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Introduction

In this thesis we analyze a certain class of surfaces of general type which
are obtained by rami�ed covering of the universal elliptic surface. We
are going to follow the work of R. Livné [Liv81] and M. Inoue [Ino94].
In the �rst chapter we construct the moduli space of elliptic curves
Y (N) with full level N structure and its compacti�cation X(N).
If N ≥ 3, Y (N) is a �ne moduli space and we can construct the
universal family and extend it to an elliptic surface p : Ẽ(N)→ Y (N).
After the compacti�cation E(N) of the elliptic surface, as the last part
of the chapter, we see the �bration p admits N2 sections

Γ(i, j), i, j = 0, · · · , N − 1,

which intersect each �ber F at its N -torsion points.
In the second chapter we calculate numerical invariants and special
curves of the elliptic curve E(N). We use the approach of Kodaira
[Kod60] to �nd the canonical bundle KE(N) of E(N) and its degree.
In the last part of the chapter we prove some facts about the alge-
braic equivalence between divisors, in particular we prove an impor-
tant Lemma of T.Shioda [Shi72].
It turns out that

Γ =
N−1∑
i,j=0

Γ(i, j)

is divisible by N (resp. N/2) if N is odd (resp. if N is even). Let n
be an integer such that

n|N if N is odd,

n|(N/2) if N is even.

and let [Γ] = nL for some line bundle L ∈ H1(E(N),O∗) be a n-th
root of Γ.
By the general theory of cyclic covers, explained in the �rst part of the
last chapter, there is a branched cyclic cover A(N, n) of E(N), totally
branched over the Γ(i, j)'s and nowhere else.
For N ≥ 6 these turn out to be of general type.
One of the interesting characteristics of these surfaces is the high ratio
of c2

1/c2. Surface with c
2
1 > 2c2 are rather infrequent, indeed, Miyaoka

proved that always c2
1 ≤ 3c2, and Yau has shown that if c2

1 = 3c2 (over
C) the surface is actually uniformized by the ball, or is P2 or C2. Most
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of the construction of surfaces of general type with c2
1 = 3c2 are done

by de�ning a discrete subgroup Γ ⊂ PU(2, 1).
Among the surfaces A(N, n), it turns out that for

(N, n) = (7, 7), (8, 4), (9, 3) or (12, 2),

one has c2
1 = 3c2.

In addition, if (N, n) = (5, 5), A(N, n) is non minimal and the minimal
model has c2

1 = 3c2.



Chapter 1

The Universal Elliptic Curve

E(N)

Although our main focus is the congruence subgroups of SL(2,Z) and
the action on the upper half plane, let us �rst consider a more general
theory. Let C∪{∞} and consider the group GL(2,C) acts on C∪{∞}
via

γ =

(
a b
c d

)
: z 7−→ az + b

cz + d
.

Suppose that this is not the identity transformation. From the theory
of the Jordan canonical form, we see that the matrix γ is conjugate to
one of the following two forms:(

λ 1
0 λ

)
;

(
λ 0
0 µ

)
, λ 6= µ.

Therefore, our transformation is of the following types:

z 7→ z + λ−1; z 7→ cz, c 6= 1.

In the �rst case, we call γ parabolic. In the second case, we call γ
elliptic if |c| = 1, hyperbolic if c is real and positive and loxodromic

otherwise. The classi�cation can be done by means of the trace of γ
(tr(γ))(for the proof see [Shi71]):

Proposition 1.1. Let γ ∈ SL(2,C), γ 6= ±12. Then

γ is parabolic ⇔ tr(γ) = ±2,

γ is elliptic ⇔ |tr(γ)| is real and |tr(γ)| < 2,

γ hyperbolic ⇔ |tr(γ)| is real and |tr(γ)| > 2,

γ loxodromic ⇔ |tr(γ)| is not real.

If γ ∈ SL(2,R), then γ maps the upper half plane H (de�ned as
H := {z ∈ C|Im(z) > 0}) onto itself. It is also known that every holo-
morphic automorphism of H is obtained from an element of SL(2,R).
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CHAPTER 1. THE UNIVERSAL ELLIPTIC CURVE E(N) 2

Note that γ induces the identity map if and only if it is a scalar ma-
trix. Therefore the group of all holomorphic automorphisms of H is
isomorphic to SL(2,R)/{±12}.
We are about to see that the number of �xed point of γ is one or two,
according as γ is parabolic or not and now we want to classify the
transformation on terms of the �xed points.

If γ =

(
a b
c d

)
∈ SL(2,R) and i =

√
−1, we have γ(i) = i if and only

if a = d, b = −c, a2 + b2 = 1. Therefore, the special orthogonal group

SO(2) = {γ ∈ SL(2,R) | tγγ = 12}
is the isotropy subgroup of SL(2,R) at i. The action of SL(2,R) on
H is transitive and H is homeomorphic to SL(2,R)/SO(2), trough the
map γ 7→ γ(i).
For every z ∈ H, we can �nd an element σ of SL(2,R) so that σ(i) = z.
Then

σ · SO(2) · σ−1 = {γ ∈ SL(2,R) | γ(z) = z}.
Since every element of SO(2) has characteristic roots of absolute value
1, this shows that an element of SL(2,R) with at least one �xed point
in H must be either ±12 or elliptic.
For every s ∈ R ∪ {∞}, put

F (s) = {γ ∈ SL(2,R) | γ(s) = s},
P (s) = {γ ∈ SL(2,R) | γ parabolic or = ±12}.

Since SL(2,R) acts transitively on R ∪ {∞}, we can �nd an element
of σ of SL(2,R) so that σ(∞) = s. Then F (s) = σF (∞)σ−1, P (s) =
σP (∞)σ−1. Now we see easily that

F (∞) =

{(
a b
0 a−1

)
| a ∈ R∗, b ∈ R

}
,

P (∞) =

{
±
(

1 h
0 1

)
|h ∈ R

}
.

This shows that if an element γ of SL(2,R), 6= ±12, has at least one
�xed point on R ∪ {∞}, then γ is either parabolic or hyperbolic. To
summarize we get the following

Proposition 1.2. Let γ ∈ SL(2,R), γ 6= ±12. Then

γ is parabolic ⇔ γ has only one �xed point on R ∪ {∞},

γ is elliptic ⇔ γ has one �xed point z in H, and the other z̄,

γ hyperbolic ⇔ γ has two �xed points on R ∪ {∞}.
Let us now �x a discrete subgroup Γ of SL(2,R). A point z of H is

called an elliptic point of Γ if there exists an elliptic element σ of Γ
such that σ(z) = z. Similarly, a point s of R ∪ {∞} is called a cusp
of Γ if there exists a parabolic element of τ of Γ such that τ(s) = s. If
w is a cusp (resp. an elliptic point) of Γ and γ ∈ Γ, then we see easily
that γ(w) is also a cusp (resp. an elliptic point) of Γ.
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1.1 The topological space Γ\H∗

Hereafter till the end of this section, we denote by Γ any discrete
subgroup of SL(2,R), and by H∗ the union of H and the cusps of
Γ. We observe that Γ acts on H∗, hence the quotient space Γ\H∗ is
meaningful. Before de�ning a topology on the quotient space, we will
de�ne a topology of H∗. For every z ∈ H, as a fundamental system of
open neighbourhoods of z, we take the usual one. For a fundamental
system of open neighbourhoods of cusp s 6=∞, we take all sets of the
form:

{s} ∪ {the interior of a circle in H tangent to the real axis at s}.

If ∞ is a cusp, we take the sets

{∞} ∪ {z ∈ H | Im(z) > c},

for all positive numbers c, as a fundamental system of open neighbour-
hoods of∞. It can easily be seen that this de�nes a Hausdor� topology
on H∗, and every element Γ acts on H∗ as homeomorphism.
For a cusp s ≤ ∞ of Γ, put

P (s) = {γ ∈ SL(2,R) | γ(s) = s, γ parabolic or = ±12},
Γs = P (s) ∩ Γ = {γ ∈ Γ | γ(s) = s}.

The neighbourhoods of s of above type are obviously stable under P (s).
To study the structure of Γ\H∗, let us assume that ∞ is a cusp of Γ.
For every σ ∈ Γ, we let cσ denote the lower left entry of the matrix σ.
Then

Γ∞ = {σ ∈ Γ | cσ = 0}

and a generator of Γ∞ modulo ±12 is ±
(

1 h
0 1

)
. Now we will write

some important Lemmas to construct the topology of Γ\H∗ (for the
proofs see [Shi71]):

Lemma 1.1. |cσ| depends only on the double coset Γ∞σΓ∞.

Lemma 1.2. Given M > 0, there are only �nitely many double cosets
Γ∞σΓ∞ such that σ ∈ Γ and |cσ| ≤M .

Lemma 1.3. There exists a positive number r, depending only on Γ,
such that |cσ| ≥ r for all σ ∈ Γ − Γ∞. Moreover, for such an r, one
has Im(z) · Im(σ(z)) ≤ 1/r2 for all z ∈ H and all σ ∈ Γ− Γ∞.

Lemma 1.4. For every cusp s of Γ, there exists a neighbourhood U of
s in H∗ such that Γs = {σ ∈ Γ |σ(U) ∩ U 6= ∅}.

Observe that two points of the set U are equivalent under Γ only if
they are so under Γs, and hence Γs\U may be identi�ed with a subset
of Γ\H∗; moreover U contains no elliptic point of Γ.
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Lemma 1.5. For every cusp of Γ and for every compact subset K of
H, there exists a neighborhood U of s such that U ∩γ(K) = ∅ for every
γ ∈ Γ.

