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6 INTRODUCTION

Introduction

One of the main developments in the coding theory in the ’80s was the
introduction of algebraic geometric codes, due to the russian mathematician
and engineer Goppa. His main idea was to associate linear codes to divisors
on curves.

In 1982 Tsfasman, Vladut and Zink used this new class of codes to prove
the existence of codes with better parameters than the ones ensured by the
Gilbert-Varshamow bound.

The theory of algebraic geometric codes on curves has been deeply stud-
ied during the ’80s and the ’90s and now we can consider it to be well-known
by the mathematical community. Nowadays most of the works about alge-
braic geometric codes on curves concern the search of a faster decoding algo-
rithm. Indeed at the present times other codes with more efficient decoding
algorithms are preferred to algebraic geometric codes in the applications.

In 1991 Tsfasman and Vladut generalized Goppa’s idea and defined al-
gebraic geometric codes on varieties.

Nevertheless, the first publication about codes on higher dimensional va-
rieties is dated 2001. Hansen’s PhD thesis opened a new interesting research
field, combining both coding theory and the geometry of varieties.

The aim of this work is to introduce the theory of algebraic geometric codes
on curves and present the recent progresses about codes on higher dimen-
sional varieties.

In the first section we recall the elementary notions of coding theory.
The second section regards algebraic geometric codes on curves with par-

ticular attention to the connection between them and the Gilbert-Varshamov
bound, while the third one contains two decoding algorithms for codes on
curves.

We introduce in the fourth section codes on higher dimensional varieties
and then we follow Hansen and Zarzar’s works to study codes on surfaces.

Lastly we focus on Lomont’s PhD thesis about codes on ruled surfaces
and we try to solve a problem left open in it.

In sections 2 and 3 the language of classical algebraic geometry is as-
sumed to be known, while in the last three sections we also recall the re-
quired notions of scheme theory. Proofs are often omitted but we try to
define almost every geometric object we use.
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1 Basic notions of coding theory

Definition 1.1 Let Fq be a field with q elements. An error correcting
code is a subset C of Fn

q . C is said linear if it is a sub-vector space of Fn
q .

In practice most of the codes are linear codes and they are used to transform
words of length k < n (with letters in the alphabet Fq) to words of length n
in order to find and correct errors happened during the transmission. The
elements of the code are called words.

Let x,y ∈ Fn
q . The Hamming distance (or, simply, distance) is defined as

d(x, y) := #{i | 1 ≤ i ≤ n, xi 6= yi}.

d really defines a metric on Fn
q . The minimum distance d of a code C is

d = d(C) := min{d(x, y) | x, y ∈ C, x 6= y}.

It is immediate to see that the minimum distance of a linear code corresponds
to the minimum weight

w = w(C) := min{wt(x) | x ∈ C, x 6= 0},

where wt(x) := #{i | xi 6= 0}. Let us indicate with (n,M, d) a code of
length n, M words and distance d, while an [n, k, d]-code is a linear code of
length n, dimension k and distance d.

The decoding of a message respects the so-called maximum-likelihood-
decoding principle, i.e. we suppose that, during the transmission, the small-
est number of errors occurred. The received vector y ∈ Fq

n is interpreted
as the code word x ∈ C such that wt(x− y) is as small as possible. Thus it
is clear that a code with minimum distance d is able to find every error of
weight e < d and correct every error of weight not bigger than e = bd−1

2 c. It
follows trivially from the triangular inequality that spheres of radius e and
center in a code word are disjoint. A code with distance d = 2e+1 is said to
be perfect if such spheres cover Fn

q . Hence, for a perfect code, every y ∈ Fn
q

has distance less or equal e from a unique code word.

The most immediate relation between the parameters of a code is called
singleton bound.

Proposition 1.1 (Singleton bound) Let C be an (n,M, d)−code. Then
Mqd−1 ≤ qn.

The proposition can be proved just by counting the elements of Fn
q that

belong to the disjoint spheres of radius e = bd−1
2 c and with a code word as
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center. A code whose parameters satisfy the equality in the previous propo-
sition is called MDS (maximum-distance-separable). We remark that, for
a [n, k, d]-code, the singleton bound can be written as d + k ≤ n + 1.

A fundamental role in the development of coding theory is due to Shan-
non’s work ([20]) and, in particular, to his famous theorem. Suppose we
have to transmit a message through a channel where the probability of re-
ceiving a wrong digit is p and the probability of transmitting a wrong symbol
is the same for every symbol (such a channel is called uniform). Further-
more suppose we use a code C formed by M words x1, · · · , xM which occur
with the same probability. Let Pi be the probability of not being able to
decode exactly xi according to the maximum-likelihood-decoding principle.
In this case the average probability of wrongly decoding a code in C is
PC =

∑n
i=1

Pi
M . Hence a code with good properties is a a code such that PC

is minimum. Let P ∗(M,n, p) be the minimum PC for C running over all the
(M, n)-codes and R = logq M

n the so-called information rate.

Theorem 1.1 (Shannon) There exists a function c, called channel ca-
pacity, depending only on q and p, such that, if 0 < R < c and Mn = qbRnc,
then limn→+∞ P ∗(Mn, n, p) = 0.

By Shannon’s theorem, for R in an interval depending only on the trans-
mission channel, among the codes with the same information rate, the good
ones are those with n big. This is a good motivation to look for long codes
and to study the asymptotical behavior of codes in the same class, letting n
change.

During the transmission of a word of length n through a channel with
probability p, we expect an average of pn errors. Hence we need a code
with minimum distance d > 2pn. We therefore require that d grows at least
proportionally to n.

Let δ = d
n , Aq(n, d) = max{M | there exists a (n,M, d)-code over Fq}. We

now define the function α:

α(δ) = lim sup
n→+∞

logq Aq(n, bδnc)
n

,

which is an important and widely studied object of the coding theory. Thus
we are interested in studying, for a fixed δ, what the best possible infor-
mation rate for a code of length n is, and then letting n go to infinity, as
suggested by Shannon’s theorem. The easiest (and the least precise) among
those upper bounds for α is a direct consequence of singleton bound.

Theorem 1.2 For δ ∈ [0, 1], we have α(δ) ≤ 1− δ.
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Proof: From proposition 1.1 we have M ≤ qn+1−d for every (n,M, d)-code,
so Aq(n, δn) ≤ n+1−δn. Taking the limsup, we conclude that α(δ) ≤ 1−δ.

A much more interesting result is Gilbert’s (or Gilbert-Varshamov) lower
bound. Define on [0, q−1

q ] the entropy function as

Hq(x) :=
{

0 if x = 0
x logq(q − 1)− x logq x− (1− x) logq(1− x) if 0 < x ≤ q−1

q

Hq is an increasing function and its value in 1 is q−1
q . Moreover, define

as Vq(n, d) the cardinality of a sphere of radius d in Fn
q and recall that

Vq(n, d) =
∑d

i=0

(
n
i

)
(q − 1)i.

Lemma 1.1 For 0 ≤ δ ≤ q−1
q we have lim supn→+∞

logq Vq(n,bnδc)
n = Hq(δ).

Proof: The largest addend of Vq(n, d) is
(

n
bδnc

)
(q − 1)bδnc. Therefore

(
n

bδnc
)

(q − 1)bδnc ≤ Vq(n, bδnc) ≤ (1 + bδnc)
(

n

bδnc
)

(q − 1)bδnc.

We conclude, by taking logarithms, dividing by n and using Stirling formula.
¤

Lemma 1.2 For n ∈ N, d ∈ N, q ≥ 2, we have Aq(n, d) ≥ qn

Vq(n,d−1) .

Proof: Let C be a maximal code of length n and distance d. Assume that
there exists an element x ∈ Fq

n \ C with distance greater or equal d from
every word in C. Then C ∪{x} is a code of length n and minimum distance
d, contradicting the maximality of C. Hence the spheres of radius d− 1 and
center in C cover Fq

n. Thus |C|Vq(n, d− 1) ≥ qn. ¤

It can be proved that the previous lemma still holds even if, to calculate
Aq(n, d), we consider just linear codes.

Theorem 1.3 (Gilbert) If 0 ≤ δ ≤ q−1
q , then α(δ) ≥ 1−Hq(δ).

Proof: From previous lemmas we get

α(δ) = lim sup
n→+∞

logq Aq(n, d)
n

≥ lim sup
n→+∞

logq qn − logq Vq(n, bδnc − 1)
n

≥

≥ lim sup
n→+∞

n− logq Vq(n, bδnc)
n

= 1−Hq(δ).

¤
Even if the lower bound in theorem 1.3 is not optimal, the existence of codes
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with better parameters was proved just in 1982 by Tsfasman, Vladut and
Zink. They improved the lower bound of theorem 1.3 for q ≥ 49. It was
one of the first important theoretical results obtained by studying algebraic
geometric codes.

Let us go back quickly to linear codes. We can associate to an [n, k]-code C
a k×n matrix G, called generator matrix, where every row is an element
of a basis for C. Then C = {aG | a ∈ Fq

k}. We say that G is written in a
canonical form if G =

(
Ik P

)
.

Definition 1.2 Two codes C1 and C2 of length n are said to be equivalent
if there exists a permutation σ ∈ Sn such that C1 = gσC2, where gσ is the
automorphism of Fn

q which sends (x1 · · ·xn) to (xσ(1) · · ·xσ(n)).

Two equivalent codes have the same capability of correcting errors, so we
can study linear codes up to this equivalence. It is clear from linear algebra
that every code is equivalent to a code with its matrix in canonical form. If
G is a generator matrix in canonical form, the first k symbols of a words are
called information symbols, while the remaining ones are the control
symbols. Given an [n, k]-code C, we define the dual code of C as the
vector space

C⊥ = {y ∈ Fn
q | y ◦ x = 0 ∀x ∈ C}.

C⊥ is a [n, n − k]-code. Remark that if C⊥ has generator matrix H, then
x ∈ C if and only if xH> = 0. H is said to be a control matrix for C and,
if C has a generator matrix G =

(
Ik P

)
then H =

( −P> In−k

)
. If

C = C⊥ then we say that C is self-dual.

We introduce now one of the easiest decoding methods for linear codes,
called syndrome methods. Let C be a [n, k]-code with control matrix H.
The syndrome of x ∈ Fn

q is the vector xH> ∈ Fn−k
q . We saw that the code

words are those with syndrome equal to 0. Recalling that C is a subgroup
of Fn

q , we can divide Fn
q in cosets of C. The elements of the same coset are

identified by the same syndrome. Now suppose we received y = x + v ∈ Fn
q ,

where x is the sent code word and v the error vector; y and v have the same
syndrome, so, in order to decode in accord with the maximum-likelihood-
decoding principle, we choose a vector with minimum weight among those
with the same syndrome of y. For every coset, the chosen vector is called
the coset leader. The decoding is therefore reduced to the calculation of a
syndrome and the comparison with the qn−k possible syndomes, previously
calculated and associated to a coset leader. This method is fast when qn−k

is small compared to n, i.e. when the information rate k/n is close to 1. If
a code has minimum distance d = 2e + 1, then every vector of weight less
or equal e is the unique coset leader of a coset, since two vector of weight
less or equal e have distance at most 2e, so they belong to different cosets.
Moreover, if the code is perfect, there are no further coset leaders.
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2 Algebraic geometric codes on curves

2.1 AG codes

Let X be a smooth projective curve of genus g over Fq. Indicate with Fq(X)
the set of rational functions over Fq and with Div(X) the set of divisors
of X. In Div(V ) define the equivalence relation ≈. D ≈ D′ (D is linearly
equivalent to D′) : ⇐⇒ D − D′ = (f) for any f ∈ Fq(X), i.e. if and
only if they differ for a principal divisor. The group Div(X)/ ≈ is called
the Picard group and indicated with Pic(X). In the following, writing
D º D′, we will mean that the divisor D −D′ is effective. For a divisor let
D ∈ Div(X), L(D) := {f ∈ Fq(X)∗ | (f) + D º 0} ∪ {0}.
Definition 2.1 Let G ∈ Div(X), {P1, · · · , Pn} be rational points over Fq

with {P1, · · · , Pn} ∩ supp (G) = ∅, and put D := P1 + · · · + Pn ∈ Div(X).
The algebraic geometric code (or, for short, AG codes) C(X, D, G) is
the image of the linear map

α : L(G) −→ Fq
n

f 7−→ (f(P1), · · · , f(Pn)).

Proposition 2.1 Let X, D and G be as above, k and d respectively the
dimension and the minimum distance of the code C(X,D, G). Hence

1. k = dimL(G) − dimL(G − D). In particular, if n > deg G, then
k = dimL(G). Moreover, if 2g − 2 < deg G, then k = deg G + 1− g.

2. d ≥ n− deg(G).

Proof:

1. Let f ∈ kerα. Therefore f vanishes in P1, · · · , Pn. Since P1, · · · , Pn 6∈
supp (G), f ∈ L(G − D). If n > deg G, L(G − D) = {0}; hence α
is injective and k = dimL(G). Moreover, if 2g − 2 < deg G, k =
deg G + 1− g by the Riemann-Roch theorem.

2. If d is the minimum distance of the code, there exists f ∈ L(G) such
that α(f) has weight d > 0. Assume f(Pi) 6= 0 for i = 1, · · · , d, and
f(Pi) = 0 for i = d + 1, · · · , n. Thus f ∈ L(G− Pd+1 − · · · − Pn). As
f 6= 0, deg G−(n−d) = deg(G−Pd+1−· · ·−Pn) ≥ 0, so d ≥ n−deg G.
¤

REMARK: If we discard the hypothesis supp (G) ∩ supp (D) = ∅, we can
still associate a code C(X, D,G) to (X,D, G) by choosing t ∈ Fq(X) with
ordPi(t) = multiplicity of Pi in G and sending f ∈ L(G− (t)) to the n-uple
(f(P1), · · · , f(Pn)). The previous proposition still holds, but the choice of
t is not unique and choosing a different t with the same properties we get
a different code. We will define soon an equivalence relation between codes
such that different choices for t will produce equivalent codes.



12 2 ALGEBRAIC GEOMETRIC CODES ON CURVES

2.2 Dual AG codes

In this section we will define the code C∗(X,D, G), called the dual algebraic
geometric code associated to (X,D, G). Indicate with Ω(X) the set of ratio-
nal differential form on X and, for E ∈ Div(X), let Ω(E) = {ω ∈ Ω(X)∗ |
(ω)− E º 0}. In the following let W be a canonical divisor for X, W = ω
with ω ∈ Ω(X). Clearly, if we choose a different rational differential form
ω′, ω′ = fω for any f ∈ Fq(X), hence (w′) ≈ W .

Definition 2.2 The dual algebraic geometric code C∗(X, D, G) is the
image of the linear map

α∗ : Ω(G−D) −→ Fq
n

η 7−→ (resP1(η), · · · , resPn(η)),

where resPi(η) is the residue of η at the point Pi.

REMARK: It is easy to verify that, if E ∈ Div(X), the application from
L(W − E) to Ω(E) which sends f to fω is a bijection. Therefore, equiva-
lently, C∗(X, D, G) is the image of

β∗ : L(W + D −G) −→ Fq
n

f 7−→ (resP1(fη), · · · , resPn(fη))

Proposition 2.2 Let X,D and G as above, and let k∗ and d∗ be respectively
the dimension and the minimum distance of the code C∗(X,D, G).

1. k∗ = dimL(W + D − G) − dimL(W − G). In particular, if deg G >
2g−2, then k∗ = dim L(W +D−G) and, moreover if deg G < n, then
k∗ = n− (deg G + 1− g).

2. d∗ ≥ deg G− (2g − 2).

Proof:

1. The kernel of β∗ is L(W −G). If deg G > 2g − 2 then β∗ is injective.
Last statement follows from the Riemann-Roch theorem.

2. Analogously to what we did in Proposition 2.1, consider a code word
of weight d∗ and observe that, up to re-enumeration of P1, · · · , Pn, it is
equal to α∗(η) for some non-zero η in Ω(G−P1− · · · −Pd). Therefore
dimΩ(G− P1 − · · · − Pd) = dimL(W −G + P1 + · · ·Pn) ≥ 1 and we
conclude that the degree of such divisor is greater or equal 0. ¤

From what we said so far, it is clear that, in order to calculate more easily
the parameters of the code and have a positive distance, it is better to choose
divisors D and G such that 2g − 2 < deg G < deg D.
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Theorem 2.1 The codes C(X, D, G) and C∗(X, D, G) are dual to each
other.

Proof: First we show that C∗(X,D, G) ⊆ C(X, D,G)⊥. Let η ∈ Ω(G−D),
f ∈ L(G). We have to show that α(f) ◦ α∗(η) = 0. But α(f) ◦ α∗(η) =∑n

i=1 f(Pi)resPi(η). Remark that the rational differential form fη belongs
to Ω(−D), it can have simple poles just in the support of D. Hence∑

P∈X res(fη) =
∑n

i=1 resPi(fη) =
∑n

i=1 f(Pi)resPi(η). We conclude, by
the residues theorem, that α(f) ◦ α∗(η) = 0. Furthermore we know that

dimC(X,D, G)⊥ = n− k = n− dimL(G) + dimL(G−D) =

= dimL(W + D −G)− dimL(W −G) = k∗.

Thus C∗(X,D, G) = C(X, D,G)⊥. ¤

The following theorem shows that every dual algebraic geometric codes can
be obtained as algebraic geometric code and viceversa.

Lemma 2.1 There exists a differential form ω with simple poles with residues
1 in the points of the support of D and such that C(X,D, W + D − G) =
C∗(X, D, G), where W = (ω).

Proof: Chosen η ∈ Ω(X), let f ∈ Fq(X) be such that ordPif = −(ordPiη +
1). The function fη has simple poles in P1, · · · , Pn. We can multiply fη
with a rational function to obtain residues equal to 1 in those simple poles.
Let ω have such properties and let W = (ω). For every f ∈ L(W + D −G)
we have resPi(fω) = f(Pi)resPi(ω) = f(Pi). Then α(f) = β∗(f) and so we
finally get C(X,D, W + D −G) = C∗(X, D, G). ¤

We saw in section 1 that two codes are called equivalent if they differ for
a fixed permutation of the coordinates. We introduce a new equivalence
relation between codes such that it reflects, in some sense, the equivalence
relation between divisors. From now, when we will talk about equivalent
codes, we will mean equivalent according to the following definition.

Definition 2.3 Two codes C1 and C2, of length n over Fq, are called equiv-
alent if there exists γ ∈ (F∗q)n such that γC1 = C2.

REMARK: It is clear that the dimension and the distribution of weights
of a code are not changed by the multiplication with a non zero element
γ ∈ (F∗q)n. We will study the properties of a code up to equivalence. It will
be useful also to decode a given encoded message.

Lemma 2.2 Let D =
∑n

i=1 Pi be as above, G,G′ ∈ Div(X) whose supports
are disjoint sets from the ones of D and D′, G ≈ G′. Then C(X,D, G) is
equivalent to C(X, D,G′) and C∗(X,D, G) is equivalent to C∗(X, D,G′).
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Proof: Let (g) = G − G′ for g ∈ Fq(X). Since the supports of G and
G′ are disjoint from supp(D), g(Pi) 6= 0, the multiplication with g is an
isomorphism between L(G) and L(G′) and between Ω(G−D) and Ω(G′−D).
Therefore C(X,D, G) = γC(X, D, G′) and C∗(X,D, G) = γC∗(X, D,G′),
where γ = (g(P1), · · · , g(Pn)). ¤

Proposition 2.3 Let G ∈ Div(X) be such that 2G ≈ W + D. Then
C(X, D,G) is equivalent to its dual code.

Proof: It follows directly from Proposition 2.1 and Lemmas 2.1 and 2.2. ¤

REMARK: The viceversa in Proposition 2.3 does not hold. A counterex-
ample can be found in [4, Remark 1 p. 894].

