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1 Introduction
The main purpose of this thesis is to describe the structure of intermediate Jacobians of the product
of two Kähler manifolds. Given two Kähler manifolds X,Y we construct a decomposition of the k-th
intermediate Jacobian of X × Y as a product of mixed intermediate Jacobians of X and Y .

J2k−1(X × Y ) =
∏

l+m=2k−1

J l,m(X,Y )

We study how this decomposition behaves with respect to the Abel-Jacobi map and the duality between
J2k−1(X × Y ) and J2(n1+n2)−(2k−1)(X × Y ) where n1, n2 are the dimensions of X and Y respectively.
Given a positive integer k and an analytic cycle U in Y of codimension l, there exists a homomorphism
of tori

Ψk
U : J2k−1(X)→ J2k−1,2l(X,Y )

such that for any analytic cycle Z in X of codimension k homologous to 0 we have

Ψk
U ◦ ΦkX(Z) = Φk+l

X×Y (Z × U)

where ΦkX and Φk+l
X×Y are the Abel-Jacobi maps. We also have that the duality between J2k−1(X × Y )

and J2(n1+n2)−(2k−1)(X×Y ) induced by the Poincare duality on the cohomology groups induces a duality
between J l,m(X,Y ) and J2n1−l,2n2−m(X,Y ). In the last section we give an example of when a product
of Kähler manifolds naturally arises as the Jacobian of a degenerate fiber of a family whose generic fiber
is a Riemann surface.

In Sections 2 and 3 we give a brief introduction to Kähler manifolds, intermediate Jacobians and
Appell-Humbert theory of line bundles on complex tori. The main references for Sections 2 and 3 are [5]
and [1] respectively. All of the original work is concentrated in Sections 4 and 5. We will assume basic
knowledge of complex manifolds, algebraic topology and sheaf theory.

I would like to thank my advisor Dr. R.S. de Jong for invaluable guidance throughout the year this
work has been produced. I would also like to thank Dr. L. Taelman and Dr. S.J. Edixhoven for helpful
comments and suggestions.

2



2 Kähler Manifolds and Intermediate Jacobians

2.1 Complex Manifolds
Let X be a complex manifold. Let TXR be the tangent bundle of X considered as a real differentiable
vector bundle and let TXC be its complexification

TXC := TXR ⊗R C.

Let I be the complex structure on TXR, that is the endomorphism of TXR given by multiplication by i
in TX, the tangent bundle of X considered as a complex vector bundle. We have the decomposition of
TXC into the eigenspaces of I,

TXC = T 1,0(X)⊕ T 0,1(X)

where T 1,0(X) is the eigenspace corresponding to the eigenvalue i and T 0,1(X) is the eigenspace corre-
sponding to the eigenvalue −i. This induces the decomposition of the complexified cotangent bundle

Ω(X) := TXC
∗ = Ω1,0(X)⊕ Ω0,1(X)

where Ω1,0(X) is the bundle of C-linear 1-forms on X and Ω0,1(X) is the bundle of C-antilinear 1-forms
on X. The bundle T 1,0(X) is naturally isomorphic to the complex tangent bundle TX and thus inherits
a holomorphic structure. There is a natural complex conjugation on the bundle TXC given by complex
conjugation on TXR ⊗R C which also induces complex conjugation on Ω(X). It is easy to check that

T 1,0(X) = T 0,1(X),

Ω1,0(X) = Ω0,1(X).

We also have a decomposition of differential k-forms for any non-negative integer k,

Ωk(X) =
⊕
i+j=k

Ωi,j(X)

where Ωi,j(X) =
(∧i

Ω1,0(X)
)
⊗
(∧j

Ω0,1(X)
)
. We say that a differential k-form is of type (i, j) if

it is a section of Ωi,j(X). Let Ak,Ai,j be the sheaves of differentiable sections of Ωk(X) and Ωi,j(X)
respectively. For any α ∈ Ai,j(X) we have that

dα = (dα) i+1,j + (dα) i,j+1

where (dα) i+1,j ∈ Ai+1,j(X) and (dα) i,j+1 ∈ Ai,j+1(X). We define the operators ∂ and ∂ by

∂α : = (dα) i+1,j ,

∂α : = (dα) i,j+1.

We extend ∂ and ∂ by linearity to the entire space of differentiable k-forms Ak(X) for every k.

2.2 Kähler Manifolds
Given a complex vector space V , let VR be the real vector space where we forget the complex structure
on V and let VC be the complexification of VR

VC = VR ⊗R C.

If we have a hermitian form h : V × V → C, we can consider the two-form on VR given by

ω := −=h.

Moreover, if we extend ω by linearity to VC, we have that ω is of type (1, 1). We have that the symmetric
form g := <h on VR is given by

g(u, v) = ω(u, Iv)

where I is the complex structure on VR. In fact, there is a one-to-one correspondence between real (1, 1)
forms on VC and the hermitian forms on V given by

ω 7→ h = g − iω.
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A hermitian metric h on a complex manifold X is a differentiable section of (TX∗ ⊗ TX∗) such that on
each fiber of TX it is a positive definite hermitian form. From the discussion above, we see that given a
hermitian metric h on X, the real two-form on TXR given by

ω := −=h

is of type (1, 1) when extended to TXC by linearity. We also associate to h the symmetric 2-form g := <h.
Clearly both g and ω are non-degenerate.

Definition 2.2.1. A Kähler metric on a complex manifold X is a hermitian metric h on X, such that
the corresponding real two-form ω is closed. In this case ω is called the Kähler form corresponding to h.

We say that a complex manifold is Kähler if it admits a Kähler metric. It will become more evident
later on why Kähler manifolds are important and what good properties they possess, but for now we
give an indication for why they might be interesting to study.

Theorem 2.2.2. Let X be a complex manifold of dimension n with a hermitian metric h. The metric
h is Kähler if and only if for every x ∈ X, there exist local holomorphic coordinates z1, . . . , zn around x
such that the matrix of h with respect to these coordinates is given by

h = In +O(

n∑
i=1

|zi|2)

where In is the identity matrix.

In other words, Kähler manifolds are those that admit a metric that is locally constant to the first
order.

Example 2.2.3. We will construct the Fubini-Study metric on a projective space Pn and thus show
that Pn is a Kähler manifold. We first introduce the Chern form of a holomorphic line bundle with a
hermitian metric. Let X be a complex manifold and let L be a holomorphic line bundle on X endowed
with a hermitian metric h. Let {Ui}i∈I be a cover of X which trivializes L and let σi ∈ Γ(L,Ui) be
non-vanishing holomorphic sections of L over the open sets Ui corresponding to the constant section
equal to 1 in the trivializations. We have that the transition functions gij : Ui ∩ Uj → C are given by

σi = gij · σj .

Consider the functions hi = h(σi, σi) defined on Ui and the two-forms

ωi =
1

2πi
∂∂ log hi.

We have hi = |gij |2hj on Ui ∩Uj and ∂∂ log |gij |2 = ∂∂ log gij + ∂∂ log gij = 0 since the functions gij are
holomorphic. In particular ωi coincide on the intersections Ui∩Uj and therefore define a global two-form
ω. It is clear from the construction that ω is real, closed and of type (1, 1).

Let OPn(1) be the dual of the tautological line bundle S over Pn. We have that S is a sub-bundle
of Cn+1 × Pn. Let h be the restriction of the standard hermitian metric on Cn+1 to S. We have that
h induces a metric on OPn(1) which we will denote by h∗. Let ω be the Chern form corresponding to
OPn(1) and h∗. The hermitian form h on Pn corresponding to ω is in fact positive definite and therefore
Kähler. The metric h is called the Fubini-Study metric.

Example 2.2.4. It is easy to see that the restriction of a Kähler metric to a complex submanifold is
Kähler and therefore a complex submanifold of a Kähler manifold is Kähler. Along with the previous
example, this shows that projective complex manifolds are Kähler.

2.3 Hodge Decomposition
Hodge decomposition is a crucial tool in studying complex manifolds and their cohomology groups.
Since in general cohomology groups are represented by quotients of infinite dimensional spaces, it is
sometimes difficult to understand their precise structure. In the case of a compact manifold, the Hodge
theory provides a concrete way of representing some cohomology groups as objects with some analytic
properties.

Let X be a compact complex manifold of dimension n and let g be a Riemannian metric on TXR.
This metric defines a hermitian metric on Ωk(X) for all k.
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Definition 2.3.1. The Hodge operator ∗ : Ak(X)→ A2n−k(X) is defined by

(αx, βx)Volx = αx ∧ ∗βx

where Volx is the volume form at x defined by the metric g and this equality holds for every x ∈ X.

The Hodge operator satisfies the following identity on Ak(X):

∗2 = (−1)k.

Definition 2.3.2. We define the operator d∗ = − ∗ d∗ on Ak(X). It is the adjoint of d with respect to
the L2 metric on Ak(X)

(α, β)L2 =

ˆ
X

(αx, βx)Volx

which exists since the manifold is compact.

Definition 2.3.3. The laplacian operator is defined by

∆d = dd∗ + d∗d

Definition 2.3.4. A k-form α ∈ Ak(X) is called harmonic if ∆d(α) = 0. The space of harmonic k-forms
is denoted by Hk(X,C).

One can show that the harmonic forms are exactly those forms lying in ker d ∩ ker d∗. In particular,
for any non-negative integer k, there is a map Hk(X,C)→ Hk

dR(X,C) which sends a harmonic form to
its class in the de Rham cohomology of X with coefficients in C. Using the theory of elliptic operators,
one deduces that this map is an isomorphism. In particular we have

Hk(X,C) ∼= Hk
dR(X,C).

Using this concrete representation of de Rham cohomology groups, we can show that the pairing
Hp

dR(X,C)⊗H2n−p
dR (X,C)→ C given by

(α, β) =

ˆ
X

α ∧ β

is perfect for every p ∈ [0, 2n].
In the case when our compact complex manifold is Kähler, we can introduce even more structure to

its cohomology groups. Let X be a compact Kähler manifold with a Kähler metric h, Kähler form ω
and the corresponding Riemannian metric g. Let ∂∗ := −∗ ∂∗ and ∂∗ := −∗ ∂∗ be the adjoints of ∂ and
∂ with respect to the metric (·, ·)L2 on Ak(X). The laplacian operators corresponding to ∂ and ∂ are
defined by

∆∂ = ∂∂∗ + ∂∗∂, ∆∂ = ∂∂
∗

+ ∂
∗
∂.

In the Kähler case, we have the equality

∆∂ = ∆∂ =
1

2
∆d.

We have that ∆∂ preserves the types of forms and therefore in this case, so does ∆d,

∆d(A
p,q(X)) ⊂ Ap,q(X).

