 1 cx d ... a
r

cx d r 0

We note that we can assume cx d 0 , otherwise the equation has a solution only if
ax b 0 , but this contradicts to the assumption that det A 0 . So, dividing both
sides of the equality by non-zero term cx d r we obtain

a
0

ax b

cx d

r

a
1

ax b

cx d

r 1

... a
r

F
ax b

cx d
, 1 0 (2.2.3)

According to our assumption, the equation F z, 1 0 has solutions ↵
1

, ...,↵
r

, then
solving the equations

ax b

cx d
↵
i

for i 1, ..., r we obtain that the roots of 2.2.3 are

�
1

↵
1

b

a ↵
1

c
, ..., �

r

↵
r

b

a ↵
r

c
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Then for the di↵erence of these roots we have

�
i

�
j

↵
i

b

a ↵
i

c

↵
j

b

a ↵
j

c
det A

↵
j

↵
i

a ↵
i

c a ↵
j

c

and we obtain the following relation

i j

�
i

�
j

2 det A r r 1

i j

↵
j

↵
i

a ↵
i

c a ↵
j

c

2

det A r r 1

i j

↵
j

↵
i

2

F a, c r r 1

Taking into account the fact (2.2.2) we get

D F
A

b2r 2

0

i j

�
i

�
j

2 b2r 2

0

a2r 2

0

det A 2r 2

i j

↵
j

↵
i

2

F a, c r r 1

det A r r 1 D F

Thus, the change of variables x, y A x, y gives the following relation between
the discriminants of the polynomials F

A

and F

D F
A

det A r r 1 D F (2.2.4)

2.3 Simplification of the form F and normalization

2.3.1 Decomposition for Z2

For simplicity we need to consider the forms satisfying certain properties. More precisely,
we want to work with polynomials which have quite big discriminants.

Lemma 2.3.1. For any prime p we have the following decomposition of Z2

,

Z2

p

j 0

A
j

Z2

where A

0

p 0
0 1

, A
j

0 1
p j

, j 1, ..., p

Proof. Indeed, take any pair x, y Z2 . If x 0 mod p , then x p x , some x Z ,
then

A
0

x
y

p 0
0 1

x
y

px , y x, y

Now let x 0 mod p . We again consider two cases:
1) y 0 mod p , then y py for some y Z then taking y x, x Z2 we

obtain

A
p

y x, x
0 1
p p

y x
x

x, p x y px x, y

2) y 0 mod p . Then we want to find x , y Z2 and j, 1 j p 1 such that

A
j

x , y
0 1
p j

x
y

y , px jy x, y
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Take y x , then it is enough to show that the equation px xj y has a solution
x , j Z , 1 j p 1 . It is clear that xj y mod p has such a solution
1 j p 1 since x, y 0 mod p , i.e., y xj 0 mod p . Choose x y jx

p

,
then A

j

x , y x, y .
Thus, for any pair x, y Z2 there exist j , 0 j p and x , y Z2 such that

x, y A
j

x , y i.e., the decomposition above holds.

This decomposition allows us to restrict ourselves with finding an upper bound for
the number of solutions in each A

i

Z2 . Then, the number of all solutions of 1.0.2 in Z2

does not exceed the sum of number of solutions in all these sets.
We note that if x, y A

j

x , y is a solution of 1.0.2 then

F x, y F A
j

x , y F
Aj x , y 1

and from 2.2.4 we have that D F
Aj pr r 1 D F , since det A

j

p for any
0 j p . Now denote by N

r

p the number of solutions of 1.0.2 for the polynomials
with

D F pr r 1

Then the number of solutions in each set A
j

Z2 does not exceed N
r

p , therefore for N
r

,
the number of all the solutions in Z2 we have

N
r

p 1 N
r

p

We note that p is any prime number that we have not put any additional conditions
yet, it will be fixed at the end of our discussions.

2.3.2 Classification of polynomials

Let F and G be two irreducible homogeneous polynomials in two variables of the same
degree. Then these polynomials are called to be equivalent, if the equations

F x, y 1 and G x, y 1

have the same number of solutions, and for equivalent polynomials F and G we use the
notation F G . The first easy example of equivalent polynomials is F and F , where
F satisfies the conditions above. Also, we note that if A SL

2

Z , then F
A

F .
By this definition of equivalence the set of irreducible homogeneous polynomials of

degree r 3 is divided into several classes. Using, this classification we can replace
polynomials with equivalent forms which is easier to work with.

Now suppose that 1.0.2 has a solution x
0

, y
0

for some fixed F . Then, there exists
A Sl

2

Z , such that A 1 x
0

, y
0

1, 0 . Therefore, 1, 0 is a solution of of the
equation F

A

x, y 1 . We have that F
A

1, 0 b
0

, where b
0

is the leading coe�cient
of the polynomial F

A

, hence b
0

1 . As F , F
A

and F
A

are equivalent, therefore
considering an equivalent form F

A

we can restrict ourselves to forms which are normalized,
that is with the leading coe�cient equal to 1. Therefore, without loss of generality we can
assume that the polynomial F is normalized if needed.
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2.4 Mahler height and the Mahler inequality

Let F x, y Z x, y be a polynomial as in 1.0.2 , denote f x F x, 1 , then it is
irreducible polynomial in one variable and let ↵

1

, ...,↵
r

be its roots.
We define the Mahler height of the polynomial F as

M F a
0

r

i 1

max 1, ↵
i

with a
0

is the leading coe�cient of F .