The next theorem gives an equivalent condition for the existence of G such
that 2G ≈ W + D.

Theorem 2.2 (Weil) There exists G such that 2G ≈ W + D if and only
if D is a square in Pic(X).

From what we saw previously it is quite natural to state the following lemma,
which gives a sufficient condition to be self-dual.

Lemma 2.3 If there exists η ∈ Ω(X) with simple poles and residues equal
to 1 in the poles of the support of D and such that 2G = K +D for K = (η),
then C(X, D,G) is self-dual

Proof: Let ω and W be as in Lemma 2.1. We have η = fω for some non
zero rational function f . Thus K + D −G ≈ W + D −G and, by the proof
of the previous lemma, C(X,D, K +D−G) = γC(X, D, W +D−G) where
γ = (f(P1), · · · , f(Pn)). But f(Pi) = resPiη/resPiω = 1, so C(X, D,G) =
C(X, D,K +D−G) = C(X,D, W +D−G) = C∗(X,D, G) = C(X, D,G)⊥.
¤

In general this condition is just a sufficient one. It is proved in [18, 3.12]
that, if n > 2g + 2, then the condition is also a necessary one.

Let us now investigate the relations between the parameters of algebraic
geometric codes.

Lemma 2.4 Let 2g − 2 < deg G < n, d and d∗ the minimum distance of
C(X, D,G) and C∗(X, D,G) respectively. Then

1. n− deg G ≤ d ≤ n− deg G + g;

2. deg G− 2g + 2 ≤ d∗ ≤ deg G− g + 2.
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Proof: The lower bounds are the ones proved in Lemmas 2.1 and 2.2, while
the upper ones are the singleton bounds. ¤

Corollary 2.1 Let 2g−2 < deg G < n. If g = 0 then the codes C(X, D, G)
and C∗(X, D,G) are MDS.

We saw some bounds for the distance of algebraic geometric codes. We
would like now to see the distance as a geometric property of the divisors
D and G. Following what we did in the proof of Proposition 2.1, we remark
that x ∈ C(X,D, G) has weight r > 0 if x = α(f), with f different from
0 at r points among {P1, · · · , Pn} and vanishing at n − r points. Thus
f ∈ L(G− Pi(r+1) − · · · −Pi(n)) for some i ∈ Sn. It follows that there exists
a divisor D′ ¹ D of degree n− r such that L(G−D′) 6= {0}. In our case we
can assume that α is injective, i.e. deg G < n. If there exists D′ ¹ D with
deg D′ = n−d then there exists a non zero word of weight ≤ d in C(X, D,G)
. So we have that the minimum distance of C(X, D, G) is the smallest integer
d such that there exists a divisor D′ ¹ D with L(G−D′) 6= {0}. Hence the
minimum distance of a code can be obtained by looking at some subspaces
of L(G).

Analogously, if deg G > 2g− 2, the minimum distance of C∗(X, D, G) is
the smallest integer d∗ such that there exists a divisor D′ ¹ D of degree d
with L(W +D′−G) 6= {0}. We can state this sentence in the following way:
x ∈ C∗(X, D,G) has weight r > 0 if x = β∗(f) for some f ∈ L(W + D−G)
such that fω has non zero residue at r points among {P1, · · · , Pn} and zero
residue in the remaining ones. Then fω is regular at n − r points and
(fω) +

∑r
j=1 Pi(j) + G = E, where E is an effective divisor with support

disjoint from {Pi(1), · · · , Pi(r)}. So G −W ≈ −∑r
j=1 Pi(j) + E. Viceversa,

if the last equality holds, then C∗(X,D, G) has a word of weight r. This
allows us to state the following theorem.

Theorem 2.3 The minimum distance d∗ of C∗(X,D, G) is the smallest
number of distinct points Pi(1), · · · , Pi(d∗) in the support of D such that, in
Pic(X), G −W =

∑d∗
j=1 Pi(j) − E for any effective divisor E with support

disjoint from Pi(1), · · · , Pi(d∗).

Arguing this way we can compute the distribution of weights; in fact the
number of code words with weight r is equal to (q − 1) times the number
of divisors D′ ¹ D of degree r linearly equivalent to a divisor of the form
G−W + E for some E ∈ L(0), suppD′ ∩ suppE = ∅.

2.3 Rational points on curves and lower bounds

Let us deal again with the parameters of the algebraic geometric codes. We
know that one of the central problems of coding theory is finding codes with
relative distance δ and rate R as large as possible. Let Vq be the set of pairs
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(δ,R) coming from a linear code over Fq and Uq the set of limit points of Vq.
Manin proved the following theorem, that gives us some information about
Uq.

Theorem 2.4 There exists a function α : [0, 1] → [0, 1] such that Uq =
{(δ,R) | 0 ≤ R ≤ α(δ)}. α is continuous in [0, q−1

q ], vanishes in [ q−1
q , 0] and

is strictly decreasing.

Proof: see [17, th. 8 p. 2614]

REMARK: The function α above is exactly the same α we defined in section
1. We already know, by the Gilbert bound, that 1−Hq(δ) ≤ α(δ).

For an algebraic geometric code C(X,D, G), we deduce by Proposition 2.1,
if deg G < n, that

δ + R ≥ n− deg G

n
+

deg G + 1− g + dimL(W −G)
n

≥ 1 +
1− g

n
.

So we would like to find a family of codes with n going to infinity and g/n
as small as possible asymptotically.

Lemma 2.5 Let {Xi | i ∈ N} be a sequence of smooth projective curves
over Fq, gi := g(Xi) and N1(Xi) the number of rational points (of degree 1)
of Xi. If gi tends to infinity and limi→+∞ gi

N1(Xi)
= γ, then the intersection

of the line δ + R = 1− γ with the square [0, 1]× [0, 1] is contained in Uq.

Proof: Let (δ,R) be a point of the line intersected with the square. Since
γ is not negative, we have δ = 1 iff γ = 0 and it is clear that (1, 0) ∈
Uq. We can restrict to δ < 1. Consider the codes Ci := C(Xi, Di, Gi),
where Di is the sum of all the rational points P1, · · · , PN1(Xi) of Xi and
Gi := bN1(Xi)(1 − δ)cP1. The supports of Di and Gi are not disjoint, but
this is not a problem, as shown by the remark of page 11. Ri tends to
R̄ = R + l ≥ R, where l := limi→+∞

dim L(Wi−Gi)
ni

. Let δ̄ = limi→+∞ δi.

Now, we know that δi + Ri ≥ 1 + 1−gi+dim L(Gi−Wi)
ni

, so δ̄ + R̄ ≥ 1 − γ + l.
Therefore δ̄ ≥ 1− γ − R̄ + l = 1− γ −R = δ. Therefore the point (δ̄, R̄) is
in Uq and R̄ ≥ R, δ̄ ≥ δ. By the previous theorem, (δ,R) ∈ Uq. ¤

NOTE: In the proof of [24][Part II, 5.2] the author discards l and says
that Ri tends to 1− δ − γ = R. We are not sure this is true in general. In
any case, as we showed in the proof, it is sufficient to prove that Ri tends
to a value greater or equal R.

Corollary 2.2 Assuming the same hypotheses of the previous lemma, we
have α(δ) ≥ 1− δ − γ.
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Let Nq(g) := max{#X(Fq) | X is a smooth projective curve of genus g over Fq}.
It is clear by what we said above that we would like to know the value of
Nq(g) and the function

A(q) := lim
g→+∞

Nq(g)
g

.

To this end, we define the zeta function associated to a curve over Fq and
later on we will show how it is related to the number of rational points. Let
s ∈ C, X a smooth projective curve over Fq.

ζ(X, s) :=
∏
p

(1−N(p)−s)−1,

where the product is over all the closed points of X and N(p) = qdeg p.
Equivalently,

ζ(X, s) =
∑

Dº0

N(D)−s,

where the sum runs over all the effective divisors of X and N(D) = qdeg D.
Let δ be the g.c.d. of all the degrees of the effective divisors on X.

REMARK 1: The integer δ divides 2g − 2. In fact, by the Reimann-Roch
theorem, dimL(W ) > 0 and so there exists an effective divisor of degree
2g − 2.

REMARK 2: If n > 2g − 2 and n = kδ, then there exists an effective
divisor of degree n. Indeed we can write δ as a linear combination of degrees
di coming from effective divisors Di. δ =

∑m
i=1 aidi where ai ∈ Z. Therefore

D := k
∑m

i=1 aiDi has degree n. Recalling dimL(D) = deg D + 1 − g > 0
and choosing f ∈ L(D) \ {0}, we obtain that (f) + D is the wanted divisor.

For m ∈ Z, let Picm(X) = {[D] ∈ Pic(X) | deg D = m}. This is clearly a
good definition, because principal divisors have degree 0. If there exists a
divisor D′ of degree m, then #Picm(X) = #Pic0(X) := h via the bijection
[D] 7→ [D]− [D′].

Lemma 2.6 The number an of effective divisors of degree n is equal to

∑

[D]∈Picn(X)

qdim L(D) − 1
q − 1

.

Proof: If [D] ∈ Picn(X) then D + (f) is an effective divisor of degree n for
every f ∈ L(D) \ {0}. Moreover [D] + (f) = [D′] + (f ′) implies [D] = [D′]
and f/f ′ ∈ F∗q . ¤
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We immediately deduce the following theorem from Riemann-Roch’s the-
orem and what we observed previously:

Corollary 2.3 If n > 2g − 2 then an = h qn+1−g−1
q−1 .

Changing variables, we can write ζ(X, s) = Z(X, q−s) = Z(X, t) for s, t ∈ C;
so we have a power series that converges for |t| < 1. The zeta function
becomes

ζ(X, s) =
∑

n≥0

anq−sn =
2g−2∑

n=0

antn +
+∞∑

n=2g−1

antn,

where the index n in the second sum runs over the multiples of δ bigger than
2g − 2. By REMARK 1 at page 17, if we put e = (2g − 2 + δ)/δ, eδ is the
smallest multiple of δ larger than 2g − 2. Hence we have

Z(X, t) =
2g−2∑

n=0

antn +
+∞∑
n=e

anδt
nδ =

polynomial +
h

q − 1

+∞∑
n=e

(qnδ+1−g − 1)tnδ

=
h

q − 1
(
qg+1+δt2g−2+δ

1− (qt)δ
− t2g−2+δ

1− tδ
).

This way we obtained a rational function of t with poles at tδ = 1 and
(qt)δ = 1.

The following theorems are the fundamental connection between the zeta
function and our problem.

Theorem 2.5

Z(X, t) =
P1(t)

P0(t)P2(t)

where P0 = 1 − t, P2 = 1 − qt, P1 =
∏g

i=1(1 − αit)(1 − ᾱi) and αi are
algebraic integers of absolute value q

1
2 .

Proof: The proof in [2] uses only Riemann-Roch’s theorem, while the origi-
nal one, due to Weil, needs intersection theory.

Let us indicate with Nr the number of points of degree one over Fqr

Theorem 2.6 (Hasse-Weil bound) |Nr − (1 + qr)| ≤ 2g
√

qr.
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A curve with exactly 1 + q + 2g
√

q points over Fq is called maximal. We
said that an equivalent expression for ζ is

ζ(X, s) =
∏
p

(1−N(p)−s)−1 =
∏

r≥1

(1− q−sr)−Nr

Expanding the log of the zeta function in its Taylor series, we have

log Z(X, t) =
∑

r≥1

−Nr log(1− tr) =
∑

r≥1

Nr

r
tr

Hence, by Theorem 2.5,

log Z(X, t) = log P1(t)− log P0(t)− log P2(t) =

=
g∑

i=1

(log(1− αit) + log(1− ᾱit))− log(1− t)− log(1− qt) =

+∞∑

r=1

1 + qr −∑g
i=1(αi + ᾱi

r)
r

tr

This means that the knowledge of the αi’s is enough to compute Nr for every
r. For r = 1 we have N1 = 1+q+a1 and |a1| = 2g

√
q, so N1 ≤ 1+q+2g

√
q.

We can now go back to the problem of finding the value (or at least some
bounds) for A(q). It is clear that Nq(g) ≤ 1 + q + 2g

√
q, so

A(q) = lim
g→∞

Nq(g)
g

≤ 2
√

q.

The first improvement of this bound is due to Ihara ([10, p. 721]).

Theorem 2.7 For every q we have A(q) ≤
√

8q+1−1
2 .

Proof: Let bi = αi + ᾱi ∈ R. We have

q + 1−
g∑

i=1

bi = N1 ≤ N2 = q2 + 1−
g∑

i=1

(α2
i + ᾱi

2) = q2 + 1 + 2gq −
g∑

i=1

b2
i

By the Cauchy’s inequality we get

g

g∑

i=1

b2
i ≥ (

g∑

i=1

bi)2,

hence

N1 ≤ q2 + 1 + 2gq − g−1(
g∑

i=1

bi)2 = q2 + 1 + 2gq − g−1(N1 − 1− q)2.
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We get a quadratic equation on N1:

N2
1 − (2q + 2− g)N1 + (q + 1)2 − (q2 + 1)g − 2qg2 ≤ 0.

It turns out that

N1 ≤ 2q + 2− g +
√

(8q + 1)g2 + (4q2 − 4q)g
2

and so

A(q) ≤ lim
g→+∞

2q + 2− g +
√

(8q + 1)g2 + (4q2 − 4q)g
2g

=
√

8q + 1− 1
2

.

¤

Arguing analogously, Drienfeld and Vladut ([26, th. 1]) proved that, for
every prime power q, we have A(q) ≤ √

q − 1. On the other hand, the fol-
lowing theorem proves that we have an equality for the even powers of a
prime number.

Theorem 2.8 (Tsfasman, Vladut, Zink) Let q = p2m be an even power
of the prime p. Then there is a sequence of curves Xi, defined over Fq having
genus gi and Ni rational points, such that

lim
i→∞

Ni

gi
=
√

q − 1.

Proof: see [22, p. 28]

Using Lemma 2.5 we can state the following corollary:

Corollary 2.4 If q = p2m is an even power of a prime, then α(δ) ≥ 1− δ−
(
√

q − 1)−1.

It easy to check that the line R = 1 − δ − (
√

q − 1)−1 intersects the
Gilbert curve R = 1−Hq(g) for q ≥ 43 and, since q has to be a square, we
have an improvement of Gilbert bound for q ≥ 49.
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3 Decoding methods

A code is useful only if there exists an efficient way of decoding. Let us
introduce now two algorithms for decoding dual geometric codes. The first
one has been discovered by Skorobogatov and Vladut in 1990 and will be
called SV-algorithm for short. Nevertheless it is the easiest one and it is
not able to decode the full capability of the codes. Indeed we know that if
d is the minimum distance of a code, a good algorithm should be able to
correct every error of weight at most t, where 2t < d. We will see that the
SV-algorithm can surely correct errors of weight t if 2t < d− g, where g is,
as usual, the genus of the curve X but it could not work for larger values of
t. This is a non trivial restriction, since we saw that good codes are based on
curve with high genus. In order to solve this problem, Duursma improved
in 1992 the SV-algorithm and produced the more efficient processor we will
describe later. The main idea of Duursma algorithm is to use a majority
voting scheme. This technique has been used for the first time by Feng and
Rao to extend the first decoding algorithm for geometric codes, published
by Justesen in 1989.

3.1 SV-algorithm

Let C∗(X, D, G) be a fixed dual geometric code based on a curve X of genus
g, D = P1+, · · · , +Pn and 2g−2 < deg G. The designed distance of the code
is deg G− (2g− 2). Suppose we transmit a word c and the vector f = c + e
is received.

Definition 3.1 For any vector f ∈ Fq
n and any function ϕ in the function

field, the syndrome of f with respect to f is denoted by ϕ ◦ f and defined by
ϕ ◦ f =

∑n
i=1 ϕi(Pi)fi. By convention we put ϕ ◦ f = ∞ if ϕ has a pole in

any Pi.

The dual of C∗(X, D,G) is the code C(X,D, G), so c belongs to C∗(X,D, G)
if and only if x ◦ c = 0 ∀x ∈ C(X, D, G), hence if and only if ϕ ◦ c = 0
∀ϕ ∈ L(G). It means that c is a word of the code if and only if, chosen a
basis {ϕ1, · · · , ϕu} of L(G), the syndromes of c with respect to ϕi is 0 for
i = 1, · · · , u. Moreover, for every ϕ ∈ L(G), ϕ ◦ e = ϕ ◦ f . What we try to
do in the following is to deduce the error vector e from the syndromes of f .

Definition 3.2 An error location for e is a point Pi such that ei 6= 0. An
error locator for e is a function Θ with no poles among P1, · · · , Pn and
such that Θ(Pi) = 0 for every error location Pi.

Proposition 3.1 Let e have weight at most t and A be a divisor with no
poles among P1, · · · , Pn such that dimL(A) ≥ t + 1. Then an error locator
in L(A) exists.
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Proof: Let M be the support of e, i.e. the set of points Pi such that ei 6= 0.
A function Θ is an error locator for e if and only if Θ(Pi) = 0 ∀Pi ∈ M . Let
now {ϕ1, · · · , ϕs} be a basis of L(A). A linear combination a1ϕ1 + · · ·+asϕs

is an error locator if and only if

a1ϕ1(Pi) + · · ·+ asϕs(Pi) = 0 ∀Pi ∈ M .

This is a system of at most t equations in s unknowns and, by hypothesis,
s > t, so it has a non-trivial solution. ¤

The next proposition shows why finding an error locator is so important for
our purpose.

Proposition 3.2 Let e be an error vector of weight at most t, A and Z two
divisors on X with support disjoint from {P1, · · · , Pn}, such that deg A ≤
t + r and deg Z ≥ t + r + 2g − 1 for some r ≥ 0. If there exists an error
locator Θ in L(A) then e is uniquely determined by Θ and the syndromes of
e with respect to the functions in L(Z).

Proof: Let M ′ be the set of points where Θ vanishes. Clearly M ′ contains
M , the support of e. M ′ has at most t + r points. It is clear that ϕ ◦ e =∑

Pi∈M ′ ϕ(Pi)ei for every function without poles among P1, · · · , Pn. This is
true, in particular, for every function ϕ ∈ L(Z), so e is a solution of the
equation

ϕ ◦ x =
∑

Pi∈M ′
ϕ(Pi)xi ∀ϕ ∈ L(Z).

If e′ is another solution, then ϕ◦ (e−e′) = 0∀ϕ ∈ L(Z). It means that e−e′

belongs to C∗(X, D,Z). The minimum distance of this code is not less than
t + r + 1 but if e and e′ have both support in M ′ then e− e′ has weight at
most t + r. Therefore e = e′. ¤

REMARK: We are trying to decode f , so we do not know e. In partic-
ular, we do not know how to find an error locator for e and how to calculate
the syndromes. The second problem can be solved by choosing Z ¹ G. In
this case the syndromes can be calculated from f instead of e. The solution
of the second problem is treated in the next proposition and it requires the
the introduction of a further auxiliary divisor.

Proposition 3.3 Let e have weight at most t and Y be a divisor with sup-
port disjoint from the support of D such that deg Y ≥ t + 2g − 1. Then a
function Θ without poles among P1, · · · , Pn is an error locator for e if and
only if Θχ ◦ e = 0 for every χ ∈ L(Y ).

Proof: Let e′ = (Θ(P1)e1, · · · ,Θ(Pn)en). So we have Θχ◦e =
∑n

i=1 θ(Pi)χ(Pi)ei =
χ ◦ e′. We will have that Θ is an error locator if and only if e′ = 0. So, if
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Θ is an error locator then Θχ ◦ e = 0 for every function. Viceversa, suppose
χ ◦ e′ = 0 for every χ ∈ L(Y ). It means that e′ ∈ C∗(X,D, Y ). Recalling
that deg Y ≥ t+2g−1, we get that the distance of this code is greater than
t. This implies e′ = 0. ¤

Corollary 3.1 Let S = (ψiχj)i,j, where the elements ψi form a basis of
L(A) and the χ′js are a basis of L(Y ). Then Θ =

∑
i aiψi is an error locator

for e in L(A) if and only if
∑

i aiS
i = 0, where Si is the ith row of S.

