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Introduction.

Lector, intende: laetaberis.

Apuleius, The Metamorphoses.

This work is concerned with the formulation of a notion ofmodel topos, intended as a model-categorical
version of the classical concept of Grothendieck topos. Such a definition will be sensible enough to estab-
lish a Giraud-type Theorem for model topoi, as stated in the unpublished note Toposes and Homotopy
Toposes by Charles Rezk ([Rzk1]). Our work is indeed an attempt of providing an account to the first
part of that preprint. In general, we follow Rezk’s statements and proofs, trying to fill in some non-trivial
details still missing in his abovementioned exposition (see the abstract of [Rzk1] and the introductions
to the various chapters below).

Classically, a Grothendieck topos is defined as a category which is equivalent to the category of sheaves
Sh(C , τ) on a Grothendieck site (C , τ). Here, a Grothendieck site consists of a small category C equipped
with a Grothendieck topology τ and a sheaf on a Grothendieck site (C , τ) is a particular kind of functor
C op −→ Set (a presheaf on C ) satisfying suitable amalgamation conditions for matching families of its
sections. Such a notion of sheaves appears, for instance, in [SGA3], Exposé IV and is well-known to many
sorts of mathematicians, including (algebraic) geometers, topologists, analysts and logicians.

Despite their wide applications to the various fields of Mathematics, Grothendieck topoi are very
interesting also when considered as purely categorical objects1. Indeed, they enjoy a lot of nice and
desirable categorical properties. As categories, they are, for example, complete and cocomplete, cartesian
and locally cartesian closed, locally presentable and they admit a subobject classifier. However, at least
at first sight, Grothendieck topoi seem rather hard to detect. Indeed, to prove that a category E is a
Grothendieck topos one has to build a Grothendieck topology τ on a small category C and exhibit an
equivalence of categories E ' Sh(C , τ). It would then be important to have a (quicker) criterion to
establish if a category is a Grothendieck topos, by checking whether it satisfies some internal properties
or not.

This task is accomplished by the so-called Giraud’s Theorem. One of the possible statements of such
a result says that a cocomplete and finitely complete category E is a Grothendieck topos if and only
if it has a small set of generators and it satisfies weak descent, the latter being a request about cer-
tain compatibility conditions between colimits and pullbacks in E . This version of Giraud’s theorem is
proven in [Rzk1]. Here, however, the definition of a Grothendieck topos is not given using the concept
of sheaves for a Grothendieck topology. Indeed, Rezk defines a category Sh(C ) of sheaves on a site to
be a replete and reflective subcategory of PSh(C ) (for a small category C ) admitting a left exact reflector.

Albeit being equivalent to the more traditional one, such a definition shows clearly the role played
by the notion of a Grothendieck topos in a more general categorical framework. Indeed, declare that
a category has (categorical) small presentation if it is equivalent to a reflective subcategory PSh(C )S
of S-local objects in PSh(C ), for some set S of maps in PSh(C ). Here, given a class T of arrows in a
category D , a T−local object is an object W in D whose associated representable functor Hom(−,W )
sends elements of T into isomorphisms of sets (that is, upon “homming”, W sees elements of T as isomor-
phisms). Subcategories of the form PSh(C )S are actual localizations of PSh(C ) and, up to equivalences
of categories, they exhaust all locally presentable categories. On the other hand, Grothendieck topoi are
(again up to equivalences) exactly all those categories admitting a small presentation with a left exact

1 Which is exactly what we will do in this work.

4



reflector.

Such a perspective on the notion of a Grothendieck topos has the great advantage to make a model-
theoretical generalization of the topos-theoretical setting relatively straightforward and transparent. Pass-
ing to the model-categorical world, given a small category C one substitutes the presheaf category PSh(C )
with the category sPsh(C ) of simplicial presheaves, endowed with the projective model structure. One then
says that a model category has (homotopical) small presentation if it is Quillen equivalent to sPsh(C )S ,
where C is a small category, S is a small set of maps in sPsh(C ) and sPsh(C )S denotes the left Bousfield
localization of sPsh(C ) with respect of S. At this level, there are already a lot of homotopical (that is,
model-categorical) counterparts to classical results in ordinary category theory. For example, as PSh(C )
is the free cocompletion of C under colimits, so sPsh(C ) is the free cocompletion of C under homotopy
colimits (what is called the universal homotopy theory on C in [Dug1]). Similarly, as every locally pre-
sentable category admits categorical small presentation, so every combinatorial model category admits
homotopical small presentation ([Dug2]).

For technical reasons, one actually needs to consider a slight variation on the above setting, taking,
for a small simplicial category C, the model category sPsh(C) of simplicial functors Cop −→ sSet and
its left Bousfield localizations. Coherently, one talks about small simplicial presentation for a model
category. With this machinery at hand, a model site is defined to be a pair (C, S), where C is a small
simplicial category and S is a small set of maps in sPsh(C) such that the (simplicial) left adjoint to the
inclusion of sPsh(C)S is homotopically left exact, i.e. it preserves homotopy pullback squares. A model
topos is then a model category which is Quillen equivalent to sPsh(C)S for some model site (C, S).

Within this model-categorical generalization of topos Theory, one can finally get also the announced
Giraud’s Theorem for model topoi : a model category E is a model topos if and only if it has small simplicial
presentation and it satisfies descent. This latter property is, of course, the homotopical correction of weak
descent for ordinary categories and consequently it says that in E homotopy colimits are well-behaved
with respect to homotopy pullbacks. As in the case of its categorical counterpart, this property is exactly
what is needed to turn a model category presented via generators and relations (i.e. as a Bousfield
localization of a category of simplicial presheaves) into a model topos, which explains its preeminent role
in Giraud’s Theorem.

Organization of the work.

This work is divided in essentially two parts.

The first block (from Chapter 1 to Chapter 3) covers some elements from ordinary Topos Theory.
In Chapter 1, we define Grothendieck topoi (up to equivalences of categories) as (replete and) reflective
subcategories of presheaves categories with left exact reflector and we explore some of their properties,
such as the existence of an orthogonal factorization system in every Grothendieck topos. We also consider
the property of having small presentation for a category and show that every locally presentable category
verifies it. Chapter 2 introduces the notion of weak descent for a cocomplete and finitely complete cate-
gory D . We then prove Giraud’s Theorem for Grothendieck topoi: every Grothendieck topos has a small
set of generators and satisfies weak descent and these two properties being both true in D imply that D
actually is a Grothendieck topos. Some of the results in this chapter will be rather technical. Finally,
in Chapter 3 we define Grothendieck (pre)topologies and sheaves on a Grothendieck site and establish
the equivalence between our notion of a Grothendieck topos and the more usual one which is given using
those concepts.

The second part of our work (from Chapter 4 to Chapter 6) is concerned with the model-categorical
counterparts to the main results in the first chapters. In Chapter 4, we revise all the notions from the
theory of model categories that we are going to use, focusing on definitions and statements rather than
proofs, for which we essentially defer to the authoritative references given by [Hir1] and [Hov]. Once the
needed concepts are settled, in Chapter 5 we start homotopifying the categorical notions we need. First
of all, we develop some of the theory of localizations for model categories. Then, following [Dug1] and
[Dug2], we try to explain in which sense simplicial presheaves on a small category I play an analogue role
to that of presheaves on I , namely, they are the universal homotopy theory built from I . Furthermore,
we define what it means for a model category to have small (simplicial) presentation and prove that every
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(simplicial) combinatorial model category verifies this property. Finally, the core of our work comes in
the last chapter, where we define model topoi and, using the descent properties for a model category, we
give a model-categorical version of Giraud’s Theorem.

Prerequisites and Conventions.
Throughout our work, we will freely use the basic tools from Category Theory, so that the reader is

assumed to be acquainted with them. Although this assertion is deliberately vague, we do mean to in-
clude (co)ends and Kan extensions among the concepts the reader should be familiar with. Nevertheless,
we shall recall some categorical notions from time to time, in order to fix terminology and point out some
properties we may need. The author’s suggestions for a background in Category Theory keep on being
the classical works [McL] and [Bor1].

In dealing with simplicial (model) categories, we will also need some machinery from Enriched Cate-
gory Theory. Again, we will review some concepts and results every now and then, but we will not give
a full account of the subject, for which we refer to [Kel]. For the reader who is not comfortable with this
branch of Category Theory, it would be enough to know that a simplicial category is a category having,
for each pair of objects, a simplicial set (and not just a set) of morphisms. These morphisms can be
composed via a composition law which is a map of simplicial sets. Most of the basic results in ordinary
Category Theory carry over to the simplicial setting once all the concepts around are substituted by
their enriched version (so that “functors” become “simplicial functors”, “natural transformations” become
“simplicial natural transformations” and so on).

A little smattering of classical (simplicial) homotopy theory may prove also useful, especially to un-
derstand some of the examples about topological spaces and simplicial sets as well as the classical model
structures on both categories. The material present in §2.4 and in Chapter 3 of [Hov] should be by far
enough for these purposes.

As for conventions, unless differently stated, in this work by a category C we will mean a locally small
category, that is, for every couple of objects A,B ∈ C , HomC (A,B) = C (A,B) is a set, with respect to
some fixed Grothendieck Universe U . We will call U−sets simply sets or small sets and U−classes simply
classes. From time to time we will actually need to consider possibly large categories and in those cases
we shall try to point out the issue. We will denote categories using capital script letters like C , D or E .
The letters M and N will usually denote model categories. The symbol “∼=” will be reserved to indicate
isomorphisms (between objects in a category or between categories). If C and D are categories, we will
write C ' D to mean that they are equivalent.

Given a category D , Mor(D) will denote the class of morphisms in D , while Arr(D) will be the arrow
category of D , so that Ob(Arr(D)) = Mor(D). If C is a small category and D is a category, the category
of all functors from C to D will be denoted by DC . When D = Set, the category SetC op

will usually
be displayed as PSh(C ) and its objects will be called presheaves on C . In this case, we will indicate the
Yoneda embedding C −→ SetC op

as

y : C −→ PSh(C ), A 7→ C (−, A).

6
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Chapter 1

Grothendieck Topoi.

The introduction of the cipher 0 or the group
concept was general nonsense, too, and for
a thousand years or two mathematics was
more or less stagnating, because nobody was
around to make such childish steps.

Alexander Grothendieck,
Letter to Ronald Brown, 05/05/1982

We begin our work by introducing the concept of Grothendieck topos, defined as a category which
is equivalent to the category of sheaves on a site. Despite the terminology, our definition may appear
unconventional, at least at a first sight. For us, indeed, a category of sheaves on a site will simply be any
reflective subcategory of a presheaf category with a left exact reflector (see Section 1.1). This is tanta-
mount to say that a category of sheaves is a left exact localization of a presheaf category PSh(C ) (for a
small category C ) identifiable with a full subcategory of S-local objects in PSh(C ), where S is a small set
of morphisms of presheaves (see Section 1.2). We will defer the proof that our notion of Grothendieck
topos coincides with the more traditional one (given in terms of Grothendieck topologies) to Chapter 3.
We will instead see how to deduce from our purely categorical description of Grothendieck topoi, some
of their basic properties, such as the existence of a functorial orthogonal factorization system consisting
of the classes of all monomorphisms and of all regular epimorphisms (see Section 1.3).

This chapter is essentially an expanded version of Section 1 in [Rzk1]. In particular, Section 1.2 below,
although containing well-established results, arises from our attempt of understanding and working on
Remark 1.7 of [Rzk1].

1.1 An uncoventional definition.

Let us start by recalling a couple of general notions that we are going to need immediately.

Definition 1.1.1. Let B be a category and D a subcategory.

1. We say that D is replete (in B ) if for any X in D and any isomorphism f : X
∼=→ Y in B, both f

and Y are in D .

2. We say that D is a reflective subcategory of B if it is full and the inclusion functor of D into B
has a left adjoint, which will be called the reflector (of B into D).

Remark 1.1.2. (i) The definition of a replete subcategory is symmetric in the sense that a subcategory
D ⊆ B is replete if and only if, for each Y ∈ D and any isomorphism f : X

∼=→ Y , both f and X
are in D .

(ii) If D is a full subcategory of B, then D is replete if and only if each object in B which is isomorphic
to an object in D is itself in D .

8



(iii) Let P : A −→ B be a functor between categories and declare that P is an isofibration if, for all
objects A ∈ A and any isomorphism ϕ : P (A)

∼=→ B (for some B ∈ B), there exists an isomorphism
ψ : A

∼=→ A′ such that P (ψ) = ϕ. Then a subcategory D of B is replete if and only if the inclusion
of D in B is an isofibration.

Definition 1.1.3. 1. A pseudo-site is a pair (C ,Sh(C )), where C is a small category and Sh(C ) is a
replete and reflective subcategory of PSh(C ). An object of Sh(C ) is called a pseudo-sheaf on the
pseudo-site (C ,Sh(C )).

2. A site is a pseudo-site (C ,Sh(C )) such that the left adjoint a : PSh(C ) −→ Sh(C ) to the inclusion
functor i : Sh(C ) −→ PSh(C ) is left exact. An object of Sh(C ) is called a sheaf on the site
(C ,Sh(C )).

3. A presentable category is a category D which is equivalent to the category of pseudo-sheaves on
some pseudo-site.

4. A (Grothendieck) topos is a category E which is equivalent to the category of sheaves on some site.

Example 1.1.4. Let (X, τ) be a topological space and let Op(X) be the category associated to the poset
(τ,⊆). Let now F ∈ PSh(X) := PSh(Op(X)) and take any open subset U of X and any covering (Ui)i∈I
of U , where each Ui is open and contained in U . We have a map of sets

e : F (U)→
∏
i∈I

F (Ui)

sending s ∈ F (U) to the element (s|Ui)i∈I in the product.1 We also have two maps

∏
i∈I

F (Ui)
∏

(i,j)∈I2

F (Ui ∩ Uj)
p //∏

i∈I
F (Ui)

∏
(i,j)∈I2

F (Ui ∩ Uj)
q

//

induced by the family of maps

F (Ui ∩ Uj ⊆ Ui) : F (Ui)→ F (Ui ∩ Uj) and F (Ui ∩ Uj ⊆ Uj) : F (Uj)→ F (Ui ∩ Uj) (1.1)

respectively. Since p ◦ e = q ◦ e, we can actually see e as a map

e : F (U)→ eq

( ∏
i∈I

F (Ui)
∏

(i,j)∈I2

F (Ui ∩ Uj)
p //∏

i∈I
F (Ui)

∏
(i,j)∈I2

F (Ui ∩ Uj)
q

//

)
.

One defines the category Sh(X) of sheaves over X as the full subcategory of PSh(X) = PSh(Op(X))
given by those F : Op(X)op −→ Set such that, for all open subsets U of X and every open covering
(Ui)i∈I of U as above, the map e is an isomorphism:

e : F (U)
∼=−→ eq

( ∏
i∈I

F (Ui)
∏

(i,j)∈I2

F (Ui ∩ Uj)
p //∏

i∈I
F (Ui)

∏
(i,j)∈I2

F (Ui ∩ Uj)
q

//

)
. (1.2)

It is a classical result in sheaf theory (see, for example, [McMo] §II.5, Corollary 4) that the inclusion of
Sh(X) in PSh(X) admits a left adjoint a, called the sheafification functor, which commutes with finite
limits, so that Sh(X) is a Grothendieck topos.

Example 1.1.5. Let T be a small category with finite coproducts, so that T op is an algebraic theory,
i.e. a small category admitting finite products.2 Let Alg(T op) be the category of algebras over T op,
i.e the full subcategory of PSh(T ) consisting of those presheaves which preserve finite products. Clearly
Alg(T op) is a replete subcategory of PSh(T ). Actually, it can be shown (see [ARV] Proposition 6.17) that
Alg(T op) is a reflective subcategory of PSh(T ) (closed under sifted colimits). The proof of this statement
goes along the following lines. Firstly, one realises that the Yoneda embedding y : T −→ PSh(T ) is such
that, for all A ∈ T , y(A) ∈ Alg(T op). Thus, we can co-restrict the Yoneda embedding to get a functor

yT op : T −→ Alg(T op).

1 As it is customary in this context, s|Ui denotes the restriction of s to F (Ui), i.e. s|Ui = F (Ui ⊆ U)(s).
2 Here we take the definition of an algebraic theory as given in [AdRo] so that, in particular, we do not require algebraic

theories to have a (essentially) countable set of objects.
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Since Alg(T op) is cocomplete, one can construct a functor a : PSh(T ) −→ Alg(T op) as the left Kan
extension of yT op along the (usual) Yoneda embedding y (see Definition 2.2.14 and Remark 2.2.15
below). Such an a is then a left adjoint for the functor Alg(T op)(yT op(−), •) : Alg(T op) −→ PSh(T )
which sends F ∈ Alg(T op) to the presheaf Alg(T op)(yT op(−), F ). By Yoneda’s lemma, this functor
Alg(T op)(yT op(−), •) is isomorphic to the inclusion of Alg(T op) into PSh(T ). Therefore, Alg(T op) is
a presentable category.

Example 1.1.6. Every Grothendieck topos is a presentable category by definition, but the converse
does not hold. An example is provided by the category of algebras over T op, where T op is given by
the full subcategory of Abop consisting of the objects Zn, for n ∈ N. By Example 1.1.5, we know that
(T op, Alg(T op)) is a pseudo-site. The point now is that Alg(T op) is equivalent to the category of
abelian groups (see [ARV] Example 1.11). Indeed, given an abelian group G, we can define an algebra Ĝ
over T op as

Ĝ := Ab(−, G)|T op ,

the restriction of the representable functor associated to G to our subcategory T op. We then get a functor
(̂−) : Ab −→ Alg(T op) which is fully faithful. Moreover, given an algebra F over T op, we can consider
the abelian group G whose underlying set is F (Z) and whose multiplication is given by the image under
F of the diagonal morphism Z→ Z2 in T . Since F preserves products, F is isomorphic to Ĝ. Therefore,
Alg(T op) is equivalent to Ab, so that, in particular, it is a non-trivial abelian category (i.e. an abelian
category which is not equivalent to the terminal (abelian) category 1). This prevents Alg(T op) from
being a Grothendieck topos because a Grothendieck topos needs to be cartesian closed (see Theorem
1.1.11 below) and the only cartesian closed category having a zero object (up to equivalence) is the
terminal category.3

The following result characterises pseudo-sheaves among presheaves.