Let us now consider the quotient topology of Γ\H∗, namely we take

{X ⊂ Γ\H∗ |π−1(X) is open in H∗}

to be the class of all open sets in Γ\H∗, where π is the natural projection
of H∗ to Γ\H∗. If U is as in Lemma 1.4, then π(U) can be identi�ed
with Γs\U , and is a neighbourhood of π(s).

Theorem 1.1. The quotient space Γ\H∗, with the above topology, is a
Hausdor� space.

Proof. It is well known that Γ\H is a Hausdor� space. Since Γ\H∗
is the union of Γ\H and the equivalence classes of cusps, it remains
to show that an equivalence class of cusps can be separated from an
equivalence class of cusps. Lemma 1.5 takes care of the former case.
Therefore let us consider two cusps s and t which are not Γ-equivalent.
Without loss of in generality, we may assume t = ∞. Let Γ∞ and

±
(

1 h
0 1

)
be as before. De�ne three sets L, K, and V as follows:

L = {z ∈ C | Im(z) = u},
K = {z ∈ L | 0 ≤ Re(z) ≤ |h|},
V = {z ∈ H∗ | Im > u},

where u is a positive number. Since K is compact, we can �nd by
Lemma 1.5, a neighbourhood U of s so that K ∩ ΓU = ∅. We may
assume that the boundary of U is a circle tangent to the real line
R. Let us show that V ∩ ΓU = ∅. Assume, on the contrary, that
γ(U) ∩ V 6= ∅ for some γ ∈ Γ. Since γ(s) 6=∞, the boundary of γ(U)
is a circle tangent to R. Therefore, if γ(U)∩V 6= ∅, then γ(U)∩L 6= ∅,
hence γ(U) intersect some translation of K by an element of Γ∞, i.e.,
there exists an element δ of Γ∞ such that γ(U) ∩ δ(K) 6= ∅. Then
δ−1γ(U) ∩K 6= ∅, a contradiction. This completes the proof.

The example of the modular group SL(2,Z)

Now we shall studying the modular group SL(2,Z). It is clear that
SL(2,Z) is a discrete subgroup of SL(2,R). Let us determine its cusps
and elliptic points. First let us show that the cusps of Γ = SL(2,Z)
are exactly the points in Q ∪ {∞}. It is clear that ∞ is a �xed point

under the parabolic element

(
1 1
0 1

)
of Γ. If

(
a b
c d

)
is a parabolic

element of Γ, it has only a �xed point s. If s is �nite, it satis�es

cs2 + (d− a)s− b = 0, c 6= 0.
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Since the discriminant of this equation vanishes, s must be contained
in Q. Conversely, for p/q ∈ Q with p ∈ Z, q ∈ Z, (p, q) = 1, take

integers t and u so that pt − qu = 1. Then σ =

(
p u
q t

)
∈ Γ, and

σ(∞) = p/q. Since the image of a cusp under any element of Γ is a
cusp, this shows that all points of Q ∪ {∞} are cusps of Γ. Moreover
we have shown that all cusps are equivalent to the cusp at ∞. Thus
Γ\H∗ = (Γ\H) ∪ {∞}.
Next let us determine the elliptic points of SL(2,Z). If σ is an elliptic
element of SL(2,Z), |tr(σ)| is an integer and < 2 by Proposition 1.1.
Therefore the characteristic polynomial of σ is either x2+1 or x2±x+1
so that σ4 = 1 or σ6 = 1, and σ2 6= 1. Thus for the determination
of elliptic elements, it is su�cient to consider the cases σ4 = 1 and
σ3 = 1. With a bit of calculation we �nd (for details see [Shi71])

σ4 = 1: Every elliptic element σ in SL(2,Z) of order 4 is conjugate to

±
(

0 −1
1 0

)
in SL(2,Z). Therefore every elliptic point of order 2

is equivalent to the �xed point of

(
0 −1
1 0

)
, that is i.

σ3 = 1: Every elliptic element σ in SL(2,Z) of order 3 is conjugate to

either τ =

(
0 −1
1 1

)
or τ 2 =

(
−1 1
−1 0

)
in SL(2,Z). Thus every

elliptic point of order 3 is equivalent to the point e2πi/3.

It can be shown that every subgroup Γ of SL(2,R) has a funda-
mental domain.
We call F a fundamental domain for Γ\H, if

1. F is a connected open subset of H,

2. no two points of F are equivalent under Γ,

3. every point of H is equivalent to some point of the closure of F
under Γ.

It can be veri�ed that the interior F of the set

{w ∈ C | − 1/2 ≤ Re(w) ≤ 1/2, |w| ≥ 1}

is a fundamental domain for SL(2,Z).

1.2 Γ\H∗ as a Riemann surface

By a Riemann surface, we shall mean a one-dimensional connected
Hausdor� space M on which there is de�ned a complex structure S
with the following properties:
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1. S is a collection of pairs (Uα, pα) with α in a set A of indices,
where {Uα}α∈A is an open covering ofM , and pα is a homeomor-
phism of Uα onto an open subset of C.

2. If Uα ∩ Uβ 6= ∅, the map

pβ ◦ p−1
α : pα(Uα ∩ Uβ)→ pβ(Uα ∩ Uβ)

is holomorphic.

Let us now de�ne a complex structure on Γ\H∗. Denote by φ the
natural projection map of H∗ to Γ\H∗. For each v ∈ H∗, put

Γv = {γ ∈ Γ | γ(v) = v}.

By Lemma 1.4, there exists an open neighbourhood U of v such that

Γv = {γ ∈ Γ | γ(U) ∩ U 6= ∅}.

Then we have a natural injection Γv\U → Γ\H∗, and Γv\U is an open
neighbourhood of φ(v) in Γ\H∗. If v is neither an elliptic point nor a
cusp, Γv contains only 1 and possibly -1, so that the map φ : U → Γv\U
is a homeomorphism. We take (Γv\U, φ−1) as a member of the complex
structure of Γ\H∗.
Next assume that v is an elliptic point, and denote by Γ̄v the transfor-
mation group Γv · {±1})/{±1}. Let λ be a holomorphic isomorphism
of H onto the unit disc D such that γ(v) = 0. If Γ̄v is of order n, then
λΓ̄vλ

−1 consists of the transformations

w 7→ ζkw, k = 0, 1, · · · , n− 1, ζ = e2πin.

Then we can de�ne a map p : Γv\U → C by p(φ(z)) = λ(z)n. We see
that p is a homeomorphism onto an open subset of C. Thus we include
(Γv\U, p) in our complex structure.
Let s be a cusp of Γ, and let ρ be an element of SL(2,R) such that
ρ(s) =∞.
Then

ρΓsρ
−1 · {±1} =

{
±
(

1 h
0 1

)m ∣∣∣m ∈ Z

}
with a positive number h. Then we can de�ne a homeomorphism p
of Γs\U into an open subset of C by p(φ(z)) = exp[2πiρ(z)/h], and
include Γs\U in our complex structure. It is now easy to check the
condition (2) for our complex structure.
Let us recall some basic properties of a compact Riemann surface M .
If Hi(M,Z) denotes the i−dimensional homology group of M with
coe�cient in Z, then we have:

H0(M,Z) ∼= Z,
H1(M,Z) ∼= Z2g,

H2(M,Z) ∼= Z,
Hp(M,Z) = 0 for p > 2.



CHAPTER 1. THE UNIVERSAL ELLIPTIC CURVE E(N) 7

The non-negative integer g is called the genus of M . The Euler

characteristic χ of M is de�ned by

χ =
2∑
p=0

(−1)pdimHp(M,Z) = 2− 2g.

If we take a triangulation of M and let cp denote the number of p-
simplexes then χ = c0 − c1 + c2.
Let M and M ′ be two compact Riemann surfaces and f : M ′ → M a
holomorphic mapping. Then f is either constant or surjective. Suppose
f is sujective, then (M ′, f) is called a covering ofM . If z0 ∈M ′, w0 =
f(z0), and if u and t are local parameters at z0 and w0, respectively,
which map z0 and w0 to the origin, then we can express f in the form

t(f(z)) = aeu(z)e + aa+1u(z)e+1 · · · , ae 6= 0

in a neighbourhood of z0, with a positive integer e. The integer e
is independent of the choice of u and t, and called the rami�cation

index of the covering (M ′, f) at z0. There are only �nitely many, say h,
inverse images of w0 by f . If e1, · · · eh are their respective rami�cation
indices, the number

n = e1 + · · ·+ eh

depends only on M , M ′ and f , and is independent of w0. We call n
the degree of the covering. If g and g′ are the genera of M and M ′,
respectively, then these integers are connected by Hurwitz formula

2g′ − 2 = n(2g − 2) +
∑
z∈M ′

(ez − 1),

where ez is the rami�cation index at z.
Endowed with the complex structure de�ned above, Γ\H∗ becomes a
compact Riemann surface. If Γ′ is a subgroup of Γ of �nite index, the
natural map Γ′\H∗ → Γ\H∗ de�nes a covering in the above sense. Let
Γ̄ and Γ̄′ denote the images of Γ and Γ′ by the natural map

SL(2,R) −→ SL(2,R)/{±1}.

