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CHAPTER 1

Introduction

The topological fundamental group can be studied using the theory of covering spaces,
since a fundamental group coincides with the group of deck transformations of the asso-
ciated universal covering space. When the universal cover exists, the theory of covering
spaces is entirely analogous to the Galois theory of fields, with the universal cover being
the analogue of the algebraic closure of a field and the group of covering transformations
being the analogue of the Galois group. The formalism of Galois categories and fun-
damental groups as introduced by A.Grothendieck in [Gro71] give a natural categorical
generalization of the above two theories. Moreover, far beyond providing a uniform set-
ting for the above two theories, this formalism gives rise to the construction and theory
of étale fundamental group of schemes which classifies the finite étale covers of a con-
nected scheme.
The aim of this master thesis is to understand the definition of étale fundamental groups
of schemes. In the first chapter, we will give the formalism of Galois categories and
fundamental groups. In the second chapter, we define the category of étale covers of a
connected scheme and prove that it is a Galois category. The third chapter is devoted to
giving some examples and properties of the étale fundamental group, while the fourth
chapter is devoted to the study of the structure results concerning the geometric funda-
mental groups of smooth curves.
I owe my deep thanks to my advisor Dr. Jilong Tong for introducing me this beautiful
subject, for his clear explanations, his time and patience. I must also thank my profes-
sors and fellow students in Leiden and Bordeaux for their kind help and support. I would
also like to thank European Union for supporting the Erasmus Mundus ALGANT Master
Program and thank the ALGANT consorsium for giving me the opportunity to study in
Europe.
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CHAPTER 2

Galois categories

In this chapter, we will give the formalism of Galois categories and fundamental groups.
We first give an axiomatic characterization of categories that are equivalent to Π−sets,
for some profinite group Π, then we give the proof of this equivalence, which is the
main result of this chapter. In the last part, we establish some functoriality properties
concerning such kind of categories.

1. Galois categories

§1. Definition and elementary properties. Let C be a category, X , Y two objects
in C. We will use the following notation:

• HomC(X, Y ): Set of morphisms from X to Y in C

• IsomC(X,Y ): Set of isomorphisms from X to Y in C

• AutC(X):=IsomC(X,X)

Recall moreover that a morphism u : X → Y of C is called a strict epimorphism if the
fibre product X ×Y X exists in C and for any object Z in C, the following sequence:

....0 ..HomC(Y, Z) ..HomC(X,Z) ..HomC(X ×Y X,Z)._◦u . p1.
p2

is exact in the category of sets, i.e. the first map is injective, and for ϕ ∈ HomC(X,Z)
then ϕ lies in the image of the first map iff ϕ ◦ p1 = ϕ ◦ p2. For example, in the category
of sets (or the category of finite sets), then a strict epimorphism in C is simply a surjective
map of sets.

Let FSets denote the category of finite sets.
Definition 1.1. A Galois category is a category C such that there exists a covariant func-
tor F : C → FSets satisfying the following axioms:

(1) C has a final object eC and finite fibre products exist in C.
(2) Finite coproducts (and hence initial object) exist in C and categorical quotients

by finite groups of automorphisms 1 exist in C.
1Recall that a categorical quotient of X ∈ C by a finite group of automorphism G is an object Z ∈ C

with u : X → Z a G−invariant morphism in C, which satisfies the following universal property: any
G−invariant f : X → Y in C factors through Z.
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6 2. GALOIS CATEGORIES

(3) Any morphism u : Y → X in C factors as Y u′−→ X ′ u′′−→ X , where u′ is a
strict epimorphism and u′′ is a monomorphism, which is an isomorphism onto
a direct summand of X.

(4) F sends final objects to final objects and commutes with fibre products.
(5) F commutes with finite coproducts and categorical quotients by finite groups of

automorphism and sends strict epimorphisms to strict epimorphisms.
(6) Let u : Y → X be a morphism in C, then F (u) is an isomorphism if and only

if u is an isomorphism.
The functor F is called a Fibre functor for C.
Remark 1.2. (1) Initial object exists in C, which we denote by ∅C . This is because

the coproduct over emptyset ∅ is always an initial object. And by axiom(2), our
claim follows.

(2) The decomposition Y u′−→ X ′ u′′−→ X in axiom (3) is unique in the sense that for
any two such decompositions Y u′i−→ X ′ u′′i−→ X = X ′

i⊔X ′′
i , i = 1, 2, there exists

a (necessarily) unique isomorphism ω : X ′
1

∼−→ X ′
2 such that ω ◦ u′1 = u′2 and

u′′2 ◦ ω = u′′1. See [Cad08], Lemma 2.3

(3) By combining axiom (3) (4) and (6), one also obtains that the functor F :
C → FSets preserves strict epimorphisms, monomorphisms, and initial ob-
jects. Conversely, for any X0 ∈ C, one has:
(a) F (X0) = ∅ if and only if X0 is an initial object of C;
(b) F (X0) ∼= ⋆ if and only ifX0 is a final object of C, where ⋆ denotes the final

objects in FSets.
(4) A galois category is artinian. Indeed, apply the fibre functor to a decreas-

ing sequence of monomorphism in C, by (3) we get a decreasing sequence of
monomorphism in FSets, which is stationary.

Definition 1.3. Let C be a Galois category,
• Let F : C → FSets be a fibre functor, the fundamental group of C at F , which

we denote by π1(C;F ), is the group of automorphisms of the functor F . (We
recall that an automorphism of a functor F : C → C ′ is a compatible collection
of isomorphisms {σC : F (C)

∼=−−−−−→
isom in C′

F (C)|∀C ∈ C}. Here, compatible
means that ∀ morphism f : C1 → C2 in C, the diagram

..
..F (C1) ..F (C1)

..F (C2) ..F (C2)

.

σC1

.F (f) . F (f).
σC2

commutes.)
• Let F1, F2 : C → FSets be two fibre functors, the set of paths from F1 to
F2 in C, which we denote by π1(C;F1, F2) := IsomFct(F1, F2) is the set of
isomorphisms of functors from F1 : C → FSets to F2 : C → FSets.
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§2. Examples and the main theorem.
§2.1. The topological covers. For any connected, locally arcwise connected and lo-

cally simply connected topological space B, let CtopB denote the category of finite topo-
logical covers of B, and CB the category of topological covers of B. For any b ∈ B,
write Fb : CB → Sets for the functor sending p : X → B ∈ CB to Fb(p) = p−1(b).
Then Fb naturally factors through the category Cdist(πtop1 (B, b)) of discrete πtop1 −sets.
The natural action of πtop1 (B, b) on Fb(p) is given by monodromy.
Lemma 1.4. monodromy For any p : Y → B ∈ CB, any path c : [0, 1] → B and
any y ∈ Fc(0)(p), there exists a unique path c̃y : [0, 1] → Y such that p ◦ c̃y = c and
c̃y(0) = y. Furthermore, if c1, c2 : [0, 1] → B are two homotopic paths with fixed ends
then c̃1,y(1) = c̃2,y(1).
In particular, one gets a well defined action ρx(p) : πtop1 (B, b) → AutSets(Fb(p))
sending [γ] ∈ πtop1 (B, b) to ρb(p)([γ]) : y → γ̃(1) and ρb defines a group morphism
ρb : π

top
1 (B, b)→ AutFct(Fb), [γ] 7→ ρb(−)([γ]).

For a proof of the above lemma, see [Sza09], Lemma 2.3.2. Actually, from the property
of topological covers we have:
Proposition 1.5. Assume that B is connected, locally arcwise connected and locally sim-
ply connected. Then Fb : CB → Sets induces an equivalence of categories

Fb : CB ∼= Cdisc(πtop1 (B, b))

.

See [Sza09] Theorem 2.3.4. Hence ρx : πtop1 (B, b) → AutFct(Fb) is an isomorphism.
And the category CtopB of all finite topological covers of B is Galois with fibre functors
Fb|Ctop

B
, b ∈ B

and π1(CtopB ;Fb) =
̂πtop1 (B, b) (where (̂−) denotes the profinite completion).

§2.2. The category C(Π) and the main theorem.
Lemma 1.6. Let Π be a profinite group , C(Π) the category of finite (discrete) sets with
continuous left Π-action, For : C(Π) → FSets the forgetful functor. Then C(Π) is a
Galois category, and For is a fibre functor. Moreover, we have:

π1(C(Π);For) ∼= Π.

This lemma can be proved by checking that the axioms in the definition of Galois cat-
egory are satisfied. Indeed C(Π) is the typical example of Galois categories. Let C be
a Galois category equipped with a fibre functor F , we claim first that the fundamental
group π1(C;F ) is equipped with a natural structure of profinite group. For this, set:

π :=
∏

X∈Ob(C)

AutFSets(F (X))

and endow π with the product topology of the discrete topologies, which gives it a struc-
ture of profinite group. Considering the monomorphism of groups:

π1(C, F ) ↪→ π
θ 7→ (θ(X))X∈Ob(C)
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the group π1(C;F ) can be identified with the intersection of all subgroups of the form:
Cϕ := {(σX)X∈Ob(C) ∈ π|σX ◦ F (ϕ) = F (ϕ) ◦ σY },

where ϕ : Y → X describes the set of all morphisms in C. By definition of the product
topology, the Cϕ's are closed. So π1(C, F ) is closed as well and, equipped with the topol-
ogy induced from the product topology on π, it becomes a profinite group.
By definition of this topology, the action of π1(C;F ) on F (X) is continuous. This is be-
cause that we endow F (X) with the discrete topology and that the subgroup of π1(C, F )
sending a certain element x in F (X) to another element y in F (X) is a subgroup of π
which is the intersection of all Cϕ and {(σX)X∈Ob(C) ∈ π|σX(x) = y} hence it is a closed
subgroup of π1(C, F ). And the group is of finite index in π1(C, F ), hence it is an open
subgroup of π1(C, F ). Hence a fibre functor F : C → FSets factors as:

..
..C ..FSets

..C(π1(C;F )) ..
.
F

.For

By abuse of notation the induced functor C → C(π1(C;F )) will be still denoted by F .
Theorem 1.7. (Main theorem) Let C be a galois category. Then:

(1) Any fibre funcor F : C → FSets induces an equivalence of categories F : C →
C(π1(C;F )).

(2) For any two fibre functorsFi : C → FSets, i = 1, 2, the set of paths π1(C;F1, F2)
is non-empty. The profinite group π1(C;F1) is noncanonically isomorphic to
π1(C;F2) with an isomorphism that is canonical up to inner automorphisms. In
particular, the abelianization π1(C;F )ab of π1(C;F ) does not depend on F up
to canonical isomorphisms.

In the following, after a discusion of the notion of connecte and Galois objects, we will
give the proof in section 3. In the last section, we will discuss the functoriality of Galois
categories.

2. Galois objects.

Given a category C and X,Y ∈ C, we will say that X dominates Y in C if there exists
at least one morphism from X to Y in C, and writes X ≥ Y .
We fix in this section a fibre functor F : C → FSets of a galois category C.
Definition 2.1. An objectX ∈ C is called connected if it cannot be written as a coproduct
X = X1 ⊔X2 with Xi ̸= ∅C , i = 1, 2.
Proposition 2.2. (Minimality and connected components) An objectX0 ∈ C is connected
if and only if for any X ∈ C, X ̸= ∅C any monomorphism from X to X0 in C is automat-
ically an isomorphism.
In particular, any object X ∈ C (X ̸= ∅C) can be written as: X = ⊔ri=1Xi, with Xi ∈ C
connected, Xi ̸= ∅C , i = 1, ..., r and this decomposition is unique (up to permutation).
We say that the Xi, i = 1, ..., r are the connected components of X .



2. GALOIS OBJECTS. 9

Proof. The "if" implication: writeX0 = X ′
0⊔X ′′

0 , we may assume thatX ′
0 ̸= ∅C . By

1.2 (3) the canonical morphism iX′
0
: X ′

0 → X0 is a monomorphism hence automatically
an isomorphism, hence F (X ′′

0 ) = ∅ hence X ′′
0 = ∅C by 1.2 (3).

The "only if" implication: assume that X0 ̸= ∅C . By axiom(3), any monomorphism
i : X ↪→ X0 in C factors as X i′−→ X ′

0
i′′−→ X0 = X ′

0 ⊔ X ′′
0 with i′ a strict epimorphism

and i′′ a monomorphism inducing an isomorphism onto X ′
0. If X ′

0 = ∅C then F (X) =
∅, which forces X = ∅C and contradicts our assumption. So X ′′

0 = ∅C and i′′ is an
isomorphism. Then, i : X ↪→ X0 is both a monomorphism and a strict epimorphism
hence an isomorphism. As for the last assertion, since C is Artinian, for anyX ∈ C, X ̸=
∅, there exists X1 ∈ C connected, X1 ̸= ∅C and a monomorphism i1 : X1 ↪→ X . If i1
is an isomorphism then X is connected. Otherwise, from axiom(3), i1 factors as X1

i′1−→
X ′ i′′1−→ X = X ′ ⊔ X′′ with i′1 a strict epimorphism and i′′1 a monomorphism inducing
an isomorphism onto X ′. Since i1 and i′′1 are monomorphisms, i′1 is a monomorphism
as well hence an isomorphism. We then iterate the argument on X ′′. By axiom(5), this
process terminates after at most |F (X)| steps. So we obtain a decomposition:

X = ⊔ri=1Xi.

as a coproduct of finitely many non-initial connected objects, which proves the existence.
For the unicity, assume that we have another such decomposition:

X = ⊔si=1Yi.