2.4.1 Hadamar’s inequality

Is the Mahler height and discriminant of the polynomial F related to each other, if so,
what is the relation? To answer this question we need the following theorem by Hadamar.

Theorem 2.4.1. Let

A

a
11

a
12

... a
1n

a
21

a
22

... a
2n

... ... ... ...
a
n1

a
n2

... a
nn

be a matrix with complex entries. Then we have the following inequality

detA 2

n

i 1

a
i1

2 a
i2

2... a
in

2

Now, we apply this theorem to the Vandermonde matrix,

V

1 ↵
1

↵2

1

... ↵r 1

1

1 ↵
2

↵2

2

... ↵r 1

2

... ... ... ... ...
1 ↵

r

↵2

r

... ↵r 1

r

Then we obtain that

detV 2

r

i 1

1 ↵
i

2... ↵
i

2r 2

r

i 1

r max 1, ↵
i

2r 2 rr
r

i 1

max 1, ↵
i

2r 2

That is,

a
0

2r 2 detV 2 a
0

2r 2 rr
r

i 1

max 1, ↵
i

2r 2

So, from the definitions of D F and M F we obtain the following relation between
the Mahler height and the discriminant of the polynomial F

D F rrM F 2r 2 (2.4.1)
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2.5 The Lewis and Mahler estimation

We recall that in this and all the next sections we assume that F is irreducible homoge-
neous polynomial in two variables with integer coe�cients, of degree r 3 .

Let x and y be two coprime integer numbers, then we define the height of the point
x, y by

H x, y max x , y

Then we have the following estimation by Lewis and Mahler.

Lemma 2.5.1. For any pair of coprime integers x, y , with y 0 we have that

min
↵

min 1,
x

y
↵

2r1 2M F r F x, y

H x, y r

where ↵ runs through all the roots of the polynomial f x F x, 1 .

Proof. Let

g x
1

x ↵
f x

where ↵ ↵
i

for some i 1, ..., r and f x a
0

x ↵
1

... x ↵
r

. Then g is a
polynomial of degree r 1 .

We use the same notation for the discriminant of f as for F , i.e., D f D F .
Then we have

D f a2r 2

0

i j

↵
i

↵
j

2 f ↵ 2D g

Also, from ( 2.4.1 ) we have that D F rrM F 2r 2 .
Then using the last fact for G x, y 1

x ↵y

F x, y taking into account the fact that
M G M F we obtain

f ↵
D F

1
2

D G
1
2

D F
1
2

r
r 1
2 M F r 2

As D F is a non-zero integer we have D F 1 , then

f ↵
1

r
r 1
2 M F r 2

(2.5.1)

Let x, y be a fixed solution, then without loss of generality one may assume that

x

y
↵
r

min
↵ ↵1,...,↵r

x

y
↵ �

Also, reordering the roots if necessary we suppose that

↵
r

↵
i

2�, if i 1, .., N

↵
r

↵
i

2�, if i N 1, .., r 1

for some 1 N r 1 . Then

N

i 1

x

y
↵
1

�N 2 N 2� N 2 N

N

i 1

↵
r

↵
i

(2.5.2)



12 2.5. The Lewis and Mahler estimation

For, i N 1, ..., r 1 we have that

↵
r

↵
i

2� 2
x

y
↵
r

Therefore

x

y
↵
i

x

y
↵
r

↵
r

↵
i

↵
r

↵
i

x

y
↵
r

1

2
↵
r

↵
i

Then taking the product we obtain

r 1

i N 1

x

y
↵
i

2 r N 1

r 1

i N 1

↵
r

↵
i

(2.5.3)

We have that

F x, y a
0

y r

x

y
↵
1

...
x

y
↵
r

a
0

y r

N

i 1

x

y
↵
i

r 1

i N 1

x

y
↵
i

x

y
↵
r

Then ( 2.5.2 ) and ( 2.5.3 ) imply that

F x, y 2 r 1 y r a
0

r 1

i 1

↵
r

↵
i

x

y
↵
r

using the fact

f ↵
r

a
0

r 1

i 1

↵
r

↵
i

we obtain

F x, y 2 r 1 y r f ↵
r

x

y
↵
r

(2.5.4)

Now we consider two cases on H x, y .
First case, H x, y y . Then from the relation 2.5.4 we have that

F x, y 2 r 1H x, y r f ↵
r

x

y
↵
r

Taking into account the relations 2.5.1 and the last inequality we obtain

x

y
↵
r

F x, y

2 r 1H x, y r f ↵
r

2r 1 r
r 1
2 M F r 2 F x, y

H x, y r

2r
1
2M F r F x, y

H x, y r

Therefore

min
↵

1,
x

y
↵

2r
1
2M F r F x, y

H x, y r

Second case, H x, y x . We have that

F x, y a
0

x ↵
1

y ... x ↵
r

y x r a
0

↵
1

... ↵
r

1

↵
1

y

x
...

