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Introduction

There are different equivalent definitions of linear recurrence, we can say that

it is a complex valued function, defined on N, of the form

F (n) =
h∑
i=1

ci(n)αni ,

with the coefficients ci ∈ C[X] and the roots αi ∈ C.

During the last 15 years some results in classical problems concerning linear

recurrences have been obtained making use of the celebrated subspace theorem,

a powerful result in diophantine approximation; above all we can cite the works

of P. Corvaja and U. Zannier ([1], [4]). Unfortunately, very often these results

rely on the assumption that the roots belong to a number field K, and that

there exist a place v of K such that only one root has maximal absolute value

with respect to v, which is widely considered not necessary for the results

proved, but seems to be very difficult to remove. We will call it the dominant

root assumption.

A breakthrough has been made in the article [3], again by Corvaja and

Zannier, who managed to come over this difficulty without changing too much

the approach, in the solution of a problem inspired by the so called Pisot

conjecture (or Hadamard-quotient conjecture). Pisot conjectured that if the

quotient of two linear recurrences F,G is an integer for every large n ∈ N, then

F/G itself is a linear recurrence. A. J. van der Poorten proved the conjecture in

[15], without using the subspace theorem, but then Corvaja and Zannier tried
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Introduction

to go further, analysing the more general case where the quotient vanishes for

not all, but infinitely many n ∈ N. A first step toward the solution had already

been made in [1], but they had used the dominant root assumption.

In [3] the authors basically make use of the previous methods, relying

on the subspace theorem, but they find an ingenious way to simultaneously

approximate the quotient F/G using all the roots with maximal absolute value

(for some place v) without losing the possibility to apply the subspace theorem.

It is believed that this technique could yield similar solutions in other problems

usually approached assuming a dominant root, but nobody managed to do it

yet.

In the first chapter, we briefly introduce the notation and the tools nec-

essary to enunciate the subspace theorem (which is given in several different

forms).

During the second chapter we give three equivalent definitions of linear

recurrence, we state some important property like the Skolem-Mahler-Lech

theorem, and we discuss some problems and results concerning linear recur-

rences, with a special emphasis on the problems solved using the subspace

theorem.

In the third chapter, we focus our attention on two problems solved in [1]

using the subspace theorem and the dominant root assumption: the already

cited Hadamard-quotient problem, and a problem related to another conjecture

due to Pisot, the so called d-th root conjecture. Pisot thought that if F is

a linear recurrence with algebraic roots and coefficients, such that for every

n ∈ N F (n) is a d-th power in Q, then there exists a linear recurrence G

with algebraic roots and coefficients such that F = Gd. This fact has been

proved for a general number field by Zannier in [16], without using the subspace

theorem, but then again Corvaja and Zannier asked what happens if we have

the assumptions of the conjecture only for infinitely many n ∈ N, and again
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Introduction

for this kind of problem it works really well the subspace theorem, under the

hypothesis of dominant root.

Finally, in the fourth chapter we present the proof of the Hadamard-

quotient problem without using the dominant root assumption, trying to ex-

plain how the methods used are new in the context and cope with the absence

of a dominant root.
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Chapter 1

The subspace theorem

1.1 Places, heights and S-integers in number

fields

This section is meant to be an introduction to the notation and to the objects

needed to state the subspace theorem, so we will not give all the details and

the proofs. References are [6] for what concerns number fields and places, and

[12] for what concerns heights.

For all of this chapter we let K be a number field, i.e a finite field extension

of the field Q.

Definition 1.1.1. An absolute value of K is a function | · | : K → R which

satisfies the following conditions:

(i) |x| > 0 for every x ∈ K∗, and |0| = 0

(ii) |xy| = |x| · |y|, for every x, y ∈ K.

(iii) |x+ y| ≤ |x|+ |y|, for every x, y ∈ K.

Furthermore, | · | is said to be non-archimedean if, besides (i) and (ii), it

satisfies

1



1. The subspace theorem

(iii)∗ |x+ y| ≤ max {|x|, |y|}, for every x, y ∈ K.

Obviously (iii)∗ is stronger than (iii). If (iii) holds but (iii)∗ does not, then

we say that | · | is archimedean.

Note that any absolute value induces a metric d on the field K, defined as

d(x, y) = |x− y| for x, y ∈ K.

Definition 1.1.2. Two absolute values are said to be equivalent if they induce

equivalent metrics on K. This is an equivalence relation on the set of the

absolute values of a field. It is possible to show that an archimedean absolute

value cannot be equivalent to a non-archimedean absolute value.

Definition 1.1.3. A place of K is an equivalence class of absolute values, and

we denote the set of places of K as MK. Sometimes we will refer to the non-

archimedean places as finite places and to the archimedean places as infinite

places. We will denote the infinite places as MK,∞.

Now let us consider the ring of integers OK of K, it is a well known fact

that for every x ∈ K∗ there exists a unique factorization of the fractional ideal

xOK as a product of powers of the maximal ideals of OK :

xOK =
∏
PvP (x),

with vP(x) ∈ Z. The uniqueness of the factorization implies that the function

vP : K∗ → Z is uniquely determined by P . We can extend vP to K by defining

vP(0) := +∞; then for any constant c ∈ (0, 1) and for every maximal ideal P

of OK the function | · |P : K → R sending x 7→ cvP (x) is a non-archimedean

absolute value of K.

If we consider a number field extension K ⊂ L, then for a fixed prime ideal

P of OK we have again a unique factorization POL = Qe11 · · · Qerr , with ei ≥ 1,

Qi 6= Qj for i 6= j, and r ≥ 1 (recall that ei is called the ramification index

of Qi over P). Moreover, let us fix the constant c for the absolute value | · |P .

2



1. The subspace theorem

In this setting let us see, omitting the (trivial) proofs, some properties of the

absolute values defined above:

Proposition 1.1.1. 1) For every i,

| · |Qi
∣∣
K

= | · |eiP .

2) The | · |Qi
are pairwise non equivalent.

3) Any non-archimedean absolute value on L whose restriction to K is

equivalent to the absolute value | · |P is equivalent to | · |Qi
for some

i.

For what concerns the archimedean absolute values of a number field, to

give examples let us consider the embeddings of K into C. We list them as

σ1, ..., σr : K → R ⊂ C

real embeddings and

σr+1, σr+1, ..., σr+s, σr+s : K → C

complex embeddings, such that σj is the complex conjugated of σj, and r+2s =

[K : Q]. Then we define archimedean absolute values of K by |x|σi := |σi(x)|,

where | · | is the standard absolute value on C, for i = 1, ..., r + s (noting that

|σi(x)| = |σi(x)|), and we have that:

Proposition 1.1.2. The r + s archimedean absolute values defined above are

pairwise non-equivalent.

We want now to find a complete set of representatives for the places of our

number field K. First of all, let us consider K = Q. Here the maximal ideals

are in one to one correspondence with the prime numbers, and to define the

absolute value associated to every prime we choose the constants c = c(p) =

p−1. Then we have the following:

3



1. The subspace theorem

Theorem 1.1.1 (Ostrowski, 1935). The non-archimedean absolute values de-

fined above, together with the standard (archimedean) absolute value, are a full

list of representatives for the places of Q.

Note that when we consider any number field Q ⊂ K, by Proposition

1.1.1 we see that the constant associated to any absolute value induced by a

maximal ideal Pi is determined by the constant chosen for the prime p of Z

lying below Pi. Thus if we consider our choice of the constants for the rational

primes (from now on this will be implicit), the theorem above together with

the two propositions about the non-archimedean and archimedean absolute

values defined before give the desired result:

Proposition 1.1.3. The non-archimedean absolute values of K defined via

the maximal ideals of OK, with the constants chosen as in the rational case,

and the archimedean absolute values defined via the embeddings of K in C are

a full list of representatives for the places of K.

Given a valued field (K, | · |), where | · | is an absolute value, we already

noticed that it can be seen as a metric space, hence we can talk about con-

vergence of a sequence {an} ⊂ K, Cauchy sequences, completions and other

analytical objects.

Definition 1.1.4. A valued field (K̂, || · ||) is called a completion of (K, | · |) if

1) K ⊆ K̂, and || · || restricted to K is exactly | · |.

2) (K̂, || · ||) is complete.

3) K is dense in K̂.

Theorem 1.1.2. A completion of (K, | · |) exists, and it is unique up to a

unique isomorphism inducing the identity on K.

4



1. The subspace theorem

Example 1.1.1. If K is any number field, and | · | = | · |σi is an archimedean

absolute value, then K̂ = R for i = 1, ..., r (real embeddings) and K̂ = C for

i = r + 1, ..., r + s (complex embeddings).

Example 1.1.2. If K is a number field, and P ⊂ OK is a maximal ideal,

we denote by K̂P the completion of K with respect to the non-archimedean

absolute value | · |P . When K = Q and we consider a rational prime p, doing

the completion we get Qp := Q̂p and we call it the field of p-adic numbers.

Proposition 1.1.4. Let us consider an extension of number fields K ⊂ L, and

a prime ideal Qi of OL dividing P prime ideal of OK. If we denote by ei the

ramification index of Qi over P and by fi the inertial degree [OL/Qi : OK/P ],

then we have [L̂Qi
: K̂P ] = eifi.

For any non-archimedean absolute value of K associated to a maximal ideal

Pi lying over some rational prime p, with ramification index ei and inertial

degree fi, we define the following normalization: | · |i := | · |fiPi
.

