

Rosa Winter

Concurrent exceptional curves on del Pezzo surfaces of degree one

ALGANT Master's thesis

Thesis advisor: dr. R.M. van Luijk

9th July, 2014

Università degli studi di Padova
Universiteit Leiden

Acknowledgements

" If your research adviser gives you a problem involving del Pezzo surfaces of degree 2 and 1, it means he really hates you."

Peter Swinnerton-Dyer.
First and foremost I want to thank my advisor Ronald van Luijk for his patience in explaining everything, his support and encouragement, and for so much of his time. Contrary to what the quote above might suggest, I have really enjoyed working on this thesis with him.

I want to thank the ALGANT program, and in particular the people at the University of Padova and at the Mathematisch Intstituut in Leiden for being understanding, helpful and flexible when the situation asked for it. This really made me feel supported during a hard time. A special thanks to Peter Stevenhagen, who thought with me about how to continue my studies in the best way possible.

Last but not least, I want to thank all my ALGANT friends, both from Padova and from the two years I spent in Leiden. The nights spent at the faculty will never be forgotten... che gioia!

Contents

Introduction 2
1 Del Pezzo surfaces 5
1.1 Del Pezzo surfaces of degree one 8
2 Exceptional curves 11
2.1 Exceptional curves on del Pezzo surfaces of degree one 14
3 The Weyl group acting on exceptional curves 17
4 Maximal cliques and the maximum 29
4.1 Points on the ramification curve. 33
4.2 Points outside the ramification curve 43
References 55

Introduction

A del Pezzo surface is a projective, non-singular, geometrically integral surface with ample anticanonical divisor. The degree of a del Pezzo surface is the self-intersection number of the canonical divisor, and this is at most 9 . Over an algebraically closed field, del Pezzo surfaces of degree d are isomorphic to \mathbb{P}^{2} blown up at $9-d$ points in general position for $d \neq 8$, and to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or \mathbb{P}^{2} blown up in one point for $d=8$. For degree at least three, del Pezzo surfaces can be embedded as surfaces of degree d in \mathbb{P}^{d}. A famous example is given by del Pezzo surfaces of degree three, which are exactly the smooth cubic surfaces in \mathbb{P}^{3}. For a del Pezzo surface of degree two, the linear system of the anticanonical divisor gives the surface the structure of a double cover of \mathbb{P}^{2} ramified over a smooth curve of degree four, and for del Pezzo surfaces of degree one, the linear system of the bianticanonical divisor gives the surface the structure of a double cover of a cone Q in \mathbb{P}^{3}, ramified over a smooth curve that is cut out by a cubic surface.

Let X be a del Pezzo surface of degree d over an algebraically closed field k, and let K_{X} be the canonical divisor on X. An exceptional curve on X is an irreducible projective curve $C \subset X$ such that $C^{2}=C \cdot K_{X}=-1$. For $d \geq 3$, the exceptional curves on X are exactly the lines on the model of degree d in \mathbb{P}^{d}. For $d=3$ this gives a description of the 27 lines on a cubic surface. A lot is known about the exceptional curves on del Pezzo surfaces. For example, we know that there is a one-to-one correspondence between exceptional curves on X and their classes in Pic X, and we know what their images under the blow-up in \mathbb{P}^{2} are, see Theorem 2.8 . We also know how many exceptional curves there are.

d	1	2	3	4	5	6	7	8
exceptional curves on X	240	56	27	16	10	6	3	1

Now assume X is of degree one. Let φ be the morphism associated to $\left|-2 K_{X}\right|$. In this thesis we prove the following two theorems.

Theorem 1. Let P be a point on the ramification curve of φ. The number of exceptional curves that go through P is at most ten if char $k \neq 2$, and at most sixteen if char $k=2$.

Theorem 2. Let R be a point outside the ramification curve of φ. The number of exceptional curves that go through R is at most twelve. If char $k=0$, it is at most ten.

In [SvL14], various examples of del Pezzo surfaces are given where ten exceptional curves go through one point outside the ramification curve, showing that the upper bound for char $k=0$ in Theorem 2 is sharp. In Example 4.23 and Example 4.24 , we show that the upper bounds given in Theorem 1 are sharp, too.

It is well known that on del Pezzo surfaces of degree three, the maximal number of exceptional curves through one point is three. The fact that three is an upper bound
can be seen by looking at the maximal size of full subgraphs of the graph on the 27 exceptional curves. A geometrical argument can be found for instance in Rei88, on page 102. A point on a del Pezzo surface of degree three that is contained in three exceptional curves is called an Eckardt point.

On a del Pezzo surface of degree two, the maximal number of exceptional curves through one point is four. As in the case of degree three, this upper bound is given by the graph on the 56 exceptional curves. A geometric argument why four is the upper bound is given in TVAV09, Lemma 4.1. An example where this upper bound is reached is given in [STVAar], Example 7. A point on a del Pezzo surface of degree two that lies on four exceptional curves is called a generalized Eckardt point.

For del Pezzo surfaces of degree one, the situation is a little different. First of all, for char $k \neq 2$, the maximal size of full subgraphs of the graph on the 240 exceptional curves, which we will show is sixteen, is not equal to the maximal number of exceptional curves that can go through one point. Secondly, contrary to del Pezzo surfaces of degree two, where all generalized Eckardt points are outside the ramification curve, in the case of degree one we compute the maximum both for points on the ramification curve, as well as for points outside the ramification curve.

In Section 1, we define del Pezzo surfaces and study their main properties. We look more closely at del Pezzo surfaces of degree one in Subsection 1.1 .

In sections 2,3 and 4 we work over an algebraically closed field.
In Section 2, we study the exceptional curves on del Pezzo surfaces. We look more closely at the exceptional curves on del Pezzo surfaces of degree one in Subsection 2.1, and show that they relate to hyperplanes in \mathbb{P}^{3} that are tritangent to the branch curve of φ, and do not contain the vertex of the cone Q. This will later allow us to make the distinction between exceptional curves through one point on the ramification curve of φ, and exceptional curves through one point outside the ramification curve of φ.

In Section 3, we study the group G of permutations of the set E of exceptional classes in Pic X that preserve the intersection pairing. We prove various results about the action of G on E, that we will use in the fourth section.

In Section 4, we show that an upper bound for the number of exceptional curves through one point in X is sixteen. We show moreover that if the elements in a maximal set of exceptional curves that all intersect each other go through one point, then that point lies on the ramification curve of φ if and only if the set contains at least two curves that intersect with multiplicity three.

In Subsection 4.1 we focus on the number of exceptional curves through one point on the ramification curve. For char $k \neq 2$, we first show that this is at most twelve. Then we show that ten is a sharp upper bound. To this end, we define the following curves.

Let Q_{1}, \ldots, Q_{8} be eight points in \mathbb{P}^{2} such that no three of them lie on a line, and no six of them lie on a conic. For $i \in\{1,2,3,4\}$, let L_{i} be the line through
$Q_{2 i}$ and $Q_{2 i-1}$. For $i, j \in\{1, \ldots, 8\}, i \neq j$, let $C_{i, j}$ the unique cubic through $Q_{1}, \ldots, Q_{i-1}, Q_{i+1}, \ldots, Q_{8}$ that is singular in Q_{j}.
We show that if the elements of a set of twelve exceptional curves go through one point on the ramification curve, we can reduce to a set containing the curves $L_{1}, L_{2}, L_{3}, L_{4}, C_{7,8}, C_{8,7}$, and $C_{6,5}$. The following proposition is therefore the key to the proof of Theorem 1 .

Proposition 3. Let char $k \neq 2$. Assume that the four lines L_{1}, L_{2}, L_{3} and L_{4} all intersect in one point P. Then the three cubics $C_{7,8}, C_{8,7}$, and $C_{6,5}$ do not all go through P.

Finally we show that for char $k=2$, sixteen is a sharp upper bound.
In Subsection 4.2 we focus on exceptional curves through one point outside the ramification curve. We first show that it is at most twelve, by showing that every set of exceptional curves of size bigger than twelve contains at least two curves intersecting with multiplicity three. To compute a sharp upper bound in the case char $k=0$, we define the following.
Let Q_{1}, \ldots, Q_{8} be eight points in \mathbb{P}^{2} such that no three of them lie on a line, and no six of them lie on a conic. Define the following curves.
L_{1} is the line through Q_{1} and Q_{2};
L_{2} is the line through Q_{3} and Q_{4};
C_{1} is the conic through $Q_{1}, Q_{3}, Q_{5}, Q_{6}$ and Q_{7};
C_{2} is the conic through $Q_{1}, Q_{4}, Q_{5}, Q_{6}$ and Q_{8};
C_{3} is the conic through $Q_{2}, Q_{3}, Q_{5}, Q_{7}$ and Q_{8};
C_{4} is the conic through $Q_{2}, Q_{4}, Q_{6}, Q_{7}$ and $Q_{8} ;$
D_{1} is the quartic through all eight points with singular points in Q_{1}, Q_{7} and Q_{8};
D_{2} is the quartic through all eight points with singular points in Q_{2}, Q_{5} and Q_{6};
D_{3} is the quartic through all eight points with singular points in Q_{3}, Q_{6} and Q_{8};
D_{4} is the quartic through all eight points with singular points in Q_{4}, Q_{5} and Q_{7}.
As in the case of points on the ramification curve, we show that for a set of eleven or twelve exceptional curves going through one point outside the ramification curve, we can reduce to a set containing these ten curves. From the following proposition we can then deduce Theorem 2.

Proposition 4. Assume that char $k=0$. Then

$$
L_{1}, L_{2}, C_{1}, \ldots C_{4}, D_{1}, \ldots, D_{4}
$$

do not all go through one point.

1 Del Pezzo surfaces

In this section we define del Pezzo surfaces and state their main properties. In Subsection 1.1 we will be more specific and focus on del Pezzo surfaces of degree one. We assume that the reader has a basic knowledge of algebraic geometry, and is familiar with concepts as variety, divisor, and Picard group. Most results in this section, as well as more information on del Pezzo surfaces, can be found in Man74, Chapter IV, and Kol96, Section III.3.

Definition 1.1. Let k be a field, and X a variety over k. Then we say that X is nice if it is projective, smooth, and geometrically integral.

Definition 1.2. A del Pezzo surface is a nice surface X with ample anticanonical divisor $-K_{X}$.

Let X be a del Pezzo surface with very ample anticanonical divisor $-K_{X}$. The linear system $\left|-K_{X}\right|$ determines an embedding $i: X \hookrightarrow \mathbb{P}^{n}$ for some n. If H is a hyperplane in \mathbb{P}^{n}, we have $i^{*} H \sim-K_{X}$. Therefore, the degree of $i(X)$ is equal to $\left(i^{*} H\right)^{2}=\left(-K_{X}\right)^{2}=K_{X}^{2}$. This leads to the following definition.

Definition 1.3. The degree of a del Pezzo surface X is the self-intersection number K_{X}^{2}.

Proposition 1.4. The degree of a del Pezzo surface X is positive.
Proof. Since $-K_{X}$ is ample, $-n K_{X}$ is very ample for some $n>0$, hence determines an embedding of X into some projective space. Then $\left(-n K_{X}\right)^{2}$ is the degree of the image of X under this embedding, hence $n^{2} K_{X}^{2}=\left(-n K_{X}\right)^{2}>0$. It follows that $K_{X}^{2}>0$.

Definition 1.5. Let $r \leq 8$, and let P_{1}, \ldots, P_{r} be points in \mathbb{P}^{2}. Then we say that P_{1}, \ldots, P_{r} are in general position if no three of them lie on a line, no six of them lie on a conic, and no eight of them lie on a singular cubic with one of these eight points at the singularity.

Theorem 1.6. For $r \leq 8$, let P_{1}, \ldots, P_{r} be points in general position in \mathbb{P}^{2}. Let X be the blow-up of \mathbb{P}^{2} in these points. Then $-K_{X}$ is ample, and very ample if $r \leq 6$.

Proof. See Man74, Theorem 24.5, and Dem80, Theorem 1.
Theorem 1.7. Let k be an algebraically closed field, and let X be a del Pezzo surface over k. Then X is isomorphic to either $\mathbb{P}^{1} \times \mathbb{P}^{1}$, in which case X is of degree 8 , or to \mathbb{P}^{2} blown up at $r \leq 8$ points in general position, in which case the degree of X is $9-r$.

Proof. See Man74, Theorem 24.4, Theorem 26.2, and Remark 26.3.
Remark 1.8. The previous two theorems give us an explicit description of all del Pezzo surfaces over algebraically closed fields; they are exactly those surfaces that
are isomorphic to the blow-ups of \mathbb{P}^{2} in $r \leq 8$ points in general position, and the surface $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Moreover, Theorem 1.7 implies that the degree of a del Pezzo surface over an algebraically closed field is at most 9 , and a del Pezzo surface of degree 9 is just \mathbb{P}^{2}.

Since the anticanonical divisor of a del Pezzo surface is ample, a del Pezzo surface can be embedded in some projective space by a multiple of its anticanonical divisor $-K$. To study the various rational maps and morphisms given by multiples of $-K$, we need a couple of classical results.

Theorem 1.9. (Nakai-Moishezon criterion). Let X be a nonsingular projective surface over an algebraically closed field. Then a divisor D on X is ample if and only if $D^{2}>0$ and $D \cdot C>0$ for all irreducible curves C in X.

Proof. See [Har77], Theorem V.1.10.
Theorem 1.10. (Riemann-Roch for surfaces). Let X be a nonsingular projective surface over an algebraically closed field k. Then for any divisor D on X we have

$$
l(D)-s(D)+l(K-D)=\frac{1}{2} D(D-K)+1+p_{a}
$$

where $l(D)$ is the dimension of the vectorspace $\mathcal{L}(D)$ of rational functions on X with poles at most at $D, s(D)=\operatorname{dim} H^{1}(X, \mathcal{L}(D))$, the superabundance of D, and p_{a} is the arithmetic genus of X.

Proof. See [Har77], Theorem V.1.6.
Lemma 1.11. Let X be a del Pezzo surface with canonical divisor K_{X}. Then we have $\operatorname{dim} H^{1}\left(X, \mathcal{L}\left(-m K_{X}\right)\right)=0$ for all $m \geq 0$.

Proof. See Kol96], Corollary 3.2.5.1.
The following lemma is well known, and can be found for instance in Kol96, Corollary 3.2.5.2.

Lemma 1.12. Let X be a del Pezzo surface of degree d over an algebraically closed field. Then for all positive integers m we have $l\left(-m K_{X}\right)=1+\frac{1}{2} m(m+1) d$.

Proof. Let $m>0$. Since X is geometrically rational, we have $p_{a}(X)=0$ (see for example Har77, Example II.8.20.2). Moreover, by the previous lemma we have $s\left(-m K_{X}\right)=0$. Since $-K_{X}$ is ample we have $-K_{X} \cdot C>0$ for all irreducible curves C in X by Nakai-Moishezon, so $(m+1) K_{X} \cdot C<0$, hence $l\left((m+1) K_{X}\right)=0$. From Riemann-Roch for surfaces it follows that

$$
\begin{aligned}
l\left(-m K_{X}\right) & =\frac{1}{2}\left(\left(-m K_{X}\right)^{2}-m K_{X}^{2}\right)+1 \\
& =\frac{1}{2}\left(m^{2} d-m d\right)+1 \\
& =1+\frac{1}{2} m(m+1) d
\end{aligned}
$$

Remark 1.13. If X is a del Pezzo surface of degree $d \geq 3$, then $-K_{X}$ is very ample by Theorem 1.6. Therefore, the linear system $\left|-K_{X}\right|$ determines an embedding in \mathbb{P}^{n}, with $n=\frac{1}{2} \cdot 2 \cdot d=d$ by Lemma 1.12 , and the image of X under this embedding has degree $\left(-K_{X}\right)^{2}=d$. So for $d \geq 3$, a del Pezzo surface of degree d is isomorphic to a surface of degree d in \mathbb{P}^{d}.

Example 1.14. Let k be an algebraically closed field, and X a del Pezzo surface of degree 4 over k. Then X is isomorphic to \mathbb{P}^{2} blown up in 5 points in general position. The anticanonical divisor $-K_{X}$ is very ample, and by Lemma 1.12 we have $l\left(-K_{X}\right)=5$, so $-K_{X}$ determines an embedding $\varphi: X \hookrightarrow \mathbb{P}^{4}$. The image $\varphi(X)$ has degree 4 , and it is the complete intersection of two quadric hypersurfaces in \mathbb{P}^{4}. To see this, let $\{v, w, x, y, z\}$ be a basis for $\mathcal{L}\left(-K_{X}\right)$. Let $V=\operatorname{Sym}^{2}\left(\mathcal{L}\left(-K_{X}\right)\right)$ be the symmetric square of $\mathcal{L}\left(-K_{X}\right)$. Then V has dimension $\binom{6}{2}=15$, and there is a canonical map $f: V \rightarrow \mathcal{L}\left(-2 K_{X}\right)$. By Lemma 1.12 we have $l\left(-2 K_{X}\right)=13$, so the dimension of ker f is at least two, which means that there are two linearly independent quadratic forms vanishing on $\varphi(X)$. This means that $\varphi(X)$ is contained in the intersection of the two quadric hypersurfaces defined by these quadratic forms. Since their intersection has degree 4 , which is the degree of $\varphi(X)$, we conclude that $\varphi(X)$ is in fact equal to this intersection.

Let k be an algebraically closed field, and let X be a del Pezzo surface of degree d over k. If X is not isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then we know from Theorem 1.7 that X is isomorphic to \mathbb{P}^{2} blown up in $9-d$ points in general position. In this case we know a lot about the Picard group Pic X of X. For a divisor D on X, we denote its class in Pic X by $[D]$.

Proposition 1.15. Let Y be a smooth surface over an algebraically closed field. Let \widetilde{Y} be the blow-up of Y at a point P, with corresponding map $\pi: \widetilde{Y} \longrightarrow Y$. Let E be the exceptional curve above P. Then E is isomorphic to \mathbb{P}^{1}, and we have $E^{2}=-1$. Moreover, we have an isomorphism Pic $Y \oplus \mathbb{Z} \longrightarrow \operatorname{Pic} \widetilde{Y}$ sending (D, n) to $\pi^{*} D+n[E]$. For all $C, D \in \operatorname{Pic} Y$ we have $\left(\pi^{*} C\right) \cdot\left(\pi^{*} D\right)=C \cdot D$, and $\left(\pi^{*} C\right) \cdot[E]=0$. Finally, we have $K_{\widetilde{Y}} \sim \pi^{*} K_{Y}+E$.

Proof. See Har77, Propositions V.3.1, V.3.2, and V.3.3.
Proposition 1.16. Let k be an algebraically closed field. For $1 \leq d \leq 8$, let Y be the blow-up of \mathbb{P}^{2} in $r=9-d$ points P_{1}, \ldots, P_{r} in general position. Let Pic Y be the Picard group of X, then we have Pic $Y \cong \mathbb{Z}^{10-d}$. More specifically, if E_{i} is the class of the exceptional curve corresponding to P_{i}, and L the class of the pullback of a line l in \mathbb{P}^{2} not passing through any of the P_{i}, then $\left\{L, E_{1}, \ldots, E_{r}\right\}$ forms a basis for Pic Y.

Proof. This follows from the previous proposition and the fact that Pic $\mathbb{P}^{2}=\langle[l]\rangle$.

REMARK 1.17. Keeping the notation of the previous proposition, we have

$$
\begin{aligned}
& E_{i}^{2}=-1 \text { for all } i \\
& E_{i} \cdot E_{j}=0 \text { for } i \neq j \\
& L^{2}=1 ; \\
& L \cdot E_{i}=0 \text { for all } i
\end{aligned}
$$

Since the canonical divisor $K_{\mathbb{P}^{2}}$ of \mathbb{P}^{2} is linearly equivalent to $-3 l$, we have $\left[-K_{X}\right]=3 L-\sum_{i=1}^{r} E_{i}$. It follows that $\left[-K_{X}\right] \cdot E_{i}=1$ for all i.

1.1 Del Pezzo surfaces of degree one

Let X be a del Pezzo surface of degree one over an algebraically closed field k with anticanonical divisor $-K_{X}$. In this subsection we define the anticanonical model of X and see that this describes X as a smooth sextic surface in the weighted projective space $\mathbb{P}(2,3,1,1)$. Moreover, we will see that the linear system $\left|-2 K_{X}\right|$ realizes X as a double cover of a quadric cone in \mathbb{P}^{3}. The linear system $\left|-K_{X}\right|$ defines a rational map that is not a morphism, but by blowing up X we can extend this map to an elliptic fibration. The results in this subsection can be found in [VA] and [CO99.

The anticanonical model of X

Definition 1.18. The anticanonical ring of X is the graded ring

$$
R\left(X,-K_{X}\right)=\bigoplus_{m \geq 0} \mathcal{L}\left(-m K_{X}\right)
$$

Definition 1.19. The anticanonical model of X is the scheme Proj $R\left(X,-K_{X}\right)$.
Since $-K_{X}$ is ample, X is isomorphic to its anticanonical model. We compute the anticanonical model of X as follows. By Lemma 1.12, we have $l\left(-K_{X}\right)=2$. Let $\{z, w\}$ be a basis for $\mathcal{L}\left(-K_{X}\right)$. By Proposition 2.3 in [CO99], for all $m \geq 1$ the elements $z^{m}, z^{m-1} w, \ldots, z w^{m-1}, w^{m}$ are linearly independent in $\mathcal{L}\left(-m K_{X}\right)$. So $z^{2}, z w, w^{2}$ are linearly independent elements of $\mathcal{L}\left(-2 K_{X}\right)$. Since $l\left(-2 K_{X}\right)=4$, we can choose an element $x \in \mathcal{L}\left(-2 K_{X}\right)$ such that $\left\{z^{2}, z w, w^{2}, x\right\}$ forms a basis for $\mathcal{L}\left(-2 K_{X}\right)$. Now $z^{3}, z^{2} w, z w^{2}, w^{3}, z x, w x$ are elements of $\mathcal{L}\left(-3 K_{X}\right)$ and linearly independent by the arguments in CO99, page 1200. Since $l\left(-3 K_{X}\right)=7$ we can therefore choose an element $y \in \mathcal{L}\left(-3 K_{X}\right)$ to obtain a basis $\left\{z^{3}, z^{2} w, z w^{2}, w^{3}, z x, w x, y\right\}$ of $\mathcal{L}\left(-3 K_{X}\right)$. We have $l\left(-4 K_{X}\right)=11$ and $l\left(-5 K_{X}\right)=16$, and together with the arguments in CO99, page 1200 this implies that

$$
\left\{z^{4}, z^{3} w, z^{2} w^{2}, z w^{3}, w^{4}, x^{2}, x z^{2}, x w^{2}, x z w, y z, y w\right\}
$$

is a basis for $\mathcal{L}\left(-4 K_{X}\right)$, and

$$
\left\{z^{5}, z^{4} w, z^{3} w^{2}, z^{2} w^{3}, z w^{4}, w^{5}, x^{2} w, x^{2} z, x z^{3}, x w^{3}, x z^{2} w, x z w^{2}, x y, y z^{2}, y w^{2}, y z w\right\}
$$

is a basis for $\mathcal{L}\left(-5 K_{X}\right)$. Finally, since $l\left(-6 K_{X}\right)=22$, the 23 elements

$$
\begin{aligned}
& z^{6}, z^{5} w, z^{4} w^{2}, z^{3} w^{3}, z^{2} w^{4}, z w^{5}, w^{6}, x^{3}, x^{2} z^{2}, x^{2} w^{2}, x^{2} z w, x z^{4}, x z^{3} w \\
& x z^{2} w^{2}, x z w^{3}, x w^{4}, x y z, x y w, y^{2}, y z^{3}, y z^{2} w, y z w^{2}, y w^{3}
\end{aligned}
$$

of $\mathcal{L}\left(-6 K_{X}\right)$ are linearly dependent. Let $h(x, y, z, w)=0$ be a dependence relation between them. If $\operatorname{char}(k) \neq 2,3$ then x and y can be chosen such that h has the form

$$
h=y^{2}-x^{3}-x f(z, w)-g(z, w)
$$

where f and g are homogeneous polynomials in z and w of degree 4 and 6 respectively.