1

↵
r

y

x
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Again without loss of generality one may assume

min
↵

1

↵

y

x

1

↵
r

y

x

where minimum is taken through all the roots of f .
Denote, ' x F 1, x . Then 1

↵1
, ..., 1

↵r
are its roots, repeating the same procedure

as we followed for f in this case we obtain that

F x, y 2 r 1 x r '
1

↵
r

y

x

1

↵
r

Again using 2.5.1 for ' we have

y

x

1

↵
r

2r
1
2 r 1M F r 2 F x, y

x r

2r
1
2 r 1M F r 2 F x, y

H x, y r

(2.5.5)

Now, denote
� max 1, ↵

1

, ..., ↵
r

If we have
1

↵
r

y

x

1

2�

then applying this directly to (2.5.5) we get

2r
1
2 r 1M F r 2 F x, y

H x, y r

1

2�

1

2�
min
↵

1,
x

y
↵ (2.5.6)

Otherwise if
1

↵
r

y

x

1

2�

then according to the definition of �

1

↵
r

1

�

therefore we have that

y

x

1

↵
r

y

x

1

↵
r

1

↵
r

y

x

1

↵
r

1

2�

Then
y

x

1

↵
r

y

x

1

↵
r

x

y
↵
r

1

2�

1

�

x

y
↵
r

1

2�2

x

y
↵
r

Therefore from (2.5.5) we obtain

2r
1
2 r 1M F r 2 F x, y

H x, y r

1

2�2

x

y
↵
r

1

2�2

min
↵

1,
x

y
↵ (2.5.7)

From the relations (2.5.6) and (2.5.7), taking into account the fact that � 1 we can
conclude that



14 2.6. The Thue-Siegel principle

min
↵

1,
x

y
↵ 2�2

2r
1
2 r 1M F r 2 F x, y

H x, y r

Also, we note that
� max 1, ↵

1

, ..., ↵
r

M F

Therefore we obtain

min
↵

1,
x

y
↵

2r
1
2M F r F x, y

H x, y r

Thus, in both cases the desired result is proven.

2.6 The Thue-Siegel principle

2.6.1 Some definitions and facts on number fields

Let K be a number field with K : Q r 3 .
Denote by M

K

the set of places on K , then for any ↵ K we have the following
product formula

⌫ MK

↵ d⌫
⌫

1

where d
⌫

K
⌫

: Q
⌫

with Q
⌫

and K
⌫

completions of Q and K respectively, with
respect to an absolute value ⌫ M

K

.

Definition 2.6.1. The height of a number ↵ K is

H ↵
⌫ MK

max 1, ↵
⌫

d⌫

1
K:Q

and logarithmic height is

h ↵
1

K : Q
⌫ MK

d
⌫

log ↵
⌫

where log x max 0, log x assuming that log 0 : 0 and d
⌫

K
⌫

: Q
⌫

as above.

We note that in the general case we can define the height of any algebraic number
↵ Q in the same way, with K is any number field containing ↵ , then this definition is
well defined and does not depend on the choice of K .

Definition 2.6.2. For a vector ↵ ↵
1

, ...,↵
n

An K the a�ne height hA is

hA ↵
1

K : Q
⌫ MK

d
⌫

log ↵
⌫

where ↵
⌫

: max 1, ↵
0 ⌫

, ..., ↵
n ⌫

.

We also define the logarithmic height h P of a polynomial P x, y K x, y as the
a�ne height of the vector consisting of the coe�cients of P .

Let ↵ K and suppose that ↵
⌫

1 for some place ⌫ M
K

. We say that a rational
number � Q approximates ↵ if ↵ �

⌫

1 .
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2.6.2 Admissible triple

To describe the Thue-Siegel principle corresponding to our case, first we give a definition
of admissible triple. Also, from now on we always assume that the polynomial F is
normalized according to the discussions in the Section 2.3.2.

Definition 2.6.3. Let t 0 be any positive number and let �
1

, �
2

be two rational

numbers that approximate ↵ K . We say that A
1

, A
2

, ⌧ is an admissible triple for

↵, �
1

, �
2

, t, � , where � 0 is an arbitrary number, if for all positive numbers d
1

, d
2

with d
2

�d
1

there exists a polynomial P x
1

, x
2

Q x
1

, x
2

that satisfies the following

three conditions

(i)

deg
x1P d

1

, deg
x2P d

2

where deg
xiP is the highest degree of x

i

in the polynomial P , i 1, 2 and

i1 i2

xi1
1

xi2
2

P ↵,↵ 0

for all i
1

, i
2

with

i
1

d
1

i
2

d
2

t

(ii) there exists j
1

, j
2

with

j1 j2

xj1
1

xj2
2

P �
1

, �
2

0

and

j
1

d
1

j
2

d
2

⌧

(iii) the following relation is satisfied

h P A
1

d
1

A
2

d
2

o d
1

o d
2

when d
1

, d
2

are big enough with d
2

�d
1

.

Theorem 2.6.1 (Thue-Siegel principle). Let 0 t 2

r

and let ↵, �
1

, �
2

, � be the

same as in the definition above, and let A
1

, A
2

, ⌧ be an admissible triple for this data.