Lemma 1.1.7. Let (C ,Sh(C )) be a pseudo-site and let i : Sh(C ) −→ PSh(C ) be the inclusion, with left
adjoint a : PSh(C ) −→ Sh(C ).

1. For every F ∈ Sh(C ), the counit map εF : a(i(F )) =⇒ F is an isomorphism.

2. The following are equivalent, for F ∈ PSh(C ):

(2a) F ∈ Sh(C );

(2b) for all τ : A =⇒ B in PSh(C ), if a(τ) : a(A) =⇒ a(B) is an isomorphism in Sh(C ), then
PSh(τ, F ) : PSh(C )(B,F )→ PSh(C )(A,F ) is an isomorphism in Set;

(2c) the unit map ηF : F =⇒ i(a(F )) is an isomorphism in PSh(C ).

Proof. 1. This follows as the inclusion functor is fully faithful (see [McL] §IV.3, Theorem 1).

2. We prove that (2a) =⇒ (2b) =⇒ (2c) =⇒ (2a).

• (2a) =⇒ (2b). Take τ : A =⇒ B in PSh(C ) such that a(τ) : a(A) =⇒ a(B) is an isomorphism
of pseudo-sheaves. In the commutative diagram

PSh(C )(B,F ) PSh(C )(A,F )
PSh(τ,F )

//

Sh(C )(a(B), F )

PSh(C )(B,F )

∼=

��

Sh(C )(a(B), F ) Sh(C )(a(A), F )
−◦a(τ) // Sh(C )(a(A), F )

PSh(C )(A,F )

∼=

��

the top row is an isomorphism of sets, as a(τ) is an isomorphism, so also the bottom row is
such.

3 If D is a cartesian closed category with a zero object 0, then, for all objects X ∈ D ,

0 ∼= 0×X ∼= X,

where the first isomorphism follows because −×X commutes with colimits (being a left adjoint), while the second is due
to 0 being terminal.
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• (2b) =⇒ (2c). By the triangular identities for adjunctions, εa(F ) ◦ a(ηF ) = 1a(F ). Since a(F )
is a pseudo-sheaf, εa(F ) is an isomorphism, hence also a(ηF ) is such. By hypothesis, we have
an isomorphism of sets

− ◦ ηF : PSh(C )(a(F ), F )
∼=−→ PSh(C )(F, F ),

where we wrote a(F ) instead of a(i(F )). This means that there is a natural transformation
σ : a(F ) =⇒ F such that σ ◦ ηF = 1F . But now the diagram

Sh(C )(a(F ), a(F )) PSh(C )(F, a(F ))
ϕ

//

PSh(C )(a(F ), F )

Sh(C )(a(F ), a(F ))

ηF ◦−

��

PSh(C )(a(F ), F ) Sh(C )(F, F )
−◦ηF // Sh(C )(F, F )

PSh(C )(F, a(F ))

ηF ◦−

��

commutes. Here ϕ is the adjoint isomorphism (i(aF ) = aF ) and commutativity follows as, for
all β ∈ PSh(C )(a(F ), F ),

ϕ(ηF ◦ β) = (ηF ◦ β) ◦ ηF = ηF ◦ (β ◦ ηF ),

where the first equality follows by the description of ϕ in terms of the unit of the adjunction4.
Taking β = σ, we get ϕ(ηF ◦ σ) = ϕ(1a(F )), so ηF ◦ σ = 1a(F ), i.e. ηF is an isomorphism.

• (2c) =⇒ (2a). This follows trivially, as Sh(C ) is closed under isomorphisms in PSh(C ).

Proposition 1.1.8. A presentable category is complete and cocomplete.

Proof. Any reflective and replete subcategory D of a complete and cocomplete category B is itself
complete and cocomplete5. Limits in D coincide with those in B, whereas the colimit of a functor
F : I −→ D is given by

a(colim iF ),

where i : D −→ B is the inclusion functor and a : B −→ D is its left adjoint. This suffices to give the
desired result.

Presentable categories are rich enough to give Adjoint Functor Theorems the simplest formulation
they can have. Namely, we have the following

Proposition 1.1.9. Let E be a presentable category. A functor F : E op −→ Set is representable by an
object of E if and only if it commutes with limits (computed in E op).

Proof. The property of commuting with limits is clearly necessary for a functor to be representable. To
prove that it is also sufficient, we start by considering first the case when E = PSh(C ) for a small category
C . Let then F : PSh(C )op −→ Set be a limit-preserving functor and define a presheaf X on C by setting
X := Fy, where y : C −→ PSh(C ) is the Yoneda embedding. Now, we have that

X ∼= colimEl(X) yU,

where El(X) is the category of elements of X (objects in El(X) are pairs (xA, A), where A is an object of
C and xA ∈ X(A), whereas morphisms (xA, A)→ (xB , B) in El(X) are morphisms s : A→ B in C such
that (Xs)(xB) = xA) and U : El(X) −→ C is the forgetful functor sending an object (xA, A) of El(X)
to A ∈ C . Therefore, using the hypothesis on F , we have the following chain of natural isomorphisms

F (X) ∼= F (colimEl(X) yU) ∼= limEl(X) F (yU) ∼= limEl(X) PSh(C )(yU,X),

where the last isomorphism is given by Yoneda’s Lemma, as, for all object (xA, A) of El(X), one has

(F (yU))(A) = (Fy)(A) ∼= PSh(C )(C (−, A), Fy) = PSh(C )((yU)(xA, A), X).

4 Suppose given an adjunction L : C � D : R (left adjoint on the left) with adjunction isomorphism ϕ =
ϕX,A : D(LX,A) ∼= C (X,RA) and unit η = ηX , for X ∈ C and A ∈ D . Then, for any morphism f : LX → A in D ,
one has ϕX,A(f) = R(f) ◦ ηX .

5 See [Bor1], Proposition 3.5.4 and Proposition 3.5.5 (note that the author there assumes every reflective category to be
replete by definition).
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Again by Yoneda’s Lemma, for all (xA, A) ∈ El(X), we have a uniquely determined morphism (natural
transformation) u(xA,A) : (yU)(xA, A) =⇒ X and these morphisms form the (xA, A)-th coordinate of an
element u ∈ limEl(X) PSh(C )(yU,X) ∈ Set (just by definition of the arrows in El(X)). We can then
define a map of sets, for all Y ∈ PSh(C ), given by

ϕ = ϕY : PSh(C )(Y,X) −→ F (Y ), τ 7→ (Fτ)(u).

It is easy to see that such a map is natural in Y ∈ PSh(C ). We claim that actually ϕY is an isomorphism
for all Y ∈ PSh(C ). Indeed, this is evidently true when Y = y(C) for C ∈ C (this is Yoneda’s Lemma).
On the other hand, an arbitrary Y ∈ PSh(C ) is a colimit of representables and both F and PSh(C )(−, X)
preserves limits (seen as functors from E op and from C op respectively). We then conclude that ϕ is an
isomorphism.

Assume now that E = Sh(C ) is the subcategory of pseudo-sheaves for a pseudo-site (C ,Sh(C )) and
let a : PSh(C ) −→ Sh(C ) be the left adjoint to the inclusion of Sh(C ) into PSh(C ). Given a functor
F : Sh(C )op −→ Set which commutes with limits, by what we have already proved, Fa : PSh(C )op −→
Set is representable by a presheaf X. If τ : Y =⇒ Z is a morphism of presheaves such that a(τ) is
an isomorphism, then PSh(C )(τ,X) is also an isomorphism, as it is the composite ϕ−1

Y F (aτ)ϕZ , where
ϕ : PSh(C )(−, X) =⇒ Fa is the natural transformation defined above. Therefore, by Lemma 1.1.7,
X ∈ Sh(C ). Since, for all pseudo-sheaf W , Sh(C )(W,X) ∼= F (a(iW )) ∼= F (W ), we get that F is
represented by the pseudo-sheaf X. This completes the proof.

Corollary 1.1.10. Let E be a presentable category and D an arbitrary category. A functor L : E −→ D
has a right adjoint if and only if it preserves small colimits.

Proof. Again the condition of preserving colimits is well-known to be necessary. Suppose then that a
functor L as in the statement preserves all small colimits. The existence of a right adjoint R : D −→ E
for L is equivalent to the existence, for all Y ∈ D of an object RY ∈ E such that the functor

D(L(−), Y ) : E op −→ Set

is represented by RY . Since L preserves colimits, D(L(−), Y ) clearly preserves limits and we can conclude
by Proposition 1.1.9 above.

As a further corollary, we can show the following

Theorem 1.1.11. A Grothendieck topos E is a cartesian closed category.

Proof. In view of the above Corollary, it is enough to prove that, for each fixed Y ∈ E , the functor
(−) × Y : E −→ E preserves colimits. This is clearly true when E = Set (as Set is a cartesian closed
category) and therefore it is also true for E = PSh(C ) for any small category C (because colimits in
PSh(C ) are computed objectwise). To show the required property for a general Grothendieck topos E , it
is enough to prove it for E = Sh(C ), where Sh(C ) is such that (C ,Sh(C )) is a site. Given Y ∈ Sh(C ), the
fact that (−)×Y : Sh(C ) −→ Sh(C ) preserves colimits is now an immediate consequence of left-exactness
of the left adjoint a to the inclusion i : Sh(C ) −→ PSh(C ). Indeed, if F : J −→ Sh(C ) is a functor with
J small, then we have

(colimj∈J F (j))× Y ∼= a
(
colimj∈J (iF )(j)

)
× Y

(†)∼= a
(
colimj∈J (iF )(j)

)
× aiY ∼=

∼= a
(
(colimj∈J (iF )(j))× iY

) (‡)∼= a
(
colimj∈J ((iF )(j)× iY )

) ∼= colimj∈J (F (j)× Y ),

where the first and the last isomorphisms are given by how colimits are computed in Sh(C ), (†) holds
because Y ∈ Sh(C ) and (‡) follows as the endofunctor −× iY : PSh(C ) −→ PSh(C ) preserves colimits.

12



1.2 Locally presentable categories.

Our Lemma 1.1.7 above produces some criterions to recognise whether a presheaf over a category C
belongs to a subcategory of pseudo-sheaves. Actually, a careful examination of both the statement and
the proof of Lemma 1.1.7 shows that an identical result carries over to arbitrary reflective and replete
subcategories D of a category C . Namely, we can make the following

Remark 1.2.1. If i : D −→ C is the inclusion of a replete, reflective subcategory with left adjoint
a : C −→ D , then the counit of the adjunction is always an isomorphism, while an object X of C actually
belongs to D precisely when the X−th component of the unit is also an isomorphism. This, in turn, is
the case if and only if, for all morphisms f : A → B in C such that a(f) is an isomorphism, the map of
sets given by

C (f,X) : C (B,X)→ C (A,X)

is a bijection.

With this observation in mind, we can now prove a result which shows the local nature of reflective
subcategories. Before doing this, let us first agree on what we mean by a localization of a category at a
class of morphisms.

Definition 1.2.2. Let C be a category and S a class of morphisms in C . A (nonstrict) localization of
C at S is a pair

(C [S−1], γ : C −→ C [S−1]),

where C [S−1] is a (possibly large) category and γ is a functor satisfying the following properties:

L1. for each morphism s ∈ S, γ(s) is invertible in C [S−1];

L2. given any functor F : C −→ B such that, for all s ∈ S, F (s) is invertible in B, there exist a functor
FS : C [S−1] −→ B and a natural isomorphism ψ : F

∼=
=⇒ FSγ;

L3. given any category B the functor between (possibly large) functor categories

− ◦ γ : C [S−1]B −→ C B

is fully faithful. (So that, in particular, for every functor F : C −→ B as in L2. the functor FS is
essentially unique).

We can now give the following

Proposition 1.2.3. Let i : D −→ C be the inclusion of a reflective subcategory of C and let a : C −→ D
denote the left adjoint. Consider the class S consisting of all those morphisms f in C such that a(f) is
invertible in D . Then the following hold.

1. (D , a : C −→ D) is a localization of C at S.

2. Assume in addition that D is replete6 (see Definition 1.1.1) and let CS be the full subcategory of C
given by those objects X ∈ C such that, for all s ∈ S, C (s,X) is an isomorphism. Then D = CS.

Proof. We denote by η and ε the unit and the counit of the adjunction a a i respectively.

1. We check the three conditions in the Definition 1.2.2 of localization for the pair (D , a).

L1. This is trivially true by definition of the class S.

L2. Let us first observe that, for all X ∈ C , ηX : X → i(a(X)) belongs to S. Indeed, a(ηX) is
an isomorphism, as it has a left inverse εa(X) which is an isomorphism. Suppose then given a
functor F : C −→ B such that, for all s ∈ S, F (s) is invertible in B. Setting FS := F|D (the
restriction of F to the subcategory D), we get a natural isomorphism ψ : F =⇒ FSa given by
Fη.

6 This is not a strict requirement at all, as, if D is not replete, then closing up D for isomorphisms gives a full replete
subcategory D ′ of C which is easily seen to be again reflective in C .
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L3. Let B be a category and F,G : D −→ B be functors. Assume given τ, σ : F =⇒ G natural
transformations such that τa = σa : Fa =⇒ Ga. Then, using naturality of τ and of σ, we get,
for any A ∈ D ,

τA = G(εA)τa(i(A))F (εA)−1 = G(εA)σa(i(A))F (εA)−1 = σA,

so that τ = σ. On the other hand, suppose given a natural transformation τ : Fa =⇒ Ga.
Then the natural transformation σ : F =⇒ G defined, for A ∈ D , by σA := G(εA)τi(A)F (εA)−1

is such that, for all X ∈ C , σa(X) = τX , by naturality of τ . Therefore, σa = τ and L3. is
established.

2. This is essentially the content of Remark 1.2.1 above.

The second claim of the previous Proposition can be restated by saying that a replete and reflective
subcategory is the subcategory of S-local objects with respect to the class S of morphisms which are
inverted by the reflector. Indeed, we give the following

Definition 1.2.4. Let C be a category and S a class of morphisms in C . An object X ∈ C is called
S-local if, for every morphism s : A→ B in S, the map of sets

C (s,X) : C (B,X)→ C (A,X)

is an isomorphism. We denote by CS the full subcategory of C spanned by the S−local objects.

Note that CS is clearly a replete subcategory of C .

As usual, we are particularly interested in the specialisation of the above notion to categories of
presheaves.

Definition 1.2.5. A category D is said to admit small presentation if it is equivalent to PSh(C )S for
some small category C and some small set S of morphisms in PSh(C ).

Our concern for these particular kinds of subcategories of presheaves categories relies on the following
remarkable result, whose proof is the goal of the whole section.

Theorem 1.2.6. Categories admitting a small presentation are exactly the locally presentable categories.
More precisely, the following hold.

1. Let C be a small category and S ⊆ Mor(PSh(C )) a small set of morphisms in PSh(C ). Then
PSh(C )S is a reflective subcategory of PSh(C ), closed under limits in PSh(C ) and cocomplete.
Furthermore, PSh(C )S is a locally presentable category.

2. Every locally presentable category is equivalent to PSh(C )S for some small category C and some
small subset S of arrows in PSh(C ), i.e. every locally presentable category admits small presentation

Remark 1.2.7. In the situation of Theorem 1.2.6 (1), we get in particular that (C , PSh(C )S) is a
pseudo-site.

For the sake of a self-contained exposition, we will recall the needed notions and results to prove
Theorem 1.2.6. We shall follow the exposition of [AdRo].

We begin with a set-theoretic notion.

Definition 1.2.8. Let λ be a cardinal.

1. The cofinality of λ is the smallest ordinal7 α such that there is a map f : α → λ with unbounded
range. The cofinality of λ is denoted by cof(λ).

2. λ is called a regular cardinal if λ = cof(λ).
7 Recall that an ordinal is a set which is well-ordered by the membership relation ∈. Such an ordinal α is a limit ordinal

if it is not empty and α = ∪α. The class of all ordinals is well-ordered by the relation α < δ if and only if α ∈ δ, for ordinals
α and δ.
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For the rest of this section, λ will always denote a regular cardinal.

Definition 1.2.9. 1. A category D is called λ−filtered provided that every small subcategory of D
having less than λ morphisms admits a compatible cocone in D , i.e. given any small subcategory
I of D such that |Mor(I )| < λ, there exist an object B ∈ D and a family of morphisms

(fi : Ai → B)Ai∈Ob(I ),

such that, for all morphisms s : Ai → Aj in I , fj ◦ s = fi. A functor from a λ−filtered category is
called a λ−filtered diagram (or a λ−filtered functor). A λ-filtered colimit is a colimit of a λ−filtered
functor.

2. An object A of a category D is called λ−presentable if the Hom-functor HomD(A,−) preserves
λ−filtered colimits. An object A of D is presentable if it is λ−presentable for some regular cardinal
λ.

3. A category D is locally λ−presentable if it is cocomplete and has a small set A of λ−presentable
objects such that every object in D is a (small) λ−filtered colimit of objects in A. A category D is
locally presentable if it is locally λ−presentable for some regular cardinal λ.

4. A locally finitely presentable category is a locally ℵ0−presentable category.

Remark 1.2.10. Let us list some basic facts about presentable objects and locally presentable categories.

(i) An ℵ0−filtered category (resp. an ℵ0−filtered colimit) is a filtered category (resp. a filtered colimit)
in the usual sense.