Then the degree of the covering is exactly [Γ̄ : Γ̄′].
For every z ∈ H∗, put

Γ̄z = {γ ∈ Γ̄ | γ(z) = z}, Γ̄′z = Γ̄z ∩ Γ̄′.

Consider a commutative diagram

H∗ identity //

φ′

��

H∗

φ
��

Γ′\H∗ f // Γ\H∗

where each map is a natural projection. Let z ∈ H∗, p = φ(z), and
f−1(p) = (q1, · · · , qh}. Choose points wk of H∗ so that qk = φ′(wk).
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Proposition 1.3. The rami�cation index ek of f at qk is [Γ̄wk : Γ̄′wk ].
Moreover, if wk = σk(z) with σk ∈ Γ̄, then ek = [Γ̄z : σ−1

k Γ̄′σk ∩ Γ̄z],

and Γ̄ =
⋃h
k=1 Γ̄′σkΓ̄z. Especially if Γ̄′ is a normal subgroup of Γ̄, then

e1 = · · · = eh and [Γ̄ : Γ̄′] = e1h.

1.3 The Riemann Surfaces Y (N) and X(N)

For every positive integer N , put

Γ(N) = {γ ∈ SL(2,Z) | γ ≡ 12 mod (N)}

=

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ a ≡ d ≡ 1, b ≡ c ≡ 0 mod NZ
}
.

Then Γ(N) is a normal subgroup of SL(2,Z) and called the princi-

pal congruence subgroup of level N . From now on we make the
assumption N ≥ 3.

Lemma 1.6. If f : SL(2,Z) → SL(2,Z/NZ) is de�ned by f(α) = α
mod (N), then the sequence

1 −→ Γ(N) −→ SL(2,Z) −→ SL(2,Z/NZ) −→ 1

is exact.

Proof. The only non-trivial point is the surjectivity of f . We shall
prove more generally that the map SL(m,Z) → SL(m,Z/NZ) is sur-
jective for any positive integer m, i.e., if A ∈ GL(m,Z) and det(A) ≡ 1
mod (N), then A ≡ B mod (N) for some B ∈ SL(m,Z). If m = 1,
this is obvious. Therefore assume the assertion to be true for m − 1,
and m > 1. Now for such an A, by elementary division theory, we
can �nd two elements U and V of SL(m,Z) such that UAV is a di-
agonal matrix. Let a1, · · · , am be the diagonal elements of UAV , and
b = a2 · · · am. Put

W =


b 1

b− 1 1
1

. . .

1

 , X =


1 −a2

0 1
1

. . .

1

 , and

A′ =


1 0

1− a1 a1a2

a3

. . .

am


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Since a1b = det(A) ≡ 1 mod (N), we see that WUAVX ≡ A′

mod (N). By the induction assumption, there exists an element C
of SL(m− 1,Z) such that

C ≡


a2a2

a3

. . .

am

 mod (N).

Put

B = U−1W−1


1 0

1− a1

C
0

X−1V −1.

Then B has the required property.

If N =
∏

p p
e is the decomposition on N into the product of power

of distinct primes p, we see that

Z/NZ ∼=
∏
p

(Z/peZ),

GL(2,Z/NZ) ∼=
∏
p

GL(2,Z/peZ),

SL(2,Z/NZ) ∼=
∏
p

SL(2,Z/peZ).

Now consider an exact sequence

1 −→ X −→ GL(2,Z/peZ) −→ GL(2,Z/pZ) −→ 1.

Since X consists of the elements of GL(2,Z/peZ) which are congruent
to 12 modulo (p), the order of X is p4(e−1). It is well known that the
order of GL(2,Z/pZ) is (p2 − 1)(p2 − p). Therefore.

the order of GL(2,Z/peZ) = p4(e−1)(p2 − 1)(p2 − p)
= p4e(1− p−1)(1− p−2),

the order of SL(2,Z/peZ) = p3e(1− p−2).

By Lemma 1.6, we obtain

[Γ(1) : Γ(N)] = N3 ·
∏
p|N

(1− p−2).

Since −12 ∈ Γ(2) and −1 /∈ Γ(N) for N > 2, we �nd

[Γ̄(1) : Γ̄(N)] =

{
(N3/2) ·

∏
p|N(1− p−2) if N > 2

6 if N = 2.

Proposition 1.4. If N > 1, Γ(N) has no elliptic element.
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Proof. We have seen that every elliptic element of Γ(1) = SL(2,Z) is
conjugate to one of the following elements:

±
(

0 −1
1 0

)
, ±

(
0 −1
1 −1

)
, ±

(
1 1
−1 0

)
.

None of these is congruent to 12 modulo (N) if N > 1. Since Γ(N) is
normal subgroup of Γ(1), we obtain our proposition.

Let us now denote the topological quotient space Γ\H = Y (N).
Y (N) is a non-compact Riemann surface, which can be compacti�ed
by adding a �nite number of points, the cusps to get X(N) = Γ\H∗.
Let us have a look more deeply about the compacti�cation of Y (N).
The usual procedure for Y (N) is to note that, since it is one-dimensional,
there is a unique non-singular complete algebraic curveX(N) such that
Y (N) = X(N) \ {�nite set}. Then, from the theory of algebraic sur-
faces, one can also �nd a canonical E(N): the unique so-called non
singular relatively minima model over X(N). We seek to describe
X(N) and E(N) by more "scissors and glue" construction involving
torus embeddings, to do this we are going to follow [AS10].
We deal �rst with the cusp ∞. Consider the subgroup

Γ(N)∞ =

{(
1 h
0 1

) ∣∣∣∣h ≡ 0 mod (N)

}
and factor π : H→ Γ\H = Y (N) via

H exp //

π !!

∆̊

π′
||

Y (N)

where q is the coordinate on ∆̊ and exp is de�ned by

q = e2πiw/N .

This makes ∆̊ isomorphic to Γ(N)∞\H, hence π factors via exp. More-
over, de�ne

Hd = {w | Im(w) ≥ d},
∆̊d = {q | 0 < |q| ≤ e−2πd/N}.

Then Hd = exp−1(∆̊d) and ∆̊d
∼= Γ(N)∞\H. The following lemma is

easy to check.

Lemma 1.7. There exists d0 such that, for all w ∈ H, γ ∈ Γ(N),

w and γ(w) ∈ Hd0 ⇒ γ ∈ Γ(N)∞.
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Therefore resπ′ maps ∆̊d0 injectively to Y (N):

Moreover, as d→∞, it is well known that the sets π(Hd) ⊂ Y (N) are
a fundamental system of neighborhoods of the cusp ∞. Therefore we
�nd that we can glue via this map by taking Y (N) plus

∆d0 = {q | |q| ≤ e−2πd0/N}

and identifying them via resπ′ on ∆̊d0 .
Next, every rational point p/q also de�nes a cusp of Y (N), except that
p/q and γ(p/q) ∈ Γ(N) de�ne the same cusp, now we can use the fact
that SL(2,Z) acts transitively on the set of rational points plus ∞,
hence Γ(N)\SL(2,Z) acts on Y (N) and permutes trasitively all its
cusps. Thus, if we know how to �ll in one, we can �ll in the others by
acting by Γ(N)\SL(2,Z).

Let us now �nd the rami�cation indices of the covering

X(N) −→ X(1).

Let φN denote the projection map of H∗ to Γ(N)\H∗. The rami�-
cation index at φN(z), for z ∈ H∗, is [Γ̄(1)z : Γ̄(N)z]. Therefore the
rami�cation index at φN(z) is 2 or 3 accordingly. Furthermore, putting

µN = [Γ̄(1) : Γ̄(N)],

we see that the number of points on X(N) lying above φ1(z) is µN/2
or µN/3 accordingly.
If s is a cusp, s is Γ(1)-equivalent to ∞. Now we have

Γ̄(1)∞ =

{(
1 1
0 1

)m ∣∣∣∣m ∈ Z
}
,

Γ̄(N)∞ = Γ̄(N) ∩ Γ̄(1)∞ =

{(
1 N
0 1

)m ∣∣∣∣m ∈ Z
}
,

so that [Γ̄(1)∞ : Γ̄(N)∞] = N . Therefore Γ(N) has exactly µN/N
inequivalent cusps.



CHAPTER 1. THE UNIVERSAL ELLIPTIC CURVE E(N) 12

Proposition 1.5. Let Γ̄′ be a subgroup of Γ̄(1) of index µ, and ν2, ν3

the numbers of Γ̄′-inequivalent elliptic points of order 2,3, respectively.
Further let ν∞ be the number of Γ̄′-inequivalent cusps. Then the genus
of Γ̄′\H∗ is given by

g = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2
.

Proof. Consider the covering Γ̄′\H∗ → Γ̄(1)\H∗. Let e1, . . . , et be the
rami�cation indices at the points of Γ̄′\H∗ lying above φ1(e2iπ/3). Then
µ = e1 + · · ·+ et, and ei is 1 or 3. The number of i for which ei = 1 is
ν3. If t = ν3 + ν ′3, we have µ = ν3 + 3ν ′3, so that

∑t
i=1 = µ− t = 2ν ′3 =

2(µ− ν3)/3. Similarity, if eP is the rami�cation index at a point P of
Γ̄′\H∗, we have∑

(eP − 1) = (µ− ν2)/2 (P lying above φ1(i)),∑
(eP − 1) = µ− ν∞ (P lying above φ1(∞)).

We obtain our assertion from Hurwitz formula.