Suppose also 0 ⌧ t , and

↵ �
1

t ⌧ and ↵ �
2

1

2
t ⌧ 2

If

↵ �
1

3eA1h �
1

�

then we have that

↵ �
2

3eA2h �
2

�

or

log 3 A
2

h �
2

� 1 log 3 A
1

h �
1

where � 2

t ⌧

.
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Proof. As A
1

, A
2

, ⌧ is an admissible triple for ↵, �
1

, �
2

, t, � , from the definition it
follows that there exists a polynomial P x

1

, x
2

Q x
1

, x
2

satisfying the properties
i , ii and iii . Accordingly, there exist j

1

, j
2

, j1

d1

j2

d2
⌧ such that

1

j
1

!j
1

!

j1 j2

xj1
1

xj2
2

P �
1

, �
2

0

we denote this non-zero value by � .
Then from the product formula we have that

⌫ MK

d
⌫

log �
⌫

⌫

d
⌫

log �
⌫

⌫

d
⌫

log �
⌫

0

Using the Taylor expansion around a point ↵,↵ we have the following relation for
the value of �

�
i1,i2

1

i
1

!i
2

!j
1

!j
2

!

i1 i2 j1 j2

xi1 j1
1

xi2 j2
2

P ↵,↵ �
1

↵ i1 �
2

↵ i2

According to the choice of P x
1

, x
2

we have that

j1 j2 i1 i2

xi1 j1
1

xi2 j2
2

P ↵,↵ 0, for
j
1

i
1

d
1

j
2

i
2

d
2

t

also we have that
j
1

d
1

j
2

d
2

⌧

therefore it holds for all i
1

, i
2

with

i
1

d
1

i
2

d
2

t ⌧

Now, we estimate the values of log �
⌫

from above for all ⌫ M
K

.
For this, we consider the following cases separately: 1) ⌫ , i.e., absolute value that

is restricted from the usual archimedian absolute value on C , 2) ⌫ archimedian except
the first case 3) ⌫ is non-archimedian.

1) ⌫ . Then from the Taylor expansion above we obtain that

log �
⌫

max
i1,i2

log
1

i
1

!i
2

!j
1

!j
2

!

i1 i2 j1 j2

xi1 j1
1

xi2 j2
2

P ↵,↵ �
1

↵ i1 �
2

↵ i2

⌫

o d
1

o d
2

Let deg
x1
P d

1

and deg
x2
P d

2

, then non-zero coe�cients in the expansion of �
are of the form

k
1

!k
2

!

j
1

!j
2

!i
1

!i
2

! k
1

i
1

j
1

! k
2

i
2

j
2

!

for some k
1

, k
2

such that i
1

j
1

k
1

d
1

and i
2

j
2

k
2

d
2

.
Now, we want to find a bound for the logarithmic absolute values of these coe�cients,

the following lemma describes this relation.
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Lemma 2.6.1. The following inequality holds

max
k1 d1,k2 d2

log
k
1

!k
2

!

i
1

!i
2

!j
1

!j
2

! k
1

i
1

j
1

! k
2

i
2

j
2

!
d
1

F
i
1

d
1

,
j
1

d
1

d
2

F
i
2

d
2

,
j
1

d
2

where

F u, v u log
1

u
v log

1

v
1 u v log

1

1 u v
if u

1 v

2

F u, v u log
1

u
1 v log

2

1 v
if u

1 v

2
Applying this lemma we obtain

log �
⌫

log P
⌫

d
1

log �
1 ⌫

d
2

log �
2 ⌫

max
x1,x2

d
1

F x
1

,
j
1

d
1

d
2

F x
2

,
j
2

d
2

d
1

x
1

log ↵ �
1 ⌫

d
2

x
1

log ↵ �
2 ⌫

where maximum is taken over x
1

x
2

t ⌧, 0 x
1

1 j1

d1
, 0 x

2

1 j2

d2
.

Di↵erentiating and taking into account the facts that

↵ �
1 ⌫

t ⌧ and ↵ �
2 ⌫

1

2
t ⌧ 2

and after some calculations we get that the maximum is reached for x
1

x
2

t ⌧ , then
x
1

t ⌧ and x
2

t ⌧ , then

F x
1

,
j
1

d
1

F t ⌧,
j
1

d
1

log 3

and

F x
2

,
j
2

d
1

log 3

Also, considering the maximum over x
1

x
2

t ⌧ we obtain

max d
1

x
1

log ↵ �
1 ⌫

d
2

x
2

log ↵ �
2 ⌫

t ⌧ min d
1

log
1

↵ �
1 ⌫

d
2

log
1

↵ �
2 ⌫

So, we have that

log �
⌫

log P
⌫

d
1

log �
1 ⌫

d
2

log �
2 ⌫

d
1

log 3 d
2

log 3

t ⌧ min d
1

log
1

↵ �
1 ⌫

d
2

log
1

↵ �
2 ⌫

2) ⌫ archimedian except the first case. Then, using the fact that

max
k d

log
k
i

d log 3

we obtain

log �
⌫

log
1

j
1

!j
1

!

j1 j2

j1 j2
P �

1

, �
2

⌫

log P
⌫

d
1

log �
1 ⌫

d
2

log �
2 ⌫

d
1

log 3 d
2

log 3 o d
1

o d
2

3) ⌫ is non-archimedian. Then we have that n
⌫

1 for all n Z , therefore

log �
⌫

log
1

j
1

!j
1

!

j1 j2

j1 j2
P �

1

, �
2

⌫

log P
⌫

d
1

log �
1 ⌫

d
2

log �
2 ⌫
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Then 1 , 2 and 3 imply that