Let $k[x, y, z, w]$ be the graded k-algebra with grading defined by $\operatorname{deg} z=\operatorname{deg} w=1$, $\operatorname{deg} x=2$, and $\operatorname{deg} y=3$. Then by Proposition 2.5 in CO99 there exists a natural isomorphism between the anticanonical ring of X and $k[x, y, z, w] /(h)$. Therefore, X is isomorphic to the zero locus of h in the weighted projective space $\mathbb{P}(2,3,1,1)$.

For the rest of this section we assume that $\operatorname{char}(k) \neq 2,3$, and identify X with its anticanonical model inside $\mathbb{P}(2,3,1,1)$.

The linear system $\left|-2 K_{X}\right|$
Let $p: \mathbb{P}(2,3,1,1) \rightarrow \mathbb{P}(2,1,1)$ be the projection sending a point $(x: y: z: w)$ to $(x: z: w)$. This is a rational map that is well defined on X. The restriction to X is a morphism of degree 2 . Let $i: \mathbb{P}(2,1,1) \hookrightarrow \mathbb{P}^{3}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ be the 2 -uple embedding, sending $(x: z: w)$ to $\left(x: z^{2}: z w: w^{2}\right)$. Then $i(\mathbb{P}(2,1,1))$ is a quadric cone Q given by $a_{2}^{2}=a_{1} a_{3}$, with vertex $(1: 0: 0: 0)$. The composition $\varphi=i \circ p: X \longrightarrow \mathbb{P}^{3}$ is the morphism defined by $\left|-2 K_{X}\right|$. It is a double covering of Q. The preimage of the vertex $(1: 0: 0: 0)$ of Q under this morphism is the point $(1: 1: 0: 0)=(1:-1: 0: 0)$ in X. We define \widetilde{X} to be the blow-up of X in this point with associated map $\pi: \widetilde{X} \longrightarrow X$. Moreover, we define \widetilde{Q} to be the blow-up of Q in the vertex, with associated map $\rho: \widetilde{Q} \longrightarrow Q$. Then φ induces a morphism $\psi: \widetilde{X} \longrightarrow \widetilde{Q}$. The morphism ψ is ramified at the exceptional curve E in \widetilde{X} above (1:1:0:0), and at those points in $\mathbb{P}(2,3,1,1)$ where $y=0$, which are the points $(x: y: z: w)$ for which $x^{3}+f(z, w) x+g(z, w)=0$. The latter defines a surface in $\mathbb{P}(2,3,1,1)$, whose image under ψ defines a cubic surface in \mathbb{P}^{3}. The branch curve of φ is therefore the union of the vertex V of Q and a curve B that is contained in the intersection of the cubic surface with Q. Since X is smooth it follows that B is too. Moreover, B is irreducible and reduced, so it is a smooth curve of degree six and genus four, see Proposition 3.1 in CO99.

The linear system $\left|-K_{X}\right|$

The linear system $\left|-K_{X}\right|$ defines a rational map $\mu: X \rightarrow \mathbb{P}^{1}$, sending $(x: y: z: w)$ to $(z: w)$. This is not defined in the point $(1: 1: 0: 0) \in X$, which is the unique basepoint of $\left|-K_{X}\right|$. As \widetilde{X} is the blow-up of X in this point, the rational map μ induces a morphism $\nu: \widetilde{X} \longrightarrow \mathbb{P}^{1}$. The fiber under ν above a point $\left(z_{0}: w_{0}\right) \in \mathbb{P}^{1}$ is isomorphic to the set of points $\left(x: y: z_{0}: w_{0}\right) \in X$ with $y^{2}=x^{3}+x f\left(z_{0}, w_{0}\right)+g\left(z_{0}, w_{0}\right)$. This is an elliptic curve for almost all $\left(z_{0}, w_{0}\right)$, so ν is an elliptic fibration.

The morphisms described above are shown in the following commutative diagram.

2 Exceptional curves

Let k be an algebraically closed field, and let X be a del Pezzo surface of degree d over k that is isomorphic to \mathbb{P}^{2} blown up at $r=9-d$ points $\left\{P_{1}, \ldots, P_{r}\right\}$ in general position. Let $-K_{X}$ be the anticanonical divisor of X. Let $\pi: X \longrightarrow \mathbb{P}^{2}$ denote the blow-up. For all i, the inverse image $\pi^{-1}\left(P_{i}\right)$ of P_{i} is an exceptional curve on X. From Proposition 1.15 and Remark 1.17, we know that $\pi^{-1}\left(P_{i}\right)$ is isomorphic to \mathbb{P}^{1}, and $\left(\pi^{-1}\left(P_{i}\right)\right)^{2}=K_{X} \cdot \pi^{-1}\left(P_{i}\right)=-1$. As we will see, X contains more curves with these properties. In this section we define the general notion of an exceptional curve on a surface and describe the exceptional curves on a del Pezzo surface. In Subsection 2.1 we consider exceptional curves on del Pezzo surfaces of degree one, which have a very nice geometrical description. All results in this section can be found in [Man74], unless stated otherwise.

Definition 2.1. Let Y be a nice surface. An exceptional curve on Y is an irreducible projective curve $C \subset Y$ such that $C^{2}=C \cdot K_{Y}=-1$.

The following proposition is a very classical result.
Proposition 2.2. (Adjunction formula). Let Y be a nice surface over an algebraically closed field with canonical divisor K_{Y}, and C an irreducible projective curve on Y. Then

$$
2 p_{a}(C)-2=C \cdot\left(C+K_{Y}\right),
$$

where $p_{a}(C)$ is the arithmetic genus of C.
Proof. See Har77, Proposition V.1.5.
From the Adjunction formula it follows that for an exceptional curve C on X we have $2 p_{a}(C)-2=-2$, hence $p_{a}(C)=0$, so $C \cong \mathbb{P}^{1}$.

If X has degree $d \geq 3$, then X has very ample anticanonical divisor $-K_{X}$, which determines an embedding in \mathbb{P}^{n} for some n. The image under this embedding of an exceptional curve C on X has degree $-K_{X} \cdot C=1$, hence it is a line.

On a del Pezzo surface, every irreducible curve with negative self-intersection is in fact an exceptional curve. The following proposition can be found for instance in Man74, Theorem 24.3.

Proposition 2.3. Let Y be a del Pezzo surface over an algebraically closed field, and C an irreducible curve on Y with $C^{2}<0$. Then C is an exceptional curve.

Proof. Since $-K_{Y}$ is ample and C is irreducible, we have $-K_{Y} \cdot C>0$ by Theorem 1.9, so $K_{Y} \cdot C<0$. Moreover, since C is irreducible we have $g_{a}(C) \geq 0$. From the adjunction formula it follows that

$$
-2 \leq 2 g_{a}(C)-2=C \cdot\left(C+K_{Y}\right)=C^{2}+C \cdot K_{Y} \leq-2,
$$

so equality must hold, hence $C^{2}=K_{Y} \cdot C=-1$, so C is exceptional.

We can now give the following condition for points in \mathbb{P}^{2} to be in general position.
Proposition 2.4. Let Q_{1}, \ldots, Q_{8} be eight points in \mathbb{P}^{2} and let $\pi: Y \longrightarrow P^{2}$ be the blow-up in these points. Then Q_{1}, \ldots, Q_{8} are in general position if and only if Y is a del Pezzo surface.

Proof. The fact that Y is a del Pezzo surface if Q_{1}, \ldots, Q_{8} are in general position is Theorem 1.6. For the converse, assume that three points Q_{j}, Q_{k} and Q_{l} are on a line M in \mathbb{P}^{2}. Let M^{\prime} be the strict transform of M on Y and let D_{i} be the exceptional curve above Q_{i} for all i. Then we have

$$
\pi^{*} M=M^{\prime}+D_{j}+D_{k}+D_{l}
$$

so
$1=M^{2}=\left(\pi^{*} M\right)^{2}=M^{\prime 2}+2 M^{\prime} \cdot\left(D_{j}+D_{k}+D_{l}\right)+D_{j}^{2}+D_{k}^{2}+D_{l}^{2}=M^{\prime 2}+6-3$,
hence $M^{\prime 2}=-2$, which contradicts Proposition 2.3. Analogously, a conic containing six of the Q_{i} and a singular cubic through seven of the Q_{i} with one of them at the singularity would have a strict transform on Y with self-intersection ≤-2, contradicting Proposition [2.3. We conclude that Q_{1}, \ldots, Q_{8} are in general position.

Exceptional curves can be 'blown down', as is described in the well-known theorem by Castelnuovo.

Theorem 2.5. (Castelnuovo). If C is a curve on a nice surface Y over an algebraically closed field such that $C^{2}=-1$ and $C \cong \mathbb{P}^{1}$, then there exists a morphism $f: Y \longrightarrow Y_{0}$ to a nonsingular projective surface Y_{0}, and a point $P \in Y_{0}$, such that Y is the blow-up of Y_{0} at P, and C is the exceptional curve above P.

Proof. See Har77, Theorem V.5.7.
After blowing down an exceptional curve on a del Pezzo surface, we obtain again a del Pezzo surface. Proposition 2.6 can be found in [Pie], Lemma 4.20.

Proposition 2.6. Let Y be a del Pezzo surface of degree $d \leq 8$ over an algebraically closed field that is the blow-up of $r=9-d$ points in \mathbb{P}^{2}, and let C be an exceptional curve on Y. Let $f: Y \longrightarrow Y_{0}$ be a morphism to a nonsingular projective surface Y_{0}, such that Y is the blow-up of Y_{0} in a point P, and such that C is the exceptional curve above P. Then Y_{0} is a del Pezzo surface of degree $d+1$.

Proof. Let $K_{Y}, K_{Y_{0}}$ be the canonical divisors of Y, Y_{0}, respectively. By Proposition 1.15 we have $K_{Y} \sim f^{*} K_{Y_{0}}+C$, so, using Proposition 1.15 we have

$$
K_{Y_{0}}^{2}=\left(f^{*} K_{Y_{0}}\right)^{2}=\left(K_{Y}-C\right)^{2}=K_{Y}^{2}-2 K_{Y} \cdot C+C^{2}=d+2-1=d+1>0
$$

Let D be an irreducible curve on Y_{0} containing P with multiplicity m, and let D^{\prime} be its strict transform on Y. Then D^{\prime} is an irreducible curve on Y, so $-K_{Y} \cdot D^{\prime}>0$
by Nakai-Moishezon. Therefore we have, using Proposition 1.15

$$
\begin{aligned}
-K_{Y_{0}} \cdot D=f^{*}\left(-K_{Y_{0}}\right) \cdot f^{*} D=\left(-K_{Y}+C\right) \cdot f^{*} D & =-K_{Y} \cdot f^{*} D-C \cdot f^{*} D \\
& =-K_{Y} \cdot\left(D^{\prime}+m C\right) \\
& =-K_{Y} \cdot D^{\prime}+m>0
\end{aligned}
$$

From Nakai-Moishezon it follows that $-K_{Y_{0}}$ is ample, so Y_{0} is a del Pezzo surface. Its degree is $K_{Y_{0}}^{2}=d+1$.

Let C be an exceptional curve in X. Then the class of C in Pic X satisfies

$$
[C]^{2}=[C] \cdot\left[K_{X}\right]=-1
$$

We call a class in Pic X satisfying these conditions exceptional. We will describe the exceptional classes in Pic X and show that there is a one-to-one correspondence between exceptional classes in Pic X and exceptional curves on X.

As we have seen, Pic X has a basis $\left\{L, E_{1}, \ldots, E_{r}\right\}$, where E_{i} is the class of the exceptional curve above P_{i}, and L is the class of the strict transform of a line in \mathbb{P}^{2} not going trough any of the P_{i}. If D is a class in Pic X given by $D=a L-\sum_{i=1}^{r} b_{i} E_{i}$, then D is an exceptional class if and only if $D^{2}=D \cdot\left[K_{X}\right]=-1$, or, using the results in Remark 1.17.

$$
a^{2}-\sum_{i=1}^{r} b_{i}^{2}=-1
$$

and

$$
3 a-\sum_{i=1}^{r} b_{i}=1
$$

Using the fact that a and all b_{i} are integers, we can solve these two equations and find all exceptional classes in Pic X.

Proposition 2.7. The exceptional classes in Pic X are the classes of the form $a L-\sum_{i=1}^{r} b_{i} E_{i}$ where $\left(a, b_{1}, \ldots, b_{r}\right)$ is given by one of the rows of the following table, where all b_{i} can be permuted (we only consider the rows where $b_{i}=0$ for all $i>r)$.

a	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}
0	-1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
2	1	1	1	1	1	0	0	0
3	2	1	1	1	1	1	1	0
4	2	2	2	1	1	1	1	1
5	2	2	2	2	2	2	1	1
6	3	2	2	2	2	2	2	2

Proof. See [Man74], Proposition 26.1.
Proposition 2.7 gives us a very explicit description of all exceptional classes in Pic X. The following theorem relates exceptional classes to exceptional curves on X.

Theorem 2.8.

(i) There is a one-to-one correspondence between the set of exceptional curves on X and the set of exceptional classes in Pic X, given by the map sending an exceptional curve in X to its class in Pic X.
(ii) Let $f: X \longrightarrow \mathbb{P}^{2}$ be the blow-up of \mathbb{P}^{2} in the points P_{1}, \ldots, P_{r}. Then the image $f(C)$ of an exceptional curve $C \subset X$ is one of the following types.
(a) One of the points P_{i};
(b) a line passing through two of the points P_{i};
(c) a conic passing through five of the points P_{i};
(d) a cubic passing through seven of the points P_{i} such that one of them is a double point;
(e) a quartic passing through eight of the points P_{i} such that three of them are double points;
(f) a quintic passing through eight of the points P_{i} such that six of them are double points;
(g) a sextic passing trough eight of the points P_{i} such that seven of them are double points and one is a triple point.
(For $d=2$, only $(a)-(d)$ hold; for $d=3,4$, only $(a)-(c)$ hold; for $d=5,6,7$, only $(a)-(b)$ hold; for $d=8$, only (a) holds.)

Proof. See [Man74, Theorem 26.2.
Remark 2.9. Theorem 2.8 (ii) gives a geometrical description of the table in Proposition 2.7. An exceptional class of the form $C=a L-\sum_{i=1}^{r} b_{i} E_{i}$, with $\left(a, b_{1}, \ldots, b_{8}\right)$ a solution given by Proposition 2.7, is either one of the E_{i}, or it is the class of the strict transform of a curve in \mathbb{P}^{2} of degree a, going through P_{i} with multiplicity b_{i} for each i. Moreover, Theorem 2.8 tells us that these are in one-to-one correspondence with all exceptional curves on X. We can therefore count the exceptional curves on X using the table in Proposition 2.7, and obtain the following table.

d	1	2	3	4	5	6	7	8
exceptional curves on X	240	56	27	16	10	6	3	1

2.1 Exceptional curves on del Pezzo surfaces of degree one

Let X be a del Pezzo surface of degree one over an algebraically closed field k. Let E be the set of exceptional curves on X. We have $|E|=240$. As in Subsection 1.1, let $\varphi: X \longrightarrow \mathbb{P}^{3}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ be the morphism corresponding to the linear system $\left|-2 K_{X}\right|$. We have seen that this is a double covering of a quadric cone Q given by $a_{2}^{2}=a_{1} a_{3}$ in \mathbb{P}^{3}, that branches over a sextic curve B and an isolated branch point at the vertex of Q. In this subsection we show that the exceptional curves on X are related to hyperplane sections of Q that do not pass through the vertex of Q, and are tritangent to B. We start by studying the elements in $\left|-K_{X}\right|$.

Proposition 2.10 and Proposition 2.12 can both be found in [O99].

Proposition 2.10. For every element $D \in\left|-K_{X}\right|$, its image $\varphi(D)$ is a line in Q passing trough the vertex of Q. Conversely, a line through the vertex of Q pulls back under φ to an element of $\left|-K_{X}\right|$.

Proof. As we saw in Subsection 1.1, $\mathcal{L}\left(-K_{X}\right)$ is generated by two elements z and w. Let $D \in\left|-K_{X}\right|$, then D is of the form $\alpha z+\beta w=0$, with $\alpha, \beta \in k$. Without loss of generality we can assume that $\alpha \neq 0$. Then $z=-\frac{\beta}{\alpha} w$, and $\varphi(D)$ is contained in the two hyperplanes $a_{1}=\frac{\beta^{2}}{\alpha^{2}} a_{3}$ and $a_{1}=-\frac{\beta}{\alpha} a_{2}$ in \mathbb{P}^{3}, both containing the vertex of Q. Since φ is finite, $\varphi(D)$ is equal to their intersection.
Conversely, let M be a line in Q through the vertex of Q. Then M is the intersection of two hyperplanes $\gamma a_{1}+\delta a_{2}+\varepsilon a_{3}=0$ and $\lambda a_{1}+\mu a_{2}+\nu a_{3}=0$ in \mathbb{P}^{3}. Keeping the notation of Subsection 1.1, we identify Q with $\mathbb{P}(2,1,1)$. Under this identification, M is given by a linear relation in z and w. Therefore M projects under the map $p^{\prime}: \mathbb{P}(2,1,1) \longrightarrow \mathbb{P}(1,1)$ to a point in \mathbb{P}^{1}. The fiber of ν above a point in \mathbb{P}^{1} is an element of $\left|-K_{X}\right|$, so $\varphi^{*} M$ is an element of $\left|-K_{X}\right|$.

To prove the following proposition, we first need a Lemma.
Lemma 2.11. Let Y, Z be two normal projective varieties, and $f: Y \longrightarrow Z$ a finite morphism of degree d. Let D, D^{\prime} be two divisors on Z. Then $f^{*} D \cdot f^{*} D^{\prime}=d\left(D \cdot D^{\prime}\right)$, and for a divisor C on Y we have $f^{*} D \cdot C=D \cdot f_{*} C$.

Proof. See HS00, Theorem A.2.3.2, and Kol96], Proposition VI.2.11.
Proposition 2.12.
(i) If e is an exceptional curve on X, then $\varphi(e)$ is a smooth conic in Q not containing the vertex of Q. Moreover $\left.\varphi\right|_{e}: e \longrightarrow \varphi(e)$ is one-to-one.
(ii) If H is a hyperplane in \mathbb{P}^{3} not containing the vertex of Q, then $\varphi^{*} H$ has an exceptional curve as component if and only if it has at least three (maybe infinitely near) singular points. If this is the case, then $\varphi^{*} H=e_{1}+e_{2}$ with e_{1}, e_{2} exceptional curves, and $e_{1} \cdot e_{2}=3$.

Proof.
(i) Let H be a hyperplane in \mathbb{P}^{3}, then we have $\operatorname{deg} \varphi(e)=H \cdot \varphi(e)$ and $\varphi^{*} H \sim-2 K_{X}$. Let $[k(e): k(\varphi(e))]=n$, then $\varphi_{*}(e)=n \varphi(e)$, so by Lemma 2.11 we have

$$
H \cdot n \varphi(e)=H \cdot \varphi_{*}(e)=\varphi^{*} H \cdot e=-2 K_{X} \cdot e=2,
$$

hence $\operatorname{deg} \varphi(e)=\frac{2}{n}$. Therefore, n is either 1 or 2 . If $n=2$, then $\operatorname{deg} \varphi(e)=1$, so $\varphi(e)$ is a line M in Q and $\left.\varphi\right|_{e}: e \longrightarrow M$ is $2: 1$. Then $\varphi^{*} M=e$. But $\varphi^{*} M$ is an element in $\left|-K_{X}\right|$ by Proposition 2.10, which gives a contradiction. Therefore we have $n=1$, so $\left.\varphi\right|_{e}: e \longrightarrow \varphi(e)$ is one-to-one and $\operatorname{deg} \varphi(e)=2$. Since $\varphi(e)$ is irreducible, it is a smooth conic in Q.
(ii) Let H be a hyperplane in \mathbb{P}^{3} not containing the vertex of Q, so that $C=H \cap Q$ is a smooth conic section of Q. First assume that $\varphi^{*} H$ has
an exceptional curve e_{1} as component. If $\varphi^{*} H=m e_{1}$ for some $m \geq 1$, then $2=\varphi^{*} H \cdot e_{1}=-m$, which is a contradiction. Therefore, $\varphi^{*} H$ is not irreducible. Since $\operatorname{deg} \varphi=2$ and $\varphi^{*} H$ is not in the ramification divisor of φ, it follows that we have $\varphi^{*} H=e_{1}+e_{2}$, where e_{2} is irreducible and distinct form e_{1}. But then we have $e_{1} \cdot e_{2}=e_{1} \cdot \varphi^{*} H-e_{1}^{2}=e_{1} \cdot-2 K_{X}-e_{1}^{2}=3$. Therefore, $\varphi^{*} H$ has three (maybe infinitely near) singular points.
Conversely, assume that $\varphi^{*} H$ has at least three (maybe infinitely near) singular points. We have $\left(\varphi^{*} H\right)^{2}=4$ and $\varphi^{*} H \cdot K_{X}=-2 K_{X}^{2}=-2$. If $\varphi^{*} H$ were irreducible, then, by the adjunction formula, we would have

$$
2 p_{a}\left(\varphi^{*} H\right)-2=\varphi^{*} H\left(\varphi^{*} H+K_{X}\right)=4-2=2
$$

so $p_{a}\left(\varphi^{*} H\right)=2$. Since $\varphi^{*} H$ has at least three (maybe infinitely near) singularities, this would imply that it has genus at most $g\left(\varphi^{*} H\right) \leq 2-3<0$, which is impossible. We conclude that $\varphi^{*} H$ is not irreducible. Therefore, since $\operatorname{deg} \varphi=2$ and $\varphi^{*} H$ is not the ramification divisor, we have $\varphi^{*} H=D_{1}+D_{2}$, where D_{1} and D_{2} are irreducible and D_{1} is distinct from D_{2}. Since C is smooth, the singular points of $\varphi^{*} H$ are the intersections between D_{1} and D_{2}, so $D_{2} \cdot D_{2} \geq 3$. Since $\varphi\left(D_{1}\right)=\varphi\left(D_{2}\right)$, the automorphism of X sending a point $(x: y: z: w)$ to $(x:-y: z: w)$ is an involution that interchanges D_{1} and D_{2}, so $D_{1} \cdot K_{X}=D_{2} \cdot K_{X}$ and $D_{1}^{2}=D_{2}^{2}$. Hence from

$$
-2=\varphi^{*} H \cdot K_{X}=D_{1} \cdot K_{X}+D_{2} \cdot K_{X}
$$

it follows that $D_{1} \cdot K_{X}=D_{2} \cdot K_{X}=-1$. Finally, we have

$$
4=\left(-2 K_{X}\right)^{2}=D_{1}^{2}+D_{2}^{2}+2 D_{1} \cdot D_{2}=2 D_{1}^{2}+2 D_{1} \cdot D_{2}
$$

so $2 D_{1}^{2}=4-2 D_{1} \cdot D_{2} \leq-2$. Therefore $D_{1}^{2}<0$, hence from Proposition 2.3 it follows that $D_{1}^{2}=D_{2}^{2}=-1$ and so $D_{1} \cdot D_{2}=3$. We conclude that D_{1} and D_{2} are exceptional curves with intersection multiplicity three.