If α ∈ Hk(X,C) is a harmonic form, and α =
∑
i+j=k α

i,j is its decomposition into forms of type (i, j),
then we must have that αi,j are also harmonic for every i, j. This gives us the decomposition for every
k,

Hk(X,C) =
⊕
i+j=k

Hi,j ,

where Hi,j is the space of harmonic forms of type (i, j). The isomorphism Hk(X,C) ∼= Hk
dR(X,C) gives

us the corresponding decomposition of the de Rham cohomologies

Hk
dR(X,C) =

⊕
i+j=k

Hi,j
dR(X,C).
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In fact one can show that Hi,j
dR(X,C) consists of classes of closed forms which are representable by forms

of type (i, j), and thus in particular this decomposition does not depend on the choice of a Kähler metric
on X. We also have that the pairing Hi,j

dR(X,C)⊗Hn−i,n−j
dR (X,C)→ C given by

(α, β) =

ˆ
X

α ∧ β

is perfect.
By the theorem of de Rham, for every non-negative integer k, we have a canonical isomorphism

Hk
dR(X,C) ∼= Hk(X,C)

where Hk(X,C) is the k-th singular cohomology group of X with coefficients in C. We thus also have
the Hodge decomposition of singular cohomologies with coefficients in C

Hk(X,C) =
⊕
i+j=k

Hi,j(X).

Let ΩkX be the sheaf of holomorphic sections of Ωk,0(X). We can calculate the i-th sheaf cohomology
of ΩkX using the exact Dolbeault sequence of sheaves

0 // ΩkX
// Ak,0

∂ // Ak,1
∂ // · · · .

Since the harmonic forms are ∂-closed we have a map

Hk,i → Hi(X,ΩkX)

which sends a harmonic form α of type (k, i) to its class in

Hi(X,ΩkX) ∼=
ker(∂ : Ak,i(X)→ Ak,i+1(X)

Im(∂ : Ak,i−1(X)→ Ak,i(X)

which is in fact an isomorphism. Moreover, the map induced on the Hodge components of singular
cohomology

Hk,i(X)
∼−→ Hi(X,ΩkX)

does not depend on the choice of the Kähler metric on X.

2.4 Hodge Structures
Definition 2.4.1. An integral Hodge structure of weight k where k is a non-negative integer is a pair
(VZ, {V p,q}p,q≥0,p+q=k) where VZ is a free abelian group of finite rank and {V p,q} gives a decomposition

VC := VZ ⊗ C =
⊕
p+q=k

V p,q

such that V p,q = V q,p. The Hodge structure is also denoted by (VZ, V
p,q).

A Hodge structure (VZ, V
p,q) of weight k defines a filtration on the vector space VC by

F lVC :=
⊕
p≥l

V p,k−p.

This filtration determines the Hodge structure on VZ since we have

V p,q = F pVC ∩ F qVC.

Definition 2.4.2. Let V = (VZ, V
p,q) and W = (WZ,W

p,q) be integral Hodge structures of weight k.
We define the direct sum (V ⊕W ) of Hodge structures in the following way,

(V ⊕W )Z = VZ ⊕WZ,

(V ⊕W )p,q = V p,q ⊕W p,q.
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Definition 2.4.3. Let V = (VZ, V
p,q) and W = (WZ,W

p,q) be two integral Hodge structures of weights
k and l respectively. We define the tensor product of V and W as the Hodge structure of weight k + l
given by

(V ⊗W )Z = VZ ⊗WZ,

(V ⊗W )r,s =
⊕

p+p′=r,q+q′=s

V p,q ⊗W p′,q′ .

Let X be a compact Kähler manifold. By the previous section, for any integer k we have the Hodge
decomposition

Hk(X,C) =
⊕
i+j=k

Hi,j(X).

On the level of singular cohomologies we have by the universal coefficient theorem

Hk(X,C) = Hk(X,Z)⊗ C.

This defines a complex conjugation on the vector space Hk(X,C). We have that under the isomor-
phism Hk(X,C) ∼= Hk(X), this complex conjugation coincides with the complex conjugation on Hk(X)
inherited from the complex conjugation on Ωk(X). In particular we have that

Hi,j(X) = Hj,i(X).

The Hodge decomposition of Hk(X,C) thus defines an integral Hodge structure of weight k,

Hk(X) = (Hk(X,Z)0, H
i,j(X))

and the Hodge filtration
F lHk(X,C) =

⊕
i≥l

Hi,k−i(X).

Here and everywhere in what follows, by Hk(X,Z)0 we mean Hk(X,Z)/torsion.
Let X,Y be two compact Kähler manifolds. For every non-negative k, the Künneth formula provides

an isomorphism
Hk(X × Y,Z)0

∼=
⊕
p+q=k

Hp(X,Z)0 ⊗Hq(Y,Z)0

given by the cup product of cocycles. On the level of de Rham cohomologies, cup product is given by
the wedge product of forms and therefore preserves the Hodge decomposition

Hr,s(X × Y ) ∼=
⊕

p+p′=r,q+q′=s

Hp,q(X)⊗Hp′,q′(Y ).

In particular this means that for any integer k, we have an isomorphism of Hodge structures

Hk(X × Y ) ∼=
⊕
p+q=k

Hp(X)⊗Hq(Y ).

2.5 Analytic Cycles
Analytic cycles will play an important role in understanding the objects we will be considering in the
following chapters.

Definition 2.5.1. A closed subset Z of a complex manifold X is called an analytic set if there exists an
open cover {Ui}i∈I of X such that for all i ∈ I, there exist holomorphic functions f1, . . . , fN on Ui such
that Z ∩ Ui is the zero set of these functions.

Even though in general, analytic sets are not smooth, we have the following theorem that makes them
more approachable.

Theorem 2.5.2. Let Z ⊂ X be an analytic set. There exists a nowhere dense analytic subset Zsing ⊂ Z
such that Zsmooth := Z\Zsing is a complex submanifold of X.
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Definition 2.5.3. An analytic set Z ⊂ X is called irreducible if Zsmooth is connected. In that case the
dimension of Z is defined as the complex dimension of Zsmooth.

Definition 2.5.4. An analytic cycle of dimension k is a finite combination with integer coefficients of
irreducible analytic sets of dimension k.

Let X be a compact complex manifold. We have that irreducible analytic sets can be finitely trian-
gulated by differentiable chains and thus to every k-dimensional analytic cycle U in X corresponds an
element in H2k(X,Z) which we will denote by 〈U〉. The cohomology class of an analytic set U is defined
by

[U ] := P (〈U〉) ∈ H2n−2k(X,Z)

where
P : H2k(X,Z)

∼−→ H2n−2k(X,Z)

is the Poincaré duality map.
For an irreducible analytic set Z of dimension k and a closed 2k-form α we have

[Z] ∧ [α] =

ˆ
Zsmooth

α

where [α] ∈ H2k
dR(X,C) is the class of α and where we identify H2n

dR(X,C) with C via integration of closed
forms over X. From this we can see that if X is a compact Kähler manifold of dimension n, then for
any k-dimensional analytic cycle U in X, we have

[U ] ∈ Hn−k,n−k(X).

2.6 Intermediate Jacobians
Let X be a compact Kähler manifold of dimension n. For any positive integer k, we have

H2k−1(X,C) = F kH2k−1(X)⊕ F kH2k−1(X).

It implies that F kH2k−1(X) ∩H2k−1(X,R) = {0} and the map

φ : H2k−1(X,R)→ H2k−1(X,C)/F kH2k−1(X)

is an isomorphism of real vector spaces. The image of H2k−1(X,Z) under the map φ is therefore a lattice
of full rank in H2k−1(X,C)/F kH2k−1(X).

Definition 2.6.1. The k-th intermediate Jacobian of X is the complex torus

J2k−1(X) =
(
H2k−1(X,C)/F kH2k−1(X)

)
/φ(H2k−1(X,Z)).

For any non-negative integers k and l, the cup product gives an isomorphism

Hk,l(X)∗ ∼= Hn−k,n−l(X)

once we identify Hn,n(X) = H2n(X,C) with C via integration of closed forms over X. We also have
that the Poincaré duality gives an isomorphism

H2k−1(X,Z) ∼= H2n−2k+1(X,Z).

We can thus realize the k-th intermediate Jacobian of X as

J2k−1(X) ∼= (Fn−k+1H2n−2k+1(X,C))∗/H2n−2k+1(X,Z)

where H2n−2k+1(X,Z) acts on Fn−k+1H2n−2k+1(X,C) by integration over differentiable cycles.
We will now define the Abel-Jacobi map ΦkX from the group Zk(X)hom of analytic cycles of codi-

mension k homologous to 0 to the k-th intermediate Jacobian of X. Let Z ∈ Zk(X)hom. Since Z is
homologically trivial, we can triangulate Z and find a differentiable chain Γ of real dimension 2n−2k+1
such that ∂Γ = Z. One can show that

(Fn−k+1H2n−2k+1(X,C)) ∼=
Fn−k+1A2n−2k+1(X) ∩ ker(d)

dFn−k+1A2n−2k(X)
,
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where Fn−k+1A2n−2k+1(X) =
⊕

i≥n−k+1A
i,2n−2k+1−i(X). In other words, if α, β ∈ Fn−k+1A2n−2k+1(X)

are closed and define the same class in H2n−2k+1(X,C), then there exists a form γ ∈ Fn−k+1A2n−2k(X)
such that α − β = dγ. For α ∈ (Fn−k+1H2n−2k+1(X,C)), we define

´
Γ
α in the following way: pick a

representative β ∈ Fn−k+1A2n−2k+1(X) for α and define
ˆ

Γ

α =

ˆ
Γ

β.

The choice of representative of α does not change the result since it would differ by
ˆ

Γ

dφ =

ˆ
Zsmooth

φ

where φ ∈ Fn−k+1A2n−2k(X) which is 0 since Fn−k+1A2n−2k(Zsmooth) = 0 due to type. We thus have
that

´
Γ
defines an element in (Fn−k+1H2n−2k+1(X,C))∗. If we pick a different Γ′ such that ∂Γ′ = Z, we

have that Γ− Γ′ ∈ H2n−2k+1(X,Z), and therefore Γ and Γ′ define the same element in J2k−1(X). This
construction thus defines the desired map.

When defining the action of
´

Γ
on Fn−k+1H2n−2k+1(X,C), we could have fixed a Kähler metric on

X and for α ∈ Fn−k+1H2n−2k+1(X,C) we could have defined
ˆ

Γ

α :=

ˆ
Γ

α̃

where α̃ is the harmonic 2n−2k+1-form representing α. The argument above shows that this definition
would not depend on the choice of Kähler metric.

Example 2.6.2. The first intermediate Jacobian of X has a more familiar form. We have

J1(X) = H0,1(X)/H1(X,Z).

Using the isomorphism H0,1(X) ∼= H1(X,OX) we have that

J1(X) ∼= H1(X,OX)/H1(X,Z)

where H1(X,Z) is naturally a subset of H1(X,OX) when viewed as cohomology groups of sheaves.
Consider the the short exact sequence of sheaves defining the Chern class of line bundles

0 // Z // OX
e(2πi·) // O∗X // 0

and the piece of the associated long exact sequence

H1(X,Z) // H1(X,OX) // H1(X,O∗X)
c1 // H2(X,Z) .

The kernel of the Chern class map c1 which we denote by Pic0(X), is thus naturally isomorphic to

Pic0(X) ∼= H1(X,OX)/H1(X,Z) ∼= J1(X).