⌫ K

d
v

log �
⌫

⌫

d
v

log �
⌫

⌫ ,⌫

d
v

log �
⌫

⌫

d
v

log �
⌫

⌫ K

d
v

log P
⌫

d
1

⌫ K

d
v

log �
1 ⌫

d
2

⌫ K

d
v

log �
2 ⌫

d
1

log 3 d
2

log 3

t ⌧ min d
1

log
1

↵ �
1

, d
2

log
1

↵ �
2

o d
1

o d
2

h P d
1

h �
1

d
2

h �
2

d
1

log 3 d
2

log 3

t ⌧ min d
1

log
1

↵ �
1

, d
2

log
1

↵ �
2

o d
1

o d
2

On the other hand, for � Q from product formula we have

⌫ K

d
v

log �
⌫

0

According to the choice of A
1

and A
2

, for d
2

�d
1

we have

h P A
1

d
1

A
2

d
2

o d
1

o d
2

.

Now, choose

d
1

D

log 3 A
1

h �
1

and

d
2

D

log 3 A
2

h �
2

where D R
0

large enough. If d
2

�d
1

then

log 3 A
2

h �
2

� 1 log 3 A
1

h �
1

Otherwise, if d
2

�d
1

then,

h P A
1

d
1

A
2

d
2

o d
1

o d
2

for D big enough, applying this we obtain

0 d
1

log 3 A
1

h �
1

d
2

log 3 A
2

h �
2

t ⌧ min d
1

log
1

↵ �
1

, d
2

log
1

↵ �
2

Then, the condition
↵ �

1

3eA1h �
1

�

and

t ⌧ min d
1

log
1

↵ �
1

, d
2

log
1

↵ �
2

d
1

log 3 A
1

h �
1

d
2

log 3 A
2

h �
2

imply
↵ �

2

3eA2h �
2

�
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Example of an admissible triple

To apply the Thue-Siegel principle we need some particular admissible triple for ↵, �
1

, �
2

, t, � .
For this purpose we describe two facts below from the discussions in 4 .

Lemma 2.6.2. Let 2

r 1

t 2

r

1 and let ↵ Q̄ be an algebraic number of degree

r 3 over Q , if A
1

, A
2

, ⌧ is admissible then A
1

, A
2

, ⌧
0

with

⌧
0

2 rt2 r 1 �

is also admissible.

Lemma 2.6.3. We have that

A
1

A
2

rt2

2 rt2
h ↵

1

2

with ⌧
0

2 rt2 r 1 � is an admissible triple for ↵, �
1

, �
2

, t, � .

Corollary 2.6.1. Let t 2

r

, 2 rt2 ⌧ t and A
1

t

2

2 rt

2 logM F r

2

. Also

suppose that � 2

t ⌧

r .
Let ↵ be an algebraic number of degree r , and

↵
x

y
4eA1H x, y �

and ↵
x

y
4eA1H x , y �

then

log 4eA1 logH x , y � 1 log 4eA1 logH x, y

where

�
rt2 ⌧ 2 2

r 1

Proof. For the chosen value for A
1

we already have that

↵
x

y
4eA1H x, y � t ⌧

and

↵
x

y
4eA1H x , y �

1

2
t ⌧ 2

Then, if ↵ 1 , the result immediately follows from the Thue-Siegel principle above.
Otherwise, if ↵ 1 then

↵
x

y
4eA1H x, y �

and the fact that x y approximates ↵ strongly (i.e., the di↵erence is small enough) imply

↵ 1

y

x
↵ 1

y

x
4eA1H x, y � 3eA1H x, y �

then again Thue-Siegel principle for ↵ 1, y x, y x gives the desired result, since Mahler
heights of F y, x and F x, y are the same.



Chapter 3

An upper bound for the number of
solutions

3.1 Large solutions

We first consider the solutions of the equation

F x, y 1 (3.1.1)

which are ’large’, i.e., solutions x, y such that H x, y M for some M 0 big
enough, which will be fixed later.

3.1.1 Strong gap principle

Now, classify the roots of ( 3.1.1 ) dividing them into r classes, we call that two solutions
x, y and x , y belong to the same class if

min
↵

↵
x

y
↵
0

x

y
and min

↵

↵
x

y
↵
0

x

y

for some ↵
0

, a root of the polynomial f , where ↵ runs through all the roots.
Now, take any such a class, then we can numerate the elements as x

1

, y
1

, x
2

, y
2

, ...
and reordering if necessary suppose that

H x
1

, y
1

H x
2

, y
2

....

Then for two consequent solutions x
n

, y
n

and x
n 1

, y
n 1

from one class we have
the following relation

1

y
n

y
n 1

x
n

y
n

x
n 1

y
n 1

x
n

y
n

↵
0

↵
0

x
n 1

y
n 1

x
n

y
n

↵
0

↵
0

x
n 1

y
n 1

Then Lewis and Mahler estimation stated before implies

x
n

y
n

↵
0

x
n 1

y
n 1

↵
0

C F x
n

, y
n

H x
n

, y
n

r

C F x
n 1

, y
n 1

H x
n 1

, y
n 1

r

where C 2r
1
2M F r .