Moreover, for any embedding σi we define the inertial degree fi := 1 and

the ramification index ei := 1 if σi is a real embedding, and ei := 2 if the

embedding is complex. Then for any archimedean absolute value associated

to an embedding of K in C we define the normalization: | · |i := | · |eiσi .

Let us remark that since the completion of Q with respect to the standard

absolute value is R, an analogous of the formula in the proposition above holds

for archimedean absolute value too. Furthermore, we could have imposed this

normalization in a quicker way by defining for any place v of K dv := [K̂ : Q̂],

and then choosing the constant c for a finite place lying over p in such a way

that |p|v = p−dv , and similarly for infinite places.

Now we state one of the fundamental results of this chapter:

Theorem 1.1.3 (Product formula). With the normalization defined above for

5



1. The subspace theorem

the places v of K, for every x ∈ K∗ we have∏
v∈MK

|x|v = 1

Even if now, thanks to these normalizations, we have obtained a powerful

tool, the product formula, we are going to see that they are not yet the final

normalizations which we will deal with.

Definition 1.1.5. Let P = (x0 : x1 : ... : xn) ∈ Pn(K), we define the

(projective) field height of P as

HK(P ) :=
∏
v∈MK

max{|x0|v, ..., |xn|v}

where every v is normalized as in the statement of the product formula.

We want the product formula to hold because otherwise the height would

not be ’projective’: in fact, we need that HK(ax) = HK(x) for every a ∈ K∗.

One could check that for any number field extension K ⊂ L of degree

[L : K] = d, HL(P ) = (HK(P ))d, so one solution to make the height indepen-

dent of the field is to impose that | · |v := | · |1/[K:Q]
v for every v ∈MK , for every

K. Since from now on we will always make use of this new normalization, it

does not make confusion to denote these new representatives again by | · |v.

Definition 1.1.6. Let P = (x0 : x1 : ... : xn) ∈ Pn(K), taking into account

this further normalization of the places of K we define the (projective) height

of P as

H(P ) :=
∏
v∈MK

max{|x0|v, ..., |xn|v}

So, to resume, for any number field K we want places normalized in such

a way that the product formula holds, and the height does not depend on the

field. Therefore for what concerns every finite place lying over a rational prime

p it suffices to choose the constant c in such a way that, if [K : Q] = d,

|p|v = p−dv/d.

6



1. The subspace theorem

Similarly for infinite places.

So from now on we will always consider places normalized as above.

Definition 1.1.7. For α ∈ K we define the height of α as H(α) := H(1 : α).

Proposition 1.1.5. The height has the following properties:

1) For s, r coprime integers, r 6= 0, it holds H(s/r) = max{|s|, |r|}.

2) H(αm) = (H(α))|m| for every α ∈ K and every m ∈ Q.

3) For every α, β ∈ K it holds H(αβ) ≤ H(α)H(β).

4) For every α ∈ K, 2 logH(α) =
∑

v∈MK
| log |α|v| where the absolute value

on the right side is the standard one. Note that logH(α) =
∑

v∈MK
log+ |α|v:

we call this quantity logarithmic height of α, and we denote it by h(α).

5) For every α1, ..., αN ∈ K it holds H(α1 + · · ·+ αN) ≤ N
∏N

n=1H(αn).

6) H(σ(α)) = H(α) for every σ ∈ Gal(Q|Q).

We conclude our brief recall of the height in number fields with an impor-

tant theorem:

Theorem 1.1.4 (Northcott). There exist at most finitely many algebraic num-

bers of bounded height and degree.

Corollary 1.1.1 (Kronecker Theorem). The only algebraic numbers of height

1 are 0 or the roots of unity.

Proof. It is a straightforward consequence of the theorem and of the

second property in Proposition 1.1.5.

�

To conclude this preliminary section, we include a generalization of the

notion of integers in number fields.
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1. The subspace theorem

Definition 1.1.8. For a finite set S ⊂ MK, such that MK,∞ ⊂ S, we define

OS = OK,S := {x ∈ K : ∀ v /∈ S, |x|v ≤ 1}, and we call it the ring of S-integers

(it is indeed easy to check that it is a ring).

Note that when S = MK,∞, OS = OK . In general, OS consists of those

elements in K generating a fractional ideal whose denominator contains only

primes from S. We recall the important generalization of the Dirichlet unit

theorem:

Theorem 1.1.5. O∗S ' Z(#S−1) × T , with T a finite group (the torsion part

of O∗S).

Proof. See [8].

If S = MK,∞, O∗S = O∗K and #S = r + s, so we get the classical Dirichlet

theorem.

Definition 1.1.9. We call O∗S the group (with respect to the product) of S-units

of K. It is easy to see that O∗S = {x ∈ K : ∀ v /∈ S, |x|v = 1}.

1.2 The subspace theorem, from Schmidt to

Schlickewei

Again, we will not prove the majority of the results presented during this sec-

tion, but we will give references for the (difficult) proofs of the main theorems.

Before formulating the celebrated subspace theorem, which is one of the

most important results in diophantine approximation, we consider a theorem

of Roth that a posteriori is only a particular case, but have a long and glorious

history (Roth has been awarded the field medal for this), to make the general

case more motivated.

8



1. The subspace theorem

Theorem 1.2.1 (Roth, 1955). Let α be an irrational real algebraic number.

Then for any ε > 0 the inequality∣∣∣∣α− y

x

∣∣∣∣ < 1

|x|2+ε

has only finitely many solutions in non-zero integers x, y.

Proof. See [9].

This is a best-possible result, in virtue of the well-known Dirichlet approxi-

mation theorem, which says that the inequality |α−y/x| ≤ |x|−2 has infinitely

many solutions. Sometimes Roth’s theorem is known as Thue-Siegel-Roth the-

orem, because Roth did only the final (but very important and difficult) step

of a series of results started in the first years of the 20-th century by A. Thue,

who proved that |α− y/x| ≤ |x|−n/2−1−ε has finitely many solutions.

For x = (x1, ..., xn) ∈ Zn let us denote ||x|| := max{|x1|, ..., |xn|}. It is easy

to see that this is exactly the height of x introduced in the previous section,

for a vector with integer and coprime coordinates. Now we are ready to state

the subspace theorem:

Theorem 1.2.2 (Schmidt, 1972). Let L1, ..., Ln be linear forms in X1, ..., Xn,

linearly independent, with algebraic coefficients. Then for any ε > 0 the solu-

tions x ∈ Zn of the inequality

|L1(x) · · ·Ln(x)| ≤ ||x||−ε

are contained in finitely many proper linear subspaces of Qn.

Proof. See [11].

Note that with n = 2, L1(x, y) = xα − y and L2(x, y) = x we get that

|x| · |xα− y| ≤ |x|−ε has solutions x, y contained in finitely many hyperplanes

of Q2, i.e. of the type (x, βx); this is to say that there are only finitely many

solutions β = y/x to the inequality |α − y/x| ≤ x−2−ε, which is the theorem

of Roth.

9



1. The subspace theorem

We now give a generalization of the subspace theorem to any number field,

due to H. P. Schlickewei, which is the one that we will need throughout our

work. Let us denote ||x||v := max{|x1|v, ..., |xn|v}, for x ∈ Kn and v ∈MK .

Theorem 1.2.3 (Schlickewei, 1977). Let S ⊂ MK be a finite set of places,

containing the infinite ones. Extend each v ∈ S to Q in some way. For

v ∈ S let L1,v, ..., Ln,v be linearly independent linear forms in n variables,

with algebraic coefficients. Then for every ε > 0 the solutions x ∈ Kn of the

inequality ∏
v∈S

n∏
i=1

|Li,v(x)|v
||x||v

≤ H(x)−n−ε

are contained in finitely many proper linear subspaces of Kn.

Proof. See [5].

Note that if x ∈ OnS, ||x||v ≤ 1 for v /∈ S. It follows that

H(x) =
∏
v∈MK

||x||v ≤
∏
v∈S

||x||v.

Using this simple remark we obtain another very useful version of the subspace

theorem:

Theorem 1.2.4. Let S ⊂MK be a finite set of places, containing the infinite

ones. Extend each v ∈ S to Q in some way. For v ∈ S let L1,v, ..., Ln,v be

linearly independent linear forms in n variables, with algebraic coefficients.

Then for every ε > 0 the solutions x ∈ OnS of the inequality

∏
v∈S

n∏
i=1

|Li,v(x)|v ≤ H(x)−ε

are contained in finitely many proper linear subspaces of Kn.

Finally, we state one last version, a corollary of the previous one, where we

want to deal with integers:

10



1. The subspace theorem

Corollary 1.2.1. Let S be a finite set of places of Q, containing the standard

absolute value. Extend each v ∈ S to Q in some way. For v ∈ S let L1,v, ..., Ln,v

be linearly independent linear forms in n variables, with algebraic coefficients.

Then for every ε > 0 the solutions x ∈ Zn of the inequality

∏
v∈S

n∏
i=1

|Li,v(x)|v ≤ ||x||−ε

are contained in finitely many proper linear subspaces of Qn.

Proof. By the theorem we have that for every ε > 0 the solutions x ∈ OnS
of the inequality ∏

v∈S

n∏
i=1

|Li,v(x)|v ≤ H(x)−ε

are contained in finitely many proper linear subspaces of Qn. Since for every

x ∈ Zn

H(x) =

( ∏
p prime

max{|x1|p, ..., |xn|p}
)

max{|x1|, ..., |xn|}

and ||x|| := max{|x1|, ..., |xn|}, we have H(x) ≤ ||x|| (and it is equal exactly

when the coordinates of x are coprime). So we conclude, being Z ⊆ OS for

every S, that for every ε > 0 also the solutions x ∈ Zn of the inequality

∏
v∈S

n∏
i=1

|Li,v(x)|v ≤ ||x||−ε

are contained in finitely many proper linear subspaces of Qn.