Classically, the first intermediate Jacobian of X is simply called the Jacobian of X and denoted by J(X).
The Abel-Jacobi map in this case also has a geometric form. The domain of the map Φ1

X consists of
cycles of codimension 1 or in other words divisors which are homologous to 0. A divisor D on X defines
an isomorphism class of holomorphic line bundles LD ∈ H1(X,O∗X). By theorem 11.33 in [5], we have
that D is homologous to 0 if and only if c1(LD) = 0. This defines a map

α : Z1(X)hom → Pic0(X) ∼= J1(X)

which sends a divisor D to LD. We in fact have that α = Φ1
X (proposition 12.7 in [5]).

Example 2.6.3. Let X be a compact connected Riemann surface of genus g. It is possible to construct
the Jacobian of X in a more concrete fashion. We have that

J(X) ∼=
(
H1,0(X)

)∗
/H1(X,Z)
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and the isomorphism H1,0 ∼= H0(X,Ω1
X) gives us

J(X) ∼=
{holomorphic 1-forms on X}∗

H1(X,Z)
.

Fix 2g differentiable cycles A1, . . . , Ag, B1, . . . Bg such that their classes in H1(X,Z) form a basis with
respect to which the intersection matrix given by the cup product on H1(X,Z) and the isomorphism
H1(X,Z) ∼= H1(X,Z) is (

0 −I
I 0

)
.

Such a basis for H1(X,Z) will be called standard. A basis {v1, . . . vg} of H0(X,Ω1
X) is called normalized

if the matrix (ˆ
Ai

vj

)
1≤i,j≤g

is the identity matrix and also the Riemann matrix defined by

τ :=

(ˆ
Bi

vj

)
1≤i,j≤g

has the property that =τ is positive definite. Given a normalized basis {v1, . . . vg} of H0(X,Ω1
X) we have

J(X) = Cg/Λτ

where Λτ ⊂ Cg is the lattice spanned by the columns of the matrix (I, τ). The Abel-Jacobi map takes
the form

[p]− [q] 7→
(ˆ p

q

vi

)
1≤i≤g

∈ Cg/Λτ .

It can be seen here that the choice of the path of integration is irrelevant due to our choice of the lattice.

2.7 Singular Complex Curves and Jacobians.
It is possible to introduce complex curves abstractly as complex analytic spaces, but we will not need
such generality.

Definition 2.7.1. Let W be a n-dimensional complex manifold. A complex curve is a compact analytic
set S ⊂W of dimension one.

We have that a complex curve is smooth outside of finitely many points. We would like to generalize
the notion of the Jacobian to complex curves. We have seen that the Jacobian of a smooth curve is
naturally the kernel of the Chern class map.

Definition 2.7.2. For S ⊂W a complex curve, we define

J(S) = ker
(
c1 : H1(S,O∗S)→ H2(S,Z)

)
.

Let S = X1 ∪X2 ⊂W be a complex curve such that Xi are Riemann surfaces of genera gi and such
that X1 ∩X2 = x. We require also that there exists some set U ⊂W containing x, biholomorphic to D2

where D ⊂ C is the open unit disc such that S ∩ U ∼= {(X,Y ) ∈ D2|XY = 0}.
It is easy to verify that

H1(S,O∗S) = H1(X1,O∗X1
)⊕H1(X2,O∗X2

)

and
H2(S,Z) = H2(X1,Z)⊕H2(X2,Z).

Moreover, the Chern class map preserves this decomposition. In particular we have

J(S) = J(X1)× J(X2).

We can now define the Abel-Jacobi map Φ1
S by the following property

Φ1
S([p]− [x]) =

{
Φ1
X1

([p]− [x])× {0} if p ∈ X1

{0} × Φ1
X2

([p]− [x]) if p ∈ X2

.
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This defines the map Φ1
S since the elements of the form [p] − [x] generate the group Z1(S)hom. We

can also describe the Abel-Jacobi map in terms of integrals analogously to how it was described in
the previous section for smooth complex curves. Choose differentiable chains A1, . . . , Ag1 , B1, . . . Bg1 in
X1 and Ag1+1, . . . , Ag1+g2 , Bg1+1, . . . , Bg1+g2 in X2 such that they form standard bases for H1(X1,Z)
and H1(X2,Z) respectively. A collection {v1, . . . , vg1 , vg1+1, . . . vg1+g2} is called a normalized basis of
holomorphic 1-forms on S if {v1, . . . , vg1} is a collection of holomorphic 1-forms on X1 which forms a
normalized basis of H0(X,Ω1

X1
) with the Riemann matrix τ1 and {vg1+1, . . . , vg1+g2} is a collection of

holomorphic 1-forms on X2 which forms a normalized basis of H0(X,Ω1
X2

) with the Riemann matrix τ2.

If we let τ =

(
τ1 0
0 τ2

)
, we have

J(S) = Cg1+g2/Λτ .

The Abel-Jacobi map then takes the form

[p]− [q] 7→
(ˆ p

q

vi

)
1≤i≤g1+g2

∈ Cg1+g2/Λτ

where we define the value of an integral over a path in X1 of a 1-form defined on X2 to be zero (and
vice versa).
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3 Complex Tori and Line Bundles
In this section we will introduce some important results about complex tori which we will use in the
following section in order to study intermediate Jacobians.

3.1 Complex Tori
By a complex torus we mean a complex Lie group X given by X = V/Λ where V is a complex vector
space and Λ ⊂ V is a lattice of maximal rank in V . In fact, any connected compact complex Lie group is a
complex torus. We can view V as the universal cover of X, and therefore we have a natural identification

Λ = π1(X, 0).

Since π1(X, 0) is abelian, by the Hurewicz Theorem we have

H1(X,Z) ∼= Λ.

Moreover, by the universal coefficient theorem, we have

H1(X,Z) ∼= Hom(H1(X),Z) ∼= Hom(Λ,Z).

We have that X is homeomorphic to (S1)2n, and therefore using the Künneth formula, the cup product
gives an isomorphism

Hn(X,Z) ∼=
n∧
H1(X,Z) ∼=

n∧
Hom(Λ,Z) ∼= Altn(Λ,Z)

where Altn(Λ,Z) is the group of alternating n-forms on Λ with values in Z.
By a homomorphism of complex tori we mean a homomorphism in the sense of complex Lie groups.

Let X = V/Λ, X ′ = V ′/Λ′ be two complex tori and let f : X → X ′ be a homomorphism. We have
natural identifications T0X = V, T0X

′ = V ′ of Lie algebras and universal coverings. The differential of
f at 0 thus induces a map

F : V → V ′.

The exponential maps expT0X : T0X → X, expT0X′ : T0X
′ → X ′ in the sense of complex Lie groups are

compatible with the maps F and f in the following way

f ◦ expT0X = expT0X′ ◦F.

Since in our case expT0X coincides with the projection V → V/Λ, we must have F (Λ) ⊂ Λ′. In particular
we also have the map

FΛ : Λ→ Λ′.

We call F the analytic representation of f and FΛ the rational representation of f .

Definition 3.1.1. A homomorphism f : X → X ′ is an isogeny if it is surjective with a finite kernel.
The exponent of f is defined as the exponent of the finite group kerf .

It can be shown that isogeny defines an equivalence relation on complex tori.

3.2 Line Bundles and Factors of Automorphy

Let X be a compact complex manifold and let π : X̃ → X be the universal cover of X. If L is a
holomorphic line bundle on X such that π∗L is trivial, there is a nice way to describe the isomorphism
class of L using certain functions on X̃.

Consider the fundamental group π1(X) of X as the group of automorphisms of coverings of X̃. In
particular we have a group action of π1(X) on H0(O∗

X̃
). The object of interest to us will be the first group

cohomology H1(π1(X), H0(O∗
X̃

)). The group of cocycles Z1(π1(X), H0(O∗
X̃

)) is given by the functions
f : π1(X)× X̃ → C∗ holomorphic in the second variable such that for all µ, λ ∈ π1(X) and x̃ ∈ X̃,

f(λµ, x̃) = f(λ, µx̃)f(µ, x̃).
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We also call those functions the factors of automorphy. The group of boundaries B1(π1(X), H0(O∗
X̃

)) is
given by the functions

(λ, x̃) 7→ h(λx̃)h(x̃)−1

where h ∈ H0(O∗
X̃

). The group cohomology H1(π1(X), H0(O∗
X̃

)) is defined by

H1(π1(X), H0(O∗
X̃

)) =
Z1(π1(X), H0(O∗

X̃
))

B1(π1(X), H0(O∗
X̃

))
.

An element f ∈ Z1(π1(X), H0(O∗
X̃

)) defines a line bundle on X in the following way: we have the
free and properly discontinuous action of π1(X) on X̃ × C given by

µ.(x̃, t) = (µx̃, f(µ, x̃)t)

which defines the line bundle (X̃×C)/π1(X)→ X on X. This correspondence gives us a homomorphism

φ1 : H1(π1(X), H0(O∗
X̃

))→ Pic(X).

Clearly for any line bundle L in the image of φ1, we have that π∗L is trivial. In fact φ1 defines an
isomorphism

φ1 : H1(π1(X), H0(O∗
X̃

))→ ker
(
π∗ : Pic(X)→ Pic(X̃))

)
.

In other words, H1(π1(X), H0(O∗
X̃

)) is the group of line bundles on X which pull back to a trivial line
bundle on X̃.

With the use of factors of automorphy, one can associate global sections of a line bundle L on X with
certain holomorphic functions on X̃. Suppose L is a line bundle on X such that π∗L is trivial. Choose
a trivialization of π∗L and take a factor of automorphy f corresponding to L and this trivialization
(Picking a different trivialization corresponds to taking a different equivalent factor of automorphy). We
have that global sections of L correspond to holomorphic functions ϑ on X̃ satisfying

ϑ(λx̃) = f(λ, x̃)ϑ(x̃)

for all λ ∈ π1(X) and x̃ ∈ X̃.

3.3 Line Bundles on Complex Tori

When X = V/Λ is a complex torus, every line bundle on X̃ = V is trivial since V is a complex vector
space. We thus get that

H1(Λ, H0(V,O∗V )) = Pic(X) = H1(X,O∗X).

Moreover, there is a canonical way of assigning a factor of automorphy to a line bundle which we will
now describe.

Definition 3.3.1. The Néron-Severi group of X is defined as the image of the Chern class map
c1 : H1(X,O∗X)→ H2(X,Z).

NS(X) := c1(H1(X,O∗X)) ⊂ H2(X,Z).

Let L be a line bundle on X given by a factor of automorphy f = exp(2πig), where g : π1(X)×V → C
is holomorphic in the second variable. The isomorphism H2(X,Z) → Alt2(Λ,Z) introduced in Section
3.1 has the property that it maps the first Chern class c1(L) of L to the alternating form

EL(λ, µ) = g(µ, v + λ) + g(λ, v)− g(λ, v + µ)− g(µ, v)

where λ, µ ∈ Λ and v ∈ V independently of the choice of g. We can extend EL by R-linearity to an
alternating bilinear form on V .

Theorem 3.3.2. Let E : V × V → R be an alternating bilinear form. We have that E = EL for some
line bundle L on X if and only if there exists a hermitian form H on V satisfying =H(Λ,Λ) ⊂ Z and
E = =H.

This shows that NS(X) could be seen as the group of hermitian forms H on V such that =H(Λ) ⊂ Z.
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Definition 3.3.3. Let H ∈ NS(X) be a hermitian form. A semicharacter for H is a map χ : Λ→ U(1)
where U(1) is the multiplicative group of complex numbers of norm 1, satisfying

χ(λ+ µ) = χ(λ)χ(µ) exp(πi=H(λ, µ)).