(ii) We say that a poset (I,≤) is λ−directed if every subset of I having cardinality smaller than λ has
an upper bound in I. Similarly, one defines λ−directed diagrams and λ−directed colimits. It can
be proven that any λ−filtered colimit can be realised as a λ−directed colimit, so that we could
have given Definitions 1.2.9.2. and 1.2.9.3. above using λ−directed colimits instead of λ−filtered
colimits.

(iii) Suppose given a functor F : I −→ D , where D is any category and |Mor(I )| < λ (such a functor
is also called a λ−small diagram in D). If F (i) is a λ−presentable object in D for all objects i ∈ I
and if colimF exists in D , then colimF is a λ−presentable object. In particular, every object in a
locally λ−presentable category is presentable.

(iv) The condition on the subset A in the definition of a locally λ−presentable category D is satisfied
exactly when both the following properties are verified:

(a) every object of D is a λ−directed colimit of λ−presentable objects

and

(b) there exists, up to isomorphisms, only a small set of λ−presentable objects. More precisely,
consider the class of λ−presentable objects in D and the equivalence relation on it which
identifies two elements if they are isomorphic objects in D . Then any class obtained by
choosing a representative for every equivalence class is actually a small set.

We shall denote by Presλ(D) the full (small) subcategory generated by any of these essentially
unique sets of λ−presentable objects in a locally λ-presentable category D .

(v) Let D be a category and C be a small subcategory of D . For every object K ∈ D , we denote by
(C ↓ K) the full subcategory of the slice category (D ↓ K) having as objects all the morphisms
X → K in D , where X ∈ C . The canonical diagram of K with respect to C is the (obvious)
forgetful functor U : (C ↓ K) −→ D . We say that K is a canonical colimit of C -objects, if

(K, (f : U(f : X → K)→ K)f∈(C↓K))

is a colimit of U . Now, if D is a locally λ-presentable category, then for each object K of D , the
canonical diagram with respect to Presλ(D) is λ-filtered and K is its canonical colimit (see [AdRo],
Proposition 1.22 for a proof).

(vi) A locally presentable category is complete (and cocomplete).
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We now gather the most fundamental examples of locally (finitely) presentable categories for us.

Example 1.2.11. 1. Set is locally finitely presentable. Indeed, every finite set is finitely presentable,
each set is a directed colimit of its finite subsets and there exists, up to isomorphisms, only a small
set of finite subsets (the first infinite ordinal ω).

2. For every small category C , SetC (and hence also PSh(C )) is locally finitely presentable. In
particular, the category sSet of simplicial sets is locally presentable.

The linking bridge between categories admitting small presentations and locally presentable categories
is given by the following concept.

Definition 1.2.12. Let D be a category.

1. An object K ∈ D is said to be orthogonal to a morphism m : A → A′ provided that for each
morphism f : A→ K in D there exists a unique morphism f ′ : A′ → K such that f ′ ◦m = f , as in
the commutative diagram

A K
∀f //A

A′

m
��
A′

K

∃!f ′

CC

2. For each class S of morphisms in D we denote by S⊥ the full (replete) subcategory of D spanned
by those objects K which are orthogonal to each morphism in S.

3. A full subcategory of D is called an orthogonality class (resp. a small orthogonality class) provided
that it has the form S⊥ for a class (resp. a small set) S of morphisms of D .

The crucial (and quite trivial) observation we need is given by the following

Remark 1.2.13. By the very definition of being orthogonal to a morphism, a (small) orthogonality
class in a category D is given precisely by DS (see Definition 1.2.4) for some class (resp. small set) S of
morphisms in D . In other words, S⊥ = DS .

Lemma 1.2.14. An orthogonality class S⊥ in a category D is closed under all limits existing in D . In
particular, if D is complete, then so is S⊥.

Proof. Suppose that F : I −→ S⊥ is a functor having a limit

(L, (πi : L→ F (i))i∈I )

in D . Let f : A → L be a morphism in D and s : A → A′ be a morphism in S. Since each F (i) belongs
to S⊥, for every i ∈ I , we obtain a unique morphism fi : A

′ → F (i) such that πif = fis. Uniqueness of
such a fi guarantees that we get a compatible cone

(fi : A
′ → F (i))i∈I

over F with vertex A′. By definition of limit, there exists a unique f ′ : A′ → L such that, for all i ∈ I ,
πif
′ = fi, i.e. f ′s = f . This proves that L ∈ S⊥.

Orthogonality classes S⊥ associated to classes S of morphisms between presentable objects deserve a
special name

Definition 1.2.15. Let D be a category. An orthogonality class S⊥ in D is called a λ-orthogonality
class if every morphism in S has λ−presentable domain and codomain.

The following observation is somewhat technical but fundamental for what comes next.

Lemma 1.2.16. In a locally λ-presentable category D :

(i) for any regular cardinal µ ≤ λ, every µ-orthogonality class in D is a small orthogonality class;

(ii) for every small orthogonality class, there is a regular cardinal µ such that this is a µ-orthogonality
class.
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Proof. The proof of these properties relies on the facts that each object in a locally λ-presentable category
is presentable and that there exists an essentially unique small set of λ-presentable objects (see Remark
1.2.10 (iii) and (iv)).

Indeed, for (i), let S⊥ be a µ-orthogonality class in D . If µ ≤ λ, then each s ∈ S has λ-presentable
domain and codomain8, so S⊥ is a small orthogonality class because there is an essentially unique small
set of λ-presentable objects.9

To show (ii), if S⊥ is a small orthogonality class, let Ob(S) be the small set of objects of D which are
either domains or codomains of some morphism in S. Since every object in D is presentable, we can pick,
for all A ∈ Ob(S) a regular cardinal µA such that A is µA-presentable. Let C be the small set given by
all these cardinals and let µ be the first regular cardinal not smaller than supC. Then each A ∈ Ob(S)
is (max{λ, µ})-presentable, so that S⊥ is a (max{λ, µ})-orthogonality class.

Proposition 1.2.17. Each λ-orthogonality class S⊥ of a category D is closed under λ−directed colimits
(hence also under λ-filtered colimits, see Remark 1.2.10 (ii)).

Proof. Write S = {si : Ai → A′i}i∈I , where every Ai and every A′i (i ∈ I) are λ-presentable objects. Let
(T,≤) be a λ-directed poset and F : (T,≤) −→ S⊥ be a functor having a colimit in D , say

(K, (kt : F (t)→ K)t∈T ).

We need to show that K ∈ S⊥. For every i ∈ I and every morphism f : Ai → K, there exist a t ∈ T
and a factorization f = ktf1 of f (since Ai is λ−presentable) and there exists f ′1 : A′i → F (t) such that
f1 = f ′1si (because F (t) ∈ S⊥). Therefore, f ′ = ktf

′
1 : A′i → K satisfies f = f ′si. We now show that

such a f ′ is unique. Assume f ′′ : A′i → K also verifies f = f ′′si . Since (T,≤) is λ-directed, there exists
t0 ∈ T such that f ′ = kt0f1 and f ′′ = kt0f2 for some f1, f2 : A′i → Kt0 . Since A′i is a λ-presentable object
and since we have kt0f1si = kt0f2si, there is t ∈ T with t0 ≤ t such that F (t0 ≤ t) : Kt0 → Kt fulfils
F (t0 ≤ t)f1si = F (t0 ≤ t)f2si. Since F (t) ∈ S⊥, it must be F (t0 ≤ t)f1 = F (t0 ≤ t)f2. It follows that
f ′ = ktF (t0 ≤ t)f1 = f ′′.

λ-orthogonality classes in locally presentable categories have the key property we need to give us part
of Theorem 1.2.6. Namely,

Theorem 1.2.18. Let D be a locally presentable category. Then the following hold.

1. Every λ-orthogonality class in D is a reflective subcategory of D closed under λ-directed colimits.

2. Every reflective subcategory of D closed under λ-directed colimits is locally presentable.

We will omit the proof of this theorem, as it is quite technical. The interested reader is referred to
[AdRo], Theorem 1.3910 or Theorem 2.48. We notice instead that we get the following

Corollary 1.2.19. Every small orthogonality class of a locally presentable category is locally presentable.

Proof. This is clear in view of Lemma 1.2.16.

Remark 1.2.13 and Example 1.2.11 allow us to conclude now that 1. of Theorem 1.2.6 holds.

The second part of Theorem 1.2.6 follows from the next result (together with Remark 1.2.13 again).
Before stating it, let us introduce the following notation. Given a regular cardinal λ and a small category
C we denote by Contλ(C ) the full subcategory of SetC given by those functors C −→ Set preserving all
λ−small limits existing in C (i.e. all limits indexed by a small category having less than λ morphisms).

Theorem 1.2.20 (Representation Theorem, [AdRo], Theorem 1.46). Let λ be a regular cardinal.
For a category D the following are equivalent:

8 Every µ-presentable object is also λ-presentable
9 Observe that, if K ∈ D is orthogonal to s : A→ A′ in D and if both i : A→ B and j : A′ → B′ are isomorphisms, then

K is also orthogonal to jsi−1 : B → B′.
10 The reader should be aware that in [AdRo] our Theorem 1.2.18 has a stronger formulation, claiming also that each

reflective subcategory of D which is closed under λ-directed colimits is a λ-orthogonality class in D . However, this statement
is not true, since it fails for λ = ℵ0, as proved in J. Jürjens, On a problem of Gabriel and Ulmer, Journal of Pure and
Applied Algebra, 2001. Vol. 158, pp. 183-196.
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1. D is locally λ−presentable;

2. D is equivalent to Contλ(C ) for some small category C ;

3. D is equivalent to a λ-orthogonality class in SetC for some small category C ;

4. D is equivalent to a replete and reflective subcategory of SetC closed under λ-directed colimits for
some small category C .

Moreover, C in 2.· · · 4. above can be chosen to be (Presλ(D))op, where Presλ(D) is the full (small)
subcategory generated by any of the essentially unique sets of λ−presentable objects (see Remark 1.2.10
(iv)).

Proof. • 1. =⇒ 2. Let D be a locally λ-presentable category and set C := Presλ(D). We can
consider the following canonical functor

E : D −→ PSh(C )

which sends each objectK of D to the restriction HomD(−,K)|C op of the contravariant Hom-functor
of D to C op and each morphism f : K → K ′ to HomD(−, f), seen as a natural transformation
E(K) =⇒ E(K ′). Recall now that:

(i) C is made of λ-presentable objects of D (just by definition of Presλ(D));
(ii) for each object K of D , the canonical diagram with respect to C is λ-filtered and its colimit

is K (see Remark 1.2.10(v)).

We get that property (i) above is equivalent to fully faithfulness of E, whereas property (ii) means
that E preserves λ-directed colimits (see [AdRo], Proposition 1.26). Therefore, if D ′ is the full,
replete subcategory of PSh(C ) given by all presheaves which are isomorphic to E(K) for some
K ∈ D , we have that D is equivalent to D ′. Our proof will be complete if we prove that D ′ is
precisely Contλ(C op). To this end, note first that every functor in D ′ preserves λ-small limits
(i.e. it belongs to Contλ(C op)). This is because, for every object K ∈ D , E(K) preserves λ-small
limits in C op, as HomD(−,K) preserves limits in Dop and C op is closed under λ-small limits in Dop

(see Remark 1.2.10 (iii)). Conversely, let H : C op −→ Set be a functor preserving λ-small limits.
Since E preserves λ-directed colimits (hence, also λ-filtered colimits), D ′ is closed under λ-filtered
colimits in PSh(C ), so proving that H is a λ-filtered colimit of functors in D ′ is enough to conclude
that H ∈ D ′. To show this fact, note that the Yoneda embedding

y : C −→ PSh(C )

clearly satisfies y(C ) ⊆ D ′ and H, being a presheaf, is a canonical colimit of objects of y(C ). We
need to verify that this colimit is λ-filtered. Yoneda’s Lemma implies that each λ-small subcategory
of (y(C ) ↓ H) is of the form ((yF )(I ) ↓ H), for some functor F : I −→ C , where I is λ-small.
Now, given any such a functor F , let C be a colimit of F in C , with colimiting cocone (ci : F (i)→
C)i∈I (such a colimit exists because C = Presλ(D) is closed under λ-small colimits by Remark
1.2.10 (iii)). By the hypothesis of preserving λ-small limits, H(C) is a limit of HF op : I op −→
Set, with limiting cone (H(ci) : H(C) → H(F (i)))i∈I . Now, the category ((yF )(I ) ↓ H) gives
a compatible cone 1 =⇒ HF over HF : each object ai : HomC (−, F (i)) −→ H in ((yF )(I ) ↓ H)
corresponds to a unique element xai ∈ H(F (i)) and a morphism

HomC (−, F (i)) =⇒ HomC (−, F (j))

in ((yF )(I ) ↓ H) corresponds to a unique morphism fji : F (i)→ F (j) in C such thatH(fji)(xbj ) =
xai (where xbj ∈ H(F (j)) represents bj : HomC (−, F (j)) =⇒ H). Therefore, this cone over HF
factors uniquely through a map of sets 1 → H(C), i.e. there is a unique x ∈ H(C) such that
(H(ci))(x) = xai for all i ∈ I and all xai ∈ H(F (i)) corresponding to ai : HomC(−, F (i)) =⇒ H.
This element x ∈ H(C) gives rise to an object cx : y(C) = HomC (−, C) =⇒ H of (y(C ) ↓ H)
which is the vertex of a compatible cocone for ((yF )(I ) ↓ H) whose ai-th component (for an
object ai : HomC (−, F (i)) −→ H in ((yF )(I ) ↓ H)) is the morphism in (y(C ) ↓ H) given by

HomC (−, ci) : ai −→ cx.

This shows that (y(C ) ↓ H) is λ-filtered, as required.
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• 2. =⇒ 3. Using the definition of colimit, it is easy to notice that Contλ(C op) = S⊥, where S
consists of all the canonical natural transformations

s : colimi∈I (HomC (F (i), −)) =⇒ HomC (limi∈I F (i), −)

for all functors F : I −→ C op from a small category I having less than λ morphisms. Since the
domain of each s is λ-presentable (it is a λ-small colimit of λ-presentable objects) and the codomain
is finitely presentable, S⊥ is a λ-orthogonality class in PSh(C ).

• 3. =⇒ 4. =⇒ 1. This is Theorem 1.2.18 above.

Finally, we get

Corollary 1.2.21. Theorem 1.2.6 holds.

Proof. Given a small category C , for each small set S of morphisms of presheaves on C , PSh(C )S is a
small orthogonality class by Remark 1.2.13. Theorem 1.2.18 shows that (C , PSh(C )S) is a pseudo-site
and Corollary 1.2.19 implies that PSh(C )S is locally finitely presentable. This proves point 1. of Theorem
1.2.6, as already remarked. Now, if D is a locally λ−presentable category, then Theorem 1.2.20 gives
that D is equivalent to a λ−orthogonality class of PSh(C ) (for some small category C ). Since PSh(C )
is locally finitely presentable, it is also λ−presentable, because λ, being a regular cardinal, is not smaller
than ℵ0. Thus, every λ−orthogonality class of PSh(C ) is a small orthogonality class by Lemma 1.2.16
and we can conclude that D admits small presentation by Remark 1.2.13.

Remark 1.2.22. It is proved in [Bor3] Proposition 3.4.16 that every Grothendieck topos is locally pre-
sentable. Thus, every Grothendieck topos is equivalent to PSh(C )S for some small set S ⊆ Mor(PSh(C )).
In this case, moreover, the inclusion of PSh(C )S in PSh(C ) has a left exact left adjoint.
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1.3 Factorizations in a Topos.

In this section we are going to prove that every Grothendieck topos admits a (regular epi, mono)-
factorization. We will also show some properties of regular epimorphisms with respect to composition
and pullbacks.

We start by recalling the needed notions.

Definition 1.3.1. Let p : X → Y be an arrow in a category D .

• p is a regular epimorphism if it is the coequalizer of a pair of arrows in D with target X.

• p is an effective epimorphism if the diagram

X ×Y X ⇒ X
p→ Y (1.3)

is a coequalizer, where the parallel arrows are the two projections from the pullback.

Note that regular and effective epimorphisms are indeed epimorphisms and being an effective epimor-
phism implies being a regular epimorphism.

Example 1.3.2. (i) In the category of sets, every epimorphism is regular and effective. This follows
as, for every surjection p : X → Y , Y is isomorphic to the quotient of X by the equivalence relation
on X given by X×Y X ⊆ X×X. This equivalence relation identifies two elements of X when they
have the same image under p. Since coequalizers in PSh(C ) are computed pointwise (for a small
category C ), in every category of presheaves all epimorphisms are regular and effective.

(ii) In an abelian category, every epimorphism is a regular epimorphism as it is the cokernel of its kernel
(and (co)kernels are (co)equalizers).

(iii) In the category of commutative rings, the inclusion Z ↪→ Q is an epimorphism, but it is not a
regular epimorphism: the condition of being a coequalizer for Z ↪→ Q is equivalent to the fact that
every morphism Z→ A to a commutative ring A can be extended (uniquely) to a morphism Q→ A
and this is manifestly false. Note also that, despite being a monomorphism and an epimorphism,
Z ↪→ Q is not an isomorphism.

Proposition 1.3.3. Let D be a category.

(i) Every regular epimorphism is orthogonal to every monomorphism. Namely, given any commutative
solid diagram

A X
f // X

Y

i

��

A

B

p

��
B Y

g
//B

X

k

??

where p is a regular epimorphism and i is a monomorphism, there exists a unique dotted filler k
making the whole diagram commute.

(ii) If h : X → Y is an arrow in D which is both a monomorphism and a regular epimorphism, then h
is an isomorphism.

(iii) Given an arrow h : X → Y in D , there is, up to isomorphism, at most one factorization of h into
a regular epimorphism p followed by a monomorphism i.

Proof. (i) Let s, t : U → A be arrows having p as their coequalizer. We then obtain

ifs = gps = gpt = ift

which gives fs = ft because i is a monomorphism. As p is the coequalizer of s and t, this implies that
there exists a unique k : B → X such that kp = f . Since ikp = if = gp and p is an epimorphism,
we also get ik = g.
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(ii) A two-sided inverse of h is given as the diagonal filler k in the commutative square

X X
idX // X

Y

h

��

X

Y

h

��
Y Y

idY

//Y

X

k

??