In the case Γ̄′ = Γ̄(N), we have ν2 = ν3 = 0 if N > 1, and
ν∞ = µN/N . Thus we obtain the formula for the genus gN of Γ(N)\H∗:

gN = 1 + µN · (N − 6)/12N (N > 1).

1.4 Ẽ(N) and its compacti�cation E(N)

The assumption that we took N ≥ 3, guarantees that Y (N) is a �ne
moduli space. Thus, there exists a universal family, Ẽ(N) → Y (N),
whose �bers are elliptic curves. To construct Ẽ(N), let AΓ(N) =
Γ(N) n Z2, where Γ(N) acts on Z2 in the obvious way:

γ =

(
a b
c d

)
: l =

(
m
n

)
7−→

(
am+ bn
cm+ dn

)
.

AΓ(N) acts discretely on C×H via

(γ, l) : (z, w) −→
(
z +mw + n

cw + d
,
aw + b

cw + d

)
and Ẽ(N) = AΓ(N)\C×H.
The elliptic surface Ẽ(N) can be completed to a non-singular algebraic
surface E(N). Now we shall look deeply to the compacti�cation of the
universal elliptic curve, to complete the diagram

Ẽ(N) �
� //

p̃

��

E(N)

p

��
Y (N) �

� // X(N)
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Now look upstairs at C×H. De�ne

AΓ(N)1 =

subgroup of AΓ(N) generated by
(z, w) 7→ (z + 1, w) and

(z, w) 7→ (z, w + k)

 ∼= Z2;

AΓ(N)2 =

(
subgroup of AΓ(N) generated by AΓ(N)1

α : (z, w) 7→ (z + w,w)

)
.

Factor π : C×H→ AΓ(N)\(C×H) = Ẽ(N) via:

C×H exp //

π $$

C∗ × ∆̊

π′zz

Ẽ(N)

,

where x is the coordinate on C∗, and q that on ∆̊, and where exp is
de�ned by

x = e2πiz,

q = exp2iπw/N .

This makes C∗× ∆̊ isomorphic to AΓ(N)1\(C×H). Now, AΓ(N)1 is a
normal subgroup of AΓ(N)2 and AΓ(N)1\AΓ(N)2

∼= Z, with generator
α, and AΓ(N)1\AΓ(N)2

∼= Z acts on C∗ × ∆̊. The previous lemma
now gives us:

Lemma 1.8. There exists d0 such that, for all (z, w) ∈ C × H and
γ ∈ AΓ,

(z, w) and γ(z, w) ∈ C×Hd0 ⇒ γ ∈ AΓ(N)2.

Therefore,
resπ′ : (C∗ × ∆̊d0)/{αn} → Ẽ(N)

is injective. To compactify Ẽ(N) over∞ ∈ X(N), it su�ces to enlarge
C∗×∆̊d0 to an analytic manifoldM over ∆d0 , equivalently with respect
to the action of α and so that, modα, we get a manifold proper over
∆d0 :

C∗ × ∆̊d0
� � //

��

M

��

α acting

$$
M/{αn}

proper
zz

∆̊d0
� � // ∆d0

We can think of C∗ × ∆̊ as an open subset of the two-dimensional
torus C∗ × C∗ (with coordinates x, q). Thus α acts on whole torus by

(x, q) 7→ (qNx, q).
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We shall construct a torus embedding C∗×C∗ ⊂ X{σα}. In fact, we can
identify N(C∗ × C∗) with Z× Z and note that α acts on N(C∗ × C∗)
by

(a, b) 7→ (a+ kb, b).

We choose {σα} be the following in�nite chain σn, n ∈ Z:

Note that α carries σn to σn+k, so that, mod α, there are only �nitely
many σ. The corresponding E(N){σn} may be pictured as follows:
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Clearly α acts on Ẽ(N){σn}. Since each σi is generated by a basis of
Z×Z, it follows that E(N){σn} is a manifold, i.e., smooth. Moreover, a
whole neighbourhood of the boundary E(N){σn}/(C∗×C∗) is contained
in C∗ × ∆̊d0 , so de�ne M to be

M = interior of closure of C∗ × ∆̊d0 in Ẽ(N){σn}

= (C∗ × ∆̊d0) ∪
(
Ẽ(N){σn}\(C∗ × C∗)

)
.

What happens when we divide by α? Clearly α does not act discon-
tinuously on the whole of C∗×C∗ so we cannot form (C∗×C∗)/{αn}.
However, it can be checked to act discontinuously on M , and the quo-
tient looks.
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We can now de�ne that part of E(N) that lies over ∞ ∈ X(N) by
glueing Ẽ(N) and M/{αn} together on the common open set (C∗ ×
∆̊d0)/{αn}. As before, we can take care of the other cusps by push-
ing this boundary around by Γ(N)\SL(2,Z). This gives us a compact
non-singular surface E(N), proper over X(N), with its �bers elliptic
curves over Y (N) and rational N -gons over the cusps. In this way, we
�nd an analytic construction not only of Y (N) and Ẽ(N), but also of
their natural completions X(N) and E(N).

As the last topic of this chapter, it is to look more in details about
the group of sections. Before the main statement, we have to do a
bit of work ( for more details see �9 [Kod63a].
As we have seen before

Ẽ(N) = p−1(Y (N)) = AΓ(N)\H× C

It is clear that the formula

((w, z1))− ((w, z2)) = ((w, z1 − z2))

de�nes on Ẽ(N) a structure of analytic �bre system of abelian groups
over Y (N).
We de�ne E](N) to be the open subset of E(N) consisting of all points
z satisfying

|∂τa(p(z))/∂z1|+ |∂τa(p(z))/∂z2| > 0, (1.1)

where we denote by τa the local uniformization variable on X(N) with
the center a ∈ X(N), and τa(u) the value of τa at a point u in a
neighbourhood of a, �nally we denote by (z1, z2) a local coordinate of
a point z in E(N).

We write the �bre of E(N) over a cusp aρ in the form

Caρ =
∑
s

Θρs

and let
C]
aρ =

⋃
s

Θ]
ρs, Θ]

ρs = E](N) ∩Θρs.
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Obviously we have

E](N) =
⋃
ρ

C]
aρ ∪ Ẽ(N).

Theorem 1.2. There exists on E](N) a unique structure of analytic
�bre system of abelian groups over X(N) which is an extension of the
structure on Ẽ(N) of analytic �bre system of abelian groups over Y (N)
de�ne by the formula 1.1. The analytic group structures of the �bres
C]
aρ of E

](N) is C∗ × ZN .

Following �5 [Shi72], let Cv be a singular �bre of type IN , then
Θ]
v,0 is a multiplicative group an the quotient group C]/Θ]

v,0 is a cyclic
group of order N .

Proposition 1.6. Let us consider the �bre F = p−1(u) of E(N) over
the generic point u of X(N) and let F (C) be the group of C-rational
points on F . Finally let consider F (C)0 the subgroup of F (C) con-
sisting of s such that s(v) ∈ Θ]

v,0 for all cusps v. Then F (C)0 is a
torsion-free subgroup of �nite index in F (C).

Proof. Suppose s is an element of F (C)0 of �nite order n > 1.
Applying Lemma 2.2 to the divisor D = n[(s)− (o)], we get

n[(s)− (o)] ≈ n([(s)− (o)](o))Cu0 ,

since D does not meet Θv,i, for i ≥ 1. By taking the intersection
number of both side with the divisor (s), we have

((s)(s)) + ((o)(o)) = 2((s)(o)) ≥ 0.

This contradicts the fact that ((s)(s)) = ((o)(o)) = −(pa + 1) < 0
(Proposition 2.2).
Hence F (C)0 is torsion-free. It is clear that F (C)0 is a subgroup of
�nite index in F (C).

We can give now a more precise result. For brevity, we denote by
S(E(N)) the group of global holomorphic sections of E(N) over the
base curve X(N) (S(E(N)) = H0(X(N),Ω)).

Theorem 1.3. Let E(N) be the universal elliptic curve attached to
Γ(N).
If Γ(N) is torsion-free and all cusps are of the �rst kind, then the group
of sections S(E(N)) is isomorphic to a subgroup of Z/NZ× Z/NZ.

Proof. This Theorem is a immediate consequence of Proposition 1.6,
i.e. the injectivity of the homomorphism

S(E(N)) −→
∏
v

C]
v/Θ

]
v,0
∼=
∏

Z/NZ.

This completes the proof.
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Theorem 1.4. For the universal elliptic curve E(N) of level N , the
group of sections S(E(N)) of E(N) over the base curve X(N) consists
of N2 sections of order N .

Proof. By Theorem 1.3, S(E(N)) is isomorphic to a subgroup of (Z/NZ)2,
since all singular �bres of E(N) are of type IN . Hence we have only
to prove that E(N) admits (at least) N2 sections. As we have seen
above, Ẽ(N) is the quotient H×C by the group of automorphisms of
the form:

(γ,m) : (z, w) −→
(
z +mw + n

cw + d
,
aw + b

cw + d

)
.