20
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According to our assumption H x
n 1

, y
n 1

H x
n

, y
n

and F x
n 1

, y
n 1

F x
n

, y
n

1 as x
n

, y
n

and x
n 1

, y
n 1

are solutions, therefore

1

y
n

y
n 1

x
n

y
n

x
n 1

y
n 1

2C

H x
n

, y
n

r

(3.1.2)

Theorem 3.1.1 (Strong gap principle). Suppose that H x
1

, y
1

C
1
r
. Then for each

n 1, 2, ... we have

H x
n

, y
n

2C
1

r 2H x
1

, y
1

r 1

n 1

Proof. Firstly, taking into account the relation (3.1.2) we have

H x
i 1

, y
i 1

y
i 1

y
i 1

y
i

y
i

H x
i

, y
i

r 2Cy
i

H x
i

, y
i

r 1 2C

for all i 1, 2, ... . Applying this fact several times we obtain

H x
n

, y
n

H x
n 1

, y
n 1

r 1

2C

H x
n 2

, y
n 2

r 1

2

2C 1 r 1

...
H x

1

, y
1

r 1

n 1

2C 1 r 1 r 1

2
... r 1

n 2

We have that

2C 1 r 1 r 1

2
... r 1

n 2
2C

r 1 n 1 1
r 2 2C

1
r 2

r 1

n 1

Thus,

H x
n

, y
n

H x
1

, y
1

r 1

n 1

2C 1 r 1 r 1

2
... r 1

n 2 2C
1

r 2H x
1

, y
1

r 1

n 1

Now, we combine the strong gap principle, the corollary of the Thue-Siegel principle
and the Lewis and Mahler estimation. For this purpose we choose M such that x1

y1
, x2
y2
, ...

approximate ↵
0

’good’ enough, ↵
0

is some root of the polynomial f .
From the Lewis and Mahler estimation we have that

↵
0

x
i

y
i

C

H x
i

, y
i

r

for every i . So, if we assume that

M C
1

r � 4eA1
�

r �

then
C

H x
i

, y
i

r

1

4eA1H x
i

, y
i

�

Then the corollary of the Thue-Siegel principle implies

log 4eA1 logH x
n

, y
n

� 1 log 4eA1 logH x
1

, y
1

as

H x
n

, y
n

2C
1

r 2H x
1

, y
1

r 1

n 1
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we have that

logH x
n

, y
n

r 1 n 1 log 2C
1

r 2H x
1

, y
1

r 1 n 1 logH x
1

, y
1

1

r 2
log 2C

Therefore,

log 4eA1 r 1 n 1 logH x
1

, y
1

1

r 2
log 2C � 1 log 4eA1 logH x

1

, y
1

or

r 1 n 1 � 1

logM log 4eA1

logM r 2 1 log 2C

when logM r 2 1 log 2C , which holds in our case according to requirements for
M and the choice of A

1

. If we choose

M 2C
1

r � 4eA1
�

r � (3.1.3)

then we get

r 1 n 1 � 1

r � 1 log 2C r r � 1 log 4eA1

� 2 r 2 1 r � 1 log 2C � r � 1 log 4eA1

� 1

log 2C r log 4eA1

� 2 r 2 1 log 2C � log 4eA1
� 1

r 2 log 2C r log 4eA1

� 2 log 2C r 2

� 2

� log 4eA1
� 1

r 2

� 2

since according to our assumption � r . Then

n 1 log r 1 log � 1

r 2

� 2

n 1
log � 1 � 2 1 log r 2

log r 1
2

log � 1 � 2 1

log r 1

So, the number of coprime solutions x, y , provided x, y and x, y are counted
as one, of the equation

F x, y 1

such that H x, y M , where M is the same in 3.1.3 does not exceed

2
log � 1 � 2 1

log r 1
r

since we divided the solutions into r di↵erent classes and in each such a class there is no
more than 2 log �

1
� 2

1

log r 1

elements.

As this fact true for all t and � satisfying the conditions

t
2

r
, 2 rt2 ⌧ t and � r

Now, we choose t 2

r a

2 , ⌧ bt with 0 a b 1 then they satisfy the above

conditions. For this data we have that
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� 1

r 1

rt2 ⌧ 2 2

r 1
2r

r a

2 b2r2 2

r2

2 b2 a2

and

�
2

1 b t

2r

1 b

Then we obtain

log � 1 � 2 1

log r 1

log r

2

2 b

2
a

2 � 2 1

log r 1
2

that is
log � 1 � 2 1

log r 1
1

for r big enough, therefore the upper bound is 3r in this case.

3.2 Small solutions

Now, we deal with ’small’ solutions, i.e., the solutions x, y with y M , where M
is the same as in the last section. We remind that we classified the polynomials in the
part 2.3.2. and in this section we always assume that the polynomial F has the smallest
Mahler height in the class that it belongs.

The idea we are going to follow is changing the polynomial F with another polynomial
which has the same number of solutions as F which is easier to work with. We note that
if A SL

2

Z , then F
A

and F are equivalent, that is the equations

F x, y 1 and G x, y 1 (3.2.1)

have the same number of solutions, where G x, y F
A

x, y F ax by, cx dy with

A
a b
c d

SL
2

Z . Therefore for simplicity we can change F with F
A

, A SL
2

Z
if needed. And we also assume that the leading coe�cient of F is 1.