REMARK: Again, we want to calculate the syndromes of e from those of
f . If Y + A ¹ G then Θχ ∈ L(G) for every Θ ∈ L(A) and χ ∈ L(Y ), so this
is allowed.

Summarizing, we are looking for three auxiliary divisors A, Z and Y with
the required properties. Assume that deg G > 2g − 2.

Lemma 3.1 Suppose there exists a divisor A′ such that deg A′ ≤ deg G −
(2g−1)−t and dimL(A′) ≥ t+1. Then there exist A, Z and Y with Z ¹ G,
Y + A ¹ G and satisfying the hypotheses of the previous propositions.

Proof: If the support of A′ is disjoint from {P1, · · · , Pn}, set A = A′, oth-
erwise add a suitable principal divisor. The first condition implies that, for
some u ≥ 0, t + 1 + u = dimL(A) ≥ deg A + 1 − g, so deg A ≤ t + u + g
and deg A = t + r for some r ≥ 0. We can now put Z = G and Y = G−A.
We get deg Z = deg G ≥ A + (2g − 1) + t ≥ r + t + 2g − 1 and deg Y ≥
deg G− deg G + 2g − 1 + t = t + 2g + 1. ¤

The conditions of Lemma 3.1 guarantees that 2t < d, so the code can correct
errors of weight t. We wondering when there exists a divisor A′ such that
deg A′ ≤ deg G−(2g−1)− t and dimL(A′) ≥ t+1. We give now a sufficient
condition.

Lemma 3.2 If 2t < deg G − (3g − 2), then A′ with the required properties
exists.

Proof: By the hypothesis, t + g ≤ deg G− 2g + 1− t, so there exists a, with
t + g ≤ a ≤ deg G− 2g + 1− t. Set A′ = aQ, where Q is a point not in the
support of D. dim L(A′) ≥ t + g + 1− g = t + 1. ¤

It is clear now what our strategy to decode a message is. Let us write
formally the SV-algorithm.

SV-ALGORITHM: Let c be a word of the code C∗(X,D, G) defined over a



24 3 DECODING METHODS

curve of genus g, with deg G > 2g − 2. Let f = c + e, where e is the error
vector.

STEP 0: Preliminary step
This step is performed only once for any code. Choose a divisor A such that
dimL(A) > t and deg A ≤ deg G− (2g − 1)− t. Choose divisors Z, Y such
that Z ¹ G,Y + A ¹ G, deg Z ≥ deg A + 2g − 1 and deg Y ≥ t + 2g − 1.
Choose bases {ϕ1, · · · , ϕu} of L(Z), {ψ1, · · · , ψs} of L(A) and {χ1, · · · , χr}
of L(Y ).

STEP 1: Syndrome calculation
Calculate the matrix S = (ψiχj ◦ f)i,j .

STEP 2: Error locator
Find α1, · · · , αs such that α1S

1 + · · ·+ αsS
s = 0, where Si is the ith row of

S. Θ =
∑s

i=1 αiψi is an error locator for e in L(A).

STEP 3: Error locations
Let M ′ be the set of points where Θ vanishes. This set contains the error
locations.

STEP 4: Error values calculation
Solve the system of equations

∑

Pl∈M ′
ϕi(Pl)el = ϕi ◦ f for i = 1, · · · , u.

Extend the solution by putting ej = 0 if Pj 6∈ M ′. (e1, · · · , en) is the error
vector.

3.2 A cubic curve

Before introducing the Duursma algorithm, we will give an example of geo-
metric code and we will use the SV-algorithm to correct en error of weight
2 produced during the transmission of a word. The curve X is given by the
equation x3 + y3 + z3 = 0.

• Points over F2

P0 = (0 : 1 : 1) P1 = (1 : 1 : 0) P2 = (1 : 0 : 1)

• Points over F4=
F2[z]

(x2+x+1)
= F2[α]
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points over F2

P3 = (α : 1 : 0) P4 = (α + 1 : 1 : 0) P5 = (α : 0 : 1)
P6 = (α + 1 : 0 : 1) P7 = (0 : α : 1) P8 = (0 : α + 1 : 1)

• Points over F8=
F2[x]

(x3+x2+1)
= F2[ω]

points over F2

Q1 = (ω : ω2 + 1 : 1) Q2 = (ω2 : ω2 + 1 : 1)
Q3 = (ω2 + ω + 1 : ω + 1 : 1) Q4 = (ω2 + 1 : ω : 1)
Q5 = (ω2 + ω : ω2 : 1) Q6 = (ω + 1 : ω2 + ω + 1 : 1)

First of all, the curve is smooth if char (Fq) 6= 3, as the system




x3 + y3 + z3 = 0
3x2 = 0
3y2 = 0
3z2 = 0

has no solutions in P2. Therefore the genus can be calculated by Plucker
formula and it is equal to 1. We want to check that we did not forget
any point of X. Recalling that the genus is 1, it is sufficient to calculate
the number of points over F2. We get N1 = 3, q = 2, g = 2, so 3 =
2 + 1− (α1 + ᾱ1). Hence α1 = −ᾱ1 and, recalling that |α1| =

√
2, we have

α1 = i
√

2. So we can now compute the number of points over F2r :

N2 = 22 + 1− (−2− 2) = 9

N3 = 23 + 1− (−i
√

2 + i
√

2) = 9

N4 = 24 + 1− 8 = 9.

So the points over F16 are those over F4. In general we have

Nr =
{

qr + 1, if r odd
q2k + 1 + (−1)k+12k+1 if r = 2k.

Let us consider now the code C∗(X, D, G) where D = P1 + · · · + P8 and
G = aP0 with 1 ≤ a ≤ 7. The length is 8, the dimension 8 − a and the
minimum distance is at least a. For example, if a = 6, C∗(X, D, G) is a
[8, 2,≥ 6]-code, while C(X, D,G) is a [8, 6,≥ 2]-code. Now we know that
C∗(X, D, aP0) is able to correct errors up to t, if 2t < d ≤ a. To correct
an error of weight 2, a = 5 should be sufficient. But in the SV-algorithm
we need a divisor A of degree at most a − 3 such that dimL(A) > 2. But
dimL(A) = deg A so this is impossible for a = 5. For codes defined over
this cubic curve, Lemma 3.2 gives a necessary condition. So we have to take
a = 6. Let us find a basis of L(aP0). P0 is in the affine plane z = 1, so we can
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use affine coordinates and, around P0, the curve is given by x3 + y3 +1 = 0.
The tangent line in P0 is y + 1 = 0, so vP0(x) = 1 while vP0(y + 1) = 3
(P0 is an inflexion point). Consider the functions xiyj(y + 1)−(i+j). They
have a pole of order 3j + 2i in P0. We can easily see that the functions
fij := xiyj(y+z)−(i+j) have no other poles on X, so (fij) = −(3j+2i)P0+E
with E effective divisor. We obtain that fij ∈ L(G) if 0 ≤ 3j + 2i ≤ a.
By choosing suitable i and j, we find a linearly independent functions in
L(aG), i.e. a basis of L(aP0). For instance, if a = 6, the functions 1,

x
y+z , y

y+z , x2

(y+z)2
, xy

(y+z)2
and x3

(y+z)3
form a bases of L(6P0) and they have

poles of order respectively 0, 2, 3, 4, 5 and 6. Therefore, evaluating the
functions in P1, · · · , P8, a generator matrix for C(X,D, 6P0) (a check matrix
for C∗(X,D, 6P0)) is

H =




1 1 1 1 1 1 1 1
1 1 α α + 1 α α + 1 0 0
1 0 1 1 0 0 α + 1 α
1 1 α + 1 α α + 1 α 0 0
1 0 α α + 1 0 0 0 0
1 1 1 1 1 1 0 0.




.

It can be proved that there are 6 linearly independent columns, so the min-
imum distance is exactly 6. Let us try to decode the vector f = c + e
where

c =
(

α α α + 1 1 α + 1 1 0 0
)

e =
(

α 0 1 0 0 0 0 0
)

f =
(

α α α + 1 1 α + 1 1 0 0
)
.

When the support of G is of the form bQ for some point G, the most
natural choice for A is a divisor of the form cQ, so we can take as ba-
sis of L(A) a subset of the special basis of L(G). In our example we set
A = 3P0,Z = 4P0, Y = 3P0. A basis of L(A) and L(Y ) is {1, x

y+z , y
y+z},

while {1, x
y+z , y

y+z , x2

(y+z)2
} is a basis of L(Z). The matrix of the syndromes

is

S =




1 ◦ f x
y+z ◦ f y

y+z ◦ f
x

y+z ◦ f x2

(y+z)2
◦ f xy

(y+z)2
◦ f

y
y+z ◦ f xy

(y+z)2
◦ f y2

(y+z)2
◦ f


 =




α + 1 0 α + 1
0 1 0

α + 1 0 α + 1


 .

The error locator Θ in L(A) is given by Θ = λ1 + λ2
x

y+z + λ3
y

y+z where

λ1




α + 1
0

α + 1


 + λ2




0
1
0


 + λ3




α + 1
0

α + 1


 =




0
0
0


 .
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For example we can take λ1 = λ3 = 1, λ2 = 0, Θ = 1 + y
y+z . Θ vanishes in

P1, P3 and P4, hence we have to find the unique solution of



1 1 1
1 α α + 1
1 1 1
1 α + 1 α







e1

e3

e4


 =




α + 1
0

α + 1
1


 .

The unique solution is e1 = α, e3 = 1, e4 = 0. We conclude that

e =
(

α 0 1 0 0 0 0 0
)
.

3.3 The Duursma algorithm

In the SV-algorithm we looked for an error locator Θ in L(A) and, in order to
find it, we needed another auxiliary divisor Y . The syndromes for products
between functions in L(A) and L(Y ) could be calculated from the received
vector if Y +A ¹ G. But from this condition we get the restriction deg G ≥
3g + 2t− 1. We will describe soon how this restriction can be overtaken by
the so-called majority voting method. Roughly speaking, it allows to deduce
further syndromes of e from the known ones, calculated from f .
Let C∗(X,D, G) be as usual. This code can correct errors of weight up to t,
where 2t ≤ deg G−2g +1. Take a point Q which is not in the support of D.
Put G′ = G − (deg G − 2g + 1)Q. G′ ¹ G, so C∗(X,D, G) ⊆ C∗(X,D, G′)
and deg G′ = 2g + 2t − 1. Choose a divisor A with deg A = t and support
disjoint from that of D. Define A′ = G′ − A − (2g − 1)Q. Also deg A′ = t.
Our strategy is to find an error locator in the space L(A+rQ) or L(A′+rQ)
with r ≤ 2g− 1 and r as small as possible. For sure it can be done since, by
Proposition 3.1, there exists an error locator in L(A+gQ), as deg(A+gQ) =
t + g and dimL(A + gQ) ≥ t + 1. Moreover, Proposition 3.3 tells we can
calculate it by using the syndromes for products of functions in L(A + gQ)
and L(A′ + (2g − 1)Q).

Definition 3.3 Let Q be a rational point of the curve X. For any divisors
H and any non-zero function Θ, the H-order of Θ with respect to Q is the
smallest integer m such that Θ belongs to L(H + (m− deg H)Q), if such an
integer exists. Otherwise the H-order is defined to be +∞. The H-order of
Θ with respect to Q is denoted by µH,Q(Θ) (or simply µH(Θ) when Q does
not change).

Proposition 3.4 Let Q be a fixed rational point. The following properties
hold for divisors H, H ′ and non-zero functions Θ, Θ′:

1. Let µH(Θ) = r < ∞. Then r ≥ 0 and vQ(Θ) = d(H) − H(Q) − r,
where H(Q) is the coefficient of Q in H.
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2. Let H < K and µH(Θ) = r < ∞. Then µK(Θ) = r + deg(K −H) −
(K −H)Q, where (K −H)Q is the coefficient of Q in K −H.

3. If µH(Θ) = r < ∞ and µH′(Θ′) = r′ < ∞, then µH+H′(ΘΘ′) = r + r′.

Proof:

1. By contradiction we assume r < 0. Then Θ ∈ L(H + (r − deg H)Q).
But deg(H + (r − deg H)Q) = r < 0 and so L(H + (r − deg H)Q) =
{0}. Therefore Θ = 0, which is a contradiction because Θ 6= 0 by
hypothesis. By definition of H-order, Θ belongs to L(H+(r−deg H)Q)
but it is not in L(H + (r − deg H)Q). It means that (Θ) + H +
(r − deg H)Q º 0 but (Θ) + H + (r − 1 − deg H)Q 6º 0. Hence
vQ(Θ)+H(Q)+ r−deg H ≥ 0 but vQ(Θ)+H(Q)+ r−1−deg H < 0.
We finally have that µK(Θ) = r + deg(K −H)− (K −H)Q.

2. If Θ ∈ L(H + kQ) then Θ ∈ L(K + kQ), so µK(Θ) < ∞. By part (1),
we obtain µK(Θ) = deg K −K(Q)− vQ(Θ) = deg(K −H) + deg H −
(K −H)Q−H(Q)− vQ(Θ) = r + deg(K −H)− (K −H)Q.

3. By definition of order, Θ ∈ L(H + (r − deg H)Q) and Θ′ ∈ L(H ′ +
(r′−deg H ′)Q). Since (ΘΘ′) = (Θ)+(Θ′), we have ΘΘ′ ∈ L(H +H +
(r + r′ − deg H − deg H ′)Q) = r + r′. Hence µH+H′(ΘΘ′) < +∞ and
so we can apply point (1). Recalling that vQ(ΘΘ′) = vQ(Θ) + vQ(Θ′),
we obtain µH+H′(ΘΘ′). ¤

Corollary 3.2 Let ψ1, · · · , ψm be functions such that µH(ψ1) < · · · < µH(ψm)
is a complete list of the possible values µH(ψ) ≤ deg H+r. Then {ψ1, · · · , ψm}
is a basis of L(H + rQ).

The main object involved in the Duursma algorithm is the syndromes table
S. As in the SV-algorithm, suppose a word c is transmitted and f = c + e
is received, where e is an error vector of weight not bigger than t. Using
the previous corollary, we can choose bases φk of L(A + A′ + (3g− 1)Q), ψi

of L(A + (2g − 1)Q) and χj of L(A′ + (2g − 1)Q), where µA+A′(φk) = k,
µA(ψi) = i and µA′(χj) = j. We use the A-order to index the rows and the
A′ for the columns. We call these indices the orders of the rows and the
columns. S is defined by

Sij = ψiχj ◦ e

and so S is a (t + g) × (t + g) matrix. By Proposition 3.4, the (A + A′)-
order of the (i, j)-entry is i + j. The knowledge of S is sufficient to find an
error locator. In fact by Corollaries 3.2 and 3.1, knowing the rows 1, · · · , i
means knowing all the syndromes ψχ, where ψ ∈ L(A + (i − t)Q), χ ∈
L(A′+(2g−1)Q). If there exists ψ such that ψχ◦ e = 0 for every χ, then ψ
is an error locator in L(A + (i− t)Q). Thus we can check if an error locator
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in L(A + (i− t)Q) exists. Analogously for columns up to order j to find an
error locator in L(A′ + (j − t)Q). The fundamental problem is that we do
not know e, but we have just f , so we cannot calculate all the syndromes in
S.

Nevertheless, observe that φiχj belongs to L(A + A′ + (i + j − 2t)Q) =
L(G + (i − j − deg G)Q), so if i + j deg G, then G + (i + j − deg G)Q ¹ G
and ψiχj ◦ e = ψiχj ◦ f , hence the entries of order up to deg G are known.

Let us say that a row (or column) is known if all the entries in that row
(or column) are known, unknown otherwise. By construction, the orders
of rows and columns are less or equal 2g − 1 + t, so the rows and columns
of order at most t are known, as, for their (i, j)-entries, we have i + j ≤
t + 2g − 1 + t = 2g − 2t− 1 ≤ deg G.

There exists in every row an element with A′-order equal to 2g − 1 + t,
so, if i > t + deg G− (2g + 2t− 1), the row is initially unknown. The order
of the t-th row is at most t + g − 1.

If deg G ≥ 3g + 2t − 1 then for the (i, j)-entries in the first t rows, we
have i + j ≤ t + g − 1 + 2g − 1 + t = 2t + 3g − 2 < deg G, so the first t
rows are known. In this case these rows form the syndrome table used by
the SV processor with auxiliary divisors A + rQ and A′ + (2g − 1)Q, where
r + t is the order of the t-th row. The first t rows can be known even if
deg G < 3g + 2t− 1.

It can happen that, from the known rows and columns, we cannot find
any error locator. This case is more interesting because we have to use a
technique called majority voting in order to deduce more syndromes from
the known entries. As a preliminary remark, the next lemma shows how,
from a new entry, we can obtain many others.

Lemma 3.3 Suppose all the syndromes φ ◦ e are known, for µA+A′(φ) < s,
and an entry of order s is known. Then all the entries of order s are known.

Proof: Let Sij be the known entry of order s. It means that i + j = s and
Sij = ψiχj ◦e. ψiχj ∈ L(A+A′+(s−2t)Q), so it can be written as aφs +φ′,
where a ∈ Fq, µA+A′(φ′) < s. Sij = aφs ◦ e + φ′ ◦ e and φ′ ◦ e is known by
hypothesis, hence we can calculated φs ◦ e. By linearity we can deduce the
syndromes of the functions in L(A + A′ + (s − 2t)Q), hence every entry of
order s. ¤

Motivated by the proof of the lemma, it is convenient to write every product
ψiχj with i + j > deg G as a linear combination of the φi’s. Moreover, we
can stop when i+ j > 3g−1+2t, because, in the worst case, we will find an
error locator in L(A + gQ), so we will work with function of (A + A′)-order
at most 3g − 1 + 2t.

We recall that our aim is to find an error locator Θ with µA(Θ) = u
or µA′(Θ) = u and we want u as small as possible, since finding an error
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locator with µA(Θ) requires the knowledge of the rows with order up to u.
The following proposition describes how the increasing rate of the number
of error locators depends on u.

Proposition 3.5 Let e have weight at most t = deg A = deg A′ and let
t ≤ u ≤ g+t. Suppose there are no error locators Θ for e with µA(Θ) < u or
µA′(Θ) < u. For r between u and 2g−1+t, let r′ be the value 2g−1+t+u−r.
Let p be the number of r between u and 2g1 + t such that there are error
locators Θ, η for e with µA(θ) = r and µA′(η) = r′, and let q be the number
of r between u and 2g − 1 + t such that there is neither an error locator Θ
with µA(θ) = r nor an error locator η with µA′(η) = r′. Then p− q ≥ u− t.

Proof: First remark that, for r running in the interval [u, 2g− 1 + t], also r′

does the same, and their sum is constantly equal to 2g − 1 + t + u. Define

J = {r | u ≤ y ≤ 2g − 1 + t},

I = {r ∈ J | there exists an error locator with A-orderr},
I ′ = {r ∈ J | there exists an error locator with A′-order r′}.

We get
p = #(I ∩ I ′)

q = #(J \ (I ∪ I ′)) = 2g + t− u−#(I ∪ I ′).

We claim that both #I and #I ′ are greater or equal t.
Put De =

∑
ei 6=0 Pi, i.e. the sum of the error locations. An error locator

in L(A+(r−t)Q) is an element of L(A+(r−t)Q−Be). Consider r = 2g−1+t.
We have to study L(A+(2g−1)Q−Be). We have deg(A+(2g−1)Q−Be) ≥
2g− 1, so dimL(A+(2g− 1)Q−Be) ≥ g. By Corollary 3.2 we can choose a
basis of L(A + (2g − 1)Q−Be) by choosing ρi with different µA−Be(ρi) = i
and µA−Be(ρi) ≤ 2g − 1 + t − deg Be. Recalling that µA(ρi) ≥ u because
there are no error locators with A-order less than u, we get, by Proposition
3.4(b), µA−Be(ρi) = i + deg Be ≤ 2g1 + t. We found at least g error locators
with different orders between u and 2g − 1 + t. Thus #I ≥ g.