Definition 3.3.4. Denote by P(Λ) the set of pairs (H,χ) where H is in NS(X) and χ is a semicharacter
for H.

For any (H,χ) ∈ P(Λ), we can define a line bundle L(H,χ) by the following factor of automorphy,

a(H,χ)(λ, v) = χ(λ) exp(πH(v, λ) +
π

2
H(λ, λ)).

The Chern class of L(H,χ) is given by =H restricted to Λ.

Theorem 3.3.5 (Appell-Humbert, [1, p. 32]). The map (H,χ) 7→ L(H,χ) defines an isomorphism
between P(Λ) and Pic(X).

This gives us a canonical way of associating a factor of automorphy to an isomorphism class of line
bundles. Namely the canonical factor of a line bundle L = L(H,χ) is a(H,χ). Also of importance is that
we can now express Pic0(X) as the group of homomorphisms,

Pic0(X) ∼= Hom(Λ, U(1)).

We will need the following lemma in the later chapters.

Lemma 3.3.6. Let f : X → X ′ be a homomorphism between two tori with analytic representation F
and rational representation FΛ. For all (H,χ) ∈ P(Λ′), we have

f∗L(H,χ) = L(F ∗H,F ∗Λχ).

There is a canonical hermitian metric on the line bundle L(H,χ) for (H,χ) ∈ P(Λ). We have that L
is given by the quotient

(V × C) /Λ

where the action of Λ is defined using the canonical factor of automorphy a(H,χ) by

λ.(v, t) = (v + λ, a(H,χ)(λ, v) · t).

We will define a hermitian form on L(H,χ)|x for x ∈ X. Pick an element v ∈ V which maps to x. The
pullback of the projection map (V × C)→ (V × C) /Λ defines an isomorphism

L(H,χ)|x ∼= {v} × C ∼= C.

Under this isomorphism, for two elements, f, g ∈ C, we define

〈f, g〉 = fg exp(−πH(v, v)).

It is a matter of calculation to show that the hermitian form thus defined on L(H,χ)|x is independent of
the choice of v.

3.4 Dual Complex Tori and The Poincaré Bundle
Let X = V/Λ be a complex torus. Let V̂ = HomC(V,C) be the vector space of C-antilinear forms on
V . We have that V̂ is naturally isomorphic to HomR(V,R) as a real vector space with the isomorphism
given by l 7→ =l. We define the lattice, dual to Λ as

Λ̂ := {l ∈ V̂ |=l(Λ) ⊂ Z}.

Definition 3.4.1. The torus dual to X is defined by

X̂ := V̂ /Λ̂.
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Definition 3.4.2. Given two tori Ti = Vi/Λi and a homomorphism f : T1 → T2 with the analytic
representation F : V1 → V2, the dual homomorphism

f̂ : T̂2 → T̂1

is defined by its analytic representation F ∗ : V̂2 → V̂1.

The homomorphism V̂ → Hom(Λ, U(1)) given by

l 7→ exp(2πi=l)

defines an isomorphism

X̂ → Hom(Λ,U(1))∼=Pic0
(X).

We can thus expect there to be a line bundle P on X × X̂ that is in some sense universal.

Theorem 3.4.3. There exists a line bundle P on X × X̂, unique up to isomorphism, such that

P|X×{L} ' L ∀L ∈ X̂ ∼= Pic0(X)

P|{0}×X̂ is trivial.

We call P the Poincaré bundle of X. The Appell-Humbert representation of the Poincaré bundle of
X is the pair (H,χ) ∈ P(Λ⊕ Λ̂) where H is the hermitian form on V ⊕ V̂ given by

H((v1, l1), (v2, l2) = l2(v1) + l1(v2)

and χ : Λ× Λ̂→ U(1) is the semicharacter for H defined by

χ(λ, l) = exp (πi=l(λ)) .
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4 Mixed Intermediate co-Jacobians
In this section we will study the intermediate Jacobians of products of Kähler manifolds. The main tool
for this section is the Künneth formula which describes the Hodge decomposition of the manifold X ×Y
in terms of Hodge decompositions of X and Y .

4.1 Mixed Intermediate co-Jacobians
We will introduce some new definitions in order to simplify notation. We recall that for X a compact
connected Kähler manifold, the k-th intermediate Jacobian of X is

J2k−1(X) ∼= (Fn−k+1H2n−2k+1(X))∗/H2n−2k+1(X,Z)

where the dual space is the vector space of C-linear forms. We have that the Abel-Jacobi map ΦkX sends
analytic cycles of codimension k homologous to 0 to the k-th intermediate Jacobian of X.

Definition 4.1.1. We define the k-th intermediate co-Jacobian as

J2k−1(X) = (F kH2k−1(X))∗/H2k−1(X,Z).

We have that
J2k−1(X) ∼= J2(n−k+1)−1(X).

We define the co-Abel-Jacobi map as the appropriate Abel-Jacobi map,

ΦXk := Φn−k+1
X .

In particular we have that ΦXk maps analytic cycles of dimension k − 1 homologous to 0 to the k-th
intermediate co-Jacobian of X.

Definition 4.1.2. For X,Y compact Kähler manifolds and k, l ∈ Z≥0 such that k + l is odd, we define
the mixed intermediate k, l co-Jacobian of the pair (X,Y ) as the torus

Jk,l(X,Y ) =

 ⊕
i+j≥ k+l+1

2

Hi,k−i(X)⊗Hj,l−j(Y )

∗ /Hk(X,Z)⊗Hl(Y,Z).

Theorem 4.1.3. Let X and Y be compact Kähler manifolds. For any positive integer k, we have the
following decomposition of the k-th intermediate co-Jacobian of X × Y

J2k−1(X × Y ) =
∏

l+m=2k−1

Jl,m(X,Y ).

Proof. The statement follows from the Künneth formula compatible with the Hodge decomposition. We
have

Hr,s(X × Y ) =
⊕

p+p′=r,q+q′=s

Hp,q(X)⊗Hp′,q′(Y )

given by the cup product. We thus have

F kH2k−1(X × Y ) =
⊕
r≥k

 ⊕
p+p′=r,q+q′=2k−1−r

Hp,q(X)⊗Hp′,q′(Y )


=

⊕
l+m=2k−1

 ⊕
i+j≥ l+m+1

2

Hi,l−i(X)⊗Hj,m−j(Y )

 .

For an abelian group A, we denote A/torsion by A0. We have the Künneth decomposition on the
homology groups module torsion

H2k−1(X × Y,Z)0 =

( ⊕
l+m=2k−1

Hl(X,Z)⊗Hm(Y,Z)

)
0

16



given for example by products of singular simplices. Since the action of the torsion elements in the
homology groups with integral coefficients on the cohomology classes with complex coefficients is trivial
we have

J2k−1(X × Y ) =
⊕

l+m=2k−1

 ⊕
i+j≥ l+m+1

2

Hi,l−i(X)⊗Hj,m−j(Y )

∗ / ⊕
l+m=2k−1

(Hl(X,Z)⊗Hm(Y,Z)) .

Now the action of Hl(X,Z) ⊗ Hm(Y,Z) on H l′(X) ⊗ Hm′(Y ) is non-trivial if and only if l = l′ and
m = m′. In particular, when viewed as a subset of

(F kH2k−1(X × Y ))∗ =
⊕

l+m=2k−1

 ⊕
i+j≥ l+m+1

2

Hi,l−i(X)⊗Hj,m−j(Y )

∗ ,
we have that Hl(X,Z)⊗Hm(Y,Z) ⊂

(⊕
i+j≥ l+m+1

2
Hi,l−i(X)⊗Hj,m−j(Y )

)∗
. In general, a torus T =

V/Λ splits as a product of n tori if there exist n vector subspaces Vi ⊂ V such that V =
⊕
Vi and

Λ =
⊕

Λi where Λi := Λ∩Vi. In this case we have that Λi is a full rank lattice in Vi and T =
∏

(Vi/Λi).
In our case we have

J2k−1(X × Y ) =
⊕

l+m=2k−1

 ⊕
i+j≥ l+m+1

2

Hi,l−i(X)⊗Hj,m−j(Y )

∗ / ⊕
l+m=2k−1

(Hl(X,Z)⊗Hm(Y,Z)) ,

=
∏

l+m=2k−1

 ⊕
i+j≥ l+m+1

2

Hi,l−i(X)⊗Hj,m−j(Y )

∗ / (Hl(X,Z)⊗Hm(Y,Z)) ,

=
∏

l+m=2k−1

Jl,m(X,Y ).

It is natural to ask how the co-Abel-Jacobi map behaves with respect to this decomposition and how
the intermediate co-Jacobians of X and Y relate to the mixed intermediate co-Jacobians of (X,Y ). This
is the content of the following theorems.

Theorem 4.1.4. Let X,Y be compact Kähler manifolds. For ZX a (k − 1)-dimensional analytic cycle
in X which is homologous to 0 and UY an arbitrary l-dimensional analytic cycle in Y , let Z = ZX ×UY
be an analytic cycle in X × Y . We have in particular that Z is homologous to 0 and

ΦX×Yk+l (Z) ∈ J2k−1,2l(X,Y ).

Proof. Let ΓX be a differentiable chain in X such that ∂ΓX = ZX . For Γ = ΓX × UY , we have that
Z = ∂Γ and the image of the co-Abel-Jacobi map is defined by

ΦX×Yk+l (Z) =

ˆ
Γ

.

Fix some Kähler metrics on X and Y . For any decomposable element

α⊗ β ∈ (Hp(X,C)⊗Hq(Y,C)) ∩ (F k+lH2k+2l−1(X × Y )),

we have ˆ
Γ

α⊗ β =

ˆ
ΓX×UY

α̃ ∧ β̃

where α̃ is the harmonic p-form on X with the class α and β̃ is the harmonic q-form on Y with
the class β. In particular due to dimensions, we can see that

´
Γ
α ⊗ β = 0 if p 6= 2k − 1 and

q 6= 2l. In particular this implies that
´

Γ
∈
(⊕

i+j≥ (2k−1)+(2l)+1
2

Hi,(2k−1)−i(X)⊗Hj,(2l)−j(Y )
)∗

and

thus ΦX×Yk+l (Z) ∈ J2k−1,2l(X,Y ).
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Clearly the above statement is true if we switch the roles of X and Y . In particular this shows that if
UY is homologous to 0, then ΦX×Yk+l (Z) = 0 since it must belong to J2k−1,2l(X,Y ) and J2k−2,2l+1(X,Y ).

Theorem 4.1.5. Let UY be an analytic cycle in Y of dimension l and let k be a positive integer. There
exists a homomorphism of tori

ΨUY
k : J2k−1(X)→ J2k−1,2l(X,Y )

such that for all ZX ∈ Zk−1(X)hom we have

ΨUY
k ◦ ΦXk (ZX) = ΦX×Yk+l (ZX × UY ).

Moreover, ΨUY
k depends only on the homology class of UY and has finite kernel if [UY ] is not a torsion

element.