(iii) Suppose there are two factorizations of h as h = ip and h = i′p′ with p : X → Z, p′ : X → Z ′

regular epimorphisms and i : Z → Y , i′ : Z ′ → Y monomorphisms. Consider the dotted lifting l in
the following solid commutative diagram

X Z
p // Z

Y

i

��

X

Z ′

p′

��
Z ′ Y

i′
//Z ′

Z

l

??

Since il = i′ is a monomorphism, then so is l. On the other hand, if s, t : U → X are arrows such
that p is their coequalizer, then l is the coequalizer of p′s and p′t. Thus, l is a monomorphism and
a regular epimorphism, hence an isomorphism by (ii) above.

Here is the announced factorization result for topoi.

Proposition 1.3.4. Let E be a Grothendieck topos and f : X → Y a map in E . Then there exists
an essentialy unique factorization f = ip where i is a monomorphism and p is a regular epimorphism.
Furthermore, p is the coequalizer of the pair of projections X ×Y X ⇒ X.

Proof. The result is clearly true in the category of sets, see Example 1.3.2 (i). The Proposition is then also
valid in every category of presheaves as regular epimorphisms and monomorphisms in PSh(C ) (where C is
a small category) are given by those natural transformations which are objectwise such. Suppose now that
E = Sh(C ) is a category of sheaves on a small category C and denote as usual by i : Sh(C ) −→ PSh(C )
the inclusion and by a : PSh(C ) −→ Sh(C ) its left adjoint. We can then consider the factorization of
i(f) in PSh(C ) as

i(X)×i(Y ) i(X) ⇒ i(X)
q→ A

j→ i(Y ),

where q is the coequalizer of the two projections and j is a monomorphism. Using left exactness of a and
the fact that ai ∼= Id, we get the diagram

X ×Y X ⇒ X
a(q)→ a(A)

a(j)→ Y

in Sh(C ) where a(q) is the coequalizer of the two projections from X ×Y X (because a commutes with
colimits and finite limits) and a(j) is a monomorphism (again because a is left exact). Thus f = a(j)a(q)
and a(q) is an effective epimorphism.

Remark 1.3.5. A close inspection to the proof of Proposition 1.3.4 shows that actually the (regular
epi, mono)-factorization in a Grothendieck topos is functorial. This essentially means that, given a
commutative square

X Y
f // Y

Y ′

h

��

X

X ′

k

��
X ′ Y ′

f ′
//

in a Grothendieck topos E , if we choose (regular epi, mono)-factorizations f = ip and f ′ = i′p′ of f
and f ′ respectively, then we get a unique arrow t : cod(p) = dom(i) → cod(p′) = dom(i′) making the
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following diagram commute

X Y

f

$$
X cod(p)

p // cod(p)

cod(p′)

t

��

X

X ′

k

��
X ′ cod(p′)

p′
//

cod(p) Y
i // Y

Y ′

h

��
cod(p′) Y ′

i′
//X ′ Y ′

f ′

::

This is trivial in the category of sets and hence in categories of presheaves. Since the (regular epi,
mono)-factorizations in a category of sheaves Sh(C ) are built (up to isomorphism) from the analogous
factorizations in PSh(C ), using the isomorphism ai ∼= Id (i is the inclusion of Sh(C ) in PSh(C ) and a is
the reflector) we get the result also for categories of sheaves.

As an immediate by-product of Proposition 1.3.4 we obtain the

Corollary 1.3.6. In a Grothendieck topos every regular epimorphism is an effective epimorphism.

Another consequence of Proposition 1.3.4 is given by the following

Corollary 1.3.7. Let f : X → Y and g : Y → Z be morphisms in a Grothendieck topos E .

(i) If gf is a regular epimorphism, then so is g.

(ii) If f and g are regular epimorphisms, then so is gf .

Proof. (i) Suppose gf is a regular epimorphism and consider a (regular epi, mono)-factorization of g
as g = ip, with p : Y → W . By part (i) of Proposition 1.3.3, there is a dotted lifting r : Z → W in
the solid commutative diagram

X W
pf // W

Z

i

��

X

Z

gf

��
Z Z

idZ

//Z

W

r

??

Thus, in particular, ir = idZ , so that i is a monomorphism with a right inverse, hence an isomor-
phism. This proves that g is a regular epimorphism.

(ii) Write gf = ip where p is a regular epimorphism and i is a monomorphism. As above, by Proposition
1.3.3 (i) there is a (unique) r : Y → cod(p) such that rf = p and ir = g. Since g is a regular
epimorphism, then i is a regular epimorphism as well by the first point above. Therefore, i is both
a monomorphism and a regular epimorphism, so it is an isomorphism. It follows that gf is a regular
epimorphism.

Finally, we discuss the behaviour of regular epimorphisms with respect to pullbacks in a topos.

Proposition 1.3.8. Let E be a Grothendieck topos. Suppose given a pullback square

U X
q // X

Y

f

��

U

V

g

��
V Y

p
//

(1.4)

If f is a monomorphism or a regular epimorphism or an isomorphism, then so is g. If p is a regular
epimorphism, then also the converse holds.

Proof. Using Proposition 1.3.3, the case of isomorphism follows from the other two.

For the monomorphism part, it is well-known that, given any category D , the pullback of a monomor-
phism along any map in D is still a monomorphism. We then need to show that if p is a regular
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epimorphism and g is a monomorphism, then f is a monomorphism. This is easy in the category of sets:
if x, x′ ∈ X are such that f(x) = f(x′), pick v ∈ V such that p(v) = f(x). Then, since U is a pullback,
there are unique u, u′ ∈ U such that g(u) = v, g(u′) = v and q(u) = x, q(u′) = x′; as g is mono, u = u′,
so x = x′. Thus the result holds for sets, hence also for presheaves. Let us then assume E = Sh(C ),
where C is a small category, with inclusion functor i : Sh(C ) −→ PSh(C ) and left adjoint a. Given the
pullback square (1.4) with p regular epimorphism, take a (regular epi, mono)-factorization i(p) = dv of
i(p) in PSh(C ). Consider then the following diagram in PSh(C )

iU iX

i(q)

%%
iU X ′

u // X ′

Y ′

f ′

��

iU

iV

i(g)

��
iV Y ′

v
//

X ′ iX
b // iX

iY

i(f)

��
Y ′ iY

d
//iV iY

i(p)

::

Here X ′ is the pullback of Y ′ d→ iY
i(f)← iX and the map u is induced on the pullback by the arrows

vi(g) and i(q). Since the outer square is a pullback (because i preserves limits), the left-hand square is a
pullback as well. As i(g) is a mono and v is a regular epimorphism, we then get that f ′ is a monomor-
phism, by what we already proved in PSh(C ). Now p is isomorphic to ai(p) and ai(p) = a(d)a(v), where
a(d) is mono because d is mono and a is left exact. Also, a(v) is a regular epimorphism, as v is such and
a commutes with colimits. Since p is a regular epi by hypothesis, Proposition 1.3.3 (iii) gives that a(d)
must be an isomorphism. It follows that ai(f) is isomorphic to a(f ′), thus it is a monomorphism. Hence
also f is such.

For the regular epimorphism case, if p and g are regular epi in a Grothendieck topos, then pg = fq
is a regular epi and hence f is a regular epi, by Corollary 1.3.7. Thus we are left to show that if f is
a regular epimorphism in (1.4), then so is g. This is immediate for the category of sets and hence for
presheaves, so we need to prove the result for E = Sh(C ) (where C is a small category). Keeping the
usual notations for the inclusion of Sh(C ) in PSh(C ) and for its left adjoint, let us take a (regular epi,
mono)-factorization i(f) = db of i(f) in PSh(C ) and consider the diagram of presheaves

iU iV

i(g)

$$
iU V ′

u // V ′

Y ′

p′

��

iU

iX

i(q)

��
iX Y ′

b
//

V ′ iV
v // iV

iY

i(p)

��
Y ′ iY

d
//iX iY

i(f)

::

Here V ′ is the pullback of Y ′ d→ iY
i(p)← iV and u is the morphism induced into the pullback by the maps

bi(q) and i(g). As in the case of monomorphisms, we then get that u is the pullback along p′ of the
regular epimorphism b, thus it is a regular epimorphism itself. It follows that a(u) is a regular epi too.
Since f is isomorphic to a(db) = a(d)a(b) and f is a regular epi in Sh(C ), we get that a(d) is also such by
Corollary 1.3.7. Since a(d) is a monomorphism as well (because d is such), it has to be an isomorphism.
As a preserves pullbacks, it follows that a(v) is an isomorphism, hence ai(g) = a(v)a(u) is a regular
epimorphism. We conclude that also g is a regular epi.

Corollary 1.3.9. In a Grothendieck topos E , a morphism f : X → Y is a regular epimorphism if and
only there is a pullback square

U X
q // X

Y

f

��

U

V

g

��
V Y

p
//

where p is a regular epimorphism and g admits a section.
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Proof. If f is a regular epi, it is enough to take p = f , as then g : X ×Y X → X has an obvious section
given by the map X → X ×Y X induced by the identity of X. Conversely, if we are given a pullback
square as the one in the statement of the Corollary, let s : V → U be a section of g. Then idV = gs
and so g is a regular epimorphism by Corollary 1.3.7. Proposition 1.3.8 now implies that f is a regular
epimorphism as well.
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Chapter 2

The descent properties of a Topos.

The author is told with distressing regularity
that “there are no theorems in category the-
ory” - which typically means that the speaker
does not know any theorems in category the-
ory.

Emily Riehl,
Category Theory in Context. ([Rie])

We are now going to introduce the properties of weak descent for a cocomplete and finitely complete
category D . Roughly speaking, these properties encode some commutativity conditions between colimits
and pullbacks in D so that their respective behaviour is nice enough (see Section 2.1). We will show that
every Grothendieck topos E satisfies weak descent and the main point we will make is that, actually,
when we are given a cocomplete and finitely complete category having a small set of generators, also the
converse holds (see Section 2.2). This result will be our version of Giraud’s Theorem. Its conceptual im-
portance relies on the fact that it allows to characterise Grothendieck topoi somehow internally. Indeed,
given a category E , in order to decide whether or not it is a Grothendieck topos, one has a criterion
which just consists in checking whether some properties of E are satisfied or not. In particular, one is
relieved from the task of finding explicitly a site (C , Sh(C )) and an equivalence of categories E ' Sh(C ),
as these data are already provided in full generality by the proof of Giraud’s Theorem itself.

In addition to the material presented in Section 2 of [Rzk1], we have provided here a detailed proof
of the fact that every Grothendieck topos admits weak descent. Our proof of Proposition 2.1.14 below
is also not present in the original work by Rezk, where it is left as an exercise (cf. Proposition 2.4 of
[Rzk1]).

2.1 The notion of weak descent.
Definition 2.1.1. Let E be a cocomplete and finitely complete category. We say that E has weak descent
(or that E verifies weak descent) if the following properties hold in E .

(P1a) Let I be a small set and let {Xi}i∈I ⊆ Ob(E ) be a small set of objects in E . Set X :=
∐
i∈I Xi

and consider any map f : Y → X in E . For every i ∈ I, let Yi denote the pullback of

Xi → X
f←− Y,

where Xi → X is the coprojection of Xi into the coproduct. Then the morphism∐
i∈I

Yi → Y,

induced by the pullback projections Yi → Y , is an isomorphism.

(P1b) Let I be a small set and let {fi : Yi → Xi}i∈I be a small set of morphisms in E . Set also

Y :=
∐
i∈I

Yi, X :=
∐
i∈I

Xi and f :=
∐
i∈I

fi : Y → X.
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Then, for all i ∈ I, the morphism Yi → Xi ×X Y induced by the pair of arrows

fi : Yi → Xi, Yi → Y

is an isomorphism. (Here Yi → Y is of course the coprojection of Yi into the coproduct).

(P2a) Let
X1

k1←− X0
k2−→ X2

be a diagram in E (also called a span in E ) and let X denote its colimit object (which is a pushout).
Given any morphism f : Y → X, consider, for all i ∈ {0, 1, 2}, Yi := Xi ×X Y so as to get the span
in E

Y1 ← Y0 → Y2,

where the morphisms are induced by k1 and k2. Then, the induced arrow

colim(Y1 ← Y0 → Y2)→ Y

is an isomorphism.

(P2b) Suppose given a commutative diagram

Y1
h1←−−−− Y0

h2−−−−→ Y2yf1

yf0

yf2

X1
k1←−−−− X0

k2−−−−→ X2

(2.1)

in E , where both squares are pullback squares. Set

Y := colim(Y1
h1←− Y0

h2−→ Y2), X := colim(X1
k1←− X0

k2−→ X2) and f := colim(f1, f0, f2).

Then, for all i ∈ {0, 1, 2}, the morphisms

gi : Yi → Xi ×X Y

induced by fi and the canonical arrows Yi → Y are regular epimorphisms.

Remark 2.1.2. The weak descent properties are invariant under equivalences of categories. More pre-
cisely, if F : D −→ E is (part of) an equivalence of categories, then D satisfies weak descent if and only
if E does. This is just because a functor which is part of an equivalence of categories preserves (and
creates) all limits and colimits.

Remark 2.1.3. Given a cocomplete and finitely complete category E , properties (P1a) and (P1b) of
Definition 2.1.1 for E imply what follows. Let {Xi}i∈I be a small set of objects in E (indexed by a small
set I) and let X :=

∐
i∈I Xi. Then there is an equivalence of categories

E /X �
∏
i∈I

E /Xi (2.2)

given by the pair of functors

P : E /X −→
∏
i∈I

E /Xi and S :
∏
i∈I

E /Xi −→ E /X

defined on objects by

P : (Y
f−→ X) 7→ (Xi ×X Y → Xi)i∈I and S : (Yi

fi−→ Xi)i∈I 7→

(∐
i∈I

Yi

∐
i∈I fi−−−−−→

∐
i∈I

Xi

)

and acting on morphisms in the obvious manner. Indeed, the requirements that S ◦P ∼= Id and P ◦S ∼= Id
are easily seen to follow from (P1a) and (P1b) respectively. For instance, if f : Y → X is an element of
E /X, set, for all i ∈ I, Yi := Xi ×X Y and denote by πXi and by π(i)

Y the pullback projections into Xi
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and Y respectively. Thus, each πXi is the pullback of the coprojection Xi → X along f and we have
P (f) = (πXi)i∈I . By (P1a) the canonical morphism

πf :
∐
i∈I

Yi → Y

whose cocomponents are the pullback projections π(i)
Y (for all i ∈ I) is an isomorphism. By its very

definition, πf verifies
f ◦ πf =

∐
i∈I

πXi = S(P (f)).

This means exactly that πf is an isomorphism S(P (f)) → f in E /X. Naturality in f of such an
isomorphism follows readily by the definitions of S and P on morphisms and by the construction of πf .

Properties (P1a) and (P2b) of Definition 2.1.1 above are closely related to the behaviour of the pull-
back functor with respect to colimits.

More precisely, recall that, given a category E admitting pullbacks, we can define, for every fixed
morphism f : Y → X, a change of base functor

f∗ : E /X −→ E /Y, (2.3)

which acts by pulling back along f , i.e. sending u : A→ X in E /X to the pullback projection A×XY → Y
as in the pullback square

A×X Y Y//A×X Y

A
��

Y

X

f

��
A X

u //

(Of course, to give the definition of such a functor f∗ one needs to fix a pullback functor on E ).

Remark 2.1.4. Given a category E , it is well known that, for all objects X ∈ E , the forgetful functor
U : E /X −→ E creates colimits (see [McL] Lemma §V.6). In other words, if F : I −→ E /X is a functor
from a small category I and colimUF exists in E , then a colimit of F is the morphism colimUF → X
induced on the colimit by the family of morphisms F (i) : U(F (i))→ X, for i ∈ I .

Proposition 2.1.5. Let E be a cocomplete and finitely complete category.1 Then E satisfies (P1a) if
and only if, for every morphism f : Y → X in E (between any two objects Y and X of E ), the change of
base functor f∗ preserves coproducts.

Proof. Assume first that every change of base functor preserves coproducts. Then, given any small set of
objects (Xi)i∈I of E (where I is a small set), if X :=

∐
i∈I Xi, a coproduct of the family of coprojections

(Xi → X)i∈I in E /X is idX : X → X and f∗(idX) = idY , for any morphism f : Y → X in E . On the
other hand, applying first f∗ to each of the coprojections Xi → X and then taking the coproduct of
(f∗ : Yi := Xi ×X Y → Y )i∈I in E /Y gives precisely the morphism t :

∐
i∈I Yi → Y of E appearing in

(P1a). The hypothesis that f∗ preserves coproducts says exactly that t is an isomorphism t → idY in
E /Y , hence it is also an isomorphism

∐
i∈I Yi → Y in E .