We denote by ((w, z)) the image of (w, z) ∈ H×C in Ẽ(N). Note that
H× C (H) is the universal covering of Ẽ(N) (or Y (N)).
Now if s′ is a holomorphic section of Ẽ(N) over Y (N), then s′ is
induced by a holomorphic map

f : H −→ H× C, f(w) = (w, z), (1.2)

such that, for all γ =

(
a b
c d

)
∈ Γ(N), we have

z(γ · w) =
z +mw + n

cw + d
. (1.3)

Two function z(w) and z′(w) satisfying 1.3 induce the same s′ if and
only if

z′(w) = z(w) +m1w +m2, m1,m2 ∈ Z

In particular s′ is a section of �nite order if and only if we have

z(w) = a1w + a2 (1.4)

with rational numbers a1, a2 with the property:

(a1, a2)(γ − 1) ∈ Z⊕ Z for all γ ∈ Γ(N). (1.5)

In our case we can see that the condition 1.5 is equivalent to

a1 =
m1

N
, a2 =

m2

N

with integers m1 and m2. Hence we get N2 section s′m of Ẽ(N) over
Y (N):

s′m : Y (N) = Γ(N)\H 3 (w) 7−→

((
z,
m1w +m2

N

))
, (1.6)

where m = (m1,m2) runs over pairs of integers mod N . We shall
show that show that each s′m can be extended to a holomorphic section
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sm of E(N) over X(N). To examine the behaviour of s′m at the cusp v
of X(N), we may assume that v is the cusp at the in�nity v0, because
any cusp can be transformed to v0 by a modular transformation. We
put v = v0 and

q = e2πiw/N , x = e2πiz.

Let R be a small neighbourhood of v with the local parameter q. The
part C]

v of the singular �bre Cv (of type IN) is covered by N open sets
Wi (0 ≤ i ≤ N − 1) of E(N) with coordinates ((q, x))i.
The section s′m on R− {v} can be expressed as

q 7−→ ((q, e2πi(m1w+m2)/N))0.

Since we have

((q, , e2πi(m1w+m2)/N))0 = ((q, , e2πim2/Nqm1))0

= ((q, e2πim2/N))−m1 ,

it is clear that s′m can be extended to a holomorphic section over R; in
particular we have

sm(v) = ((0, e2πim2/N))−m1 ∈ W−m1 .

Thus we have proved the existence of N2 sections of order N of E(N)
over X(N). This completes the proof of the Theorem.



Chapter 2

Numerical Invariants, Special

Curves

In this section we summarize the facts we will use about the universal
elliptic curve E(N).
In the elliptic �bration p : E(N) → X(N) the singular �bers, as we
saw in Chapter 1, are all of Kodaira type IN( see �6[Kod63a])- an N -
gon of −2 curves. The �rst thing that we want to do, is to construct
the canonical bundle KE(N) of the universal elliptic curve. Before that
we have to de�ne the numerical invariants (for more details see [BH96]
and [Bea96]) that we will use:

1. As we have seen before the number h1,0(S) of holomorphic 1-
forms on a Riemann surface S is its genus g(S). In general,
the number hn,0(M) of holomorphich forms of top degree on a
compact complex n-manifold M is called the geometric genus

of M and denoted pg.

2. An alternative generalization of the notion of the genus is the
number

pa = hn,0(M)− hn−1,0(M) + · · ·+ (−1)n−1h1,0(M),

called the arithmetic genus of M . Using hq,0(M) = h0,q(M)
we can also write

pa = (−1)n(χ(OM)− 1).

3. The number h1,0(M) of holomorphic 1-forms on a compact com-
plex manifold M is often denoted q(M) and called the irregu-
larity of M .

4. For an arbitrary curve C on a surface M we de�ne the virtual
genus π(C) as

π(C) =
K · C + C · C

2
+ 1

20
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Theorem 2.1. The canonical bundle KE(N) of E(N) is induced from
the complex line bundle k − f over X(N) by the elliptic �bration p of
E(N) onto X(N):

KE(N) = p∗(k− f), (2.1)

where

k = the canonical bundle of X(N),

f = a line bundle on X(N).

Proof. We take a sequence of distinct points u1, u2, · · · , uν , · · · on Y (N)
and consider the divisor

C(n) =
n∑
ν=1

Cuν

on E(N). The virtual genus π′(C(n)) of C(n) is equal to 1. Therefore
using the formula (for the proof see Th.(2.2)[Kod60])

dim |K + C| = π′(C) + pg − q + k +m− 2,

where pg is the geometric genus, q is the irregularity of E(N), m
is the number of connected components of C and k is the dimension
of the kernel of the homomorphism

r∗C : H1(E(N),Ω) −→ H1(C,ΩC).

In our case we obtain

dim |KE(N) + C(n)| = pa + k + n− 1, k ≥ 0, (2.2)

where pa is the arithmetic genus of E(N).
This implies that the complete linear system |KE(N) + C(n)| contains
an e�ective divisor D, provided that n > 1 − pa. The intersection
multiplicity D · Cu of D and any �bre Cu of E(N) vanishes. Hence D
can be written in the form

D =
∑
ρ

∑
s

mρsΘρs +
∑
u

muCu,

where the Θρs denote irreducible components of the singular �bres Caρ
of E(N) and the coe�cients mu vanish except for a �nite number of
points u on Y (N). Since

KE(N) ·ΘρS = Cu ·Θρs = 0,

we have
Θρt ·

∑
s

mρsΘρs = 0
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Hence, by the Lemma below, the divisor
∑

smρsΘρs is a multiple of
Caρ . The canonical divisor D − C(n) can be written in the form∑

kuCu,

where the coe�cients ku vanish except for a �nite number of points u
on X(N). Thus we see that

KE(N) =
[∑

kuCu

]
. (2.3)

We consider the holomorphic section o : u→ o(u) of E(N) which maps
each point u ∈ X(N) onto the unit o(u) of the �bre Cu of E(N). For
the sake of brevity we identify X(N) with the curve o(X(N)) on E(N)
by means of the biholomorphic map u→ o(u) of X(N) onto o(X(N)).
Denoting by KX(N) the restriction of the curve X(N) = o(X(N)), we
infer from (2.3) that

KE(N) = p∗(KX(N)). (2.4)

The complex line bundle f over X(N) coincides with the normal bundle
of X(N) in E(N), i.e., the restriction [X(N)]X(N) of the complex line
bundle [X(N)] over E(N) to X(N).
The canonical bundle k of X(N) is given by the adjunction formula

k = KX(N) + [X(N)]X(N).

Hence we get
KX(N) = k− f.

Combining this with (2.4) we obtain (2.1).

Lemma 2.1. Let Caρ =
∑

s nρsΘρs be a simple singular �bre of an an-
alytic �bre space of elliptic curves over a curve and let D =

∑
smρsΘρs

be a divisor composed of the components Θρs of Caρ. If the intersec-
tion multiplicity (D · Θρs) vanishes for all components Θρs, then D is
a multiple of Caρ.

Now we want to prove that:

q(E(N)) = gN = 1 +
(N − 6)µN

12N
.

To see that, we will use the Albanese variety Alb(E(N)) and Al-

banese mapping

alb : E(N) −→ Alb(E(N)).

We recall here some basic facts (for more details see [GH11]) the Al-
banese variety is de�ned as the quotient Alb(E(N)) = H0(E(N),Ω1)∗/Λ
where Λ are the linear functions obtained by integrating over cycles in
H1(E(N),Z). Explicitly, if (η1, · · · , ηq) is a basis for the holomorphic
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one-forms on E(N), then H0(E(N),Ω1)∗ ∼= Cq and Λ is the lattice of
vectors (∫

γ

η1, · · · ,
∫
γ

ηq

)
, γ ∈ H1(E(N),Z).

Thus the mapping alb is given by choosing a base point p0 and then
for p ∈ E(N) setting

alb(p) =

(∫ p

p0

η1, · · · ,
∫ p

p0

ηq

)
.

We are ready for the following (for details see [Tom11])

Proposition 2.1. If p : E(N)→ X(N) is an elliptic �bration and for
some �ber F the reduced curve Fr is singular, then

q(E(N)) = gN .

Proof. The hypothesis implies that under the Albanese map alb : E(N)→
Alb(E(N)) the �ber Fr goes to a point (since all of its components are
rational curves). This shows in the canonical diagram

E(N) alb//

p

��

Alb(E(N))

Ψ
��

X(N)
jac // J(X(N))

where J is the Jacobian variety. Ψ is a �nite surjective map and hence
dimAlb(E(N)) = dim J(X(N)) = gN .

Another invariant, that we will go to calculate, will be the Euler
number, denoted by c2, of the surface E(N).
The formula (2.3) implies that (K2

E(N)) vanishes. Hence, by the Noether
formula:

χ(OE(N)) =
1

12
(K2

E(N) + c2),

we have
12(pa + 1) = c2.

By the Euler number e(Caρ) of a singular �bre Caρ =
∑

s nρsΘρs we
shall mean the Euler number of the polyhedron

⋃
s Θρs.

Theorem 2.2. The arithmetic genus pa and the Euler characteristic
of the surface E(N) is given by the formula

c2 = 12(pa + 1) =
∑
ρ

e(Caρ) = µN .

Proof. The value of e(Caρ), in our case, is just equal to N . since the
Euler number of any general �bre Cu of E(N) vanishes, the proof
follows immediately.
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So we have

c2 = µN ,

pa + 1 = pg − q + 1 =
(K2

E(N) + c2)

12
=
µN
12
,

pg =
(N − 3)µN

6N
.

Now we want to calculate the degree of the line bundles k and f and
the canonical bundle KE(N) as due to Kodaira in [Kod63b].

Theorem 2.3. We have

deg f = −pa − 1. (2.5)

Proof. It follows from (2.1) that dim |KE(N) + C(n)| is equal to the
dimension of the complete linear system |k− f+

∑n
ν=1 uν | on the curve

X(N). Hence, for all su�ciently large values of n, we have

dim |KE(N) + C(n)| = gN − deg f + n− 2.