�

Let us remark that the Schmidt’s subspace theorem is a trivial corollary of

this last version, it suffices to choose S as the set containing only the infinite

place.
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Chapter 2

Linear recurrences

2.1 Definitions and examples

Definition 2.1.1. A sequence {F (n)}n∈N of complex numbers is called a linear

recurrence sequence, or just a linear recurrence, if there exist a0, ..., ar−1 ∈ C,

with r ≥ 1 and a0 6= 0, such that

F (n+ r) = a0F (n) + a1F (n+ 1) + · · ·+ ar−1F (n+ r − 1) (2.1)

for every n ∈ N. The minimum r with this property is called the order of the

linear recurrence.

Proposition 2.1.1. For {F (n)}n∈N sequence of complex numbers, the follow-

ing are equivalent:

(i) F is a linear recurrence

(ii) There exists an expression, holding for every n ∈ N and essentially

unique, of the type

F (n) =
h∑
i=i

ci(n)αni , (2.2)

where the ci ∈ C[X] are non-zero polynomials and the αi ∈ C are distinct.

12



2. Linear recurrences

(iii) If we consider the power series
∑

n∈N F (n)Xn, there exist polynomials

p, q ∈ C[X], with deg q < deg p, such that

+∞∑
n=0

F (n)Xn =
q(X)

p(X)
, (2.3)

i.e. the power series above is a rational function.

Proof. (ii) ⇒ (i) Let us set r(i) := deg ci, and

r :=
h∑
i=1

r(i).

Set

p(X) :=
h∏
i=1

(1− αiX)r(i) = 1− a0X − · · · − ar−1X
r (2.4)

for some ai’s. Then the sequence {F (n)}n∈N satisfies for every n ∈ N the linear

recurrence relation

F (n+ r) = a0F (n) + a1F (n+ 1) + · · ·+ ar−1F (n+ r − 1).

This because if we consider E : F (n) 7→ F (n + 1) the shift operator and

∆ := E − 1 the difference operator, it holds

(E − αi)(ci(n)αni ) = ci(n+ 1)αn+1
i − ci(n)αn+1

i = (∆(ci(n)))αn+1,

and since ∆(ci(n)) has lower degree than does ci, by linearity and induction

we conclude that
h∏
i=1

(E − αi)r(i)

annihilates the sequence {F (n)}n∈N as asserted.

(i) ⇒ (iii) If we consider for the polynomial p(X) := 1− a0X − · · · − ar−1X
r

p(X)
+∞∑
n=0

F (n)Xn,

we see that the coefficients of Xm vanish for every m ≥ r, in virtue of the

equation 2.1, which holds by assumption for every n ∈ N. So the product

13



2. Linear recurrences

equals q(X), a polynomial with degree strictly lower than r = deg p, as claimed.

(iii) ⇒ (ii) A partial fraction expansion yields1

q(X)

p(X)
=

h∑
i=1

r(i)∑
j=1

qij
(1− αiX)j

=
+∞∑
n=0

( h∑
i=1

r(i)∑
j=1

qij

(
n+ j − 1

j − 1

)
αni

)
Xn

and from this expression it is clear that the coefficients of Xn satisfy 2.2.

�

In general in the next chapters we will think linear recurrences as objects

of the form 2.2; we will call coefficients the ci’s and roots the αi’s. The roots

of the linear recurrence are exactly the zeros of the polynomial Xrp(X−1),

reciprocal to the polynomial 2.4, and we call it the characteristic polynomial

of F . When the coefficients ci are constant, we say that the linear recurrence

is a power sum.

Note that the form 2.3 leads to interesting consequences, for example the

fact that the Hadamard product

+∞∑
n=0

F (n)G(n)Xn

of two rational functions
∑
F (n)Xn and

∑
G(n)Xn is again a rational func-

tion: this follows from the trivial remark that the linear recurrences form a

ring; to see this it suffices to consider the form 2.2.

Example 2.1.1 (Fibonacci sequence). This is probably the most famous ex-

ample of linear recurrences. The Fibonacci sequence is defined by F (0) = 0,

F (1) = 1, and obeys the rule F (n+2) = F (n)+F (n+1) for every n ∈ N. With

the notation adopted during the proof of the proposition, p(X) = 1−X −X2,

and we have that
+∞∑
n=0

F (n)Xn =
X

1−X −X2

1Just from a formal point of view, we have the expansion 1
(1−αiX)j = (

∑+∞
n=0 α

n
i X

n)j ,

then a combinatorial argument permits to express the j-th power of a series explicitly making

use of some binomial coefficients.

14



2. Linear recurrences

Moreover, the characteristic polynomial is X2p(X−1) = X2−X−1, which has

its zeros in (1 +
√

5)/2 and (1 −
√

5)/2. So we have found the roots αi’s of

our linear recurrence. To find the coefficients, we could again exploit the proof

above, because we wrote explicitly how to pass from the form 2.3 to the form

2.2, but we prefer to use another method, not valid in general for every linear

recurrence, but nice and really simple.

Note that, for every n ∈ N, 1 1

1 0

 F (n+ 1)

F (n)

 =

 F (n+ 2)

F (n+ 1)

 .
So iterating this, and knowing the initial values of the Fibonacci sequence, we

have  1 1

1 0

n  1

0

 =

 F (n+ 1)

F (n)

 .
On the other hand, we know from linear algebra that to compute a high power

of a matrix the task is fairly easy once we have diagonalized it (and this is

not possible for every linear recurrence). First, we must find the eigenvalues,

which are determined by the characteristic polynomial, that for

A =

 1 1

1 0


is λ2 − λ − 1, that is nothing but the characteristic polynomial that we found

using the definition of characteristic polynomial of a linear recurrence! Now,

call α1 := (1 +
√

5)/2 and α2 := (1 −
√

5)/2 the two eigenvalues. We know

that

A = S

 α1 0

0 α2

S−1 = SΛS−1,

and it is not difficult to find that

S =

 α1 α2

1 1

 .
15



2. Linear recurrences

Then An = SΛnS−1, so with a little work we find that F (n), i.e. the second

entry of the column vector

An

 1

0

 ,
is

1√
5

(αn1 − αn2 ).

So we have found a compact formula for the Fibonacci sequence, which is

nothing but the form 2.2 of the recurrence! Moreover, we conclude that the

Fibonacci sequence is a power series, because the coefficients are constant.

Definition 2.1.2. A linear recurrence F is said to be non-degenerate if no

ratio of two distinct roots is a root of unity.

Remark 2.1.1. We will frequently assume that our recurrences are non-degenerate,

or even the stronger fact that their roots generate a torsion free multiplica-

tive group Γ, but this is a kind of ’harmless’ hypothesis in most of the cases,

thanks to the following fact: if q is the order of the torsion in Γ, then for each

r = 0, 1, ..., q − 1 the recurrences Fr(n) := F (nq + r) have roots generating a

torsion-free group (they all lie in the torsion-free group Γq).

2.2 Properties and zeros

It will be useful for future purposes to clarify the structure of this multiplicative

group Γ, generated by the linear recurrences’ roots:

Proposition 2.2.1. Let Γ ⊂ C∗ be a torsion-free multiplicative abelian group

of rank t ≥ 1. The ring of linear recurrences whose roots belong to Γ is

isomorphic to the ring C[X,T1, ..., Tt, T
−1
1 , ..., T−1

t ].

Proof. Let (β1, ..., βt) be a basis of Γ. Note that β1, ..., βt are multi-

plicatively independent. To each variable Ti (i = 1, ..., t) we associate the

16



2. Linear recurrences

function fi : n 7→ βni , and to the variable X we associate the identity func-

tion I : n 7→ n. Hence we obtain a surjective ring homomorphism from

C[X,T1, ..., Tt, T
−1
1 , ..., T−1

t ] to the ring of linear recurrences having their roots

in Γ. Since β1, ..., βt are multiplicatively independent, we can conclude that

the functions I, f1, ...ft are algebraically independent. This is enough to prove

the injectivity of our ring homomorphism, because if it was not injective, then

there would exist a non-zero polynomial p(X1, ..., Xt+1) (which represent an

element of C[X,T1, ..., Tt, T
−1
1 , ..., T−1

t ] which goes to zero via the morphism,

and we can assume it is in fact in C[X,T1, ..., Tt] multiplying it by a suitable

unit of the ring) such that p(I, f1, ..., ft) = 0, i.e. we would not have the alge-

braic independence.

�

Remark 2.2.1. The proposition above tells us that the ring of linear recur-

rences is in particular a unique factorization domain. From now on, divisibility

properties in the ring of linear recurrences, such that coprimality, will be un-

derstood in this sense.

Now we want to describe the set Z := {n ∈ N : F (n) = 0} for a linear

recurrence F . If F is degenerate, it is easy to see that Z may be infinite,

for example we can consider F (n) = 2n + (−2)n. For what concerns non-

degenerate recurrences, there are specific cases that can be studied with very

elementary methods, for example it holds the following:

Proposition 2.2.2. If F is a linear recurrence with real coefficients and real

positive roots (so it is non-degenerate), the number of zeros of F is bounded

by its order r = r1 + · · · rh, where ri = deg ci.