Arguing analogously on the columns, we get #I ′ ≥ g. ¤

A fundamental role in the algorithm we are explaining is played by row and
column candidates. We know that, in order to find an error locator with A-
order r, we test a function ψ with all the functions in L(A′+(2g− 1+ t)Q).
More explicitly, if Si is the i-th row of S, we look for

∑
i≤r aiψi, where∑

i≤r Si = 0. But many times we know just the syndromes for the products
with function of A′-order up to r′, so we can test ψ just with functions in
L(A′ + (r′ + t)Q). If r′ < 2g− 1 + t we are not sure ψ is an error locator. It
is just a possible candidate. This motivates the formal definition below.
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Definition 3.4 A function θ is called a row candidate of order (r, r′) if
µA(Θ) = r and Θη ◦ e = 0 for all the functions η with µA′(η) ≤ r′. We say
Θ to be normalized if Θ = ψr + Θ′, with µA(Θ′) < r.

A function θ is called a column candidate of order (r, r′) if µA′(η) = r
and Θη ◦ e = 0 for all the functions Θ with µA(Θ) ≤ r. η is normalized if
η = χr′ + η′, with µA′(η′) < r′.

REMARKS: We said above that a row candidate of order (r, 2g − 1 + t) is
an error locator. Clearly a row candidate of order (r, r′) is, a fortiori, a row
candidate of order (r, r′′) for every r′′ < r′. Similarly for column candidates.

The following proposition shows how to find candidates, and their rela-
tions with the syndromes matrix. We will state it just for row candidates.
Corresponding properties hold for column candidates.

Proposition 3.6 1. Let S|rr′ be the matrix (Sij)i≤r,j≤r′. A function∑
i≤r aiψi with ai 6= 0 is a row candidate of order (r, r′) if and only if∑
i≤r Si = 0, where Si is the i-th row of S|rr′.

2. If Θ is a normalized row candidate of order (r, r′ − 1) and η is a
normalized column candidate of order (r − 1, R′), then

Θχr′ ◦ e = ψrη ◦ e.

3. If θ1 and Θ2 are distinct normalized row candidates of order (r, r′− 1)
and Θ1χr′ ◦e 6= Θ2χr′ ◦e, then there are no column candidates of order
(r − 1, r′).

Proof:

1. It follows directly from Corollary 3.2 and the linearity of the syndrome
with respect to the functions.

2. Write Θ = ψr + Θ′ with µA(Θ′) < r, η = χr′ + η′ with µA′(η′) < r′.
We get Θχr′ ◦e = Θη ◦e−Θη′ ◦e = Θη ◦e = ψrη ◦e+Θ′η ◦e = ψrη ◦e.

3. By contradiction, assume there exists a column candidate of order
(r − 1, r′). Then, by (2), Θ1χr′ ◦ e = ψrη ◦ e = Θ2χr ◦ e, which is a
contradiction. ¤

We are now ready to learn how to add new syndromes in the matrix S.
Suppose all the syndromes ϕ ◦ e are known for µA+A′(ϕ) < s, but ϕs ◦ e is
unknown. This implies that all the entries of order less than s are known,
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but no one of order s. In this case s ≥ deg G + 1 ≥ 2t + 2g. Suppose
moreover that the known rows and column did not give any error locator.
We consider now all the entries Srr′ where r + r′ = s. Since all the entries
in S|r,r′−1 and S|r−1,r′ are known, we are able to decide whether there are
a row candidate Θ of order (r, r′ − 1) and a column candidate η of order
(r − 1, r′). If both exist, we can choose them normalized and we shall call
Srr′ a test entry for s. Note that the value Θχr′ ◦ e is independent by the
the chosen row candidate.

If there exists an error locator with A-order r, we can guess it is exactly
Θ. In this case Θ ◦ e = 0. But θ = ψr + Θ′, so 0 = Θχr′ ◦ e = ψrχr′ ◦
e + Θ′χr′ ◦ e. Thus ψrχr′ ◦ e = −Θ′χr′ ◦ e, where the right hand side is
known, as µA+A′(−Θ′χr′) < s. The proof of Lemma 3.3 shows how it is
possible to deduce from ψrχr′ ◦ e the value of ϕs ◦ e. Let us call this value
the vote of the entry Srr′ . As consequence of the previous proposition,
observe that the same vote for Srr′ could be obtained by supposing η to be
an error locator.

We are not sure this vote is the true value of ϕs ◦ e, since it comes from
the guess Θ ◦ e = 0. Nevertheless, the next proposition ensures that the
majority of votes are correct.

Proposition 3.7 The number of test entries Srr′ with r + r′ = s producing
correct votes exceeds those producing incorrect votes by at least s−2g−2t+
1 > 0. In particular there is at least one of such a test entry.

Proof: Let u = s−2g− t+1. As s ≥ 2g+2t, u ≥ t+1 and we are allowed to
apply Proposition 3.5. If r′ is defined as in there, the pairs (r, r′) are exactly
those such that r + r′ = s. We claim that the number of correct votes is at
least p and the number of incorrect votes is at most q.

Suppose there exist error locators Θ, η with µA(Θ) = r and µA′(η) = r′.
We can suppose them normalized. Θ is also a row candidate of order (r, r′−1)
and η is a column candidate of order (r− 1, r′), so, for each normalized row
candidate Θ1 of order (r, r′ − 1), Θ1χ − r′ ◦ e = Θχ − r′ ◦ e = 0. It means
the vote of Srr′ was correct.

On the other hand, suppose Srr′ gives an incorrect vote, i.e. there exist
a normalize row candidate Θ1 of order (r, r′ − 1), a column candidate η1 of
order (r − 1, r′) and Θ1χr′ ◦ e 6= 0. Suppose by contradiction there exists
an error locator θ with µA(θ) = r. Then 0 = Θχr′ ◦ e = Θ1χr′ ◦ e 6= 0.
For similar reasons it is impossible there exist an error locator with A′-order
equal to r′.

We finally obtain that the difference between correct and incorrect votes
is at least p− q ≥ u− t = s− 2g − 2t + 1. ¤

REMARK: The existence of a basis element ϕs for s ≥ 2t + 2g implies that
there is an entry of order s in S. Indeed ϕs can be chosen as a product ψrχr′ .
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Let us write now the Duursma algorithm.

DUURSMA ALGORITHM: Let c be a word of the code C∗(X, D, G), based
on a curve X of genus g and let f = c + e be the received word, where
wt(e) ≤ t and deg G ≥ 2t + 2g − 1.

STEP 0: Preliminary step
This step is done just once for every fixed code. Choose a divisor A with
deg A = t and support disjoint from the one of D. Pick a rational point
Q not in the support of D. Put G′ = G − (deg G + 2g + 2t − 1)Q and
A′ = G′ − A − (2g − 1)Q. Choose bases {ϕ0, · · · , ϕ3g+2t−1} of L(A + A′ +
(3g− 1)Q), {ψ0, · · · , ψ2g+t−1} of L(A + (3g− 1)Q) and {χ0, · · · , χ2g+t−1} of
L(A′ + (2g − 1)Q), indexed respectively by the (A + A′), A and A′ orders.
For all indexes i, j with deg G < i + j ≤ 3g + 2t − 1 write ψiχj as a linear
combination of ϕ0, · · · , ϕi+j .

STEP 1: Syndrome calculation
Construct the syndromes table S in the following way: S is a (t+g)×(t+g)
matrix where rows and columns are indexed by A-orders and A′-orders. For
i + j ≤ deg G, Sij = ψiχj ◦ f . If all the syndromes are 0, then f belongs to
C∗(X, D, G). Leave the cells of order greater than deg G blank. Calculate
the syndromes ϕs ◦ f for s ≤ deg G.

STEP 2: Test for error locator
Let u be the maximal order of the known rows. Look for a non-zero solution
of the linear system

∑

i≤u

αiS
i = 0

where Si is the i-th row of S. If a solution α exists, then
∑

i≤u αiψi is an
error locator: go to step 5.
Let u be the maximal order of the known columns. Look for a non-zero
solution of the linear system

∑

j≤u

βjSj = 0

where Sj is the j-th column of S. If a solution β exists, then
∑

j≤u βjχj is
an error locator: go to step 5.

STEP 3: Estimate additional syndromes
Assume that every entry of order s−1 is known, while no entry of order s is
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known. For each pair (r, r′) with r + r′ = s, try to solve the linear systems

∑

i<r

Sikαi = −Srk for k < r′

∑

j<r′
Skjβj = −Skr′ for k < r.

If both solutions α and β exist, put Srr′ = −∑
i<r αiSir′ = −∑

j<r′ βjSrj .
and call Srr′ a test entry for s.

STEP 4: Majority voting
For each test entry Srr′ use the expressions of ψrχr′ in terms of the basis ϕi,
and the known syndromes φi ◦ e for i < s, to calculate the vote ϕs ◦ e. The
true value ϕs ◦ e is the vote that occurs most frequently. Using this value,
recalculate all the syndromes ψrχr′ (all but the test entries that gave correct
votes). If an additional column or row is known, go to step 2, otherwise go
to step 3.

STEP 5: Find error locations
We found an error locator Θ with µA(Θ) ≤ t + g or µA′(Θ) ≤ t + g. Deter-
mine the set M = {Pi ∈ supp(D) | Θ(Pi) = 0}. This set contains the error
locations.

STEP 6: Calculation of error values
Suppose we found an error locator using rows (or columns) up to order u.
Then the syndromes ϕk ◦ e for k ≤ u + 2g + t − 1 are known. Solve the
equations

∑

Pl∈M

ϕk(Pl)el = ϕk ◦ e for k ≤ u + 2g + t− 1.

Extend the unique solution (el : Pl ∈ M) of this set of equations by putting
el = 0 for Pl 6∈ M . Then e = (e1, · · · , en) is the error vector.

REMARK: The uniqueness of the solution in step 6 follows from Theorem
3.1 with divisors A + (u− t)Q and A + A′ + (u + 2g + t− 1− 2t)Q.

3.4 Example

Let us go back to the code C∗(X, D,G), where X is the curve x3+y3+z3 = 0,
P0 = (0 : 1 : 1), G is the sum of the other point over F4 and D = aP0. In
subsection 3.2 we said that the SV-algorithm requires a ≥ 6 to correct an
error of weight 2. We shall take a = 5 and use the Duursma algorithm.
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Suppose we received f = x + e, where

x = ( α α + 1 1 0 0 0 1 0 )

e = ( α 0 0 1 0 0 0 0 )

f = ( 0 α + 1 1 1 0 0 1 0 ).

We chose a word x in C∗(X, D, 5P0) but not in C∗(X, D, 6P0). The natural
choices in the preliminary step are Q = P0 and A = 2P0, so all the bases can
be chosen as subsets of the single basis of L(6P0) = L(A + A′ + (2g− 1)P0).
We get A′ = A = 2P0 and bases

{ϕ0 = 1, ϕ2 =
x

y + z
, ϕ3 =

y

y + z
, ϕ4 =

x2

(y + z)2
, ϕ5 =

xy

(y + z)2
, ϕ6 =

x3

(y + z)3
},

{ψ0 = ϕ0, ψ2 = ϕ2, ψ3 = ϕ3},
{χ0 = ϕ0, χ2 = ϕ2, χ3 = ϕ3}

In the syndromes table S we know all the entries of order at most 5. Just
S33 is unknown. Write ψeχ3 = ϕ6. The syndromes table is

S =




α + 1 1 α + 1
1 0 1

α + 1 1


 .

Observe that S is symmetric, so working with rows or columns gives the
same final result. The system

α1




α + 1
1

α + 1


 + α2




1
0
1


 =




0
0
0




has just a trivial solution, so there are not locators with A-order 2. The
only entry of order 6 is S33, so it must be a test entry by Proposition 3.7,
i.e. there must be a row candidate of order (3, 2). Indeed a solution for

α0

(
α + 1

1

)
+ α2

(
1
0

)
=

(
α + 1

1

)

is given by {α0 = 1,α2 = 0}, so S33 = S03 = α + 1. This is the only vote,
hence it must be correct. The syndromes matrix is now

S =




α + 1 1 α + 1
1 0 1

α + 1 1 α + 1


 .
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A new row has been found and the matrix is totally known, so there must be
an error locator. We now remark that {α0 = 1 = α3, α2 = 0} is a solution
for the system

α0




α + 1
1

α + 1


 + α2




1
0
1


 + α3




α + 1
1

α + 1


 =




0
0
0




hence Θ = ψ0 + ψ3 = 1 + y
y+z is an error locator for e. It vanishes in P1, P3

and P4. We have to solve the system

ϕk(P1)e1 + ϕk(P3)e3 + ϕk(P4)e4 = ϕk ◦ e for k ≤ 6.

It is easy to see that {e1 = α, e3 = 0, e4 = 1} is the only solution for




1 1 1
1 α α + 1
1 1 1
1 α + 1 α
1 α α + 1
1 1 1







e1

e3

e4


 =




α + 1
1

α + 1
0
1

α + 1




.

Therefore we obtain

e =
(

α 0 0 1 0 0 0 0
)

3.5 Another example: the Klein quartic

The previous example does not show explicitly the majority voting mech-
anism. To emphasize it, we have to consider an example such that the
syndromes matrix contains a larger number of unknown entries.

The curve X defined by x3y + y3z + xz3 = 0 is called the Klein quartic.
X, over a field with characteristic different from 7, is smooth, so its genus
can be easily calculated by the Plücker formula and it equals 3. We shall
often work with F2 and its algebraic extensions. The point of the Klein
quartic over F2 are:

P0 = (0 : 0 : 1) P1 = (0 : 1 : 0) P2 = (1 : 0 : 0).

Let F16 the field of 16 elements, based on the irreducible polynomial x4 +
x3 + 1. For short, every element y of this field will be denoted by an integer
n between 0 and 15, such that, if (a3, a2, a1, a0)2 is the binary representation
of n, then y = a3x

3 + a2x
2 + a1x + a0 in F2[x]/(x4 + x3 + 1).
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The points of the Klein quartic over F16 are those over F2 and

P3 = (10 : 11 : 1) P4 = (11 : 10 : 1)

P5 = (3 : 10 : 1) P6 = (5 : 11 : 1) P7 = (8 : 10 : 1) P8 = (15 : 11 : 1)

P9 = (10 : 2 : 1) P10 = (11 : 4 : 1) P11 = (10 : 9 : 1) P12 = (11 : 14 : 1)

P13 = (6 : 8 : 1) P14 = (13 : 15 : 1) P15 = (7 : 3 : 1) P16 = (12 : 5 : 1).

The points in the same row are conjugate. P3 and P4 are over F4 (they are
rational points of degree 2 over F2).

Consider the codes C∗(X, D, aP0), where D = P1+ · · ·+P16 and 5 ≤ a ≤ 15.
They have dimension 18− a and minimum distance greater or equal a− 4.
In this example we want to correct errors of weight at most 3, so we need
a ≥ 11.

The function z/x has a pole of order 3 in P0, while y/z has a zero of
multiplicity 1 in P0. In the following table the functions forming a base for
L(16P0) and their pole orders in P0.

pole ord. 0 3 5 6 7 8 9 10 11 12 13 14 15 16
function 1 z

x
yz
x2

z2

x2
y2z
x3

yz2

x3
z3

x3
y2z2

x4
yz3

x4
z4

x4
y2z3

x5
yz4

x5
z5

x5
z6

x6

We want to decode f = x + e, where x ∈ C∗(X, D, 11P0) and e is the
error vector. For example assume

f = (1 1 10 11 3 5 8 15 11 10 11 10 0 0 0 0)

g = (0 0 0 11 0 6 4 0 0 0 0 0 0 0 0 0)

e = (1 1 10 0 3 3 8 11 11 10 11 10 0 0 0 0)

.

The natural choice for Q and A is Q = P0, A = 3P0. Thus A′ = A. As bases
of L(14P0) = L(A + A′ + (3g− 1)P0) we choose the functions ϕ of the basis
of L(16P0) with A-order up to 14. The functions among them with order at
most 8 form a basis for L(A + (2g − 1)P0) = L(A′ + (2g − 1)P0) = L(8P0).
With respect to these choices, we get the syndromes table
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S =

0 3 5 6 7 8
0 9 5 0 11 2 7
3 5 11 7 5 7 15
5 0 7 7 15
6 11 5 15
7 2 7 *
8 7 15 * *

where the number in bold are the orders of rows and column.

Observe that S is symmetric, so working with rows or columns gives the
same final result. Since the rows 0 and 3 are linearly independent, we are
not able to find an error locator; hence we have to go to the third step of
the Duursma algorithm and to add more syndromes in the matrix. There
are 3 entries of order 12, namely S57, S66 and S75. Consider S66. Hence
{a0 = 11, a3 = 12, a5 = 0} is a non-zero solution for

a0




9
5
0


 + a3




5
11
7


 + a5




0
7
7


 =




11
5
15




so there exists a row candidate of order 6, 5 and, by symmetry, a column
candidate of order (5, 6). S66 is a test entry and its vote is given by S66 =
11 · 11 + 5 · 12 = 4. Now take S57. We have

3
(

9
5

)
+ 13

(
0
7

)
=

(
2
7

)
,

11




9
5
0
11


 +




5
11
7
5


 =




0
7
7
15


 ;

hence S57 is a test entry with vote 8 = 11 · 2 + 7 = 3 · +13 = 13 · 7. By
symmetry, also S75 gives the same vote. Therefore the true value of ϕ12 ◦ e
is 8. The new syndromes table is

S =

0 3 5 6 7 8
0 9 5 0 11 2 7
3 5 11 7 5 7 15
5 0 7 7 15 8
6 11 5 15 8
7 2 7 8 *
8 7 15 * *

.
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No new rows have been added, so we have to calculate ϕ13 ◦ e. The entries
of order 13 are S58, S67, S85 e S76. Since S is symmetric we can reduce to
study S58 and S67. Let us start with the first one. The system

a0




9
5
0
11
2




+ a3




5
11
7
5
7




=




0
7
7
15
8




has the non-zero solution {a0 = 11, a3 = 1}, so there exists a row candidate
of order (5, 7), namely 11ψ0 +ψ3. It can be calculated that there exists also
a column candidate of order (3, 8), hence the (5, 8)-entry is a test entry with
vote S58 = 11 · 7 + 15 = 12. As consequence of majority voting system,
either (6, 7) is not a test entry or it gives the same vote as (5, 7). Indeed the
system

a0




9
5
0
11


 + a3




5
11
7
5


 + a5




0
7
7
15


 =




11
5
15
8




does not have any solution different from 0, so no row candidate of order
(6, 6) exists. We conclude that ϕ13 ◦ e = 12 and the table is now

S =

0 3 5 6 7 8
0 9 5 0 11 2 7
3 5 11 7 5 7 15
5 0 7 7 15 8 12
6 11 5 15 8 12
7 2 7 8 12 *
8 7 15 12 * *

We added a new row, namely S5, so we have to go back to step 2 of the
algorithm and check if a0S

0 + a3S
3 + a5S

5 = 0 has a non-zero solution. A
solution is {a0 = 11, a3 = a5 = 1} and it implies that Θ = 11ψ0 + ψ3 + ψ5

is an error locator for e. Θ, applied in P1, · · · , P16 is

(
11 11 1 0 1 0 1 0 13 6 12 7 8 14 3 4

)
.