Auxiliary polynomial

As before, let ↵
1

, ...,↵
r

be the roots of the polynomial f x F x, 1 then

F x, y x ↵
1

y ... x ↵
r

y

We use the notations L
i

x, y : x ↵
i

y, i 1, .., r , then F x, y L
1

x, y ... L
r

x, y
Then, if x

0

, y
0

is an integer solution of the equation

F x, y 1

then L
i

x
0

, y
0

0 , for all i 1, ..., r . As gcd x
0

, y
0

1 , there exists a pair x
0

, y
0

Z2

with x
0

y
0

y
0

x
0

1 , i.e.,
x
0

y
0

x
0

y
0

SL
2

Z that is x
0

, y
0

and x
0

, y
0

is a basis for

Z2 . Then for any x, y Z2 we have a decomposition x, y a x
0

, y
0

b x
0

, y
0

, for
some a, b Z . In fact,

x
0

y y
0

x x
0

ay
0

by
0

y
0

ax
0

bx
0

b x
0

y
0

y
0

x
0

b
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Then,
x, y a x

0

, y
0

x
0

y y
0

x x
0

, y
0

Therefore for all solutions x, y and for all i 1, ..., r we have that

L
i

x, y

L
i

x
0

, y
0

a x
0

y y
0

x
L
i

x
0

, y
0

L
i

x
0

, y
0

a x
0

y y
0

x �
i

where �
i

L
i

x
0

, y
0

L
i

x
0

, y
0

. Then,

L
i

x, y

L
i

x
0

, y
0

L
j

x, y

L
j

x
0

, y
0

x
0

y y
0

x �
i

�
j

(3.2.2)

Now, let x
0

, y
0

be a fixed solution, then define an auxiliary polynomial G , as

G v,w v �
1

w ... v �
2

w v
L
1

x
0

, y
0

L
1

x
0

, y
0

w ... v
L
r

x
0

, y
0

L
r

x
0

, y
0

w

We have that L
1

x
0

, y
0

... L
r

x
0

, y
0

1 therefore

G v,w
r

i 1

L
i

x
0

, y
0

v L
i

x
0

, y
0

w
r

i 1

x
0

v x
0

w y
0

v y
0

w ↵
i

F x
0

v x
0

w, y
0

v y
0

w F
X

v, w

where X
x
0

x
0

y
0

y
0

SL
2

Z . Therefore G is equivalent to F , we have that G u, v

1 implies G u, v 1 , we choose a sign in such a way that G 1, 0 1 , i.e., leading
coe�cient equal to 1. As G is well defined for all the solutions x

0

, y
0

, we can consider
the specific case when x

0

, y
0

1, 0 which is clearly a solution. In this case we have
that L

i

x
0

, y
0

L
i

1, 0 1 for all 1 i r and 3.2.2 can be rewritten as

1

L
i

x, y

1

L
j

x, y
y �

i

�
j

(3.2.3)

for all solutions x, y . If for the product of r positive numbers we have a
1

.... a
r

1
then there is at least one with a

i

1 . Using this fact for L
1

x, y ... L
r

x, y 1 we
can conclude that i, 1 i r such that L

i

x, y 1 . Then 3.2.3 implies that

1

L
j

x, y

1

L
j

x, y
y �

i

�
j

y �
i

�
j

1 (3.2.4)

for all 1 j r . For any x, y R and ↵ C we have the equivalence

x ↵y 1 x ↵y 1

therefore 3.2.4 is equivalent to

1

L
j

x, y
y �

i

�
j

1 (3.2.5)

From 3.2.4 and 3.2.5 we obtain the following

2

L
j

x, y
y �

i

�
j

1 y �
i

�
j

1 y 2�
i

�
j

�
j

2 y 2�
i

2Re �
j

2
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that is we have
1

L
j

x, y
y �

i

Re �
j

1

For all j i there exists an integer m , depending on �
j

, that is on the solution x, y
such that m Re �

j

1

2

, then

1

L
j

x, y
y �

i

m m Re �
j

1 y �
i

m
1

2
1 (3.2.6)

As we mentioned before, we only deal with solutions x, y , y 0 . Now, we again classify
the solutions x, y of 1.0.2 , with 1 y M . We note that the set of all the solution
x, y with H x, y M is covered in this way. Denote X

i

the set of solutions x, y
such that 1 y M and L

i

x, y 1

2y

. Among the elements of X
i

we have the
following relations.

Lemma 3.2.1. Let x
1

, y
1

, x
2

, y
2

X
i

be two di↵erent elements and suppose y
1

y
2

.

Then

y
2

y
1

2

7
max 1, �

i

m (3.2.7)

Proof. As x
1

, y
1

, x
2

, y
2

X
i

are di↵erent solutions we have that x
1

y
2

x
2

y
1

0 ,
also it is an integer number, so x

1

y
2

x
2

y
1

1 . On the other hand

x
1

y
2

x
2

y
1

det
x
1

y
1

x
2

y
2

det
x
1

↵
i

y
1

y
1

x
2

↵
i

y
2

y
2

y
2

x
1

↵
i

y
1

y
1

x
2

↵
i

y
2

y
1

L
i

x
2

, y
2

y
2

L
i

x
1

, y
1

y
1

2y
2

y
2

L
i

x
1

, x
2

1

2
y
2

L
i

x
1

, y
1

Therefore y
2

L
i

x
1

, y
1

1

2

. Then this relation together with 3.2.6 imply that

y
2

1

2 L
i

x
1

, y
1

y
1

2
�
i

m
1

2

1

2

That is

y
2

y
1

1

2y
1

L
i

x
1

, y
1

1

2
�
i

m
1

2

1

2y
1

1

2
�
i

m
1

2

1

2

or
y
2

y
1

max 1,
1

2
�
i

m
1

2

1

2

Also, it can be easily checked that max 1, 1
2

z 3

4

2

7

max 1, z for any real number
z 0 . Thus,

y
2

y
1

1

2 L
i

x
1

, y
1

1

2
�
i

m
1

2

1

2y
1

1

2
�
i

m
1

2

1

2

2

7
max 1, �

i

m
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According to this fact, if a solution x, y with y 0 belongs to a class X
i