Proof. We do the proof for F (x) with x real variable, instead of natural,

and we will therefore obtain a stronger result. The claim is clearly true for

h = 1, by the fundamental theorem of algebra. Now let us suppose it true

17



2. Linear recurrences

for h ≤ q − 1, we want to prove it for h = q. Every αxi can be written as

exγi := ex logαi and every ci(x) as
∑ri

j=o ai,jx
j. Suppose that for some F linear

recurrence with h = q, the number of zeros is greater than its order r. In this

case the number of zeros of the function

dr1

dxr1
e−xγ1F (x) =

q∑
i=2

ex(γi−γ1)

ri∑
j=0

bi,jx
j,

which is a linear recurrence of the same type, with h = q− 1, exceed its order

r′ =
∑q

i=2 ri, because of Rolle’s theorem. This is a contradiction that proves

the proposition.

�

This was only a special case, but now we will state a very important theo-

rem, discovered independently by several authors, that tells us that Z is always

a finite set for non-degenerate linear recurrences. In fact, it tells us something

more:

Theorem 2.2.1 (Skolem-Mahler-Lech). The set of zeros of a linear recurrence

F is the union of a finite set with a finite union of arithmetic progressions. If

F is non-degenerate, it is a finite set.

There are different proofs of this result, we will present a very elegant one

which involves p-adic analysis, taken from [14]. Since it is not our aim to give

every detail of the p-adic analytic methods used, we give as a reference [7], and

we will just sketch out the proof.

Proof. Let us suppose F 6= 0. Let us consider the field K obtained by

adding to Q the roots αi’s and the coefficients of the polynomials ci’s of our

linear recurrence F . Let us fix a prime p such that it is possible to embed K

in a finite extension Lp of Qp, and every αi is a p-adic unit. This is always

possible, being infinite the transcendence degree of Qp over Q (see [13]). Note

that if K is a number field, it suffices to embed K into its completion Kv, for a

finite place v such that |αi|v = 1 for every i. So from now on we will consider

18



2. Linear recurrences

everything in Lp, with | · |p defined as the (only) absolute value of Lp which

extends | · |p of Qp (see [7], theorem 10 pag. 58).

Now for D(y, r) denoting the set {x ∈ Lp : |x− y|p < r} and rp := p−1/p−1,

let us consider the two (analytic) functions log(p) : D(1, 1) → Ω, and exp(p) :

D(0, rp)→ Ω, defined as

log(p)(x) :=
+∞∑
k=1

(−1)k+1

k
(x− 1)k,

exp(p)(x) :=
+∞∑
k=0

xk

k!
.

It is possible to prove that in the disc D(1, rp) log(p) is injective, its image

is D(0, rp) and its inverse is exp(p), so we can say that for x ∈ D(1, rp)

exp(p)(log(p)(x)) = x (see [7], pag 81).

It is not difficult to see that D(1, rp) is a subgroup of D(1, 1) of finite index,

and that for every p-adic unit x, we have xq−1 ∈ D(1, 1), with q the cardinal

of Lp. Therefore, there exist N ∈ N such that for every i, αNi ∈ D(1, rp). For

every R = 0, ..., N − 1, let us define

FR(m) :=
h∑
i1

ci(mN +R)αR(αNi )m.

Being2 (αNi )m = exp(p)(m log(p)(α
N
i )), we have that FR is an analytic function

for every R, so if FR(m) = 0 for infinitely many naturals m, we conclude that

FR is identically zero, because the set of p-adic integers in Lp is compact, so

there is some limit point for these zeros (this is the analogous of the well-

known theorem that asserts that an analytic function defined over a domain in

C cannot have a limit point for its zeros, unless it is identically zero). Therefore

some of the FR’s will be identically zero, while the remaining FR’s will have

each a finite number of zeros, and this proves the first part of the theorem.

2It is possible to prove that for log(p) and exp(p) hold basically the same properties of

the real logarithm and exponential.
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2. Linear recurrences

Suppose now that FR = 0, for some R ∈ {0, ..., N − 1}. Then for every

m ∈ N

FR(m) =
h∑
i1

ci(mN +R)αR(αNi )m = 0.

This means that for every i there exists at least one j 6= i such that αNi = αNj ,

because we can assume that no ci is identically zero, which in turn means that

αi/αj is a root of unity, namely F is degenerate.

�

Note that if we suppose that the roots belong to a number field K, and that

there is a dominant root, namely there exists a root αi such that |αi|v > |αj|v
for every j 6= i and some absolute value v ∈ MK , then |F (n)|v � |αi|nv , and

so the set Z is finite. This is a first instance of the fact that the apparently

innocent assumption, usually verified, of the existence of a dominant root for

some absolute value v, can be incredibly useful in order to simplify proofs of

theorems concerning linear recurrences.

2.3 Linear recurrences and the subspace

theorem

If we consider two linear recurrences F and G, we can ask whether their quo-

tient is again a linear recurrence or not. Since by 2.3 the values assumed by a

linear recurrence are nothing but the coefficients of the power series expansion

of a rational function, an equivalent way to formulate this question is to ask

whether the Hadamard quotient of two rational functions is again a rational

function or not. By the expression 2.2, a necessary condition for being a re-

currence is obviously that all the values F (n)/G(n) ∈ R, where R is a finitely

generated commutative sub-ring of C. Pisot conjectured that this condition

was sufficient, and this has been proved by van der Poorten in [15]. But one
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2. Linear recurrences

could also ask what happens when the quotient lies in a finitely generated ring

for infinitely many n, which seemed to be a more difficult question.

A first partial answer has been given in [1] by Corvaja and Zannier:

Theorem 2.3.1. For F and G power sums with rational coefficients, and roots

in N, assume that F (n)/G(n) is an integer for all n in an infinite sequence

N . Then there exists a power sum of the same type Q such that F = GQ.

In particular, the set of natural numbers n such that F (n)/G(n) is an integer

differs by a finite set from a finite union of arithmetic progressions.

In other words, if we do not have divisibility in the ring of power sums,

there is no divisibility between the values, with a finite number of exceptions

at most. Note that the last conclusion in the statement reminds the Skolem-

Mahler-Lech theorem, stated in the previous section.

The proof of this result makes use of the subspace theorem. But why the

subspace theorem?

First of all because all the values assumed by a linear recurrence (and so

a power sum) F defined over a number field K are expressible as sums of a

bounded number of S-units, for some finite S ⊂ MK . Another reason comes

from the fact that we are considering infinitely many values in our statements,

so if these values meet the assumptions of the subspace theorem (after having

defined in a clever way the other variables, and the linear forms), we conclude

that infinitely many lie in the same hyperplane, which is in general the key

point of this kind of proofs. Anyway, we will see the proof in details in the

next chapter.

One would like to generalize theorem 2.3.1, and this is partially possible:

it is not difficult to consider linear recurrences instead of power sums, to have

a degenerate linear recurrence (which is not the case of the statement above,

since we have positive distinct roots), to consider a finitely generated ring

R instead of Z and to have roots and coefficients in a general number field
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2. Linear recurrences

instead of Q. Even this last assumption is harmless, because from the number

field case we can get the general case, thanks to a specialization argument

developed by Rumely and van der Poorten that we will see in Chapter 4. The

only assumption that still has to be considered for any of these generalisations

is the dominant root assumption, that obviously holds in the statement above.

Thanks to a brilliant argument, which again relies on the subspace theorem,

Corvaja and Zannier in [3] finally managed to overcome this crucial difficulty,

and this will be the subject of chapter 4.

Actually the method of [1] yields, more precisely, a non-trivial bound for

the cancellation in the quotient F (n)/G(n), i.e for the g.c.d(F (n), G(n)). For

example a consequence of works of Bugeaud, Corvaja and Zannier in this

direction is the proof of the following theorem, which is a sharp form of a

conjecture of Győry-Sarkozy-Stewart.

Theorem 2.3.2. Let a > b > c > 0 be integers. Then for a tending to infinity,

the greatest prime factor of (ab+ 1)(ac+ 1) tends to infinity.

Proof. See [2].

Now let us consider the power series expansion of a rational function

y(X) =
+∞∑
n=0

F (n)Xn,

with F (n) ∈ Q for all n, and suppose that it is the Hadamard d-th power of

another power series with coefficients in Q

z(X) =
+∞∑
n=0

G(n)Xn.

Then it was conjectured, again by Pisot, that z is a rational funtion. We could

re-formulate it claiming that if a linear recurrence F is such that F (n) is a

rational number and a d-th power for every n ∈ N, then there exist another

linear recurrence G such that for every n G(n) ∈ Q and G(n)d = F (n).
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2. Linear recurrences

This conjecture became a theorem after the proof (in a more general setting,

with a number field K instead of Q) presented by Zannier in [16], that does

not make use of the subspace theorem. However, again we are also interested

in what happens when the assumptions of the conjecture hold for infinitely

many n, but not necessarily for all N, and in fact we can say something if

we consider power sums: the subspace theorem shows off one more time his

powerfulness in the proof of the following result, that appears (in a slightly

different form) in [1].

Theorem 2.3.3. Let F be a power sum with rational coefficients and positive

rational roots, and let d be a positive integer. Assume that F (n) is a d-th power

of a rational for infinitely many n ∈ N, then F (n) = αn+rG(n)d for all n ∈ N,

where α is a non-zero rational number, r is an integer and G is a power sum

with rational roots and coefficients. In particular, F is a d-th power of a power

sum with algebraic coefficients and rational roots.