Proof. We have that
J2k−1(X) = (F kH2k−1(X))∗/H2k−1(X,Z)

and

J2k−1,2l(X,Y ) =

 ⊕
i+j≥k+l

Hi,2k−1−i(X)⊗Hj,2l−j(Y )

∗ /H2k−1(X,Z)⊗H2l(Y,Z).

Consider the subspace S of the universal covering space of J2k−1,2l(X,Y ) defined by

S :=

⊕
i≥k

Hi,2k−1−i(X)⊗H l,l(Y )

∗ =
(
(F kH2k−1(X))⊗H l,l(Y )

)∗
.

We have that S is naturally a subspace of the universal covering space of J2k−1,2l(X,Y ) since the dual
of a direct sum of vector spaces is naturally the direct sum of the dual vector spaces. Consider now the
following map

Ψ
UY
k : (F kH2k−1(X))∗ → S

α 7→ α⊗
ˆ
UY

.

Clearly Ψ
UY
k only depends on the homology class of UY . Now for α ∈ H2k−1(X,Z), clearly α ⊗

´
UY
∈

H2k−1(X,Z) ⊗ H2l(Y,Z). This shows that Ψ
UY
k induces a map of the tori J2k−1(X) → J2k−1,2l(X,Y )

which we denote by ΨUY
k . Considering

´
UY

as an element of
(
H l,l(Y )

)∗ corresponds to taking the cup
product with [UY ] which is an element of Hm−l,m−l(Y,Z) where m is the dimension of Y . This shows
that if

´
UY

= 0 as an element of
(
H l,l(Y )

)∗, then [UY ] is a torsion element. In particular, if [UY ] is not

a torsion element, then Ψ
UY
k is injective and consequently ΨUY

k has finite kernel.
We fix some Kähler metrics on X and Y . If C is some differentiable chain which is not necessarily

closed and α is some cohomology class, by
´
C
α we mean

´
C
α̃ where α̃ is the harmonic form of class

α. Let ZX ∈ Zk−1(X)hom. We have that ZX = ∂ΓX for some differentiable chain ΓX in X and
ΦXk (ZX) =

´
ΓX

. Consequently ΨUY
k ◦ ΦXk (ZX) is represented by

´
ΓX
⊗
´
UY

when considered as an
element in S. Note also that integration over UY is zero outside H l,l(Y ) since UY is an analytic cycle of

dimension l. Thus as an element of
(⊕

i+j≥k+lH
i,2k−1−i(X)⊗Hj,2l−j(Y )

)∗
/H2k−1(X,Z)⊗H2l(Y,Z),

the element ΨUY
k ◦ ΦXk (ZX) is also represented by integrations:

ΨUY
k ◦ ΦXk (ZX) =

ˆ
ΓX

⊗
ˆ
UY

.

If we let Γ = ΓX ×UY we have that ∂Γ = ZX ×UY . In particular ΦX×Yk+l (ZX ×UY ) is given by
´

ΓX×UY .
By the explicit formulation of the Künneth decomposition, we have that for a decomposable element
α ⊗ β ∈ Ha(X,C) ⊗Hb(Y,C) ⊂ Ha+b(X × Y,C) we have

´
ΓX×UY α ⊗ β =

(´
ΓX

α
)
·
(´

UY
β
)
. This is

the same as
´

ΓX
⊗
´
UY

(α⊗ β) and it shows that

ΦX×Yk+l (ZX × UY ) =

ˆ
ΓX

⊗
ˆ
UY

= ΨUY
k ◦ ΦXk (ZX).
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Theorem 4.1.6. If UY has dimension 0 and is not homologically trivial, then ΨUY
k is an isogeny, and

if UY is a point, then ΨUY
k is an isomorphism.

Proof. Note that if UY has dimension 0 and not homologically trivial, then ΨUY
k is surjective since its

kernel is finite and the target and the domain have the same dimension. What is left to show is that if
UY is a point, then the kernel of ΨUY

k is trivial. Let UY = {p} and let α ∈ (F kH2k−1(X))∗ be such that

Ψ
{p}
k (α) = α⊗

ˆ
p

∈ H2k−1(X)⊗H0(Y ).

Here
´
p
can be simply viewed as the identity map on H0,0(Y ) ∼= C. For any cocycle β ∈ F kH2k−1(X)

such that β + β ∈ H2k−1(X,Z), we have

Ψ
{p}
k (α) (β ⊗ 1) ∈ Z.

Since by definition we have
Ψ
{p}
k (α) (β ⊗ 1) = α (β) ,

we conclude that α(β) ∈ Z for all such β and thus α ∈ H2k−1(X,Z). We therefore have that the map
Ψ
{p}
k is injective.

4.2 Duality of Mixed Intermediate co-Jacobians
We have that for an n-dimensional compact Kähler manifold X, the k-th intermediate co-Jacobian of X
is dual to the (n− k + 1)-th intermediate co-Jacobian of X

J2k−1(X) ∼= Ĵ2(n−k+1)−1(X)

where the duality is given by the pairing between (F kH2k−1(X))∗ and (Fn−k+1H2(n−k+1)−1(X))∗,
antilinear in the second term, which we will now define. We have the duality map

P : (H2(n−k+1)−1(X,C))∗
∼−→ H2k−1(X,C)

given by the cup product and the complex conjugation map

: H2k−1(X)→ H2k−1(X).

For φ ∈ (F kH2k−1(X))∗ and α ∈ (Fn−k+1H2(n−k+1)−1(X))∗, we define

[φ, α] = 2i · φ(P (α)).

Proposition 4.2.1. Under this pairing, the lattice dual to H2k−1(X,Z) ⊂ (F kH2k−1(X))∗ is the lattice
H2(n−k+1)−1(X,Z) ⊂ (Fn−k+1H2(n−k+1)−1(X))∗.

Proof. The proof of this fact is almost identical to the proof of the next theorem and thus will be omitted.

For X,Y compact Kähler manifolds, we have a decomposition of the intermediate co-Jacobians of
X × Y as the products of mixed intermediate co-Jacobians of (X,Y ). This decomposition preserves the
duality introduced above.

Theorem 4.2.2. Let X,Y be compact Kähler manifolds of dimensions n and m respectively. For any
non-negative integers k, l such that k + l is odd we have that Jk,l(X,Y ) is dual to J2n−k,2m−l(X,Y ),

Jk,l(X,Y ) ∼= Ĵ2n−k,2m−l(X,Y )

via the duality of Jk+l(X × Y ) and J2n+2m−k−l(X × Y ).
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Proof. We have

Jk,l(X,Y ) =

 ⊕
i+j≥ k+l+1

2

Hi,k−i(X)⊗Hj,l−j(Y )

∗ /Hk(X,Z)⊗Hl(Y,Z)

J2n−k,2m−l(X,Y ) =

 ⊕
i+j≥ k+l+1

2

Hn−k+i,n−i(X)⊗Hm−l+j,m−j(Y )

∗ /H2n−k(X,Z)⊗H2m−l(Y,Z),

where the indices in the expression of J2n−k,2m−l(X,Y ) are rewritten in such a way that the sum-
mations in the two expressions are over the same set of values of i and j. The pairing we have
between (F

k+l+1
2 Hk+l(X × Y ))∗ and (F

2n+2m−k−l+1
2 H2n+2m−k−l(X))∗ restricts to a pairing between(

Hn−k+i,n−i(X)⊗Hm−l+j,m−j(Y )
)∗ and (Hi,k−i(X)⊗Hj,l−j(Y )

)∗ for every i and j, antilinear in the
second term. We have the duality map,

P :
(
Hi,k−i(X)⊗Hj,l−j(Y )

)∗ ∼−→ (
Hn−i,n−k+i(X)⊗Hm−j,m−l+j(Y )

)
given by the cup product and the complex conjugation map

: Hn−i,n−k+i(X)⊗Hm−j,m−l+j(Y )
∼−→ Hn−k+i,n−i(X)⊗Hm−l+j,m−j(Y ).

The pairing is given by
[φ, α] = 2i · φ(P (α))

for φ ∈
(
Hn−k+i,n−i(X)⊗Hm−l+j,m−j(Y )

)∗ and α ∈
(
Hi,k−i(X)⊗Hj,l−j(Y )

)∗. Since P is an iso-
morphism and is an anti-isomorphism, we see that

(
Hn−k+i,n−i(X)⊗Hm−l+j,m−j(Y )

)∗ is the entire
space of antilinear forms of

(
Hi,k−i(X)⊗Hj,l−j(Y )

)∗. The same holds once we take the direct sum of
the components of the universal covering space of Jk,l(X,Y ).

To show that H2n−k(X,Z)⊗H2m−l(Y,Z) is the lattice dual to Hk(X,Z)⊗Hl(Y,Z) it is convenient
to write all of the spaces in question in terms of cohomologies, since there, it is clearer how the integral
cohomologies are embedded in the subspaces of cohomologies with complex coefficients. Let

V =
⊕

i+j≥ k+l+1
2

Hn−i,n−k+i(X)⊗Hm−j,m−l+j(Y ),

W =
⊕

i+j≥ k+l+1
2

Hk−i,i(X)⊗H l−j,j(Y ).

We have V ⊂ H2n−k(X,C) ⊗ H2m−l(Y,C) and W ⊂ Hk(X,C) ⊗ H l(X,C). The conjugation on each
cohomology group induces the conjugation on the tensor product and we have

H2n−k(X,C)⊗H2m−l(Y,C) = V ⊕ V ,
Hk(X,C)⊗H l(X,C) = W ⊕W.

The mixed intermediate co-Jacobians in question are then isomorphic to

Jk,l(X,Y ) ∼= V/H2n−k(X,Z)0 ⊗H2m−l(Y,Z)0,

J2n−k,2m−l(X,Y ) ∼= W/Hk(X,Z)0 ⊗H l(Y,Z)0.

Here, the integral cohomologies are considered as their projections onto the appropriate complex sub-
spaces, i.e. the projection of H2n−k(X,Z)0⊗H2m−l(Y,Z)0 ⊂ H2n−k(X,R)⊗H2m−l(Y,R) onto V along
V and the projection of Hk(X,Z)0 ⊗H l(Y,Z)0 onto W along W . In this setting the pairing between V
and W takes the form

[φ, α] = 2iφ ∧ α ∈ H2n(X,C)⊗H2l(Y,C) ∼= C

where the last isomorphism is given by integration over X and Y .
Let φ be a projection of an element in Hk(X,Z)0 ⊗H l(Y,Z)0 onto W and let α be a projection of

an element in H2n−k(X,Z)0 ⊗H2m−l(Y,Z)0 onto V . Since integral cohomologies are real we have that
(φ+ φ) ∈ Hk(X,Z)0 ⊗H l(Y,Z)0 and (α+ α) ∈ H2n−k(X,Z)0 ⊗H2m−l(Y,Z)0. We thus have

(φ+ φ) ∧ (α+ α) ∈ Z.
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Due to type, we have that φ∧α = φ∧α = 0 and therefore φ∧α+φ∧α = 2<(φ∧α) ∈ Z. We thus have
that =([φ, α]) = =(2iφ ∧ α) = 2<(φ ∧ α) ∈ Z and therefore φ lies in the dual lattice of the projection of
H2n−k(X,Z)0 ⊗H2m−l(Y,Z)0 onto V .