Combining this with (2.2), we get

gN − deg f = pa + k + 1,

while for all su�ciently large values of n the integer k is equal to gN
(for details see pag. 124 [I.K.]). Consequently we obtain (2.5).

To calculate the degree of k, it is su�cient to see that by the classical
Gauss-Bonnet theorem, then,

deg k = −χ(X(N)) = 2gN − 2.

So to summarize we have

deg f = −µN
12
,

deg k = 2g − 2 =
(N − 6)µN

6N
,

deg(k− f) =
N − 4

4N
µN .

On the �bres of p, we know

p−1(v) =

{
a non-singular elliptic curve if v 6= cusp,∑N−1

i=0 Θv,i if v = cusp,

where Θv,i is a non-singular rational curve and from the fact that 0 =
Θv,i · F = Θv,i ·

∑
t Θt,i and

Θ2
v,i +

∑
t6=v

Θv,i ·Θt,i = 0,
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we get Θ2
v,i = −2. As we have seen in Chapter 1 E(N) has N2 sections

Γ(i, j), i, j = 0, · · · , N − 1

where Γ(0, 0) = the zero-section, Γ(i, j)'s are mutually disjoint and

{Γ(i, j) ∩ F} = {N − division points on F}

where F is a generic �bre of the �bration p.
The intersection number of the canonical divisor and Γ(i, j) is

KE(N) · Γ(i, j) = deg(k− f) =
N − 4

4N
µN .

It is well know that the genus of Γ(i, j) is equal to gN , so we can
calculate the self-intersection of Γ(i, j) from the adjunction formula:

gN =
KE(N) · Γ(i, j) + Γ(i, j)2

2
+ 1,

and get

Γ(i, j)2 = deg f = −µN
12
.

Let
Γ =

∑
i,j

Γ(i, j).

Then Γ is a non-singular curve on E(N),

Γ ∩ F = {N − division points on F} ∼ N2[0F ]

where ∼ is the linear equivalence relation and by the Abel's Theorem
on elliptic curves we get

Γ ∩Θv,i = {N -th roots od unity C∗ = P1 − {0,∞}}

where Θv,i = P1, Θv,i ∩Θv,i−1 = 0 and Θv,i ∪Θv,i+1 =∞.
Now we are ready to prove some facts about the algebraic equivalence
between divisors and a remark on the Nèron-Severi group of E(N).

Lemma 2.2 (Lemma of T.Shioda). Let F be a general �bre of the
�bration p : E(N) → X(N) and let D be divisor on E(N) such that
D|F ∼ 0.

D ≈ (D · Γ(0, 0)) · F +
∑
v : cusp

(Θv,1, · · · ,Θv,N−1) · A−1
N


D ·Θv,1

·
·

D ·Θv,N−1


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where ≈ is the algebraic equivalence relation and

AN = [Θv,i ·Θv,j]1≤i,j≤N−1 =



−2 1 0 · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 0 · · 0
· · ·
· · ·
· · 0
0 · · · 0 1 −2 1
0 · · · · 0 1 −2



and the components of A−1
N


D ·Θv,1

·
·

D ·Θv,N−1

 are integers.

Proof. Take h general �bres F1, F2, · · · , Fh where Fi 6= Fj (i 6= j).
Then

→ H1
(
E(N),O

(
D −

h∑
i=1

Fi

))
→ H1(E(N),O(D))

→ H1(F1,O)⊕H1(F2,O)⊕ · · · ⊕H1(Fh,O)→ H2
(
E(N),O

(
D −

h∑
i=1

Fi

))
→

where H1(Fi,O) ∼= C. Hence, if h is su�ciently large

H2
(
E(N),O

(
D −

h∑
i=1

Fi

))
6= 0.

Since H2
(
E(N),O

(
D −

∑h
i=1 Fi

))
∼= H1

(
E(N),O

(
K −

∑h
i=1 Fi −

D
))

, there exists an e�ective divisor D′ ∈ |KE(N) +
∑h

i=1 Fi − D|.
Namely

KE(N) +
h∑
i=1

Fi −D ∼ D′.

For any �bre F of p : E(N)→ X(N),

D′ · F = KE(N) · F +
h∑
i=1

Fi · F −D · F = 0.

Hence D′ =
∑

αmαDα where Dα's are irreducible curves contained in
the �bres of p. Since

K ≈ N − 4

4N
µN · F, Fi ≈ F,

N−1∑
i=1

Θv,i ≈ F,
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we obtain

D ≈ pF +
N−1∑

i=1, v : cusp

qv,iΘv,i

for some p, qv,i ∈ Z. Since Γ(0, 0) ·Θv,i = 1 if i = 0 and Γ(0, 0) ·Θv,i = 0
if i = 1, · · · , N − 1, we obtain

D · Γ(0, 0) = pF · Γ(0, 0) +
N−1∑
i=1

qv,iΘv,i · Γ(0, 0) = p.

Since F ·Θv,j = 0,

D ·Θv,j

N−1∑
i=1

qv,iΘv,i ·Θv,j

for j = 1, 2, · · · , N − 1. Let AN = [Θv,i · Θv,j]1≤i,j≤N−1. Then AN is
non-singular and 

qv,1
·
·

qv,N−1

 = A−1
N


D ·Θv,1

·
·

D ·Θv,N−1

 .

Thus

D ≈ (D · Γ(0, 0)) · F +
∑
v : cusp

(Θv,1, · · · ,Θv,N−1) · A−1
N


D ·Θv,1

·
·

D ·Θv,N−1



Lemma 2.3. Let A−1
N = [xik]. Then

(i)

xjk =


−j(n−k)

N
, j ≤ k

−k(N−j)
N

, j > k.

(ii)

N−1∑
k=1

xjk =
−j(N − j)

2
=


−mj + j(j+1)

2
− j

2
, N = 2m,

−mj + j(j−1)
2

, N = 2m+ 1.

Lemma 2.4. µN/12 is divisible by N if N ≥ 5.

Proof. Let σ(N) = N2
∏

p|N, p : prime(1 − p−2). It is su�cient to prove

that 24|σ(N).
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(i) Assume p ≥ 5 and p prime. Then (a)p = 3h+ 1, h = 2m, m ≥ 1,
or (b)p = 3h+ 2, h = 2m+ 1, m ≥ 0.

(a) σ(p) = p2(1− p−2) = (p + 1)(p− 1) = 12(3m + 1)m. Since
3m+ 1 or m is even, 24|σ(p).

(b) σ(p) = (p− 1)(p+ 1) = 12(m+ 1)(3m+ 2). Since m+ 1 or
3m+ 2 is even, 24|σ(p).

(ii) Assume N = ph11 · · · phrr (i 6= j), pi:prime, hi ≥ 1 where some
pi 6= 2, 3. Then pi ≥ 5 and, hence by (i), 24|σ(pi). Since

σ(N) = σ(ph11 ) · · · σ(phrr ),

σ(phii ) = p2hi
i (1− p−2

i ) = p2hi−2
i · σ(pi),

we get 24|σ(N).

(iii) Finally we assume N = 2h1 · 3h2 ≥ 5.

(a) In case h1, h2 ≥ 1,

σ(N) = σ(2h1) · σ(3h2) = 22h1(1− 2−2)32h2(1− 3−2

= 22h1−2 · 32h2−2(22 − 1)(32 − 1) = 24 · 22h1−2 · 32h2−2.

Hence 24|σ(N).

(b) In case h1 = 0 and h2 ≥ 2,

σ(N) = σ(3h2) = 32h2−2(32 − 1) = 32h2−2 · 8 = 24 · 32h2−3,

where 2h2 − 3 > 0. Hence 24|σ(N).

(c) In case h1 ≥ 3 and h2 = 0,

σ(N) = σ(2h1) = 22h1−2(22 − 1) = 22h1−2 · 3 = 24 · 22h1−5

where 2h1 − 5 > 0. Hence 24|σ(N).

Lemma 2.5.

Γ ≈ N2 · Γ(0, 0)− (1−N2)
µN
12
F −

∑
v : cusp,j=1,··· ,N−1

j(N − j)
2

N ·Θv,j.

Proof. Let D = Γ − N2 · Γ(0, 0). Then D|F = 0. By the Lemma of
Shioda

D ≈ (D · Γ(0, 0)) · F +
∑
v : cusp

(Θv,1, · · · ,Θv,N−1) · A−1
N


D ·Θv,1

·
·

D ·Θv,N−1


where

D · Γ(0, 0) = (1−N2) · Γ(0, 0)2 = −(1−N2) · µN/12,

D ·Θv,i = Γ ·Θv,iN for i = 1, · · · , N − 1.

Thus Lemma 2.3, 2.4 imply Lemma 2.5.
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Lemmas 2.3,2.4,2.5 imply

Proposition 2.2. Assume N ≥ 4. Then

Γ =
N−1∑
i,j=0

Γ(i, j) is divisible

{
by N if N is odd
by N/2 if N is even.