For 1 ≤ i ≤ r, let 1 ≤ σ(i) ≤ s such that F (Xi) ∩ F (Yσ(i)) ̸= ∅. Then consider:

..
..Xi ..X

..Xi ×X Yσ(i) ..Yσ(i)

.

iXi

.p .
q

. iYσ(i)

Since iXi
is a monomorphism, q is a monomorphism as well. Also, by axiom(4) one

has F (Xi ×X Yσ(i)) = F (Xi) ∩ F (Yσ(i)) ̸= ∅ and, since Yσ(i) is connected and q is a
monomorphism, q is an isomorphism. Similarly, p is an isomorphism. □
Proposition 2.3. (Morphisms from and to connected objects) Let X0, X be two objects
of C with X0 connected.

(1) (Rigidity) For any ζ0 ∈ F (X0), ζ ∈ F (X), there is at most one morphism from
(X0, ζ0), to (X, ζ) in Cpt;

(2) (Domination by connected objects) For any (Xi, ζi) ∈ Cpt, i = 1, ..., r there
exists (X0, ζ0) ∈ Cpt with X0 ∈ C connected such that (X0, ζ0) ≥ (Xi, ζi) in
Cpt, i = 1, ..., r.
In particular, for any X ∈ C, there exists (X0, ζ0) ∈ Cpt with X0 ∈ C con-
nected such that the evaluation map: evζ0 : HomC(X0, X)

≃−→ F (X)
u : X0 → X 7→ F (u)(ζ0)

is bijective.
(3) (a) If X0 ∈ C is connected, then any morphism u : X → X0 in C is a strict

epimorphism;
(b) If u : X0 → X is a strict epimorphism in C and if X0 is connected then X

is also connected;
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(c) If X0 ∈ C is connected, then any endomorphism u : X0 → X0 in C is
automatically an automorphism.

Proof. (1) Let ui : (X0, ζ0) → (X, ζ) be two morphisms in Cpt, i = 1, 2.
From axiom (1) the equilizer ker(u1, u2) i−→ X exists in C. From axiom (4),
F (ker(u1, u2))

F (i)−−→ F (X0) is the equalizer of F (ui) : F (X0) → F (X), i =
1, 2 in FSets. But by assumption, ζ0 ∈ Ker(F (u1), F (u2)) = F (ker(u1, u2))
so, in particular,F (ker(u1, u2)) ̸= ∅ and it follows from 1.2 (3) that ker(u1, u2) ̸=
∅C . Since an equalizer is always a monomorphism, it follows then from 2.2 that
i : ker(u1, u2)

≃−→ X0 is an isomorphism, that is u1 = u2.
(2) Take X = X1 × ... × Xr, ζ := (ζ1, ...ζr) ∈ F (X1) × .. × F (Xr) = F (X1 ×

...×X2) by axiom (4). The ith projection pri : X0 → Xi induces a morphism
from (X, ζ) to (Xi, ζi) in Cpt, i = 1, ..., r. So it is enough to prove that there
exists (X0, ζ0) ∈ Cpt with X0 connected such that (X0, ζ0) ≥ (X, ζ) in Cpt. If
X ∈ C is connected then Id : (X, ζ)→ (X, ζ) works. Otherwise, write

X = ⊔ri=1Xi

as product of its connected components and let iXi
: Xi ↪→ X denote the canon-

ical monomorphism, i = 1, ..., r. Then, from axiom (2) one gets:
F (X) = ⊔ri=1F (Xi)

hence, there exists a unique 1 ≤ i ≤ r such that ζ ∈ F (Xi) and iXi
: (Xi, ζ) ↪→

(X, ζ) works.
(3) (a) It follows from axiom (3) that u : X → X0 factors as X u′−→ X ′

0
u′′−→

X ′
0⊔X ′′

0 = X0, where u′ is a strict epimorphism and u′′ is a monomorphism
inducing an isomorphism onto X ′

0. Furthermore, X ̸= ∅C forces X ′
0 ̸=

∅C thus since X0 is connected, X ′′
0 = ∅C hence u′′ : X ′

0
≃−→ X0 is an

isomorphism.
(b) IfX0 = ∅C , the claim is obvious. Otherwise, writeX = X ′⊔X ′′ withX ′ ̸=
∅C . Let iX′ : X ′ ↪→ X denote the canonical inclusion. Fix ζ ′ ∈ F (X ′),
ζ0 ∈ F (X0) such that F (u)(ζ0) = ζ ′. From (2), there exists (X ′

0, ζ
′
0) ∈

Cpt, with X0 connected and morphisms p : (X ′
0, ζ

′
0) → (X0, ζ0) and q :

(X ′
0, ζ

′
0) → (X ′, ζ ′). From (3)(a) the morphism p is automatically a strict

epimorphism, so u ◦ p is also a strict epimorphism. From (1) one has:
u ◦ p = iX′ ◦ q so iX′ ◦ q is a strict epimorphism, in particular, F (X) =
F (X ′), which forces F (X ′′) = ∅, therefore X ′′ = ∅C .

(c) From axiom (6), we only need to prove F (u) : F (X0)
≃−→ F (X) is an iso-

morphism. But F (X0) is finite, we only need to prove F (u) is an epimor-
phism. By axiom (3), write u : X0 → X0 asX0

u′−→ X ′
0
u′′−→ X0 = X ′

0⊔X ′′
0

with u′ a strict epimorphism and u′′ a monomorphism inducing an isomor-
phism onto X ′

0. As X0 is connected either X ′
0 = ∅C or X ′′

0 = ∅C . Then
either X0 = ∅C and thus the claim is straightforward, or X0 = X ′

0 thus
u′′ is an isomorphism and u is a strict epimorphism so by axiom (4) the
conclusion follows.

□
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Corollary 2.4. Let X0 ∈ C be a connected object. X0 ̸= ∅, let ζ0 ∈ F (X0). Then the
evaluation map:

evζ0 : AutC(X0)→ F (X0), u 7→ F (u)(ζ0)

is injective. In particular,
|AutC(X0)| ≤ |F (X0)|

.
Definition 2.5. A connected objectX0 in C is an Galois object in C if for any ζ0 ∈ F (X0)
the evaluation map evζ0 : AutC(X0) ↪→ F (X0) is bijective.
Remark 2.6. Let X0 be a connected object in C, then X0 is a Galois object iff one of the
following conditions is satisfied:

(1) AutC(X0) acts transitively on F (X0);
(2) AutC(X0) acts simply transitively on F (X0);
(3) |AutC(X0)| = |F (X0)|;
(4) X0/AutC(X0) is final in C.

SinceAutC(X0) acts simply on F (X0), we get the equivalence of (1), (2), and (3). By 1.2
(3)(b), (4) is equivalent to F (X0/AutC(X0)) = ∗. By axiom (5) this is also equivalent
to F (X0)/AutC(X0) = ∗, which is equivalent to (1).
By (4) the notion Galois object is independent of the fibre functor.
Proposition 2.7. (Galois closure) Let X ∈ C be a connected object in C, then there exists
a Galois object X̂ ∈ C dominating X , which is minimal among all the Galois objects
dominating X in C.

Proof. By 2.3(2) there exists (X0, ζ0) ∈ Cpt, such that X0 is connected and that the
evaluation map evζ0 : HomC(X0, X)

≃−→ F (X) is bijective. Write HomC(X0, X) =
{u1, ..., un}. For i = 1, ..., n, let ζi := F (ui)(ζ0) and pri : Xn → X denote the
ith projection. By the universal property of product, there is a unique morphism π :=
(u1, ..., un) : X0 → Xn such that pri ◦ π = ui.
By axiom (3), we can decompose π : X0 → Xn as X0

π′
−→ X̂

π′′
−→ Xn = X̂ ⊔ X̂ ′ with

π′ a strict epimorphism and π′′ a monomorphism inducing an isomorphism onto X̂ . We
claim that X̂ is Galois and minimal among the Galois objects dominating X .
By 2.3(3)(b), X̂ is connected. Set ζ̂0 := F (π′)(ζ0) = (ζ1, ..., ζn) ∈ F (X̂); we are to
prove that evζ̂0 : AutC(X̂) → F (X̂) is surjective that is, for any ζ ∈ F (X̂) there exists
ω ∈ AutC(X̂) such that F (ω)(ζ̂0) = ζ . By 2.3 (2) there exists (X̃0, ζ̃0) ∈ Cpt with X̃0

connected and (X̃0, ζ̃0) ≥ (X0, ζ0) and (X̃0, ζ̃0) ≥ (X̂, ζ̂0), ζ̂0 ∈ F (X̂). So, on one hand,
we can write F (ω)(ζ̂0) = F (ω ◦ π′)(ζ0), on the other hand, ζ = F (ρζ)(ζ0). But then
by 2.3 (1), there exists ω ∈ AutC(X̂) such that F (ω)(ζ̂0) = ζ if and only if there exists
ω ∈ AutC(X̂) such that ω ◦ π′ = ρζ . To prove the existence of such an ω observe that:
(2.1) {pr1 ◦ π′′ ◦ ρζ , ..., prn ◦ π′′ ◦ ρζ} = {u1, ..., un}.
The inclusion⊂ is straightforward. To prove⊃, only need to prove that pri ◦π′′ ◦ρζ , 1 ≤
i ≤ n are all distinct. But since pri◦π′′◦π′ = ui ̸= uj = prj ◦π′′◦π′, 1 ≤ i ̸= j ≤ n and
π′ : X0 → X̂ is a strict epimorphism, pri◦π′′ ̸= prj◦π′′ as well. And, asX0 is connected,
ρζ : X0 → X̂ is automatically a strict epimorphism hence pri ◦ π′′ ◦ ρζ ̸= prh ◦ π′′ ◦ ρζ .
From , there exists a permutation σ ∈ Sn such that prσ(i) ◦ π′′ ◦ ρζ = pri ◦ π′′ ◦ π′ and
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from the universal property of product there exists a unique isomorphism σ : Xn ≃ Xn

such that pri ◦ σ = prσ(i). Hence pri ◦ π′′ ◦ π′ = pri ◦ σ ◦ π′′ ◦ ρζ , which forces
π′′ ◦ π′ = σ ◦ π′′ ◦ ρζ . But then from the unicity of the decomposition in axiom(3), there
exists an automorphism ω : X̂ ≃ X̂ satisfying σ ◦ π′′ = π′′ ◦ ω and ω ◦ π′ = ρζ .
It remains to prove the minimality of X̂ . Let Y ∈ C be Galois and q : Y → X a
morphism in C. Fix ηi ∈ F (Y ) such that F (q)(ηi) = ζi, i = 1, ..., n. Since Y is Galois,
there exists ωi ∈ AutC(Y ) such that F (ωi)(η1) = ηi. This defines a unique morphism
κ := (q ◦ω1, ..., q ◦ωn) : Y → Xn such that pri ◦κ = q ◦ωi. By axiom (3), κ : Y → Xn

factors as Y κ′−→ Z ′ π′′
−→ Xn = Z ′ ⊔ Z ′′ with π′ a strict epimorphism in C and π′′ a

monomorphism inducing an isomorphism onto Z ′. It follows from 2.3(3) (b) that Z ′ is
connected and F (κ)(η1) = (ζ1, ..., ζn) = ζ̂0 hence Z ′ is the connected component of ζ̂0
in Xn that is X̂ .

□

Such an X̂ is unique up to isomorphism; it is called the Galois closure of X .

3. Proof of the main theorem

Let C be a Galois category, and F : C → Sets a fibre functor. Let G be a system of
representatives of the isomorphism classes of Galois objects in C. Let

ζ = (ζX)X∈G ∈
∏
X∈G

F (X).

For two pairs (X, ζX) and (Y, ζY ) withX, Y ∈ G, we say that (X, ζX) dominates (Y, ζY ),
denoted by (X, ζX) ≥ (Y, ζY ) if there exists a morphism uX,Y : X → Y such that
F (u)(ζX) = ζY . Note that if this morphism exists, then it must be unique, by 2.3 (1),
hence we have the following:
Lemma 3.1. The set Gζ := {(X, ζX)|X ∈ G} is a directed set with respect to the relation
≥ defined above.

For any (X, ζX) ∈ Gζ , we consider the evaluation map
evX,ζX : HomC(X,−) → F

(u : X → Y ) 7→ F (u)(ζX)

Proposition 3.2. (Galois correspondence) For any X0 ∈ G let CX0 ⊂ C denote the full
subcategory whose objects are the X ∈ C such that X0 dominates any connected com-
ponent of X in C.

(1) The evaluation map
evX0,ζ0 : HomC(X0,−)|CX0

≃−→ F |CX0 .

is a functor isomorphism. In particular, this induces an isomorphism of groups:
uζ0 : Aut(F |CX0 )

≃−→ Aut(HomC(X0,−)|CX0 ) = AutC(X0)
op

(where the second equality is just Yoneda lemma)
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(2) The functorF |CX0 : CX0 → FSets factors through an equivalence of categories

..
..CX0 ..FSets

..C(AutC(X0)
op) ..

.

F |CX0

.F |CX0

.∼= .For

Proof. (1) Since the diagram

..
..F (Y ) ..F (X)

..HomC(X0, Y ) ..HomC(X0, X)

.

F (u)

.ev(X0,ζ0)
(Y ) .

u◦

.ev(X0,ζ0)
(X)

commutes, ev(X0,ζ0) is a morphism of functors. Also, since X0 is connected,
ev(X0,ζ0)(X) is injective for X ∈ CX0 .
• IfX is connected, it follows from 2.3 (3)(a) that any morphism u : X0 → X

in C is automatically a strict epimorphism. Write F (X) = {ζ1, ..., ζn} and
let ζ0i ∈ F (X0) such that F (u)(ζ0i) = ζi, i = 1, ..., n. Since X0 ∈ C
is Galois, there exists ωi ∈ AutC(X0) such that F (ω)(ζ0) = ζ0i, hence
ev(X0,ζ0) is surjective hence bijective.
• If X is not connected, the conclusion follows from 2.2 and axiom (5).