The error locations are among P4, P6 and P8. The error vector can be
calculated by finding the unique solution for

ϕk(P4)e4 + ϕk(P6)e6 + ϕk(P8)e8 = ϕk ◦ e for k ≤ 13.
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It means to solve



1 1 1
10 15 5
1 4 14
11 3 8
11 6 7
10 14 4
1 8 3
1 9 2
11 12 13
10 5 15
10 10 10







e4

e6

e8


 =




9
5
0
11
2
7
5
7
15
8
12




.

The unique solution is {e4 = 11, e6 = 6, e8 = 4}, as we wanted.
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4 Codes over higher dimensional varieties

After talking about AG codes over curves, we want to define AG codes over
higher dimensional varieties. In order to pass to higher dimensional varieties
we need the tools of modern algebraic geometry and, in particular, scheme-
theory. Therefore, the first part will be spent to introduce (or recall) the
necessary definitions and basic facts from algebraic geometry. To do this we
will follow [7] quite closely and we will often refer to it for proofs and deeper
information. We assume the main properties of schemes and morphisms
of schemes to be known. In subsection 4.3 codes over varieties are defined
using the H-construction introduced by Tsfasman and Vladut in [21].

4.1 Sheaves of modules

Definition 4.1 Let (X,OX) be a ringed space. A sheaf of OX-modules
(or, simply, an OX-module) is a sheaf F on X, such that, for every open
U ⊆ X, F(U) is an OX(U)-module and, for every open sets V ⊆ U , the
restriction F(U) → F(V ) is compatible with the module structures via the
ring homomorphism OX(U) → OX(V ).

A morphism between two OX -modules F and G is a morphism of sheaf
such that, for each open set U ⊆ X, the map F(U) → G(U) is a morphism
of OX(U)-modules.

The category of OX -modules is closed under kernel, image, cokernel, di-
rect sum, direct or inverse limit and quotient. We can also define the tensor
product of two OX -modules F and G in the following way: F ⊗ G is the
sheaf associated to the presheaf given by U 7→ F(U)⊗OX(U) G(U) for every
open U ⊆ X.

Definition 4.2 An OX-module F is said to be free if it is isomorphic to
the direct sum of copies of OX . The number of copies of OX is called the
rank of F . F is locally free if X can be covered by open sets U such that
F|U is a free OX-module.

It can be proved that the rank of OX |U is the same for open subsets U in the
same connected component of X. Therefore, if the underlying topological
space of X is connected, then it makes sense to talk about the rank of a
locally free OX -module.

Definition 4.3 An invertible sheaf on X is a locally free OX-module of
rank 1.

Invertible sheaves will play an important role in our work for their connec-
tions with line bundles and divisors. The next lemma explains the choice
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of the word invertible and shows that the set of invertible sheaves on a ring
space, endowed with the operation ⊗, is a group.

Lemma 4.1 If L and M are invertible sheaves on a ringed space X, then
L ⊗M is an invertible sheaf on X and, for every invertible sheaf L, there
exists an invertible sheaf L−1 on X such that L ⊗ L−1 ∼= OX .

Proof: There exists a covering {Ui} such that L|Ui
∼= M|Ui

∼= OX . So,
locally, L ⊗M ∼= OX ⊗OX

OX
∼= OX . For the second part, take L−1 =

Hom(L,OX). We get L−1 ⊗ L = Hom(L,OX)⊗ L ∼= Hom(L,L) ∼= OX . ¤

Definition 4.4 The group of isomorphism classes of invertible sheaves is
called the Picard group and denoted by Pic(X).

Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. If F is
an OX -module, then f∗F is an f∗OX -module (in fact for every V ⊆ Y ,
F(f−1(V )) is an OX(f−1(V ))-module). But we have the morphism of
sheaves f# : OY → f∗OX , so f∗F can be viewed as an OY -module. It
is called the direct image of F . Analogously, if G is an OY -module we can
construct its inverse image f∗G as follows: f−1G is an f−1OY -module, but
f−1 is the left adjoint of f∗, so HomOX

(f−1OY ,OX) ∼= HomOY
(OY , f∗OX)

and there exists a morphism of sheaves of rings on X from f−1OY to OX .
It gives the structure of f−1OY -module on OX . Tensoring with f−1G we
obtain the OX -module f−1G ⊗f−1OY

OX .

We describe now two important ways of associating sheaf of modules to
modules.

Let A be a ring, M an A-module, X = SpecA. The sheaf M̃ associ-
ated to M on X is constructed in the following way: for each open set
U ⊆ X, let M̃(U) be the set of functions s : U → ∐

p∈U Mp such that
∀p ∈ U , s(p) ∈ Mp and with the property that ∀p ∈ U there exist V open
in U , m ∈ M and f ∈ A such that f 6∈ q ∀q ∈ V and s(q) = m

f in Mq. For
open sets U ⊆ V the restriction map is clearly defined.

Proposition 4.1 Let A, M , X, M̃ as before. Then

1. M̃ is an OX-module.

2. ∀p ∈ X, (M̃)p
∼= Mp.

3. Γ(X, M̃) = M .

Proof: see [7, II 5.1].
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Definition 4.5 Let (X,OX) be a ringed space. An OX-module F is called
quasi-coherent if X can be covered by open affine subsets Ui = SpecAi

such that F|Ui
∼= M̃i for some Ai-module Mi. F is coherent if each Mi can

be chosen to be finitely generated.

REMARK: The structure sheaf OX is coherent. Since an invertible sheaf is
locally isomorphic to OX , every invertible sheaf is coherent.

We now wonder how coherent and quasi coherent sheaves behave with re-
spect to some elementary operations in the category of sheaves. The answer
is given by the following proposition.

Proposition 4.2 Let X be a scheme. The tensor product of two quasi-
coherent sheaves is quasi-coherent. Kernel, Image and Cokernel of a mor-
phism of quasi-coherent sheaves are quasi-coherent. Moreover, if X is locally
noetherian, then the previous properties hold for coherent sheaves.

Proof: see [15, 5.1.12]

Analogously, we can see, under suitable conditions, that direct and inverse
images of (quasi-)coherent sheaves are (quasi-)coherent.

Proposition 4.3 Let f : X → Y be a morphism of schemes.

1. If G is a quasi-coherent sheaf of OY -modules, then f∗G is a quasi-
coherent sheaf of OX-modules.

2. If X and Y are noetherian, and G is coherent, then f∗G is coherent.

3. Suppose X is noetherian or f is quasi-compact and separated. Then
if F is a quasi-coherent sheaf of OX-modules, f∗F is a quasi-coherent
OY -module.

Proof: see [7, II 5.8]

If i : Y → X is a closed immersion we can define the sheaf ideal IY

associated to X in Y as the kernel of the morphism i# : OX → i∗OY .

Proposition 4.4 Let IY be a sheaf ideal associated to a scheme Y in X.
Then IY is quasi-coherent. If X is noetherian, then IY is coherent.

Proof: A closed immersion is quasi-compact and separated, so, by proposi-
tion 4.3(3), i∗OY is quasi-coherent on X. IY is the kernel of a morphism
of quasi-coherent sheaves, so it quasi coherent. Suppose X is noetherian.
Locally, for every open subset U = SpecA of X, A is noetherian, so the
ideal I = Γ(U, IY |U ) is finitely generated, so IY is coherent. ¤
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The second construction is a projective version of the previous one. Let
S be a graded ring, X = ProjS and M a graded S-module. For any open
subset U ⊆ ProjS, let M̃(U) be the set of functions s from U to

∐
p∈U M(p)

such that ∀p ∈ U , s(p) ∈ M(p) and for every p ∈ U , there exist V open
neighborhood of p in U , m ∈ M and f ∈ S of the same degree with f 6∈ q
and s(q) = m

f in M(q) for every q ∈ V . For two open sets V ⊆ U , the

restriction map M̃(U) → M̃(V ) is defined in the obvious way.

Proposition 4.5 Let S, M , M̃ as above, X = ProjS. Then

1. For every p ∈ X, (M̃)p = M(p).

2. M̃ is a quasi-coherent OX-module. If M is finitely generated over a
noetherian ring S then M̃ is coherent.

Proof: see [7, II 5.11].

We will often deal with the so-called twisted sheaves. Let S be a graded
ring, X = ProjS. For any n ∈ Z, S(n) is the graded S-module

⊕
S(n)d,

where S(n)d = Sn+d. Define OX(n) as S̃(n). For any sheaf of OX -modules
F , the sheaf F⊗OX

OX(n) is indicated with F(n) and called twisted sheaf.

Some of the properties of twisted sheaves are shown below. We remark
that, for a graded ring (or algebra, or module) S, we indicate with Si the
homogeneous degree i part of S.

Proposition 4.6 Let S be a graded ring generated by S1 as S0-algebra,
X = ProjS.

1. The sheaf OX(n) is an invertible sheaf on X.

2. For any graded S-module M , M̃(n) ∼= M̃(n). In particular OX(n) ⊗
OX(m) ∼= OX(n + m).

3. Let T be another graded ring, generated by T1 as a T0-algebra, let
ϕ : S → T be an homomorphism preserving degrees, Y = ProjT , and
let f be the canonical morphism from U = {p ∈ Y | p 6⊆ ϕ(S+)} to X
induced by ϕ. Then f∗(OX(n)) ∼= OY (n)|U .

Proof: see [7, II 5.12].

We define now the twisted sheaf O(1) on Pr
Y , where Y is a scheme and

Pr
Y = ProjZ[x0, · · · , xr].

Definition 4.6 Let Y be a scheme. The twisted sheaf O(1) on Pr
Y is

defined as g∗(O(1)), where g is the canonical morphism from Pr
Y to Pr

Z =
ProjZ[x0, · · · , xr].
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REMARK: If Y = SpecA then this definition leads to the same object O(1)
defined on ProjA[x0, · · · , xr]. Indeed in this case Pr

Y = ProjA[x0, · · · , xr].
We can in fact apply the case (3) of Proposition 4.6 to S = Z[x0, · · · , xr],
T = A[x0, · · · , xr], ϕ the canonical map from S to T , X = Pr

Z and Y = U =
Pr

A.

Twisted sheaves are fundamental in our application. Indeed it can be proved
that, if X is projective over a noetherian ring (hence, over a field) and F
is a coherent sheaf over X, then F can be written as a quotient of a direct
sum of O(ni).

4.2 Divisors

In the second chapter we defined divisors on curves. Now we generalize this
concept for varieties and we show the connection with invertible sheaves.

Definition 4.7 Let X be a noetherian integral separated scheme such that
every local ring Ox of X of dimension 1 is regular. A prime divisor on X
is a closed integral subscheme Y of codimension 1. The free abelian group
generated by the prime divisors on X is called the group of (Weil) divisors
on X and denoted by Div(X). A divisor D =

∑
niDi is called effective if

ni ≥ 0 for every ni.

REMARK: Equivalently, we can define prime divisors as closed irreducible
subsets of codimension 1. Recalling that for every closed subset Y of X
there is a unique structure such that Y is a reduced subscheme of X, the
notion of prime divisor is equivalent to the of 1-cycle one.

REMARK: For our future purposes we will use normal varieties and non-
singular surfaces over a field K. Both these schemes satisfy the conditions
of the previous definition. Recalling that in a normal variety local rings of
closed points are normal and, hence, regular, we get that local rings of points
are regular. Moreover, in a variety X over an algebraically closed field, X
is regular at a point x if and only if it is non-singular at x.

Now we generalize valuation of rational functions. If Y is a prime divi-
sor, let η ∈ Y be its generic point. Then the local ring Oη,Y is a discrete
valuation ring with quotient field K(X). We can associate to it a valuation
vY on K(X). For f ∈ K(X)∗, vY (f) is an integer called the valuation of
f at Y . We will say that f has a pole of order −r if vY (f) = r < 0, while f
has a zero of multiplicity r if vY (f) > 0. We can associate a divisor (f) to
a non-zero rational function f , putting (f) =

∑
vY (f)Y , where Y runs over

the prime divisors of X. (f) is really a divisor, since the sum is finite. The
proof of this fact requires that X is noetherian, while the condition that X
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is separated ensures that a prime divisor X is uniquely determined by its
valuation on K(X).

Definition 4.8 A divisor D is called principal if D = (f) for some f ∈
K(X)∗. It is called locally principal if X can be covered by {Ui} such that
D|Ui

= (fi)|Ui
for rational functions fi ∈ K(X)∗.

The map f → (f) is a group homomorphism form (K(X)∗, ·) to (Div(X), +).
Taking the quotient of Div(X) with this subgroup we get the group Cl(X)
of divisor classes.

Definition 4.9 Two divisors D1 and D2 are called linearly equivalent if
they are equal in Cl(X). In this case we write D1 ≈ D2.

Let X be a noetherian integral separated scheme such that every local ring
Ox of X of dimension 1 is regular and let D ∈ Div(X) be a locally principal
sheaf on X. Take a covering {Ui} such that D|Ui

= (fi)|Ui
for rational

functions fi ∈ K(X)∗. Put

Γ(Ui,L(D)) = f−1
i OX(Ui) ⊆ K(X).

We remark that (fj)|Ui∩Uj
= D|Ui∩Uj

= (fi)|Ui∩Uj
, so (fifj

−1)|Ui∩Uj
= 0.

Then fifj
−1 ∈ OX(Ui∩Uj), hence fi and fj determine the same sub-OX(Ui∩

Uj)-module of K(X). Thus, we can glue the modules Γ(Ui,L(D)) to obtain
a sheaf of OX -module L(D), independent by the choice of the covering {Ui}
and functions fi.

Proposition 4.7 Let X be a noetherian integral separated scheme such that
every local ring Ox of X of dimension 1 is regular.

1. For every locally principal divisor D, the sheaf L(D) is invertible. The
map D 7→ L(D) gives a 1-1 correspondence between locally principal
divisors and invertible subsheaves of the constant sheaf K(X).

2. L(D1 −D2) ∼= L(D1)⊗ L(D2)−1.

3. D1 ≈ D2 if and only if L(D1) ∼= L(D2) as invertible sheaves.

Proof:

1. Let {Ui} be an open covering of X such that D|Ui
= (fi)|Ui

. The
map OX(Ui) → Γ(Ui, L(D)) sending 1 to fi

−1 is an isomorphism, so
L(D)|Ui

= OUi . Given an invertible subsheaf of K(X), take a covering
{Vi} such that L|Vi

∼= OVi . Let gi ∈ K(X)∗ be the inverse of the
generator of L|Vi

. From the collection {Vi, gi} we construct a divisor
D in the following way: for each prime divisor Y , take the coefficient of
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Y to be vY (gi), where Y ∩Vj 6= ∅. The coefficient of Y is well-defined;
in fact in the case Vj ∩ Y 6= ∅, then gigj

−1 is invertible in Ui ∩ Uj , so
vY (gigj

−1) = 0 and vY (gi) = vY (gj). It is clear that this construction
defines the inverse of the map D 7→ L(D).

2. Take a covering {Ui} such that D1|Ui
= (fi)|Ui

and D2|Ui
= (gi)|Ui

.
Then, on Ui, D1−D2 = (fig

−1
i ). The subsheaf of K(X) corresponding

to {Ui, figi
−1} is L(D1)L(D2)−1, which is isomorphic to the invertible

sheaf of OX -module L(D1)⊗ L(D2)−1.

3. First we show that D is principal if and only if L(D) ∼= OX . If D
is principal then D = (f) for some f ∈ K(X)∗ and L(D) is defined
by the covering (X, f−1), so sending 1 7→ f−1 gives an isomorphism
OX

∼= L(D).
On the contrary, given an isomorphism L(D) ∼= OX , the image of
1 ∈ OX(X) is an element of Γ(X, K(X)∗) whose inverse defines D
as principal divisor. Now apply this result and point (2) to D =
D1 − D2. We have D1 = D2 in Cl(X) ⇐⇒ D1 − D2 is principal
⇐⇒ L(D1 −D2) = L(D1)⊗ L(D2)

−1 ∼= OX ⇐⇒ L(D2) ∼= L(D2).

Corollary 4.1 Let X be as before. The map D → L(D) induces an iso-
morphism between the group equivalence classes of locally principal divisor
and Pic(X).

Proof: We just have to show that every invertible sheaf L on X is isomorphic
to a subsheaf of K(X). Now take L⊗OX

K(X). On every open set U where
L ∼= OX , we have L ⊗OX

K(X) ∼= K(X). L ⊗OX
K(X), restricted to each

open of a covering, is constant and so it is constant, as X is integral, hence
irreducible. The map L → L⊗OX

K(X) expresses L as a subsheaf of K(X).
¤

Lemma 4.2 Let X be an integral, separated, noetherian scheme, all of
whose local rings are unique factorization domains. Then every divisor on
X is locally principal.

Proof: see [7, II 6.11 and 6.11.2]

Corollary 4.2 If X is a smooth variety over then Cl(X) ∼= Pic(X), via
the map induced by D 7→ L(D).

Let L be an invertible sheaf on a nonsingular projective variety over an
algebraically close field K. By what we said above we know that L ∼= L(D)
for a divisor D, and L is isomorphic to a a subsheaf of K(X). We can
associate to every nonzero global section s ∈ Γ(X,L(D)) the divisor Z(s),
by putting Z(s) = (s)+D. Z(s) is called the divisor of zeros of s. If D is a



48 4 CODES OVER HIGHER DIMENSIONAL VARIETIES

divisor on X we denote by |D| the set of effective divisors linearly equivalent
to D. It is very easy, by looking at the definitions and the previous proofs,
to prove the following proposition.

Proposition 4.8 Let D be a divisor on a variety X, defined over an alge-
braically closed field K. Then the map

Γ(X,L(D)) \ {0} −→ |D|

s 7−→ Z(s)

induces a bijection between |D| and Γ(X,L(D)) \ {0}/K∗.

4.3 Definition of AG codes on varieties

In this paragraph we define an algebraic geometric code over a variety, as in
[21].

Lemma 4.3 Let K be a field, X a projective scheme over K, L an invertible
sheaf on X. Then Γ(X,L) is a finite-dimensional K-vector space.

Proof: It comes from [7, II 5.19] and the remark at page 43.

For a scheme X over Fq, an invertible sheaf L and an Fq-rational point
P ∈ X, call LP /mPLp the fiber of L at P and indicate it with LP . Since
L is locally isomorphic to OX , LP

∼= OP /mpOP = Fq. Chosen a trivial-
ization at LP , i.e. an isomorphism ϕ between LP and Fq, the value of
s ∈ Γ(X,L) at P is ϕ(sp + mpLp) ∈ Fq.

Definition 4.10 Let X be a projective scheme over Fq, L an invertible
sheaf, P = {P1, · · · , Pn} a set of Fq-rational points. Chosen for every every
Pi a trivialization at LPi, we have the germ map

α : Γ(X,L) −→ Fn
q

s 7−→ (s1, · · · , sn)

where si is the value of s at Pi. The code C(X,P,L) is defined as the image
of α.

REMARKS:

• If X is a smooth projective variety and L = L(G) for some G ∈
Div(X), then Γ(X,L) = L(G), where L(G) = {f ∈ K(X)∗ | (f) +
G is effective}∪{0}. Thus, for smooth projective curves, we find again
the classical AG codes. Moreover, take s ∈ Γ(X, L(G)) \ {0} and
P ∈ C, where C is a prime divisor on X. Then the value of s at P is
0 if and only if the divisor of zeros Z(s) contains C.



4.3 Definition of AG codes on varieties 49

• We see that different trivializations produce different codes, but all
these codes are equivalent (in the sense of definition 2.3), so different
trivializations produce codes with the same parameters.