Conversely, assume that (P1a) holds in E and take any morphism f : Y → X in E . Suppose also given
a small set of objects (iα : Aα → X)α∈Λ of E /X. Its coproduct in E /X is the morphism i :

∐
α∈ΛAα → X

in E induced by the iα (
∐
α∈ΛAα is of course the coproduct in E ). Applying f∗ to i, one then gets the

object

f∗(i) :

(∐
α∈Λ

Aα

)
×X Y → Y

of E /Y which fits into the following pullback square in E(∐
α∈ΛAα

)
×X Y Y

f∗(i) //
(∐

α∈ΛAα
)
×X Y

(∐
α∈ΛAα

)��

Y

X

f

��(∐
α∈ΛAα

)
X

i //

1Actually, it is enough to require that E has all small coproducts and all pullbacks.
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On the other hand, one can first apply f∗ to every iα and get f∗(iα) : Aα ×X Y → Y fitting into the
pullback square in E

Aα ×X Y Y
f∗(iα) //Aα ×X Y

Aα
��

Y

X

f

��
Aα X

iα //

Then one can take the coproducts in E /Y of the (f∗(iα))α∈Λ and get the object∑
α

f∗(iα) :
∐
α∈Λ

(Aα ×X Y )→ Y

of E /Y which makes the following diagram commutative in E

∐
α∈Λ (Aα ×X Y ) Y

∑
α f
∗(iα) //∐

α∈Λ (Aα ×X Y )

(∐
α∈ΛAα

)��

Y

X

f

��(∐
α∈ΛAα

)
X

i //

(Here the notation
∑
α f
∗(iα) is used to suggest that the cocomponents of such a morphism are the

morphisms f∗(iα)). We need to prove that the canonical morphism in E

∑
α

(iα ×X idY ) :
∐
α∈Λ

(Aα ×X Y )→

(∐
α∈Λ

Aα

)
×X Y

is an isomorphism in E : it will then automatically be an isomorphism in E /Y as, by the very definition
of all the morphisms involved, f∗(i) ◦ (

∑
α(iα ×X idY )) =

∑
α f
∗(iα). To simplify the notation a little

bit, let us set A :=
∐
α∈ΛAα. Now, applying (P1a) to the objects Aα of E and to the morphism

πA : A×X Y → A

given by the pullback projection, we get an isomorphism (in E )

ψ :
∐
α∈Λ

Aα ×A (A×X Y )
∼=→ A×X Y

whose α-cocomponent is the morphism

Aα ×A (A×X Y )→ A×X Y.

But now, we have, for all α ∈ Λ, commutative squares

Aα ×A (A×X Y ) A×X Y//Aα ×A (A×X Y )

Aα
��

A×X Y

A

πA

��
Aα A

iα //

A×X Y Y
f∗(i) //

A X
i //

Y

X

f

��

where the inner squares are pullbacks. It follows that the outer square is a pullback as well, i.e. there is,
for every α ∈ Λ, an isomorphism

ϕα : Aα ×A (A×X Y )
∼=→ Aα ×X Y,

induced by the morphisms

Aα ×A (A×X Y )→ Aα, Aα ×A (A×X Y )→ A×X Y → Y.

Hence, we have an isomorphism∐
α∈Λ

ϕα :
∐
α∈Λ

Aα ×A (A×X Y )
∼=→
∐
α∈Λ

(Aα ×X Y ) .
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The composite

ψ ◦

(∐
α∈Λ

ϕα

)−1

:
∐
α∈Λ

(Aα ×X Y ) ∼=
∐
α∈Λ

Aα ×A (A×X Y ) ∼= A×X Y

gives us the desired isomorphism.

A weakened version of Proposition 2.1.5 above holds for pushouts as well, namely

Lemma 2.1.6. Let E be a cocomplete and finitely complete category.2 If, for any f : Y → X in E , the
change of base functor f∗ preserves pushouts, then E satisfies (P2a).

Proof. Let
X1

k1←− X0
k2−→ X2

be a span in E and consider a pushout square in E

X0 X2
k2 //X0

X1

k1

��

X2

X

f2

��
X1 X

f1 //

which is a diagram D in E /X as well. Given any f : Y → X in E , applying first f∗ to D, we get the
commutative diagram in E

Y ×X X0 Y ×X X2

f∗(k2) //Y ×X X0

Y ×X X1

f∗(k1)

��

Y ×X X2

Y

f∗(f2)

��
Y ×X X1 Y

f∗(f1) //

and we can then take its pushout in E /Y

(Y ×X X0 → Y ) (Y ×X X2 → Y )
f∗(k2) //(Y ×X X0 → Y )

(Y ×X X1 → Y )

f∗(k1)

��

(Y ×X X2 → Y )

(Z
t−→ Y )

��

(Y ×X X1 → Y ) (Z
t−→ Y )//

By Remark 2.1.4, here Z is the pushout of

Y ×X X1
idY ×Xk1←−−−−−− Y ×X X0

idY ×Xk2−−−−−−→ Y ×X X2

in E and t is the morphism induced by the pullback projections

Y ×X X1 → Y, Y ×X X2 → Y.

On the other hand, we can first do the pushout in E /X of the diagram D, which is just idX : X → X,
because D is already a pushout square in E (where the pushout object is X). Then, we can apply f∗ to
obtain the commutative diagram

(Y ×X X0 → Y ) (Y ×X X2 → Y )
f∗(k2) //(Y ×X X0 → Y )

(Y ×X X1 → Y )

f∗(k1)

��

(Y ×X X2 → Y )

(Y ×X X → Y ) = (Y
idY−−→ Y )

��

(Y ×X X1 → Y ) (Y ×X X → Y ) = (Y
idY−−→ Y )//

Since f∗ preserves pushouts, t : Z → Y is an isomorphism in E (as well as in E /Y , since of course
idY ◦ t = t), as required.

As a consequence, we get the following
2Again, it is enough to require that E has all pushouts and all pullbacks.
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Corollary 2.1.7. Let E be a cocomplete and finitely complete category. If, for any f : Y → X in E , the
change of base functor f∗ preserves (small) colimits, then E satisfies (P1a) and (P2a).

Remark 2.1.8. The property of small colimits of being preserved under all change of base functors f∗
is often formulated by saying that colimits are stable under pullbacks in E or that colimits are universal
in E .

We can now start proving that a Grothendieck topos admits weak descent. We have already shown
in Proposition 1.1.8 that a Grothendieck topos is complete and cocomplete, hence to show that it admits
weak descent, it is enough to verify that properties (P1a)· · · (P2b) hold in a Grothendieck topos. We
begin with the following

Proposition 2.1.9. Let f : Y → X be a morphism in a Grothendieck topos E . Then the change of base
functor f∗ : E /X −→ E /Y preserves small colimits.

Proof. As usual, it is enough to prove the statement when E is Set, PSh(C ) or Sh(C ) for C a small
category.

The claim is true when E = Set because in this case, if f : Y → X, the change of base functor
f∗ : Set/X → Set/Y has a right adjoint

∏
f : Set/Y → Set/X (see [McMo] §1.9 Theorem 3). Indeed,

we have the equivalence of categories

Set/Y
'−→ SetY , (A

t−→ Y ) 7→ (t−1({y}))y∈Y ,

where on the right hand side the set Y is meant as a discrete category. Under such an equivalence, the
right adjoint

∏
f is given by

∏
f

: SetY −→ SetX , (By)y∈Y 7→

 ∏
y∈f−1({x})

By


x∈X

.

When E = PSh(C ) (for a small category C ) the statement follows immediately from its validity for
the category of sets and Remark 2.1.4. Indeed, pullbacks and colimits are computed objectwise in PSh(C )
and the natural transformations which are isomorphisms are precisely the ones that are isomorphisms
componentwise.

Finally, assume that E = Sh(C ) and denote by a the left adjoint to the inclusion functor i : Sh(C ) −→
PSh(C ). Fix also f : Y → X in E . Let F : I −→ Sh(C )/X be a functor from a small category I and
let U : Sh(C )/X −→ Sh(C ) be the forgetful functor. By Remark 2.1.4 it is enough to show that we have
a canonical isomorphism

colim(UF ×X Y ) ∼= (colimUF )×X Y

in Sh(C ) (this meaning, of course, that the canonical arrow colim(UF ×X Y ) → (colimUF ) ×X Y is
an isomorphism). Now, considering the morphism if : iY −→ iX in PSh(C ), since (if)∗ preserves small
colimits, we know that we have a canonical isomorphism

colim(iUF ×iX iY ) ∼= (colim iUF )×iX iY.

Since a preserves colimits and pullbacks, by Lemma 1.1.7 and using the definition of colimits in Sh(C ),
we get the chain of canonical isomorphisms

colim(UF ×X Y ) = a(colim(iUF ×iX iY )) ∼= (a(colim iUF ))×aiX aiY

∼= (colim(aiUF ))×aiX aiY ∼= (colimUF )×X Y,

as required.

By Corollary 2.1.7, we then get that any Grothendieck Topos verifies properties (P1a) and (P2a).

Lemma 2.1.10. In a Grothendieck topos E , property (P1b) of Definition 2.1.1 holds.
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Proof. Let us first assume that E = Set. Take then a small set I and a family of maps (fi : Yi → Xi)i∈I .
Set X :=

∐
i∈I Xi, Y :=

∐
i∈I Yi and f :=

∐
i∈I fi. In Set, the coprojections of a summand into a

coproduct are monomorphisms and, as in any category, the pullback of a monomorphism is again a
monomorphism. Hence, for any fixed i ∈ I, in the pullback square

Xi ×X Y Y//Xi ×X Y

Xi

��

Y

X

f

��
Xi X//

both the bottom and the top rows are monomorphisms. Thus, the map

t : Yi → Xi ×X Y,

induced on the pullback by fi and by the mono Yi � Y , is a monomorphism. Now, to prove that t is an
isomorphism, it is enough to show that, for all sets Z, the induced map

t ◦ − : HomSet(Z, Yi)→ HomSet(Z,Xi ×X Y )

is bijective, which amounts to prove its surjectivity, as t ◦ − is automatically injective when t is a
monomorphism. Actually, since any set Z is a coproduct of copies of the terminal object 1 and the
contravariant Hom functor sends coproducts to products, it is enough to prove that

t ◦ − : HomSet(1, Yi)→ HomSet(1, Xi ×X Y )

is surjective. But now, the definition of pullback yields the isomorphism

HomSet(1, Xi ×X Y ) ' HomSet(1, Xi)×HomSet(1,X) HomSet(1, Y ).

Thus, a global element 1→ Xi ×X Y of Xi ×X Y 3 corresponds to a couple of global elements

1→ Xi, 1→ Y

such that the following diagram commutes

1 Y//1

Xi

��

Y

X

f

��
Xi X//

Since 1 is a connected object in Set4, the global element 1 → Y factors through the coprojections into
Y of one of the summands, which must be Yi, as the diagram above commutes. Hence, we get a global
element w of Yi and a commutative diagram

1 Y//1

Xi

��

Y

X

f

��
Xi X

jXi

//

1

Yi

w

��
Yi

Y

jYi

??

Yi

Xi

fi

��

Yi

X

jXifi

��

where jXi and jYi are the coprojections into the coproduct. This proves that

t ◦ − : HomSet(1, Yi)→ HomSet(1, Xi ×X Y )

is surjective, as required.

3 Given a category C with a terminal object 1, a global element of an object A of C is an arrow 1→ A.
4 Given a category C , an object A of C is said to be connected if the Hom functor HomC (A,−) : C −→ Set preserves

coproducts. So, actually, 1 is the only connected object in the category of sets.
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Since (P1b) holds for Set and limits, colimits and isomorphisms in presheaves categories are con-
structed or checked objectwise, it carries over to the case E = PSh(C ), for a small category C .

Assume now that E = Sh(C ) and let a be the left adjoint to the inclusion functor ι : Sh(C )→ PSh(C ).
Given a small set I and a family of morphisms (fi : Yi → Xi)i∈I of sheaves, using the same notation as
in the case of sets for Y , X and f , we have, for a fixed i ∈ I, the pullback diagram in Sh(C ) given by

Xi ×X Y Y//Xi ×X Y

Xi

��

Y

X

f

��
Xi X//

On the other hand, we can also construct the following pullback diagram in PSh(C )

ιXi ×ιX ιY ιY//ιXi ×ιX ιY

ιXi

��

ιY

ιX

ιf

��
ιXi ιX//

and we know that we have the canonical isomorphism

ιYi ∼= ιXi ×ιX ιY,

given by the arrow on the pullback induced by the morphisms ι(fi) and ιYi → ιY . Applying now the left
adjoint a and recalling that a◦ι ∼= Id and that a is left exact, we have the chain of canonical isomorphisms

Yi ∼= a(ιYi) ∼= a(ιXi ×ιX ιY ) ∼= a(ιXi)×a(ιX) a(ιY ) ∼= Xi ×X Y,

giving the required canonical isomorphism.

Proposition 2.1.11. Every Grothendieck topos has weak descent.

Proof. By Proposition 2.1.9 and Corollary 2.1.7, every Grothendieck topos E verifies (P1a) and (P2a) of
Definition 2.1.1, while Lemma 2.1.10 says that in E also (P1b) holds. Thus, we only need to prove that
in every Grothendieck topos also (P2b) is satisfied. As usual, using the facts that (co)limits in presheaves
categories are computed pointwise and that the left adjoint to the inclusion of a category of sheaves is
left exact, it is easy to see that it is enough to verify (P2b) when E = Set. The proof of this statement
is rather technical and surprisingly elaborated, so we state it separately as the following Lemma.

Lemma 2.1.12. Property (P2b) of Definition 2.1.1 holds for E = Set.5

Proof. We stick to the notations of Definition 2.1.1. So we are given a commutative diagram

Y1
h1←−−−− Y0

h2−−−−→ Y2yf1

yf0

yf2

X1
k1←−−−− X0

k2−−−−→ X2

(2.4)

in Set, where both squares are pullback. Setting

Y := colim(Y1
h1←− Y0

h2−→ Y2), X := colim(X1
k1←− X0

k2−→ X2) and f := colim(f1, f0, f2).

we must prove that, for all i ∈ {0, 1, 2}, the morphisms

gi : Yi → Xi ×X Y

induced by fi and the canonical arrows Yi → Y are regular epimorphisms.

We start by showing that g1 is regular epi. In the category of sets every epimorphism is regular, so
we need to prove that g1 is surjective. Let then (x1, y) ∈ X1×X Y , so that [x1] = f(y) in the pushout X
(recall that X is a quotient of X1

∐
X2). Now, we have either

5The author is totally indebted to Zhen Lin Low for the proof of this result.
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• y = [y1] for some y1 ∈ Y1

or

• y = [y2] for some y2 ∈ Y2.

In this second case, [x1] = f(y) = f([y2]) = [f2(y2)], so that f2(y2) = k2(x0) for some x0 ∈ X0 (again by
definition of the pushout X). Thus, since Y0

∼= Y2 ×X2
X0 by hypothesis and (y2, x0) is an element of

this pullback, there is a unique y0 ∈ Y0 such that f0(y0) = x0 and h2(y0) = y2. Then, if y1 := h1(y0), we
have

[y1] = [h1(y0)] = [h2(y0)] = [y2] = y.

This shows that we can always assume

∃y1 ∈ Y1 ([y1] = y). (2.5)

The point now is that we want to choose this y1 in such a way that f1(y1) = x1. To do this, we are
going to define a metric on X1 which measures the distance of a, b ∈ X1 in terms of a sequence of pairs of
elements in X0 which links a and b via k1 and k2. Namely, we claim that there exists a unique function

d : X1 ×X1 → N ∪ {∞}

(where ∞ /∈ N and, for all n ∈ N, n <∞) with the following properties, for a, b ∈ X1:

(i) a = b ⇐⇒ d(a, b) = 0;

(ii) for any n ∈ N \ {0}, if r1, s1, . . . , rn, sn ∈ X0 are such that

∀j ∈ {1, . . . , n} (k2(rj) = k2(sj)) and ∀j ∈ {1, . . . , n− 1} (k1(rj+1) = k1(sj)), (2.6)

then d(k1(r1), k1(sn)) ≤ n;

(iii) if d(a, b) = n ∈ N \ {0}, then there are elements r1, s1, . . . , rn, sn ∈ X0 such that

(∗) property (2.6) holds and k1(r1) = a, k1(sn) = b.

Indeed, set, for all (a, b) ∈ X1 ×X1 with a 6= b,

A(a,b) = {n ∈ N \ {0} : there are r1, s1, . . . , rn, sn ∈ X0 such that (∗) holds}.

Then, the function d : X1 ×X1 → N ∪ {∞} defined by

d(a, b) :=


0 if a = b

minA(a,b) if a 6= b and A(a,b) 6= ∅
∞ if a 6= b and A(a,b) = ∅

clearly verifies (i)· · · (iii) above and every other function with those properties must coincide with d. By
the above description of d we also get that d is actually a metric on X1.

Let us now consider again y1 ∈ Y1 as in (2.5). If f1(y1) = x1, then we are done, because we get
(x1, y) = g1(y1). If f(y1) 6= x1, then d(f1(y1), x1) > 0 and d(f1(y1), x1) <∞. Indeed, as [x1] = [f1(y1)],
there are n ∈ N \ {0} and r1, s1, . . . , rn, sn such that

f1(y1) = k1(r1) ∼ k2(r1) = k2(s1) ∼ k1(s1) = k1(r2) ∼ . . . ∼ k1(sn) = x1,

where ∼ denotes the equivalence relation generated by {(k1(x0), k2(x0)) ∈ X1 ×X1 : x0 ∈ X0} which
gives the pushout X as X1

∐
X2/ ∼. Hence, by (iii) above, there are r := r1, s := s1 ∈ X0 such that

k1(r) = f1(y1), k2(r) = k2(s) and d(k1(s), x1) < d(f1(y1), x1). Since Y0
∼= Y1 ×X1

X0, there must be a
unique r′ ∈ Y0 such that f0(r′) = r and h1(r′) = y1. Thus,

f2(h2(r′)) = k2(f0(r′)) = k2(r) = k2(s),

so there is a unique s′ ∈ Y0 satisfying f0(s′) = s and h2(s′) = h2(r′) (Y0
∼= Y2 ×X2 X0). Therefore,

f1(h1(s′)) = k1(f0(s′)) = k1(s) with h1(s′) ∈ Y1 , k1(s) ∈ X1 and

y1 = h1(r′) ∼ h2(r′) = h2(s′) ∼ h1(s′),
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so that [h1(s′)] = [y1] = [y]. Since d(k1(s), x1) < d(f1(y1), x1) <∞, by induction on d(f1(y1), x1) we can
conclude that there is always some choice of y1 ∈ Y1 with [y1] = y and f1(y1) = x1. This shows that
g1 : Y1 → X1 ×X Y is surjective.

By symmetry, since the above argument works in an identical fashion when considering g2, we get
that g2 : Y2 → X2 ×X Y is an epimorphism as well.