In fact, in [1] there is a more general version of this theorem, and a further

generalizations appears in [4]:

Theorem 2.3.4. Let F be a power sum with roots and coefficients lying in a

number field K. Assume that for some absolute value v, we have 1 6= |α1|v >

max{|α2|v, ..., |αh|v}. Let g ∈ K[X, Y ] be monic in Y and suppose that for

an infinite sequence of n ∈ N, the equation g(F (n), Y ) = 0 has a solution

Y = y(n) ∈ K. Then there exist dj, βj ∈ K
∗
, j = 1, ..., k, and an arithmetic

progression N such that for n ∈ N we have

g
( h∑
i=1

ciα
n
i ,

k∑
j=1

djβ
n
j

)
= 0.

In the proof of this result, which involves Puiseux expansion, the authors

make use of the subspace theorem and of the dominant root assumption, and

nobody managed to approach successfully this problem without the dominant

root.
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In the next chapter, we will show in details how the subspace theorem is

used to prove the results mentioned above, assuming that there is a dominant

root. We do not want to enter too much in technical details, so we will just

prove theorem 2.3.1 and theorem 2.3.3, where we are in very simple settings.

However the proofs of the generalizations rely basically on the same ideas.

To conclude this section, let us state an obvious corollary of theorem 2.3.3:

Corollary 2.3.1. Let F be a power sum with rational roots and coefficients,

and let d be a positive integer. Assume that F (n) is a d-th power of a rational

for infinitely many n ∈ N. Then there exist positive integers Q and R and a

power sum G with rational roots and coefficients such that F (Qn+R) = G(n)d

for all n ∈ N.

We cited this result because, if we compare it with the second part of

theorem 2.3.1, we can remark that in both cases if the underlined property of

F (n) (and G(n)) holds for infinitely many n ∈ N, then it holds for all n in

suitable arithmetic progressions, similarly to the Skolem-Mahler-Lech theorem.

This seems to be a rule more than a coincidence.
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Chapter 3

Two problems solved using the

dominant root

3.1 A fundamental lemma

We want to present through two different simple examples, i.e. theorems 2.3.1

and 2.3.3, how the subspace theorem makes his part in results concerning linear

recurrences (power sums in this case). So first of all we will state a lemma,

where we find the key part of the method introduced by Corvaja and Zannier,

and that will be used in the proofs of the two results cited above. It is here

that we will see the subspace theorem working.

Lemma 3.1.1. Let K be a number field (embedded in C), and F : n 7→ c1α
n
1 +

· · · + chα
n
h be a non-degenerate power sum, with coefficients lying in K and

roots lying in Q. Let N be an infinite subset of N, and let z(n) ∈ R for every

n ∈ N , with R a finitely generated commutative subring of Q. Suppose that

z(n) is such that H(z(n))/max{1, |z(n)|} � Cn and |z(n)− F (n)| � (l/C)n,

with C a positive real constant and 0 < l < 1. Then there exists a power

sum G with coefficients lying in Q such that any root of G is a root of F , and

z(n) = G(n) for every n ∈ N1, with N1 an infinite subset of N .
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3. Two problems solved using the dominant root

Proof. Let S be the set of absolute values of Q consisting of the (stan-

dard) infinite absolute value and all the primes dividing the numerator or the

denominator of some αi (i.e. such that every αi is an S-unit). Moreover, let

us enlarge S in such a way that R ⊂ OS. Let us denote by ∞ the infinite

absolute value.

For every v ∈ S and every i = 0, 1, ..., h we define linear forms on Qh+1 as

follows:

L0,∞(X) := X0 −
h∑
j=1

cjXj,

and Li,v(X) = Xi for every couple of indexes (i, v) 6= (0,∞).

Consider, for n ∈ N , the vector x(n) = (z(n), αn1 , ..., α
n
h) ∈ Oh+1

S . Then we

have ∏
v∈S

h∏
i=0

|Li,v(x(n))|v = |z(n)− F (n)|
∏

v∈S\{∞}

|z(n)|v
h∏
i=1

(∏
v∈S

|αni |v
)
.

Now note that being the αi’s S-units, by the product formula we get that

h∏
i=1

(∏
v∈S

|αni |v
)

= 1.

Moreover, we obviously have that∏
v∈S\{∞}

|z(n)|v ≤ H(z(n))/max{1, |z(n)|}

whence we conclude that∏
v∈S

h∏
i=0

|Li,v(x(n))|v � (l/C)nCn = ln,

where we have used our assumptions on the numbers z(n).

On the other hand H(x(n))� An for some positive real constant A inde-

pendent of n (again because of our assumptions on z(n)), so we have that for

every n ≥ n0, for some n0 ∈ N, there exist k1 and k2 positive real constants

such that H(x(n)) ≤ k1A
n, and∏
v∈S

h∏
i=0

|Li,v(x(n))|v ≤ k2l
n.
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We can suppose that k1 = 1 and A > 1. Then H(x(n))−ε ≥ A−nε, and so for

every ε < log(1/L)/ logA and n ≥ n0, with L := max{1, k2} · l, we have, since

A > 1, ∏
v∈S

h∏
i=0

|Li,v(x(n))|v ≤ k2l
n ≤ Ln < H(x(n))−ε.

So by the version 1.2.4 of the subspace theorem, considering the number field

Q, there exist finitely many non-zero rational linear forms Λj such that each

vector x(n) is a zero of some Λj.

Suppose first that Λj does not depend on X0. Then if Λj(x(n)) = 0 we have

a non-trivial relation u1α
n
1 + · · ·+ uhα

n
h, with ui’s belonging to Q, but we are

supposing that F is non-degenerate, so by the Skolem-Mahler-Lech Theorem

this can happen only for a finite subset of N .

Hence there is some rational linear form Λ, depending on X0, such that

Λ(x(n)) = 0 holds for infinitely many n ∈ N . We may write

Λ(X) = X0 −
h∑
i=1

viXi,

with vi’s belonging to Q.

Now define G(n) := v1α
n
1 + · · · vhαnh. This is a power sum with coefficients

lying in Q, and by definition every root of G is a root of F . Moreover, G(n) =

z(n) for n lying in an infinite subsequence N1 of N , so we have our claim.

�

Now we are ready to prove the two theorems mentioned above, and in the

proofs it will be crucial the dominant root assumption.

3.2 The quotient of two linear recurrences

First of all, we need another result, which is interesting in itself and simple to

obtain:
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Lemma 3.2.1. Let F (n) = c1α
n
1 + · · ·+ chα

n
h be a non-degenerate power sum

with rational coefficients and rational roots, such that F (n) ∈ Z for infinitely

many n ∈ N. Then the roots of F are in Z.

Proof. Let F = c1α
n
1 + · · · + chα

n
h be non-degenerate and suppose that

its roots lie in Z. Suppose that for infinitely many n we have that pn|F (n).

Finally, suppose by contradiction that there exists i ∈ {1, ..., h} such that

p - αi.

We want to apply the subspace theorem taking N = h and S consisting

of ∞, p and every absolute value which divides some of the αi’s. We define

L1,p(X) := c1X1 + · · · + chXh, and for every other couple (i, v) 6= (1, p), such

that i ∈ {1, ..., h} and v ∈ S, we define Li,v(X) := Xi.

Now for every n such that pn|F (n), consider x(n) := (αn1 , ..., α
n
h). Then we

get ∏
v∈S

h∏
i=0

|Li,v(x(n))|v = |L(x(n))|p
∏

v∈S\{p}

|αn1 |v
h∏
i=2

(∏
v∈S

|αni |v
)
.

Being the αi’s S-units by assumption, by the product formula we get that

h∏
i=2

(∏
v∈S

|αni |v
)

= 1

Moreover, |αn1 |p = 1 by our hypothesis of absurd (we can suppose that the i

such that p - αi is i = 1), so again by the product formula∏
v∈S\{p}

|αn1 |v = 1

Therefore∏
v∈S

h∏
i=0

|Li,v(x(n))|v = |L(x(n))|p ≤ p−n < (max{|αni |})−ε = ||x(n)||−ε

for ε < log p/ log(max{|αi|}). Then we can apply the version 1.2.1 of the

subspace theorem, obtaining that infinitely many vectors x(n) lie in one hy-

perplane, which is to say that b1α
n
1 + · · ·+ bhα

n
h = 0 has infinitely many solu-
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tions, with the bi’s belonging to Q, which is absurd by the Skolem-Mahler-Lech

Theorem, because F was non-degenerate.

So we have that p|αi for every i. Now let us consider F as in the statement

of the Lemma. Thus we can write

F (n) = c1

(a1

b1

)n
+ · · ·+ ch

(ah
bh

)n
Let us set b := l.c.m.(b1, ..., bh). Then G : n 7→ bnF (n) has roots in Z. Being

G(n) an integer for infinitely many n ∈ N too, we have that for these n pn|G(n)

for every p prime dividing b.

By what we have proved above, for every p dividing b we can conclude that

p|ba1/bi. But for every p fixed, there exists bi such that p|bi but p - b/bi, so

p|ai, which is absurd unless p = 1, since we can assume that g.c.d.(ai, bi) = 1.

This means that b = 1, which is to say that F has roots in Z.

�

Now we are ready to prove the Theorem 2.3.1 announced in the previous

chapter:

Proof of theorem 2.3.1. Write G(n) = c1α
n
1 + · · ·+ chα

n
h with non-zero

ci’s and α1 > α2 > ... > αh > 0. Set

K(n) := −
h∑
i=2

ci
c1

(αi
α1

)n
,

then K is a power sum with rational coefficients and positive rational roots,

and we have K(n)� |α2/α1|n, so we may write

1

G(n)
= (c1α1)−n

1

1−K(n)
= (c1α1)−n

∞∑
r=0

K(n)r,

the expansion being convergent for n large enough.