NOTE: [21] uses the word line bundle instead of invertible sheaf. Exer-
cise II 5.18 in [7] defines line bundles and shows that there is a one-to-one
correspondence between the Picard group and isomorphism classes of line
bundles. We just remark that, under this correspondence, a section of a line
bundle is a global section of the invertible sheaf, so the terminology is good
and no confusion results.
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5 Codes on surfaces

Even if Tsfasman and Vladut’s definition of AG codes on a variety is not so
recent ([22](1982)), the first deep work about a class of codes on higher di-
mensional varieties is due to the danish mathematician Hansen, who studied
in his PhD thesis codes on surfaces and Deligne-Lusztig varieties ([6](2001)).
Another work about codes on surfaces, independent by Hansen’s results, is
by Voloch and Zarzar ([27]).

As usual, the geometry background is introduced in the first subsections.

5.1 Ample and very ample invertible sheaves

Definition 5.1 Let X be a scheme over Y . An invertible sheaf L is said
to be very ample if there exists a immersion i : X → Pr

Y for some r such
that L ∼= i∗(O(1)).

Definition 5.2 Let X be a scheme, and let F be a sheaf of OX-modules.
We say that F is generated by global sections if there are global sections
{si}i∈I of F such that, for every x ∈ X, the images of si in the stalk Fx

generate the stalk as Ox-module.

EXAMPLE: Take a ring A, and a coherent sheaf F = M̃ on SpecA, where
M is an A-module. F is generated by every set of generators of M as A-
module. Indeed we know that for every p ∈ SpecA, M̃p = Mp.

EXAMPLE: Let X = ProjS, where S is a graded ring generated by S1

as S0-algebra and let F = OX(1). For every p ∈ ProjS, OX,p
∼= S(p) and

Fp
∼= S(1)(p). Therefore it is clear that the elements of S1 give global sec-

tions that generate OX(1).

EXAMPLE: Let A be a ring, X = ProjA[x0, · · · , xr]. Then x0, · · · , xr

are global sections of OX(1) which generate it.

EXAMPLE: If A is a ring and ϕ : X → Pr
A is an A-morphism, then the

OX -sheaf ϕ∗(OX(1)) is generated by the global sections s0, · · · , sr, where
si = ϕ∗(xi).

Definition 5.3 An invertible sheaf L on a noetherian scheme X is said to
be ample if for every coherent OX-sheaf there is an integer n0 > 0 such
that, for every n ≥ n0, F ⊗ Ln is generated by global sections.

Definition 5.4 Let X be a nonsingular variety. Then a divisor D is said
to be ample (resp. very ample) if the corresponding invertible sheaf L(D)
is ample (resp. very ample).
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The propositions below shows the relation between ample and very ample
invertible sheaves under suitable conditions and, in particular, in the case
of varieties.

Proposition 5.1 Let X be a scheme of finite type over a noetherian ring
A, and let L be an invertible sheaf. Then L is ample if and only if Lm is
very ample over SpecA for some m > 0.

EXAMPLE: Let D be a divisor on a projective nonsingular curve X and
L = L(D). It can be proved, as consequence of the Riemann-Roch theorem,
that L is ample if and only if deg D > 0.

EXAMPLE: Let X = Pn
K , where K is a field. O(1) is very ample by defini-

tion. Let d > 0. Put S = K[x0, · · · , xn] and consider the graded K-algebra
S(d) =

⊕
S

(d)
n , where S

(d)
n = Snd. The map ϕ : S → S(d) which sends xi to

xd
i preserves the grading and induces an isomorphism between ProjS and

ProjS(d). Under this isomorphism the sheaf OX(d) on Pn
K corresponds to

the invertible sheaf O(1) on ProjS(d), so OX(d) is very ample, hence ample.
If d < 0 then O(d) has non global sections, so it is not ample and not very
ample. We conclude that O(d) is ample if and only if it is very ample if and
only if d > 0.

Lemma 5.1 Let X be a scheme of finite type over a noetherian ring. If L
is a very ample invertible sheaf and M is an invertible sheaf generated by
global sections, then L ⊗M is very ample.

Corollary 5.1 Let X be as in the previous lemma and let L be an ample
invertible sheaf. Then, for every invertible sheaf M on X, there exists n > 0
such that M⊗Ln is very ample.

Proof: L is ample and M coherent, so there exists k > 0 such that M⊗Ln

is generated by global sections. Moreover, there exists l > 0 such that Ll

is very ample. Thus M⊗Lkl = (M⊗Ln) ⊗ Ll is very ample by previous
lemma. ¤

We will treat later the case of ample and very ample invertible sheaves
on surfaces.

5.2 Arithmetic and geometric genus of varieties

We suppose the basic notions of homological algebra and theory of categories
to be know and we focus on our case, namely the category Mod(X) of
sheaves of OX -modules on a ringed space (X,OX). First let us remark that
Mod(X) is an abelian category with enough injectives. This comes from
the well-known fact that every module sits inside an injective one.
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Definition 5.5 Let (X,OX) be a ringed space and let Γ(X, ·) be considered
as functor from Mod(X) to the category Ab of abelian groups. For any
OX-sheaf F , the i-th cohomology functor H i(X, ·) is defined as the i-th
right derived functor of Γ(X, ·). For any OX-sheaf F , the group H i(X,F)
is called the i-th cohomology group of F .

REMARK: For every OX -sheaf F , H0(X,F) = Γ(X,F) is a Γ(X,OX)-
module, so all the H i(X,F) have a structure of Γ(X,OX)-module. The
dimension of the i-th group of cohomology is indicated with hi. Moreover
we know that if X is a projective variety over an algebraically closed field
K, then Γ(X,OX) ∼= K.

The two following theorems are necessary to introduce the arithmetic genus
of a projective variety. [7] states the first one for sheaves of abelian group
on a noetherian topological space. Our choice is due to our definition of
cohomology functor. Remark that Lemma 4.3 at page 48 is a particular
case of the second theorem.

Theorem 5.1 (Grothendieck) Let (X,OX) be a noetherian ringed topo-
logical space of dimension n. Then, for all i > n and all sheaves of OX-
modules F , we have H i(X,F) = 0.

Theorem 5.2 (Serre) Let X be a projective scheme over a noetherian ring
A, and let OX(1) be a very ample invertible sheaf on X over SpecA. Let
F be a coherent sheaf on X. Then for each i ≥ 0, H i(X,F) is a finitely
generated A-module.

Definition 5.6 Let X be a projective scheme of dimension r over a field
K. Then the arithmetic genus is

pa(X) = (−1)r(χ(OX)− 1),

where χ(OX) =
∑

(−1)ihi(X,OX).

Lemma 5.2 If X is a projective variety of dimension r over an algebraically
closed field K, then pa(X) =

∑r−1
i=0 (−1)i dimK Hr−i(X,OX).

Proof: As already observed, H0(X,OX) ∼= K, so h0(X,OX) = 1 and,
by Grothendieck’s theorem, hi(X,OX) = 0 for i > r. Thus pa(X) =
(−1)r

∑r
i=1(−1)ihi(X,OX) =

∑r−1
i=0 (−1)ihr−i(X,OX). ¤

We briefly introduce now the sheaf of differentials, just in order to define
the geometric genus of a projective variety. We will see later the properties
of sheaves of differentials are strictly related to those of Kähler differentials,
and so we suggest as reference for the latter topic any good book in com-
mutative algebra, e.g. [14].
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Let X be a scheme over Y . The diagonal map ∆ : X → X ×Y X in-
duces an isomorphism between X and its image ∆(X). Moreover ∆(X) is a
closed subscheme of an open subscheme W of X ×Y X. So we can consider
the ideal sheaf I associated to ∆(X) in W .

Definition 5.7 The sheaf of relative differentials of X over Y is the
sheaf ΓX/Y = ∆∗(I/I2).

Lemma 5.3 Let X be a scheme over Y . Then ΩX/Y is a quasi-coherent
OY -module. If Y is noetherian and X of finite type over Y , then ΩX/Y is
coherent.

Proof: I/I2 has a structure of O∆(X)-module, but ∆ is an isomorphism
between X and ∆(X), so ∆∗(I/I2) = ΩX/Y has a structure of OX -module.
I/I2 is quasi-coherent by Proposition 4.2, hence ∆∗(I/I2) is quasi coherent
by proposition 4.3. If Y is noetherian and X of finite type, then X ×Y X is
noetherian, so I/I2 is coherent. Using Proposition 4.3 we have that ΩX/Y

is coherent. ¤

EXAMPLE: Take X = SpecB, Y = SpecA and f : X → Y . In this case,
X×Y X = SpecB⊗A B and ∆ is induced by the morphism ϕ : B⊗A B → B

which sends b1 ⊗ b2 to b1b2. If I is the kernel of ϕ, we have I/I2 = (̃I/I2).
Thus ΩX/Y is the sheaf associated to ΩB/A, where ΩB/A is the module of
relative differential forms of B over A.

Definition 5.8 Let X be a nonsingular variety of dimension n over a field
K. The canonical sheaf of X is ωX = ΛnΩX/K , i.e. the n-th exterior
power of the sheaf of differentials of X over K.

REMARK: If X is a nonsingular variety of dimension n over an algebraically
closed field K, then it is not hard to prove, by using results from theory of
Kähler differentials, that Ω(X/Y ) is a locally free OX -module of rank n.
Therefore ωX is an invertible sheaf.

Proposition 5.2 Let Y be a nonsingular irreducible curve on a nonsingular
variety X. Then ωY = ωX ⊗ L(Y )⊗OY .

Proof: see [7, II 8.20]

Definition 5.9 If X is a nonsingular variety of dimension n over an alge-
braically closed field K the the geometric genus of X is the nonnegative
integer pg = dimK Γ(X,ωX).
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IMPORTANT REMARK: Alternatively, using cohomology, we could define
pg as the dimension of the n-th cohomology group of OX . The equivalence
of the two definitions follows from the Serre duality theorem. By Serre du-
ality theorem, in fact, we have also that, if D is a divisor over a nonsingular
variety X of dimension n, then h0(X,L(W −D)) = hn(X,L(D)), where W
is a canonical divisor on X.

EXAMPLE: For a nonsingular projective curve X over K algebraically
closed, pa = h1(X,OX) = dim Γ(X, ωX) = g. In particular we can write
the invertible sheaf ωX as L(W ), where W is a canonical divisor. We find
g := pg = pa = dim Γ(X,L(W )) = dimL(W ).

EXAMPLE: For a nonsingular projective surface X over an algebraically
closed field K, we get pa = h2(X,OX)− h1(X,OX), while pg = h2(X,OX).
The geometric genus is therefore larger than the arithmetic genus and the
difference h1(X,OX) is called the irregularity of X.

5.3 Basic properties of surfaces

In the following, with the word surface we will mean a nonsingular pro-
jective surface over an algebraically closed field K. A curve is an effective
divisor on the surface and a point is a closed point.

The first step is defining the intersection between divisors on a surface.
For the proofs we refer to [7, V 1].

Definition 5.10 If C and D are curves on X passing through a point P ∈
X, we indicate with (C.D)P the integer dim(f, g)/mP , where f and g are
local equations for C and D respectively and mP is the maximal ideal of
OP,X . We say that C and D meet transversally if (C.D)P = 1.

We would like to define the intersection number C.D between divisors C
and D such that the following natural properties hold for every C,D, E ∈
Div(X).

1. If C and D are nonsingular curves meeting transversally, then C.D =
#(C ∩D).

2. The intersection number is symmetric, i.e. C.D = D.C.

3. The intersection number is additive, i.e. C + E.D = C.D + E.D.

4. It depends only on the linear equivalence classes.

Theorem 5.3 There is a unique pairing Div(X) × Div(X) → Z, which
sends (C, D) to C.D, such that properties 1-4 hold.
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We state an auxiliary lemma for the proof of this theorem, because we will
use it in the following.

Lemma 5.4 Let C be an irreducible nonsingular curve over a surface X
and let D be any curve meeting C transversally. Then

#(C ∩D) = degC(L(D)⊗OC),

where degC(L(D) ⊗OC) is the degree of the divisor on C corresponding to
the invertible sheaf L(D)⊗OC .

The following proposition gives an explicit way to calculate the intersection
number in a particular case.

Proposition 5.3 If C and D are curves on X having no common irre-
ducible component, then

C.D =
∑

P∈C∩D

(C.D)P .

The next theorem gives an important connection between the genus of a
nonsingular curve on a surface and the intersection number.

Proposition 5.4 (adjunction formula) If C is a nonsingular curve of
genus g on the surface X and W is the canonical divisor on X, then

2g − 2 = C.(C + W ).

Proof: By Proposition 5.2, ωC = ωX ⊗ L(C) ⊗ OC . We know that the de-
gree of a canonical sheaf on a smooth curve is 2g − 2. On the other hand,
degC(ωC ⊗L(C)⊗OC) = degC(L(C + W )⊗OC) = C.(C + W ) by Lemma
5.4 and the properties of the intersection number. ¤

We state now the Riemann-Roch theorem for surfaces. For a divisor D
on a surface X, we let l(D) = h0(X,L(D)).

Theorem 5.4 (Riemann-Roch) If D is any divisor on the surface X of
arithmetic genus pa and W is a canonical divisor, then

l(D)− h1(X,L(D)) + l(W −D) =
1
2
D.(D −W ) + 1 + pa .

We want to emphasize that the Riemann-Roch theorem is fundamental for
our problem of calculating the parameters of codes over surfaces. Indeed,
inserting conditions for the injectivity of the germ map α at page 48, l(D)
is the dimension of our code.

We introduced very ample and ample divisors in subsection 5.1. Now we
explain why these classes of divisors are so important in the case of surfaces.
In particular the next theorem gives a criterion to recognize ample divisors,
while the following results are consequences of the necessity of that criterion.
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Theorem 5.5 (Nakai-Maishezon criterion) A divisor D on the surface
X is ample if and only if D.D > 0 and D.C > 0 for all the irreducible curves
C in X.

Lemma 5.5 Let H be an ample divisor on the surface X. Then there is an
integer n0 such that, if D.H > n0, then h2(X,L(D)) = 0.

Proof: We can take n0 = W.H. By contradiction, assume D.H > W.H and
h2(X,L(D)) > 0. Recalling that h2(X,L(D)) = l(W − D), the condition
h2(X,L(D)) > 0 implies that there exists an effective divisor D′, linearly
equivalent to W − D. Write D′ =

∑
i miDi, where mi > 0 and Di are

irreducible curves. We have (W −D).H = D′.H =
∑

i miDi.H > 0 by the
Nakai-Maishezon criterion. So W.H > D.H, which is a contradiction. ¤

Corollary 5.2 Let H be an ample divisor on X and let D be a divisor such
that D.H > 0 and D.D > 0. Then for a sufficiently large positive integer n,
nD is linearly equivalent to an effective divisor.

Proof: We can apply the Riemann-Roch theorem to nD, with n > 0. We
get l(nD)+h2(X,nD)−h1(X, nD) = 1

2n2D.D− 1
2nD.H +1+ pa. We have

n > 0, D.D > 0, D.H > 0 and h2(X,nD) = 0 for n > n0. So l(nD) ≥
h2(X, nD) + 1

2n2D.D − 1
2nD.H + 1 + pa. Therefore limn→∞ l(nD) = +∞.

¤

Definition 5.11 A divisor D on a surface X is numerically equivalent
to 0 (D ≡ 0) if D.E = 0 for all divisors E. The group Div(X)

≡ is indicated
by Num(X) and two divisors are called numerically equivalent if they
are equal in Num(X).

Definition 5.12 A divisor D on a surface X is called numerically effec-
tive (nef for short) if D.C ≥ 0 for every irreducible curve C on X.

Clearly every ample divisor is nef.

5.4 Parameters of codes on surfaces

We present now some general results about codes on surfaces. The results
come from [27] and [16] and give bounds for parameters of some codes on
surfaces. Let X be a surface over Fq, P = {P1, · · · , Pn} a set of Fq-rational
points and L = L(G) the invertible sheaf associated to a divisor G. To
calculate the minimal distance d of the code C(X,P,L(G)) we have to bound
the number of zeros of the germ map α : H0(X,L) → Fn

q . The first trivial
observation is that, for every s ∈ H0(X,L) \ {0}, the weight of α(s) is at
least n −#Z(s)(Fq), i.e. α(s) cannot have more zeros than the number of
Fq-rational points in the support of Z(s). The Hasse-Weil bound at page 18
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gives an upper bound for the number of Fq-rational points of an irreducible
curve. It is immediate to deduce from Theorem 2.6 an upper bound for the
number of rational point of a curve.

Proposition 5.5 A curve of arithmetic genus g and with r irreducible com-
ponents defined over Fq has at most r(q + 1) + 2g

√
q rational points.

If s and s′ are two nonzero global sections of L(G) the Z(s) and Z(s′)
are linearly equivalent. Therefore the arithmetic genus of Z(s) is the same
of Z(s′). The only problem is how to control the number r of irreducible
components.

Lemma 5.6 Let X be a surface. If Num(X) is generated by an ample
divisor H and G ≡ mH, then, for every s ∈ H0(X,L(G)) \ {0}, Z(s) has
at most m irreducible components.

Proof: If s ∈ H0(X,L(G))\{0}, write Z(s) = k1A1 + · · ·+krAr, with ki > 0
and Ai irreducible. As Num(X) is generated by H we have Ai ≡ aiH for
some ai. Moreover, ai > 0, since H is ample so 0 < Ai.H = aiH.H and
H.H > 0. Z(s) is equivalent to G, so rH.H ≤ ∑

KiaiH.H = Z(s).H =
G.H = mH.H. We get that r ≤ m. ¤

NOTE: [27] replaces Num(X) with the Neron-Severi group of X, but that
is a more restrictive hypothesis.

Corollary 5.3 Let X be a surface with Num(X) generated by an ample
divisor H and let G ≡ mH. Then the code C(X,P,L(G)) has distance
d ≥ n−m(q + 1)− 2g

√
q, where g is is the arithmetic genus of a divisor of

zeros.

Lemma 5.7 Suppose H is an ample divisor irreducible over the ground
field Fq but decomposing on a Galois extension of prime degree p as a
sum of p conjugate irreducible components H1, · · · ,Hp, such that the in-
tersection points are also moved by Galois. If G ≡ mH, then, for every
s ∈ H0(X,L(G)) \ {0}, Z(s) has at most mH.H/p absolutely irreducible
components over Fq.

Proof: Take s ∈ H0(X,L(G)) \ {0} and write k1A1 + · · ·+ krAr with ki > 0
and Ai irreducible over Fq. Then 0 < Ai.H =

∑p
j=1 Ai.Hj , hence Ai.H ≥ p.

So rp ≤ ∑
kiAi.H = Z(s).H.G.H = mH.H. As H.H > 0, r ≤ mH.H/p. ¤

Even if it could maybe be possible to obtain better bounds for the num-
ber of irreducible components of the divisors of zeros, this is not the best
approach to get tight bounds for codes. In fact, fixing X and G, we gave
bounds for every code C(X,P,L(G)) of length n, but we did not consider
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the choice of the points of P. Depending on the choice of P1, · · · , Pn we
can have different minimum distances. Therefore it is useful to follow the
approach introduced by Hansen in [6].

Proposition 5.6 (Hansen) Let X be a projective surface defined over Fq.
Let C1, · · · , Cr be irreducible curves on X with Fq-rational points P = {P1, · · · , Pn}.
Suppose for each Ci we have #Ci(Fq) ≤ N . Let L be an invertible sheaf cor-
responding to a divisor G such that G.Ci ≥ 0 for all i. Let

l = sup
s

#{i : Z(s) contains Ci} .

Then the code C(X,P,L) has minimum distance

d ≥ n− lN −
r∑

i=1

G.Ci .

If G.Ci = η ≤ N for every i, then d ≥ n− lN − (r − l)η.

Proof: Take s ∈ H0(X,L(G)) \ {0} and Z(s) the divisor of zeros of s. The
number of zero coordinates of α(s) is #(Z(s) ∩ ∪iCi)(Fq). We can write
it as #(Z(s) ∩ ∪Ci⊆DCi)(Fq) + #(Z(s) ∩ ∪Ci 6⊆DCi)(Fq). The last term, by
Proposition 5.3, is less than

∑
Ci 6⊆D Z(s).Ci, while the latter is less than

lN . By hypothesis, we have
∑

Ci⊆D Ci.G ≤ ∑
i Ci.G and so w(α(s)) ≥

n− lN −∑
i Ci.G.