Remark 2.1. In the �rst section of the paper [Shi72], Shioda remarked
that the Néron-Severi group NS(E(N)) is torsion-free. This fact can
be proved as follows:

Proof of the Remark. Let D be a divisor on E(N) such that D 6= 0
and nD ≈ 0 for some positive integer n. Then

2∑
ν=0

(−1)ν dimHν(E(N),O(D)) = pg − q + 1 =
µN
12
≥ 1

whereH0(E(N),O(D)) = 0 andH2(E(N),O(D)) ∼= H0(E(N),O(KE(N)−
D)) = 0. Hence there exists an e�ective divisor D′ ∈ |KE(N) − D|.
Since D′ is e�ective and D′ ·F = KE(N) ·F −D ·F = 0, we obtain that
D′|F ∼ 0. By the Lemma of Shioda and by the fact that D′ ·Θv,i = 0,
we get

D′ ≈ (D′ · Γ(0, 0))F.

Since KE(N) = p∗(k − f), we obtain that D ≈ hF for some integer h.
Since nD ≈ 0, 0 = D · Γ(0, 0) = h · F · Γ(0, 0) = h. Thus h = 0 and
D ≈ 0 · F = 0.



Chapter 3

The Cyclic Cover A(N, n)

3.1 Rami�ed and Cyclic Coverings

Before go deeply to the construction of the cyclic cover Sd(N) we need
some basic facts about cyclic covers (for more details see [Per77] and
[BPVdV84]). We �rst use the word "covering" in two ways.
Firstly in the sense of analytic covering space. This is a triple
(X, Y, π) where X and Y are complex manifold and π : X → Y a sur-
jective holomorphic map such that all points y ∈ Y have a connected
neighbourhood Vy with the property that π−1(Vy) consists of the union
of disjoint open subsets of X, each of which is mapped isomorphically
onto Vy by π.
If we use the corresponding topological concept we shall speak of topo-
logical covering.
Secondly, we shall use the word "covering" for triples (X, Y, π) where
X and Y are connected normal complex spaces and π a �nite, surjec-
tive proper holomorphic map.
In this last case there exists a proper analytic subset of X, outside of
which π is a topological covering. Indeed, on X ′ = X\π−1(π(SingX)∪
SingY ) the map π is a covering between manifolds, so it is a topolog-
ical covering outside of π−1(π(S)) where S = {x ∈ X ′; rank(fπ)x ≤
dimX−1}. By de�nition the degree of π is the one of π|X ′\π−1(π(S)).
Properness of π implies that for every x ∈ X there exists at least one
connected open neighbourhood V of π(X) ∈ X such that π−1(V ) is a
union of disjoint connected open neighbourhood Ui of xi, (i = 1, . . . , n),
where π−1π(x) = {x = x1, x2, . . . , xn}. If V ′ ⊂ V is another connected
neighbourhood of π(x), we claim that π−1(V ′)∩U1 = U ′1 is connected.
The degree is called the local degree ex of π at x or the branching
order of π at x. If ex ≥ 2 we say that π is rami�ed at x, and x is
called a rami�cation point. The images of rami�cation points are
called branch points.
Now if X and Y are manifolds, then the set of rami�cation points is
the zero divisor R of the canonical section in Hom(p∗(KY ), KX), i.e.

KX = π ∗ (KY )⊗OX(R). (3.1)

30
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The divisor R is called the rami�cation divisor of π. Formula 3.1,
together with the speci�cation of R, given by Lemma 3.1 below, is
called the Hurwitz-formula.
We observe that the properness of π implies that π : X\π−1(π(R)) →
Y \π(R) is a covering in the �rst sense; in particular, a covering in the
second sense if R = 0 is one in the �rst sense too.
To empathise the di�erence we shall frequently call a covering in the
�rst sense unbranched or unrami�ed and one in the second sense a
branched or rami�ed covering, as soon as R 6= 0.

Lemma 3.1. If R =
∑
rjRj, where R is the rami�cation divisor of

some branched covering and the Rj's its irreducible components, then
rj = ej − 1, where ej is the branching order at any point x ∈ Rj which
is smooth on Rred, and for which y = π(x) is smooth on Bj = π(Rj).

Proof. Let (t1, . . . , tn) be the local coordinates on Y , centred at y, such
that Bj is given by t1 = 0. If s = 0 is local equation for Rj at x, then
we have π∗(t1) = ε · sej , where ε does not vanish around x, and in fact
can be taken to be 1 if s is suitably chosen. If we set ω = dt1∧· · ·∧dtn,
then π∗(ω) = sej−1ds∧d1π∗(t2)∧· · ·∧dπ∗(tn). This not only show that
(s, π∗(t2), . . . , π∗(tn)) is local coordinate system at x (so ej = ex), but
also that the zero divisor of π∗(ω) is (ej−1)Rj. Hence rj = ej−1.

Lemma 3.2. Let X and Y be compact connected complex manifolds
and f : X → Y a covering of degree d. If L is a line bundle on Y with
f ∗L = OX , then L⊗d = OY .

Proof. Since f∗OX is locally free of rank d this is an immediate conse-
quence of f∗OX = f∗f

∗L = L ⊗ f∗OX .

Let Y be a connected complex manifold and B a divisor on Y which
is either e�ective or zero. Suppose we have a line bundle L on Y such
that

OY (B) = L⊗n,

and a section s ∈ Γ(Y,OY (B)) vanishing exactly along B. We denote
by L the total space of L and we let p : L→ Y be the bundle projection.
If t ∈ Γ(L, p∗L) is the tautological section then the zero divisor of
p∗s− t∗ de�nes an analytic subspace X in L.
If B 6= 0 and reduced, X is an irreducible normal analytic subspace of
L, and π = p|X exhibits X as an n−fold rami�ed covering of Y with
branch-locus B. We call (X, Y, π) the n−cyclic covering of Y branched
along B, determined by L.
If Pic(Y ) has no torsion, then B uniquely determines L and we may
speak of the n−cyclic covering of Y , branched B.
It is clear form the above description that X has at most singularities
over singular points of B. In particular if B is reduced and smooth,
then also X is smooth.
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Lemma 3.3. Let π : X → Y be the n−cyclic covering of Y branched
along smooth divisor B and determined by L, where L⊗n = OY (B).
Let B1 be the reduced divisor π−1(B) on X. Then

(i) OX(B1) = π∗L

(ii) π∗B = nB1 (in particular n is the branching order along B1)

(iii) KX = π∗(KY ⊗ Ln−1)

Proof. If we embed Y as the zero-section in L, then the section t ∈
Γ(L, p∗L) has divisor Y , so OL(Y ) = p∗L. By construction Y and
X ⊂ L intersect transversally in B1, so OX(B1) = OL(Y )|X = π∗L.
The identity π∗B = nB1 follows from the equation p∗s− tn = 0 for X
in L. The formula KX is an application of Lemma 3.1

Lemma 3.4. Let π : X → Y be as in Lemma 3.3. Then π∗OX ∼=⊕n−1
j=0 L−j.

Proof. For an open set V ⊂ Y , any holomorphic function f on p−1(V )
has a unique power series expansion f =

∑∞
k=0 akt

k, ak ∈ Γ(V,L−k).
Every function π−1(V ) ⊂ p−1(V ) is the restriction of such an f . Using
the equation tn = π∗s, we obtain a unique expansion

∑n−1
k=0 bkt

k, bk ∈
Γ(V,L−k) for holomorphic functions on π−1(V ).

We can summarize some important facts about the cyclic cover

Theorem 3.1. Let V be a smooth algebraic variety, d ≥ 2 and integer,
D a reduced e�ective divisor on V divisible by d in Pic(V ). Then

1. There exist cyclic d−sheeted covers π∆ : W∆ → V , totally branched
over D and nowhere else.

2. The covers π∆ : W∆ → V are one-to-one correspondence with
dth−roots of D, i.e., divisor classes ∆ satisfying d∆ ≡ D (linear
equivalence), and hence there are d2q of them where q = h1,0(V ).
Now �x ∆ satisfying d∆ ≡ D and suppose, in fact, that f ∈ C(V ),
the rational function on V gives this equivalence:

(f) = d∆−D.

Then

3. C(W∆) = C(V )( d
√
f) and W∆ is irreducible unless k∆ = 0 ∈

Pic(V ) for some k/d, k 6= d.
we assume ∆ 6= 0 ∈ Pic(V ). Let e denote the Euler characteris-
tic. Then

4.
e(W∆) = d · e(V )− (d− 1)e(D).

5. An automorphism φ : V → V lifts to W∆ i�
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(i) φ(D) = D

(ii) φ(∆) ≡ ∆,

and if φ lifts, it lifts in d di�erent ways,

6. W∆ is smooth i� D is.

7. Assume V is a surface, and D1, D2 two irreducible curves on V .
Let D̃1, D̃2 be the (reduced) inverse image in W∆ of D1 and D2,
respectively. Then

D̃1 · D̃2 =dD1 ·D2 if D1, D2 * D,

D1 ·D2 if exactly one of D1, D2 ⊂ D,

1

d
D1 ·D2 if both D1, D2 ⊂ D.

Sketch of the proof. Given f ∈ C(V ) with (f) = d∆−D, de�ne

φij : O(−j∆)⊗O(−k∆) −→ O((d− k − j)∆)

by setting, for s and t sections of O(−j∆),O(−k∆), respectively.