We can say that |F (n)| � An for a positive real number A and pick R such

that l := A|α2/α1|R < 1. If we set

L(n) := (c1α1)−n
R∑
r=0

K(n)r,
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3. Two problems solved using the dominant root

we get that P := FL has rational positive roots, so it is non-degenerate.

Now let us call z(n) := F (n)/G(n) for n ∈ N . Being z(n) integers, we have

that H(z(n))/max{1, |z(n)|} ≤ 1, moreover |z(n)− P (n)| � ln for 0 < l < 1,

by our choice of R, so we may apply Lemma 3.1.1 obtaining that for infinitely

many integers n ∈ N1 z(n) = Q(n) for Q a power sum with rational coefficients

and positive rational roots.

Then we can use Lemma 3.2.1 and conclude that Q has positive integer

roots. This means in turn that the power sum F − GQ has positive integer

roots, and vanishes on an infinite set, but then it must vanishes identically, so

we have proved the first part of our claim.

To get the second part, we want to show that the set {n ∈ N : Q(n) ∈ Z}

differs by a finite set from a finite union of arithmetic progressions, if Q is a

power sum with rational coefficients and positive integer roots. In fact, it is

not necessary to assume that the roots are positive. Note that

Q(n) =
h∑
i=1

ci
di
αni = k ∈ Z

if and only if

Q′(n) :=
h∑
i=1

c′iα
n
i = kd

where d = l.c.m.(d1, ..., dh) and c′i = dci/di, so it is enough to prove that

{n ∈ N : Q′(n) = 0 mod M} differs by a finite set from a finite union of

arithmetic progressions, where M is a positive integer and Q′ has integer roots

and integer coefficients.

Of course it is enough to consider the case M = pk for p prime. Moreover,

we can assume that n ≥ k, because we have only a finite number of n such

that this is not true. Thanks to this remark, we can also assume that for every

i p - αi, because otherwise we can erase the terms divisible by p, and restart

with a smaller h.
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3. Two problems solved using the dominant root

But then for every i α
Φ(pk)
i = 1 mod pk, so for every r ∈ N Q′(n+rΦ(pk)) =

Q′(n) mod pk, and this conclude our proof.

�

3.3 The Pisot d-th root problem

Proof of Theorem 2.3.3. Write F (n) = c1α
n
1 + · · · + chα

n
h, where the αi’s

are rational and such that α1 > α2 > ... > αh > 0. Assume first that α1 = 1.

If we set K(n) = b2α
n
2 + · · · + bhα

n
h, with bi := ci/c1, then we may write

F (n) = c1(1 +K(n)).

The roots of K are strictly smaller than 1, therefore |K(n)| � θn for some

0 < θ < 1. Since F (n) is infinitely often a rational d-th power, we have c1 > 0

when d is even. We may assume that c1 > 0 when d is odd as well, replacing

F by −F is necessary. Hence for big n we can assume that F (n) > 0, so it has

exactly one positive d-th root, which we will denote by z(n).

For sufficiently large n we can express z(n) using the binomial power series,

obtaining:

z(n) = c
1/d
1

M−1∑
s=0

(
1/d

s

)
K(n)s +O(θnM)

for a parameter M that we will specify later.

The sum which appears in the expression above can be written as L(n) =

d1β
n
1 +· · ·+dtβnt , where the βi’s are pairwise distinct positive rational numbers,

and the di’s lie in some number field K (note that c
1/d
1 is not in Q in general).

Thus we have |z(n)− L(n)| � θnM .

Note now that since z(n)d = F (n), we have that H(z(n)) = H(F (n))1/d �

Cn for some positive real C, because F is a power sum. So if we choose M

in such a way that l := CθM < 1, we can apply Lemma 3.1.1 (note that the

numbers z(n) ∈ Q lie in a finitely generated ring, being the d-th roots of values

of a power sum), obtaining that for infinitely many n ∈ N we have z(n) = G(n),
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3. Two problems solved using the dominant root

where G is a power sum with rational coefficients and positive rational roots.

Since F (n) − G(n)d is a power sum with positive roots as well, it can vanish

infinitely often only if it vanishes identically. Therefore F (n) = G(n)d, and

the theorem is proved for the special case α1 = 1

The general case can be easily obtained now: for some r there exist infinitely

many positive integers n, congruent to −r modulo d such that F (n) is a d-th

power in Q. Replacing F (n) by α−n−r1 F (n), we reduce the general case to the

case α1 = 1 and we are done.

�
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Chapter 4

The removal of the dominant

root assumption

4.1 Introduction

The aim of this chapter is to detail and explain a method, developed by Corvaja

and Zannier in [3], which permits to avoid the dominant root assumption in the

application of the subspace theorem to a problem concerning linear recurrences.

As anticipated in chapter 2, the problem is related to the Hadamard quotient

conjecture: what happens when the values taken by the ratio of two linear

recurrence are in a finitely generated ring for infinitely many n ∈ N? Here is

the answer:

Theorem 4.1.1. Let F,G be linear recurrences such that their roots gener-

ate together a torsion-free multiplicative group. Let R be a finitely generated

subring of C and assume that for infinitely many n ∈ N we have G(n) 6= 0

and F (n)/G(n) ∈ R. Then there exists a nonzero polynomial P (X) ∈ C[X]

such that both sequences n 7→ P (n)F (n)/G(n) and n 7→ G(n)/P (n) are linear

recurrences.

In this theorem, similarly to the theorems in chapter 3, where we assumed
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4. The removal of the dominant root assumption

the linear recurrences to be non-degenerate, we have a technical assumption

about the group generated by the roots of the recurrences. Nevertheless, using

the remark 2.1.1, we can see that for this kind of problems it is not really a

restriction. For example, the theorem above becomes:

Corollary 4.1.1. Let F,G be linear recurrences and let R be a finitely gener-

ated subring of C. Assume that for infinitely many n ∈ N we have G(n) 6= 0

and F (n)/G(n) ∈ R. Then there exist a nonzero polynomial P (X) ∈ C[X] and

positive integers q, r such that both sequences n 7→ P (n)F (qn + r)/G(qn + r)

and n 7→ G(qn+ r)/P (n) are linear recurrences.

In many cases the polynomial P turns out to be a constant, for instance it

holds:

Corollary 4.1.2. Let F , G and R be as in the theorem, and assume that the

coefficients di(n) are coprime polynomials. Then, if F (n)/G(n) lies in R for

infinitely many n ∈ N, F/G is a linear recurrence, i.e. G divides F in the ring

of linear recurrences.

Proof. Let us write

G(n) =
r∑
i=1

di(n)βni (4.1)

By the theorem there exists a polynomial P such that G/P = H is a linear

recurrence, which we can write as

H(n) =
s∑
i=1

d̃i(n)β̃ni

From the uniqueness of the expression 4.1 of G, we conclude that r = s, and

di = P d̃σ(j) for a permutation σ of the set {1, ..., r}. But we assumed that

the di’s are coprime, so P has to be a non-zero constant c. Therefore by the

theorem we have that cF/G is a linar recurrence, which implies our claim.

�
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4. The removal of the dominant root assumption

Note that this argument can be reproduced in general, and shows that P

can be taken as the greatest common divisor of the coefficients of G. Moreover,

let us remark that we are in the condition of the corollary when G is a power

sum, so we find that an analogous of theorem 2.3.1 holds even if we remove

the dominant root assumption. Finally, assuming theorem 4.1.1 it is possible

to give a very easy proof of the Hadamard-quotient conjecture, which as we

said has been proven by van der Poorten without using the subspace theorem

(see [3], pag 436).

Let us line out the strategy of the theorem’s proof. First of all, we will

prove the result in the number field case, where we will see the new ideas

introduced by the authors to deal with the absence of a dominant root; then,

thanks to a specialisation argument due to van der Poorten and Rumely (see

[10]), we will fully get the desired conclusion.

4.2 The number field case

Proposition 4.2.1. Let K be a number field, S be a finite set of places of

K containing the archimedean ones, F,G be linear recurrences with roots and

coefficients in K. Suppose that the roots of F and G generate a torsion-free

multiplicative subgroup Γ of K∗. Suppose also that F and G are coprime, with

respect to Γ (see remark 2.2.1) and that G has more than one root. Then the

set of integers

N :=
{
n ∈ N

∣∣∣ F (n)

G(n)
∈ OS

}
is finite.

Proof. Let us enlarge S in such a way that all the roots and the non-zero

coefficients of F,G are S-units in K. Of course if we prove the result for this

S, we get our claim for the initial smaller S.

By assumption G has at least two roots, and no ratio of two of them can be
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4. The removal of the dominant root assumption

a root of unity, otherwise Γ would not be torsion-free. Therefore there exists

an absolute value v of K such that not all the roots of G has the same v-adic

absolute value: if it was not true, the ratio x of any two roots would have

v-adic absolute value 1 for every absolute value, which implies that H(x) = 1.

In turn, by the Kronecker theorem cited in chapter 1 this would mean that x

is a root of 1, absurd.

It is clear that such v is in S. Let us denote it by v0. Moreover, to simplify

the notation, let us replace F (n) and G(n) by F (n)/αn and G(n)/αn, where

α is a root of G with maximal absolute value with respect to v0. This will not

affect our conclusions. Now we can assume that the maximal v0-adic absolute

value of the roots of G is 1, and we write G(n) = H(n) − R(n), where H(n)

is a non-zero linear recurrence whose roots have v0-adic absolute value 1, and

R(n) is a non-zero linear recurrence whose roots have v0-adic absolute value

less than 1.