(2) We setG := AutC(X0). From (1) and identifyF |X0 with the functorHomC(X0,−)|X0

over which Gop acts naturally via composition on the right, whence a factoriza-

tion: ..
..CX0 ..FSets

..C(Gop)

.
FX0

.FX0 .For It remains to prove that F |X0 : CX0 → C(Gop)

is an equivalence of categories.
• F |CX0 is essentially surjective: Let E ∈ C(Gop and e ∈ E. By the same

argument as in (1), one may assume that E is connected in C(Gop) that
is a transitive left Gop−set. Thus we get an epimorphism in Gop−sets:
p0e : Gop ↠ E

ω 7→ ω · e Set fe := p0e ◦ ev−1
ζ0

: F (X0) ↠ E. Then for any
s ∈ Se the stabilizer of e inGop, and ω ∈ G, one has: fe ◦F (s)(evζ0(ω)) =
fe(evζ0(ω)). So, by the universal property of quotient, fe : F (X0) ↠ E
factors throughF (X0)/Se. But if pe : X0 → X0/Se denotes the categorical
quotient it follows from axiom(5) that F (X0) ↠ F (X0)/Se is F (pe) :
F (X0) ↠ F (X0/Se). AsX0 is connected,G acts simply on F (X0) hence:

|F (X0)/Se| = |F (X0)|/|Se| = [G : Se] = |E|
So f̄e : F (X0)/Se = F (X0/Se) ↠ E is actually an isomorphism in Gop−
sets.
• F |CX0 is fully faithful: Let X, Y ∈ CX0 . We may again assume that X,Y

are connected. The faithfulness follows directly from 2.3(1). For the full-
ness, for any morphism u : F (X) → F (Y ) in C(Gop), fix e ∈ F (X).
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Since u : F (X) → F (Y ) is a morphism in C(Gop) we have Se ⊂ Su(e)
hence pu(e) : X0 → X0/Su(e) factors through:

..
..X0 ..X0/Se

..X0/Su(e) ..

.

pe

.pu(e) .
pe,u(e)

hence we get the following commutative diagram:

..
..F (X0/Se) ..F (X0/Su(e))

..F (X) ..F (Y )

.

F (pe,u(e))

.≃ . simeq.
u

□

Let (X, ζX), (Y, ζY ) ∈ Gζ be two elements with (X, ζX) ≥ (Y, ζY ), let uX,Y : X → Y
be the unique morphism such that F (uX,Y )(ζX) = ζY , then the following diagram is
commutative:

..
..HomC(Y,−) ..F (−)

..HomC(X,−) ..

.

evY,ζY

.u⋆X,Y

.evX,ζX .

Passing to limits, we obtain the following map
evG,ζ : lim−→

(X,ζX)∈Gζ

: HomC(X,−)→ F (−)

.
Proposition 3.3. The morphism evG,ζ above is an isomorphism.

Proof. By 2.3 (3)(a) the u∗X,Y are automatically strict epimorphisms. Then the asser-
tion follows from 3.2. □
Corollary 3.4. π1(C;F ) ∼= lim←−(X,ζX)∈Gζ AutC(X)op.
Lemma 3.5. Let X,Y ∈ G with X ≤ Y , for any morphisms ϕ, ψ : Y → X in C and
for any ωY ∈ AutC(Y ) there is a unique automorphism ωX := rϕ,ψ(ωY ) : X

≃−→ X in C

such that the following diagram commutes: ..
..Y ..Y

..X ..X.

.
ωY

.ψ . ϕ.
ωX

Proof. (of lemma 3.5) Since X is connected, ψ : Y → X is automatically a strict
epimorphism hence the map

◦ψ : AutC(X) ↪→ HomC(Y,X)

is injective. But by 3.2 that |HomC(Y,X)| = |F (X)|, from that X is Galois, |F (X)| =
|AutC(X)|. As a result the map ◦ψ : AutC(X)

≃−→ HomC(X, Y ) is actually bijective. In
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particular, there exists a unique ωX : X
≃−→ X making the above diagram commutative.

□

Proof. (of 3.4) By the above lemma we get a well defined surjective map:
rϕ,ψ : AutC(Y ) ↠ AutC(X)

which is a group epimorphism when ϕ = ψ. As a result we get a projective sys-
tem of finite groups. Denote by Π the projective limit of this system, then Πop acts
on HomC(X,−) by composition on the right, which induce a group monomorphism:
Πop ↪→ Aut(lim←−(X,ζX)∈Gζ HomC(X,−) hence a group monomorphism uζ : π1(C;F ) ↪→
Πop

Let ω := (ωX)X∈G ∈ Π. For any Z ∈ C connected, let Ẑ denote the Galois closure of Z
in C and consider the bijective map:

θω(Z) :
ev−1

ζ
Ẑ−−→

≃
HomC(Ẑ, Z)

◦ωẐ−−→
≃

HomC(Ẑ, Z)
evζ

Ẑ−−→
≃

F (Z).

One checks that this defines a functor automorphism and that uζ(θω) = ω. By the def-
inition of the topology on π1(C;F ), π1(C;F ) → Πop → AutC(X)op is continuous for
X ∈ G, hence uζ : π1(C;F )→ Πop is continuous. Since π1(C;F ) is continuous, uζ−1 is
continuous as well. □

Proof. (of the main theorem)
(1) By 3.3 and 3.4 we only need to show: evG,ζ factors through an equivalence of

categories: evG,ζ : C → C(Πop) But this follows almost straightforwardly from
3.2. Indeed,
• evG,ζ is essentially surjective: For any E ∈ C(Πop) since E is equipped

with the discrete topology, the action of Πop on E factors through a finite
quotient AutC(X) with X ∈ G and we apply 3.2 in CX .
• evG,ζ is fully faithful: For any Z,Z ′ ∈ C, there exists X ∈ G such that
X ≥ Z, X ≥ Z ′ and, again, this allows us to apply 3.2 in CX .

(2) Let Fi : C → FSets, i = 1, 2 be fibre functors. Then any ζ i ∈ ∏
X∈G Fi(X)

induces a functor isomorphism evG,ζi : lim−→(X,ζX)∈Gζi HomC(X,−)→ F (−), so
we only need to prove that lim−→(X,ζX)∈Gζ1 HomC(X,−) ≃ lim−→(X,ζX)∈Gζ2 HomC(X,−),
but this follows from the universal property of the projective limit.

□

4. Functoriality of Galois categories

Definition 4.1. (fundamental functor) Let C, C ′ be two Galois categories. Then a covari-
ant functor H : C → C ′ is a fundamental functor from C to C ′ if there exists a fibre
functor F ′ : C ′ → FSets such that F ′ ◦H : C → FSets is again a fibre functor for C2

2Or equivalently, if for any fibre functor F ′ : C′ → FSets, the functor F ′ ◦H : C → FSets is again a
fibre functor, since two fibre functors of a Galois category are isomorphic. A fundamental functor is called
an exact functor in [Gro71].
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Let C (resp. C ′) be Galois categories with F ( resp. F ′) a fibre functor on C( resp. on C ′).
Let H : C → C ′ be a fundamental functor such that F ′ ◦H = F . We can then define a
morphism of profinite groups:

uH : π1(C ′, F ′)→ π1(C,F )

as follows: ∀Θ′ ∈ Π′ , Θ′ ∈ Aut(F ′), hence there exists a Θ ∈ Aut(F ′ ◦ H) such that
∀X ∈ C, F (X) = F ′ ◦H(X), the following diagram is commutative:

..
..F ′ ◦H(X) ..F ′ ◦H(X)

..F (X) ..F (X)

.

Θ′
H(X)

.
Θ

,

we define
uH : π1(C ′, F ′)→ π1(C,F ) Θ′ 7→ Θ.

Claim 4.2. The morphism uH above is continuous.

Conversely, Let u : Π′ → Π be a morphism of profinite groups, then any X ∈ C(Π) can
be endowed with a continuous action of Π′ via u : Π′ → Π, which defines a canonical
fundamental functor:

Hu : C → C(Π′)

We obtain in this way the following commutative diagram of categories:

..
..C ..C ′

..C(Π)(HuH ) ..C ′
.
H

.∼= .F . ∼=. F ′

Now we assume C = C(Π), C ′ = C(Π′ and H = Hu for some morphism of profinite
groups u : Π′ → Π. We have the following:
Proposition 4.3. (1) u is a trivial morphism if and only if for any object X ∈ C,

H(X) is totally split in C ′.
(2) u is a monomorphism if and only if for any object X ′ ∈ C ′ there exists an object

X in C and a connected component X ′
0 of H(X) which dominates X ′ in C ′.

(3) u is an epimorphism iff one of the following two equivalent assertions are veri-
fied:
(a) H sends connected objects to connnected objects;
(b) H is fully faithful.

(4) u is an isomorphism if and only if H is an equivalence of categories.

(5) If C H−→ C ′ H′
−→ C ′′ is a sequence of fundamental functors of Galois categories

with corresponding of profinite groups Π u←− Π′ u′←− Π′′. Then,
(a) ker(u) ⊃ im(u′) if and only if H ′(H(X)) is totally split in C ′′, X ∈ C;
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(b) ker(u) ⊂ im(u′) if and only if for any connected object X ′ ∈ C ′ such that
H ′(X ′) has a section in C ′′, there existsX ∈ C and a connected component
X ′

0 of H(X) which dominates X ′ in C ′.

Proof. We have the following lemma:
Lemma 4.4. Given (X, ζ) ∈ Cpt, we will write (X, ζ)0 := (X0, ζ), where X0 denotes
the connected component of ζ in X . We say that an object X ∈ C has a section in C
if eC ≥ X and that an object X ∈ C is totally split in C if it is isomorphic to a finite
coproduct of final objects.
For any open subgroup U ⊂ Π,

(1) im(u) ⊂ U if and only if (eC′ , ⋆) ≥ (H(Π/U), 1)) in C ′pt;
(2) Let:

KΠ(im(u)) ◁ Π

denote the smallest normal subgroup inΠ containing im(u). ThenKΠ(im(u)) ⊂
U if and only if H(Π/U) is totally split in C ′.
In particular, u : Π′ → Π is trivial if and only if for any object X ∈ C, H(X)
is totally split in C ′.

For any open subgroup U ′ ⊂ Π′,
(1) ker(u) ⊂ U ′ if and only if there exists an open subgroup U ⊂ Π such that:

(H(Π/U), 1)0 ≥ (Π′/U ′, 1) in C ′pt.
(2) if, furthermore, u : Π′ ↠ Π is an epimorphism, then Ker(u) ⊂ U ′ if and only

if there exists an open subgroup U ⊂ Π and an isomorphism (H(Π/U), 1)0 −→
(Π′/U ′, 1) in C ′pt.

In particular,
(1) u : Π′ ↪→ Π is a monomorphism if and only if for any connected object X ′ ∈ C ′

there exists a connected object X ∈ C and a connected component H(X)0 of
H(X) in C such that H(X)0 ≥ X ′ in C ′.

(2) if, furthermore, u : Π′ ↠ Π is an epimorphism, then u : Π′ ↠ Π is an isomor-
phism if and only if H : C → C ′ is essentially surjective.

Proof. (of lemma) Since a closed subgroup S of a profinite group Π is the intersection
of all the open subgroups of Π containing S, {1} is the intersection of all open subgroups
of Π. This yields the characterization of trivial morphisms and monomorphisms from
the preceding assertions in (1) and (2).

(1) Note that (eC, ⋆) ≥ (H(Π/U), 1) in C ′pt if and only if the unique map ϕ : ⋆ →
H(Π/U) sending ⋆ to U is a morphism in C ′ i.e., if and only if for any θ′ ∈ H ′,

U = ϕ(⋆) = ϕ(θ′ · ⋆) = θ′ · ϕ(⋆) = u(θ)U.

For the second assertion of (1), note that KΠ(Im(u)) ⊂ U if and only if for
any g ∈ Π/U , the map ϕg : ⋆ → H(Π/U) sending ⋆ to gU is a morphism
in C ′ . This yields a surjective morphism ⊔

g∈Π/U ϕg :
⊔
g∈Π/U ⋆ → H(Π/U)

in C ′, which is automatically injective by cardinality. Conversely, for any iso-
morphism ⊔

i∈I ϕi :
⊔
i∈I ⋆ → H(Π/U) in C ′, set ii : ⋆ → H(Π/U) for the

morphism ⋆ ↪→
⊔
i∈I ⋆→ H(Π/U) in C ′; by construction ii = ϕii(⋆).
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(2) Since U ′ is closed of finite index in Π′ and both Π and Π′ are compact, u(U ′)
is closed of finite index in im(u) hence open. So there exists an open subgroup
U ⊂ Π such that U ∩ im(u) ⊂ u(U ′). By definition, the connected component
of 1 in H(Π/U) in C ′ in C ′ is :

im(u)U/U ≃ im(u)/(U ∩ im(u)) ≃ Π′/u−1(U).

But u−1(U) = u−1(U ∩ im(u)) ⊂ U ′, whence a canonical epimorphism
(im(u)U/U, 1)→ (Π′/U ′, 1)

in C ′pt. If furthermore, im(u) = Π, then one can take U = u(U ′) and ϕ is
nothing but the inverse of the canonical isomorphism Π′/U ′ −→ Π/U . Con-
versely, assume that there exists an open subgroup U ⊂ Π and a morphism
ϕ : (im(u)U/U, 1) → (Π′/U ′, 1) in C ′pt. Then for any g′ ∈ Π′, one has:
ϕ(u(g′)U) = g′ · ϕ(1) = g′U ′. In particular, if u(g′) ∈ ker(u) then g′U =
ϕ(u(g′)U) = ϕ(U) = U ′ whence ker(u) ⊂ U ′. Eventually, note that since
ker(u) is normal in Π′, the condition ker(u) ⊂ U ′ does not depend on the
choice of ζ ∈ F (X) defining the isomorphism X ′ −→ Π′/U ′.