It remains to show that g0 : Y0 → X0×XY is surjective. Let (x0, y) ∈ X0×XY so that [k1(x0)] = f(y).
By the above discussion, there is y1 ∈ Y1 such that f1(y1) = k1(x0) and [y1] = y. As Y0 is a pullback,
there is a unique y0 ∈ Y0 such that h2(y0) = y1 and f0(y0) = x0. This gives surjectivity of g0 and
completes the proof.

We can restate the weak descent property using the following notion

Definition 2.1.13. Let C and E be categories. A natural transformation τ : X =⇒ Y between functors
X,Y : C −→ E is called equifibered if, for each morphism s : C → C ′ in C , the square

Y (C) Y (C ′)
Y (s)
//

X(C)

Y (C)

τC

��

X(C) X(C ′)
X(s) // X(C ′)

Y (C ′)

τC′

��

(2.7)

is a pullback square6.

Proposition 2.1.14. Let E be a category with weak descent and C a small category.

1. Let X : C −→ E be a functor. Set X̄ := colimX and fix an arrow f : Ȳ → X̄ in E . Define a
functor Y : C −→ E by

Y (C) := X(C)×X̄ Ȳ , C ∈ C

and by the obvious action on morphisms of C . Then the arrow

colimY → Ȳ

induced by the family of projections (X(C)×X̄ Ȳ → Ȳ )C∈C is an isomorphism.

2. Let τ : X =⇒ Y be an equifibered natural transformation of functors X,Y : C −→ E . Set

X̄ := colimX, Ȳ := colimY, τ̄ := colim(τ) : X̄ → Ȳ .

Then for each object C ∈ C , the obvious map

g = gC : X(C)→ Y (C)×Ȳ X̄

is a regular epimorphism. If C is a groupoid with at most one arrow between any two objects, then
each gC is an isomorphism.

Proof. To begin with, note that, with respect to Definition 2.1.1, we have

• (P1a) is equivalent to 1. and (P1b) is equivalent 2. when C is a discrete category (the latter
because every natural transformation between functors defined on a discrete category is trivially
equifibered);

• (P2a) is equivalent to 1. and (P2b) is equivalent to 2. when C is the category of cospans, i.e.
C = • •// •• oo .

The idea is then that 1. and 2. of the Proposition must hold for general (small) colimits as they hold for
coproducts and pushouts, from which every colimit can be built. We show how to deduce this for 1. and
for 2. separately.

6 This means of course that there is a pullback in E of the cospan (Y (s), τC′ ) and that such a pullback is isomorphic
to the span (τC , X(s))).
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1. Recall than that, given a functor X : C −→ E (from a small category C ) a colimit (object) for X
is a coequalizer of

AX :=
∐

h∈Mor(C )

X(dom(h))
∐
C∈C

X(C) =: BX
kX //

AX :=
∐

h∈Mor(C )

X(dom(h))
∐
C∈C

X(C) =: BX
lX

//

Here the h−th components of kX and lX are idom(h) and icod(h)X(h) respectively, where, for C ∈ C ,
iC is the C−th coprojection into the rightmost coproduct. Equivalently, colimX is the pushout of
the diagram

AX
∐
AXAX

`
oo AX

∐
AX BX

(kX , lX)// (2.8)

Now, in the situation of part 1. the pushout of the diagram

(AX
∐
AX)×X̄ ȲAX ×X̄ Ȳ

`
×X̄ Ȳoo (AX

∐
AX)×X̄ Ȳ BX ×X̄ Ȳ

(kX , lX)×X̄ Ȳ //

is (isomorphic to) Ȳ . On the other hand, if Y := X(−)×X̄ Ȳ , we get, using analogous definitions
to the case of X, that colimY is the pushout

AY
∐
AYAY

`
oo AY

∐
AY BY

(kY , lY )// (2.9)

Using Lemma 2.1.5, we deduce that

AY =
∐

h∈Mor(C )

(
X(dom(h))×X̄ Ȳ

) ∼=
 ∐
h∈Mor(C )

X(dom(h))

×X̄ Ȳ = AX ×X̄ Ȳ

BY =
∐

C∈Mor(C )

(
X(C)×X̄ Ȳ

) ∼=
 ∐
C∈Mor(C )

X(C)

×X̄ Ȳ = BX ×X̄ Ȳ

and these isomorphisms are compatible with the coprojections into the coproducts. Under these
isomorphisms, the maps kY and lY become kX ×X̄ Ȳ and lX ×X̄ Ȳ respectively. Therefore, the
pushout of (2.1.5) (which is colimY ) is (isomorphic to) the pushout of

(AX ×X̄ Ȳ )
∐

(AX ×X̄ Ȳ )AX ×X̄ Ȳ

`
oo (AX ×X̄ Ȳ )

∐
(AX ×X̄ Ȳ ) BX ×X̄ Ȳ

(kX×X̄ Ȳ , lX×X̄ Ȳ )//

Again by Lemma 2.1.5, we have that

(AX ×X̄ Ȳ )
∐

(AX ×X̄ Ȳ ) ∼=
(
AX

∐
AX

)
×X̄ Ȳ

and under this isomorphism (kX ×X̄ Ȳ , lX ×X̄ Ȳ ) becomes (kX , lX) ×X̄ Ȳ , so that colimY ∼= Ȳ
as required.

2. Call a commutative diagram
A B//A

C
��

B

D
��

C D//

in E a quasi-pullback square7 if the induced map

A→ B ×D C

is a regular epimorphism. Of course, each pullback square is a quasi-pullback square. With this
terminology, we thus need to prove that, for all C ∈ C , there is a quasi-pullback square in E given
by

X(C) X̄//X(C)

Y (C)
��

X̄

Ȳ
��

Y (C) Ȳ//

7As far as the author knows, this terminology is not standard. We have just maken it up for the present exposition.
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Note that the usual pasting lemma for pullbacks gives the same result for quasi-pullbacks. Namely,
given a commutative diagram in E of the form

A B//A

C
��

B

D
��

C D//

B E// E

F
��

D F//

if both squares are quasi-pullbacks, then also the outer square is such (and it is also true that, if
the right and the outer square are quasi-pullback squares, then so is the left one). Let us now take
C ∈ C and consider the commutative diagram in E given by

X(C)
∐
C∈C

X(C)//X(C)

Y (C)
��

∐
C∈C

X(C)

∐
C∈C

Y (C)
��

Y (C)
∐
C∈C

Y (C)//

∐
C∈C

X(C) X̄// X̄

Ȳ
��∐

C∈C

Y (C) Ȳ//

(2.10)

Here the left square is a pullback by property (P1b) of weak descent. So to get our result that the
outer rectangle is a quasi-pullback, it is enough to show that the right square is such. We will do
this using the description in (2.8) of colimits as pushouts. We have a commutative diagram in E
given by

AX
∐
AXAX

`
oo AX

∐
AX BX

(kX , lX) //

AY
∐
AYAY `oo AY

∐
AY BY

(kY , lY )
//

AX

AY
��

AX
∐
AX

AY
∐
AY
��

BX

BY
��

(2.11)

Here, as in part 1. above, we used the notations

AX =
∐

h∈Mor(C )

X(dom(h)), BX =
∐
C∈C

X(C)

and similarly for Y . Moreover, the vertical arrows are induced by the natural transformation
τ : X =⇒ Y ; for example, the leftmost vertical arrow is given by∐

h∈Mor(C )

τ(dom(h)).

We want to show that both squares in (2.11) are pullback squares. In this way, we will get that the
right square in (2.10) is a quasi-pullback by property (P2b) of weak descent, thus completing our
proof. Now, using Proposition 2.1.5, we see that the two squares in (2.11) are pullbacks if each of
the following squares is a pullback

AX AX
idAX //AX

AY
��

AX

AY
��

AY AY
idAY

//

AX BX
kX //AX

AY
��

BX

BY
��

AY BY
kY

//

AX BX
lX //AX

AY
��

BX

BY
��

AY BY
lY

//

(2.12)

(Recall that the codiagonal
`

: A
∐
A → A for an object A ∈ E is the map on the coproduct

induced by the identity on A). The leftmost square is clearly a pullback. As for the second one,
recall that, for all h ∈ Mor(C ), we have, by definition of kX , kX ◦ ih = idom(h), where

ih : X(dom(h))→ AX , idom(h) : X(dom(h))→ BX
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are the coprojections into the coproducts and similarly for kY . Furthermore, for each h ∈ Mor(C ),
the commutative square

X(dom(h)) BX
idom(h)//X(dom(h))

Y (dom(h))

τ(dom(h))

��

BX

BY
��

Y (dom(h)) BY
idom(h)

//

(2.13)

is a pullback square by (P1b) of weak descent. Then, by Proposition 2.1.5, taking the coproducts
over h ∈ Mor(C ) of the left vertices of all the squares (2.13) above, we get that the second square
in (2.12) is a pullback. We then just need to show that

AX BX
lX //AX

AY
��

BX

BY
��

AY BY
lY

//

is a pullback square. For each h ∈ Mor(C ), the arrow lX satisfies, by definition, lX ◦ ih = idom(h) ◦
X(h), where ih and idom(h) are coprojections into coproducts as above. Fix now D ∈ C and let h
be an arrow with codomain D. Then, since τ is equifibered by hypothesis, we have that

X(dom(h)) ∼= Y (dom(f))×Y (D) X(D)

and hence, using as usual Proposition 2.1.5, we get a pullback square∐
h∈Mor(C ): cod(h)=D

X(dom(h)) X(D)//∐
h∈Mor(C ): cod(h)=D

X(dom(h))

∐
h∈Mor(C ): cod(h)=D

Y (dom(h))
��

X(D)

Y (D)
��∐

h∈Mor(C ): cod(h)=D

Y (dom(h)) Y (D)//

Since the left square in (2.10) is a pullback, the pasting lemma implies that we have a pullback
square ∐

h∈Mor(C ): cod(h)=C

X(dom(h))
∐
C∈C

X(C)//∐
h∈Mor(C ): cod(h)=C

X(dom(h))

∐
h∈Mor(C ): cod(h)=C

Y (dom(h))
��

∐
C∈C

X(C)

∐
C∈C

Y (C)
��∐

h∈Mor(C ): cod(h)=C

Y (dom(h))
∐
C∈C

Y (C)//

(2.14)

Summing over all D ∈ C the left vertices of all the squares of the form (2.14) above, we get by
Proposition 2.1.5 that the commutative diagram

AX BX
lX //AX

AY
��

BX

BY
��

AY BY
lY

//

is a pullback square. This proves that, for each C ∈ C , the map

gC : X(C)→ Y (C)×Ȳ X̄

is a regular epimorphism.
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Assume now that C is a groupoid with at most one arrow between any of its objects. We need to
show that each of the arrow gC is an isomorphism. Observe first that the groupoid condition for C
implies that each functor defined on C with values in E sends arrows in C (which are isomorphisms)
to isomorphisms in E . For each connected component of C , choose now a representative object in
C and take the set R of all these chosen representatives. Denote by

ε : R −→ C

the inclusion functor of R, seen as a discrete subcategory of C . For each C ∈ C , consider the
category (C ↓ ε) of objects over ε; its objects are arrows C → ε(R) in C for R ∈ R. This category
(C ↓ ε) is not empty because C is in the same connected component of (exactly) one R ∈ R. This
means that there is a (finite) zig-zag of arrows connecting C and R and, since every arrow in C
is an isomorphism, we can invert some of the arrows of such a zig-zag to get a morphism C → R.
Moreover, (C ↓ ε) is a connected category. For, if f : C → ε(R) and g : C → ε(S) are objects in
(C ↓ ε), then R and S are in the same connected component of C , thus they must be equal. Since
for any two objects in C there is at most one arrow between them, this implies that f = g. Since
C ∈ C was arbitrary, we get that the inclusion ε is a cofinal functor. Therefore, we have

X̄ = colimX =
∐
R∈R

X(C), Ȳ = colimY =
∐
R∈R

Y (C).

By property (P1b) of weak descent, we then obtain that, for all R ∈ R, the arrow

X(R)→ Y (R)×Ȳ X̄

is invertible. But now, for each C ∈ C , there is an arrow C → R in C for some R ∈ R and hence a
commutative diagram

X(C) Y (C)×Ȳ X̄
gC //X(C)

X(R)
��

Y (C)×Ȳ X̄

Y (R)×Ȳ X̄
��

X(R) Y (R)×Ȳ X̄gR
//

Here all the morphisms except the upper horizontal arrow are iso and thus also that one is such.

The proof is then complete.

Remark 2.1.15. As it is pointed out in its proof, we could actually formulate Proposition 2.1.14 by
saying that, for a cocomplete and finitely complete category E , admitting weak descent is equivalent to
verifying properties 1. and 2. of Proposition 2.1.14.

We can improve the second point of Proposition 2.1.14 if τ is a monomorphism.

Proposition 2.1.16. In the situation of part 2. of Proposition 2.1.14, suppose that τC : X(C)→ Y (C)
is a monomorphism in E for all C ∈ C . Then τ̄ = colim(τ) : X̄ → Ȳ is a monomorphism and the arrows
X(C)→ Y (C)×Ȳ X̄ are isomorphisms for all C ∈ C .

Proof. By part 2. of Proposition 2.1.14, each morphism g : X(C)→ Y (C)×Ȳ X̄ is a regular epimorphism.
Since the composition of g with the projection Y (C) ×Ȳ X̄ → Y (C) is τc, which is assumed to be a
monomorphism, g is a monomorphism as well, thus it is an isomorphism by Proposition 1.3.3 (ii). Now,
for each C ∈ C , we have a commutative diagram

X(C) X(C)
id // X(C)

Y (C)

τ

��

X(C)

X(C)

id

��
X(C) Y (C)

τ
//

X(C) X̄// X̄

Ȳ

τ̄

��
Y (C) Ȳ//

where the rightmost horizontal morphisms are the canonical arrows into the colimits. In this diagram,
the right square is a pullback by the part already proved and the left square is a pullback as τ is mono.
It follows that also the outer square is a pullback, i.e. for all C ∈ C it holds that

X(C)×Ȳ X̄ ∼= X(C)
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and the isomorphism is given by the projection. Similarly, we get that

X(C)×X̄ (X̄ ×Ȳ X̄) ∼= X(C)×Ȳ X̄

for all C ∈ C . But now

X̄ ×Ȳ X̄ ∼= colimC∈C (X(C)×X̄ (X̄ ×Ȳ X̄)) ∼= colimC∈C X(C) ∼= X̄,

where the first isomorphism is given by part 1. of Proposition 2.1.14. This shows that X̄ is isomorphic
to the pullback of τ̄ along itself. Thus τ̄ is a monomorphism.

We conclude this section by proving that every Grothendieck Topos has a subobject classifier.

Recall that given a category D and an object X of D , one can define an equivalence relation on the
class of monic arrows m : S � X by declaring that two monics m, m′ with codomain X are equivalent
if there is an isomorphism ψ : dom(m) → dom(m′) such that m′ψ = m. A subobject of X is then an
equivalence class of monics with target X. By a common abuse of language, we say often that m : S � X
(or even S) is a subobject of X, meaning always the equivalence class of m. One denotes with SubD(X)
the class of subobjects of X and says that D is well-powered if SubD(X) is a small set for all X ∈ D . If
D is well-powered and has pullbacks, we get a functor

SubD : Dop −→ Set

which sends an arrow f : Y → X in D to the map

SubD(f) : SubD(X)→ SubD(Y )

taking a monic m : S � X to its pullback arrow along f .

Definition 2.1.17. Let D be a finitely complete category with terminal object 1. A subobject classifier
for D is a monic

true : 1 � Ω

such that to every monic m : S � X in D there is a unique arrow ϕ : X → Ω turning the following
diagram into a pullback square

X Ω
ϕ

//

S

X

m

��

S 1
! // 1

Ω

true

��

The morphism ϕ is called the characteristic map of the subobject m.

The reason for the name “subobject classifier” is given by the following

Proposition 2.1.18. A finitely complete category D (with small Hom sets) has a subobject classifier if
and only if there are an object Ω ∈ D and an isomorphism

θX : SubD(X) ∼= HomD(X,Ω)

natural in X ∈ D . When this holds, D is well-powered, hence, by the above natural isomorphism, the
functor SubD : Dop −→ Set is representable.

Proof. See [McMo] §1.3, Proposition 1.

Note that in the category of sets, every subobject of X ∈ Set has a representative given by the
inclusion into X of one of its subsets. Thus Set is well-powered. A subobject classifier for Set is given
by Ω := 2 and by a map 1 � 2 which “picks the value true” (for example, one can take the inclusion of
1 into 2). As announced, the same properties hold in any Grothendieck topos.

Proposition 2.1.19. Given a topos E , the class SubE (X) is a small set for all A ∈ E and the functor
SubE : E op −→ Set is representable. Thus, E has a subobject classifier.
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Proof. Subobjects in presheaves categories have representatives given by subfunctors, so PSh(C ) is well-
powered when C is a small category. If Sh(C ) is a category of sheaves, every monomorphism of sheaves is
a monomorphism of the underlying presheaves, because Sh(C ) is closed under limits in PSh(C ). Hence,
also Sh(C ) is well-powered.