If Ci.G = η ≤ N for each curve, then the worst case occurs when Z(s)
contains exactly l curves. In this case Z(s) has at most lN + (r− l)η zeros.
¤

Corollary 5.4 If n > lN+
∑r

i=1 G.Ci then the germ map α : Γ(X,L(G)) →
Fn

q is injective.

Corollary 5.5 Assume also that X is a surface and H is a nef divisor on
X with H.Ci > 0 for all i. Then

l ≤ G.H

mini{Ci.H} .

Therefore, if G.H < Ci.H for every i, then l = 0 and d ≥ n−∑r
i=1 G.Ci.

Proof: Take s ∈ H0(X,L(G)) \ {0} such that Z(s) contains l curves. It
exists by construction. Hence G.H = Z(s).H ≥ min{Ci.H}l because H is
numerically effective and Z(s) is effective. ¤
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6 Codes on ruled surfaces

6.1 The projective space bundle

We focus now on codes over ruled surfaces, mainly studied by Lomont.
In his PhD thesis ([16]) he applied Hansen’s work to ruled surfaces and
he explicitly calculated parameters for certain codes on ruled surfaces over
curves of genus 0 and 1. Before studying the ruled surface we introduce here
the projective space bundle. We will see that space bundles associated to
ruled surfaces give an important invariant for the surfaces.

Definition 6.1 Let (X,OX) be a ringed space, F a sheaf of OX-modules.
The symmetric algebra S(F) of F is the sheaf associated to the preasheaf
which assigns to every open set U the symmetric algebra of F(U) over
OX(U).

Suppose X is a noetherian scheme and S is a sheaf of graded OX -algebras
satisfying the following condition:

(z) S ∼= ⊕
d≥0 Sd where Sd is the homogeneous part of degree d. Sup-

pose also S0 = OX , S1 is a coherent OX -module and S is locally generated
by S1 as OX -algebra.

For every open affine subset U = SpecA ⊂ X, put S(U) = Γ(U,S|U ).
S(U) is a graded A-algebra generated by S1(U). We can consider ProjS(U)
and the natural morphism πU : ProjS(U) → U . If f ∈ A and Uf is the
principal affine open subset SpecAf , then, since S is coherent, we have
π−1(Spec Uf ) ∼= ProjS(Uf ). Then, for two open affine subsets U and V , we
have π−1

U (U ∩ V ) ∼= π−1
V (U ∩ V ). So the maps πU : ProjS(U) → U can be

glued to obtain a scheme ProjS → X such that π−1(U) ∼= ProjS(U) for ev-
ery open affine subset U . Also the invertible sheaves O(1) on each ProjS(U)
can be glued together to obtain an invertible sheaf O(1) on ProjS.

EXAMPLE: If S is the OX -algebra S = OX [T0, · · · , Tn], then ProjS is
Pn

X with the twisting sheaf O(1) defined in definition 4.6.

Definition 6.2 Let X be a noetherian scheme, and E be a locally free
coherent sheaf on X. The projective space bundle P(E) is defined as
P(E) = ProjS(E).

REMARK: S(E) satisfies the condition z. Indeed, take U such that E
is free over U . Then S(E)|U ∼= S(On

U ) ∼= OU [T1, · · · , Tn]. Thus π−1
U

∼=
ProjOU [T1, · · · , Tn] = Pn−1.

Proposition 6.1 Let X, E, P(E) be as in the definition. If rank E ≥ 2 there
is a canonical isomorphism of graded OX-algebras S(E) ∼= ⊕

l∈Z π∗(O(l)).
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Proposition 6.2 Let X, E, P(E) be as before. Let g : Y → X be any
morphism. Then there is a one-to-one correspondence between X-morphisms
from Y to P(E) and invertible sheaves L on Y together with a surjective map
of sheaves g∗E → L. The invertible sheaf corresponding to a morphism f is
L = f∗(O(1)).

6.2 Ruled surfaces

In this paragraph ruled surfaces are defined and their fundamental proper-
ties are presented. In particular we investigate the relations between objects
concerned a ruled surface and objects defined over the underlying projective
curve.

NOTE: In the following we will use the word “vector bundle” as synonym
of “locally free sheaf” and “line bundle” for “invertible sheaf”. See also the
note at page 49.

Definition 6.3 A ruled surface over a nonsingular curve C is a surface
X with a morphism π : X → C, such that for every y ∈ C the fiber Xy =
X ×C K(y) is isomorphic to P1 and such that π admits a section, i.e. a
morphism σ : C → X with πσ = idC .

FACT: The fibers are numerically equivalent. We did not define here the
Neron-Severi group, but this fact comes easily by observing that the fibers
are parametrized by a curve, and algebraically equivalent divisors are nu-
merically equivalent.

EXAMPLE: The easiest example of ruled surface over a curve C is given
by P1 × C with the second projection.

The next results show that many properties of the ruled surfaces can be
deduced from the properties of the underlying curve. This is one of the
reasons why, studying codes on surfaces, we chose to start from codes on
ruled surfaces. In fact, many problems can be reduced to problems about
curves, and the geometry of curves is easier than the geometry of higher
dimensional varieties.

Lemma 6.1 Let π : X → C be a ruled surface, let D be a divisor on X
with D.f = n ≥ 0 for a fiber f of π. Then π∗L(D) is a vector bundle of
rank n + 1 on C. In particular π∗OX = OC .

The next proposition is the fundamental link between the theory of ruled
surfaces and the study of rank 2 vector bundles over curves.
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Proposition 6.3 If π : X → C is a ruled surface, then there exists a vector
bundle E of rank 2 over C, such that X ∼= P(E). Conversely, for every vector
bundle E of rank 2 over C, P(E) is a ruled surface over X. P(E) ∼= P(E ′)
if and only if E ′ ∼= E ⊗ L for a line bundle L over C.

Proposition 6.4 Let π : X → C be a ruled surface, f a fiber, C0 = σ(C) ⊂
X for a section σ. Then

Pic(X) ∼= Z⊕ π∗Pic(C),

where Z is generated by C0.

Num(X) ∼= Z⊕ Z,

generated by C0, f and with C0.f = 1, f.f = 0.

In the following we will use the next lemma to compute the dimension of
the codes on ruled surfaces.

Lemma 6.2 Let D be a divisor on X, with D.f ≥ 0 for a fiber f . Then
H i(X,L(D)) ∼= H i(C, π∗L(D)).

Corollary 6.1 If the genus of C is g, then pa(X) = −g, pg(X) = 0,
h1(X,OX) = g.

Proof: By Lemmas 6.1 and 6.2, h1(X,OX) = h1(C, π∗OX) = h1(C,OC) = g,
pg = h2(X,OX) = h2(C, π∗OX) = h2(C,OC) = 0, pa = pg − h1(X,OX) =
−g. ¤

Let us go back to study rank 2 vector bundles on curves.

Definition 6.4 A vector bundle E of rank 2 over a curve C is said to be
normalized if H0(C, E) 6= 0 and H0(C, E ⊗ L) = 0 for every line bundle L
with degL < 0.

Definition 6.5 The degree of a vector bundle E of rank n over C is the
degree of the line bundle ΛnE over C.

More generally we could define the degree of a coherent sheaf over a non-
singular projective curve, as in [7, II ex 2.16]. In the case of vector bundles
the two definitions would be compatible.

Proposition 6.5 Let π : X → C be a ruled surface. It is possible to write
X ∼= P(E) with E normalized. For such E, the integer e = −deg E is an
invariant of X and there exists a section σ0 : C → X with image C such
that L(C0) ∼= OX(1).
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In the following, π : X → C is a ruled surface, X = P(E) with E normalized,
e = Λ2E , e = −deg e. We fix a section C0 such that L(C0) ∼= OX(1).
We remind that, by Proposition 6.2, every section of X corresponds to a
surjection from E to an line bundle L on C, given by L = σ∗OX(1). Indeed
a section can be considered as a morphism of C-schemes from C to P(E) = X.

Proposition 6.6 If D is a section of X, corresponding to a surjection E →
L(d) for some d ∈ Div(C), then deg d = C0.D and D ≈ C0 +π∗(d− e). In
particular C0.C0 = deg e = −e.

Lemma 6.3 Let W be the canonical divisor on X, w the canonical divisor
on C. Then W ≈ −2C0 + π∗(w + e), W ≡ −2C0 + (2g − 2− e)f .

Proof: We know that W ≡ aC0 + bf for some a, b ∈ Z. Using adjunction
formula for a the fiber f we get −2 = f.f(f +W ) = f.(f +aC0+bf) = afC0

as f is isomorphic to P1. Now write W ≈ −2C0+π∗(b) for some b ∈ Div(C).
By Proposition 5.2, ωC0

∼= ωX ⊗ L(C0) ⊗ OC0
∼= L(W + C0) ⊗ OC0

∼=
L(−C0 + π∗b)⊗OC0 . Identifying C0 with C via π, we have w = −e+b, so
+b = w + e. To conclude, deg(w + e) = 2g − 2− e. ¤

Definition 6.6 A vector bundle is called decomposable if it can be written
as direct sum of vector bundles of smaller rank.

Theorem 6.1 Let X, C, E, e be as before. Then

1. If E is decomposable then E ∼= OC ⊕ L for some L with degL ≤ 0.
Therefore e ≥ 0. All the values of e ≥ 0 are possible.

2. If E is indecomposable then −g ≤ e ≤ 2g − 2.

Since our purpose is to apply Hansen’s results (Proposition 5.6 and Lemma
5.4) to ruled surfaces, we need a criterion for ample and nef divisors on ruled
surfaces. The following theorem comes from [7], except part (1), that can
be found in [9].

Theorem 6.2 Suppose now that X and C are defined over a field of char-
acteristic p. Using the usual notation, define

k =





e if e ≥ 0
1
2e if e < 0 and g ≥ 1
1
2e + g−1

p if e < 0 and g > 1.

If D ≡ aC0 + bf then

1. If E is the direct sum of two ample line bundles on C, then C0 is ample.

2. If e ≥ 0 and Y 6≡ C0 is an irreducible curves on C with Y ≡ D, then
a > 0 and b ≥ ak.
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3. (Case 1: e ≥ o or g ≤ 1)
D is ample (resp. nef) if and only if a > 0 and b > ak (resp. a ≥ 0
and b ≥ ak).

4. (Case 2: e < o and g > 1)
If D is ample (resp. nef) then a > 0 and b > 1

2ae (resp. a ≥ 0 and
b ≥ 1

2ae). If a > 0 and b > ak then D is ample.

6.3 Parameters of codes on ruled surfaces

We have now the tools needed to prove the fundamental result about codes
on ruled surfaces. The following theorem is mainly due to Hansen [6, Prop.
4.1], but Lomont corrected some mistakes [16, Remark 5.1.5]. In particular,
[6] does not assume E to be normalized .

Theorem 6.3 (Hansen-Lomont) Let C be a nonsingular curve of genus
g, E a normalized vector bundle of rank 2 over C, X = P(E) the associated
ruled surface π : P(E) → C with invariant e, f is a fiber over a point
P0 ∈ C and γ = #C(Fq). Fix integers a ≥ 0 and b ≥ 0. If E is not
ample put m = a(dke − e) + b, otherwise m = b − ae. If m < γ and
γ(q + 1) ≥ (γ −m)a + (q + 1)m then there are codes with parameters

n = (q + 1)γ

k = h0(C, Sa(E)⊗ LC(bP0))

d ≥ n− (γ −m)a− (q + 1)m .

Proof: We apply Proposition 5.6 to the fibers f1, · · · , fγ over the γ rational
points of C. We get n = (q + 1)γ, as fi

∼= P1. Let D ≡ aC0 + bf and
L = L(D). By Propositions 6.2 and 6.1

Γ(X,L) ∼= Γ(C, π∗L) ∼= Γ(Sa(E)⊗ LC(bC0)) .

Now we apply Corollary 5.4 to H = C0 + dkef and so we get that H is nef,
H.fi = 1, D.fi = a and H.D = a(dke − e) + b. So

l ≤ D.H

min{fi.H} = a(dke − e) + b .

If E is ample then C0 is nef so, applying the corollary with H = Co, we
have l = H.D = b− ae. Remark that n ≥ (γ −m)a + (q + 1)m ensures the
injectivity of the germ map α. Moreover, m < γ implies that a < q +1 = γ,
so we conclude that d ≥ n− (γ −m)a− (q + 1)m. ¤
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6.4 Codes on rational ruled surfaces

In this subsection we follow [16] and we apply Theorem 6.3 to codes over
rational ruled surfaces, i.e. ruled surfaces over P1. As we already saw, this
means to study the vector bundles of rank 2 over P1. We first observe that
a vector bundle E of rank 2 over P1 cannot be indecomposable, otherwise
the invariant e is between 0 and −2, by Theorem 6.1. So E ∼= OC ⊕ L
for any line bundle L with degL ≤ 0. But PicP1 ∼= Z, generated by a
hyperplane, so L ∼= OC(−e) for any e ≥ 0. P1 has q + 1 points, hence,
applying Theorem 6.3, n = (q + 1)2. Since OC ⊕ OC(−e) is not ample,
we get m = a(dke − e) + b = e. We require b = m < γ = q + 1 and
n > (γ−m)a+(q+1)m. This is equivalent to ask for a < q+1 and b < q+1.
This way we get d ≥ (q +1)2− (q +1− b)a− (q +1)b = (q +1−a)(q +1− b).

We have now to estimate the dimension k = h0(C,Sa(E)⊗ LC(bP0)).
We know, for two sheaves F and F ′, that

Sa(F ⊕ F ′) =
⊕

n+m=a

(Sn(F)⊗ Sm(F ′)).

Therefore

Sa(OC ⊕OC(−e)) =
a⊕

j=0

(Sa−jOC ⊗ Sj(OC(−e))) =
a⊕

j=0

OC(−ej).

Since cohomology commutes with direct sums, we get

k =
a∑

j=0

h0(C,LC((b− ej)P0)).

If b− ej < 0 then H0(C,LC((b− ej)P0)) = {0}, otherwise, by the Riemann-
Roch theorem, h0(C,LC((b − ej)P0)) = b − ej + 1. We finally obtain that
k =

∑
b− ej + 1, where the sum is over j such that j ≤ a, ej ≤ b. Fixing e,

by increasing a and b, we increase k, but, as often happens in coding theory,
we decrease the distance. Conversely, fixing a and b, we get the biggest
dimension for e = 0, while d does not depend on e.

We summarize these results in the following theorem:

Theorem 6.4 (Lomont) Let C = P1, E the normalized vector bundle
OC ⊕ OC(−e), where e ≥ 0, X the associated ruled surface P(E). Then,
for any integers 0 ≤ a, b ≤ q + 1, there exist AG codes over X with parame-
ters

n = (q + 1)2

d ≥ (q + 1− a)(q + 1− b)
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R̄ k1 k2 rate δ a b rate δ

0.1 81 81 0.1009 0.470973 81 81 0.100562 0.47165
0.2 115 114 0.201615 0.307912 114 114 0.20023 0.309603
0.3 140 140 0.301423 0.206936 140 140 0.301004 0.207255
0.4 162 161 0.401107 0.137332 162 161 0.402262 0.136641
0.5 181 180 0.501038 0.0876586 181 180 0.501506 0.0874502
0.6 198 198 0.602907 0.0517339 199 198 0.602583 0.05181
0.7 214 213 0.700992 0.0277739 215 213 0.703114 0.0273433
0.8 229 228 0.802953 0.0116263 229 228 0.800921 0.01187
0.9 242 242 0.900638 0.00301423 243 242 0.901391 0.00296749

Table 1: Comparison between product of two Reed-Solomon codes and the
code produced by Theorem 6.4.

k =
∑

(b− ej)

where the sum is over j such that j ≤ a, ej ≤ b. The highest rate is for
e = 0. In that case we have

n = (q + 1)2

d ≥ (q + 1− a)(q + 1− b)

k = (a + 1)(b + 1)

X ∼= P1 × P1.

We check now the efficiency of the codes. As the code with the best rate is
constructed on the surface P1 × P1, it is natural to compare the parameters
of the new code with those of a well-known code, namely the product codes
of two Reed-Solomon codes (see [25]). Indeed it can be proved that a Reed-
Solomon is an algebraic geometric code over P1. The product code of two
Reed-Solomon codes over Fq is a [n, k, d]-code, with n = (q − 1)2, k = k1k2,
d ≥ (q − k1)(q − k2) for 0 ≤ k1, k2 ≤ q − 1. We fix a rate R̄ = k/n and let
k1, k2 run to get the code with highest relative distance δ = d/n and rate at
least R̄. Then we do the same for the codes of Theorem 6.4. In the following
table we show the rates and the relative distances and the corresponding k1,
k2 and a, b for every R̄. We set q = 256.
We can observe that in 6 cases, the codes produced by Theorem 6.4 are
more efficient than the product codes. Moreover, since they are longer, they
can better correct burst error.

6.5 Computing the dimension in the decomposable case

For a positive genus curve we cannot say that all the vector bundles of rank
2 over it are decomposable and all the decomposable ones are isomorphic
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to OC ⊕ OC(−e), but we can extend the reasoning done for rational ruled
surfaces to study the codes produced by decomposable vector bundles of the
form OC⊕OC(−e). The only difference is that, evaluating the dimension of
the code, we have to consider also the spaces H0(C,W −OC(b− je)) in the
Riemann-Roch theorem, where W is the canonical divisor on C. We obtain
the following theorem:

Theorem 6.5 (Lomont) Let C be a smooth curve of positive genus g, E =
OC ⊕ OC(−e) for an integer e ≥ 0, X the corresponding ruled surface.
Indicate with γ the number of Fq-rational points of C. For every integers
0 ≤ a < q + 1 and 0 ≤ b < γ, the codes produced by Theorem 6.3 have
parameters

n = (q + 1)γ

d ≥ (q + 1− a)(γ − b)

k =
∑

(b− je− g + 1 + h0(C,W −OC(b− je)))

where the sum is over j such that j ≤ a, ej ≤ b and W is the canonical
divisor on C. The highest rate is for e = 0. In that case we have

n = (q + 1)γ

d ≥ (q + 1− a)(γ − b)

k = (a + 1)(b + 1− g + h0(C, W −OC(b)))

X ∼= P1 × C.

REMARK: Clearly, if we take b > 2g − 2, the dimension is simply (a +
1)(b + 1− g).

For example, take the Klein quartic C at page 36 and compute the pa-
rameters of the codes over P1 × C, i.e. over the ruled surface associated
to the normalized decomposable bundle OC ⊕ OC . C has genus 3 and 17
rational points over F16, therefore n = 289. Fixed a minimum rate R̄, we
can let a and b run and find the code with the highest relative dimension
k/n and rate δ = d/n greater or equal R̄. The results are shown in table 2.

6.6 Computing the dimension in the general case

We saw that our main problem is to compute the dimension of the codes on
ruled surfaces i.e. to compute h0(Sa(E) ⊗ OC(bPo)). Lomont does not say
anything about h0 in the general case. He treats just the decomposable case
for curves of any genus and the only theorem for curves of genus greater
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R̄ a b rate δ

0.1 5 7 0.103806 0.415225
0.2 9 8 0.207612 0.249135
0.3 10 10 0.304498 0.16955
0.4 12 11 0.404844 0.103806
0.5 13 13 0.532872 0.0553633
0.6 14 14 0.622837 0.0311419
0.7 15 15 0.719723 0.0138408
0.8 16 16 0.823529 0.00346021

Table 2: Efficiency of a code produced by Theorem 6.5 for a ruled surface
over the Klein quartic.

than 1 is Theorem 6.3. In this subsection we investigate the general case
and we prove a theorem about the parameters of codes on ruled surfaces
associated to suitable rank 2 vector bundles. .