□

(1), (2) and (5) follows from 4.4 (2). (4) follows from 4.4 and (3). To prove asser-
tion (3), we will show that u is an epimorphism ⇒ (a) ⇒ (b) ⇒ u is an epimor-
phism. For the first implication, assume that u is an epimorphism. Then, for any con-
nected object X in C(Π), the group Π acts transitively on X . But H(X) is just X
equipped with the Π′ action g′ · x = u(g′) · x, g′ ∈ Π′. Hence Π′ acts transitively
on H(X) as well, i.e H(X) is connected. For (a) ⇒ u is an epimorhism, assume that
if X ∈ C is connected then H(X) is also connected in C ′. This holds, in particular, for
any finite quotient Π/N of Π with N a normal open subgroup of Π, i.e. the canonical
morphism ....uN : Π′ ..Π ..Π/N.u . prN is a continuous epimorphism. Hence so is
u = lim←−uN . The implication⇒ (b) is straightforward. For (b)⇒ u is an epimorphism,
observe that given an open subgroup U ⊂ Π, U ̸= Π there is no morphism from ⋆ to
Π/U in C. Hence if H : C → C ′ is fully faithful, there is no morphism as well from ⋆ to
Π/U in C. But from 4.4, this is equivalent to im(u) ⊈ U . □



CHAPTER 3

Etale covers

Let X be a connected, locally noetherian scheme, and CS the category of finite étale
covers of X . The aim of this chapter is to prove that CS is Galois.
For simplicity, we assume all the schemes are locally noetherian even though some
results stated in the following sections remain valid without this assumption.

1. Some results in scheme theory.

Definition 1.1. Assume that S = spec(A) is affine and let P ∈ A[T ] be a monic poly-
nomial such that P ′ ̸= 0. Set B := A[T ]/PA[T ] and C = Bb where b ∈ B is such that
P ′(t) becomes invertible inBb (here t denotes the image of T inB). Then spec(C)→ S
is an étale morphism. We call such a morphism a standard étale morphisms.
Theorem 1.2. (Local structure of étale morphisms, cf. [Mil80], Thm. 3.14 and Rem.
3.15) Let A be a noetherian local ring and set S = spec(A). Let ϕ : X → S an unram-
ified (resp. étale) morphism. Then, for any x ∈ X , there exists an open neibourhood U
of x such that one has a factorization:

..
..U ..spec(C)

..S ..

.ϕ

where spec(C) → S is a standard étale morphism and U ↪→ spec(C) is an immersion
(resp. an open immersion).
Definition 1.3. An étale cover is a surjective finite étale morphism.
Lemma 1.4. (Stability) Let P be a property of morphisms of shemes: We consider the
following five conditions on P :

(1) P is stable under composition.
(2) P is stable under arbitrary base-change.
(3) closed immersions have P .
(4) P is stable by fibre products.

(5) For any X f−→ Y
g−→ Z, if g is separated and g ◦ f has P then f has P .

Then we have (1) + (2)⇒ (4), and (1) + (2) + (3)⇒ (5).
Example 1.5. The properties P= surjective, flat, unramified, étale satisfy (1) and (2)
hence (4). The properties P=separated, proper, finite satisfy (1), (2),(3) hence (4) and
(5).
Lemma 1.6. (Topological properties of finite morphisms)

19
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(1) A finite morphism is closed;
(2) A finite flat morphism is open.

Remark 1.7. (1) Since being finite is stable under base-change, 1.6 (1) shows that
a finite morphism is universally closed. Since finite morphisms are affine hence
separated, this shows that finite morphisms are proper.

(2) 1.6 (2) also holds for flat morphisms which are locally of finite type.
Corollary 1.8. Let S be a connected scheme. Then any finite étale morphism ϕ : X → S
is automatically an étale cover.

2. The category of étale covers of a connected scheme

Let S be a connected scheme and Sch/S the category of S−schemes. Let CS denote the
full subcategory of Sch/S whose objects are étale covers of S.
Given a geometric point1 s̄ : spec(Ω)→ S, the underlying set associated with the scheme
Xs̄ := X ×S spec(Ω) will be denoted by |Xs̄|. One thus obtain a functor:

Fs̄ : CS → FSets
ϕ : X → S → |Xs̄|

Theorem 2.1. The category of étale covers of S is Galois. And for any geometric point
s̄ : spec(Ω)→ S, the functor Fs̄ : C → FSets is a fibre functor for CS .

By analogy with topology, for any geometric point s̄ : spec(Ω)→ S, the profinite group:
π1(S; s̄) := π1(CS;Fs̄)

is called the étale fundamental group of S with base point s̄. Similarly, for any two
geometric points s̄i : spec(Ωi)→ S, i = 1, 2, the set:

π1(S; s̄1, s̄2) := π1(C;Fs̄1 , Fs̄2)
is called the set of étale paths from s̄1 to s̄2( Note that Ω1 and Ω2 may have different
charateristics).

Proof. We check axioms (1) to (6) of the definition of a Galois category.
Axiom(1): The category of étale covers of S has a final object: IdS : S → S and from
1.4, the fibre product ( in the category of S−shemes) of any two étale covers of S over
a third one is again an étale cover of S.
Axiom(2): The category of étale covers of S has an initial object: ∅ and the coproduct (
in the category of S−schemes) of any two étale covers of S over a third one is again an
étale cover of S. moreover we have the following:
Lemma 2.2. Categorical quotients by finite groups of automorphisms exists in CS .

Proof. Step 1: Assume first that S = spec(A) is an affine scheme. Since étale cover
are, in particular, finite hence affine morphisms, ϕ : X → S is induced by a finite

1We recall that a geometric point of a scheme S is a morphism s̄ : spec(Ω) → S where Ω is an
algebraically closed field.
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A−algebra ϕ# : A→ B. But, then, if follows from the equivalence of category between
the category of affine S−schemes and (Alg/A)op that the factorization

..
..X ..spec(BGop

) =: G\X

..S ..

.

pG

.ϕ .
ϕG

is the categorical quotient of ϕ : X → S by G in the category of affine S−schemes.
So, as CS is a full subcategory of the category of affine S−schemes, to prove that ϕG :
G\X → S is the categorical quotient of ϕ : X → S by G in CS , it remains to prove that
ϕG : G\X → S is in CS .
Lemma 2.3. (trivialization): An affine, surjective morphism ϕ : X → S is an étale cover
if and only if there exists a finite faithfully flat morphism f : S ′ → S such that the first
projection ϕ′ : X ′ := S ′ ×S X → S ′ is a totally split étale cover of S ′.

We apply the above lemma 2.2 to the quotient morphism ϕG : G X → S. For this, first
apply 2.2 to the étale cover ϕ : X → S to obtain a faithfully flat A−algebra A → A′

such that B ⊗A A′ = A′n as A′−algebras. Tensoring the following exact sequence of
A−algebras by the flat A−algebra A′:

0→ BGop → B

∑
g∈Gop(IdB−g)̇
−−−−−−−−−→

⊕
g∈Gop

B

one gets the exact sequence of A′−algebras:

0→ BGop ⊗A A′ → B ⊗A A′
∑

g∈Gop (IdB−g)̇⊗AIdA′
−−−−−−−−−−−−−−→

⊕
g∈Gop

B ⊗A A′

whence:
(2.1) BGop ⊗A A′ = (B ⊗A A′)G

op

= (A′n)G
op

.

But Gop is a subgroup of AutAlg/A′(A′n), which is nothing but the symmetric group Sn
acting on the canonical coordinates E := {1, ...n} in A′n. Hence:

(A′E)G
op

= ⊗G\EA
′.

In terms of schemes, if f : S ′ → S denotes the faithfully flat morphism corresponding
to A ↪→ A′ then S ′ ×S X is just the coproduct of n copies of S ′ over which G acts by
permutation and 2.1 becomes

S ′ ×S (G\X) = G\(⊔ES ′) = ⊔G\ES
′.

Step 2, general case. We reduce to Step 1 by covering S with affine open subschemes(
local existence) and using the unicity of categorical quotient up to canonical isomorphism
(glueing) □

Axiom (3): Before dealing with axiom (3), let us recall that, in the category ofS−schemes,
open immersions are monomorphisms and that:
Theorem 2.4. (Grothendieck-see[Mil80]) In the category of S−schemes, faithfully flat
morphisms of finite type are strict epimorphisms.
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Lemma 2.5. Given a commutative diagram of schemes:

..
..Y ..X.

..S ..

.
u

.ψ .
ϕ

If ϕ : X → S, ψ : Y → S are finite étale morphisms then u : Y → X is a finite étale
morphism as well.

Axiom (4): For any étale covers ϕ : X → S one has Fs̄(ϕ) = ⋆ if and only if r(ϕ) = 1,
which in turn, is equivalent to the fact that ϕ : X −→ S is an isomorphism. Also, it
follows straightforwardly from the universal property of fibre product and the definition
of Fs̄ that Fs̄ commutes with fibre products.
Axiom (5): The fact that Fs̄ commutes with finite coproducts and transforms strict epi-
morphisms into strict epimorphisms is straightforward. So it only remains to prove
that Fs̄ commutes with categorical quotients by finite groups of automorphisms. Let
ϕ : X → S be an étale cover and G ⊂ AutSch/S(ϕ) a finite subgroup. Since the asser-
tion is local on S, it follows from 2.2 that we may assume that ϕ : X → S is totally split
and that G acts on X by permuting the copies of S. But, then, the assertion is immediate
since G\X = ⊔G\Fs̄(ϕ)S.
Axiom (6): For any two étale covers ϕ : X → S, ψ : Y → S, let u : Y → X be a
morphism over S such that Fs̄(u) : Fs̄(ψ)→ Fs̄(ϕ) is bijective. It follows from 2.5 that
u : Y → X is finite étale but, by assumption, it is also surjective hence u : Y → X is an
étale cover. Moreover, still by assumption, it has rank 1 hence it is an isomorphism by
1.8. □
Corollary 2.6. (1) π1(S; s̄) is a profinite group, and the action of π1(S; s̄) on Fs̄(X)

is continuous.
(2) The induced functor

For : CS → C(π1(S; s̄))
X 7→ Xs̄

is an equivalence of categories.

3. Reformulation of functoriality

Let S and S ′ be connected schemes, equipped with geometric points s̄ : Spec(Ω) → S
and s̄′ : Spec(Ω) → S ′, respectively. Assume given a morphism ϕ : S ′ → S with
ϕ ◦ s̄′ = s̄. Then ϕ induces a base change functor

Hϕ : CS → FetS′

X 7→ X ×S S ′

and a morphism X → Y to the induced morphism X ×S S ′ → Y ×S S ′. Moreover, the
condition ϕ ◦ s̄′ = s̄ implies that there is an equality of functors Fs̄ = Fs̄′ ◦Hϕ. So Hϕ is
a fundamental functor and we denote by ϕ⋆ the corresponding morphism of fundamental
groups ϕ⋆ : π1(S ′; s̄′)→ π1(S; s). Hence we can reformulate the functoriality properties
as follows:
Proposition 3.1. (1) The map ϕ⋆ is trivial if and only if for every connected finite

étale cover X → S the base change X ×S S ′ is a trivial cover (i.e. isomorphic
to a finite disjoint union of copies of S ′).



3. REFORMULATION OF FUNCTORIALITY 23

(2) The map ϕ⋆ is surjective if and only if for every connected finite étale cover
X → S the base change X ×S S ′ is connected as well.

(3) The map ϕ⋆ is injective if and only if for every connected finite étale coverX ′ →
S ′ there exists a finite étale cover X → S and a morphism Xi → X ′ over S ′,
whereXi is a connected component ofX×SS ′. In particular, if every connected
finite étale cover X ′ → S ′ is of the form X ×S S ′ → S ′ for a finite étale cover
X → S, then ϕ is injective.

(4) Let S ′′ ψ−→ S ′ ϕ−→ S be a sequence of morphisms of connected schemes, and let
s̄, s̄′, s̄′′ be geometric points of S, S ′, and S ′′ respectively, satisfying s̄ = ϕ ◦ s̄′
and s̄′ = ψ ◦ s̄′′. The sequence

π1(S
′′; s̄′′)

ψ⋆−→ π1(S
′; s̄′)

ϕ⋆−→ π1(S; s̄)

is exact if and only if the following two conditions are satisfied.
(a) For every finite étale cover X → S the base change X ×S S ′′ → S ′′ is a

trivial cover of S ′′.
(b) Given a connected finite étale cover X ′ → S ′ such that X ′ ×S′ S ′′ has a

section over S ′′, there exists a connected finite étale cover X → S and an
S ′-morphism from a connected component of X ×S S ′ onto X ′.





CHAPTER 4

Properties and examples of the étale fundamental group

1. Spectrum of a field

Let k be a field and set S := spec(k). Then:
Proposition 1.1. For any geometric point s : spec(Ω) → S, there is a profinite group
isomorphism:

cs : π1(S, s) ≃ Γk.

Proof. Let k ↪→ k̄ be a fixed algebraic closure of k which defines a geometric point
s̄ : spec(s̄) → S. Then by the main theorem of Galois categories, we have π1(S, s) ≃
π1(S, s̄), canonically up to inner automorphisms. Hence we can assume that Ω = k̄. Let
ks be the separable closure of k in k̄
We recall that X is a finite étale cover of S iff X = spec(L) where L is a finite étale
k−algebra. And X is a connected object in the category CS iff L is a finite separable
field extension of k.

Fibs̄(X) = |X ×S s̄|
= |spec(L⊗k Ω)| ≃ HomΩ(L⊗k Ω,Ω)

given by ker(ϕ) ← ϕ
= Homk(L,Ω) = Homk(L, ks)

.

Hence we get Fibs̄ ∼= Homk(−, ks).Hence
π1(S, s) = Aut(Fibs̄)
∼= Aut(Hom(−, ks))
∼= Gal(ks|k) = Γk

.

Where the isomorphismGal(ks|k) ∼= Aut(Hom(−, ks)) is given sending σ ∈ Gal(ks|k)
to

σ⋆ : Hom(−, ks) → Hom(−, ks)
ϕ 7→ σ ◦ ϕ .