Remark 2.13. From the previous proposition we can conclude that if e_{1}, e_{2} are exceptional curves on X such that $e_{1} \cdot e_{2}=3$, the points in the intersection $e_{1} \cap e_{2}$ are exactly the points in the intersection of e_{i} with the ramification curve of φ, for $i=1,2$. We conclude that there is a bijection between the sets

$$
\left\{\left\{e_{1}, e_{2}\right\} \mid e_{1}, e_{2} \in E ; e_{1} \cdot e_{2}=3\right\}
$$

and

$$
\left\{H \mid H \subset \mathbb{P}^{3} \text { hyperplane tritangent to } B ;(1: 0: 0: 0) \notin H\right\}
$$

3 The Weyl group acting on exceptional curves

To count the maximal number of exceptional curves through one point, we will make a lot of use of the group that permutes the exceptional classes in the Picard group while preserving the intersection pairing. In this section we describe this group and study its action on the exceptional classes on a del Pezzo surface of degree one. All results in this section about root systems and the Weyl group can be found in Man74.

Let X be a del Pezzo surface of degree d over an algebraically closed field k, such that X is isomorphic to \mathbb{P}^{2} blown up in $r=9-d$ points P_{1}, \ldots, P_{r}. Let $E_{i} \in \operatorname{Pic} X$ be the class of the exceptional curve above P_{i} for all i, and let L be the class of the strict transform of a line not going through any of the P_{i}. Let K_{X} be the class of the canonical divisor on X. As we have seen, Pic X is a free abelian group of rank $r+1$. Consider the \mathbb{R}-vectorspace $\mathbb{R} \otimes_{\mathbb{Z}} \operatorname{Pic} X$. Since $\left\{L, E_{1}, \ldots, E_{r}\right\}$ is a basis for the Picard group, the set $\left\{1 \otimes L, 1 \otimes E_{1} \ldots, 1 \otimes E_{r}\right\}$ is a basis for $\mathbb{R} \otimes_{\mathbb{Z}}$ Pic X.

Lemma 3.1. For $0<r \leq 8$, the intersection number (\cdot, \cdot) is negative-definite on the orthogonal complement K_{X}^{\perp} of K_{X} in $\mathbb{R} \otimes_{\mathbb{Z}}$ Pic X.

Proof. Let $D=a L-\sum_{i=1}^{r} b_{i} E_{i} \in \operatorname{Pic} X$. Then we have

$$
K_{X} \cdot D=\left(-3 L+\sum_{i=1}^{r} E_{i}\right) \cdot\left(a L-\sum_{i=1}^{r} b_{i} E_{i}\right)=-3 a+\sum_{i=1}^{r} b_{i}
$$

so $K_{X} \cdot D=0$ if and only if $3 a=\sum_{i=1}^{r} b_{i}$. Now assume $D \in K_{X}^{\perp}$. Note that D has self-intersection $a^{2}-\sum_{i=1}^{r} b_{i}^{2}$. By Cauchy-Schwarz we have

$$
\sum_{i=1}^{r} b_{i}^{2}=\frac{1}{r} \sum_{i=1}^{r} b_{i}^{2} \sum_{i=1}^{r} 1^{2} \geq \frac{1}{r}\left(\sum_{i=1}^{r} b_{i}\right)^{2}
$$

so

$$
a^{2}-\sum_{i=1}^{r} b_{i}^{2} \leq a^{2}-\frac{1}{r}\left(\sum_{i=1}^{r} b_{i}\right)^{2}=a^{2}-\frac{9}{r} a^{2}<0 .
$$

We conclude that $D^{2}<0$, so the intersection number is negative definite on K_{X}^{\perp}.
Definition 3.2. We define $\left(K_{X}^{\perp},\langle\cdot, \cdot\rangle\right)$ to be the vector space in $\mathbb{R} \otimes_{\mathbb{Z}}$ Pic X with inner product $\langle\cdot, \cdot\rangle=-(\cdot, \cdot)$. Note that this inner product is positive-definite by Lemma 3.1.

We now give the definition of a root system.
Definition 3.3. Let V be a finite-dimensional vector space over a field $l \subseteq \mathbb{R}$ with a positive-definite inner product $\langle\cdot, \cdot\rangle$. A root system in V is a finite set R of non-zero vectors, called roots, that satisfy the following conditions:
(i) the roots span V;
(ii) for all $r \in R$, we have $\lambda r \in R \Longrightarrow \lambda= \pm 1$;
(iii) for all $r, s \in R$, we have $s-2 r \frac{\langle r, s\rangle}{\langle r, r\rangle} \in R$;
(iv) for all $r, s \in R$, the number $2 \frac{\langle r, s\rangle}{\langle r, r\rangle}$ is an integer.

Define the set

$$
R_{r}=\left\{D \in \operatorname{Pic} X \mid D^{2}=-2 ; D \cdot K_{X}=0\right\}
$$

Proposition 3.4. The set R_{r} is a root system of rank r in $\left(K_{X}^{\perp},\langle\cdot, \cdot\rangle\right)$.
Proof. See Man74], Proposition 25.2.
From now on we assume that X is a del Pezzo surface of degree one, so $r=8$.
Proposition 3.5. The root system R_{8} is isomorphic to the classical rootsystem E_{8}. Moreover, a basis for R_{8} is given by the elements r_{1}, \ldots, r_{8}, given by

$$
E_{1}-E_{2}, E_{2}-E_{3}, \ldots, E_{7}-E_{8}, L-E_{1}-E_{2}-E_{3}
$$

Proof. See Man74, Theorem 25.4 and Proposition 25.5.6.
Definition 3.6. The Weyl group $W\left(R_{8}\right)$ is the group of permutations of the roots of R_{8} generated by the reflections with respect to r_{1}, \ldots, r_{8} (the reflection with respect to r_{i} is given by $s \mapsto s-2 r_{i} \frac{\left\langle s, r_{i}\right\rangle}{\left\langle r_{i}, r_{i}\right\rangle}$ for all $\left.s \in R_{8}\right)$.

Theorem 3.7. The following groups are isomorphic:
(i) the group of automorphisms of Pic X preserving K_{X} and the intersection pairing;
(ii) the group of permutations of the exceptional classes in Pic X preserving their pairwise intersection multiplicities;
(iii) the Weyl group $W\left(R_{8}\right)$.

The order of the group $W\left(R_{8}\right)$ is $2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$.
Proof. See [Man74], Theorem 23.9 and 26.6.
Let E be the set of exceptional classes in Pic X. Recall that E is in one-to-one correspondence with the set of exceptional curves on X. For the rest of this thesis we refer to $W\left(R_{8}\right)$, the group of permutations of E preserving the intersection pairing, as G. Since G preserves the intersection pairing on E, we can use results about the action of G on E when computing the maximal number of exceptional curves that go through one point. The following proposition will be used a lot.

Proposition 3.8. Let E and G be as above. Then we have:
(i) the group G acts transitively on E;
(ii) for all $r \leq 8$ such that $r \neq 7$, the group G acts transitively on the set

$$
\left\{\left(e_{1}, \ldots, e_{r}\right) \in E^{r} \mid \forall i \neq j: e_{i} \cdot e_{j}=0\right\}
$$

Proof. See Man74, Corollaries 26.7 and 26.8.
Let U be the set

$$
\left\{\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right) \in E^{8} \mid \forall i \neq j: e_{i} \cdot e_{j}=0\right\}
$$

The group G acts transitively on U by Proposition 3.8. We show some results about U that will be useful later.

Lemma 3.9. For $u=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right) \in U$, there exists a morphism $f: X \longrightarrow \mathbb{P}^{2}$, and points $Q_{1}, \ldots, Q_{8} \in \mathbb{P}^{2}$ that are in general position, such that X is the blow-up of \mathbb{P}^{2} at Q_{1}, \ldots, Q_{8}, and for all i, the element e_{i} is the class in Pic X of the exceptional curve above Q_{i}.

Proof. Set $Y_{0}=X$. Since all Q_{i} are disjoint, by Theorem 2.5, for each $i \in\{1, \ldots, 8\}$ there is a nonsingular projective surface Y_{i}, and a morphism $f_{i}: Y_{i-1} \longrightarrow Y_{i}$ that is the blow-up of Y_{i} in Q_{i}, where e_{i} is the class in Pic X of the exceptional curve above Q_{i}. Since k is algebraically closed, by Proposition 2.6, the surface Y_{i} is a del Pezzo surface of degree $i+1$ for all i. It follows that $Y_{8}=\mathbb{P}^{2}$, and the composition of the f_{i} is a morphism $f: X \longrightarrow \mathbb{P}^{2}$ that is the blow-up in Q_{1}, \ldots, Q_{8}. Since X is a del Pezzo surface, from Proposition 2.4 it follows that Q_{1}, \ldots, Q_{8} are in general position.

Corollary 3.10. For $u=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right) \in U$, there is a unique element $l \in$ Pic X such that $K_{X}=-3 l+\sum_{i=1}^{8} e_{i}$. Moreover, the set $\left\{l, e_{1}, \ldots, e_{8}\right\}$ forms a basis for Pic X.

Proof. Let $u=\left(e_{1}, \ldots, e_{8}\right) \in U$. By the previous lemma there exists a morphism $f: X \longrightarrow \mathbb{P}^{2}$, and points $Q_{1}, \ldots, Q_{8} \in \mathbb{P}^{2}$ that are in general position, such that X is the blow-up of \mathbb{P}^{2} at Q_{1}, \ldots, Q_{8}, and e_{i} is the class of the exceptional curve above Q_{i} for all i. By Remark 1.17 we have $K_{X}=-3 l+\sum_{i=1}^{8} e_{i}$, where l is the class of the strict transform of a line in \mathbb{P}^{2} not containing any of the Q_{i}. By Proposition 1.16 we know that $\left\{l, e_{1}, \ldots, e_{8}\right\}$ forms a basis for Pic X.

Remark 3.11. Let $u=\left(e_{1}, \ldots, e_{8}\right) \in U$, and let l be the unique element such that $K_{X}=-3 l+\sum_{i=1}^{8} e_{i}$, which exists by Corollary 3.10. Let $g_{1}, g_{2} \in G$ be such that $g_{1}(u)=g_{2}(u)$. This implies $g_{1}(l)=g_{2}(l)$, since g_{1}, g_{2} fix K_{X}. Therefore, g_{1} and g_{2} act the same on the basis $\left\{l, e_{1}, \ldots, e_{8}\right\}$ of Pic X, hence they act the same on Pic X. Since G acts faithfully on Pic X we conclude that $g_{1}=g_{2}$. Therefore, the action of G on U is free. Since G acts transitively on U and U is not empty, this implies that $|U|=|G|$.

Remark 3.12. Let A be the set of 240 vectors $\left(a, b_{1}, \ldots, b_{8}\right)$ that are in the table in Proposition 2.7 (where the b_{i} can be permuted). We have a map

$$
f: U \longrightarrow \operatorname{Hom}_{\mathrm{Set}}(E, A)
$$

as follows. Given $u=\left(e_{1}, \ldots, e_{8}\right) \in U$, let l be the unique element such that $K_{X}=-3 l+\sum_{i=1}^{8} e_{i}$, which exists by Corollary 3.10 . Then we define $f(u)$ as follows.

$$
f(u): E \longrightarrow A, e \longmapsto\left(e \cdot l, e \cdot e_{1}, \ldots, e \cdot e_{8}\right) .
$$

For $\alpha=\left(a, b_{1}, \ldots, b_{8}\right) \in A$ and $e=a l-\sum_{i=1}^{8} b_{i} e_{i} \in E$ we have $f(u)(e)=\alpha$, hence $f(u)$ is surjective. Since E and A have the same cardinality, it follows that $f(u)$ is a bijection.

To study G and its action on E further, we first look at the intersection multiplicities on E. These results will be useful later.

Lemma 3.13. For every $e \in E$ there is a unique $c \in E$ such that $e \cdot c=3$.
Proof. Since G acts transitively on E, it is enough to check this for $e=E_{1}$. Let $c=a L-\sum_{i=1}^{8} b_{i} E_{i} \in E$. Then c intersects e with multiplicity three if and only if $b_{1}=3$. By looking at the table in Proposition [2.7, we find that there is one solution for c with $b_{1}=3$, given by $c=6 L-3 E_{1}-\sum_{i=2}^{8} 2 E_{i}$.

Remark 3.14. Since for every element e in E there is a unique element intersecting e with multiplicity three, and G acts transitively on E, the group G acts transitively on the set

$$
\left\{\left(e_{1}, e_{2}\right) \in E^{2} \mid e_{1} \cdot e_{2}=3\right\}
$$

Lemma 3.15. There is a bijection between the sets

$$
Z=\left\{\left(e_{0}, e_{1}\right) \in E^{2} \mid e_{0} \cdot e_{1}=0\right\} \quad \text { and } \quad Z^{\prime}=\left\{\left(e_{1}, e_{2}\right) \in E^{2} \mid e_{1} \cdot e_{2}=2\right\},
$$

given by

$$
f: Z \longrightarrow Z^{\prime},\left(e_{0}, e_{1}\right) \longmapsto\left(e_{1}, e_{2}\right), \text { where } e_{2} \text { is such that } e_{0} \cdot e_{2}=3 .
$$

Proof. Let $e_{0}=E_{1}$ and $e_{1}=E_{2}$. Then $\left(e_{0}, e_{1}\right)$ is an element in Z. By looking at the table in Proposition 2.7, we see that there is exactly one exceptional class intersecting e_{0} with multiplicity three, which is $e_{2}=6 L-3 E_{1}-\sum_{i=2}^{8} 2 E_{i}$. We have $e_{1} \cdot e_{2}=2$. Since G acts transitively on Z by Proposition 3.8, it follows that for all elements $\left(c_{0}, c_{1}\right) \in Z$, the unique element c_{2} such that $c_{0} \cdot c_{2}=3$ has the property that $c_{1} \cdot c_{2}=2$. Therefore, f is well defined. Let $\left(c_{1}, c_{2}\right) \in Z^{\prime}$. Then $f^{-1}\left(\left(c_{1}, c_{2}\right)\right)$ consists of all elements $\left(c, c_{1}\right) \in Z$ such that $c \cdot c_{2}=3$. From Lemma 3.13 we know that there is one such c, say c_{0}. We conclude that $f^{-1}\left(\left(c_{1}, c_{2}\right)\right)=\left\{\left(c_{0}, c_{1}\right)\right\}$, so all fibers of f have cardinality one. Therefore, f is a bijection.

Corollary 3.16. G acts transitively on the set

$$
Z=\left\{\left(e_{1}, e_{2}\right) \in E^{2} \mid e_{1} \cdot e_{2}=2\right\} .
$$

Proof. This follows from Lemma 3.15 and Proposition 3.8
Proposition 3.17. Any two elements in E intersect each other with multiplicity at most three. Let $e \in E$ be an exceptional class in Pic X. Then there are exactly 56 exceptional classes disjoint from e, there are 126 exceptional classes intersecting
e with multiplicity one, and there are 56 exceptional classes intersecting e with multiplicity two.

Proof. Since G acts transitively on E, it is enough to check this for $e=E_{1}$. Let $c=a L-\sum_{i=1}^{8} b_{i} E_{i} \in E$. Then $e \cdot c=b_{1}$. We can now easily compute the results case by case.
We have $e \cdot c=0$ if and only if $b_{1}=0$. Looking at the table in Proposition 2.7, we find the following possibilities.

$$
\begin{array}{c|cccc}
a & 0 & 1 & 2 & 3 \\
\hline \text { number of possibilities for } c & 7 & 21 & 21 & 7
\end{array}
$$

This gives a total of 56 exceptional classes that are disjoint from e. By the bijection in Lemma 3.15, this gives also 56 exceptional classes intersecting e with multiplicity two.
Similarly, c intersects e with multiplicity one if and only if $b_{1}=1$. This gives the following possibilities.

$$
\begin{array}{c|ccccc}
a & 1 & 2 & 3 & 4 & 5 \\
\hline \text { number of possibilities for } c & 7 & 35 & 42 & 35 & 7
\end{array}
$$

Therefore we find a total of 126 exceptional classes intersecting e with multiplicity one.
From Lemma 3.13 we know that there is one c such that $e \cdot c=3$. Since we have a total of 240 exceptional classes, we conclude that these are all the possibilities.

Lemma 3.18. Let $e_{1}, e_{2} \in E$ such that $e_{1} \cdot e_{2}=0$. Then there are exactly 72 elements of E intersecting both e_{1} and e_{2} with multiplicity one.

Proof. We know that G acts transitively on the set $\left\{\left(e_{1}, e_{2}\right) \in E^{2} \mid e_{1} \cdot e_{2}=0\right\}$ from Proposition [3.8, so it is enough to check this for $e_{1}=E_{1}$ and $e_{2}=E_{2}$. Let $e=a L-\sum_{i=1}^{8} b_{i} E_{i} \in E$. Then $E_{1} \cdot e=b_{1}$ and $E_{1} \cdot e=b_{2}$, so $E_{1} \cdot e=E_{2} \cdot e=1$ if and only if $b_{1}=b_{2}=1$. Looking at the table in Proposition 2.7, we find the following possibilities.

$$
\begin{array}{c|ccccc}
a & 1 & 2 & 3 & 4 & 5 \\
\hline \text { number of possibilities for } e & 1 & 20 & 30 & 20 & 1
\end{array}
$$

This gives a total of 72 exceptional classes that intersect both E_{1} and E_{2} with multiplicity one.

We are now able to prove a couple of propositions about the action of G on various subsets of E. These propositions are very useful for our purpose in the next section. First, we need some lemmas.

Lemma 3.19. Let V be the set

$$
V=\left\{\left(e_{0}, e_{1}, e_{2}\right) \in E^{3} \mid e_{0} \cdot e_{1}=e_{0} \cdot e_{2}=1 ; e_{1} \cdot e_{2}=0\right\} .
$$

Then $|V|=967680$, and G acts transitively on V.

Proof. Since G preserves intersection multiplicities, it acts on V. Fix $e_{1} \in E$. By Proposition 3.17 there are exactly 56 exceptional classes disjoint from e, and by Lemma 3.18, for each e_{2} of those 56 there are exactly 72 exceptional classes intersecting both e_{1} and e_{2} with multiplicity one. Therefore we have

$$
|V|=240 \cdot 56 \cdot 72=967680
$$

Let $e_{0}=L-E_{1}-E_{2}, e_{1}=E_{1}$, and $e_{2}=E_{2}$. Then $v=\left(e_{0}, e_{1}, e_{2}\right)$ is an element in V. Let G_{v} be the stabilizer of v in G and $G v$ the orbit of v in V, then we have $\left[G: G_{v}\right]=|G v| \leq|V|$. We want to show that the latter is an equality. Let W_{v} be the set

$$
W_{v}=\left\{e \in E \mid e \cdot e_{0}=e \cdot e_{1}=e \cdot e_{2}=0\right\}
$$

For $e=a L-\sum_{i=1}^{r} b_{i} E_{i} \in W_{v}$, the condition $e \cdot e_{0}=e \cdot e_{1}=e \cdot e_{2}=0$ is equivalent to $a=b_{1}=b_{2}=0$. Looking at the table in Proposition 2.7. we see that there are only 6 possibilities for e, which are E_{3}, \ldots, E_{8}. So we have $W_{v}=\left\{E_{3}, \ldots, E_{8}\right\}$. Since G preserves intersection multiplicities, G_{v} acts on W_{v}. Let $g \in G_{v}$. If $g E_{i}=E_{i}$ for $3 \leq i \leq 8$, then g fixes E_{1}, \ldots, E_{8}. But then g fixes every element in E and since G acts faithfully on E this implies that g is the identity. Therefore, G_{v} acts faithfully on W_{v}, hence $G_{v} \subseteq S_{6}$, so $\left|G_{v}\right| \leq 720$. We now have

$$
967680=\frac{2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7}{720} \leq \frac{|G|}{\left|G_{v}\right|}=|G v| \leq|V|=967680
$$

so we have equality everywhere and so $G v=V$. We conclude that G acts transitively on V.

Lemma 3.20. Let H be a group, let A, B be H-sets, and $f: A \longrightarrow B$ a morphism of H -sets. Then the following hold.
(i) if H acts transitively on A, then H acts transitively on $f(A)$;
(ii) if H acts transitively on A and A is finite, then all non-empty fibers of f have the same cardinality, say n, and $|f(A)|=\frac{|A|}{n}$;
(iii) if H acts transitively on B, then all fibers of f have the same cardinality.

Proof.
(i) Let $f(a), f\left(a^{\prime}\right) \in f(A)$ with $a, a^{\prime} \in A$. Assume that H acts transitively on A, then there is an $h \in H$ such that $h a=a^{\prime}$. Since f is a morphism of H-sets, we have $h f(a)=f(h a)=f\left(a^{\prime}\right)$, so H acts transitively on $f(A)$.
(ii) Let $b, b^{\prime} \in B$ such that $f^{-1}(b)$ and $f^{-1}\left(b^{\prime}\right)$ are non-empty. Then we have $b, b^{\prime} \in f(A)$, so there is an element $h \in H$ such that $h b=b^{\prime}$ by (i. But then $\left|f^{-1}\left(b^{\prime}\right)\right|=\left|f^{-1}(h b)\right|=\left|h f^{-1}(b)\right|=\left|f^{-1}(b)\right|$. We conclude that all non-empty fibers have the same cardinality, say n. It is now immediate that $|A|=\left|f^{-1}(B)\right|=\sum_{b \in f(A)} n=n|f(A)|$, so $|f(A)|=\frac{|A|}{n}$.
(iii) Let $b, b^{\prime} \in B$. Since H acts transitively on B, there is an $h \in H$ such that $h b=b^{\prime}$, so $\left|f^{-1}\left(b^{\prime}\right)\right|=\left|f^{-1}(h b)\right|=\left|h f^{-1}(b)\right|=\left|f^{-1}(b)\right|$.

Lemma 3.21. Let $e_{1}=E_{1}$ and $e_{2}=L-E_{1}-E_{2}$. Then there are 32 elements e in E such that $e_{1} \cdot e=1$ and $e_{2} \cdot e=0$.

Proof. Let $e=a L-\sum_{i=1}^{8} b_{i} E_{i} \in E$, then $e_{1} \cdot e=1$ and $e_{2} \cdot e=0$ if and only if $b_{1}=1$ and $a-b_{1}-b_{2}=0$. Looking at the table in Proposition 2.7, we find the following possibilities.

$$
\begin{array}{c|ccc}
a & 1 & 2 & 3 \\
\hline \text { number of possibilities for } e & 6 & 20 & 6
\end{array}
$$

This gives a total of 32 possibilities for e.
Proposition 3.22. G acts transitively on the set

$$
W=\left\{\left(e_{1}, e_{2}\right) \in E^{2} \mid e_{1} \cdot e_{2}=1\right\}
$$

Proof. Consider the set $V=\left\{\left(e_{1}, e_{2}, e_{3}\right) \in E^{3} \mid e_{1} \cdot e_{2}=e_{1} \cdot e_{3}=1 ; e_{2} \cdot e_{3}=0\right\}$. We have a projection $f: V \longrightarrow W$ on the first two coordinates. Consider the elements $e_{1}=E_{1}$ and $e_{2}=L-E_{1}-E_{2}$. Then $w=\left(e_{1}, e_{2}\right)$ is an element of W. Let $e \in E$, then $\left(e_{1}, e_{2}, e\right) \in V$ if and only if $e_{1} \cdot e=1$ and $e_{2} \cdot e=0$. By Lemma 3.21 this gives 32 possibilities for e, so $\left|f^{-1}\left(\left(e_{1}, e_{2}\right)\right)\right|=32$. Since G acts transitively on V by Lemma 3.19 , it follows from Lemma 3.20 that all non-empty fibers of f have cardinality 32 , and $|f(V)|=\frac{|V|}{32}=30240$. By Proposition 3.17 we have $|W|=240 \cdot 126=30240$. We conclude that $f(V)=W$, hence f is surjective. Therefore, G acts transitively on W by Lemma 3.20 .