Let us consider the free abelian multiplicative group Γ generated by the

roots of F and G, and let Λ be the free subgroup generated by the elements

of v0-adic absolute value 1. It is easy to see that Γ/Λ is torsion-free, and so if

{β1, . . . , βp} is a basis for Λ, we can complete it to a basis {β1, . . . , βp, . . . , βt}

of Γ with representatives in Γ for a basis of Γ/Λ. Since the roots of H have

v0-adic absolute value 1, they lie in Λ, so by Proposition 2.2.1 we may write

H(n) = γ(n, βn1 , . . . , β
n
p )

where γ ∈ K[X,T1, . . . , Tp, T
−1
1 , . . . , T−1

p ]. By multiplying both F and G by a

suitable product of powers of βn1 , . . . , β
n
p , we may assume that γ is a polynomial,

and again this will not affect the conclusion. Let us suppose that the total

degree of γ is ≤ D.

Now let us look at R(n): by our assumption on its roots, there exists

ρ ∈ (0, 1) such that

|R(n)|v0 � ρn. (4.2)
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4. The removal of the dominant root assumption

We suppose by contradiction that, for all n in an infinite set N of natural

numbers, we have G(n) 6= 0 and F (n)/G(n) ∈ OS. Let us set, for n ∈ N ,

zn := F (n)/G(n).

We fix a positive integer s, then by the Newton’s formula we have

H(n)s = (G(n) +R(n))s = G(n)

(
s−1∑
i=0

(
s

i

)
G(n)s−i−1R(n)i

)
+R(n)s.

So we have

F (n)

G(n)
H(n)s = F (n)

(
s−1∑
i=0

(
s

i

)
G(n)s−i−1R(n)i

)
+
F (n)

G(n)
R(n)s,

whence by 4.2 we get∣∣∣∣∣znH(n)s − F (n)
s−1∑
i=0

(
s

i

)
G(n)s−i−1R(n)i

∣∣∣∣∣
v0

� ρns|zn|v0 . (4.3)

Further, we fix other positive integers h and k. Later we shall impose

that s, h, k satisfy suitable inequalities. For every d = (d1, . . . , dp) ∈ Np, with

d1 + · · ·+ dp ≤ h, and every u ∈ N with u < k, we consider the quantity

Φd,u(n) := nuβnd

(
znH(n)s − F (n)

s−1∑
i=0

(
s

i

)
G(n)s−i−1R(n)i

)
, (4.4)

where we denote βd = βd11 · · · β
dp
p . By 4.3, the fact that |βi|v0 = 1 for i =

1, . . . , p and the fact that |n|v0 ≤ n (v0 could be archimedean, so we cannot

bound it better), we obtain

|Φd,u(n)|v0 � ρns|zn|v0nu. (4.5)

Let us remark that the term nuβndznH(n)s appearing in the right side of 4.4

can be written as

nuβndznH(n)s =
∑
b,l

Ab,l,d,un
lβnbzn (4.6)

where the coefficients Ab,l,d,u belong to K, and the index (b, l) runs over the

vectors (b1, . . . , bp, l) ∈ Np+1 such that b1+· · ·+bp ≤ h+sD, and 0 ≤ l < k+sD

(we recall that H has been expressed as a polynomial of degree ≤ D).
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4. The removal of the dominant root assumption

If we count all these possible vectors, we find out that the maximum number

of non-zero terms appearing on the right side of 4.6 is ≤ N1, with

N1 := (k + sD)

(
p+ h+ sD

p

)
.

Let us denote by T (n) the recurrence −F (n)
∑s−1

i=0

(
s
i

)
G(n)s−i−1R(n)i, then we

call the other term on the right side of 4.4 nuβndT (n). It is easy to see that

this is a linear combination in K of terms of the kind nlαn, for suitable l’s in

N and α’s in Γ, and we denote by N2 the number of these terms.

If set N := N1 +N2, we can see Φd,u as a linear combination of N terms of

the mentioned type, i.e if we choose some ordering for the first N1 terms, and

some ordering for the other N2, we can write, for n ∈ N ,

Φd,u =
n∑
i=1

Ad,u,ixi(n),

where xi(n) are of the form nlβnbzn for i = 1, . . . , N1 and of the form nlαn for

i = N1 + 1, . . . , N .

Note that for every n ∈ N , every xi(n) is an S-integer: zn ∈ OS by

hypothesis, and the same for every element in Γ. Finally, since S contains

every archimedean absolute value, for every v /∈ S it is well known that

|nl|v ≤ 1, for every n ∈ Z and every l ∈ N.

Furthermore, let us define an ordering for the vectors (d, u) ∈ Np+1 with

d1 + · · ·+ dp ≤ h and u < k. Note that their number is M := k
(
p+h
p

)
, and that

M ≤ N1.

We now define M linear forms, in order to apply subsequently the subspace

theorem. For j = 1, . . . ,M , we set

Lj(X1, . . . , XN) =
n∑
i=1

Aj,iXi,

where Aj,i corresponds to some Ad,u,i via the ordering chosen for the vectors

(d, u). It is clear that for n ∈ N

Φj(n) = Lj(x1(n), . . . , xN(n)). (4.7)
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4. The removal of the dominant root assumption

Now we claim that L1(X1, . . . , XN1 , 0, . . . , 0), . . . , LM(X1, . . . , XN1 , 0, . . . , 0)

are linearly independent. In fact, if by absurd they were dependent, there

would be a dependence relationship holding for every vector in KN1 , and in

particular for every (x1(n), . . . , xN1(n)) with n ∈ N . So, using the identity

4.7, there would exist M coefficients in K cd,u such that for every n ∈ N(∑
d,u

cd,un
uβnd

)
znH(n)s = 0.

Since zn = F (n)/G(n), and F,H are non-degenerate, by the Skolem-Mahler-

Lech theorem znH(n)s can vanish only for finitely many n. Also the sum in

the brackets, again by the Skolem-Mahler-Lech theorem, can vanish only for

finitely many n, because every βd is in Γ, which is a torsion-free multiplicative

group. This is a contradiction, so our claim was true.

This means that there exist M variables xi1 , . . . , xiM among x1, . . . , xN1 ,

which we can suppose to be x1, . . . , xM , such that

L1(x1, . . . , xM , 0, . . . , 0), . . . , LM(x1, . . . , xM , 0, . . . , 0) are linearly independent,

which in turn means that the N linear forms L1, . . . , LM , XM+1, . . . , XN are

linearly independent.

Now let us define, if X = (X1, . . . , XN), Lv0,j(X) := Lj(X) for every j =

1, . . . ,M , and Lv0,j(X) := Xj for j = M+1, . . . , N . Moreover, for every v ∈ S,

v 6= v0, we define Lv,j(X) := Xj for every j = 1, . . . , N . It is clear now that

the independent assumption on the linear forms is satisfied for every v ∈ S.

In order to apply the version1 1.2.4 of the subspace theorem, we shall bound

the quantity
N∏
j=1

∏
v∈S

|Lv,j(x1(n), . . . , xN(n))|v. (4.8)

Note that for i ≤ N1, xi(n) = nlβnbzn, so it could be zero if and only if it is

zero zn, that by the Skolem-Mahler-Lech theorem can happen only for finitely

1in fact, we will use it in its logarithmic form, substituting the standard (sometimes called

exponential) height H with the logarithmic height h, defined in the proof of proposition 1.1.5

39



4. The removal of the dominant root assumption

many n, so from now on we can consider only the n ∈ N such that these xi(n)

are not zero, and we still have an infinite subset of N. So we can rewrite the

double product 4.8 as(
N∏
j=1

∏
v∈S

|xj(n)|v

)(
M∏
j=1

|Lv0,j(x1(n), . . . , xN(n))|v0
|xj(n)|v0

)
.

Let L be an upper bound for the exponents l of the n’s appearing in the vari-

ables xi(n) (recall that xi(n) is either of the form nlβnbzn or of the form nlαn).

Since the S-unit part disappears using the product formula, and
∑

v∈S log |zn|v ≤∑
v log+ |zn|v = h(zn) we get the following estimate for the first factor:

log

(
N∏
j=1

∏
v∈S

|xj(n)|v

)
≤ NL log n+N1h(zn).

Since M < N1, the terms xi(n) for i ≤M are of the form nlβnbzn, and so

log |xi(n)|v = log |zn|v0 + l log |n|v0

for every i = 1, . . . ,M , and for some l ≤ L depending on i. Then from 4.5 and

4.7 we obtain that for each j = 1, . . . ,M , and n large enough,

log
( |Lv0,j(x1(n), . . . , xN(n))|v0

|xj(n)|v0

)
≤ sn log ρ+ 2L log n,

which implies that

log

(
M∏
j=1

|Lv0,j(x1(n), . . . , xN(n))|v0
|xj(n)|v0

)
≤M(sn log ρ+ 2L log n).