□

2. The first homotopy sequence.

Let S be a connected scheme, f : X → S a proper morphism such that f∗OX = OS and
s ∈ S. Fix a geometric point xΩ : spec(Ω)→ Xs̄ with image again denoted by xΩ in X
and sΩ in S.
Theorem 2.1. (First homotopy sequence) Consider the canonical sequence of profinite
groups induced by (Xs̄, xΩ)→ (X, xΩ)→ (S, sΩ):

π1(Xs̄, xΩ)
i−→ π1(X, xΩ)

p−→ π1(S, sΩ)→ 1

25
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Then p : π1(X, xΩ) ↠ π1(S, sΩ) is an epimorphism and p ◦ i = 1. If, furthermore,
f : X → S is separable1 then the sequence above is exact.

Proof. The main tool in the proof is the Stein factorization theorem. Let us recall
that:
Theorem 2.2. (Stein factorization of a proper morphism) Let f : X → S be a morphism
such that f⋆OX is a quasicoherent OS−algebra. Then f⋆OX defines an S−scheme:

p : S ′ = spec(f⋆OX)→ S

and f : X → S factors canonically as:

..
..S ..S ′

..X ..

.
p

.f .f ′ .

Furthermore,
(1) If f : X → S is proper then

(a) p : S ′ → S is finite and f ′ : X → S ′ is proper and with geometrically
connected fibres;

(b) • The set of connected components of Xs is one-to-one with S ′set
s , s ∈

S;
• The set of connected components of Xs̄ is one-to-one with S ′set

s̄ , s ∈
S.

In particular, if f⋆OX = OS then f : X → S has geometrically connected
fibres.

(2) If f : X → S is proper and separable then p : S ′ → S is an étale cover. In
particular, f⋆OX = OS if and only if f : X → S has geometrically connected
fibres.

For a proof of this theorem, c.f. [Har77], Chapter III, Corollary 11.5.
Corollary 2.3. Let f : X → S be a proper morphism such that f⋆OX = OS . Then, if S
is connected, X is connected as well.

Proof. (of corollary) It follows from (1)(b) of 2.2 that, if f⋆OX = OS then f is
geometrically connected and, in particular, has connected fibres. But, as f : X → S is
proper, it is closed and f⋆OX is coherent hence:

f(X) = supp(f⋆OX).
So f⋆OX ∼= OS also implies that f : X → S is surjective. As a result, if f⋆OX = OS
then f is closed, surjective, with connected fibres so, if S is connected, this forces X to
be connected as well. □

1We recall that a scheme X over a field k is separable over k if for any field K of k the scheme
X ×k K is reduced. This is equivalent to requiring that X be reduced and that, for any generic point η
of X , the extension k ↪→ k(η) be separable. And a scheme X over a scheme S is separable over S if it
is flat over S and for any s ∈ S the scheme Xs is separable over k(s). Separable morphisms satisfy the
following elementary properties: (1) Any base change of a separable morphism is separable. (2) If X → S
is separable and X ′ → X is étale then X ′ → S is separable.
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For the proof of the theorem, we will apply the criterion of functoriality of fundamental
functors. We first give a lemma stating under less restrictive hypothesis, p◦ i = 1 is true.
Lemma 2.4. Let X , S be connected schemes, f : X → S a geometrically connected
morphism and s ∈ S. Fix a geometric point xΩ : spec(Ω) → Xs̄ with image again
denoted by xΩ in X and sΩ in S and consider the canonical sequence of profinite groups
induced by (Xs̄, xΩ)→ (X, xΩ)→ (S, sΩ):

π1(Xs̄, xΩ)
i−→ π1(X, xΩ)

p−→ π1(S, sΩ).

Then, one always has i ◦ p = 1.

Proof. Let ϕ : S ′ → S be an étale cover and let S ′
s̄ := Xs̄ ×S S ′, then

S ′
s̄ = Xs̄ ×S S ′ = (X ×S spec(k(s̄)))×S S ′

= X ×S (spec(k(s̄))×S S ′)
= X ×S ⊔S′

s̄
spec(k(s̄))

= ⊔S′
s̄
Xs̄.

Hence S̄ ′ → Xs̄ is totally split. hence p ◦ i = 1. □

Now we return to the proof of 2.1.
• Exactness on the right: for any connected étale cover ϕ : S ′ → S and let
X ′ := X ×S S ′,with the notation for base change:

..

..X ′ . ..X

. ..□ .

..S ′ . ..S

.

ϕ′

.f ′ . f.

ϕ

.

Since f ′
⋆(OX′) = f ′

⋆(ϕ
′⋆OX) = ϕ⋆f⋆OX = ϕ⋆OS = OS′ and f ′ is proper, it

follows from 2.2 (1)(b) that X ′ is connected.
• Exactness in the middle: by 2.4 we only need to show ker(p) ⊂ im(i). Let
ϕ : X ′ → X be a connected étale cover, with the following notation:

..

..X ′ . ..X . ..S

. ..□ . ..□ .

..X ′
s̄ . ..Xs̄ . ..k(s̄)

.

ϕ

.

f

.

ϕ̄

. s̄

Assume that ϕ̄ admits a section σ, now we prove that there is a model of ϕwhich
isa connected étale cover S ′ → S.
As ϕ is finite étale and f is proper and separable, g := f ◦ ϕ : X ′ → S is
also proper and separable. Consider its Stein factorization X ′ g′−→ S ′ p−→ S. By
2.2 (2), p is étale. Furthermore, as X ′ is connected and g′ is surjective, S ′ is
connected. The base change of ϕ : X ′ → X has a section implies that the
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base change of X ×S S ′ has a section as well. Hence the finite étale cover
X ′ → X ×S S ′ must be of degree 1, i.e. an isomorphism.

□
Remark 2.5. In general, i is not injective.
Corollary 2.6. Let X/k be a connected proper scheme over algebraically closed field
k. Let k ⊂ Ω be an algebraically closed field extension, xΩ ∈ X(Ω) be a geometric
point.Then the canonical morphism of profinite groups:

π1(XΩ; xΩ)→ π1(X; xΩ)

induced by (XΩ;xΩ)→ (X;xΩ) is an isomorphism.

The proof of 2.6 uses the following lemmas:
Lemma 2.7. (Künneth formula) Let k be an algebraically closed field, X a connected,
proper scheme over k and Y a connected scheme over k. For any x : spec(k)→ X and
y : spec(k)→ Y , the canonical morphism of profinite groups:

π1(X ×k Y ; (x, y))→ π1(X;x)× π1(Y ; y)

induced by the projections pX : X×kY → X and pY : X×kY → Y is an isomorphism.

Proof. From the following theorem:
Theorem 2.8. (c.f. [Gro71], Chap. VIII) Let X be a scheme and i : Xred ↪→ X be
the underlying reduced closed subscheme. Then the functor i∗ : CX → CXred is an
equivalence of categories. In particular, if X is connected, it induces an isomorphism of
profinite groups:

π1(i) : π1(X
red) −→ π1(X)

we may assume that X is reduced hence, as k is algebraically closed, that X is separable
over k. As X is proper, separable, geometrically connected and surjective over k, so is
its base change pY : X ×k Y → Y . So, it follows from 2.2 (2) that pY ∗OX×kY = OY .
Thus, one can apply 2.1 to pY : X ×k Y → Y to get an exact sequence:

π1((X ×k Y )y;x)→ π1(X ×k Y ; (x, y))→ π1(Y ; y)→ 1.

Furthermore, X = (X ×k Y )y → X ×k Y
pX−→ X is the identity so pX : X ×k Y → X

yields a section of π1(X; x)→ π1(X ×k Y ; (x, y)). □

Proof. (of corollary 2.6) Surjectivity: Let ϕ : Y → X be a connected étale. We are to
prove that YΩ is again connected. But, as k is algebraically closed, if Y is connected then
it is automatically geometrically connected over k and, in particular, YΩ is connected.
Injectivity: One has to prove that for any connected étale cover ϕ : Y → XΩ, there exists
an étale cover ϕ̃ : Ỹ → X which is a model of ϕ over X . We begin with general lemma.
Lemma 2.9. Let X be a connected scheme of finite type over a field k and let k ↪→ Ω
be a field extension of k. Then, for any étale cover ϕ : Y → XΩ, there exists a finitely
generated k−algebraR contained inΩ and an affine morphism of finite type ϕ̃ : Ỹ → XR

which is a model of ϕ : Y → XΩ over XR. Furthermore, if η denotes the generic point
of spec(R), then ϕ̃k(η) : Ỹk(η) → Xk(η) is an étale cover.
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Proof. (of lemma) Since X is quasi-compact, there exists a finite covering of X by
Zariski-open subschemes Xi := spec(Ai) ↪→ X , i = 1, ..., n, where the Ai are finitely
generated k−algebra. As ϕ : Y → XΩ is affine, we can write Ui := ϕ−1(XiΩ) =
spec(Bi), where Bi is of the form:

Bi = Ai ⊗k Ω[T ]/⟨Pi,1, ..., Pi,ri⟩.
For each 1 ≤ j ≤ ri, the αth coefficient of Pi,j is of the form:∑

k

ri,j,α,k ⊗k λi,j,α,k

with ri,j,α,k ∈ Ai, λi,j,α,k ∈ Ω. So, let Ri denote the sub k−algebra of Ω generated by
λi,j,α,k then Bi can also be written as:

Bi = Ai ⊗k Ri[T ]/⟨Pi,1, ..., Pi,ri⟩ ⊗Ri
Ω.

LetR denote the sub-k-algebra of Ω generated by the Ri, then k ↪→ R is a finitely gener-
ated k−algebra and up to enlargingR, one may assume that the glueing data on theUi∩Uj
decend to R then one can construct ϕ̃ by glueing the spec(Ai ×k R[T ]/⟨Pi,1, ..., Pi,ri⟩)
along these descended gluing data. By construction ϕ̃ is affine.
To conclude, since k(η) ↪→ Ω is faithfully flat and ϕ : Y → XΩ is finite and faithfully
flat, the same is automatically true for ϕ̃k(η) : Ỹk(η) → Xk(η), which is then étale since
ϕ : Y → XΩ is. □

So, applying 2.9 to ϕ : Y → XΩ and up to replacing R by Rr for some r ∈ R\{0}, ome
may assume that ϕ : Y → XΩ is the base-change of some étale cover ϕ0 : Y 0 → XR.
Note that, since Y 0

Ω = Y is connected, both Y 0
η and Y 0 are connected as well. Fix

s : spec(k) → S. Since the fundamental group does not depend on the fibre functor,
one can assume that k(x) = k. Then from 2.7, one gets the canonical isomorphism of
profinite groups:

π1(X ×k S; (x, s))
≃−→ π1(X; x)× π1(S; s).

Let U ⊂ π1(X ×k S; (x, s)) be the open subgroup corresponding to the étale cover ϕ0 :
Y 0 → X ×k S and let UX ⊂ π1(X; x) and US ⊂ π1(S; s) be open subgroups such that
UX×US ⊂ U . Then UX and US correspond to connected étale covers ψX : X̃ → X and
ψS : S̃ → S such that ϕ0 : Y 0 → X×kS is a quotient of ψX×kψS : X̃×k S̃ → X×kS.
Consider the following cartesian diagram:

..

.. . ..X̃ ×k S̃

..Y 0 ..̃Y 0 .

..X ×k S ..X ×k S̃

Since k(η) ⊂ Ω and Ω is algebraically closed, one may assume that any point s̃ ∈ S̃
above s ∈ S̃ has residue field contained in Ω and, in particular, one can consider the
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associated Ω−point s̃Ω : spec(Ω)→ S̃. Then, one has the cartesian diagram:

..
..̃Y 0
S ..YΩ

..X ×k S̃ ..XΩ

.

IdX×k s̃Ω

Again, since YΩ is connected, Ỹ 0 is connected as well, from which it follows that Ỹ 0 →
X ×k S̃ corresponds to an open subgroup V ⊂ π1(X ×k S̃) = π1(X) × US containing
π1(X̃ ×k S̃) = UX × US . Hence V = U × US for some open subgroup UX ⊂ U ⊂
π1(X) hence Ỹ 0 → X ×k S̃ is of the form Ỹ ×k S̃ → X ×k S̃ for some étale cover
ϕ̃ : Ỹ → X . □

3. More examples

§1. Normal base scheme. Let S be a connected normal2 scheme. Recall that we
only consider locally noetherian scheme, in particular, S is irreducible.
Lemma 3.1. Let k(S) ↪→ L be a finite separable field extension. Then the normalization
of S in k(S) ↪→ L is finite over S.

When S is normal, we can improve 1.2 as follows.
Lemma 3.2. Let A be a noetherian integrally closed local ring with fraction field K and
set S = spec(A). Let ϕ : X → S an unramified (resp. étale) morphism. Then, for any
x ∈ X , there exists an open affine neighborhoodU of x such that one has a factorization:

..
..U ..spec(C)

..S ..

.ϕ

where spec(C) → S is a standard étale morphism, such that C = A[T ]/PA[T ] can be
chosen in such a way that the monic polynomial P ∈ A[T ] becomes irreducible in K[T ]
and U ↪→ spec(C) is an immersion (resp. an open immersion).

Proof. We denote by m the maximal ideal of A and s the corresponding closed point
of S. By 1.2 we may assume that ϕ : X → S is induced by an A−algebra of the form
A → Bb with B = A[T ]/PA[T ] and b ∈ B such that P ′(t) is invertible in Bb. Since
A is integrally closed, any monic factor of P in K[T ] is in A[T ]. Let x ∈ Xs and fix
an irreducible monic factor Q of P mapping to 0 in k(x). Write P = QR in A[T ]. As
P̄ ∈ k(s)[T ] is separable, Q̄ and R̄ are coprime in k(s)[T ] or, equivalently:

⟨Q̄, R̄⟩ = k(s)[T ].