φjk(s⊗ t) = i(f · s · t). (3.2)

Here f · s · t is a section of O(−D + (d− k − j)∆).
O(−D + (d − k − j)∆) is contained in O((d − k − j)∆), since D is
e�ective, and we let i0 denote this inclusion.
Using the φjk we de�ne a ring structure on the sheaf S =

⊕d−1
j=0 O(−j∆)

by setting, for s and t sections of O(−j∆) and O(−k∆), respectively,
with 0 ≤ j, k ≤ d− 1.

s · t =


s⊗ t ∈ O((−j − k)∆) if j + k ≤ d− 1

φjk(s⊗ t) if j + k ≥ d.
(3.3)

And we let W∆ = SpecS.
Conversely, given a cyclic d-sheeted cover π : W → V , with branch
locus D, let S = π∗OW . The Galois group of the cover µd acts, and S
breaks into a sum of character eigenspaces:

S =
d−1⊕
i=0

Si.

S is a locally free, rank d sheaf. The Si are invertible sheaves, with
S0
∼= OV .

Let ∆ be the divisor class with O(−∆) ∼= S1. Then the ring structure
on OW gives a map

φ :
d⊗
OV (−∆) −→ OV .
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φ fails to be surjective exactly over D, and hence φ gives an isomor-
phism

φ :
d⊗
OV (−∆) ∼ OV (−D) −→ OV (3.4)

which proves d∆ ∼= D, and we get (1) and (2). The �rst par of (3) is
obvious. If k∆ ≡ 0 for some k/d, k < d, then D ∼= 0 and since D is
e�ective, D = ∅. Hence W∆ is unrami�ed. Since f is k/d-th power,
the equation xd = f is reducible and so is W∆.
Conversely, if W∆ is reducible, the equation xd = f is reducible. If
D 6= ∅, let v be the valuation C(V ) associated to some irreducible
component of D. Since D is reduced, v(f) = 1, hence xd = f is irre-
ducible. If, on the other hand, D = ∅ and the cover is reducible, f = g,
a > 1 and d

a
∆ = (g), which proves the second part of (3).

(4) follows from the additivity of the Euler characteristic. The con-
dition in (5) are clearly necessary, and they are su�cient since if
(g) = ∆− φ(∆), g gives an isomorphism of ringed spaced

g :
d−1⊕
k=0

(−k∆) −→
j=1⊕
k=0

(−kφ(∆)),

since it is compatible with the ring structure de�ned above.
Locally D is given by a principal ideal (h), and W∆ is given by the
equation

xd = h. (3.5)

At a point p ∈ D, D is non-singular i� h /∈ m2
p,V the maximal ideal of

V at p, but this is equivalent to xd − h ∈ m2
p̃,Wλ

, proving (6).
(7) is a consequence of the functoriality of homology coupled with the
fact that for D0 ⊂ D, π∗∆D0 = dD̃0.

3.2 The Construction of A(N, n)

In this part we combine the general results of above with the structure
of E(N) to construct a class of covers of E(N), where N is now �xed
and we assume N ≥ 4.
By Proposition 2.2, Γ =

∑N−1
i,j=0 Γ(i, j) is divisible by N if N is odd,

and by N/2 if N is even. Let n be an integer such that n ≥ 2 and

n|N if N is odd,

n|(N/2) if N is even.

Then [Γ] = nL for some line bundle L ∈ H1(E(N),O∗). Hence we can
construct, in the bundle space of L, an n-fold branched covering

φ : A(N, n) −→ E(N)
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along a non-singular branch locus Γ(⊂ E(N)).
Let

KS = the canonical line bundle of a compact complex surface S,

e(X) = the topological Euler number of a space X,

τ(S) = the topological indez of S = (K2
S − 2e(S))/3,

pg(S) = the geometric genus of S, q(S) = the irrugularity of S.

In the following, we shall calculate some numerical invariants ofA(N, n).

Proposition 3.1.

K2
A(N,n) =

N(n− 1){(5n+ 1)N − 24n}
12n

· µ(N),

e(A(N, n)) =
6n+ (n− 1)N(N − 6)

6
· µ(N).

Proof. By Theorem 3.1,

K2
A(N,n) = nK2

E(N) + 2(n− 1)KE(N) · Γ +
(n− 1)2

n
Γ2

where
K2
E(N) = 0,

KE(N) · Γ =
∑
i,j

KE(N) · Γ(i, j) = N2 · N − 4

4N
µ(N) =

N(N − 4)

4
µ(N),

Γ2 =
∑
i,j

Γ(i, j)2 = N2−µ(N)

12
= −N

2

12
µ(N).

Hence

K2
A(N,n) = 2(n− 1) · N(N − 4)

4
· µ(N)− (n− 1)2

n

N2

12
µ(N)

=
N(n− 1){(5n+ 1)N − 24n}

12n
· µ(N).

By Theorem 3.1,

e(A(N, n)) = ne(E(N))− (n− 1)e(Γ)

where
e(E(N)) = µ(N),

e(Γ) =
∑
i,j

e(Γ(i, j)) = N2 · e(X(N)) = N2(2− 2g(X(N)))

= N2 · 2

(
− N − 6

12N
· µ(N)

)
= −N(N − 6)

6
· µ(N).
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Hence

e(A(N, n)) = n · µ(N) + (n− 1)
N(N − 6)

6
· µ(N)

=
6n+ (n− 1)N(N − 6)

6
µ(N).

Theorem 3.2. Assume N ≥ 5. Then

(i) 3e(A(N, n)) ≥ K2
A(N,n) ≥ 2e(A(N, n)),

(ii) 3e(A(N, n)) = K2
A(N,n) if and only if

(N, n) = (7, 7), (8, 4), (9, 3), (12, 2),

(iii) K2
A(N,n) = 2e(A(N, n)) if and only if (N, n) = (5, 5).

Proof. By Proposition 3.1

3e(A(N,N))−K2
A(N,n) =

µ(N)

12n
{(n− 1)N − 6n}2 ≥ 0.

The equality holds if and only if N = 6n/(n− 1). Since n ≥ 2, this is
equivalent to (N, n) = (7, 7), (8, 4), (9, 3), (12, 2). By Proposition 3.1

K2
A(N,n) − 2e(A(N, n)) =

µ(N)

12n
{(n2 − 1)N2 − 24n2}.

If N = 5 (and hence n = 5), then

K2
A(N,n) − 2e(A(N, n)) =

µ(5)

12 · 5
{(52 − 1) · 52 − 24 · 52} = 0.

If N ≥ 6, then, since n ≥ 2,

K2
A(N,n) − 2e(A(N, n)) ≥ µ(N)

12n
{(n2 − 1)36− 24n2}

=
µ(N)

12n
(12n2 − 36) =

µ(N)

n
(n2 − 3) > 0.

Proposition 3.2. (i) If N ≥ 6, then A(N, n) is a minimal surface
of general type with positive topological index.

(ii) A(5, 5) is a surface of general type withK2
A(5,5) = 200 and e(A(5, 5)) =

100. Let

Γ∗(i, j) = φ−1(Γ(i, j)) (hence 5Γ∗(i, j) = φ∗Γ(i, j)).

Then Γ∗(i, j)'s are exceptional curves of the �rst kind. Let A0

be the surface obtained by blowing down Γ∗(i, j)'s. Then A0 is a
minimal surface of general type with K1

A0
= 225 and e(A0) = 75

(and hence K2
A0

= 3e(A0)).
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Proof. By Theorem 3.1

KA(N,n) = φ∗KE(N) + (n− 1)Γ∗ = φ∗Φ∗(k− f) + (n− 1)
∑
i,j

Γ∗(i, j),

dim |f| − dim |k− f| = deg f + 1− g(X(N)) =
3−N

6N
µ(N).

Since deg f = −µ(N)/12 < 0, dim |f| = −1. Hence

dim |k− f| = N − 3

6N
µ(N)− 1 > 0 N ≥ 5.

In particular, pg(A(N, n)) > 0. If there exists an exceptional curve of
the �rst kind on A(N, n), then it is contained in the divisor KA(N,n)

and, hence is one of Γ∗(i, j)'s, while

g(Γ∗(i, j)) = g(Γ(i, j)) = 1 +
(N − 6)µ(N)

12N
,

Γ∗(i, j)2 =
Γ(i, j)2

n
= −µ(N)

12n
.

If N ≥ 6, then g(Γ∗(i, j)) ≥ 1 and hence A(N, n) is minimal. If
N = 5, then µ(5) = 1

2
53 · (1 − 5−2) = 60. Hence g(Γ∗(i, j)) = 0 and

Γ∗(i, j)2 = −1, namely, Γ∗(i, j)'s are exceptional curves of the �rst
kind. Since µ(5) = 60, g(X(5)) = 1 + (5 − 6)µ(5)/(12 · 5) = 0 and
deg(k− f) = ((5− 4)/(4 · 5))µ(5) = (1/20)60 = 3,

KA(5,5) = 3φ∗F + 4
4∑

i,j=0

Γ∗(i, j)

where F is a general �bre of p : E(5) → X(5) and F · Γ∗(i, j) = 1.
Hence KA0 = 3F∗ where F∗ is a non-singular curve with g(F∗) = 11. In
particular A0 is minimal. Since K2

A(5,5) = 200 and e(A(5, 5)) = 100 by

Proposition 3.1, A0 is a minimal surface of general type withK2
A0

= 225
and e(A0) = 75. By Proposition 3.1,

K2
A(N,n) =

N(n− 1){(5n+ 1)N − 24n}
12n

· µ(N)

≥ N(n− 1){(5n+ 1)5− 24n}
12n

· µ(N)

=
N(n− 1)(n+ 5)

12n
· µ(N) > 0

for N ≥ 5. Thus A(N, n) is of general type. The topological index
τ(A(N, n))) is positive if N ≥ 6 by Theorem 3.2
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