Now that we know that G acts transitively on all pairs in E that intersect with multiplicity one, we can easily get more results on the intersection multiplicities in E.

Lemma 3.23. For each pair $\left(e_{1}, e_{2}\right) \in E^{2}$ such that $e_{1} \cdot e_{2}=1$ there are exactly 60 exceptional classes $e \in E$ such that $e_{1} \cdot e=e_{2} \cdot e=1$.

Proof. By Proposition 3.22 it is enough to check this for one pair. Let $e_{1}=E_{1}$ and $e_{2}=L-E_{1}-E_{2}$. Then $e_{1} \cdot e_{2}=1$. Now let $e=a L-\sum_{i=1}^{r} b_{i} E_{i} \in E$, then $e_{1} \cdot e=1$ if and only if $b_{1}=1$, and $e_{2} \cdot e=1$ if and only if $a-b_{1}-b_{2}=1$. Combining this we have $e_{1} \cdot e=e_{2} \cdot e=1$ if and only if $b_{1}=1$ and $a-b_{2}=2$. Looking at the table in Proposition 2.7, we find all following possibilities.

a	2	3	4
number of possibilities for e	15	30	15

This gives a total of 60 exceptional classes intersecting both e_{1} and e_{2} with multiplicity one.

The following graph shows some of the information we obtained so far about the intersection multiplicities in E. The vertexes are subsets of E and the number in a vertex is the cardinality of the subset. The numbers on the edges between the vertexes are the intersection multiplicities between the elements in the two subsets. By Lemma 3.19, replacing the elements $L-E_{1}-E_{2}, E_{1}, E_{2}$ by any other triple e_{0}, e_{1}, e_{2} with $e_{0} \cdot e_{2}=e_{0} \cdot e_{2}=1$ and $e_{1} \cdot e_{2}=0$ will give the same graph.

We conclude this section by looking at the action of G on the sets

$$
V=\left\{\left(e_{1}, e_{2}, e_{3}\right) \in E^{3} \mid \forall i \neq j: e_{i} \cdot e_{j}=1\right\}
$$

and

$$
W=\left\{\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in E^{4} \mid \forall i \neq j: e_{i} \cdot e_{j}=1\right\} .
$$

G acts on both V and W, since G preserves the intersection pairing on E.
We start by introducing some notation. Let Z be the set

$$
Z=\left\{\left(\left\{e_{1}, e_{2}\right\},\left\{e_{3}, e_{4}\right\},\left\{e_{5}, e_{6}\right\},\left\{e_{7}, e_{8}\right\}\right) \mid \forall i: e_{i} \in E ; \forall i \neq j: e_{i} \cdot e_{j}=0\right\}
$$

Recall the set U defined by

$$
U=\left\{\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right) \in E^{8} \mid \forall i \neq j: e_{i} \cdot e_{j}=0\right\}
$$

We have $|Z|=\frac{|U|}{2^{4}}$, so from Remark 3.11 it follows that $|Z|=\frac{|G|}{2^{4}}=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7$. Moreover, from Proposition 3.8, it follows that G acts transitively on Z.

Let $f: W \longrightarrow V$ be the projection on the first three coordinates. We define a map $g: Z \longrightarrow W$ as follows. For $z=\left(\left\{e_{1}, e_{2}\right\},\left\{e_{3}, e_{4}\right\},\left\{e_{5}, e_{6}\right\},\left\{e_{7}, e_{8}\right\}\right) \in Z$, let l be the unique element in E such that $K_{X}=-3 l+\sum_{i=1}^{8} e_{i}$. Then we set

$$
g(z)=\left(l-e_{1}-e_{2}, l-e_{3}-e_{4}, l-e_{5}-e_{6}, l-e_{7}-e_{8}\right)
$$

Let $h \in G$, then $K_{X}=h K_{X}=-3 h l+\sum_{i=1}^{8} h e_{e}$, so

$$
g(h z)=\left(h l-h e_{1}-h e_{2}, h l-h e_{3}-h e_{4}, h l-h e_{5}-h e_{6}, h l-h e_{7}-h e_{8}\right)=h g(z)
$$

Therefore, the map g is a morphism of G-sets.
Let Y be the image of g. The following commutative diagram shows the maps and sets that are defined.

Lemma 3.24. The map g is injective.
Proof. Consider the elements $e_{1}=L-E_{1}-E_{2}, e_{2}=L-E_{3}-E_{4}, e_{3}=L-E_{5}-E_{6}$ and $e_{4}=L-E_{7}-E_{8}$. Then $w=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is an element in W. The fiber of g above w consists of the elements $\left(\left\{c_{1}, c_{2}\right\},\left\{c_{3}, c_{4}\right\},\left\{c_{5}, c_{6}\right\},\left\{c_{7}, c_{8}\right\}\right) \in Z$ such that

$$
\begin{align*}
& c_{1} \cdot e_{1}=c_{2} \cdot e_{1}=1 \text { and } c_{1} \cdot e_{i}=c_{2} \cdot e_{i}=0 \text { for all } i \neq 1 ; \tag{1}\\
& c_{3} \cdot e_{2}=c_{4} \cdot e_{2}=1 \text { and } c_{3} \cdot e_{i}=c_{4} \cdot e_{i}=0 \text { for all } i \neq 2 ; \\
& c_{5} \cdot e_{3}=c_{6} \cdot e_{3}=1 \text { and } c_{5} \cdot e_{i}=c_{6} \cdot e_{i}=0 \text { for all } i \neq 3 ; \\
& c_{7} \cdot e_{4}=c_{8} \cdot e_{4}=1 \text { and } c_{7} \cdot e_{i}=c_{8} \cdot e_{i}=0 \text { for all } i \neq 4 .
\end{align*}
$$

Clearly, c_{i} and c_{i+1} are interchangeable for $i \in\{1,3,5,7\}$. Let $c_{1}=a L-\sum_{i=1}^{8} b_{i} E_{i}$. Then (1) implies $a-b_{1}-b_{2}=1$ and $a=b_{3}+b_{4}=b_{5}+b_{6}=b_{7}+b_{8}$. Looking at the table in Proposition 2.7, the only possibilities for c_{1} and c_{2} are E_{1} and E_{2}. Analogously we find that the only possibilities for c_{3} and c_{4} are E_{3} and E_{4}, the only possibilities for c_{5} and c_{6} are E_{5} and E_{6}, and the only possibilities for c_{7} and c_{8} are E_{7} and E_{8}. Therefore we have $g^{-1}(w)=\left\{\left(\left\{E_{1}, E_{2}\right\},\left\{E_{3}, E_{4}\right\},\left\{E_{5}, E_{6}\right\},\left\{E_{7}, E_{8}\right\}\right)\right\}$, hence the fiber above w has cardinality one. Since G acts transitively on Z, we conclude from Lemma 3.20 that all non-empty fibers of g have cardinality one, so g is injective.

Remark 3.25. By the previous proposition, the map $g: Z \longrightarrow Y$ is a bijection. Since g is a G-map, it follows that Y is a G-set, and that G acts transitively on Y.

Lemma 3.26. Consider the elements of E given by

$$
\begin{array}{ll}
e_{1}=L-E_{1}-E_{2} ; & c_{1}=3 L-\sum_{i=1}^{6} E_{i}-2 E_{7} \\
e_{2}=L-E_{3}-E_{4} ; & c_{2}=3 L-\sum_{i=1}^{6} E_{i}-2 E_{8} \\
e_{3}=L-E_{5}-E_{6} ; &
\end{array}
$$

Then $w_{1}=\left(e_{1}, e_{2}, e_{3}, c_{1}\right)$ and $w_{2}=\left(e_{1}, e_{2}, e_{3}, c_{2}\right)$ are elements in W that are not in Y.

Proof. It is easy to check that w_{1} and w_{2} are in W. We want to show that the fibers of g above w_{1} and w_{2} are empty. Let $z=\left(\left\{d_{1}, d_{2}\right\},\left\{d_{3}, d_{4}\right\},\left\{d_{5}, d_{6}\right\},\left\{d_{7}, d_{8}\right\}\right) \in Z$, and write $d_{1}=r L-\sum_{i=1}^{8} s_{i} E_{i}$. Then $z \in g^{-1}\left(w_{1}\right)$ implies that $d_{1} \cdot e_{1}=1$ and $d_{1} \cdot e_{2}=d_{1} \cdot e_{3}=d_{1} \cdot c_{1}=0$, which is equivalent to $r-s_{1}-s_{2}=1, r=s_{3}+s_{4}=s_{5}+s_{6}$, and $3 r-\sum_{i=1}^{6} s_{i}-2 s_{7}=0$. But this implies

$$
0=3 r-\sum_{i=1}^{6} s_{i}-2 s_{7}=3 r-\left(s_{1}+s_{2}\right)-2 r-2 s_{7}=r-\left(s_{1}+s_{2}\right)-2 s_{7}=1-2 s_{7},
$$

and since s_{7} is an integer this has no solutions. We conclude that the fiber of g above w_{1} is empty and analogously the fiber of g above w_{2} is empty. This proves that w_{1} and w_{2} are not in Y.

Proposition 3.27. Let $v=\left(e_{1}, e_{2}, e_{3}\right)$ be an element of V. The following hold.
(i) The group G acts transitively on V.
(ii) We have $\left|f^{-1}(v)\right|=26$, and $\left|f^{-1}(v) \cap Y\right|=24$.
(iii) For $e \in f^{-1}(v) \cap Y$ and $\left\{c_{1}, c_{2}\right\}=f^{-1}(v) \backslash Y$, we have $e \cdot c_{1}=e \cdot c_{2}=1$, and $c_{1} \cdot c_{2}=3$.

Proof.
(i) Consider the map $\lambda=f \circ g: Z \rightarrow V$. Note that λ is a G-map, since both f and g are. We want to show that λ is surjective. Let

$$
e_{1}=L-E_{1}-E_{2}, e_{2}=L-E_{3}-E_{4}, e_{3}=L-E_{5}-E_{6} .
$$

Then $v=\left(e_{1}, e_{2}, e_{3}\right) \in V$. Note that

$$
\lambda\left(\left(\left\{E_{1}, E_{2}\right\},\left\{E_{3}, E_{4}\right\},\left\{E_{5}, E_{6}\right\},\left\{E_{7}, E_{8}\right\}\right)\right)=v,
$$

so the fiber of λ above v is not empty. To compute this fiber, we first compute the fiber of f above v. Let $e=a L-\sum_{i=1}^{8} E_{i} \in E$. The conditions $e \cdot e_{1}=1$, $e \cdot e_{2}=1$ and $e \cdot e_{3}=1$ are equivalent to $a-b_{1}-b_{2}=a-b_{3}-b_{4}=a-b_{5}-b_{6}=1$. By looking at the table in Proposition 2.7 we find all possibilities.

a	1	2	3	4	5
number of possibilities for e	1	8	8	8	1

We find a total of 26 possibilities for e, so $\left|f^{-1}(v)\right|=26$. Since $\lambda^{-1}(v)$ is not empty, by Lemma 3.20 , we have $|\lambda(Z)|=\frac{|Z|}{\lambda^{-1}(v)}$. Since we have

$$
\lambda(Z) \leq|V|=240 \cdot 126 \cdot 60=1814400,
$$

this implies

$$
\begin{equation*}
\lambda^{-1}(v) \geq \frac{|Z|}{1814400}=24 \tag{2}
\end{equation*}
$$

Since $g: Z \longrightarrow Y$ is a bijection we have $\lambda^{-1}(v) \leq 26$. Consider the elements $c_{1}=3 L-\sum_{i=1}^{6} E_{i}-2 E_{7}$ and $c_{2}=3 L-\sum_{i=1}^{6} E_{i}-2 E_{8}$, then $w_{1}=\left(e_{1}, e_{2}, e_{3}, c_{1}\right)$ and $w_{2}=\left(e_{1}, e_{2}, e_{3}, c_{2}\right)$ are both elements in $f^{-1}(v)$. By Lemma 3.26, we know that the fibers of g above w_{1} and w_{2} are empty. It follows that $\lambda^{-1}(v) \leq 24$, which together with (2) implies $\lambda^{-1}(v)=24$. This means that

$$
|\lambda(Z)|=\frac{|Z|}{24}=|V|,
$$

so λ is surjective. Since G acts transitively on Z, we conclude that G acts transitively on V, too.
(ii) In part (i) we showed that $\left|f^{-1}(v)\right|=26$ and $\left|\lambda^{-1}(v)\right|=24$. Since g is a bijection, we have $\left|f^{-1}(v) \cap Y\right|=\left|\lambda^{-1}(v)\right|=24$. Since f is a G-map, and G acts transitively on V, the result holds for all elements in V.
(iii) This is an easy check, after writing down the 26 elements we found in part (i).

Proposition 3.28. The set W has two orbits under the action of G.
Proof. From Remark 3.25 it follows that Y is an orbit under the action of G on W. Therefore $O=W-Y$ is also a G-set. Consider the restriction of f to O,

$$
\left.f\right|_{O}: O \longrightarrow V
$$

Let $e_{1}, e_{2}, e_{3}, c_{1}, c_{2}$ be as in Lemma 3.26, and let $v=\left(e_{1}, e_{2}, e_{3}\right), w_{1}=\left(e_{1}, e_{2}, e_{3}, c_{1}\right)$, and $w_{2}=\left(e_{1}, e_{2}, e_{3}, c_{2}\right)$. Then we have $v \in V$, and $w_{1},\left.w_{2} \in f\right|_{O} ^{-1}(v)$ by Lemma 3.26 From Proposition 3.27 we know that $\left|f^{-1}(v) \cap Y\right|=24$, so $|f|_{O}^{-1}(v) \mid=2$. This implies $\left.f\right|_{O} ^{-1}(v)=\left\{w_{1}, w_{2}\right\}$. For $r_{7}=E_{7}-E_{8} \in R_{8}$, the reflection with respect to r_{7} is an element in G, say h. Since $e_{1} \cdot r_{7}=e_{1} \cdot r_{7}=e_{3} \cdot r_{7}=0$, for $i \in\{1,2,3\}$ we have

$$
h e_{i}=e_{i}-2 r_{7} \frac{e_{i} \cdot r_{7}}{r_{7} \cdot r_{7}}=e_{i},
$$

so h is contained in the stabilizer G_{v} of v in G. We have

$$
h c_{1}=c_{1}-2 r_{7} \frac{c_{1} \cdot r_{7}}{r_{7} \cdot r_{7}}=c_{1}+2 r_{7}=3 L-\sum_{i=1}^{6} E_{i}-2 E_{8}=c_{2},
$$

so h interchanges w_{1} and w_{2}, hence G_{v} acts transitively on $\left.f\right|_{O} ^{-1}(v)$. Since G acts transitively on V, this holds for all elements in V. Now let $o, o^{\prime} \in O$. Let $a=f(o)$
and $b=f\left(o^{\prime}\right)$. Since G acts transitively on V there is an element $h_{1} \in G$ such that $b=h_{1} a$. Then $f\left(o^{\prime}\right)=h_{1} f(o)=f\left(h_{1} o\right)$, so o^{\prime} and $h_{1} o$ are in the same fiber of f. Since G_{b} acts transitively on this fiber, there is al element $h_{2} \in G_{b}$ such that $o^{\prime}=h_{2} h_{1} o$. We conclude that G acts transitively on O. It follows that W consists of the orbits O and Y.

4 Maximal cliques and the maximum

In this section we prove Theorem 1 and Theorem 2. Recall that we defined X to be a del Pezzo surface of degree one over an algebraically closed field k, and E the set of exceptional classes in Pic X. We want to compute the maximal number of exceptional curves on X that go through one point P. Let Q be the quadratic cone such that X is a double cover of Q under the map φ, branched over a smooth curve B of degree 6 . We distinguish two cases. In Subsection 4.1, we will consider the case when $\varphi(P)$ lies on B, and prove Theorem 1. In Subsection 4.2, we consider the case when $\varphi(P)$ does not lie on B, and prove Theorem 2

Since there is a one-to-one correspondence between exceptional curves on X and exceptional classes in Pic X, a set of exceptional curves can go through one point only if the corresponding set of exceptional classes pairwise intersect with multiplicity greater than zero. Therefore, we start by looking at sets of exceptional curves that pairwise intersect positively, and we do this by studying the graph on E.

Definition 4.1. By \mathcal{G} we denote the weighted graph whose vertices are the elements of E, and where two vertices are connected by an edge of weight n if and only if the corresponding elements of E intersect with multiplicity $n>0$.

Remark 4.2. Since G is the group of automorphisms of E that preserve intersection multiplicities, it follows that G is the automorphism group of \mathcal{G}.

Definition 4.3. A clique in \mathcal{G} is a weighted subgraph of \mathcal{G} in which every two vertices are connected by an edge. The size of a clique is the number of vertices contained in it.

As we mentioned before, a number of exceptional curves go through one point only if the corresponding classes form a clique in \mathcal{G}. Of course, the converse is not always true. However, the maximal size of the cliques in \mathcal{G} does give us a first upper bound for the maximal number of exceptional curves that go through one point. To compute this, we first need a couple of lemmas.

Definition 4.4. A maximal clique in \mathcal{G} is a clique that is maximal with respect to inclusion.

Lemma 4.5. The size of a clique in \mathcal{G} that contains no edges of weight one is at most three.

Proof. Let K be a maximal clique in \mathcal{G} without edges of weight one. We distinguish two cases.
First assume that K contains an edge of weight two. Then by Proposition 3.16, we can without loss of generality assume that K contains the vertices corresponding to $e_{1}=E_{1}$ and $e_{2}=3 L-2 E_{1}-\sum_{i=2}^{7} E_{i}$. Let $e=a L-\sum_{i=1}^{8} b_{i} E_{i} \in E$, then $e \cdot e_{1}>1$ and $e \cdot e_{2}>1$ if and only if $b_{1}>1$ and $3 a-2 b_{1}-\sum_{i=2}^{7} b_{i}>1$. By looking at the table in Proposition 2.7 we find only one possibility for e, which is $e=6 L-2 \sum_{i=1}^{7} E_{i}-3 E_{8}$. We conclude that K consists of the edges corresponding
to e_{1}, e_{2} and e and thus has size three.
Now assume that K contains an edge of weight three. Then by Remark 3.14 we can without loss of generality assume that K contains the vertices corresponding to $c_{1}=E_{1}$ and $c_{2}=6 L-3 E_{1}-2 \sum_{i=2}^{2} E_{i}$. Let $c=a L-\sum_{i=1}^{8} b_{i} E_{i} \in E$, then $c \cdot c_{1}>1$ and $c \cdot c_{2}>1$ if and only if $b_{1}>1$ and $6 a-3 b_{1}-\sum_{i=2}^{8} b_{i}>1$. This has no solutions in the table in Proposition 2.7. so K consists only of the vertices corresponding to c_{1} and c_{2}.

Lemma 4.6. Let e_{1}, e_{2} be elements in E that are not disjoint, and let c_{1}, c_{2} be such that $e_{1} \cdot c_{1}=e_{2} \cdot c_{2}=3$. Then the following are equivalent.
(i) $e_{1} \cdot e_{2}=1$;
(ii) $e_{1} \cdot c_{2}>0$ and $e_{2} \cdot c_{1}>0$;
(iii) $e_{1} \cdot c_{2}=e_{2} \cdot c_{1}=1$.

Proof. First assume that $e_{1} \cdot e_{2}=1$. Since G acts transitively on the set of pairs of exceptional classes intersecting with multiplicity one, we can assume without loss of generality that $e_{1}=E_{1}$ and $e_{2}=L-E_{1}-E_{2}$. Then $c_{1}=6 L-3 E_{1}-2 \sum_{i=2}^{2} E_{i}$ and $c_{2}=5 L-E_{1}-E_{2}-2 \sum_{i=3}^{8} E_{i}$. It is straightforward to check that $e_{1} \cdot c_{2}=e_{2} \cdot c_{1}=1$, so (i) implies (iii).
Since (iii) obviously implies (ii), it is now enough to prove that (ii) implies (i). To this end, assume that $e_{1} \cdot c_{2}>0$ and $e_{2} \cdot c_{1}>0$. If $e_{1} \cdot c_{2}=2$ then from the bijection in Lemma 3.15 we have $e_{1} \cdot e_{2}=0$, which is a contradiction. Therefore we have $e_{1} \cdot c_{2}=1$. Without loss of generality we take $e_{1}=E_{1}$ and $c_{2}=L-E_{1}-E_{2}$. Then $e_{2}=5 L-E_{1}-E_{2}-2 \sum_{i=3}^{8} E_{i}$, so $e_{1} \cdot e_{2}=1$.

The previous lemma states that if we have two pairs $\left(e_{1}, c_{1}\right)$ and $\left(e_{2}, c_{2}\right)$ of exceptional classes intersecting with multiplicity three, the four classes together form a clique in \mathcal{G} if and only if $e_{1} \cdot e_{2}=e_{1} \cdot c_{2}=e_{2} \cdot c_{1}=c_{1} \cdot c_{2}=1$. We call the pair ($\left.\left\{e_{1}, c_{1}\right\},\left\{e_{2}, c_{2}\right\}\right)$ an intersecting pair.

Corollary 4.7. G acts transitively on the set

$$
S=\left\{\left(e_{1}, e_{2}, c_{1}, c_{2}\right) \in E^{4} \mid\left(\left\{e_{1}, c_{1}\right\},\left\{e_{2}, c_{2}\right\}\right) \text { is an intersecting pair. }\right\}
$$

Proof. Consider the set $T=\left\{\left(e_{1}, e_{2}\right) \in E^{2} \mid e_{1} \cdot e_{2}=1\right\}$ and the map

$$
\lambda: T \longrightarrow S,\left(e_{1}, e_{2}\right) \longmapsto\left(e_{1}, e_{2}, c_{1}, c_{2}\right),
$$

where $c_{1} \cdot e_{1}=c_{2} \cdot e_{2}=3$. Note that λ is well defined by Lemma 4.6. Let ($e_{1}, e_{2}, c_{1}, c_{2}$) be an element in S. Then $\left(\left\{e_{1}, c_{1}\right\},\left\{e_{2}, c_{2}\right\}\right)$ is an intersecting pair, so $e_{1} \cdot e_{2}=1$, and $\lambda\left(\left(e_{1}, e_{2}\right)\right)=\left(e_{1}, e_{2}, c_{1}, c_{2}\right)$. We conclude that λ is surjective. The statement now follows from the fact that G acts transitively on T.

Corollary 4.8. Every maximal clique K in \mathcal{G} of size bigger than two that does not contain any edge of weight two is of the form

$$
K=\left\{e_{1}, \ldots, e_{n}, c_{1}, \ldots, c_{n} \mid \forall i \neq j:\left(\left\{e_{i}, c_{i}\right\},\left\{e_{j}, c_{j}\right\}\right) \text { is an intersecting pair }\right\} .
$$

Proof. Let K be a maximal clique not containing any edge of weight two. If K would not contain any edge of weight one, it would consist of two vertexes connected by an edge of weight three, hence it would have size two. Therefore we can assume that K contains at least one edge of weight one. Let e_{1}, \ldots, e_{n} be a subclique of maximal size in K that only contains edges of weight one. By Lemma 4.6, for all $i \neq j$, the unique elements $c_{i}, c_{j} \in E$ such that $e_{i} \cdot c_{i}=e_{j} \cdot c_{j}=3$ satisfy $e_{i} \cdot c_{j}=e_{j} \cdot c_{i}=c_{i} \cdot c_{j}=1$. Since K is maximal, it follows that K also contains the n elements c_{1}, \ldots, c_{n}. If there would be another element $d \in K$, then, since there is only one element intersecting d with multiplicity three, either $d \cdot e_{i}=1$ for all i, or $d \cdot c_{i}=1$ for all i. But this contradicts the fact that the set $\left\{e_{1}, \ldots, e_{n}\right\}$ is maximal. We conclude that $K=\left\{e_{1}, \ldots, e_{n}, c_{1}, \ldots, c_{n}\right\}$.