But as Q is monic M := A[T ]/⟨Q,R⟩ is a finitely generated A−module so, from
Nakayama, A[T ] = ⟨Q,R⟩. By the Chinese remainder theorem:

A[T ]/PA[T ] = A[T ]/QA[T ]× A[T ]/RA[T ].
2We recall that a scheme is called normal if every stalk is integrally closed.
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SetB1 := A[T ]/QA[T ] and let b1 denote the image of b inB1. Then the open subscheme
U1 := spec(B1b1 ↪→ X contains x and:

U1 := spec(B1b1) ↪→ X → S

is a standard morphism of the required form. □
Lemma 3.3. Let ϕ : X → S be an étale cover. Then X is also normal and, in particular,
it can be written as the coproduct of its (finitely many) irreducible components. Further-
more, given a connected component of X0 of X , the induced étale cover X0 → S is the
normalization of S in k(S) ↪→ k(X0).

Proof. We first prove the assertion when S = spec(A) withA a noetherian integrally
closed local ring and ϕ : X → S is a standard morphism as in 3.2. Let K(= k(S))
denote the fraction field of A. By assumption, L := C ⊗AK = K[T ]/PK[T ] is a finite
separable field extension ofK. LetAc denote the integral closure ofA inK ↪→ L. Since
B is integral over A, one has A ⊂ B ⊂ Ac ⊂ L hence Bb ⊂ (Ac)b = ((Ac)b)

c ⊂ L. So,
to show that C is integrally closed in K ↪→ L, it is enough to show that Ac ⊂ Bb. So let
α ∈ Ac and write:

α =
n−1∑
i=0

ait
i,

with ai ∈ K, i = 1, ...n and n = deg(P ). As K ↪→ L is separable of degree n, there are
exactly n distinct morphisms of K−algebras:

ϕi : L ↪→ K̄

LetVn(t) := V (ϕ1(t), ..., ϕn(t)) denote the Vandermonde matrix associated withϕ1(t), ..., ϕn(t).
Then one has:

|Vn(t)|(ai)0≤i≤n−1 =
t Com(Vn(t))(ϕi(α))1≤i≤n

(where tCom(−) denotes the transpose of the comatrix and |−| the determinant). Hence,
as the ϕi(t) and the ϕi(α) are all integral over A, the |Vn(t)|ai are also all integral over
A. By assumption, the ai are in K and |Vn(t)| is in K since it is symmetric in ϕi(t). So,
as A is integrally closed, the |Vn(t)|ai are in A, from which the conclusion follows since
|Vn(t)| is a unit in C (recall that P ′(t) is invertible in C).
We now turn to the general case. From 3.2, the above already shows that X is normal
and, in particular, it can be written as the coproduct of its (finitely many) irreducible
components. So, without loss of generality we may assume that X is normal connected
hence integral scheme. But then, for any open sub-scheme U ⊂ S, the ringOX(ϕ−1(U))
is integral ring and its local rings are all integrally closed so OX(ϕ−1(U)) is integrally
closed as well and, since it is also integral overOS(U), it is the integral closure ofOS(U)
in k(S) ↪→ k(X). □

The following lemma provides a converse to 3.3:
Lemma 3.4. Let k(S) ↪→ L be a finite separable field extension which is unramified over
S. Then the normalization ϕ : X → S of S in k(S) ↪→ L is an étale cover.

Proof. Since S is locally noetherian, ϕ : X → S is finite by 3.1; it is also surjective
[AM69] Thm.5.10. and, by construction it is unramified. So we are only to prove that
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ϕ : X → S is flat, namely that OS,ϕ(x) ↪→ OX,x is a flat algebra, x ∈ X . One has a
commutative diagram:

..
..OX,x ..C

..OS,ϕ(x) ..
where OS,ϕ(x) → C is a standard algebra as in 3.2, C ↠ OX,x is surjective and, as
ϕ : X → S is surjective, OS,ϕ(x) ↪→ OX,x. In particular,

OS,ϕ(x) ⊗OS,ϕ(x)
k(S) ↪→ OX,x ⊗OX,x

k(S)

is injective as well hence:
C ⊗OS,ϕ(x)

k(S)→ OX,x ⊗OX,x
k(S)

is non-zero. But, as C ⊗OS,ϕ(x)
k(S) is a field, the above morphism is actually injective

and, as OS,ϕ(x) → k(S) is faithfully flat, this implies that C ↠ OX,x is injective hence
bijective. □

Denote by FEAlg/k(S) the category of finite étale k(S)−algebras. 3.3 shows that there
is a well-defined functor:

R : CS → (FEAlg/k(S))op

X → S 7→ k(S) ↪→ R(X) :=
∏

X0∈π0(X) k(X0).

Let FEAlg/k(S)/S ⊂ FEAlg/k(S) denote the full subcategory of finite étale k(S)-
algebras which are unramified over S. Then 3.3 and 3.4 imply the following theorem
Theorem 3.5. The functorR : CS → FEAlg/k(S) is fully faithfull and induces an equiv-
alence of categories R : CS → FEAlg/k(S)/S with pseudo-inverse the normalization
functor.
Corollary 3.6. Let S be a connected, locally noetherian, normal scheme with generic
point η : k(S) → S. Let k(S) ↪→ Ω be an algebraically closed field extension defining
geometric points s̄η : spec(Ω) → spec(k(S)) and s̄ : spec(Ω) → S. Let k(S) ↪→
Mk(S),S denote the maximal algebraic field extension of k(S) in Ω which is unramified
over S. Then one has the canonical short exact sequence of profinite groups:

..
..1 ..ΓMk(S),S

..Γk(X) . .

. . ..π1(spec(k(S)); s̄η) ..π1(S, s̄) ..1

(here Γ_ denote the absolute Galois group) In particular, this definesa canonical profinite
group isomorphism:

Gal(Mk(S),S|k(S)) −→ π1(X;x)

Proof. From 3.5 the base change functor η∗ : CS → Cspec(k(η)) is fully faithful hence,
from 4.3 (1), induce an epimorphism of profinite groups:

π1(η) : π1(spec(k(S)); s̄η) ↠ π1(S, s̄)

whose kernel is ΓMk(S),S
by4.4(2). □
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Example 3.7. Let S be a curve, smooth and geometrically connected over a field k and
let S ↪→ S̃ be the smooth compactification of S. Write S̃\S = P1, ...Pr. Then, with the
notation of 3.6, the extension k(S) ↪→ Mk(S),S is just the maximal algebraic extension
of k(S) in Ω unramified outside the places P1, ..., Pr.

§2. Abelian varieties.
§2.1. Group schemes. Let S be a scheme. A group scheme G over S is a group

object in a category of S-schemes. That is, it is an S-scheme G equipped with one of the
equivalent sets of data

(1) a triple of morphisms µ : G ×S G → G, e : S → G, and ι : G → G, satisfy-
ing the usual compatibilities of groups (namely associativity of µ, identity, and
inverse axioms);

(2) a functor from schemes over S to the category of groups, such that composition
with the forgetful functor to sets is equivalent to the presheaf corresponding to
G under the Yoneda embedding.

Definition 3.8. (Finite group schemes over a field k) A finite group scheme k is a k-group
scheme G, which is finite as a scheme over k.
Remark 3.9. An affine group scheme over k is of the form spec(A)/k with µ, e, ι corre-
sponding to

µ∗ : A→ A⊗k A;
e∗ : A→ k;

i∗ : A→ A

respectively. Any affine group scheme is the spectrum of a commutative Hopf k−algebra.
Example 3.10. (1) Ga,k = speck[x], with

µ∗ : k[x] → k[x]⊗k k[x]
x → x⊗ 1 + 1⊗ x

( hence µ : spec(k[x])⊗k spec(k[x]) → spec(k[x])
(a, b) → a+ b

)

(2) Gm,k = A1
k\{0} = spec(k[x, x−1]) with
µ∗ : k[x, x−1] → k[x, x−1]⊗k k[x, x−1]

x → x⊗ x .

(3) µn,k, where n ∈ Z≥1, µn,k = spec( k[x]
xn−1

) with
µ∗ : k[x]

xn−1
→ k[x]

xn−1
⊗k k[x]

xn−1

x → x⊗ x

LetR be a k−algebra, µn,k(R) = Homk(spec(R), µn,k) = Homk−alg(
k[x]
xn−1

, R) =
{a ∈ R|an = 1}. We have the following:
Proposition 3.11. µn,k is a finite group scheme over k. and
• (n; char(k)) = 1 implies that µn,k is smooth (=étale) over k;
• if char(k) = p > 0 and n = pm, then µn,k = spec( k[x]

(xp
m−1)

is connected.
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(4) Suppose n ∈ Z≥1, S = spec(k), let G be the abstract group Z/nZ, S × G :=⨿
g∈G Sg, then we can define

..
..µ : ..(S ×G)×S (S ×G) ..S ×G

. ..S × (G×G) ..
which is induced by

µ∗ :
∏

g∈G kg → (
∏

g∈G kg)⊗ (
∏

g∈G kg)
eλ →

∑
(g,g′)∈G×G,g·g′=b egg′

.

Remark 3.12. Let k be a field, then the category of k-group schemes of finite type is an
abelian category. In particular, for f : G → H a morphism of k-group schemes, its
kernel and cokernel exist. More precisely, we have

(1) The kernel of f can be described by the following cartesian diagram

..
..G ..H

..ker(f) ..spec(k)

.

f

. e

where e : spec(k)→ H is the neutral element of the group scheme H .
(2) We don’t have an easy explicit description of the cokernel coker(f). But we

know the following universal property: for g : H → K a morphism of (finite
type) k-group schemes such that g ◦f = 0, there exists then a unique morphism
ḡ : coker(f) → K such that ḡ ◦ p = g, where p : H → coker(f) is the
canonical projection:

..
..G ..H ..coker(f) ..0

. ..K . ..

.

f

.0 .

p

.g .
∃!

Example 3.13. When G = Gm,k,
f = [n] : G → G

a 7→ an
,

then the corresponding homomorphism of Hopf algebras is
[n]# : k[x, x−1] ← k[x, x−1]

xn ← x
.
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Then by the cartesian diagram:

..

..k[x, x−1] . ..k[x, x−1]

. ..□ .

..k[x]/(xn − 1) . ..k

,

we have ker[n] = spec(k[x]/(xn − 1)).
Proposition 3.14. Let G/k be a group scheme of finite type over a filed k. Let G0 be the
connected component of G containing 0 (called the identity component of G). Then

• G0 has a natural structure of k-group scheme induced from G. In this way, G0

becomes an open and closed subgroup scheme of G;
• The cokernel G/G0 of G0 ↪→ G is a finite étale group scheme over k.

§2.2. Abelian Varieties. An Abelian variety over a field k is a smooth connected
k−group schemeA/k such thatA is a proper as k-schemes. For example, elliptic curves
are 1−dimensional abelian varieties.
Recall that an isogeny from an abelian variety A to an abelian variety B is a morphism
of k−group schemes A f−→ B such that one of the following equivalent conditions is
satisfied:

• dim(A) = dim(B), and ker(f) is finite over k;
• dim(A) = dim(B), and f is an epimorphism of k-group schemes (i.e., coker(f) =
0).

For A an abelian variety over k, we have the following facts:
• the group scheme structure on A/k is always commutative;
• ∀n ∈ Z n ≥ 1, the multiplication-by-n morphism

[n]A : A → A

a → an

is an isogeny of abelian varieties and ker([n]A) is a closed finite subgroup
scheme of A.

In the following part of this section, k is always an algebraically closed field.
Let p = char(k) ≥ 0. Set A[n] := ker([n]A).
Proposition 3.15. Let A be an abelian variety of dimension g ≥ 0.

• If (n, p) = 1, thenA[n]→ spec(k) is étale, hence can be thought as an abstract
group. Moreover, A[n] ∼= (Z/nZ)2g

• If n = pe, then A[n] is a finite group scheme over k, and A[n](k) ∼= (Z/nZ)r,
where r is an integer belonging to {0, 1, ..., g}, which is independent of the



36 4. PROPERTIES AND EXAMPLES OF THE ÉTALE FUNDAMENTAL GROUP

choice of the integer e. The multiplication-by-n morphism [n] is no longer an
étale isogeny, however by 3.14 we have the following exact sequence:

0→ A[n]0 → A[n]→ A[n]/A[n]0 → 0

with A[n]/A[n]0 finite étale over k. Hence we have the following diagram:

..

.. . ..A[n] ..A[n]/A[n]0 .

..0 ..A[n]0 ..A ..A/A[n]0 ..0

. . ..A . ..

.

[n]

.

étale surjective

.

Since A[n]/A[n]0 is étale over k, A/A[n]0 is étale over k.
Remark 3.16. The integer r appearing in the previous proposition is called the p-rank
of the abelian variety. For example, when A = E is an elliptic curve, then its p-rank is
equal to 1 if E is ordinary, otherwise, E is called supersingular.
Corollary 3.17. Let l be a prime number, set Tl(A) := lim←−A[l

n](k), the l−adic Tate
module of A, then

• if (l, p) = 1, Tl(A) ≃ Z2g
l .

• if l = p, Tp(A) ≃ Zrp, where r is the p-rank of A.

A main reference for abelian varieties is [Mum70]. See also [Mil86] for a concise intro-
duction.

Theorem 3.18. (Serre-Lang) There is a canonical isomorphism of profinite groups:
π1(A; 0A)

≃−→
∏

l:prime

Tl(A)

Proof. Given a profinite group Π and a prime l, let Π(l) denote its maximal pro−l
quotient.
Claim 1: π1(A; 0A) is abelian. In particular,

π1(A, 0) =
∏

l:prime

π1(A, 0)
(l).