For decomposable vector bundles we reduced to an easy problem, namely
the calculation of the h0 of a line bundle. When we deal with indecompos-
able vector bundle we cannot use this approach anymore, and we need more
information about the global sections of vector bundles. The fundamental
result is again a Riemann-Roch theorem, generalized to vector bundles over
curves and often called Weil-Riemann-Roch theorem.

Theorem 6.6 (Weil-Riemann-Roch) Let F be a vector bundle of rank
r and degree d over a smooth projective curve of genus g. Then

h0(C,F)− h1(C,F) = d + r(1− g).

Using Serre’s duality theorem, we can write h1(C,F) as dimHom(F , ΩC),
where ΩC is the sheaf of differentials. See [13, th. 8.5.4 p. 108].

It is clear that we have to know degree and rank of the vector bundle
Sa(E) ⊗ OC(bP0). This can be done by using the following well-known
theorems, whereby proofs can be found for instance in the appendix of [16].

Theorem 6.7 For vector bundles E and F over a curve C

deg(E ⊗ F) = rankF deg E + rank E degF .

Theorem 6.8 If E is a rank r degree d vector bundle over a curve C, then

rankSn(E) =
(

n + r − 1
r − 1

)
.
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Theorem 6.9 If E is a rank r degree d vector bundle over a curve C, then

deg Sn(E) =
dn

r

(
n + r − 1

r − 1

)
.

The theorems above lead immediately to the following proposition:

Proposition 6.7 Let E be a rank 2 degree d vector bundle over a smooth
projective curve of genus g. Then

h0(C, Sa(E)⊗OC(bP0)) = h1(C,Sa(E)⊗OC(bP0))+ (a+1)(b+
da

2
+1− g).

REMARK: Proposition 6.7 is compatible with the previous calculation of
h0(P1, Sa(OC ⊕OC)⊗OC(bP0)), since the first cohomology group is 0.

We can observe that, even if we cannot compute the dimension of codes
on a ruled surface, we already have a lower bound for it. The last missing
step in order to compute its exact value is the knowledge of h1((Sn(Fr) ⊗
OC(bP0)). In the following we give some further conditions to calculate
exactly h0((Sn(Fr)⊗OC(bP0)). In particular, we study some sufficient con-
ditions to make h1((Sn(Fr)⊗OC(bP0)) vanish.

At page 45 we said that every coherent sheaf can be written as a quotient
of a direct sum of twisted sheaves. Looking at the proof we can state this
result more precisely.

Proposition 6.8 Let F be a coherent sheaf over a projective scheme X and
let n be such that F(n) is generated by global sections. Then F is isomorphic
to the quotient of a direct sum of copies of OX(−n).

Proof: If F(n) is generated by global sections, it means there exists a sur-
jection

⊕OX → F(n). Tensoring with OX(−n) we get a surjection from⊕OX(−n) → F . ¤

Corollary 6.2 Let F be a vector bundle over a smooth projective curve C
of genus g and let n be such that F(n) is generated by global sections. Then
h1(C,F ⊗ L) = 0 for every line bundle with degL > 2g − 2 + n.

Proof: We know that h1(C,OX(−n)⊗ L) = 0 if degL − n > 2g − 2. Since
the cohomology commutes with the direct sums, if degL > n + 2g − 2 then
h1(C,

⊕OX(−n) ⊗ L) =
∑

h1(C,OX(−n) ⊗ L) = 0. If we write the exact
sequence

0 −→ I ⊗ L −→
⊕

OX(−n)⊗ L −→ F ⊗ L −→ 0
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we get the exact cohomology sequence

· · · −→ H1(C,
⊕

OX(−n)⊗ L) −→ H1(C,F ⊗ L) −→ 0

as higher degree terms vanish by the Grothendieck vanishing theorem, so
we can conclude. ¤

Corollary 6.3 Let E be a rank 2 vector bundle over a smooth projective
curve C of genus g and let n be such that E(n) is generated by global sections.
Then h1(C,Sa(E)⊗OC(bP0)) = 0 for b > 2g − 2 + na.

Proof: E⊗a(na) is generated by global sections, so also Sa(E)(na). ¤

Corollary 6.4 Let E be a vector bundle over a smooth projective curve C
of genus g, E generated by global sections. Then h1(C, Sa(E)⊗OC(bP0)) = 0
for b > 2g − 2.

Another sufficient condition is related to the concepts of stability and semista-
bility, introduced by Mumford.

Definition 6.7 A vector bundle E is called stable if, for every proper sub-
bundle F of E,

degF
rankF <

deg E
rank E .

It is called semistable if

degF
rankF ≤ deg E

rank E .

Lemma 6.4 We have the following:

1. Every line bundle L is stable

2. If E is stable (resp. semistable) then E ⊗L is stable (resp. semistable).

Proposition 6.9 Let E be a vector bundle of rank r and degree d over a
smooth projective curve C of genus g.

1. If E is stable and d ≥ r(2g − 1) then E is generated by global sections.

2. If E is stable and d ≥ r(2g − 2) then h1(C, E) = 0.

3. If E is semistable and d > r(2g − 1) then E is generated by global
sections.

4. If E is semistable and d > r(2g − 2) then h1(C, E) = 0.
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Proof: Good and clear references are the notes by Montserrat Teixidor I Bi-
gas on Vector bundles on curves, used for the Boston and Tufts Universities
seminar on vector bundles on curves. They can be found at the web address
http://www.tufts.edu/˜mteixido/files/vectbund.pdf

We can summarize these results in the following theorem:

Theorem 6.10 (Zampolini) Let C be a nonsingular curve of genus g, E
a normalized vector bundle of rank 2 over C, X = P(E) the associated
ruled surface π : P(E) → C with invariant e. f is a fiber over a point
P0 ∈ C and γ = #C(Fq). Fix integers a ≥ 0 and b ≥ 0. If E is not
ample put m = a(dke − e) + b, otherwise m = b − ae. If m < γ and
γ(q + 1) ≥ (γ −m)a + (q + 1)m then there are codes with parameters

n = (q + 1)γ

k ≥ (a + 1)(b− ea

2
+ 1− g)

d ≥ n− (γ −m)a− (q + 1)m .

Moreover if at least one of the following conditions

1. E is generated by global sections and b > 2g − 2,

2. E(n) is generated by global sections and b > 2g − 2 + na,

3. E is semistable and −e > 4g − 1,

4. E is stable and −e ≥ 4g − 1,

holds then k = (a + 1)(b− ea
2 + 1− g).

6.7 Ruled surfaces over elliptic curves

We saw that for rational ruled surfaces the only possible codes are those
generated by decomposable vector bundles of rank 2. Next step is to study
rank 2 vector bundles over elliptic curves. The decomposable case has been
treated in Theorem 6.5, so we can focus on rank 2 normalized indecompos-
able vector bundles E over elliptic curves. By Theorem 6.1, if E is normalized,
then either deg E = 0 or deg E = 1. Viceversa, Hartshorne in [7, V 2.15]
proves that if X is a ruled surface over an elliptic curve C, corresponding
to an indecomposable E , then e = 0 or −1, and there is exactly one such
ruled surface over C for each of these two values of e. The computation
of h0(C,Sa(E) ⊗ OC(bP0)) in the degree 0 case is solved in Lomont’s PhD
thesis, while Lomont leaves the degree 1 case as an open problem. We were
able to partially solve this case for some a and b, while the general case, for
arbitrary a and b, is still open.
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The solution of degree zero case uses deep results about vector bundles over
elliptic curves. The classification of vector bundles over elliptic curves de-
fined over an algebraically closed field of zero characteristic is due to Atiyah
([1]). Arason, Elman and Jacob extended in [11] such results to elliptic
curves over perfect fields, hence to finite fields. We refer to these references
for a proof of the following theorem.

Theorem 6.11 (Atiyah-Arason-Elman-Jacob) Let C be an elliptic curve
over a perfect field K. Denote by E(r, d) the set of indecomposable vector
bundles of rank r and degree d over C. We have that:

1. It is possible to associate to each K-rational point P ∈ C a vector
bundle Er,d,P ∈ E(r, d);

2. Er,d,P
∼= Er,d,P if and only if P = Q;

3. Every M∈ E(r, d) is of the form Er,d,P for some P ∈ C;

4. For every r there exists a vector bundle Fr ∈ E(r, 0), unique up to
isomorphism, with Γ(X,Fr) 6= 0. Moreover we have an exact sequence

0 → OC → Fr → Fr−1 → 0

and Γ(X,Fr) = K;

5. Let E ∈ E(r, 0). Then E ∼= L ⊗ Fr, where L is a line bundle of degree
0;

6. dimΓ(Fr⊗Fs) = min{r, s}. If L is a line bundle then dimΓ(L⊗Fr⊗
Fs) = 0 unless deg L > 0;

7. If 2 ≤ s ≤ r then Fr ⊗Fs =
⊕s

i=1Fr−s+2i−1.

We have now the tools needed to prove the following proposition about the
structure of Sn(Fr).

Proposition 6.10 (Lomont) Let Fr be as in Theorem 6.11. Then Sn(Fr) =
Fri ⊕ · · · ⊕ Frj for some Fri, with r1 + · · ·+ rj =

(
n+r−1

r−1

)
.

Proof: Write Sn(Fr) =
⊕ Ei, where Ei are the indecomposable components.

Take a line bundle L of degree zero over C with H0(C,L) = 0 and consider
the exact sequence

0 −→ I −→ F⊗n
r −→ Sn(Fr) −→ 0.
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Since degFr = 0, we deduce from Theorems 6.7 and 6.9 that degF⊗n
r = 0

and deg Sn(Fr) = 0, so deg I = 0, as the degree is additive. Tensoring with
L we get the exact sequence of vector bundles over C

0 −→ I ⊗ L −→ F⊗n
r ⊗ L −→ Sn(Fr)⊗ L −→ 0

and the exact cohomology sequence

0 −→ H0(I ⊗ L) −→ H0(F⊗n
r ⊗ L) −→ H0(Sn(Fr)⊗ L) −→

H1(I ⊗ L) −→ H1(F⊗n
r ⊗ L) −→ H1(Sn(Fr)⊗ L) −→ 0.

The higher degree terms vanish by the Grothendieck vanishing theorem cited
at page 52. We know by case (6) of Theorem 6.11 that h0(F⊗n

r ⊗ L) = 0,
so, by the Riemann-Roch theorem, we obtain

h1(F⊗n
r ⊗ L) = h0(F⊗n

r ⊗ L)− deg(F⊗n
r ⊗ L) = 0 .

This way the cohomology sequence becomes

0 −→ H0(I ⊗ L) −→ 0 −→ H0(Sn(Fr)⊗ L) −→

H1(I ⊗ L) −→ 0 −→ H1(Sn(Fr)⊗ L) −→ 0.

Thus H0(I ⊗ L) = 0 and, by the Riemann-Roch theorem, H1(I ⊗ L) = 0.
Therefore we get the exact sequence

0 −→ H0(Sn(Fr)⊗ L) −→ 0 ,

then it turns out that H0(Sn(Fr)⊗ L) = 0, so deg Ei ≤ 0 for every i. Since
the degree is additive over direct sums, deg Ei = 0 for every i. From Theorem
6.11, Ei

∼= Fri ⊗ Li for some degree 0 line bundles Li. We want to prove
that Li

∼= OC for all i. Assume Li 6∼= OC for some i. We can tensor with
L−1

i and so we obtain the cohomology sequence

0 −→ H0(I ⊗ L−1) −→ H0(F⊗n
r ⊗ L−1) −→ H0(Sn(Fr)⊗ L−1) −→

H1(I ⊗ L−1) −→ H1(F⊗n
r ⊗ L−1) −→ H1(Sn(Fr)⊗ L−1) −→ 0.

Arguing analogously to what we did before we can show that in this case
H0(Sn(Fr)⊗L−1) = 0. But Sn(Fr)⊗L−1 has Fri as a direct summand, so it
has no zero global sections and this contradicts the assumption Li 6∼= OC for
some i. Hence we found Sn(Fr) ∼=

⊕
iFri . The rank computation follows

easily from Theorem 6.8. ¤

The last step is given by the following theorem, proved by Atiyah for al-
gebraically closed fields of characteristic 0, whose generalization to perfect
fields is possible by [11]. A proof can be found in [23, appendix A p.20].
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Theorem 6.12 Let C be an elliptic curve. Then every indecomposable vec-
tor bundle over C is semistable.

By Theorem 6.12 and Proposition 6.9 we can for the first time explicitly
calculate the parameters of some codes constructed on surfaces.

Theorem 6.13 Let C be an elliptic curve with γ Fq-rational points. Let a,
b be integers with 0 < b < γ, 0 ≤ a < q + 1. Then there are [n, d, k]-codes
with

n = (q + 1)γ

k = (a + 1)b

d ≥ (q + 1− a)(γ − b).

Proof: Take a normalized indecomposable degree zero rank 2 vector bundle
E on C and apply Theorem 6.3. E is not ample because an indecomposable
vector bundle on C is ample if and only if deg E > 0 ([8, cor. 7.7]), so in
Theorem 6.3 we get m = b. We have just to calculate the dimension of the
code. We obtain

h0(C, Sa(E)⊗OC(bP0)) = h0(C,
⊕

(Fri ⊗OC(bP0))) =

=
∑

h0(C,Fri ⊗OC(bP0)).

But Fri are semistable, so Fri ⊗OC(bP0) are semistable and

deg(Fri ⊗OC(bP0)) = rib > 0 ,

so H1(Fri ⊗ OC(bP0)) = 0. By the Weil-Riemann-Roch theorem cited at
page 67, h0(Fri ⊗OC(bP0)) = rib. We finally can write

k =
∑

h0(C,Fri ⊗OC(bP0)) = b
∑

ri = b(a + 1) .¤

REMARK: Lomont’s proof of Theorem 6.13 is not completely clear. He
writes that h0(C,Fr ⊗ OC(bP0)) = 0 comes from the Riemann-Roch theo-
rem, as stated in [7]. But in Hartshorne’s book the Riemann-Roch theorem
is proved just for line bundles, while Fri has rank not necessarily 1.

Let us consider now the indecomposable rank 2 vector bundle with deg E = 1.
We know that if L is a line bundle of degree 1, then deg(E ⊗ L) = 3 > 2 =
rank (E ⊗ L)(2g − 1). Hence E(1) is generated by global sections by Propo-
sition 6.9. We can apply the case (2) of Theorem 6.10. By [8, cor. 7.7] E is
ample so m = b− ae = b + a.
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R̄ a b rate δ a b rate δ

0.1 82 79 0.100053 0.100252 72 54 0.469978 0.364157
0.2 115 113 0.200015 0.200015 112 60 0.307683 0.183642
0.3 141 139 0.301183 0.300114 148 58 0.205325 0.0814984
0.4 163 160 0.400397 0.400092 183 51 0.136263 0.0237125

Table 3: Comparison between the degree 0 and the degree 1 case.

Theorem 6.14 (Zampolini) Let C be an elliptic curve with γ Fq-rational
points. Let a, b be integers with 0 < b < γ, 0 ≤ a < q + 1. Then there are
[n, d, k]-codes with

n = (q + 1)γ

k ≥ (a + 1)(b +
a

2
)

d ≥ (q + 1− a)(γ − a− b) .

Moreover, if b > a then k = (a + 1)(b + a
2 ).

REMARK: For arbitrary a and b we were not able to calculate the dimen-
sion this way. In fact, if b ≤ a it is not possible to apply Proposition 6.9.
In this case h1((C,Sa(E)⊗OC(bP0)) can be positive and so k > (a+1)(b+ a

2 ).

We wish to compare in one example the codes obtained in degree 0 case
(Theorem 6.13) and the ones in degree 1 case (Theorem 6.14). In the sec-
ond case we cannot always estimate the dimension, so we use just the lower
bound. Consider the elliptic curve y2z = x3 + xz + z3 over F256, which has
γ = 256 rational points. The comparison method is the same as the one
used at page 65. On the left side of the table we write the values in the
degree 0 case, while on the right part we write the degree 1 case. We show
the values for R̄ up to 0.4, as the lower bound for the dimension does not
ensure the existence with the desired rate for R̄ greater or equal 0.5.
The table clearly shows that the codes from the 0 degree case are much more
efficient than the codes from the 1 degree case. This is probably because
we are not able to calculate their exact dimension for every a and b, but
we know just a lower bound and the value for b > a. Moreover, remark
that, even considering the bound, the best codes have b > a, so we still
have a chance to increase the dimension of the first cohomolgy group of
Sa(E)⊗OC(bP0).

The next proposition uses the same technique of Theorem 6.14 to prove
a more general version of it. We write this formulation to emphasize the
connection between h0(Sa(E) ⊗ OC(bP0)) and the indecomposable compo-
nents of Sa(E).
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Proposition 6.11 Let E be a vector bundle of rank 2 and degree −e over
an elliptic curve. Write Sa(E) =

⊕ E〉 with E〉 indecomposable, deg Ei = di

and rank Ei = ri. Then

h0(Sa(E)⊗OC(bP0)) = (a + 1)(b− ea

2
) +

∑

j

h1(C, Ej ⊗OC(bP0)),

where the sum is over j such that dj ≤ −brj.

Proof: By Theorem 6.6,

h0(Sa(E)⊗OC(bP0)) = deg(Sa(E)⊗OC(bP0)) + h1(Sa(E)⊗OC(bP0)) =

= (b− ea

2
) + h1(Sa(E)⊗OC(bP0)).

But
h1(Sa(E)⊗OC(bP0)) =

∑
h1(C, Ei ⊗OC(bP0)).

Remarking that deg(Ei ⊗OC(bP0)) = di + bri and rank (Ei ⊗OC(bP0)) = ri

we have, since the Ei are semistable, that, if dj + brj > rj then, h1(Ei ⊗
OC(bP0)) = 0 by Proposition 6.9. ¤

6.8 Conclusion and open problems

As the study of codes on higher dimensional varieties is quite recent, many
problems remain open and many “territories” are still left almost untouched
by research.

The first natural question is if it is possible to study the properties
of codes built on varieties of dimension bigger than 2. A first trial could
probably be done for Pn.

About codes on surfaces, one can try to calculate the parameters of codes
on surfaces different from ruled surfaces. The only paper we know oriented
in that direction is [6].

We saw that the classification of codes on rational ruled surfaces is com-
pleted, while for elliptic curves the case of vector bundles E of degree 1 is
partially uncompleted. We calculated h0(Sa(E) ⊗ OC(bP0)) for b > a and
we emphasized how in general the solution of the problem is related to the
knowledge of the indecomposable components of Sa(E). Nevertheless, if we
were able to compute the obstruction h1(Sa(E) ⊗ OC(bP0)) for a ≤ b, we
could build codes with better parameters. We suggest that probably it can
be useful to solve the problem not for every indecomposable rank 2 vector
bundle, but just for the only normalized one (see [7]).

Clearly it can be interesting to classify codes on ruled surface over curves
of genus greater than 1, for example over hyperelliptic curves. A deep knowl-
edge about vector bundles over them is required, so we suggest [3].
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A fundamental problem to use AG codes on surfaces in the applications
is the absence of a fast decoding algorithm. Zarzar and Voloch proposed
an algorithm in [27], but, by now, we have no proof that it works for every
code. One can either try to prove that Zarzar and Voloch’s algorithm is able
to decode at least codes on ruled surfaces or to look for a new algorithm for
codes on ruled surfaces.

As a final remark, we mention an interesting paper by T. Johnsen ([12]),
which connects rank 2 vector bundles over curves and the decoding of AG
codes on curves. By this work, the study on rank 2 vector bundle over curves
can be useful to develop both the theory of AG codes on ruled surface and
the research of faster decoding algorithms for AG codes on curves.
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