Lemma 4.9. The maximal size of the cliques in \mathcal{G} that contain an edge of weight two is thirteen.

Proof. Let K be a clique of maximal size in \mathcal{G} that contains an edge of weight two. By Proposition 3.16 we can without loss of generality assume that K contains $e_{1}=E_{1}$ and $e_{2}=3 L-2 E_{1}-\sum_{i=2}^{7} E_{i}$. Let $e=a L-\sum_{i=1}^{8} E_{i} \in E$. The conditions $e \cdot e_{1} \geq 1$ and $e \cdot e_{2} \geq 1$ are equivalent to $b_{1} \geq 1$ and $3 a-2 b_{1}-\sum_{i=2}^{7} b_{i} \geq 1$. By looking at the table in Proposition 2.7 we find all possibilities.

$$
\begin{array}{c|cccccc}
a & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \text { number of possibilities for } e & 1 & 20 & 36 & 41 & 22 & 7
\end{array}
$$

We find a total of 127 possibilities. As it is too tedious to compute all pairwise intersection multiplicities by hand, we do this with MAGMA and find that the maximal size of a clique in the graph on these 127 exceptional curves is eleven. This gives a total of 13 elements in K. We conclude that the maximal size of a clique that contains an edge of weight two is thirteen.

Let V, W, Z, f, g and Y be as in the diagram on page 25. Let \mathcal{S} be the set of all cliques of size sixteen. The following proposition gives us a first upper bound for the maximal number of exceptional curves going through one point.

Proposition 4.10. The following hold.
(i) The maximal size of a clique in \mathcal{G} is sixteen.
(ii) Every clique of size sixteen is of the form

$$
\left\{e_{1}, \ldots, e_{8}, c_{1}, \ldots, c_{8} \mid \forall i \neq j:\left(\left\{e_{i}, c_{i}\right\},\left\{e_{j}, c_{j}\right\}\right) \text { is an intersecting pair }\right\}
$$

and every clique that has no edges of weight two is contained in a clique of size sixteen.
(iii) For $y=\left(e_{1}, \ldots, e_{4}\right) \in Y$, there is a unique element in \mathcal{S} containing e_{1}, \ldots, e_{4}. This gives rise to a map $s: Y \longrightarrow \mathcal{S}$, which is surjective.

Proof.
(i) Let K be a maximal clique in \mathcal{G}. We consider two cases. First assume that K contains an edge of weight two. Then K has size at most thirteen by Lemma 4.9 .
Now assume that K contains no edges of weight two. From Corollary 4.8 it follows that K is of the form
$K=\left\{e_{1}, \ldots, e_{n}, c_{1}, \ldots, c_{n} \mid \forall i \neq j:\left(\left\{e_{i}, c_{i}\right\},\left\{e_{j}, c_{j}\right\}\right)\right.$ is an intersecting pair $\}$.
By Corollary 4.7 we can without loss of generality assume that K contains the four exceptional classes

$$
\begin{array}{ll}
e_{1}=L-E_{1}-E_{2} ; & e_{2}=L-E_{3}-E_{4} \\
c_{1}=5 L-E_{1}-E_{2}-2 \sum_{i=3}^{8} E_{i} ; & c_{2}=5 L-2 E_{1}-2 E_{2}-E_{3}-E_{4}-2 \sum_{i=5}^{8} E_{i}
\end{array}
$$

Let e_{3} be a different element in K. Then $e_{1} \cdot e_{3}=e_{2} \cdot e_{3}=1$, so by Proposition 3.27 we can take without loss of generality $e_{3}=L-E_{5}-E_{6}$. Then K also contains the unique exceptional curve intersecting e_{3} with multiplicity three, which is $c_{3}=5 L-2 \sum_{i=1}^{4} E_{i}-E_{5}-E_{6}-2 E_{7}-2 E_{8}$.
Let e_{4} be a different element in K. Then $e_{4} \cdot e_{1}=e_{4} \cdot e_{2}=e_{4} \cdot e_{3}=1$, so by Proposition 3.27 there are 26 possibilities for e_{4}. They are

$$
\begin{aligned}
& L-E_{7}-E_{8} ; \\
& 2 L-E_{i}-E_{j}-E_{k}-E_{7}-E_{8} \text { for } i \in\{1,2\}, j \in\{3,4\}, k \in\{5,6\} ; \\
& 3 L-2 E_{i}-\sum_{j \in\{1, \ldots, i-1, i+2, \ldots, 8\}} E_{j} \text { for } i \in\{1,3,5,7\} ; \\
& 3 L-2 E_{i}-\sum_{j \in\{1, \ldots, i-2, i+1, \ldots, 8\}} E_{j} \text { for } i \in\{2,4,6,8\} ; \\
& 4 L-2 E_{i}-2 E_{j}-2 E_{k}-\sum_{l \notin\{i, j, k\}} E_{l} \text { for } i \in\{1,2\}, j \in\{3,4\}, k \in\{5,6\} ; \\
& 5 L-2 \sum_{i=1}^{6} E_{i}-E_{7}-E_{8} .
\end{aligned}
$$

The elements $e_{4}=3 L-\sum_{i=1}^{6} E_{i}-2 E_{7}$ and $c_{4}=3 L-\sum_{i=1}^{6} E_{i}-2 E_{8}$ intersect all other 24 elements with multiplicity one and satisfy $e_{4} \cdot c_{4}=3$, so they are both in K. As we have seen in Proposition 3.27, all other 24 elements e have the property that $\left(e_{1}, e_{2}, e_{3}, e\right)$ is in Y, so by Proposition 3.28 , without loss of generality we can assume that $e_{5}=L-E_{7}-E_{8}$ is in K. Then K also contains $c_{5}=5 L-2 \sum_{i=1}^{6} E_{i}-E_{7}-E_{8}$, since $e_{5} \cdot c_{5}=3$. Of the remaining 22 elements, the only elements intersecting e_{5} with multiplicity one are

$$
\begin{array}{ll}
3 L-2 E_{1}-\sum_{i=3}^{8} E_{i} ; & 3 L-E_{1}-E_{2}-2 E_{3}-\sum_{i=5}^{8} E_{i} ; \\
3 L-2 E_{2}-\sum_{i=3}^{8} E_{i} ; & 3 L-\sum_{i=1}^{4} E_{1}-2 E_{5}-E_{7}-E_{8} ; \\
3 L-E_{1}-E_{2}-2 E_{3}-\sum_{i=5}^{8} E_{i} ; & 3 L-\sum_{i=1}^{4} E_{1}-2 E_{6}-E_{7}-E_{8} .
\end{array}
$$

These intersect pairwise with multiplicity three or one, so they are all contained in K. This gives sixteen elements in K.
(ii)-(iii) These points follow from the construction of the clique in part (i).

Corollary 4.11. The number of exceptional curves on X that go through one point is at most sixteen.

Proof. This follows directly from Proposition 4.10
Corollary 4.12. G acts transitively on \mathcal{S}, and $|\mathcal{S}|=2025$.
Proof. By Proposition 4.10, there is a surjective map $s: Y \longrightarrow \mathcal{G}$. Therefore, G acts transitively on \mathcal{S} by Lemma 3.20 . Let K be a clique of size sixteen. From Proposition 4.10 (ii), it follows that there are $16 \cdot 14 \cdot 12$ tuples $\left(c_{1}, c_{2}, c_{3}\right) \in K^{3}$ with $c_{1} \cdot c_{2}=c_{1} \cdot c_{3}=c_{2} \cdot c_{3}=1$. Moreover, for a fixed tuple $\left(e_{1}, e_{2}, e_{3}\right) \in K^{3}$ with $e_{1} \cdot e_{2}=e_{1} \cdot e_{3}=e_{2} \cdot e_{3}=1$ there are ten exceptional classes in K intersecting e_{1}, e_{2} and e_{3} with multiplicity one. From Proposition 3.27 (iii) and the fact that all cliques of size sixteen are maximal, it follows that two of those ten, say d_{1} and d_{2}, are such that $\left(e_{1}, e_{2}, e_{3}, d_{i}\right) \notin Y$. The other eight e are such that $\left(e_{1}, e_{2}, e_{3}, e\right)$ is an element of Y. We conclude that $\left|s^{-1}(K)\right|=16 \cdot 14 \cdot 12 \cdot 8=21504$. Since s is surjective, we have $|\mathcal{S}|=|s(Y)|=\frac{|Y|}{21504}=2025$.

4.1 Points on the ramification curve

By Proposition 2.12, a hyperplane section H of Q that intersects B with multiplicity two in three (possibly infinitely near) points and does not contain the vertex of Q pulls back under φ to the sum of two exceptional curves that intersect in three (possibly infinitely near) points. From now on, we call two exceptional curves or exceptional classes intersecting with multiplicity three a pair.

Proposition 4.14 will give an upper bound for the maximal number of exceptional curves going through one point on the ramification curve of φ. The proof uses the following well-known proposition.

Proposition 4.13. (Hurwitz). Let $f: C \longrightarrow D$ be a finite separable morphism of complete, nonsingular curves over an algebraically closed field k. Let $n=\operatorname{deg} f$. Then

$$
2 g(C)-2=n \cdot(2 g(D)-2)+\operatorname{deg} R
$$

where R is the ramification divisor of f. We have $\operatorname{deg} R \geq \sum_{P \in C}\left(e_{P}-1\right)$, with equality if f only has tame ramification.

Proof. See Har77, Proposition IV.2.2 and Corollary IV.2.4.
I got the idea for Proposition 4.14 from Niels Lubbes, who was so kind to share this with us. Later I found that part of it was also done in TVAV09.

Proposition 4.14. Assume that char $k \neq 2$. Then the number of exceptional curves that go through one point on the ramification curve of φ is at most twelve.

Proof. Fix a point $p \in B$, and let M be the tangent line to B at p. The set of planes trough M is a pencil P of planes in \mathbb{P}^{3}, hence can be parametrized by \mathbb{P}^{1}. Let $\lambda: B \rightarrow \mathbb{P}^{1}$ be the rational map sending every point $x \notin M$ to the unique plane trough M containing x. Then since B is smooth, this extends to a morphism $\lambda: B \longrightarrow \mathbb{P}^{1}$. As is shown in Lemma 4.5 (1) in TVAV09, the morphism λ is separable, and $\operatorname{deg} \lambda=4$. Therefore, by Proposition 4.13 we have

$$
2 g(B)-2=(\operatorname{deg} \lambda)\left(2 g\left(\mathbb{P}^{1}\right)-2\right)+\operatorname{deg} R,
$$

where R is the ramification divisor of λ. We have $g(B)=4$, so this gives

$$
\sum_{x \in B}\left(e_{x}-1\right) \leq \operatorname{deg} R=6-(4 \cdot-2)=14 .
$$

Let H be a plane through p that is tritangent to B. Then H contains two points where λ ramifies with ramification degree 2 , or one point where λ ramifies with ramification degree four, hence H contributes 2 or 3 to the degree of R. Therefore, there are at most 7 tritangent planes going through p, which is Lemma 4.5 (1) in TVAV09. Note that P contains exactly one plane H^{\prime} containing the vertex of Q. The intersection of H^{\prime} with Q is a double line, each component intersecting B with multiplicity three. Therefore, the morphism λ branches over H^{\prime}, hence we counted H^{\prime} as one of the 7 tritangent planes through p. We conclude that there are at most 6 planes tritangent to B and not going through the vertex of Q. By the bijection in Remark 2.13, this gives an upper bound of twelve exceptional curves going through $\varphi^{-1}(p)$.

We will later give a sharper upper bound for the number of exceptional curves through one point on B.

Remark 4.15. Let K be a set of exceptional curves all going through a point P on the ramification curve of φ. Let e be an exceptional curve in K. There is a unique exceptional curve c intersecting e with multiplicity three, and by Remark 2.13 , their intersection $c \cap e$ consists exactly of those points in e that are on the ramification curve of φ. We conclude that P is also contained in c.

From the previous remark we conclude that a maximal clique that corresponds to a set of exceptional curves all going through one point P on the ramification curve of φ is a union of pairs. Therefore, by Proposition 4.10 and Lemma 4.6, such a maximal clique is contained in a clique of size sixteen.

Let S be a clique of size sixteen in \mathcal{G}, and G_{S} the stabilizer of S in G. Consider the sets

$$
I=\left\{\left(e_{1}, e_{2}, e_{3}\right) \in S^{3} \mid e_{1} \cdot e_{2}=e_{1} \cdot e_{3}=e_{2} \cdot e_{3}=1\right\}
$$

and

$$
J=\left\{\left(e_{1}, e_{2}\right) \in S^{2} \mid e_{1} \cdot e_{2}=1\right\} .
$$

Proposition 4.16. The group G_{S} acts transitively on I.

Proof. Since S consists of eight pairs, we have $|I|=16 \cdot 14 \cdot 12=2688$. Fix an element $\iota=\left(e_{1}, e_{2}, e_{3}\right)$ in I. We want to show that the orbit $G_{S} \iota$ has size 2688. Let $G_{S, \iota}$ be the stabilizer of ι in G_{S}. We have $G_{S} \iota=\left[G_{S}: G_{S, \iota}\right]$, and

$$
\left[G: G_{S, \iota}\right]=\left[G: G_{S}\right]\left[G_{S}: G_{S, \iota}\right]
$$

By Corollary 4.12 we have $\left[G: G_{S}\right]=G S=2025$. Moreover, we have

$$
\left[G: G_{S, \iota}\right]=\left[G: G_{\iota}\right]\left[G_{\iota}: G_{\iota, S}\right]
$$

By Proposition 3.27 we have $\left[G: G_{\iota}\right]=G \iota=240 \cdot 126 \cdot 60=1814400$. We now compute $\left[G_{\iota}: G_{\iota, S}\right]=G_{\iota} S$. Since G_{ι} acts transitively on the 24 exceptional curves e such that $\left(e_{1}, e_{2}, e_{3}, e\right)$ is an element in Y, and every element in y is contained in a unique clique of size sixteen, the orbit $G_{\iota} S$ contains all different cliques that are the images under s of these 24 elements in Y, where s is the map in Proposition 4.10 Now fix e such that $y=\left(e_{1}, e_{2}, e_{3}, e\right)$ is in Y, and let $K=s(y)$. By Proposition 3.27, the clique K contains the two exceptional classes d_{1}, d_{2} such that $\left(e_{1}, e_{2}, e_{3}, d_{1}\right)$ and $\left(e_{1}, e_{2}, e_{3}, d_{2}\right)$ are in $W \backslash Y$, and we have $d_{1} \cdot d_{2}=3$. By Proposition 4.10 (ii), we know that K also contains the unique $c_{1}, c_{2}, c_{3} \in E$ such that for $i \in\{1,2,3\}$ we have $e_{i} \cdot c_{i}=3$. We conclude that the seven other elements in K are among the 24 exceptional classes f such that $\left(e_{1}, e_{2}, e_{3}, f\right)$ is an element in Y. Therefore, they determine the same unique clique of size sixteen as e. We conclude that there are $\frac{24}{8}=3$ different cliques containing ι. So we have $\left|G_{\iota} S\right| \geq 3$, and we conclude that

$$
\left[G: G_{S, \iota}\right] \geq 240 \cdot 126 \cdot 60 \cdot 3=5443200
$$

It follows that $\left[G_{S}: G_{S, \iota}\right] \geq \frac{5443200}{2025}=2688$. Since $\left[G_{S}: G_{S, \iota}\right]=\left|G_{S \iota}\right| \leq 2688$, this finishes the proof.

Corollary 4.17. The group G_{S} acts transitively on J.

Proof. We have a projection map $\lambda: I \longrightarrow J$ on the first two coordinates. Since S consists of eight pairs, if we fix two elements e_{1}, e_{2} such that $\left(e_{1}, e_{2}\right) \in J$, there are $16-4=12$ elements $e \in S$ such that $\left(e_{1}, e_{2}, e\right) \in I$. Therefore, λ is surjective. From Proposition 4.16 it follows that G_{S} acts transitively on J.

Corollary 4.18. The group G_{S} acts transitively on S.
Proof. We have a projection map $\lambda: J \longrightarrow S$ on the first coordinate. For every element e in S there are 14 elements c such that $(e, c) \in J$, so λ is surjective. From Corollary 4.17 it follows that G_{S} acts transitively on S.

The following proposition allows us to say something about all cliques of a certain type by considering only one of them, which is very useful.

Proposition 4.19. For $n \in\{2,3,5,6,7,8\}, G$ acts transitively on the set

$$
D_{n}=\left\{\left\{e_{1}, \ldots, e_{n}, c_{1}, \ldots, c_{n}\right\} \mid \forall i \neq j:\left(\left\{e_{i}, c_{i}\right\},\left\{e_{j}, c_{j}\right\}\right) \text { is an intersecting pair }\right\} .
$$

Proof. The case $n=2$ follows from Corollary 4.7, and $n=3$ follows from Proposition 3.27 (i) and Lemma 4.6. By Proposition 4.16 and Lemma 4.6, the stabilizer G_{S} of S in G acts transitively on the set

$$
\left\{\left(e_{1}, e_{2}, e_{3}, c_{1}, c_{2}, c_{3}\right) \in S^{6} \mid \forall i \neq j:\left(\left\{e_{i}, c_{i}\right\},\left\{e_{j}, c_{j}\right\}\right) \text { is an intersecting pair. }\right\}
$$

Since S consists of eight pairs, the cliques of five pairs in S are the complements of the cliques of three pairs in S, so this implies that G_{S} acts transitively on the set of cliques of five pairs in S. By Corollary 4.12 this implies the statement for $n=5$. The cases $n=6$ and $n=7$ are proved analogously since we showed that G_{S} acts transitively on J and on S. Finally, $n=8$ is Corollary 4.12,

Proposition 4.20. There are two orbits under the action of G on the set

$$
\left\{\left(e_{1}, \ldots, e_{4}, c_{1}, \ldots, c_{4}\right) \in E^{8} \mid \forall i \neq j:\left(\left\{e_{i}, c_{i}\right\},\left\{e_{j}, c_{j}\right\}\right) \text { is an intersecting pair. }\right\}
$$

Proof. This follows from Proposition 3.28 and Lemma 4.6
From Proposition 4.22 we will deduce a sharp upper bound for the number of exceptional curves going through one point on the ramification curve of φ if char $k \neq 2$. We need a lemma first. This lemma will also be used in the next subsection.

Let \mathbb{P}^{2} be the projective plane over k with coordinates x, y, z. Let R_{1}, \ldots, R_{9} be nine points in \mathbb{P}^{2}, with $R_{i}=\left(x_{i}: y_{i}: z_{i}\right)$ for $i \in\{1, \ldots, 9\}$. We define the following lists of polynomials in x, y, z.

$$
\begin{aligned}
\operatorname{Mon}_{1} & =[x, y, z] \\
\operatorname{Mon}_{2} & =\left[x^{2}, x y, x z, y^{2}, y z, z^{2}\right] \\
\text { Mon }_{3} & =\left[x^{3}, x^{2} y, x^{2} z, x y^{2}, x y z, x z^{2}, y^{3}, y^{2} z, y z^{2}, z^{3}\right] \\
\text { Mon }_{4} & =\left[x^{4}, x^{3} y, x^{3} z, x^{2} y^{2}, x^{2} y z, x^{2} z^{2}, x y^{3}, x y^{2} z, x y z^{2}, x z^{3}, y^{4}, y^{3} z, y^{2} z^{2}, y z^{3}, z^{4}\right] .
\end{aligned}
$$

For $i=3,4$, let $\operatorname{Mon}_{i}^{1}$ be the list of derivatives of Mon_{i} with respect to x, let $\operatorname{Mon}_{i}^{2}$ be the list of derivatives of Mon_{i} with respect to y, and let Mon_{i}^{3} be the list of derivatives of Mon_{i} with respect to z. Define the following matrices, where each row is defined up to scaling.

$$
\begin{array}{ll}
M=\left(a_{i, j}\right)_{i, j \in\{1,2,3\}} & \text { with } a_{i, j}=\operatorname{Mon}_{1}[j]\left(R_{i}\right) ; \\
N=\left(b_{i, j}\right)_{i, j \in\{1, \ldots, 6\}} & \text { with } b_{i, j}=\operatorname{Mon}_{2}[j]\left(R_{i}\right) ; \\
L=\left(c_{i, j}\right)_{i, j \in\{1, \ldots, 10\}} & \text { with } c_{i, j}= \begin{cases}\operatorname{Mon}_{3}[j]\left(R_{i}\right) & \text { for } i \leq 8 \\
\operatorname{Mon}_{3}^{1}[j]\left(R_{8}\right) & \text { for } i=9 \\
\operatorname{Mon}_{3}^{3}[j]\left(R_{8}\right) & \text { for } i=10\end{cases} \\
H=\left(d_{i, j}\right)_{i, j \in\{1, \ldots, 15\}} & \text { with } d_{i, j}= \begin{cases}\operatorname{Mon}_{4}[j]\left(R_{i}\right) & \text { for } i \leq 6 \\
\operatorname{Mon}_{4}^{i-6}[j]\left(R_{7}\right) & \text { for } i \in\{7,8,9\} \\
\operatorname{Mon}_{4}^{i-9}[j]\left(R_{8}\right) & \text { for } i \in\{10,11,12\} \\
\operatorname{Mon}_{4}^{i-12}[j]\left(R_{9}\right) & \text { for } i \in\{13,14,15\}\end{cases}
\end{array}
$$

Lemma 4.21. The following hold.
(i) The points R_{1}, R_{2}, and R_{3} are collinear if and only if $\operatorname{det}(M)=0$.
(ii) The points R_{1}, \ldots, R_{6} are on a conic if and only if $\operatorname{det}(N)=0$.
(iii) If $y_{8} \neq 0$, then the points R_{1}, \ldots, R_{8} are on a cubic with a singular point at R_{8} if and only if $\operatorname{det}(L)=0$.
(iv) If char $k=0$, then the points R_{1}, \ldots, R_{9} are on a quartic that is singular at R_{7}, R_{8} and R_{9} if and only if $\operatorname{det}(H)=0$.

Proof.
(i) The determinant of M is zero if and only if there is a non-zero element in the nullspace of M, that is, there is a non-zero vector $\left(m_{1}, m_{2}, m_{3}\right)$ such that for all $i \in\{1,2,3\}$, we have $m_{1} a_{i, 1}+m_{2} a_{i, 2}+m_{3} a_{i, 3}=0$. But this vector exists if and only if the line defined by $m_{1} x+m_{2} y+m_{3} z$ contains all three points.
(ii) This proof goes analogously to the proof of (i).
(iii) The determinant of L is zero if and only if there is a non-zero vector $\left(l_{1}, \ldots, l_{10}\right)$ such that for all $i \in\{1, \ldots, 10\}$, we have $l_{1} c_{i, 1}+\cdots+l_{10} c_{i, 10}=0$. This is the case if and only if the cubic C defined by $\lambda: \sum_{i=1}^{10} l_{i} \mathrm{Mon}_{3}[i]$ contains all eight points, and moreover, the derivatives λ_{x}, λ_{z} of λ with respect to x and z vanish in R_{8}. Since we have $x \lambda_{x}+y \lambda_{y}+z \lambda_{z}=3 \lambda$ and $y_{8} \neq 0$, this implies that also the derivative λ_{y} of λ with respect to y vanishes in R_{8}, hence C is singular in R_{8}.
(iv) The determinant of H is zero if and only if there is a non-zero vector $\left(h_{1}, \ldots, h_{15}\right)$ such that for all $i \in\{1, \ldots, 15\}$, we have $h_{1} d_{i, 1}+\cdots+h_{15} d_{i, 15}=0$. This is the case if and only if the quartic K defined by $\lambda: \sum_{i=1}^{15} h_{i} \operatorname{Mon}_{4}[i]$ contains R_{1}, \ldots, R_{6}, and moreover, the derivatives $\lambda_{x}, \lambda_{y}, \lambda_{z}$ of λ with respect to x, y, and z vanish in R_{7}, R_{8} and R_{9}. Since we have $x \lambda_{x}+y \lambda_{y}+z \lambda_{z}=4 \lambda$ and char $k=0$, this implies that also R_{7}, R_{8}, and R_{9} are in contained in λ.