Proof. (of claim 1). From 2.7, the multiplication map µ : A ×k A → A induces a
morphism of profinite groups π1(µ) : π1(A× A)→ π1(A). By Künneth formula, there
exists an isomorphism π1(A × A)

≃−−−−−→
(p1⋆,p2⋆)

π1(A) × π1(A), so we get a morphism of
profinite groups

π1(µ) : π1(A; 0A)× π1(A; 0A)→ π1(A; 0A).

The canonical section σ1 : A→ A×k A of the first projection p1 : A×k A→ A induce
the morphism of profinite groups:

π1(σ1) : π1(A; 0A) → π1(A; 0A)× π1(A; 0A)
γ 7→ (γ, 1)
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and, by functoriality, π1(µ) ◦ π1(σ1) = Id. The same holds for the second projection.
As a result, the morphism π1(µ) is given by (γ1, γ2) 7→ γ1γ2. As a result π1(A) is
commutative. □

Claim 2 (Serre-Lang): Let ϕ : X → A be a connected étale cover, and x a point above
0 ∈ A. Then X carries a unique structure of abelian variety such that ϕ : X → A
becomes a separable isogeny, and that x ∈ X becomes the neutral element of x.

Proof. (of claim 2) The idea is to construct first the group structure on one fibre, and
then extend it automatically by the formalism of Galois categories. Let x : spec(k)→ X
such that ϕ(x) = 0A. Then the pointed connected étale cover ϕ : (X; x) → (A; 0A)
corresponds to a transitive π1(A; 0A)−setM together with a distinguished pointm ∈M .
Since π1(A; 0A) is abelian, the map:

µM : M ×M → M
(γ1m, γ2m) 7→ γ1γ1m

is well defined, maps (m,m) tom and is π1(A; 0A)×π1(A; 0A)−equivariant if we endow
M with the structure of π1(A; 0A)×π1(A; 0A)−set induced by π1(µ) (which corresponds
to the étale cover X ×A (A ×k A) → A ×k A). Hence it corresponds to a morphism
µ0
X : X ×k X → X ×A (A ×k A) above A ×k A or, equivalently, to a morphism
µX : X ×k X → X fitting in:

..

..X ×k X ..X ×A (A×k A) ..X

. ..□ .

..A×k A . ..A

.

µ0X

.

µX

.ϕ×kϕ . ϕ.

µ

and mapping (x, x) to x. By the same arguments, one constructs iX : X → X above
[−1A] : A → A mapping x to x. With µX and iX , one checks that this endows X with
the structure of an algebraic group with unity x ( hence, of an abelian variety since X is
connected and ϕ : X → A is proper) and such that ϕ : X → A becomes a morphism of
algebraic groups ( hence a separable isogeny since ϕ : X → S is an étale cover). □

Now let ϕ : X → A be a degree n isogeny (i.e ker(ϕ) is of exponent n). Then ker(ϕ) ⊂
ker([n]X), hence one has a canonical commutative diagram:

..
..0 ..ker(ϕ) ..X ..A ..0

. . ..X . ..

.0 .

ϕ

. [n]X.
ψ

From the surjectivity of ϕ, one also has ϕ◦ψ = [n]A. When l is a prime different from the
characteristic p of k, combining this remark and claim 2, one gets that ([ln] : A→ A)n≥0
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is cofinal3 among the finite étale covers of A with degree a power of l that is
π1(A; 0A)

(l) = lim←−A[l
n] = Tl(A).

When l = p, one has to be more careful. In this case, the isogeny
[pn]A : A→ A

is no longer étale. However, it factors as:

..
..A ..Bn

..A

.

ψn

.[pn]A .
ϕn

,

where Bn := A/A[pn]0, ψn is the quotient morphism, and ϕn is the induced morphism
(as A[pn]0 ⊂ A[pn]). As a result, ψn is a purely inseparable isogeny, and ϕn is an étale
isogeny with ker(ϕn) ∼= A[pn]/A[pn]0 ∼= A[pn](k) (as a constant group). Moreover, the
translation map by an element of ker(ϕn)(k) in A induces an automorphism of Bn/A,
we obtain an injective morphism of groups

ker(ϕn)(k)→ Aut(Bn/A)

which must be an isomorphism for the reason of cardinality: Let now ϕ : X → A be
an étale isogeny of degree pn. As before, there exists a morphism of group schemes
ψ : A→ X such that ϕ ◦ ψ = [pn]A.

..
..A ..X

. ..A

.
ψ

.[pn]A. ϕ

Since ϕ is étale, ψ(A[pn]0) ⊂ ker(ϕ) = 0. Thus we obtain the following factorization:

..

.. ..Bn .

..A . ..X

. ..A ..

.
ϕn

.
∃

.
ψn

.
ψ

.
[pn]

.

ϕ

In other words, the isogeny ϕ is dominated by ϕn. In this way, we show that the family
{ϕn : Bn → A} is cofinal among the étale isogeny of A of degree a power of p. Hence:

π
(p)
1 (A) ∼= lim←−nAut(Bn/A)

op

∼= lim←−n(ker(ϕn))(k)∼= lim←−nA[p
n](k)

= Tp(A)

□
3Let A be a set and let ≤ be a binary relation on A. Then a subset B of A is said to be cofinal if it

satisfies the following condition: For every a ∈ A, there exists some b ∈ B such that a ≤ b.
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§3. Geometrically connected schemes of finite type. Let S be a scheme geomet-
rically connected and of finite type over a field k. Fix a geometric point s̄ : spec(k(s̄)→
Sks with image again denoted by s̄ in S and spec(k).
Proposition 3.19. The morphisms (Sks , s̄) → (S, s̄) → (spec(k), s̄) induce a canonical
short exact sequence of profinite groups:

1→ π1(Sks ; s̄)
i−→ π1(S; s̄)

p−→ π1(spec(k); s̄)→ 1.

Example 3.20. Assume furthermore that S is normal. Then the assumption that S is
geometrically connected over k is equivalent to the assumption that k̄ ∩ k(S) = k and,
with the notation of subsection §1, the short exact sequence above is just the one obtained
from usual Galois theory:

1→ Gal(Mk(S),S|ks(S))→ Gal(Mk(S),S|k(S))→ Γk → 1.

Proof. We use the criteria of 4.3. Exactness in the right: As S is geometrically con-
nected over k, the scheme SK is also connected for any finite separable field extension
k ↪→ K.
Exactness in the left: For any étale cover f : X → Sks we are to prove that there exists
an étale cover f : X̃ → S such that fk(s)) dominates f . From 2.9, there exists a finite
separable field extension k ↪→ K and an étale cover f̃ : X̃ → SK which is a model
off : X → Sks over SK . But then, the composite f : X̃ → SK → S is again an étale
cover whose base-change via Sks → S is the coproduct of [K : k] copies of f hence in
particular, dominates f .
Exactness in the middle: From 2.4, this amounts to show that ker(p) ⊂ im(i). For
any connected étale cover ϕ : X → S such that ϕks : Xks → Sks admits a section,
say σ : Sks ↪→ Xks , we are to prove that there exists a finite separable field extension
k ↪→ K such that the base change of spec(K) → spec(k) via S → spec(k) domi-
nates ϕ : X → S. So, let k ↪→ K be a finite separable field extension over which
σ : Sks ↪→ Xks admits a model σK : SK ↪→ XK . This defines a morphism from SK to
X over S by composing σK : SK ↪→ XK with XK → X . □

4. G.A.G.A. theorems

We first define affine complex analytic spaces. Let U ⊂ Cn denote the polydisc of all
z = (z1, ..., zn) ∈ Cn such that |zi| < 1 and given analytic functions f1, ..., fr : U → C,
let V(f1, ..., fr) be the locally ringed spaces in C−algebra whose underlying topological
space the closed subset :

∩ri=1f
−1
i (0) ⊂ U

endowed with the topology inherited from the transcendent topology on U and whose
structural sheaf is:

OU/⟨f1, ..., fr⟩,
where OU is the sheaf of germs of analytic functions on U . As schemes over C are ob-
tained by glueing affine schemes over C in the category LR/C of locally-ringed spaces
in C−algebras, complex analytic spaces are obtained by glueing "affine" complex ana-
lytic spaces in LR/C. The category AN/C of complex analytic spaces is then the full
subcategory of LR/C whose objects are locally isomorphic to affine complex analytic
spaces.
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Claim 4.1. LetX be a scheme of finite type over C, then there existsXan ∈ AN/C with
a morphism of ringed spaces λX : Xan → X .Suppose ϕ : X → Y is a morphism of
schemes of locally finite type over C. Then there exists a continuous map ϕan : Xan →
Y an of analytic spaces such that λY ◦ ϕan = ϕ ◦ λX . Moreover, if X/C is smooth, then
Xan is a complex manifold. And if ϕ : X → Y is a finite étale cover, then ϕan : Xan →
Y an is a finite topological cover. Hence for X a scheme of finite type over C, we get a
functor (−)an : CX → CtopX . Furthermore, the map ϕ 7→ ϕan maps open immersions into
open immersions.

The morphism λX : Xan → X is unique up to a unique X−isomorphism and we call
Xan the analytification of X . There is a nice dictionary between the properties of X
(resp. ϕ : X → Y ) and those of Xan (resp. ϕan : Xan → Y an). Morally, all those which
are encoded in the completion of the local rings are preserved. For instance:

(1) Let P be the property of being connected, irreducible, regular, normal, reduced,
of dimension d. Then X has P if and only if Xan has P ;

(2) Let P be the property of being surjective, dominant, a closed immersion, finite,
an isomorphism, a monomorphism, an open immersion, flat, unramified, étale,
smooth. Then ϕ has P if and only if ϕan has P .

Let LFT/C be the category of schemes locally of finite type over C.
Theorem 4.2. ([Gro71], VII, Thm.5.1) Let X be a scheme locally of finite type over C,
the functor (−)an : LFT/C → AN/C induce an equivalence of categories from the
category of étale covers of X to the category of étale covers of Xan.
Corollary 4.3. π1(X) classifies the finite covers of Xan. πtop1 classifies all topological
covers of Xan and

π1(X) ∼= ̂πtop1 (Xan)

Example 4.4. Assume that k = C and A be an abelian variety of dimension g over k.
Then Aan is a complex torus of dimension g: there exists a lattice Λ ⊂ Cg such that
Aan ∼= Cg/Λ. Then, on the one hand, the universal covering of A is just the quotient
map Cg → A and has group πtop1 (A(C); 0A) ≃ Λ whence

π1(A; 0A) ∼= ̂πtop1 (Aan; 0) ∼= Ẑg.

On the other hand, for any prime l:
Tl(A) = lim←−A[l

n]

= lim←−
1

ln
Λ/Λ

= lim←−Λ/lnΛ

= Λ(l),

This recover the result in 3.18 when the field k is C.



CHAPTER 5

Structure of geometric fundamental groups of smooth curves

1. Introduction

In this chapter, we discuss the structure results concerning the geometric fundamental
groups of smooth curves. For simplicity, most of the time, we will mainly work in the
compact case. As we are only mainly interested in the structure of fundamental group,
we may and we will ignore the choice of the base point except section 2. Hence the
fundamental group of a connected scheme at certain geometric point will be denoted
simply by π1(X).
In the following, let k denote an algebraically closed field of arbitrary characteristic p ≥
0. Let X/k be a proper smooth connected curve of genus g ≥ 0. We begin with the
easiest case.
Proposition 1.1. • If g = 0, then π1(X, x̄) = {1} is trivial. In other words, X is

simply connected.
• If g = 1, then π1(X, x̄) ∼= TX the Tate module of the elliptic curve.

Proof. (2) is the result of Theorem 3.18.
(1) is done by applying the Hurwitz's formular. Indeed, let f : Y → X be a finite étale
cover ofX , with Y is connected. In particular, Y is a smooth projective connected curve.
Let gY be the genus of the curve Y . Then the Hurwitz formular tells us

2gY − 2 = deg(f)(2gX − 2)

As gX = 0, we obtain 2gY = 2− 2degf. As gX = 0, we obtain
2gY = 2− 2degf ≥ 0,

as a result, we have deg(f) = 1, in other words, f : Y → X is a finite étale morphism
of degree 1. As a result f is an isomorphism. From here, we obtain π1(X) = {1}. □
Remark 1.2. When g ≥ 2, the problem becomes more difficult. In the following, we
will discuss some properties of the π1 of such a curve. In particular, we will sketch the
proof of the fact that π1(X) is topologically of finite type. At the end, we will also give
an example of affine curve to see that π1 in general doesn't satisfy the finiteness property
above.

We begin with some useful properties about profinite groups which are topologically of
finite type. Recall that a profinite group π is calle topologically of finite type if there is a
finitely generated subgroup of π which is dense in π.
Proposition 1.3. ([FJ08],Proposition 16.10.6) π is a profinite group, f : π → π is a
group morphism from π to itself. If π is topologically of finite type, then f is surjective
implies that f is an isomorphism.

41
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Definition 1.4. Let π be a profinite group. We define Im(π) = { G finite group | there
exists a continuous surjective morphism of groups f : π ↠ G}/ ∼, where ∼ is the
isomorphism of finite groups.
Proposition 1.5. ([FJ08], Proposition 16.10.7) G, H two profinite groups with G topo-
logically of finite type, then:

(1) If Im(H) ⊂ Im(G), then H is a quotient of G.
(2) If Im(H) = Im(G) then H ∼= G

Combining 1.3 and 1.5, we have
Corollary 1.6. Suppose f : G→ H a surjective morphism of profinite groups, and H is
topologically of finite type. Suppose that f induce an equality Im(H) = Im(G), then f
is an isomorphism.

In order to apply this proposition, we need the following lemma.
Lemma 1.7. Let k be an algebraically closed field,X/k a connected scheme of finite type.
Let k ⊂ K be an algebraically closed extension of fields, then the surjective morphism
π1(XK)→ π1(X) induces an equality of sets Im(π1(X)) = Im(π1(XK)).