To show the inverse inclusion, let φ ∈ W be such that for any projection α of an element in
H2n−k(X,Z)0 ⊗ H2m−l(Y,Z)0 onto V we have =(2iφ ∧ α) = 2<(φ ∧ α) ∈ Z. We have that (φ + φ)
belongs to Hk(X,R)⊗H l(Y,R). An element γ ∈ Hk(X,R)⊗H l(Y,R) is integral if and only if for every
δ ∈ H2n−k(X,Z)0 ⊗H2m−l(Y,Z)0 we have γ ∧ δ ∈ Z. Let δ ∈ H2n−k(X,Z)0 ⊗H2m−l(Y,Z)0 and let α
be the projection of δ onto V . We have δ = α+ α and therefore

(φ+ φ) ∧ δ = (φ+ φ) ∧ (α+ α).

Due to type, we have φ ∧ α = φ ∧ α = 0 and therefore

(φ+ φ) ∧ δ = φ ∧ α+ φ ∧ α = 2<(φ ∧ α) ∈ Z.

Since this is true for any δ ∈ H2n−k(X,Z)0 ⊗H2m−l(Y,Z)0, we have (φ + φ) ∈ Hk(X,Z)0 ⊗H l(Y,Z)0

and φ is the projection of (φ+ φ) onto W .

4.3 The Poincaré Bundle on Products of Tori
We would like to know how the decomposition of the intermediate co-Jacobians into mixed intermediate
co-Jacobians behaves with respect to the Poincaré bundles.

It is important to recall the explicit construction of the Poincaré bundle. Let T = V/Λ be a torus
and let T̂ = V̂ /Λ̂ be its dual torus. We define a hermitian form H on V ⊕ V̂ by

H ((v1, l1), (v2, l2)) = l2(v1) + l1(v2),

and the semicharacter χ : Λ⊕ Λ̂→ U(1) for H by

χ(λ, µ) = exp(πi=µ(λ)).

The pair (H,χ) defines the Poincaré bundle on T × T̂ by the canonical factor of automorphy aP :
(Λ⊕ Λ̂)× (V ⊕ V̂ )→ C∗

aP ((λ, µ), (v, l)) = χ(λ, µ) exp
(
πH ((v, l), (λ, µ)) +

π

2
H ((λ, µ), (λ, µ))

)
.

We now investigate how the Poincaré bundle of a product of tori relates to the Poincaré bundles of
individual tori.

Theorem 4.3.1. Let T1, T2 be tori and let P be the Poincaré bundle on (T1×T2)×(T̂1×T̂2). For all a ∈ T2

and b ∈ T̂2 we have that P|(T1×{a})×(T̂1×{b}) is the Poincaré bundle on (T1×{a})× (T̂1×{b}) ∼= T1× T̂1.

Proof. Let Ti = Vi/Λi and T̂i = V̂i/Λ̂i for i = 1, 2. We write down explicitly the hermitian form H, the
semicharacter χ for H and the canonical factor of automorphy aP corresponding to P. We have that H
is the hermitian form on V1 ⊕ V2 ⊕ V̂1 ⊕ V̂2 given by

H ((v1, v2, l1, l2), (w1, w2,m1,m2)) = m1(v1) +m2(v2) + l1(w1) + l2(w2).

The semicharacter χ : Λ1 ⊕ Λ2 ⊕ Λ̂1 ⊕ Λ̂2 → U(1) for H is given by

χ(λ1, λ2, µ1, µ2) = exp(πi= (µ1(λ1) + µ2(λ2))).

The canonical factor of automorphy of P is given by the map aP : (Λ1⊕Λ2⊕Λ̂1⊕Λ̂2)×(V1⊕V2⊕V̂1⊕V̂2)→
C∗

aP ((λ1, λ2, µ1, µ2), (v1, v2, l1, l2)) = χ(λ1, λ2, µ1, µ2) exp (πH ((v1, v2, l1, l2), (λ1, λ2, µ1, µ2))) ·

exp
(π

2
H ((λ1, λ2, µ1, µ2), (λ1, λ2, µ1, µ2))

)
.

Let v2 ∈ V2 map to a and l2 ∈ V̂2 map to b. We have that (T1 × {a})× (T̂1 × {b}) is the torus given by
(V1×{v2})⊕ (V̂1×{l2})/

(
Λ1 ⊕ Λ̂1

)
. Here, we consider the set (V1×{v2}) as the vector space naturally
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isomorphic to V1 and analogously (V̂1 × {l2}) as the vector space naturally isomorphic to V̂1. As such
we have that (V1×{v2})⊕ (V̂1×{l2}) is a subset but not in general a subspace of (V1⊕ V2)⊕ (V̂1⊕ V̂2).
We have that the factor of automorphy of the restriction of P to (T1 × {a})× (T̂1 × {b}) is given by the
restriction of aP to

(
Λ1 ⊕ {0} ⊕ Λ̂1 ⊕ {0}

)
×
(

(V1 × {v2})⊕ (V̂1 × {l2})
)

aP ((λ1, 0, µ1, 0), (v1, v2, l1, l2)) = χ(λ1, 0, µ1, 0) exp (πH ((v1, v2, l1, l2), (λ1, 0, µ1, 0))) ·

exp
(π

2
H ((λ1, 0, µ1, 0), (λ1, 0, µ1, 0))

)
= aP′ ((λ1, µ1), (v1, l1))

where P ′ is the Poincaré bundle on T1 × T̂1.

Let X,Y be compact Kähler manifolds of dimensions n and m respectively. Let k, a, b ∈ Z such
that a + b = 2k − 1. By Theorems 4.3.1 and 4.2.2 we have that the Poincaré bundle on J2k−1(X ×
Y ) × J2(n+m−k+1)−1(X × Y ) restricted to Ja,b(X,Y ) × J2n−a,2m−b(X,Y ) is the Poincaré bundle on
Ja,b(X,Y )×J2n−a,2m−b(X,Y ). Let U1, U2 be analytic cycles in Y of dimensions l and m− l respectively.
We have the following diagram

J2k−1(X)
Ψ
U1
k //

duality

�O
�O
�O
�O
�O
�O
�O

J2k−1,2l(X,Y )

duality

�O
�O
�O
�O
�O
�O
�O

J2n−2k+1(X)
Ψ
U2
n−k+1 // J2n−2k+1,2m−2l(X,Y )

and thus we have the Poincaré bundles on the left and right columns. We would want to know if they
are compatible under the horizontal maps.

Lemma 4.3.2. Let T1, T2 be tori and let φ : T1 → T2, ψ : T̂1 → T̂2 be homomorphisms of tori. Let
P1,P2 be the Poincaré bundles on T1 × T̂1 and T2 × T̂2 respectively. We then have that (φ, ψ)∗P2

∼= P1

if and only if φ̂ ◦ ψ = id.

Proof. Let f : X → Y be a homomorphism of tori with the analytic representation F . Denote by L(H,χ)
the line bundle corresponding to a hermitian form H and a semicharacter χ for H. By Lemma 3.3.6, we
have

f∗L(H,χ) = L(F ∗H,F ∗χ).

Let Φ and Ψ be the analytic representations of φ and ψ respectively and let Pi = L(Hi, χi). We have
that (φ, ψ)∗P2

∼= P1 if and only if

(Φ,Ψ)∗H2 = H1,

(Φ,Ψ)∗χ2 = χ1.

We have that (Φ,Ψ)∗H2 = H1 if and only if for all v1, v2 ∈ V1 and l1, l2 ∈ V̂1 we have

Ψ(l2) (Φ(v1)) + Ψ(l1) (Φ(v2)) = l2(v1) + l1(v2)

which is equivalent to the statement that for all v ∈ V1 and l ∈ V̂1,

Ψ(l1) (Φ(v2)) = l1(v2)

which in turn is equivalent to the fact that Φ∗Ψ = id. If Φ∗Ψ = id, then clearly

(Φ,Ψ)∗χ2(λ, µ) = exp(πi=(Φ∗Ψµ(λ)) = χ1(λ, µ).

We have that Ψ∗ is the analytic representation of ψ̂, therefore Ψ∗Φ = id if and only if φ̂ ◦ ψ = id.
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Theorem 4.3.3. Let X,Y be compact Kähler manifolds of dimensions n and m respectively. Let U1, U2

be analytic cycles in Y of dimensions l and m− l respectively. We have that the pullback of the map

J2k−1(X)× J2n−2k+1(X)
Ψ
U1
k ×Ψ

U2
n−k+1−−−−−−−−−→ J2k−1,2l(X,Y )× J2n−2k+1,2m−2l(X,Y )

sends the Poincaré bundle on the image to the Poincaré bundle on the domain if and only if [U1]∧[U2] = 1.

Proof. It follows from Lemma 4.3.2 that the pullback of the map ΨU1

k × ΨU2

n−k+1 sends the Poincaré

bundle to the Poincaré bundle if and only if (Ψ
U2

n−k+1)∗ ◦Ψ
U1

k = id where Ψ
U2

n−k+1,Ψ
U1

k are the analytic
representations of ΨU2

n−k+1 and ΨU1

k respectively. This is equivalent to the fact that for all

α ∈ (F kH2k−1(X))∗ ∼=
⊕

i≥n−k+1

H2n−2k+1−i,i(X)

and
β ∈ (Fn−k+1H2n−2k+1(X))∗,

we have
[(β ⊗ [U1]), (α⊗ [U2])] = [β, α] = 2iβ(α).

We have by the definition of the pairing between ⊕
i+j≥ 2k+l

2

Hn−2k+1+i,n−i(X)⊗Hm−l+j,m−j(Y )

∗

and  ⊕
i+j≥ 2k+l

2

Hi,2k−1−i(X)⊗Hj,l−j(Y )

∗

that
[(β ⊗ [U1]), (α⊗ [U2])] = 2iβ(α) · [U1] ∧ [U2].

Since [U2] is a real class, the statement of the theorem follows.

Corollary 4.3.4. Let X,Y be compact Kähler manifolds of dimensions n and m respectively. Let U1 be
an analytic cycle in Y of dimension l such that there exists an analytic cycle U2 of Y of complementary
dimension such that [U1] ∧ [U2] = 1. We then have that ΨU1

k is injective.

Proof. By Theorem 4.3.3 and Lemma 4.3.2 we have that ˆ(ΨU2

n−k+1) ◦ ΨU1

k = id and therefore ΨU1

k is
injective.

4.4 Intermediate co-Jacobians of Hodge Structures
Intermediate co-Jacobians can be defined more generally for any integral Hodge structure. We can
therefore repeat most of the previous constructions for arbitrary Hodge structures, their products and
their duals.

Definition 4.4.1. Let V = (VZ, V
p,q) be an integral Hodge structure of weight 2k − 1. We define the

intermediate co-Jacobian of V in the following way

J2k−1(V ) = (F kVC)∗/(VZ)∗

where F kVC =
⊕

p≥k V
p,q and (VZ)∗ = Hom(VZ,Z) which by C-linearity extends to a subset of V ∗C .