In order to show that SubE is representable, it is enough to prove that it sends colimits in E to limits
in Set, by Proposition 1.1.9. Thus we need to show that, for any functor X : I −→ E from a small
category I , we have

SubE (colimi∈I X(i)) ∼= limi∈I SubE (X(i))

Set X̄ := colimX. Given a subobject m : A� X̄ of X̄ in E , for each i ∈ I , we can pullback m along the
colimiting arrow X(i)→ X̄. This gives rise to an element (A×X̄X(i)→ X(i))i∈I in limi∈I SubE (X(i)).
Conversely, if we are given an element (A(i)→ X(i))i∈I of limi∈I SubE (X(i)), we can define a functor
A : I −→ E sending an object i ∈ I to Ai and an arrow h : i→ j to the unique morphism A(h) : Ai → Aj
in E making the following diagram commute

Aj Xj
//

Ai

Aj

A(h)

��

Ai Xi
// Xi

Xj

X(h)

��

(Such an A(h) exists as (A(i) → X(i))i∈I ∈ limi∈I SubE (X(i))). In this way, (A(i) → X(i))i∈I forms
an equifibered natural transformation τ : A =⇒ X which is a monomorphism. By Proposition 2.1.16, we
get that the induced arrow colim(τ) : colimA→ colimX is a subobject of colimX. The assignments

(A� colimX) 7→ (A×X̄ X(i)→ X(i))i∈I

and
(A(i)→ X(i))i∈I 7→ (colim(τ) : colimA→ colimX)

are mutually inverse, completing the proof.
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2.2 Giraud’s Theorem
In this section we are going to state and prove the main result of the chapter, namely a theorem by

Giraud which characterises Grothendieck topoi internally, as categories satisfying suitable properties. We
first need to recall a categorical notion.

Definition 2.2.1. Let E be a category. A class C of objects in E is said to generate E (or to be a class
of generators for E ) if, for any pair f, g : X → Y of arrows in E , we have that f = g if and only if ft = gt
for all C ∈ C and all t : C → X. If C = {C} for a single object C ∈ E , we say that C is a generator for E .

Remark 2.2.2. Suppose E is a category with small coproducts. Then a small set C of objects in E
generates E if and only if for all objects X in E the obvious arrow

pX :
∐

h : C→X, C∈C

C → X

is an epimorphism.

Lemma 2.2.3. Let E be a Grothendieck topos. Then E has a small set of generators.

Proof. Set has a small set of generators given by {1}. Let then C be a small category and let E := Sh(C )
be a category of sheaves over C . As usual, let i : Sh(C ) −→ PSh(C ) be the inclusion functor and write
a : PSh(C ) −→ Sh(C ) for the left adjoint. Take F ∈ Sh(C ) and recall that iF (as any presheaf) can be
written as a colimit of representable functors, namely

iF ∼= colim(C, e)∈El(iF ) C (−, C),

where El(iF ) is the category of elements of iF . Since a preserves colimits, we get

F ∼= aiF ∼= a
(
colim(C, e)∈El(iF ) C (−, C)

) ∼= colim(C, e)∈El(iF ) (aC (−, C)) .

By the universal property of the colimit, this implies in particular that the small set consisting of all
aC (−, C) for C ∈ C generates Sh(C ).

We are now ready to state the

Theorem 2.2.4 (Giraud’s Theorem, cf. [Rzk1], Theorem 2.8). Let E be a cocomplete and finitely
complete category. Then E is a Grothendieck topos if and only if E has weak descent and is generated by
a small set of objects.

Observe that Propositions 1.1.8 and 2.1.11 as well as Lemma 2.2.3 imply that a Grothendieck topos
satisfies the properties of Giraud’s Theorem.

Before giving a proof of Giraud’s Theorem, we state and prove the following

Corollary 2.2.5. Let E be a Grothendieck topos. Then the following hold.

(i) For each object X of E , the slice category E /X is a Grothendieck topos.

(ii) For every small category D , the functor category E D is a Grothendieck topos.

Proof. (of Corollary 2.2.5) Both for (i) and for (ii) we just check that the hypotheses of Giraud’s theorem
are satisfied. For sake of simplicity, we assume that E has a single generator C ∈ E , the general case
being similar.

(i) Since E is cocomplete and finitely complete, then so is E /X. It is also clear that E /X has weak
descent, basically by Remark 2.1.4. Finally, E (C,X) is a small set of generators for E . Therefore,
E /X verifies (i) and (ii) of Theorem 2.2.4.

(ii) It is again immediate that E D is cocomplete and finitely complete and that it satisfies weak descent.
For each D ∈ D define an object FD in E D by setting, for all D′ ∈ E ,

FD(D′) :=
∐

D(D,D′)

C.
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If f : D′ → D′′ is an arrow in D , then FD(f) is the morphism sending the summand of FD(D′)
corresponding to σ : D → D′ to the summand of FD(D′′) corresponding to f ◦ σ. It is not difficult
to see that, for all D ∈ D and all G ∈ E D , one has

E D(FD, G) ∼= E (C, GD).

Since C is a generator for E , this implies that {FD}D∈D is a small set of generators for E D .

Remark 2.2.6. By Proposition 2.1.9, given a topos E and a morphism f : Y → X in E , the change of
base functor

f∗ : E /X −→ E /Y

preserves all small colimits. But we have just seen that the slice category E /X is again a topos. Since
every Grothendieck topos is a presentable category (see Definition 1.1.3), Corollary 1.1.10 implies that
f∗ has a right adjoint. It has also a left adjoint, given by composition with f . In fact, one can prove
(see [McMo] §1.9) that, given any category D with pullbacks and any arrow f : C → B in D , the change
of base functor f∗ has a left adjoint given by composition with f . If, moreover, D/B is cartesian closed,
than each such f∗ also has a right adjoint.

The rest of this section is devoted to show Giraud’s Theorem. We shall need a lot of auxiliary results
that hold in every category with weak descent; some of these we have already proved for topoi.

Proposition 2.2.7. Let E be a category with weak descent and suppose given a pullback square in E

U X
q // X

Y

f

��

U

V

g

��
V Y

p
//

where p is a regular epimorphism. Then q is a regular epimorphism as well and f is an isomorphism if
and only if g is such.

Proof. Consider the commutative diagram

U X
q // X

Y

f

��

U

V

g

��
V Y

p
//

W ×Y X U
//

W ×Y X U//W ×Y X

W

h

��
W V

//
W V//

where the bottom row is a coequalizer diagram. The top row is obtained from the bottom one by
pulling back along f and is then a coequalizer by part 1. of Proposition 2.1.14. Therefore, q is a
regular epimorphism. If g is an isomorphism, then so is h, since it is obtained from g by pullback. It
follows that also f is an isomorphism, as it is the map induced by (h, g) on the colimits of the diagrams
W ×Y X U

//
W ×Y X U// and W V

//
W V// .

Proposition 2.2.8. Let E be a category with weak descent and let f : X → Y be a map in E . Then
there exists an essentially unique factorization f = ip where i is a monomorphism and p is a regular
epimorphism. Furthermore, p is the coequalizer of the pair of projections X ×Y X ⇒ X. In particular,
all regular epimorphisms are effective epimorphisms.

Proof. We have a diagram

X ×Y X X
//

X ×Y X X// X I
p // I Y

i //

where p is the coequalizer of the projections from X ×Y X and i is the unique arrow I → Y in E such
that ip = f . So we only need to check that i is a monomorphism. Equivalently, we want to prove that
the arrow t in the following diagram is an isomorphism

I ×Y I I// I

Y

i

��

I ×Y I

I

t

��
I Y

i //

X ×I (I ×Y I) I ×Y I//X ×I (I ×Y I)

X
��
X I

p //
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Since p is a regular epimorphism and the left hand square is a pullback, Proposition 2.2.7 implies that
t is an isomorphism if and only if the arrow (X ×I (I ×Y I)) → X is such. Under the isomorphism
(X ×I (I ×Y I)) ∼= X ×Y I, this arrow (X ×I (I ×Y I))→ X becomes the projection j : X ×Y I → X. So
we need to show that j is an isomorphism. Let us consider the following diagram

X ×Y I X
j // X

Y

f

��

X ×Y I

I
��
I Y

i //

X ×Y X X ×Y I
q //X ×Y X

X
��
X I

p //

X ×Y X ×Y X X ×Y X
//

X ×Y X ×Y X X ×Y X//

X ×Y X X
//

X ×Y X X//

X ×Y X ×Y X

X ×Y X
��

Here the top row is obtained from the bottom one by pullback along f and using the pasting lemma for
pullbacks. Since the middle square is a pullback, by Proposition 2.1.14, q is a coequalizer of the pair of
arrows shown. Now, it is immediate to see that the diagram

X ×Y X ×Y X X ×Y X
π1 //

X ×Y X ×Y X X ×Y X
π2

// X ×Y X X
jq //

is a split fork in E . This means that we have arrows

X X ×Y X
s // X ×Y X X ×Y X ×Y X

t //

satisfying
π1t = id, jqs = id, π2t = sjq.

It follows readily that jq is a coequalizer of π1 and π2 as q: if h : X ×Y X → Z is a morphism in E such
that hπ1 = hπ2, then there is a unique k : X ×Y I → Z such that kq = h, so that kqs verifies

kqsjq = kqπ2t = hπ2t = hπ1t = h.

We conclude that j must be an isomorphism, so that i is a monomorphism. By Proposition 1.3.3, the
(regular epi, mono)-factorization of f is unique up to within isomorphism. This concludes the proof.

Corollary 2.2.9. Let E be a category with weak descent. Given a small category J , let τ : F =⇒ G be
a natural transformation between functors F,G : J −→ E . If τ is an objectwise regular epimorphism,
then the induced arrow

colim(τ) : colimF → colimG

is a regular epimorphism as well.

Proof. By Proposition 2.2.8 and the fact that E J has weak descent, τ is the coequalizer of the two
projections F ×G F ⇒ F . Since colimits commute among them, we have

colim τ = colim(coeq(F ×G F ⇒ F )) ∼= coeq(colim(F ×G F ⇒ F )),

so colim τ is a regular epi.

The following result has the same proof of Corollary 1.3.7, so we omit it.

Corollary 2.2.10. Let f : X → Y and g : Y → Z be morphisms in a category E having weak descent.

(i) If gf is a regular epimorphism, then so is g.

(ii) If f and g are regular epimorphisms, then so is gf .

The hierarchy of epimorphisms in a category with weak descent is simplified by the following

Proposition 2.2.11. Let E be a category with weak descent. Then every epimorphism in E is a regular
epimorphism.
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Proof. Since every map in E admits a (regular epi, mono)-factorization, by Corollary 2.2.10 above, it
is enough to show that if f : A → B is an epimorphism and a monomorphism, then it is a regular
epimorphism. Consider the diagram

A
id←−−−− A

f−−−→ Byf yid yid
B

f←−−− A
f−−−→ B

Here (f, id, id) is an equifibered natural transformation between the diagrams given by the rows, because
f is a monomorphism. The map induced by (f, id, id) between the colimits of the rows is (isomorphic to)
the identity of B, so that property (P2b) of weak descent implies that f : A→ B ∼= B ×B B is a regular
epimorphism, as required.

Remark 2.2.12. Proposition 2.2.11 above and Proposition 1.3.3 imply that in a category with weak
descent (so, in particular, in a Grothendieck topos) an arrow is an isomorphism if and only if it is both
mono and epi. In other words, every category with weak descent is balanced.

We also need the following technical result.

Lemma 2.2.13. Let J be a small category and let E be a category with weak descent. Consider a
pullback square in E J of the form

A Y// Y

B

g

��

A

X
��
X B

f //

where both f and g are equifibered natural transformations. Then the canonical arrow

colimA→ (colimX)×colimB (colimY )

is a regular epimorphism.

Proof. Write Ā, B̄, X̄, Ȳ for the colimits of A, B, X and Y respectively. Consider the functors

X ′ := B(−)×B̄ X̄, Y ′ := B(−)×B̄ Ȳ , A′ := B(−)×B̄ (X̄ ×B̄ Ȳ ).

Note that, for all j ∈J , we have

A′(j) ∼= (B(j)×B̄ X̄)×B̄ Ȳ = X ′(j)×B̄ Ȳ ∼= X ′(j)×B(j) (B(j)×B̄ Ȳ ) = X ′(j)×B(j) Y
′(j).

By the first part of Proposition 2.1.14, we obtain immediately that colimX ′ ∼= X̄, colimY ′ ∼= Ȳ and
colimA′ ∼= X̄ ×B̄ Ȳ . Now, by Corollary 2.2.9, the Lemma will be proved if we show that, for all j ∈J ,
the map A(j)→ A′(j) is a regular epimorphism. Such a map is given as the composite

A(j) ∼= X(j)×B(j) Y (j)→ X(j)×B(j) Y
′(j)→ X ′(j)×B(j) Y

′(j) ∼= A′(j). (2.15)

But now the arrows X(j) → X ′(j) and Y (j) → Y ′(j) are regular epimorphisms for all j ∈ J , by the
hypothesis that both f and g are equifibered and using the second part of the providential Proposition
2.1.14. Since regular epimorphisms are preserved under pullbacks (Proposition 2.2.7) and are closed under
composition (Corollary 2.2.10), we then get that also the morphism (2.15) above is a regular epimorphism,
as needed.

With all these preliminary results at hand, the proof of Giraud’s theorem will follow from the next
two Propositions. Before stating them, let us first recall a notion from general Category Theory that we
are going to need immediately.

Definition 2.2.14. Let F : A −→ B and G : A −→ D be functors. A pair (K, α), where K : B −→ D
is a functor and α : G =⇒ KF is a natural transformation, is a left Kan extension of G along F if it
satisfies the following universal property. Given any pair (H, β) where H : B −→ D is a functor and
β : G =⇒ HF is a natural transformation, there exists a unique natural transformation γ : K =⇒ H such
that γF ◦ α = β.
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Remark 2.2.15. (a) As usual when dealing with universal properties, a left Kan extension of G along
F , if it exists, is unique up to within a unique isomorphism. One then commonly talks about the
left Kan extension of G along F and denotes it by LanF (G).

(b) It is a well-known fact (see [Bor1] Theorem 3.7.2) that if A is a small category and D is a cocomplete
category, then for any couple of functors F : A −→ B and G : A −→ D , LanF (G) exists and can
be computed objectwise as follows. For all B ∈ B, let El(B) be the category of elements of the
functor B(F−, B) : A −→ Set and let UB : El(B) −→ A be the forgetful functor. Then

(LanF (G))(B) = colimEl(B)GUB . (2.16)

Alternatively, one can construct LanF (G) as the coend

(LanF (G))(B) =

∫ A∈A

B(FA,B) ·GA, (2.17)

where B(FA,B) ·GA is the copower
∐

B(FA,B)GA.

(c) Given a functor F : A −→ B between small categories, we get, for all categories D , an induced
functor

F ∗ = (−) ◦ F : DB −→ DA

Now, if we fix a category D and if every functor G : A −→ D has a left Kan extension LanF (G),
then the assignment

LanF (−) : DA −→ DB, G 7→ LanF (G)

defines a left adjoint of F ∗. Thus, we have natural isomorphisms

DA (LanF (G), K) ∼= DB(G, KF )

for all G ∈ DA and for all K ∈ DB.

Remark 2.2.16. Given functors F : A −→ B and G : A −→ D , one can dualize Definition 2.2.14 by
considering the right Kan extension of G along F as a pair (K, β), where K : B −→ D is a functor and
β : KF =⇒ G is a natural transformation which is universal among such pairs. This right Kan extension,
if it exists, is again unique up to a unique isomorphism and is denoted by RanF (G). Right Kan extensions
satisfy the dual properties of those listed in Remark 2.2.15 for left Kan extensions.

We can now prove the following

Proposition 2.2.17. Let E be a cocomplete and finitely complete category which has weak descent and
a small set of generators C. Let C be the full small subcategory of E spanned by C. Then there is an
adjoint pair

PSh(C ) E

L

##
PSh(C ) E

dd
R

⊥ ,

where (L is the left adjoint and) R sends X ∈ E to the functor E (−, X) ∈ PSh(C ). Moreover, the counit
ε : LR −→ IdE is a natural isomorphism, so that E is equivalent to a full (replete) subcategory of PSh(C ).

Proof. Let y : C −→ PSh(C ) be the Yoneda embedding and i : C −→ E the inclusion. We then set

L := Lany(i) : PSh(C ) −→ E

By the description of Lany(i)(F ) (for F ∈ PSh(C )) in terms of the colimit (2.16), it is immediate to see
that L is left adjoint to R (see also [McMo] §1.5, Theorem 2). Note also that, using again (2.16), we get

Lany(i)(F ) = colim(C, x∈F (C)) C

where C ∈ C and the colimit is taken over the category of elements of F . Fixing X ∈ E and applying
this to F = E (−, X) one sees that (LR)(X) is the coequalizer in( ∐

C′→C→X
C ′

)
⇒

( ∐
C→X

C

)
g→ (LR)(X)
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Here the first coproduct is over all sequences of maps C ′ → C → X in E with C,C ′ ∈ C (these sequences
are just the arrows in the category of elements of E (−, X)), whereas the second coproduct is made over
all elements of E (C,X), for C ∈ C . The X−th component of the counit, εX : (LR)(X)→ X, is the map
obtained using the universal property of the coequalizer (LR)(X) from the morphism

q :
∐

d : C→X

C → X

whose d−th component is d itself. Set U :=
∐
C→X C; since E is generated by C , the map q : U → X

above is an epimorphism (see Remark 2.2.2), hence it is an effective epimorphism by Propositions 2.2.11
and 2.2.7. Thus, q is the coequalizer of U ×X U ⇒ U .

Consider now the small set S of all commutative squares in E

D C
d // C

X

c

��

D

C ′

d′

��
C ′ X

c′ //

(2.18)

where D, C, C ′ are in C and take
∐
S D, where D is the northwest corner of a commutative square as

the one in (2.18) above. By weak descent, there is an isomorphism

U ×X U ∼=

( ∐
C→X

C

)
×X

( ∐
C′→X

C ′

)
∼=

∐
(C→X, C′→X)

(C ×X C ′).

Under this identification, we get an epimorphism

p :
∐
S

D → U ×X U.

Its cocomponent corresponding to a commutative square like (2.18) is the map D → C ×X C ′ induced
on the pullback by d and d′.

We need this p to prove that εX is an epimorphism. Indeed, since, by its definition, εX ◦ g = q and
q is an epimorphism, we get that εX is epi as well. We show that εX is an isomorphism by proving that
it admits a retraction. To this end, we just need to show that g : U → (LR)(X) coequalizes the pair
of projections U ×X U ⇒ U because in this case, there would be a unique r : X → (LR)(X) such that
rq = g and then εXrq = εXg = q. Thus, we would get εXr = idX , as q is an epimorphism.