Proof. Let π1(XK)→ G be a finite quotient which corresponds to coveringZ → XK

of XK , Galois of group G. Then it's sufficient to prove that there exists a finite Galois
covering Y → X of Galois group G. As the scheme XK/K is of finite presentation, and
Z → XK is finite, there exists an extension of finite type k′ of k contained in K, and an
étale Galois cover Z ′ of Xk′ = X ⊗k k′, such that the following diagram is cartesian:

..
..Z ..Z ′

..XK ..Xk′

As k′/k is of finite type, there exist an integral k−scheme of finite type S which the finite
Galois cover Z ′ → Xk′ of Galois group G above the generic point of S can be extended
to a finite Galois cover Z ′ → XS of Galois group G. Finally, let s ∈ S(k) be a rational
point of S ( this is possible because S is of finite type over k = k̄), hence we obtain a
finite étale cover Y = Zs → X , which is galois of group G. Hence the result. □
Corollary 1.8. Suppose k is an algebraically closed field,X/k a k−scheme connected of
finite type. Denote π1(X) its étale fundamental group. Suppose k ⊂ K an algebraically
closed extension of fields, then if π1(X) is topologically of finite type, then the morphism
π1(XK)→ π1(X) induced by base change (hence automatically surjective, by 1.3) is an
isomorphism.

Proof. Given the hypothesis, this results from 1.6 and 1.7. □

2. Case of characteristic zero

In this section, let k be an algebraically closed field of characteristic 0, andX/k a smooth
connected curve of genus g. The aim of this section is to determine the fundamental group
of X . The main tool used here is Serre's GAGA principal, c.f. Section 4.4.
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§1. The case k = C. Denote X(C) the set of C−rational points of X , then X(C)
has naturally a structure of a connected Riemann surface, denote byXan. ThenXan is the
complement of n distinct points y1, y2, ..., yn of a compact connected Riemann surface
of genus g. Concerning the topological fundamental group of such a Riemann surface,
we have the following result.
Theorem 2.1. Suppose that S is a Riemann surface which is the complement of n distinct
points y1, y2, ..., yn of a compact connected Riemann surface of genus g, then its topolog-
ical fundamental group πtop1 (S) is a group of finite type, generated by 2g + n elements
α1, ...αg, β1, ...βg, γ1, ...γn which satisfies the following relation:

(

g∏
i=1

[αi, β1]) · γ1 · γ2 · · · ·γn = 1

In other words, πtop1 (S) = Free group generated by α1,...αg ,β1,...βg ,γ1,...γn
⟨(
∏g

i=1[αi,β1])·γ1·γ2····γn⟩ .
Definition 2.2. DenoteΠg,n the group generated by 2g+n elementsα1, ...αg, β1, ...βg, γ1, ...γn
with the only relation (

∏g
i=1[αi, β1]) · γ1 · γ2 · · · ·γn = 1.

By the definition of π1(X), this profinite group classifies the finite étale covers of X . By
the equivalence between the category of finite étale covers and the category of topological
covers of finite degree of X(C), and that the latter category is actually classified by the
profinite completion of πtop1 , we have:
Corollary 2.3.

π1(X) ≃ ̂πtop1 (X(C)) ≃ Π̂g,n.

In particular, π1(X) is topologically of finite type. More over, if n ≥ 1( in other words,
if the curve X/C is affine), π1(X) is free of rank 2g + n− 1.
Example 2.4. (1) X = P1

C, the P1
C(C)an is the complex projective line. As a topo-

logical space, it is homeomorphic to a sphere. As a result, P1
C(C) is contractible.

Hence π1(P1
C(C)) = {1}. Hence we get πtop1 (Xan) = 1, hence π1(X) =

̂πtop1 (Xan) = 1.
(2) X = E an elliptic curve, Xan = C/Z⊕Z · τ , τ ∈ C∗, Im(τ) > 0 (we can take

τ ∈ the fundamental domain of modular group). Then we have:
πtop1 (Xan) = Z2,

π1(X) = ̂πtop1 (Xan) = Ẑ2 = TE.

§2. General case. Here k is an algebraically closed field of characteristic 0, the idea
is trying to use the conclusion in complex case.
Proposition 2.5. k = k̄, char(k) = 0, X/k a separated connected smooth curve, ob-
tained as the complement of n rational points of a proper smooth curve of genus g over
k. Then,

(1) π1(X) is topologically of finite type, and isomorphic to Π̂g,n.
(2) suppose k ⊂ K an extension of algebraically closed fields, then the morphism

induced by base change π1(XK)→ π1(X) is an isomorphism.
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Proof. As the curveX/k is of finite presentation, there exists a subfield k0 of k which
is of finite type over Q, and a k0−scheme X0, such that X ∼= X0 ⊗k0 k. Denote k0 ⊂ k
the algebraic closure of k0 in k, and fix an embedding k0 ↪→ C. We have the following
commutative diagram:

..

..X0,C . ..X0,k̄0 . ..X

. ..□ . ..□ .

..spec(C) . ..spec(k̄0) . ..spec(k)

where X0,k0
is obtained by the base change of X0/k0. From this we get the following

two surjective morphisms:
π1(X0,C) ↠ π1(X0,k̄0) ↞ π1(X).

By 2.3, π1(X0,C) is topologically of finite type, hence so is π1(X0,k̄0), by 1.8 the above
surjective morphisms are isomorphisms. □
Example 2.6. Let k be an algebraically closed field of characteristic 0

(1) X = P1
k, by 2.5, π1(X) = Π̂0,0 = {1}.

(2) X = E an elliptic curve over k, by 2.5 π1(X) = Π̂1,0 = Ẑ2 = TE.

3. Case of positive characteristic

In this section, the letter k denotes an algebraically closed field of characteristic p >
0. Let as usual X/k be a proper smooth connected curve of genus g over k. Our aim
here is to discuss some structure results of π1(X). In particular, we show that π1(X) is
topologically of finite type.

§1. π1(X)(p
′). In this section, we assume X/k to be proper. In the following, the

notation p′ always means "prime to p" and for G a profinite group, we denote by G(p′)

the maximal quotient of order prime to p. We want to determine the quotient π1(X, x̄)(p′)
of π1(X, x̄). The strategy here is trying to use the corresponding results in characteristic
zero case. The two tools used here are the deformation theory and Grothendieck's spe-
cialization theory of π1.
Our aim is to show that π(p′)

1 (X) is isomorphic to Π̂g,0

(p′). In particular, π(p′)
1 (X) is a profi-

nite group of finite type, generated by 2g elements. Our strategy is try to use the facts
corresponds to the characteristic 0 case by the specialization theory of Grothendieck.

§1.1. Lifting of curves to characteristic 0. The principal tool here is the deformation
theory, as described in [Gro71]. We first cite the following result:
Theorem 3.1. ([Gro71], III, Thm 7.3 LetA be a complete Noetherian local ring of residue
field k. Denote S = spec(A) the spectrum of A, and s ∈ S it's closed point. Let X0/s
be a smooth projective scheme, such that

H2(X0, TX0/s) = 0,
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with TX0/k := HomOX
(Ω1

X0/s
,OX0) its tangent bundle. Then there exists a proper

smooth formal scheme X over Ŝ = Spf(A) which lifts X0/s. If moreover we have
H2(X0,OX0) = 0

we can even find a smooth projective S−scheme over S such that Xs = X0.

Let W = W (k) the witt ring of k. And S = spec(W ). According to 3.1 there exists a
smooth projective S−scheme X/S such that Xs is the curve X .

..

..X/S . ..X

. ..□ .

..spec(W (k)) . ..spec(k)

.smooth proper flat

§1.2. the specialization theory of Grothendieck. Let S = Spec(R) be the spectrum
of a complete discrete valuation ring, with s ∈ S its closed point and η its generic point.
Just to simplify the presentation here, we assume that the residue field of R is alge-
braically closed (this assumption is unnecessary). Let η̄ denote a geometric point of S
above η. Let X/S denote a proper smooth curve with connected geometric fibers. Then
we have the following commutative diagram

..
..Xη̄ ..X ..Xs

..̄η ..S ..s

.

j

.
i

Then we have the following theorem of Grothendieck.
Theorem 3.2. (1) The functor

i⋆ : CX → CXs

Y/X → Ys/Xs
is an equivalence of categories. In particular, i⋆ : π1(Xs) ≃−→ π1(X ).

(2) The composite i−1⋆ ◦ j⋆ : π1(Xη̄) → π1(Xs) is call the specialization morphism,
often denoted by sp. Then sp is always surjective. Moreover it induces an
isomorphism between the maximal prime-to−p quotients:

sp(p
′) : π1(Xη̄)(p

′) ≃−→ π1(Xs)(p
′).

§1.3. Conclusion. Now we use again the notation of §1.1. Let S = Spec(W (k)),
with s its closed point and η its generic point. Let η̄ = Spec(Ω) be a geometric point of S
above η, with Ω an algebraic closure of Frac(W (k)). Then the theorem of Grothendieck
in §1.2 tells us that the specialization morphism

sp(p
′) : π1(Xη̄)→ π1(Xs)
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is surjective. As Ω is an algebraically closed field of characteristic 0, π1(Xη̄) ∼= Π̂g,0

topologically of finite type. In particular, so is π1(Xs) ∼= π1(X). Moreover, sp induces
an isomorphism between the maximal prime-to−p quotients

Π̂g,0
∼= π1(Xη̄)(p

′) ≃−→ π1(Xs)(p
′) ∼= π1(X)(p

′).

By combining 2.5, we obtain finally the following result.
Proposition 3.3. Let X/k be a proper connected smooth curve over an algebraically
closed field of characteristic p ≥ 0. Then π1(X) is topologically of finite type. Moreover,
its maximal prime-to-p quotient π1(X)(p

′) is isomorphic to Π̂g,0

(p′).

§2. πab1 . Let k be an algebraically closed field of characteristic p ≥ 0, and X/k a
connected proper smooth curve of genus g. Recall that a divisor (or more precisely a
Weil divisor) of X is a formal finite sum

r∑
i=1

nixi

with xi ∈ X closed points ofX , and ni ∈ Z. ForD such a divisor, the sum ∑r
i=1 ni ∈ Z

is called the degree ofD. For example, for f ∈ k(X) a non-zero element of the function
fields of X , its associated divisor is given by

div(f) :=
∑
x∈C

νx(f) · x,

where νx : k(X)⋆ → Z is the (additive) valuation attached to the closed point x ∈ X
(so one has to show here that νx(f) = 0 for all but finitely many closed points x ∈ X ,
we omit the details here). Such a divisor is called principal. As X/k is proper, the
degree of a principal divisor is always zero. Two divisors D, D′ are called linearly
equivalent if their difference D−D′ is a principal divisor, namely of the form div(f) for
some f ∈ k(X)⋆. Now, the group of all divisors is denoted by Div(X), and the quotient

Cl(X) := Div(X)/{principal divisors}
is the (Weil) divisor class group of X . Since the degree of a principal divisor is zero,
we have a well-defined degree function on Cl(X):

deg : Cl(X)→ Z.
The subgroup of Cl(X) of elements of degree 0 is denoted by Cl0(X).
Proposition 3.4. Let k be an algebraically closed field, and X/k a proper smooth con-
nected curve of genus g ≥ 0.

(1) One can construct canonically an abelian variety J(X) associated with X ,
called the jacobian of X , such that its group of k−rational points is canoni-
cally isomorphic to Cl0(X). Moreover, J(X) is of dimension g.

(2) Let a ∈ X(k) be a rational point. Then there exits a closed immersion ιa : X ↪→
J(X) such that the associated map between the k−rational points is given by

X(k) → J(X)(k) = Cl0(X)
x 7→ class of the divisor x−a.

The closed immersion ιa above is called the Albanese morphism associated
with the rational point a ∈ X(k).



3. CASE OF POSITIVE CHARACTERISTIC 47

Consider now ιa : X ↪→ J(X) the Albanese morphism associated with a rational point
a ∈ X(k). It induces then a morphism of profinite groups

ιa,⋆ : π1(X; a)→ π1(J(X); 0).

We have then the following result.
Proposition 3.5. The morphism ιa,⋆ is surjective, and induces an isomorphism

π1(X; a)ab
≃−→ π1(J(X); 0).

§3. Some words about open curves. In 1957, S. Abhyankar stated the following
conjecture, which is now a theorem:
Theorem 3.6. (Abhyankar's conjecture) Let p be a prime number, and let k be an al-
gebraically closed field of characteristic p. Let G be a finite group. Denote p(G) the
subgroup of G generated by its Sylow p−subgroups of G (i.e. G/p(G) is the maximal
quotient ofG of order prime to p). LetX/k be a proper smooth connected curve of genus
g over k, and U ⊂ X the affine curve which is the complement of r points, with r ≥ 1.
Then there exists a connected Galois étale cover of U of Galois group G if and only if
G/p(G) is generated by 2g + r − 1 elements.
Remark 3.7. (1) The necessity of this condition follows from the non-proper ver-

sion of the specialization theory of Grothendieck 3.3.
(2) The Abhyankar's conjecture is already proved by Raynaud ([Ray94]) in the

affine line case, and by Harbater ([Har94]) in the general case. Pop ([Pop95])
has also given a proof in the general case, which is also based on the result of
Raynaud in the affine line case.

(3) The knowledge of the set Im(π1(X)) is insufficient to determine the structure
of this porfinite group π1(X), since π1(X) is not topologically of finite type.
For example, we have seen that in the proof of 1.8 that the set Im(π1(X)) is
invariant by extensions of algebraically closed fields, but the structure of π1(X)
really depends on the base field k. For example, when U = A1

k is the affine line,
then one can show that π1(U)(p) is a free pro-p group, whose rank is equal to the
cardinality of the base field k, c.f. [P.G00] Lemme 1.3 and the words between
1.3 and 1.4. In particular, the fundamental group of A1

k is not topologically of
finite type.
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