Proposition 4.22. Assume that char $k \neq 2$. Let Q_{1}, \ldots, Q_{8} be eight points in \mathbb{P}^{2} in general position. Let L_{i} be the line through $Q_{2 i}$ and $Q_{2 i-1}$ for $i \in\{1,2,3,4\}$, and $C_{i, j}$ the unique cubic through $Q_{1}, \ldots, Q_{i-1}, Q_{i+1}, \ldots, Q_{8}$ that is singular in Q_{j}. Assume that the four lines L_{1}, L_{2}, L_{3} and L_{4} all intersect in one point P. Then the three cubics $C_{7,8}, C_{8,7}$, and $C_{6,5}$ do not all go through P.

Proof. Assume that $C_{7,8}, C_{8,7}$, and $C_{6,5}$ go through P. First note that if P were equal to one of the Q_{i}, then three of the eight Q_{i} would be on a line, which would contradict the fact that Q_{1}, \ldots, Q_{8} are in general position. We conclude that P is not equal to one of the Q_{i}.
Let $(x: y: z)$ be the coordinates in \mathbb{P}^{2}. Without loss of generality we can choose four points in general position in \mathbb{P}^{2}, and we set

$$
\left.\begin{array}{lr}
Q_{1}=(0: 1: 1) ; & Q_{3}=(1: 0: 1) \\
Q_{5}=(1: 1: 1) ; & P
\end{array}\right)
$$

Then we have the following.
L_{1} is the line given by $x=0$
L_{2} is the line given by $y=0$
L_{3} is the line given by $x=y$

Since L_{4} contains P, and is unequal to L_{1} and L_{2}, there is an $m \in k^{*}$ such that L_{4} is the line $m y=x$. Since Q_{2}, Q_{7} and Q_{8} are not in L_{2}, and Q_{4} is not in L_{1}, there are $a, b, c, u, v \in k$ such that

$$
\begin{array}{ll}
Q_{2}=(0: 1: a) ; & Q_{7}=(m: 1: v) ; \\
Q_{4}=(1: 0: b) ; & Q_{8}=(m: 1: c) . \\
Q_{6}=(1: 1: u) ; &
\end{array}
$$

We define \mathbb{A}^{6} to be the affine space with coordinate ring $T_{6}=k[a, b, c, m, u, v]$. Points in \mathbb{A}^{6} correspond to configurations of the points Q_{1}, \ldots, Q_{8}. The fact that $C_{6,5}, C_{7,8}$ and $C_{8,7}$ go through P gives polynomial equations in these six variables, hence defines an algebraic set A_{0} in \mathbb{A}^{6}. We define S_{0} to be the algebraic set of all points in \mathbb{A}^{6} that correspond to the configurations where three of the points Q_{1}, \ldots, Q_{8} lie on a line, or six of the points lie on a conic. We want to show that A_{0} is contained in S_{0}.
Claim 4.22.1: There is a unique cubic through $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{8}$ and P that is singular in Q_{5}.
Proof: The vector space spanned by all monomials in x, y, z of degree three has dimension ten, so cubics in \mathbb{P}^{2} correspond to points in \mathbb{P}^{9}. Requiring that a point lies on a cubic defines a hyperplane in \mathbb{P}^{9}. Requiring that a cubic contains and is singular in a point gives three linear conditions. We conclude that all cubics through these seven points with a singularity at one of them are in the intersection of 9 hyperplanes of \mathbb{P}^{9}, which gives at least one point, so at least one cubic. Assume that this cubic is not unique. Then there are two linearly independent cubics D_{1} and D_{2} that go through these seven points with a singularity at Q_{5}. Let l_{i} be the tangent line to D_{i} at P for $i=1,2$.
If the equations defining l_{1} and l_{2} are not linearly independent, then there is a linear combination F of D_{1} and D_{2} that is singular in P. But then the line L_{3} through P, Q_{5} and Q_{6} intersects F in at least four points counted with multiplicity, which implies that F has L_{3} as a component, hence is reducible. If F splits in three lines, then, since the five points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ and Q_{8} are not on L_{3}, they are contained in the other two lines. But then there would be at least three points on a line, contradicting the fact that the points are in general position. On the other hand, if F splits in a line and a smooth conic C, then, since Q_{5} is a singular point of F, it is in the intersection of L_{3} and C. The five points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ and Q_{8} are not contained in L_{3}, hence they are in C, too. But then there are six points in general position on the smooth conic C, which gives a contradiction. We conclude that l_{1} and l_{2} must be linearly independent.
Since the equations defining l_{1} and l_{2} are linearly independent, the two lines span the whole plane, so there is a linear combination G of D_{1} and D_{2} such that L_{1} is the tangent line to G at P. But then L_{1} intersects G in four points counted
with multiplicity, so it is contained in G. Therefore G is reducible. If G splits in three lines, then, since the points $Q_{3}, Q_{4}, Q_{5}, Q_{8}$ are not contained in L_{1}, each of the other two lines contains two of these five points. But since Q_{5} is a singular point of G, it is contained in the intersection of two lines, so there is a line that contains three of the Q_{i}. On the other hand, if G splits in L_{1} and a smooth conic, then, since Q_{5} is a singular point of G, it lies in the intersection of the conic and L_{1}, hence L_{1} contains Q_{1}, Q_{2} and Q_{5}. In both cases, the points Q_{1}, \ldots, Q_{8} are not in general position, leading to a contradiction. We conclude that there is a unique cubic through $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{8}$ and P that is singular in Q_{5}.
Let D be the unique cubic through $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{8}$ and P that is singular in Q_{5}. By uniqueness, it must be equal to $C_{6,5}$. Note that D intersects L_{4} in Q_{8} and in P. If L_{4} were contained in D, then by the same reasoning as used in Claim 4.22.1, there would be either three of the Q_{i} on L_{4}, or six of the Q_{i} on a smooth conic, which is not possible. Therefore L_{4} is not contained in D, so Q_{7} is the third point of intersection of L_{4} with D. By Lemma 4.21, the equation expressing that Q_{7} is in D is given by $\operatorname{det}(L)=0$, where L is the matrix associated to $\left(R_{1}, \ldots, R_{8}\right)=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}, P, Q_{5}\right)$. We have

$$
\operatorname{det}(L)=m(m-1)(c-v)(b-1)(a-1) f
$$

where

$$
f=(a-a c-b c+b m) v+b(a-1) m^{2}+b(c-2 a) m+a(b+c-1)
$$

The first five factors of $\operatorname{det}(L)$ define subsets of S_{0}, hence do not correspond to configurations where Q_{1}, \ldots, Q_{8} are in general position. Therefore, $C_{6,5}$ goes through P if and only if $f=0$. Define $U=Z(a-a c-b c+b m)$.
Claim 4.22.2: $U \cap A_{0}$ is contained in S_{0}.
Proof: Let $\left(a_{0}, b_{0}, c_{0}, m_{0}, u_{0}, v_{0}\right) \in A_{0}$ be such that $a_{0}-a_{0} c_{0}-b_{0} c_{0}+b_{0} m_{0}=0$. Then, since $f\left(a_{0}, b_{0}, c_{0}, m_{0}, u_{0}, v_{0}\right)=0$, we have also

$$
b_{0}\left(a_{0}-1\right) m_{0}^{2}+b_{0}\left(c_{0}-2 a_{0}\right) m_{0}+a_{0}\left(b_{0}+c_{0}-1\right)=0
$$

But then $f(a, b, c, m, u, v)=0$ for every v, so the whole line L_{4} is contained in D. As we have seen before, this implies that the points Q_{1}, \ldots, Q_{8} are not in general position.
Analogously, the fact that $C_{7,8}$ goes through P is expressed by $\operatorname{det}\left(L^{\prime}\right)$, where L^{\prime} is the matrix L associated to $\left(R_{1}, \ldots, R_{8}\right)=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}, P, Q_{8}\right)$ in Lemma 4.21. We have

$$
\operatorname{det}\left(L^{\prime}\right)=m(u-1)(m-1)(b-1)(a-1) g
$$

where $g=\beta u+\gamma$ with

$$
\beta=b m^{3}+(1-b c-c) m^{2}+\left(c^{2}-2 c+1\right) m+a(1-c)+c^{2}-c
$$

and

$$
\begin{aligned}
\gamma=-a b m^{3}+(a b c+a b+a c-a+b- & 2 b c) m^{2}+\left(a b-2 a b c+a+2 b c^{2}-b-a c^{2}+2 c^{2}-2 c\right) m \\
& +a\left(b c-b+2 c^{2}-2 c\right)-b c^{2}+b c-2 c^{3}+2 c^{2}
\end{aligned}
$$

The first five factors of $\operatorname{det}\left(L^{\prime}\right)$ correspond to configurations where the eight points are not in general position, so $C_{7,8}$ contains P if and only if $g=0$. Define $V=Z(\beta)$. By the same reasoning as in Claim 4.22.2, we have $V \cap A_{0} \subseteq S_{0}$.

Set

$$
v^{\prime}=\frac{-b(a-1) m^{2}+b(c-2 a) m+a(b+c-1)}{a-a c-b c+b m} \quad \text { and } \quad u^{\prime}=\frac{-\gamma}{\beta} .
$$

Define \mathbb{A}^{4} to be the affine space with coordinate ring $T_{4}=k[m, a, b, c]$, and let $K_{4}=\operatorname{Frac}\left(T_{4}\right)$ be the field of rational fractions of elements in T_{4}. Consider the ring homomorphism $T_{6} \longrightarrow K_{4}$ defined by

$$
(m, a, b, c, u, v) \longmapsto\left(m, a, b, c, u^{\prime}, v^{\prime}\right) .
$$

This defines an injective rational map $i: \mathbb{A}^{4} \rightarrow \mathbb{A}^{6}$, which is a section of the projection $\mathbb{A}^{6} \longrightarrow \mathbb{A}^{4}$ on the first four coordinates. Let $A_{0}^{\prime}=A_{0} \backslash\left(\left(A_{0} \cap U\right) \cup\left(A_{0} \cap V\right)\right)$. Showing that $A_{0} \subseteq S_{0}$ is equivalent to showing that $A_{0}^{\prime} \subseteq S_{0}$. Note that, since i is defined outside the subvarieties of \mathbb{A}^{4} defined by $a-a c-b c+b m$ and β, we have $i^{-1}\left(A_{0}^{\prime}\right) \cong A_{0}^{\prime}$. Let $A_{1}=\overline{i^{-1}\left(A_{0}^{\prime}\right)}$ and $S_{1}=i^{-1}\left(S_{0}\right)$, then $A_{0}^{\prime} \subseteq S_{0}$ is equivalent to $A_{1} \subseteq S_{1}$.
Let $L^{\prime \prime}$ be the matrix L associated to $\left(R_{1}, \ldots, R_{8}\right)=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}, P, Q_{7}\right)$ in Lemma 4.21. Similarly to $C_{7,8}$, the fact that $C_{8,7}$ contains P is expressed by $\operatorname{det}\left(L^{\prime \prime}\right)$. We have

$$
\operatorname{det}\left(L^{\prime \prime}\right)=-2 a b m(m-1)^{2}(b-1)(a-1)(a+b-1) f_{1} \cdot f_{2} \cdot f_{3}
$$

with

$$
\begin{gathered}
f_{1}=a c-a+b c m-b m^{2}-c^{2}+c m+c-m \\
f_{2}=a b m^{2}-2 a b m+a b-a c^{2}+2 a c-a-b c^{2}+2 b c m-b m^{2}
\end{gathered}
$$

and

$$
\begin{aligned}
& f_{3}=a b c m^{2}-2 a b c m+a b c-a b m^{3}+a b m^{2}+a b m-a b-a c^{2} m+2 a c^{2} \\
& \quad+a c m^{2}-3 a c-a m^{2}+a m+a+2 b c^{2} m-b c^{2}-3 b c m^{2}+b c+b m^{3} \\
& \quad+b m^{2}-b m-2 c^{3}+3 c^{2} m+3 c^{2}-c m^{2}-4 c m-c+m^{2}+m
\end{aligned}
$$

Since char $k \neq 2$, the determinant of $L^{\prime \prime}$ equals zero if and only if at least one of the non-constant factors equals zero. We can show that all non-constant factors of $\operatorname{det}\left(L^{\prime \prime}\right)$ define subvarieties of S_{1}. If $a=0$, then Q_{2}, Q_{3} and Q_{5} are contained in the line $x-z=0$. Similarly, $b=0$ implies that Q_{1}, Q_{4} and Q_{5} are on the line $y-z=0$, and $a+b-1=0$ implies that Q_{2}, Q_{4}, and Q_{5} are on the line $x(a-1)-a y+z=0$. If $m=0$ then $L_{4}=L_{2}$, and $m=1$ implies $L_{4}=L_{3}$, so in both cases there are four points on a line. If $a=1$ or $b=1$, then two points would be the same. Let $\left(R_{1}, \ldots, R_{6}\right)=\left(Q_{3}, \ldots, Q_{8}\right)$, and let N be the corresponding matrix from Lemma 4.21. We compute the determinant of N and find that $f_{1} f_{2} f_{3}$ divides $\operatorname{det}(N)$. This means that f_{1}, f_{2}, as well as f_{3} define subsets of S_{1}. We conclude that all irreducible components of A_{1} are contained in S_{1}, which finishes the proof.

We can now prove Theorem 1 .
Proof of Theorem 1. First note that by Corollary 4.11, the number of exceptional curves through any point in X is at most sixteen in all characteristics.
Now assume char $k \neq 2$. Consider the clique $K=\left\{e_{1}, \ldots, e_{6}, c_{1}, \ldots, c_{6}\right\}$, where

$$
\begin{aligned}
& e_{1}=L-E_{1}-E_{2} \\
& e_{2}=L-E_{3}-E_{4} \\
& e_{3}=L-E_{5}-E_{6} \\
& e_{4}=L-E_{7}-E_{8} \\
& e_{5}=3 L-E_{1}-E_{2}-E_{3}-E_{4}-E_{5}-E_{6}-2 E_{8} \\
& e_{6}=3 L-E_{1}-E_{2}-E_{3}-E_{4}-2 E_{5}-E_{7}-E_{8},
\end{aligned}
$$

and c_{i} is the unique class in E such that $e_{1} \cdot c_{i}=3$, for all $i \in\{1, \ldots, 6\}$. By Remark 2.9, the classes $e_{1}, \ldots, e_{6}, c_{5}$ are the strict transforms of the four lines through P_{i} and P_{i+1} for $i \in\{1,3,5,7\}$, and the unique cubics through P_{1}, \ldots, P_{6} and P_{8} respectively $P_{1}, \ldots, P_{5}, P_{7}$ and P_{8} respectively P_{1}, \ldots, P_{6} and P_{7}, that are singular in P_{8} respectively P_{5} respectively P_{7}.
Now let K^{\prime} be a clique in \mathcal{G} consisting of at least six pairs, and let

$$
\left\{\left(f_{1}, d_{1}\right), \ldots,\left(f_{6}, d_{6}\right)\right\}
$$

be a set of six pairs in K^{\prime}. Since G acts transitively on the set of cliques of six pairs in E by Proposition 4.19, after changing the indexes and interchanging f_{i} 's and d_{j} 's if necessary, there is an element $g \in G$ such that $f_{i}=g\left(e_{i}\right)$ and $d_{i}=g\left(c_{i}\right)$ for $i \in\{1, \ldots, 6\}$. Let $E_{i}^{\prime}=g\left(E_{i}\right)$. Then, since the E_{i}^{\prime} are pairwise disjoint, by Lemma 3.9 we can blow down $E_{1}^{\prime}, \ldots, E_{8}^{\prime}$ to points $Q_{1}, \ldots, Q_{8} \in \mathbb{P}^{2}$ that are in general position, such that X is the blow-up of \mathbb{P}^{2} at Q_{1}, \ldots, Q_{8}, and E_{i}^{\prime} is the class in Pic X of the exceptional curve above Q_{i} for all i. By the bijection in Remark 3.12, the element f_{i} is the class of the strict transform of the line through $Q_{2 i-1}$ and Q_{i} for $i \in\{1, \ldots, 4\}$, the elements f_{5} and f_{6} are the classes of the strict transforms of the unique cubics through Q_{1}, \ldots, Q_{6} and Q_{8} respectively $Q_{1}, \ldots, Q_{5}, Q_{7}$ and Q_{8}, that are singular in Q_{8} respectively Q_{5}, and d_{i} is the unique class in E intersecting f_{i} with multiplicity three for all i. From Proposition 4.22 it follows that the curves corresponding to $f_{1}, \ldots, f_{6}, d_{5}$ and d_{6} can not all go through one point.
We conclude that the curves corresponding to the classes in a clique containing at least six pairs can not go through one point. Since any maximal number of exceptional curves going through one point on the ramification curve forms a clique consisting of only pairs, hence of even size, we conclude that this number is at most ten.

The following examples show that the upper bounds in Theorem 1 can be reached.
Example 4.23. Define the following eight points in $\mathbb{P}_{\mathbb{Q}}^{2}$.

$$
\begin{array}{ll}
Q_{1}=(0: 1: 1) ; & Q_{5}=(1: 1: 1) ; \\
Q_{2}=(0: 5: 3) ; & Q_{6}=(4: 4: 5) ; \\
Q_{3}=(1: 0: 1) ; & Q_{7}=(-2: 2: 1) ; \\
Q_{4}=(-1: 0: 1) ; & Q_{8}=(2:-2: 1) .
\end{array}
$$

They are in general position, as can be checked by asserting that the determinants of the appropriate matrices in Lemma 4.21 are all nonzero. Therefore, the blow-up of \mathbb{P}^{2} in $\left(Q_{1}, \ldots, Q_{8}\right)$ is a del Pezzo surface S. We have the following four lines in \mathbb{P}^{2}.

The line L_{1} through Q_{1} and Q_{2}, which is given by $x=0$;
the line L_{2} through Q_{3} and Q_{4}, which is given by $y=0$;
the line L_{3} through Q_{5} and Q_{6}, which is given by $x=y$;
the line L_{4} through Q_{7} and Q_{8}, which is given by $x=-y$.

On S, we define the four exceptional curves e_{1}, \ldots, e_{4} to be the strict transforms of L_{1}, \ldots, L_{4}. Let $C_{7,8}$ be the unique cubic through $Q_{1}, \ldots, Q_{6}, Q_{8}$ that is singular in Q_{8}. Let $\left(R_{1}, \ldots, R_{8}\right)=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}, Q_{7}, Q_{8}\right)$, and let L be the corresponding matrix from Lemma 4.21. Then the equation defining $C_{7,8}$ is the determinant of L^{\prime}, where L^{\prime} is equal to L after replacing the first row by Mon ${ }_{3}$. We compute this determinant and find

$$
C_{7,8}: x^{3}-\frac{3}{4} x^{2} y-\frac{31}{12} x y^{2}+\frac{10}{3} x y z-x z^{2}-y^{3}+\frac{8}{3} y^{2} z-\frac{5}{3} y z^{2}=0
$$

We define the singular cubic $C_{8,7}$ analogously and compute its defining equation, which is

$$
C_{8,7}: x^{3}+\frac{13}{4} x^{2} y+\frac{43}{4} x y^{2}-14 x y z-x z^{2}+15 y^{3}-40 y^{2} z+25 y z^{2}=0
$$

Let the exceptional curves e_{5}, c_{5} on S be the strict transforms of $C_{7,8}$ and $C_{8,7}$, respectively. Since $L_{1}, \ldots, L_{4}, C_{7,8}, C_{8,7}$ all go through the point $(0: 0: 1)$, the six exceptional curves $e_{1}, \ldots, e_{5}, c_{5}$ go through one point P in S. Moreover, since $e_{5} \cdot c_{5}=3$, this point P lies on the ramification curve of φ. Therefore, by Remark 4.15, the unique exceptional curves c_{1}, \ldots, c_{4} such that $e_{i} \cdot c_{i}=3$ for $i \in\{1, \ldots, 4\}$ go through P, too. We conclude that the ten exceptional curves $e_{1}, \ldots, e_{5}, c_{1}, \ldots, c_{5}$ all go through P.

ExAmple 4.24. Let $f=x^{5}+x^{2}+1 \in \mathbb{F}_{2}[x]$, and let $F \cong \mathbb{F}_{2}[x] /(f)$ be the finite field of 32 elements defined by adjoining a root α of f to F_{2}. Define the following eight points in \mathbb{P}_{F}^{2}.

$$
\begin{array}{ll}
Q_{1}=(0: 1: 1) ; & Q_{5}=(1: 1: 1) ; \\
Q_{2}=\left(0: 1: \alpha^{19}\right) ; & Q_{6}=\left(\alpha^{20}: \alpha^{20}: \alpha^{16}\right) ; \\
Q_{3}=(1: 0: 1) ; & Q_{7}=\left(\alpha^{24}: \alpha^{25}: 1\right) ; \\
Q_{4}=\left(1: 0: \alpha^{5}\right) ; & Q_{8}=\left(\alpha^{30}: 1: \alpha^{5}\right) .
\end{array}
$$

Again, we can easily check that the determinants of the appropriate matrices in Lemma 4.21 are all nonzero, such that these points are in general position. Therefore, the blow-up of \mathbb{P}^{2} in $\left(Q_{1}, \ldots, Q_{8}\right)$ is a del Pezzo surface S. We have the following four lines in \mathbb{P}^{2}.

The line L_{1} through Q_{1} and Q_{2}, which is given by $x=0$;
the line L_{2} through Q_{3} and Q_{4}, which is given by $y=0$;
the line L_{3} through Q_{5} and Q_{6}, which is given by $x=y$;
the line L_{4} through Q_{7} and Q_{8}, which is given by $x=\alpha^{30} y$.
Let $C_{i, j}$ the unique cubic through $Q_{1}, \ldots, Q_{i-1}, Q_{i+1}, \ldots, Q_{8}$ that is singular in Q_{j}. We compute the defining equations of $C_{1,2}, C_{3,4}, C_{5,6}, C_{7,8}$ and $C_{8,7}$ and obtain

$$
\begin{aligned}
& C_{1,2}: x^{3}+\alpha^{24} x^{2} y+\alpha^{28} x^{2} z+\alpha^{30} x y^{2}+\alpha^{9} x y z+\alpha^{26} x z^{2}+\alpha^{13} y^{3}+\alpha^{6} y z^{2}=0 \\
& C_{3,4}: x^{3}+\alpha^{12} x^{2} y+\alpha^{4} x y^{2}+\alpha^{11} x y z+\alpha^{21} x z^{2}+y^{3}+\alpha^{23} y^{2} z+\alpha^{12} y z^{2}=0 \\
& C_{5,6}: x^{3}+\alpha^{4} x^{2} y+\alpha^{28} x^{2} z+\alpha^{25} x y^{2}+\alpha^{20} x y z+\alpha^{26} x z^{2}+\alpha^{17} y^{3}+\alpha^{9} y^{2} z+\alpha^{29} y z^{2}=0 \\
& C_{7,8}: x^{3}+\alpha x^{2} y+\alpha^{28} x^{2} z+\alpha^{17} x y^{2}+\alpha^{10} x y z+\alpha^{26} x z^{2}+\alpha^{16} y^{3}+\alpha^{8} y^{2} z+\alpha^{28} y z^{2}=0 \\
& C_{8,7}: x^{3}+\alpha^{26} x^{2} y+\alpha^{28} x^{2} z+\alpha^{19} x y^{2}+\alpha^{10} x y z+\alpha^{26} x z^{2}+\alpha^{16} y^{3}+\alpha^{8} y^{2} z+\alpha^{28} y z^{2}=0
\end{aligned}
$$

Let the exceptional curves e_{1}, \ldots, e_{8} be the strict transforms of the curves

$$
L_{1}, \ldots, L_{4}, C_{1,2}, C_{3,4}, C_{5,6}, C_{7,8}
$$

and let c_{8} be the strict transform of $C_{8,7}$. Since $L_{1}, \ldots, L_{4}, C_{1,2}, C_{3,4}, C_{5,6}, C_{7,8}, C_{8,7}$ all go through the point ($0: 0: 1$), the exceptional curves $e_{1}, \ldots, e_{8}, c_{8}$ all go through one point P on S. Moreover, since $e_{8} \cdot c_{8}=3$, this point P lies on the ramification curve of φ. Therefore, by Remark 4.15, the unique exceptional curves c_{1}, \ldots, c_{7} such that $e_{i} \cdot c_{i}=3$ for $i \in\{1, \ldots, 7\}$ go through P, too. We conclude that the sixteen exceptional curves $e_{1}, \ldots, e_{8}, c_{1}, \ldots, c_{8}$ all go through P.