So we can estimate 4.8 for n large enough:

log
(∏N

j=1

∏
v∈S |Lv,j(x1(n), . . . , xN(n))|v

)
≤M(sn log ρ+ 2L log n) +N1h(zn) +NL log n

≤ N1h(zn) +Msn log ρ+ 3NL log n. (4.9)

Moreover, since zn = F (n)/G(n), we have for large values of n that

h(zn) ≤ h(F (n)) + h(G(n)) ≤ nC1,
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4. The removal of the dominant root assumption

where C1 is a positive constant depending only on F and G. Using this in 4.9

we get

log
(∏N

j=1

∏
v∈S |Lv,j(x1(n), . . . , xN(n))|v

)
≤ (C1N1 +Ms log ρ)n+ 3NL log n. (4.10)

Now define C2 := C1/(− log ρ). This is again a positive constant depending

only on F and G. Now we are ready to choose our parameters s, h and k: let

s > 2C2, and k > 3sD. Then we have

sk > 2C2k >
3

2
C2(k + sD). (4.11)

Note that the function
(
p+x
p

)
is a polynomial of degree p, so for large h,

sk

(
p+ h

p

)
> C2(k + sD)

(
p+ sD + h

p

)
, (4.12)

because of our choice of s and k, that makes the coefficient on the left side

larger than the one on the right. So h is chosen large enough to make true the

inequality above.

Therefore it is satisfied the inequality C1N1 < −Ms log ρ, so by 4.10 we

get

log
( N∏
j=1

∏
v∈S

|Lv,j(x1(n), . . . , xN(n))|v
)
< −C3n,

for large n ∈ N , where C3 is a positive real constant independent of n.

Clearly h(x(n)) ≤ C4n, where C4 is again a positive real constant, so we

get

log
( N∏
j=1

∏
v∈S

|Lv,j(x1(n), . . . , xN(n))|v
)
< −C3

C4

h(x(n)).

So we can apply the subspace theorem with ε = C3/C4, concluding that our

points are contained in a finite number of hyperplanes of KN . Since we have

infinite points, there exists a hyperplane that contains infinitely many of them,

so we have a non-trivial linear relation

λ1x1(n) + · · ·+ λNxN(n) = 0,
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4. The removal of the dominant root assumption

with λi ∈ K, valid for infinitely many n ∈ N . Let us rewrite it as

λ1x1(n) + · · ·+ λN1xN1(n) = −λN1+1xN1+1(n)− · · · − λNxN(n).

Hence we obtain that for an infinite subsequence of N

znA(n) = B(n),

where A is a linear recurrence with roots in Λ, and B is a linear recurrence

with roots in Γ.

Note that A1, . . . , AN1 cannot all be zero, because otherwise by the Skolem-

Mahler-Lech theorem also AN1+1, . . . , AN would be zero, which is not possible.

Therefore A(n) is a non-zero linear recurrence (with roots in Λ). Since by

definition zn = F (n)/G(n), we have

F (n)A(n) = B(n)G(n)

for infinitely many n ∈ N , where all the recurrences A,B, F,G have roots

in Γ, which is torsion-free, so are non-degenerate, so again by the Skolem-

Mahler-Lech theorem this relation holds for every n ∈ N. Thus by proposition

2.2.1 we can see this equality as an equality in K[X,T1, . . . , Tt, T
−1
1 , . . . , T−1

t ],

where we use to obtain the isomorphism of the proposition the basis of Γ

{β1, . . . , βp, . . . , βt}, and we get for f, a, b, g ∈ K[X,T1, . . . , Tt, T
−1
1 , . . . , T−1

t ]

fa = bg.

By assumption we know that f and g are coprime, so g divides a. But since A

has roots in Λ, a ∈ K[X,T1, . . . , Tp, T
−1
1 , . . . , T−1

p ], which implies that g = ηg1,

where η is an invertible element of K[X,T1, . . . , Tt, T
−1
1 , . . . , T−1

t ] and g1 ∈

K[X,T1, . . . , Tp, T
−1
1 , . . . , T−1

p ]

This means that all of the roots of G have the same v0-adic absolute value,

which is a contradiction.

�
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4.3 The general case

Now we shall deduce the general case from the number-field case, again fol-

lowing [3], where as we have said the authors basically make use of the spe-

cialisation argument developed in [10]. First of all let us consider the following

general result:

Lemma 4.3.1. Let S be a finitely generated subring of C, let ρ ∈ S be non-

zero and let Γ be a finitely generated torsion-free subgroup of S∗. Then there

exists a ring homomorphism ϕ : S → Q such that ϕ(ρ) 6= 0 and such that the

restriction of ϕ to Γ is injective.

For a proof of this Lemma, see [10], where is proved a stronger result

(Theorem 7).

Proof of Theorem 4.1.1. Let N be the infinite subset of N such that

F (n)/G(n) ∈ R. Let S be the ring generated over R by the coefficients of F

and G, by their roots and their reciprocals. Let Γ be the (finitely generated

and torsion-free) multiplicative subgroup of S∗ generated by the roots of F

and G, and let β1, . . . , βt be a basis for it.

Using proposition 2.2.1 we associate to F and G two elements of the ring

S[X,T1, . . . , Tt, T
−1
1 , . . . , T−1

t ], say f and g, that we can assume to be coprime.

If g is a unit times an element of C[X], then the theorem is clearly true, so

let us suppose that we are not in this situation, and we look for a contradiction.

By multiplying both F and G by a suitable unit, we can assume that they are

coprime polynomials in S[X,T1, . . . , Tt], and that g has more than one term as

a polynomial in T1, . . . , Tt. In particular, there exists a variable, say T1, which

appears in the terms of g with at least two different degrees.

Let us consider the resultant r(X,T1, . . . , Tt) of f and g with respect to

T1, it is non-zero and it has coefficients in S. We denote ρ the product of the

non-zero coefficients of r, f and g, and we apply lemma 4.3.1. Note that if
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4. The removal of the dominant root assumption

ϕ is the homomorphism prescribed by the lemma, we have that the elements

ϕ(βi) are linearly independent, being ϕ injective on Γ.

If we denote fϕ and gϕ the polynomials in Q[X,T1, . . . , Tt, T
−1
1 , . . . , T−1

t ]

with as coefficients the images of the coefficients of f and g via ϕ, we still have

that they are coprime with respect to T1, because ϕ(ρ) 6= 0, so their resultant

and leading coefficients are non-zero. Moreover, again because of our choice of

ρ, the coefficients of g via ϕ do not vanish, so we have at least two terms in gϕ

which contain the variable T1 with different degrees. Therefore we can write

fϕ = hf1 and gϕ = hg1, with f1 and g1 coprime, and h not depending on T1,

which means that g1 contains at least two terms in T1.

Then again by proposition 2.2.1 we can associate to f1 and g1 two linear

recurrences F1 and G1, with algebraic coefficients and roots, sending every

Ti to the function n 7→ ϕ(βi)
n. Now, being ϕ injective, G1 has at least two

distinct roots, because g1 has at least two terms in T1, and the roots of F1 and

G1 generate a torsion-free multiplicative group. Hence by the Skolem-Mahler-

Lech theorem G1(n) = 0 only for finitely many n ∈ N, that we shall exclude

from our N .

Therefore, for n ∈ N , we have that

F1(n)

G1(n)
= ϕ

(F (n)

G(n)

)
,

which implies that, for every n ∈ N , F1(n)/G1(n) ∈ ϕ(R), which is a finitely

generated subring of some number field K. But we are assuming that N is

infinite, and we saw that G1 has at least two roots, so by proposition 4.2.1 we

get a contradiction, which proves the theorem.

�
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4.4 Comments

Let us resume the proof of theorem 2.3.1 presented in the last chapter: us-

ing the dominant root we expanded F/G as a convergent power series, and

truncating it we obtained a power sum P which gave a good approximation to

the integers F (n)/G(n) for every n belonging to an infinite set. This allowed

us to see the difference (F (n)/G(n)) − P (n) as a small linear form, using as

variables the integer F (n)/G(n) and the n-th power of the roots of P . Then

applying the subspace theorem we obtained our claim.

Without the dominant root assumption, we approximate F (n)/G(n) by

using simultaneously all the roots with maximal absolute value, as we can see

in formula 4.3. But then if we try to imitate the proof above, there is one

problem: in the first N1 variables which we would ’naturally’ choose to apply

the subspace theorem, it appears the term zn := F (n)/G(n), which make them

in some sense ’bad variables’ for our purposes. Let us explain why: suppose

that we have chosen our set S in the most clever way to make the method above

work, then we have the product of all the linear forms defined as Li,v(X) = Xi

which gives, as one can see during the proof,

log

(
n∏
j=1

∏
v∈S

|xj(n)|v

)
≤ NL log n+N1

∑
v∈S

log |zn|v.

We would like to have this term of the same order of log n, because then the

other term coming from the small linear form defined by our simultaneous

approximation, which is of the order of −n, would make the subspace theorem

work. If the zn’s were S-units, we would have∑
v∈S

log |zn|v =
∑
v∈Mk

log |zn|v = 0

by the product formula, which would be perfect. But we cannot assume that

they are S-units, being S a finite set. The best that we can do is to assume
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4. The removal of the dominant root assumption

that they are S-integers, obtaining∑
v∈S

log |zn|v ≤
∑
v∈MK

log+ |zn|v = h(zn),

but h(zn) � n so we cannot be sure that for every F,G we can apply the

subspace theorem.

The authors overcome this difficulty by constructing many other small in-

dependent linear forms out from the given one, just multiplying it by suitable

n-th powers of products of dominant roots, as done in 4.4. This makes raise

the number N1 of bad variables, but not that much with respect to the benefits

given by the M small linear forms, because of the fundamental inequality 4.12,

and so everything works.

Since we have seen that the method used in chapter 3, using the dominant

root assumption, worked well also in other problems concerning linear recur-

rences (the proofs of the theorems 2.3.1 and 2.3.3 rely on the same lemma), one

would believe that the generalization of the method presented in this chapter

would work also in other problems, such as the one related to the Hadamard

d-th root problem. However, it seems that at least another cardinal idea is

missing, because nobody managed to do it yet.
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