Theorem 4.4.2. We have that J2k−1(V ) is a complex torus.
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Proof. Observe that VC = (F kVC) ⊕ (F kVC). In particular this shows that dimR(F kVC) = rank(VZ).
Thus the image of (VZ)∗ under the map

i : (VZ)∗ → (F kVC)∗

has full rank if and only if i is injective. Let α ∈ (VZ)∗ be in the kernel of i. It follows that for all
v ∈ (F kVC), we have α(v) = 0. Since for any w ∈ VC, we have α(w) = α(w), and VC = (F kVC)⊕ (F kVC),
we conclude that α is trivial on the entire VC. In particular α is trivial on VZ ⊂ VC and therefore α = 0.
We thus conclude that (VZ)∗ is a lattice of maximal rank in (F kVC)∗ and J2k−1(V ) is a complex torus.

Definition 4.4.3. Let V = (VZ, V
p,q) and W = (WZ,W

p,q) be integral Hodge structures of weights k, l
such that k + l is odd. We define the mixed intermediate co-Jacobian of V and W as

Jk,l(V,W ) =

 ⊕
i+j≥ k+l+1

2

V i,k−i ⊗W j,l−j

∗ / (VZ ⊗WZ)
∗
.

Theorem 4.4.4. Let V = (VZ, V
p,q) and W = (WZ,W

p,q) be integral Hodge structures of weights k, l
such that k + l is odd. We have

Jk,l(V,W ) = Jk+l(V ⊗W ).

Proof. This follows immediately from the definition of the tensor product of Hodge structures

(V ⊗W )Z = VZ ⊗WZ,

(V ⊗W )r,s =
⊕

p+p′=r,q+q′=s

V p,q ⊗W p′,q′ .

Theorem 4.4.5. Let V = (VZ, V
p,q) and W = (WZ,W

p,q) be integral Hodge structures of weight 2k− 1.
We have

J2k−1(V ⊕W ) = J2k−1(V )× J2k−1(W ).

Proof. We have that

J2k−1(V ⊕W ) = (F kVC)∗ ⊕ (F kWC)∗/(VZ)∗ ⊕ (WZ)∗.

Since the action of (VZ)∗ is 0 on WC, the abelian group (VZ)∗ ⊕ {0} as a subset of (F kVC)∗ ⊕ (F kWC)∗,
lies in the subspace (F kVC)∗ ⊕ {0}. By the same argument we have {0} ⊕ (WZ)∗ ⊂ {0} ⊕ (F kWC)∗ and
therefore J2k−1(V ⊕W ) splits as a product of two tori,

J2k−1(V ⊕W ) =
(
(F kVC)∗/(VZ)∗

)
×
(
(F kWC)∗/(WZ)∗

)
= J2k−1(V )× J2k−1(W ).

Definition 4.4.6. Let V = (VZ, V
p,q) be an integral Hodge structure of weight k. We define the dual

Hodge structure V ∗ of weight k as

(V ∗)Z = (VZ)∗,

(V ∗)p,q = (V q,p)∗.

We naturally have that V ∗Z ⊗ C ∼= (VZ ⊗ C)
∗, therefore this construction indeed defines a Hodge

structure. The conjugation on (VC)
∗ coming from this isomorphism has the following form: for φ ∈ (VC)

∗

and x ∈ VC, we have
φ(x) = φ(x).

Theorem 4.4.7. For V = (VZ, V
p,q) an integral Hodge structure of weight 2k − 1, there is a natural

isomorphism
J2k−1(V ∗) ∼= Ĵ2k−1(V ).
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Proof. We have that the universal covering space of J2k−1(V ∗) is (F kV ∗C )∗ =
⊕

p≥k(V q,p). Define a
pairing between (F kV ∗C )∗ =

⊕
p≥k(V q,p) and (F kVC)∗ =

⊕
p≥k(V p,q)∗, antilinear in the second term, by

[α, x] = 2i · x(α)

where α ∈ (F kV ∗C )∗ and x ∈ (F kVC)∗. Clearly this pairing is perfect and we only have to check that the
lattice, dual under this pairing to the image of V ∗Z in (F kVC)∗, is exactly the image of VZ in (F kV ∗C )∗.

Let α ∈ (F kV ∗C )∗ and x ∈ (F kVC)∗ lie in the images of VZ and V ∗Z respectively. We have that
(α+ α) ∈ VZ, (x+ x) ∈ V ∗Z and therefore

[(α+ α), (x+ x)] ∈ 2iZ.

Since α ∈
⊕

p≥k(V q,p) = F kVC and x ∈ (F kVC)∗, we have by definition of the pairing,

[α, x] = 2i · x(α) = 0.

Similarly we deduce that [α, x] = 0. We thus have that

[(α+ α), (x+ x)] = [α, x] + [α, x] = 2i · 2<
(
x(α)

)
.

It follows that 2<(x(α)) ∈ Z, which implies that =(2i · x(α)) = =([α, x]) ∈ Z. This means that α lies in
the lattice, dual to the image of V ∗Z in (F kVC)∗.

For the other inclusion, assume that α ∈ (F kV ∗C )∗ lies in the lattice, dual to the image of V ∗Z in
(F kVC)∗. We will show that (α+α) ∈ VZ. By the assumption, for all x ∈ (F kVC)∗ such that (x+x) ∈ V ∗Z ,
we have

=([α, x]) ∈ Z.

We have to show that (x+x) (α+ α) ∈ Z. By the same argument as above, we have that x(α) = x(α) = 0.
We thus have to show that 2<(x(α)) ∈ Z. Since we have 2<(x(α)) = =(2i · x(α)) = =([α, x]), the
statement is proved.
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5 Ceresa Cycles and Degenerate Complex Curves
In this section we give an example of when we are interested in intermediate Jacobians of a product of
two Kähler manifolds.

5.1 Ceresa Cycles
Given a Riemann surface S and a point q ∈ S, we can construct a map aq : S → J(S) given by

p 7→ ΦS1 ([p]− [q]) =

ˆ p

q

.

We define the Ceresa cycle of S as

Cq(S) = aq(S)− [−1]∗aq(S).

It is an analytic cycle in J(X). For a torus T = V/Λ we have Hk(T ) ∼=
∧k

Λ and we can thus
see that [−1]∗ acts on Hk(T ) as (−1)k. In particular [−1]∗ is the identity map on H2(T ) and thus
〈aq(S)〉 = 〈[−1]∗aq(S)〉. In our case this shows that the Ceresa cycle Cq(S) is homologically trivial. Let
X := J(S) and consider the image of the Ceresa cycle under the map ΦX2 . We define the Ceresa element
of S as

cq(S) := ΦX2 (Cq(S)) ∈ J3(X).

Consider now a degenerate case of a complex curve as in section 2.7 where the curve S is the union
of two Riemann surfaces M and N intersecting transversely at a point q. Let X = J(N) and Y = J(M).
We have shown that in a natural way

J(S) = X × Y
and have defined the Abel-Jacobi map for S. We define the Ceresa cycle and the Ceresa element for S
with respect to the point q in the same manner as before. In this case, the Ceresa element of S lies in

J3(X × Y ) = J3,0(X,Y )× J2,1(X,Y )× J1,2(X,Y )× J0,3(X,Y ).

Theorem 5.1.1. We have cq(S) = Ψ
{0}
2 (cq(N))+Ψ

{0}
2 (cq(M)). The first summand belongs to J3,0(X,Y )

and the second belongs to J0,3(X,Y ).

Proof. We have that

Cq(S) = aq(S)− [−1]∗aq(S)

= (aq(N)× {0}) ∪ ({0} × aq(M))− [−1]∗ (aq(N)× {0}) ∪ ({0} × aq(M)) .

Since (aq(N)× {0}) ∪ ({0} × aq(M)) = (aq(N)× {0}) + ({0} × aq(M)) as a cycle we conclude that

Cq(S) = Cq(N)× {0}+ {0} × Cq(M).

Therefore by Theorem 4.1.5

ΦX×Y2 (Cq(N)× {0}+ {0} × Cq(M)) = ΦX×Y2 (Cq(N)× {0}) + ΦX×Y2 ({0} × Cq(M))

= Ψ
{0}
2 (cq(N)) + Ψ

{0}
2 (cq(M)).

5.2 A Degenerate Family of Complex Curves
A singular complex curve can occur naturally as a fiber in an analytic family whose generic fiber is a
smooth Riemann surface. In this section we will present a complex analytic family of complex curves

πX : X → D

where D is the complex unit disc with a degenerate fiber over the point 0 ∈ D as presented in [2].
Restricting to some neighborhood Dε of 0 in D, we will construct the family of Jacobians corresponding
to this family which will have all non-singular fibers

πJ : J → Dε.
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We also have the family
πJ3(J ) : J3(J )→ Dε

whose fiber over a point t ∈ Dε is the second intermediate co-Jacobian of the fiber of πJ over t. Given
a holomorphic section

q : Dε → X

we can construct the section
cq(X ) : Dε → J3(J )

which maps a point t ∈ Dε to the Ceresa element of π−1
X (t) with respect to q(t). We will show that the

section cq(X ) is holomorphic and thus the Ceresa element varies holomorphically everywhere.
Let C1 and C2 be two Riemann surfaces of genera g1 and g2 respectively. Let p1 ∈ C1 and p2 ∈ C2

be two fixed points and let U1, U2 be open neighborhoods of p1 and p2 biholomorphic to the open unit
disc D ⊂ C. Let zi be a holomorphic coordinate on Ui centered at pi for i = 1, 2. Consider the sets

Wi = (Ci ×D) \{(x, t) ∈ Ui ×D s.t. |zi(x)| ≤ |t|}.

The sets Wi are complex manifolds being open subsets of Ci ×D. We naturally have projection maps
πi : Wi → D whose fibers over t ∈ D are the Riemann surfaces Ci with a puncture around the points pi.
We will “glue” the sets W1 and W2 in a way to produce a family X → D whose fiber over t 6= 0 is the
gluing of π−1

i (t) along the neighborhoods of the punctures and over t = 0 the fiber is the union of C1

and C2 intersecting transversely at the points p1 and p2. The general fiber will be a Riemann surface of
genus g1 + g2.

Let S ⊂ D3 be the surface given by
XY = t

where X,Y, t are the coordinates on D3. Define

X := W1 t S tW2/ ∼

where the relation ∼ is given by

(x, t) ∼ (z1(x),
t

z1(x)
, t)

for (x, t) ∈ (U1 ×D) ∩W1 and

(x, t) ∼ (
t

z2(x)
, z2(x), t)

for (x, t) ∈ (U2 ×D) ∩W2. These relations are consistent with the projections onto D and we therefore
get a family

πX : X → D.

The map πX is flat, proper and a submersion outside of π−1
X (0). Denote π−1

X (t) by Ct. We call S ⊂ X
the pinching region of the family. For t 6= 0 we have that Ct ∩ S is the region where Ct ∩ (Ui ×D) are
glued holomorphically. For t = 0, we have C0 ∩ S ∼= {(X,Y ) ∈ D2|XY = 0} where the sheet Y = 0
without the origin is glued to U1\{p1} × {0} ⊂ W1 and the sheet X = 0 without the origin is glued to
U2\{p2} × {0} ⊂W2.