4.2 Points outside the ramification curve

In this subsection we prove Theorem 2.
Lemma 4.25. For $e_{1}, e_{2} \in E$ with $e_{1} \cdot e_{2}=1$, there are 138 elements e in E such that $e \cdot e_{1} \geq 1$ and $e \cdot e_{2} \geq 1$.

Proof. From Proposition 3.22 it follows that it is enough to show this for $e_{1}=E_{1}$ and $e_{2}=L-E_{1}-E_{2}$. Let $e=a L-\sum_{i=1}^{8} E_{i} b_{i} \in E$. Then the conditions e $\cdot e_{1} \geq 1$, $e \cdot e_{2} \geq 1$ are equivalent to $b_{1} \geq 1$ and $a-b_{1}-b_{2} \geq 1$. By looking at the table in Proposition 2.7 we find all possibilities.

a	2	3	4	5	6
number of possibilities for e	15	37	50	28	8

We find a total of 138 possibilities for e such that e intersects both e_{1} and e_{2}.
Lemma 4.26. The maximal size of a clique in \mathcal{G} without any pairs is twelve. Moreover, for $e_{1}, e_{2} \in E$ with $e_{1} \cdot e_{2}=1$, there are 640 cliques of size twelve without pairs that contain e_{1} and e_{2}.

Proof. As

$$
\left\{L-E_{1}-E_{2}, L-E_{3}-E_{4}, L-E_{5}-E_{6}, L-E_{7}-E_{8}\right\}
$$

is a clique of size four without pairs, the maximal size of a clique in \mathcal{G} without pairs is bigger than three. So by Proposition 4.5, such a clique contains two exceptional classes intersecting with multiplicity one. Let K be a maximal clique without pairs. By Proposition 3.22 we can assume that K contains $e_{1}=E_{1}$ and $e_{2}=L-E_{1}-E_{2}$. By Lemma 4.25, there are 138 exceptional classes that intersect both e_{1} and e_{2} positively. But since K contains no pairs, the two exceptional classes that intersect e_{1} or e_{2} with multiplicity three are not in K. This leaves us with 136 possibilities for elements in K. Since it is too tedious to compute all pairwise intersection multiplicities by hand, we compute with MAGMA the maximal size of a clique in the graph on these 136 exceptional curves that does not contain any edges of weight three. This maximum is ten, hence K has size twelve, and there are 640 such cliques.

Lemma 4.26 gives an upper bound for the number of exceptional curves going through one point outside the ramification curve of φ, which is twelve. We will compute a sharp upper bound.

Let T be the clique consisting of the following twelve elements.

$$
\begin{array}{llrl}
t_{1} & =L-E_{1}-E_{2} ; & & t_{7}=4 L-2 \sum_{i \in\{1,6,8\}} E_{i}-\sum_{j \in\{2,3,4,5,7\}} E_{j} ; \\
t_{2} & =L-E_{3}-E_{4} ; & & t_{8}=4 L-2 \sum_{i \in\{2,3,8\}} E_{i}-\sum_{j \in\{1,4,5,6,7\}} E_{j} ; \\
t_{3} & =L-E_{5}-E_{6} ; & & t_{9}=4 L-2 \sum_{i \in\{3,6,7\}} E_{i}-\sum_{j \in\{1,2,4,5,8\}} ; \\
t_{4} & =L-E_{7}-E_{8} ; & & t_{10}=4 L-2 \sum_{i \in\{4,5,8\}} E_{i}-\sum_{j \in\{1,2,3,6,7\}} E_{j} ; \\
t_{5}=4 L-2 \sum_{i \in\{1,3,5\}} E_{i}-\sum_{j \in\{2,4,6,7,8\}} E_{j} ; & t_{11}=4 L-2 \sum_{i \in\{2,4,6\}} E_{i}-E_{j \in\{1,3,5,7,8\}} E_{j} ; \\
t_{6}=4 L-2 \sum_{i \in\{1,4,7\}} E_{i}-\sum_{j \in\{2,3,5,6,8\}} & & =4 L-2 \sum_{i \in\{2,5,7\}} E_{i}-\sum_{j \in\{1,3,4,6,8\}} .
\end{array}
$$

Let G_{T} be the stabilizer of T in G.

Proposition 4.27. Let \mathcal{T} be the set of all cliques in \mathcal{G} of size twelve that do not contain any pair. The following hold.
(i) The group G acts transitively on \mathcal{T};
(ii) we have $T^{4} \cap W=T^{4} \cap Y$, and G_{T} acts transitively on $T^{4} \cap Y$;
(iii) we have $|\mathcal{T}|=179200$.

Proof.
(i) Consider the two sets

$$
A=\left\{\left\{e_{1}, e_{2}\right\} \mid e_{1}, e_{2} \in E ; e_{1} \cdot e_{2}=1\right\}
$$

and

$$
C=\{(a, K) \in A \times \mathcal{T} \mid a \subset K\}
$$

We have $|A|=\frac{240 \cdot 126}{2}=15120$. To compute the cardinality of C, note that by Lemma 4.26, for every element $a \in A$ there are 640 elements $K \in \mathcal{T}$ such that $(a, K) \in C$. We conclude that $|C|=|A| \cdot 640=9676800$. We will show that G acts transitively on C. Define the set

$$
D=\left\{\left(\left(e_{1}, e_{2}, e_{3}, e_{4}\right), K\right) \in Y \times \mathcal{T} \mid e_{1}, \ldots, e_{4} \in K\right\}
$$

It is an easy check that the clique T is an element in \mathcal{T}. Let $F=G(y, T)$ be the orbit of (y, T) under the action of G on D. We have a map

$$
\lambda: F \longrightarrow C,\left(\left(e_{1}, e_{2}, e_{3}, e_{4}\right), K\right) \longmapsto\left(\left\{e_{1}, e_{2}\right\}, K\right) .
$$

The group G acts transitively on F, and we will show that λ is surjective, which implies that G acts transitively on C.
First we compute the cardinality of F. We have a projection $\gamma: F \longrightarrow Y$ on the first coordinate. Let $y=\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in Y$. Since G acts transitively on F, the stabilizer G_{y} of y in G acts transitively on the fiber $\gamma^{-1}(y)$. Therefore, we have $\left|\gamma^{-1}(y)\right|=\left|G_{y}(y, T)\right|=\frac{\left|G_{y}\right|}{\left|G_{y, K}\right|}$. The stabilizer G_{y} of y in G has cardinality $\left|G_{y}\right|=\frac{|G|}{|G y|}=\frac{|G|}{|Y|}=16$, since G acts transitively on Y. Note that the stabilizer of y in G contains all permutations of $\left(E_{1}, \ldots, E_{8}\right)$ that are generated by the permutations of E_{i} and E_{i+1} for $i \in\{1,3,5,7\}$. There are 16 of these, so that means that G_{y} consists exactly of these permutations. For every permutation g in G_{y}, we have $g T \neq T$, except for the identity and the permutation permuting all E_{i}, E_{i+1} for $i \in\{1,3,5,7\}$. Therefore we have $\frac{\left|G_{y}\right|}{\left|G_{y, K}\right|}=\frac{16}{2}=8$, so $\gamma^{-1}(y)$ has size eight. Since G acts transitively on Y, all fibers of γ have size eight, and $|F|=8 \cdot|Y|=348364800$.
Now consider the element $c=\left(\left\{L-E_{1}-E_{2}, L-E_{3}-E_{4}\right\}, T\right)$ in C. We compute the cardinality of $\lambda^{-1}(c)$. By looking at T we see that for the elements $e_{1}=L-E_{1}-E_{2}$ and $e_{2}=L-E_{3}-E_{4}$ there are six elements e_{3} in T such that $e_{1} \cdot e_{3}=e_{2} \cdot e_{3}=1$, and for each of those six e_{3} there are three elements e_{4} in T such that $\left(e_{1}, \ldots, e_{4}\right) \in W$. Since we can interchange e_{1} and e_{2}, it follows that the fiber above c has cardinality at most $2 \cdot 6 \cdot 3=36$. Since G acts
transitively on F, it follows that all non empty fibers of λ have cardinality at most 36. But then we have $|\lambda(F)| \geq \frac{|F|}{36}=9676800=|C|$, so we conclude that there is equality everywhere, and λ is surjective.
Finally, we have a projection $\delta: C \longrightarrow \mathcal{T}$ on the second coordinate, which is surjective since every element in \mathcal{T} contains an element in A by Lemma 4.5. Therefore, G acts transitively on \mathcal{T}.
(ii) From the fact that the fibers of λ have cardinality 36 it follows that all elements in $T^{4} \cap W$ are elements in Y, so $T^{4} \cap W=T^{4} \cap Y$. Let $\kappa: F \longrightarrow \mathcal{T}$ be the composition $\lambda \circ \delta$, then κ is surjective since both λ and δ are. Since G acts transitively on F, the stabilizer G_{T} of T acts transitively on the fiber $\kappa^{-1}(T)$ above T. We have a projection $\kappa^{-1}(T) \longrightarrow T^{4} \cap Y$ on the first coordinate, which is injective. By surjectivity of κ, we have

$$
\left|\kappa^{-1}(T)\right|=\frac{|F|}{|\mathcal{T}|}=\frac{348364800}{179200}=1944 .
$$

By looking at the intersection multiplicities in T we have

$$
\left|T^{4} \cap Y\right|=\left|T^{4} \cap W\right|=12 \cdot 9 \cdot 6 \cdot 3=1944 .
$$

We conclude that the projection is a bijection, hence G_{T} acts transitively on $T^{4} \cap Y$.
(iii) There are 640 elements in \mathcal{T} containing e_{1} and e_{2} by Lemma 4.26. By looking at the elements in T we see that for a fixed element $c_{1} \in T$ there are 9 elements c_{2} in T such that $c_{1} \cdot c_{2}=1$. Since G acts transitively on \mathcal{T} this holds for all elements in \mathcal{T}, so we have $|\mathcal{T}|=\frac{640 \cdot 240 \cdot 126}{12 \cdot 9}=179200$.

Corollary 4.28. G_{T} acts transitively on T.
Proof. We have a surjective map $Y^{4} \cap Y \longrightarrow T$ projecting on the first coordinate, so this follows from the previous proposition.

From the following result, which is again purely geometrical, we will deduce Theorem 2 .

Let Q_{1}, \ldots, Q_{8} be eight points in general position in \mathbb{P}^{2}. Define the following curves:
L_{1} is the line through Q_{1} and Q_{2};
L_{2} is the line through Q_{3} and Q_{4};
C_{1} is the conic through $Q_{1}, Q_{3}, Q_{5}, Q_{6}$ and Q_{7};
C_{2} is the conic through $Q_{1}, Q_{4}, Q_{5}, Q_{6}$ and Q_{8};
C_{3} is the conic through $Q_{2}, Q_{3}, Q_{5}, Q_{7}$ and Q_{8};
C_{4} is the conic through $Q_{2}, Q_{4}, Q_{6}, Q_{7}$ and Q_{8};
D_{1} is the quartic through all eight points with singular points in Q_{1}, Q_{7} and Q_{8};
D_{2} is the quartic through all eight points with singular points in Q_{2}, Q_{5} and Q_{6};
D_{3} is the quartic through all eight points with singular points in Q_{3}, Q_{6} and Q_{8};
D_{4} is the quartic through all eight points with singular points in Q_{4}, Q_{5} and Q_{7}.

Proposition 4.29. Assume that char $k=0$. Then $L_{1}, L_{2}, C_{1}, \ldots C_{4}, D_{1}, \ldots, D_{4}$ do not all go through one point.

Proof. We assume that these ten curves go through a common point P. First note that if P were equal to one of the Q_{i}, then one of the conics would contain six of the eight Q_{i}, which would contradict the fact that Q_{1}, \ldots, Q_{8} are in general position. We conclude that P is not equal to one of the Q_{i}.
Let $(x: y: z)$ be the coordinates in \mathbb{P}^{2}. Without loss of generality we can choose four points in general position in \mathbb{P}^{2}, and we set

$$
\left.\begin{array}{lr}
Q_{1}=(1: 0: 1) ; & Q_{6}=(0:-1: 1) \\
Q_{5}=(0: 1: 1) ; & P
\end{array}\right)
$$

Since L_{1} contains Q_{1} and P, it is given by $y=0$, so we can set $Q_{2}=\left(a_{1}: 0: a_{3}\right)$ for some $a_{1}, a_{3} \in k$. Let $b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}, e_{1}, e_{2}, e_{3} \in k$ be such that

$$
\begin{array}{ll}
Q_{3}=\left(b_{1}: b_{2}: b_{3}\right) ; & Q_{7}=\left(d_{1}: d_{2}: d_{3}\right) \\
Q_{4}=\left(c_{1}: c_{2}: c_{3}\right) ; & Q_{8}=\left(e_{1}: e_{2}: e_{3}\right)
\end{array}
$$

Since the four points Q_{1}, Q_{5}, Q_{6} and P are in general position, the linear system of quadrics through Q_{1}, Q_{5}, Q_{6} and P is two-dimensional. Therefore it is generated by two linearly independent quadrics, and we take these to be $x^{2}+y^{2}-z^{2}$ and $x y$. Let $l, m \in k$ be such that

$$
\begin{aligned}
& C_{1} \text { is given by } x^{2}+y^{2}-z^{2}=2 l x y \\
& C_{2} \text { is given by } x^{2}+y^{2}-z^{2}=2 m x y
\end{aligned}
$$

Since Q_{3}, Q_{4}, Q_{7}, and Q_{8} are not contained in L_{1}, there are $s, t, u \in k$ such that
L_{2} is given by $s y=x+z ;$
The line L_{3} through P and Q_{7} is given by $t y=x+z$;
The line L_{4} through P and Q_{8} is given by $u y=x+z$.
We define \mathbb{A}^{19} to be the affine space with coordinate ring

$$
T_{19}=k\left[l, m, s, t, u, a_{1}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}, e_{1}, e_{2}, e_{3}\right]
$$

Points in \mathbb{A}^{19} correspond to configurations of the points Q_{1}, \ldots, Q_{8}. The fact that all ten curves go through P gives polynomial equations in these 19 variables, hence defines an algebraic set A_{0} in \mathbb{A}^{19}. We define S_{0} to be the algebraic set of all points in \mathbb{A}^{19} that correspond to the configurations where three of the points Q_{1}, \ldots, Q_{8} lie on a line, or six of the points lie on a conic. We want to show that A_{0} is contained in S_{0}, which would mean that all possibilities for the ten curves to go through P imply that Q_{1}, \ldots, Q_{8} are not in general position, giving a contradiction and thus proving our statement. Since the equations defining A_{0} are very big, we do a couple of reduction steps to obtain something that we can actually compute.

Step 1

Let $b_{1}^{\prime}=s b_{2}-b_{3}, c_{1}^{\prime}=s c_{2}-c_{3}, d_{1}^{\prime}=t d_{2}-d_{3}$ and $e_{1}^{\prime}=u e_{2}-e_{3}$. The fact that the
points Q_{3} and Q_{4} lie on the line L_{2}, the point Q_{7} lies on the line L_{3}, and Q_{8} lies on L_{4} implies $b_{1}=b_{1}^{\prime}, c_{1}=c_{1}^{\prime}, d_{1}=d_{2}^{\prime}$, and $e_{1}=e_{1}^{\prime}$. Define \mathbb{A}^{15} to be the affine space with coordinate ring

$$
T_{15}=k\left[l, m, s, t, u, a_{1}, a_{3}, b_{2}, b_{3}, c_{2}, c_{3}, d_{2}, d_{3}, e_{2}, e_{3}\right],
$$

and consider the ring homomorphism $T_{19} \longrightarrow T_{15}$ defined by

$$
\begin{aligned}
&\left(l, m, s, t, u, a_{1}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}, e_{1}, e_{2}, e_{3}\right) \\
& \longmapsto\left(l, m, s, t, u, a_{1}, a_{3}, b_{1}^{\prime}, b_{2}, b_{3}, c_{1}^{\prime}, c_{2}, c_{3}, d_{1}^{\prime}, d_{2}, d_{3}, e_{1}^{\prime}, e_{2}, e_{3}\right) .
\end{aligned}
$$

This corresponds to an embedding $i_{1}: \mathbb{A}^{15} \hookrightarrow \mathbb{A}^{19}$, and A_{0} lies in $i_{1}\left(\mathbb{A}^{15}\right)$. Let A_{1} be $i_{1}^{-1}\left(A_{0}\right)$ and $S_{1}=i_{1}^{-1}\left(S_{0}\right)$, then $A_{0} \subseteq S_{0}$ is equivalent to $A_{1} \subseteq S_{1}$.

Step 2

Since Q_{3} and Q_{4} are in the intersection of L_{2} with C_{1} and C_{2}, respectively, we have

$$
\begin{align*}
\left(s b_{2}-b_{3}\right)^{2}+b_{2}^{2}-b_{3}^{2}-2 l\left(s b_{2}-b_{3}\right) b_{2} & =0 ; \tag{1}\\
\left(s c_{2}-c_{3}\right)^{2}+c_{2}^{2}-c_{3}^{2}-2 m\left(s c_{2}-c_{3}\right) c_{2} & =0 . \tag{2}
\end{align*}
$$

Since P is also in the intersection of L_{2} with C_{1}, we can divide (1) by b_{2} and obtain the equation

$$
\begin{equation*}
\left(s^{2}-2 l s+1\right) b_{2}+2(l-s) b_{3}=0 \tag{3}
\end{equation*}
$$

Similarly, we can divide (2) by c_{2} and obtain

$$
\begin{equation*}
\left(s^{2}-2 m s+1\right) c_{2}+2(l-s) c_{3}=0 . \tag{4}
\end{equation*}
$$

Let V_{1}, V_{2} be the subvarieties of \mathbb{A}^{15} defined by $s^{2}-2 l s+1=0$ and $s^{2}-2 m s+1=0$, respectively.
Claim 4.29.1: $V_{1} \cap A_{1}$ and $V_{2} \cap A_{1}$ lie in S_{1}.
Proof: Let $\left(l, m, s, t, u, a_{1}, a_{3}, b_{1}, b_{3}, c_{1}, c_{3}, d_{2}, d_{3}, e_{2}, e_{3}\right)$ be a point in A_{1} and assume that $s^{2}-2 l s+1=0$. Then, by (3), we have $2(l-s) b_{3}=0$, which implies that C_{1} contains the whole line L_{2}. But then $Q_{4} \in C_{1}$, which means that the six points $Q_{1}, Q_{3}, Q_{4}, Q_{5}, Q_{6}$ and Q_{7} lie on a conic. Since S_{1} consists of all points in \mathbb{A}^{15} that correspond to configurations of the points Q_{1}, \ldots, Q_{8} where three of the points lie on a line or six of the points lie on a conic, we conclude that $V_{1} \cap A_{1}$ lies in S_{1}. The proof for $V_{2} \cap A_{1}$ goes analogously.
Let

$$
b_{1}^{\prime}=\frac{-2(l-s) b_{3}}{s^{2}-2 l s+1} \quad \text { and } \quad c_{1}^{\prime}=\frac{-2(l-s) c_{3}}{s^{2}-2 m s+1} .
$$

Define \mathbb{A}^{13} to be the affine space with coordinate ring

$$
T_{13}=k\left[l, m, s, t, u, a_{1}, a_{3}, b_{3}, c_{3}, d_{2}, d_{3}, e_{2}, e_{3}\right],
$$

and let $K_{13}=\operatorname{Frac}\left(T_{13}\right)$ be the field of rational fractions of elements in T_{13}. Consider the ring homomorphism $T_{15} \longrightarrow K_{13}$ defined by

$$
\begin{aligned}
\left(l, m, s, t, u, a_{1}, a_{3}, b_{1}, b_{3}, c_{1}, c_{3},\right. & \left.d_{2}, d_{3}, e_{2}, e_{3}\right) \\
& \longmapsto\left(l, m, s, t, u, a_{1}, a_{3}, b_{1}^{\prime}, b_{3}, c_{1}^{\prime}, c_{3}, d_{2}, d_{3}, e_{2}, e_{3}\right) .
\end{aligned}
$$

This defines an injective rational map $i_{2}: \mathbb{A}^{13} \rightarrow \mathbb{A}^{15}$. Let

$$
A_{1}^{\prime}=A_{1} \backslash\left(\left(A_{1} \cap V_{1}\right) \cup\left(A_{1} \cap V_{2}\right)\right)
$$

By Claim 4.29.1, showing that $A_{1} \subseteq S_{1}$ is equivalent to showing that $A_{1}^{\prime} \subseteq S_{1}$.
Note that, since i_{2} is defined outside the subvarieties of \mathbb{A}^{13} defined by $s^{2}-2 l s+1=0$ and $s^{2}-2 m s+1=0$, we have $i_{2}^{-1}\left(A_{1}^{\prime}\right) \cong A_{1}^{\prime}$. Let $A_{2}=\overline{i_{2}^{-1}\left(A_{1}^{\prime}\right)}$ and $S_{2}=i_{2}^{-1}\left(S_{1}\right)$, then $A_{1}^{\prime} \subseteq S_{1}$ is equivalent to $A_{2} \subseteq S_{2}$.

Step 3

Since Q_{7} and Q_{8} are in the intersection of L_{3} with C_{1} and L_{4} with C_{2}, respectively, we have

$$
\begin{align*}
\left(t d_{2}-d_{3}\right)^{2}+d_{2}^{2}-d_{3}^{2}-2 l d_{2}\left(t d_{2}-d_{3}\right) & =0 \tag{5}\\
\left(u e_{2}-e_{3}\right)^{2}+e_{2}^{2}-e_{3}^{2}-2 m e_{2}\left(u e_{2}-e_{3}\right) & =0 \tag{6}
\end{align*}
$$

Since P is also in the intersection of L_{3} with C_{1} and in the intersection of L_{4} with C_{2}, we can divide (5) by d_{2} and obtain the equation

$$
\begin{equation*}
\left(t^{2}-2 l t+1\right) d_{2}+2 l d_{3}-2 t d_{3}=0 \tag{7}
\end{equation*}
$$

Similarly, we can divide (6) by e_{2} and obtain

$$
\begin{equation*}
\left(u^{2}-2 m u+1\right) e_{2}+2 m e_{3}-2 u e_{3}=0 \tag{8}
\end{equation*}
$$

Let U_{1}, U_{2} be the subvarieties of \mathbb{A}^{13} defined by $t^{2}-2 l t+1=0$ and $u^{2}-2 m u+1=0$, respectively.