, for some
1 i r i.e., L

i

x, y 1

2y

, then for other elements x , y X
i

, with y y we have

y y 2

7

max 1, �
i

m . Now we want to investigate the case when x, y is a solution
with 1 y M not belonging to X

i

, i.e., L
i

x, y 1

2y

. In this case, from 3.2.6 we
obtain that

2y
1

L
j

x, y
y �

i

m
1

2
1

Then dividing both sides by positive integer y we obtain

7

2
2

1

y

1

2
�
i

m (3.2.8)

We consider the set X , which consist of all solutions of the equation F x, y 1 ,
with 1 y M , but the elements with the largest y from each class X

i

, i 1, ..., r is
excluded if X

i

is not empty, i.e., at most r elements removed.
At the beginning we took a prime p without any conditions on it. Now, we consider

a prime number p , such that p 7

2

2

. Then we have the following theorem.

Theorem 3.2.1. For any " 0 and r r
1

p, " the cardinality of the set X satisfies

the inequality

X
r 1 "

1 2 log 7

2

log p

for some r
1

p, " 0 , depending on prime number p and " .

Proof. Take some X
i

and order the elements x
1

, y
1

, ..., x
v

, y
v

, such that y
1

... y
v

.
Then according to the definition, the solution x

v

, y
v

is not included in X . Then for
these elements from 3.2.7 we have that

y
k 1

y
k

2

7
max 1, �

i

x
k

, y
k

m x
k

, y
k

(3.2.9)

for k 1, ..., v 1 . Therefore,

x Xi X

2

7
max 1, �

i

x
k

, y
k

m x
k

, y
k

y
v

y
v 1

y
v 1

y
v 2

...
y
2

y
1

y
v

y
1

y
v

M

and for other elements x, y in X but not in X
i

, from 3.2.8 we have that

2

7
max 1, �

i

x
k

, y
k

m x
k

, y
k

1

Therefore

x X

2

7
max 1, �

i

x
k

, y
k

m x
k

, y
k

M (3.2.10)

We had that G v,w r

i 1

v �
i

w is equivalent to F . Also, we should note that G
is equivalent to Ĝ r

i 1

v �
i

m w , therefore F Ĝ . We assumed that F has
the smallest height in its equivalence class, therefore M Ĝ M F .

Hence
r

i 1

max 1, �
i

x, y m x, y M Ĝ M F
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Using the fact (3.2.10) for all i 1, ...r and taking product of all of them we obtain

2

7

r

M F
X

M r

Since p 7

2

2

we have that M F 7

2

r

for some r r
0

p big enough and then

X
r logM

logM F r log 7

2

According to the choice of A
1

, t, ⌧ and � we have that

A
1

1

a2
logM F

1

2
r

Also, we chose M as

M 2C
1

r � 4eA1
�

r �

therefore,

logM
r

r �
logM F log 2r

1
2

log 2

r

�

r �
log 4

1

a2
logM F

r

2

According to the choice of t and ⌧ we have t 2

r a

2 , ⌧ bt with 0 a b 1

therefore � 2

1 b t

. Using these fact we obtain

logM 1 O r
1
2 logM F O r

1
2

Taking into account the fact that logM F r log 7

2

we obtain

logM 1
"

2
logM F

for r r
1

" su�ciently large satisfying the condition r r
0

p too. Then

X r 1
"

2

logM F

logM F r log 7

2

r 1
"

2

1

1 r log 7

2

logM F
(3.2.11)

Note that we are considering the polynomial with D F pr r 1 also from the
relation

D F rrM F 2r 2

we have that
M F pr 2r r 2r 2

Then applying this to (3.2.11) we obtain

X r 1
"

2

1

1 r log 7

2

logM F
r 1

"

2

1

1 log 7

2

1

2

log p log r 2r 2

r 1 "
1

1 log 7

2

1

2

log p
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Now we sum up and make the things more concrete choosing a prime p . In fact,
by considering the solutions x, y with H x, y M and the solutions with y M
(which contains all the solutions with H x, y M of the equation F x, y 1 we
cover all the solutions. Therefore it is enough to obtain upper bounds for the number of
the solutions in each of these sets. We have shown that in the first case the bound is 3r .
In the second case, the set X contains all the solutions x, y with y M , except at
most r numbers which has highest heights from each set X

i

, i 1, ..., r and the solution
1, 0 . Therefore we have an upper bound

X 4r 1

If p 7

2

2

and r is large enough, then we obtained that

X r 1 "
1

1 log 7

2

1

2

log p

Now choose p 19 , then we have that X 211r .
In conclusion, for r c , where c big enough, which also satisfies all the conditions

we required for r in the last sections, we have that N
r

215r , that is the number of
integer solutions of the equation (1.0.2) is bounded by 215r from above.
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