In order to construct the family of Jacobians of X , we will use the explicit construction of the
Jacobian as introduced in section 2.7. Choose differentiable chains A1, . . . , Ag1 , B1, . . . Bg1 in C1 and
Ag1+1, . . . , Ag1+g2 , Bg1+1, . . . , Bg1+g2 in C2 such that they form standard bases forH1(C1,Z) andH1(C2,Z)
respectively as described in Section 2.6 and such that they don’t intersect U1 and U2. For any t ∈ D, we
have the natural identification of Ct∩(Ci − Ui)×D with (Ci−Ui) and thus A1, . . . , Ag1+g2 , B1, . . . Bg1+g2

define a standard basis on each Ct. The following theorem is the core argument in our construction.

Theorem 5.2.1. [2, p. 38] Up to replacing D by a neighborhood Dε of 0, there exist g1 + g2 linearly
independent holomorphic 2-forms u1, . . . , ug1+g2 on X such that for every t ∈ Dε, the Poincaré residues of
ui

πX−t along Ct form a normalized basis of holomorphic 1-forms with respect to A1, . . . , Ag1+g2 , B1, . . . Bg1+g2 .
Moreover, the resulting Riemann matrix τ(t) is holomorphic with respect to t.

We define the Poincaré residue of a top degree meromorphic form α on a complex manifold X with
a pole being a smooth divisor D. In other words D is a submanifold of X of codimension one and α has
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a pole of order one along D. Let x ∈ D, U ⊂ X a neighborhood of x and z : U → C be a holomorphic
function locally defining D with dz not vanishing along D. We can then locally write α on U as

α =
dz

z
∧ β + γ

where β and γ are holomorphic forms on U . The restriction of β to D∩U does not depend on the choices
made and defines a global holomorphic form on D. We denote it by resD(α). In the case where the
divisor of α is a sum of two smooth divisors D1, D2 intersecting transversely, we can analogously define
resD1

(α) and resD2
(α) which will be meromorphic forms on D1 and D2 with at most simple poles along

D1 ∩D2. See [4, p. 171] for a more thorough discussion on Poincaré residues.
In the theorem above, for t = 0, we get meromorphic forms on C1 and C2 with perhaps simple poles

at p1 and p2. Since a meromorphic form on a Riemann surface cannot have one simple pole, we conclude
that the resulting residues are in fact holomorphic.

We can now construct the family of Jacobians. Let

J = Cg1+g2 ×Dε/Zg1+g2 × Zg1+g2

where the action of Zg1+g2 × Zg1+g2 on Cg1+g2 ×Dε is given by

(λ, γ).(x, t) = (x+ λ+ τ(t)γ, t).

Clearly the action is holomorphic, free and properly discontinuous and as such defines a complex manifold
J . Since the action preserves the t coordinate, we have the map

πJ : J → Dε.

Clearly each fiber of πJ is the Jacobian of the corresponding fiber of πX .
We now construct the family

πJ3(J ) : J3(J )→ Dε

of the second intermediate co-Jacobians of fibers of πJ . Let us digress for a moment in order to write
down “explicitly” the second intermediate co-Jacobian of a torus

X = Cg/Λτ

where τ is a g× g matrix with complex coefficients such that =τ is positive definite and Λτ is the lattice
spanned by the column vectors of the matrix (I, τ). We have that

J3(X) = (H2,1(X)⊕H3,0(X))∗/H3(X,Z).

We have that Hi,j(X) ∼= Hi,j(X) where Hi,j(X) is the space of harmonic (i, j) forms on X. Now if
α is a harmonic (i, j) form on X, we can lift it to a periodic harmonic form on Cg. Any periodic
harmonic form on Cg has constant coefficients. We therefore have that Hi,j(X) is spanned by the forms
dzk1 ∧ · · · ∧ dzki ∧ dzl1 ∧ · · · ∧ dzlj where zi for 1 ≤ i ≤ g are the holomorphic basis of Cg. In particular
this gives an isomorphism

(H2,1(X)⊕H3,0(X))∗ ∼= C(g2)·(
g
1) ⊕ C(g3).

Now as for the lattice H3(X,Z) ⊂ (H2,1(X)⊕H3,0(X))∗ , we have

H3(X,Z) ∼=
3∧

Λτ .

For λ1, λ2, λ3 ∈ Λτ , we have that the value of λ1 ∧ λ2 ∧ λ3 on α ∈ H2,1(X) ⊕H3,0(X) when viewed as
a constant form on Cg is the integral of α over the parallelepiped spanned by λ1, λ2, λ3. This defines a
lattice in C(g1)·(

g
1)⊕C(g3) under the isomorphism constructed above which we denote by Λρ(τ). Important

to note is that Λρ(τ) varies holomorphically when τ does. In our case, we have the complex manifold

J3(J ) = C(g1)·(
g
1) ⊕ C(g3) ×Dε/Λρ(τ(t)),

which defines the desired family.
Let q : Dε → X be a holomorphic section where by now, by X we mean the restriction of the family

to Dε. We can define the map
aq : X → J

which sends a point p ∈ X lying above t ∈ Dε to

ΦCt1 ([p]− [q(t)]) ∈ J(Ct) ⊂ J .
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Theorem 5.2.2. The map aq is holomorphic.

Proof. Let s ∈ X be the singular point of the fiber C0. We have that q(0) 6= s. To see this, let
q(t) = (q1(t), q2(t)) ∈ D2 ∼= S where q1, q2 ∈ C[[t]] such that q1(t)q2(t) = t. If q(0) = s, we must have
that q1 and q2 do not have constant factors and thus we cannot have q1(t)q2(t) = t.

Choose a point p′ ∈ X lying over t′ ∈ Dε such that p′ 6= s. We will show that aq is holomorphic at
p′. Consider a small neighborhood U ⊂ X of some path between p′ and q(t′). For some neighborhood V
of p′, we can define a map a

′

q : V → Cg1+g2 given by

p 7→ (

ˆ p

q(t)

resCtui)1≤i≤g1+g2

where p lies above t and the path of integration lies in U ∩ Ct. Note that the result doesn’t depend on
the path chosen since all the paths between p and q(t) in U ∩ Ct are homotopic and resCtui is closed.
We have

aq|V = Π ◦ (a′q, πX )

where Π is the quotient map Cg1+g2 × Dε → J . It thus suffices to show that a
′

q is holomorphic. This
will be done in several steps.

Step: 1 Assume first that p′ and q(t′) lie in W1 and U is holomorphically trivializable. Since W1 is
an open subset of C1 ×D, we have coordinates (z, t) on U such that t coincides with πX . A
holomorphic 2-form ui can be written locally on U as

ui = φ(z, t)dt ∧ dz

where φ is a holomorphic function. It follows that resCt∩U
ui

πX−t = φ(z, t)dz. The i-th coordi-
nate of the map a′q then has the following form

(z, t) 7→
ˆ z

q(t)

φ(z, t)dz

where q(t) is holomorphic. This can be seen as an integral in C with holomorphically varying
form and the base point. Clearly this map is holomorphic and thus so is a′q at p′. The same
is true if both points lie in W2.

Step: 2 Assume now that p′ ∈ W1 ∩ S, t′ = 0 and q(t′) ∈ W2 ∩ S. Consider any point p′′ ∈ V lying
over t′′ ∈ Dε where t′′ 6= 0. We have that p′′, q(t′′) ∈ W1 since S − C0 ⊂ W1. It is moreover
clear that p′′ and q(t′′) lie in some holomorphically trivializable set. By step 1 we conclude
that aq is holomorphic on V − C0. By Riemann’s theorem on removable singularities, it
suffices to show that aq is continuous on V ∩ C0. Let x, y be coordinates on S given by the
following isomorphism of D2 and S,

(x, y)→ (x, y, xy) ∈ S ⊂ D3.

Let
ui = φ(x, y)dx ∧ dy.

In order to calculate the residue of ui
xy on the set x = 0, we have to express ui

xy as

ui
xy

=
dx

x
∧ β + γ

where β and γ could have simple poles along the set y = 0. We noted earlier that the residue
of ui

xy along the set x = 0 is in fact holomorphic. In other words β is holomorphic and we
have

ui
xy

=
dx

x
∧ β +

γ′

y

where β and γ′ are holomorphic forms. We can thus express ui as

ui = ydx ∧ β + xγ′.
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In particular, we can write

ui = −xφx(x, y)dx ∧ dy + yφy(x, y)dx ∧ dy

for some holomorphic functions φx and φy. We thus have

resx=0ui = φydy,

resy=0ui = φxdx.

Since dx vanishes on the set x = 0 and dy vanished on the set y = 0 we can write

resx=0ui = φydy + φxdx,

resy=0ui = φydy + φxdx.

We also have

ui
xy − t

=
(ydx+ xdy) ∧ (φydy + φxdx)

xy − t
=
d(xy − t)
xy − t

∧ (φydy + φxdx),

and therefore
resxy=tui = φydy + φxdx.

We thus have that the i-th coordinate of the map a′q has the following form

p 7→
ˆ p

q(t)

φydy + φxdx

where the path of integration is taken within the set xy = t. We can choose a path for every
p ∈ V such that they vary continuously with p. We thus get that a′q is continuous everywhere
on V .

Step: 3 Consider now the case when p′ ∈ W1 and q(t′) ∈ W2. By shrinking U and V if necessary,
we can find a cover (Ui)1≤i≤n of U by finitely many holomorphically trivial neighborhoods
satisfying the following properties:
1) q(t′) ∈ U1, p

′ ∈ Un,
2) Ui ∩ Uj = ∅ if i 6= j ± 1 for i and j distinct,
3) In case t′ = 0, and so U contains the singular point s of C0, we require that s belongs to
only one open set, say Ul,
4) Each open set Ui belongs to eitherW1 orW2, except for the set Ul in the case t′ = 0 where
we then require that Ul ⊂ S.
5) There is some neighborhood D′ε ⊂ Dε of t′ such that πX (V ) = πX (Ui ∩ Ui+1) = D′ε for
i = 1, . . . , n− 1.
It is easy to see that such a cover exists. We now choose some holomorphic sections

qi : D′ε → Ui ∩ Ui+1.

For any p ∈ V lying over t, we have

a′q(p) = a
′

q(q1(t)) +

n−2∑
i=1

a
′

qi(qi+1(t)) + a′qn(p).

In case t′ 6= 0, by step 1 we know that each term in this sum is holomorphic since it involves
calculations within some trivializable set inW1 orW2. In case t′ = 0, we have that a′ql−1

(ql(t))
is holomorphic by step 2.

So far we have shown that the map aq is holomorphic outside of s. By Hartog’s extension theorem, a
continuous function cannot fail to be holomorphic on a set of codimension more than one. It thus follows
that aq is holomorphic everywhere.
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We have a flat analytic cycle aq(X ) ⊂ J . Let

Cq(X ) := aq(X )− [−1]∗aq(X ),

where [−1] is the map on J that acts by inversion on each fiber of πJ , be the Ceresa cycle of X . We have
that Cq(X ) ∩ Ct is the Ceresa cycle of Ct and as such is homologous to 0. By the theorem of Griffiths
[3], since Cq(X ) is flat, we have that the map

cq(X ) : Dε → J3(J1)

which sends t ∈ Dε to the image of Cq(X ) ∩ Ct under the co-Abel-Jacobi map ΦCt2 in π−1
J3(J )(t) is

holomorphic. We have that cq(t) is the Ceresa element of Ct.
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