Claim 4.29.2: $U_{1} \cap A_{2}$ and $U_{2} \cap A_{2}$ lie in S_{2}.
Proof: Analogously to the proof of Claim 4.29.1, $U_{1} \cap A_{2}$ and $U_{2} \cap A_{2}$ consist of points in \mathbb{A}^{13} corresponding to configurations where L_{3} is contained in C_{1}, and L_{4} is contained in C_{2}, respectively. If L_{3} is contained in C_{1} then C_{1} is reducible, so three of the points $Q_{1}, Q_{3}, Q_{5}, Q_{6}$ and Q_{7} are on a line. Equivalently, $L_{4} \subset C_{2}$ implies that three of the Q_{i} are on a line. Since S_{2} contains all points in \mathbb{A}^{13} corresponding to configurations of the Q_{i} where three of them lie on a line, we conclude that $U_{1} \cap A_{2}$ and $U_{2} \cap A_{2}$ are both in S_{2}.

Let

$$
d_{2}^{\prime}=\frac{2 t d_{3}-2 l d_{3}}{t^{2}-2 l t+1} \quad \text { and } \quad e_{2}^{\prime}=\frac{2 u e_{3}-2 m e_{3}}{u^{2}-2 m u+1}
$$

Define \mathbb{A}^{11} to be the affine space with coordinate ring

$$
T_{11}=k\left[l, m, s, t, u, a_{1}, a_{3}, b_{3}, c_{3}, d_{3}, e_{3}\right]
$$

and let K_{11} be the function field of A_{11}, consisting of rational fractions of elements in T_{11}. Consider the ring homomorphism $T_{13} \longrightarrow K_{11}$ defined by

$$
\left(l, m, s, t, u, a_{1}, a_{3}, b_{3}, c_{3}, d_{2}, d_{3}, e_{2}, e_{3}\right) \longmapsto\left(l, m, s, t, u, a_{1}, a_{3}, b_{3}, c_{3}, d_{2}^{\prime}, d_{3}, e_{2}^{\prime}, e_{3}\right)
$$

This defines an injective rational map $i_{3}: \mathbb{A}^{11} \rightarrow \mathbb{A}^{13}$. Let

$$
A_{2}^{\prime}=A_{2} \backslash\left(\left(A_{2} \cap U_{1}\right) \cup\left(A_{2} \cap U_{2}\right)\right)
$$

By Claim 4.29.2, showing that $A_{2} \subseteq S_{2}$ is equivalent to showing that $A_{2}^{\prime} \subseteq S_{2}$.
Since i_{3} is defined outside the subvarieties of \mathbb{A}^{11} defined by $t^{2}-2 l t+1=0$ and $u^{2}-2 m u+1=0$, we have $i_{3}^{-1}\left(A_{2}^{\prime}\right) \cong A_{2}^{\prime}$. Let $A_{3}=\overline{i_{3}^{-1}\left(A_{2}^{\prime}\right)}$ and $S_{3}=i_{3}^{-1}\left(S_{2}\right)$, then $A_{2}^{\prime} \subseteq S_{2}$ is equivalent to $A_{3} \subseteq S_{3}$.

Step 4

Since no four of the points $Q_{3}, Q_{5}, Q_{7}, Q_{8}$ and P are on a line, there is a unique conic C through these five points. Note that C intersects L_{1} in P, and L_{1} is not contained in C since then C would contain six of the Q_{i}. Since C_{3} contains all of the five points, we conclude that $C=C_{3}$, and the second intersection point of C and L_{1} is Q_{2}. Let $\left(R_{1}, \ldots, R_{6}\right)=\left(Q_{2}, Q_{3}, Q_{5}, Q_{7}, Q_{8}, P\right)$, and let N be the corresponding matrix from Lemma 4.21. We have
$\operatorname{det}(N)=\frac{1}{2} e^{2} d^{2} b^{2}\left(a_{1}+a_{3}\right)(u-1)(t-1)(s-1)(s-t)(m-u)(l-t)(l-s)\left(\alpha a_{1}+\beta\right)$,
with

$$
\begin{aligned}
\alpha=l^{2} s u+l^{2} s- & l m s u-l m s-\frac{1}{2} l s t u-\frac{1}{2} l s t+\frac{1}{2} l s u^{2}+l s u+\frac{1}{2} l s-\frac{1}{2} l u-\frac{1}{2} l \\
& +\frac{1}{2} m s t-m s u-\frac{1}{2} m s+\frac{1}{2} s u^{2}+\frac{1}{2} t+\frac{1}{2} m t+\frac{1}{2} m-\frac{1}{2} u-\frac{1}{2} s t u
\end{aligned}
$$

and

$$
\beta=\frac{1}{2} a_{3}\left(l s t u+l s t-l s u^{2}+l s+l u+l-m s t-m s-m t-m+s t u-s u^{2}-t+u\right) .
$$

All factors of $\operatorname{det}(N)$ except for $\alpha a_{1}+\beta$ define a subset of S_{3}, hence correspond to configurations where the points are not in general position. Therefore, C_{3} contains P if and only $\alpha a_{1}+\beta=0$. By the same reasoning as before, we have $Z(\alpha) \cap A_{3} \subset S_{3}$. Define \mathbb{A}^{10} to be the affine space with coordinate ring

$$
T_{10}=k\left[l, m, s, t, u, a_{3}, b_{3}, c_{3}, d_{3}, e_{3}\right]
$$

and let $K_{10}=\operatorname{Frac}\left(T_{10}\right)$. Consider the ring homomorphism $T_{11} \longrightarrow K_{10}$ defined by

$$
\left(l, m, s, t, u, a_{1}, a_{3}, b_{3}, c_{3}, d_{3}, e_{3}\right) \longmapsto\left(l, m, s, t, u, \frac{-\beta}{\alpha}, a_{3}, b_{3}, c_{3}, d_{3}, e_{3}\right)
$$

This defines an injective rational map $i_{4}: \mathbb{A}^{10} \longrightarrow \mathbb{A}^{11}$. Let $A_{3}^{\prime}=A_{3} \backslash\left(Z(\alpha) \cap A_{3}\right)$. Showing that $A_{3} \subseteq S_{3}$ is equivalent to showing that $A_{3}^{\prime} \subseteq S_{3}$.
Since i_{4} is defined everywhere outside the subvariety of \mathbb{A}^{10} defined by $\alpha=0$, we have $i_{4}^{-1}\left(A_{3}^{\prime}\right) \cong A_{3}^{\prime}$. Let $A_{4}=\overline{i_{4}^{-1}\left(A_{3}^{\prime}\right)}$ and $S_{4}=i_{4}^{-1}\left(S_{3}\right)$, then $A_{3}^{\prime} \subseteq S_{3}$ is equivalent to $A_{4} \subseteq S_{4}$.

Step 5

The equation expressing that P is contained in C_{4}, is the determinant of the matrix N in Lemma 4.21 corresponding to $\left(R_{1}, \ldots, R_{6}\right)=\left(Q_{2}, Q_{4}, Q_{6}, Q_{7}, Q_{8}, P\right)$. This determinant is given by

$$
\frac{1}{4} e_{3}^{2} d_{3}^{2} c_{3}^{2} a_{3}^{2}(u+1)(t+1)(s+1)(s-u)(m-u)(m-s)(l-t)(l-m) f
$$

where

$$
\begin{array}{r}
f=\left(l^{2}-1\right)(s-1) u^{2}+\left(m^{2}-1\right)(s+1) t^{2}-2 s(m-1)(l+1)(t u+t-u)-l^{2} s+l^{2} \\
+2 l m s-2 l s-m^{2} s-m^{2}+2 m s
\end{array}
$$

All factors except for f define subsets of S_{4}, so P is contained in C_{4} if and only if $f=0$. Since f is quadratic in t and u and does not depend on $a_{3}, b_{3}, c_{3}, d_{3}, e_{3}$, it defines a conic D in the affine plane over $k(l, m, s)$ with coordinates t and u. One point on this conic is given by $(t, u)=(l, m)$. Let l_{1}, l_{2} be the tangent lines at P to C_{1} and C_{2}, respectively. Note that $\frac{d(x / z)}{d(y / z)} l_{1}=l$ and $\frac{d(x / z)}{d(y / z)} L_{3}=t$, and both lines contain P. Therefore $t=l$ implies $l_{1}=L_{3}$, and this means that P is equal to Q_{7}. Similarly, $u=m$ implies $P=Q_{8}$. Therefore the point $(t, u)=(l, m)$ corresponds to a subvariety of S_{4}, so we can assume $t-l \neq 0$ and $u-m \neq 0$. So we can parametrize D by intersecting D with a line M through (l, m), where M is given by $v(t-l)=(u-m)$ for a parameter v. Intersecting D with M gives

$$
\begin{aligned}
\left(a v^{2}+c v+b\right) t^{2}+(2 m v-2 & \left.v^{2} l-c v l+m-c v+c\right) t \\
& +a m^{2}-2 m v l+v^{2} l^{2}-c m+c v l-(a+b+c)=0
\end{aligned}
$$

Since $t=l$ is a solution, we can divide by $t-l$ and obtain

$$
\begin{equation*}
\left(a v^{2}+c v-b\right) t-l\left(a v^{2}+c v-b\right)+2\left(\left(l^{2}-1\right)(m s-1) v+m^{2}-1\right)=0 \tag{9}
\end{equation*}
$$

Let $\gamma=a v^{2}+c v-b$. As before, $\gamma=0$ implies that all t satisfy (9), which means that M is contained in D, so D is reducible. But then, by the same reasoning as before, the points Q_{1}, \ldots, Q_{8} would not be in general position, giving a contradiction. We conclude that $\gamma \neq 0$.

Let \mathbb{A}^{9} be the affine space with coordinate ring $T_{9}=k\left[l, m, s, a_{3}, b_{3}, c_{3}, d_{3}, e_{3}, v\right]$, and let $K_{9}=\operatorname{Frac}\left(T_{9}\right)$. Let

$$
t^{\prime}=-2 \frac{\left(l^{2}-1\right)(m s-1) v+m^{2}-1}{a v^{2}+c v-b}+l
$$

and consider the ring homomorphism $T_{10} \longrightarrow K_{9}$ defined by

$$
\left(l, m, s, t, u, a_{3}, b_{3}, c_{3}, d_{3}, e_{3}\right) \longmapsto\left(l, m, s, t^{\prime}, t^{\prime} v+m-v l, a_{3}, b_{3}, c_{3}, d_{3}, e_{3}\right)
$$

This defines an injective rational map $i_{5}: \mathbb{A}^{9} \rightarrow \mathbb{A}^{10}$. Let

$$
A_{4}^{\prime}=A_{4} \backslash\left(A_{4} \cap Z(\gamma)\right)
$$

Showing that $A_{4} \subseteq S_{4}$ is equivalent to showing that $A_{4}^{\prime} \subseteq S_{4}$.
We have $i_{5}^{-1}\left(A_{4}^{\prime}\right) \cong A_{4}^{\prime}$. Let $A_{5}=\overline{i_{5}^{-1}\left(A_{4}^{\prime}\right)}$ and $S_{5}=i_{5}^{-1}\left(S_{4}\right)$, then $A_{4}^{\prime} \subseteq S_{4}$ is equivalent to $A_{5} \subseteq S_{5}$.

Finishing the proof

For i in $\{1,2,3,4\}$, the expression stating that P is contained in D_{i} is given by $\operatorname{det}\left(H_{i}\right)=0$, where H_{i} is the matrix H Lemma 4.21 with
H_{1} is the matrix associated to $\left(R_{1}, \ldots, R_{9}\right)=\left(Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}, Q_{1}, Q_{7}, Q_{8}\right)$;
H_{2} is the matrix associated to $\left(R_{1}, \ldots, R_{9}\right)=\left(Q_{1}, Q_{3}, Q_{4}, Q_{7}, Q_{8}, Q_{2}, Q_{5}, Q_{6}\right)$;
H_{3} is the matrix associated to $\left(R_{1}, \ldots, R_{9}\right)=\left(Q_{1}, Q_{2}, Q_{4}, Q_{5}, Q_{7}, Q_{3}, Q_{6}, Q_{8}\right)$;
H_{4} is the matrix associated to $\left(R_{1}, \ldots, R_{9}\right)=\left(Q_{1}, Q_{2}, Q_{3}, Q_{6}, Q_{8}, Q_{4}, Q_{5}, Q_{7}\right)$.

With MAGMA, we compute these determinants. For $i \in\{1,2,3,4\}$, we have $\operatorname{det}\left(H_{i}\right)=\lambda_{i} g_{i}$, where λ_{i} defines a subset of S_{5}, and g_{i} is irreducible. The algebraic set A_{5} is the zero set of the radical of the ideal $\left(g_{1}, \ldots, g_{4}\right) \subset T_{9}$. Let $\delta=v^{2}(l s-l-m s-m+2 s)^{2}(l-m)(l+1)(m-1)(l-1)(m+1) \in T_{9}$. With MAGMA we can compute the Gröbner basis of I, and then it is a relatively easy check that δ is contained in I. Therefore, A_{5} is contained in the union of the varieties defined by the factors of δ. As these are all subsets of S_{5}, we conclude that A_{5} is contained in S_{5}. This finishes the proof.

Lemma 4.30. All maximal cliques of size eleven contain a pair.
Proof. By Lemma 4.5 it is sufficient to prove this statement for all cliques of size eleven containing the two elements $e_{1}=L-E_{1}-E_{2}$ and $e_{2}=L-E_{3}-E_{4}$. From Lemma 4.25 we know that there are 138 exceptional curves intersecting both e_{1} and e_{2} positively. Since it is too tedious to compute all maximal cliques of size nine in the graph on these 138 exceptional curves by hand, we use MAGMA to compute them, and check that they all contain at least one pair.

Lemma 4.31. Let K be a clique of size eleven without pairs. Then K is contained in a clique of size twelve without pairs.

Proof. The clique K is not maximal by the previous lemma, so it is contained in a clique of size twelve. Let $e_{1}=L-E_{1}-E_{2}$, and $e_{2}=L-E_{1}-E_{2}$. With MAGMA, we compute all (not necessarily maximal) cliques of size twelve in the graph on these 138 curves. There are no cliques of size twelve with only one pair. Therefore, if K were contained in a clique of size twelve that has a pair, K would contain a pair too, which is a contradiction.

Proposition 4.32. Assume that char $k=0$. Then the number of exceptional curves that go through one point outside the ramification curve of φ is at most ten.

Proof. By Lemma 4.26 we know that it is at most twelve. Consider the twelve classes

$$
\begin{aligned}
& e_{1}=L-E_{1}-E_{2} ; \\
& e_{2}=L-E_{3}-E_{4} ; \\
& e_{3}=2 L-E_{1}-E_{3}-E_{5}-E_{6}-E_{7} ; \\
& e_{4}=2 L-E_{1}-E_{4}-E_{5}-E_{6}-E_{8} ; \\
& e_{5}=2 L-E_{2}-E_{3}-E_{5}-E_{7}-E_{8} ; \\
& e_{6}=2 L-E_{2}-E_{4}-E_{6}-E_{7}-E_{8} ; \\
& e_{7}=4 L-2 E_{1}-E_{2}-E_{3}-E_{4}-E_{5}-E_{6}-2 E_{7}-2 E_{8} ; \\
& e_{8}=4 L-E_{1}-2 E_{2}-E_{3}-E_{4}-2 E_{5}-2 E_{6}-E_{7}-E_{8} ; \\
& e_{9}=4 L-E_{1}-E_{2}-2 E_{3}-E_{4}-E_{5}-2 E_{6}-E_{7}-2 E_{8} ; \\
& e_{10}=4 L-E_{1}-E_{2}-E_{3}-2 E_{4}-2 E_{5}-E_{6}-2 E_{7}-E_{8} ; \\
& e_{11}=5 L-2 E_{1}-2 E_{2}-2 E_{3}-2 E_{4}-2 E_{5}-E_{6}-E_{7}-2 E_{8} ; \\
& e_{12}=5 L-2 E_{1}-2 E_{2}-2 E_{3}-2 E_{4}-E_{5}-2 E_{6}-2 E_{7}-E_{8} .
\end{aligned}
$$

It is straightforward to check that they form a clique without pairs. By Remark 2.9
we know that e_{1}, \ldots, e_{10} are the classes in Pic X of the strict transforms of the curves $L_{1}, L_{2}, C_{1}, \ldots, C_{4}, D_{1}, \ldots, D_{4}$, defined with respect to $Q_{i}=P_{i}$ for $i \in\{1, \ldots, 8\}$.
Let $T=\left\{c_{1}, \ldots, c_{12}\right\}$ be a clique of size twelve that does not contain any pairs. By Proposition 4.27, after changing the indexes if necessary, there is an element $g \in G$ such that $c_{i}=g\left(e_{i}\right)$ for $i \in\{1, \ldots, 12\}$. Let $E_{i}^{\prime}=g\left(E_{i}\right)$. Then, since the E_{i}^{\prime} are pairwise disjoint, by Lemma 3.9 we can blow down $E_{1}^{\prime}, \ldots, E_{8}^{\prime}$ to points $R_{1}, \ldots, R_{8} \in \mathbb{P}^{2}$ that are in general position, such that X is the blow-up of \mathbb{P}^{2} at R_{1}, \ldots, R_{8}, and E_{i}^{\prime} is the class in Pic X of the exceptional curve above R_{i} for all i. By the bijection in Remark 3.12, the elements c_{1}, \ldots, c_{10} are the classes of the strict transforms of $L_{1}, L_{2}, C_{1}, \ldots, C_{4}, D_{1}, \ldots, D_{4}$ defined with respect to $Q_{i}=R_{i}$ for $i \in\{1, \ldots, 8\}$. From Proposition 4.29 it follows that the curves corresponding to c_{1}, \ldots, c_{10} can not all go through one point.
Since every set of twelve exceptional curves without pairs corresponds to a clique of size twelve without pairs, we conclude that the number of exceptional curves going through one point outside the ramification curve of φ is less than twelve.
Let K be a clique of size eleven without pairs. By Lemma 4.31, K is contained in a clique of size twelve without pairs, say H. As we just showed, the clique H contains a set of ten classes $\left\{d_{1}, \ldots, d_{10}\right\}$ such that the corresponding curves do not all go trough one point. By Corollary 4.28, there is an element g in G_{H} such that K contains $g\left(d_{1}\right), \ldots, g\left(d_{10}\right)$. But then, as we did above, we can blow down $g\left(E_{1}\right), \ldots, g\left(E_{8}\right)$, such that $g\left(d_{1}\right), \ldots, g\left(d_{10}\right)$ are the classes of the strict transforms of $L_{1}, L_{2}, C_{1}, \ldots, C_{4}, D_{1}, \ldots, D_{4}$ defined with respect to $Q_{i}=g\left(E_{i}\right)$ for $i \in\{1, \ldots, 8\}$, which can not all go through one point. We conclude that the elements in K can not all go through one point, so the maximum is less than eleven.

Proof of Theorem 2.

By Lemma 4.26, the number of exceptional curves that go through one point outside the branch curve of X is at most twelve. If char $k=0$, it is at most ten by Proposition 4.32 .

The following example is in [SvL14].
Example 4.33. Assume that the characteristic of k is unequal to 2,3 and 5 . Let $\beta, \delta \in k^{*}$, and let S be the surface in $\mathbb{P}(2,3,1,1)$ given by

$$
y^{2}=x^{3}+f(z, w) x+g(z, w)
$$

where

$$
f=-27\left(\beta^{4}+12 \beta^{3}+14 \beta^{2}-12 \beta+1\right) w^{4}
$$

and

$$
g=\delta z^{5} w+54\left(\beta^{2}+1\right)\left(\beta^{4}+18 \beta^{3}+74 \beta^{2}-18 \beta+1\right) w^{6}
$$

Assume that S is smooth, so it is a del Pezzo surface of degree one. Consider the point $Q=\left(x_{0}: y_{0}: 0: 1\right) \in S$ with $x_{0}=3\left(\beta^{2}+6 \beta+1\right)$, and $y_{0}=108 \beta$. Note that Q is outside that ramification curve of φ, since $y_{0} \neq 0$.
Let α, ε be in a field extension of k such that $\alpha^{2}=\alpha+1$ and $\delta=-6\left(\beta+\alpha^{5}\right) \varepsilon^{5}$. Since char $k \neq 2,3,5$, there are ten such pairs (α, ε). Now consider the curve $C_{\alpha, \varepsilon}$ in $\mathbb{P}(2,3,1,1)$ defined by

$$
x=\varepsilon^{2} z^{2}+6 \alpha \varepsilon z w+x_{0} w^{2}
$$

$$
y=-\varepsilon^{3} z^{3}+3(\beta+2 \alpha+3) \varepsilon^{2} z^{2} w+18 \alpha(\beta+1) \varepsilon z w^{2}+y_{0} w^{3}
$$

Let μ be the restriction to $U=\mathbb{P}(2,3,1,1)-\{z=w=0\}$ of the projection $\mathbb{P}(2,3,1,1) \rightarrow \mathbb{P}_{k(\alpha, \varepsilon)}^{1}$ on the last two coordinates. By Lemma 2.1 in [SvL14, the curve $C_{\alpha, \varepsilon}$ is a section of μ. Moreover, it is a quick check that $C_{\alpha, \varepsilon}$ is contained in S, so from Lemma 2.2 in [SvL14] it follows that $C_{\alpha, \varepsilon}$ is an exceptional curve in S over $k(\alpha, \varepsilon)$. It is easy to see that Q is contained in $C_{\alpha, \varepsilon}$. Since there are ten pairs (α, ε), we conclude there are ten exceptional curves through Q over a field extension of k.

References

[CO99] P. Cragnolini and P.A. Oliverio. Lines on del Pezzo surfaces with $K_{S}^{2}=1$ in characteristic $\neq 2$. Communications in Algebra, 27(3):1197-1206, 1999.
[Dem80] Michel Demazure. Séminaire sur les Singularités des Surfaces. Number 777 in Lecture Notes in Mathematics. Springer-Verlag, 1980. Seminar held at the Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau, 1976-1977.
[Har77] Robin Hartshorne. Algebraic Geometry. Number 52 in Graduate Texts in Mathematics. Springer-Verlag New York Inc., 1977.
[HS00] M. Hindry and J. Silverman. Diophantine Geometry - An Introduction. Number 201 in Graduate Texts in Mathematics. Springer-Verlag New York Inc., 2000.
[Kol96] János Kollár. Rational Curves on Algebraic Varieties. Number 32 in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer-Verlag Berlin Heidelberg, 1996.
[Man74] Yuri I. Manin. Cubic Forms - Algebra, Geometry, Arithmetic. North Holland Publishing Company, 1974.
[Pie] M. Pieropan. On the unirationality of del Pezzo surfaces over an arbitrary field. http://www.algant.eu/documents/theses/pieropan.pdf. ALGANT master's thesis.
[Rei88] M. Reid. Undergraduate Algebraic Geometry. Number 12 in London Mathematical Society Student Texts. Cambridge University Press, 1988.
[STVAar] C. Salgado, D. Testa, and A. Várilly-Alvarado. On the unirationality of del Pezzo surfaces of degree two. Journal of the London Mathematical Society, to appear. arXiv:1304.6798.
[SvL14] C. Salgado and R. van Luijk. Density of rational points on del Pezzo surfaces of degree one. Advances in Mathematics, 261:154-199, 2014.
[TVAV09] D. Testa, A. Várilly-Alvarado, and M. Velasco. Cox rings of degree one del Pezzo surfaces. Algebra Number Theory, 3(7):729-761, 2009.
[VA] A. Várilly-Alvarado. Arithmetic of del Pezzo surfaces. http://math.rice.edu/ av15/Files/LeidenLectures.pdf. Series of lectures on the arithmetic of del Pezzo surfaces at Leiden University, October 2010.