So we are left to prove that g coequalizes U ×X U ⇒ U . Given c ∈ E (C,X) for C ∈ C , denote by
gc : C → (LR)(X) the c−th cocomponent of g (recall that U =

∐
C→X C). Now, by definition of g, we

have that g coequalizes the pair of arrows ∐
C′→C→X

C ′ ⇒
∐
C→X

C.

This means that gcc′ = gcc′ for every sequence of maps C ′ c
′

→ C
c→ X in E with C,C ′ ∈ C . Therefore,

for every commutative square (2.18) we have

gcd = gcd = gc′d′ = gc′d
′.

This implies that the two possible composite arrows∐
S

D
p→ U ×X U ⇒ U

g→ (LR)(X)

are the same. Since p is an epimorphism, we conclude that g coequalizes U ×X U ⇒ U , as required. This
completes the proof.
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Proposition 2.2.18. Let C be a small category. Assume (C , Sh(C )) is a pseudo-site. Thus, Sh(C )
is a replete and reflective subcategory of PSh(C ) and we denote by a : PSh(C ) −→ Sh(C ) the reflector.
Suppose in addition that the Yoneda embedding y : C −→ PSh(C ) factors through Sh(C ) and that its
corestriction C −→ Sh(C ) is a full and faithful embedding. Then, if Sh(C ) has weak descent, a is left
exact.

Proof. Recall from Definition 1.1.3 that we call an object of Sh(C ) a pseudo-sheaf. By Lemma 1.1.7,
pseudo-sheaves are exactly those presheaves X such that the unit morphism X =⇒ iaX is an isomor-
phism (here, as usual, i : Sh(C ) −→ PSh(C ) is the inclusion functor). Note that, by hypothesis, every
representable presheaf is a pseudo-sheaf.

Since Sh(C ) (as any replete and reflective subcategory) is closed in PSh(C ) under limits, we get that
the terminal object 1 ∈ PSh(C ) is automatically a pseudo-sheaf and 1 ∼= a1 is the terminal object also
in Sh(C ). So, a is left exact if and only if it preserves pullbacks. Thus, we need to show that, for any
pullback diagram

X ×B Y Y// Y

B
��

X ×B Y

X
��
X B//

in PSh(C ), the canonical arrow

a(X ×B Y ) =⇒ aX ×aB aY is an isomorphism. (2.19)

We will show this through a sequence of specific cases.

(i) Property (2.19) holds if X, Y and B are pseudo-sheaves. This is clear because Sh(C ) is closed under
limits in PSh(C ), so in this case X ×B Y is already a pseudo-sheaf.

(ii) Property (2.19) holds if Y and B are pseudo-sheaves. Every presheaf is a colimit (in PSh(C )) of
pseudo-sheaves because every representable presheaf is a pseudo-sheaf. Write then X ∼= colimU
for a functor U : J −→ Sh(C ) ⊆ PSh(C ) from a small category J . For each j ∈ J , we have a
commutative diagram

U(j)×B Y X ×B Y// X ×B Y

X
��

U(j)×B Y

U(j)
��

U(j) X//

X ×B Y Y// Y

B
��

X B//

where both squares are pullbacks. Now, Proposition 2.1.14 in PSh(C ) gives (colimU)×BY ∼= X×B
Y . Since U(j) is a pseudo-sheaf for all j ∈J , by part (i) we get that aU(j)×aBaY ∼= a(U(j)×BY ).
We can use again Proposition 2.1.14 in Sh(C ) to see that

colim(aU ×aB aY ) ∼= (colim aU)×aB aY.

Hence, using that a commutes with colimits and with finite limits, we get

a(X ×B Y ) ∼= a(colim(U ×B Y )) ∼= colim(a(U ×B Y )) ∼= colim(aU ×aB aY ) ∼= aX ×aB aY,

as required.

(iii) Property (2.19) holds if B is a pseudo-sheaf. The proof in this case is exactly as the one in (ii)
above, except that we can drop the hypothesis that Y is a presheaf by using (ii). Indeed, with the
same notation as in (ii), we still get that, for j ∈J , aU(j)×aB aY ∼= a(U(j)×B Y ) because U(j)
and B are pseudo-sheaves and we have (ii) at hand.

(iv) The functor a preserves products. This follows immediately from (iii) because the terminal presheaf
1 is a pseudo-sheaf.

(v) The functor a preserves monomorphisms. Let X =⇒ Y be a monomorphism of presheaves. Write
Y = colimV for a functor V : J −→ Sh(C ) ⊆ PSh(C ). Set also U := V (−) ×Y X and let
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τ : U =⇒ V be the evident natural transformation. Note that, being a pullback of a monomorphism,
τ is mono. For each arrow i→ j in J we have

aV (i)×aV (j) aU(j)
(iii)∼= a(V (i)×V (j) U(j)) = a(V (i)×V (j) (V (j)×Y X)) ∼= a(V (i)×Y X) ∼= aU(i),

so that aτ : aU =⇒ aV is an equifibered natural transformation between pseudo-sheaves and each
arrow aτ(j) : aU(j) → aV (j) is a monomorphism (as aU(j) ×aV (j) aU(j) ∼= a(U(j) ×V (j) U(j)) ∼=
aU(j))). By Proposition 2.1.16 applied to Sh(C ), we get that colim aτ : colim aU =⇒ colim aV is
a monomorphism. Under the isomorphisms colim aU ∼= aX and colim aV ∼= aY , this morphism
corresponds to aX =⇒ aY , which is then mono.

(vi) Property (2.19) holds for general presheaves X, Y and B. Note that the obvious map κ : X×BY =⇒
X × Y is a monomorphism, as it is an equalizer. The composite map

a(X ×B Y )
σ

=⇒ aX ×aB aY =⇒ aX × aY

is isomorphic to aκ by (iv) above and it is then an isomorphism by (v). It follows that σ is a
monomorphism, so we only need to show that it is a regular epimorphism as well. Write B =
colimW for a functor W from a small category J into pseudo-sheaves. Consider the two functors
from J into presheaves defined by

U(−) := W (−)×B X and V (−) := W (−)×B Y

Thanks to the ubiquitous Proposition 2.1.14, we get

X ∼= colimU, Y ∼= colimV, colim(U ×W V ) ∼= X ×B Y.

Using (iii) we see that both the maps aU =⇒ aW and aV =⇒ aW (induced by the evident arrows
U =⇒ W and V =⇒ W ) are equifibered natural transformations. Therefore, using Lemma 2.2.13,
we get that the map

a(X ×B Y ) ∼= a(colim(U ×W V )) ∼= colim(aU ×aW aV ) =⇒ aX ×aB aY

is a regular epimorphism, as required.

The proof is now complete.

Finally, we obtain the

Proof. (of Giraud’s Theorem 2.2.4) By Proposition 2.2.17, every category with weak descent is equivalent
to a category of pseudo-sheaves satisfying the hypotheses of Proposition 2.2.18. We can then conclude
using that same Proposition.

We end this chapter by giving the notion of morphisms of Grothendieck topoi.

Definition 2.2.19. Let E and E ′ be topoi. A geometric morphism f : E → E ′ from E to E ′ is a functor

f∗ : E ′ −→ E

which preserves small colimits and finite limits. The right adjoint E −→ E ′ to such a functor (which
exists by Corollary 1.1.10) is denoted by f∗.

Let us collect here some examples of geometric morphisms.

Example 2.2.20. 1. Given a site (C , Sh(C )), the left adjoint to the inclusion of Sh(C ) into PSh(C )
is a geometric morphism Sh(C ) −→ PSh(C ).

2. Let E be a Grothendieck topos and take a morphism g : X → Y in E . By Proposition 2.1.9, the
change of base functor

f∗ : E /Y −→ E /X, (B → Y ) 7→ (B ×Y X → X)

is a geometric morphism E /X −→ E /Y . If Y = 1, the terminal object in E , then we denote the
right adjoint f∗ : E /X −→ E to the change of base functor by sectX . For each g : A → X, we call
sectX(g) ∈ E the object of sections of g. Note that sectX(X × Y → X) is canonically isomorphic
to the exponential object Y X in E (both objects have the same universal property).
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3. Given any topos E , there is a geometric morphism π : E −→ Set where

π∗ : Set −→ E , S 7→
∐
S

1

The right adjoint π∗ : E −→ Set is the global section functor sending each object X ∈ E to the set
of its global elements, E (1, X). Note that, when E is the category of sheaves on a topological space
(T, τ), π∗(F ) ∼= F (T ).

4. For any small category C and any object C ∈ C , there is a geometric morphism fC : Set −→ PSh(C )
given by evaluation at C:

f∗C : PSh(C ) −→ Set, X 7→ X(C).

5. Let (X, τ) be a topological space and x ∈ X. There is a geometric morphism Set −→ Sh(X) given
by taking stalks at x. Namely, the stalk functor

Stalkx : Sh(X) −→ Set, F 7→ Fx := colimx∈U∈τ F (U)

has a right adjoint given by the skyscraper sheaf construction. This is the functor

Skyx : Set −→ Sh(X), A 7→ Skyx(A),

where Skyx(A) is the sheaf on X sending an open subset U of X to A if x ∈ U and to 1 otherwise
(see [McMo] §II.6 Lemma 7).

6. Let f : X → Y be a continuous map of topological spaces (X, τ) and (Y, σ). Then f gives rise to a
well-known geometric morphism Sh(X) −→ Sh(Y ), still denoted by f , given by the inverse image
functor, i.e. the functor sending a sheaf F over Y to the sheafification of the presheaf on X given
by

τ 3 U 7→ colimf(U)⊆V ∈σ F (V ).

The right adjoint is the direct image which sends a sheaf G over X to the sheaf over Y defined, for
each open subsets V of Y , by G(f−1(V )) (see [McMo] §II.9).
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Chapter 3

Grothendieck Topologies.

At idola fori omnium molestissima sunt; quae
ex foedere verborum et nominum se insin-
uarunt in intellectum.

Francis Bacon,
Novum Organum, Aphorism LIX.

As we have already mentioned, the notion of Grothendieck topos that we gave in Definition 1.1.3 is
quite unorthodox. In this chapter, we establish the definitions of Grothendieck (pre)topologies and of
sheaves with respect to such a Grothendieck topology τ on a small category C (see Section 3.1). We then
show that every category Sh(C , τ) consisting of those sheaves is a Grothendieck topos in our sense and
viceversa, thus proving that our Definition 1.1.3 is just another way of describing the usual notion of a
Grothendieck topos (see Section 3.2). We will follow the account of [McMo] (Chapter III) and refer to it
for some of the proofs in the classical context.

3.1 Grothendieck sites.

Let C be a small category. Recall that

y : C −→ PSh(C )

denotes the Yoneda embedding. Thus, for all C ∈ C , y(C) = C (−, C).

Lemma 3.1.1. Let C be an object of C . Let SC be the set made of all those subsets F ⊆ ∪C′∈C C (C ′, C)
which are right ideals with respect to the composition in C , i.e. given a composable pair (f, g) of arrows
in C , if f is in F , then fg is in F as well. Then there is a bijection

SubPSh(C )(y(C)) ∼= SC ,

where SubPSh(C )(y(C)) is the set of subobjects of y(C).

Proof. A subobject of y(C) can be uniquely represented by a subfunctor S � y(C) of y(C) (so that
S(C ′) ⊆ C (C ′, C) and S acts on arrows of C as y(C)). Given such a subfunctor S � y(C), the set
FS := ∪C′∈CS(C ′) is in S. Viceversa, if F ∈ S, we get a subfunctor SF of y(C) by setting, for C ′ ∈ C ,

SF (C ′) := {f ∈ F : dom(f) = C ′}.

The assignments S 7→ FS and F 7→ SF are mutually inverse.

Definition 3.1.2. A sieve over an object C ∈ C is a subfunctor S � y(C). The sieve y(C) � y(C)
given by the identity of y(C) is called the maximal sieve on C.

By the above Lemma 3.1.1, we can equivalently consider a sieve over C as an element of SC . We shall
often confuse these two descriptions of a sieve and freely use them.
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Given a sieve S � y(C) over C ∈ C and an arrow f ∈ C (C ′, C), we define the pullback sieve of S
along f as the sieve f−1S � y(C ′) over C ′ fitting in a pullback square

f−1S y(C ′)// y(C ′)

y(C)

y(f)

��

f−1S

S
��
S y(C)//

In other words, if S = {fi : Xi → C}i∈I , then

f−1S = {g : Xi → C ′ : fg ∈ S}.

Definition 3.1.3. Let C be a small category and let P(Mor(C )) denote the power set of Mor(C ). A
Grothendieck topology on C is a function

τ : Ob(C ) −→ P(P(Mor(C ))),

such that, for each C ∈ C , τ(C) is a set of sieves over C and the following properties are satisfied, for all
C ∈ C :

(i) the maximal sieve over C belongs to τ(C);

(ii) (stability axiom) if S ∈ τ(C), then f−1(S) ∈ τ(D) for each arrow f : D → C;

(iii) (transitivity axiom) if T ∈ τ(C) and S is a sieve over C such that, for each morphism f : D → C in
T , f−1(S) ∈ τ(D), then S ∈ τ(C).

The elements of τ(C) for C ∈ C are called covering sieves of C.

Let us look at some examples of Grothendieck topologies.

Example 3.1.4. 1. For every small category C , the function assigning to each C ∈ C the set

{y(C)→ y(C)}

consisting only of the maximal sieve is clearly a Grothendieck topology on C . It is called the trivial
topology on C as it is the minimal topology allowed by the axioms of Definition 3.1.3.

2. The assignment

Ob(C) 3 C 7→ τ(C) := {S ∈ P(Mor(C)) : S 6= ∅ and S is a sieve over C} (3.1)

is a Grothendieck topology on C if and only if, given any pair of arrows f, g in C having com-
mon codomain, there are morphisms h and k with the same domain and such that cod(h) =
dom(f), cod(k) = dom(g) and f ◦ h = g ◦ k:

E C
∀g

//

∃T

E

∃k

��

∃T D
∃h // D

C

∀f

��

(3.2)

If this is the case, τ is called the atomic topology on C and it is the maximal admissable topology
on a small category C . We remark that τ always verifies (i) and (iii) of Definition 3.1.3, even if
C does not satisfy (3.2). In fact, such a condition is equivalent to the stability axiom for τ . Note
also that property (3.2) is automatically true in every category C with pullbacks (even though, of
course, it is a weaker property than admitting pullbacks of every cospan).

3. Let (X, σ) be a topological space and consider the small category Op(X) given by the poset (σ, ⊆).
Since, for every U, V ∈ Op(X), there is a unique arrow V → U in Op(X) precisely when V ⊆ U ,
a sieve over U can be identified with a family S of open subsets of X contained in U which is
downward closed. This means that (V ′ ⊆ V ∧ V ∈ S) =⇒ V ′ ∈ S. We can define a Grothendieck
topology τ = τσ on Op(X) by declaring that, for U ∈ Op(X), a sieve S over U is in τ(U) if and
only if U is a union of the open subsets belonging to S. This topology τ is called the open cover
topology on Op(X).
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Sometimes, one is naturally provided with a notion of coverings for an object C ∈ C , the collection
of which, however, does not form a sieve over C. Still, if these coverings satisfy some compatibility
requirements, one can build a Grothendieck topology out of them.

Definition 3.1.5. Let C ∈ C , where C is a small category. A sink over C is a set {Ci → C}i∈I of
arrows in C with common target given by C.

Definition 3.1.6. Let C be a small category admitting pullbacks. A basis (for a topology) on C (or a
(Grothendieck) pretopology on C ) is a function

β : Ob(C ) −→ P(P(Mor(C )))

such that, for all C ∈ Ob(C ), β(C) is a family of sinks over C and the following properties are satisfied:

(i’) if f : C ′ → C is an isomorphism in C , then {f} ∈ β(C);

(ii’) if {fi : Ci → C}i∈I ∈ β(C), then, for all morphism g : D → C, every family P = {π2i : Ci ×C D →
D}i∈I of pullbacks of the arrows fi along g belongs to β(D);

(iii’) if {fi : Ci → C}i∈I ∈ β(C) and, for all i ∈ I, {gij : Dij → Ci}j∈Ii is a sink over Ci belonging to
β(Ci), then the family of composites

{fi ◦ gij : Dij → C}i∈I, j∈Ii

is an element of β(C).

Note that, due to (i’) of Definition 3.1.3, if there are C ∈ Ob(C ) and an arrow g ∈ Mor(C ) such that
cod(g) = C and g 6= idC , a topology on C is not a pretopology on C . Nevertheless, we have the following

Proposition 3.1.7. Let β be a pretopology on a small category C admitting pullbacks. Then we get a
topology on C as the function τ which associates to each C ∈ Ob(C ) the set τ(C) of sieves on C such
that, for all sieves S over C,

S ∈ τ(C) ⇐⇒ ∃R ∈ β(C) such that R ⊆ S. (3.3)

This Grothendieck topology on C is called the topology generated by β and is denoted as (β).

Proof. This is a routine check. Indeed, clearly the maximal sieve is in τ(C) for each C ∈ C . If S ∈ τ(C)
and g is an arrow in C with target C, let D := dom(g) and take R ∈ β(C) such that R ⊆ S. Let also
T ′ ∈ β(D) be the sink over D given by the pullbacks of f along g,

dom(f)×C D → D,

where f ranges in R. Then, by definition of pullback, T ′ ⊆ g−1(S) and then g−1(S) ∈ τ(D). This shows
that τ verifies the stability axiom of Definition 3.1.3. Similarly, one shows that the transitivity axiom is
satisfied as well.

There is a kind of converse to the above result, given by the next

Proposition 3.1.8. Let τ be a Grothendieck topology on a small category C with pullbacks. Consider
the function sending each C ∈ Ob(C ) to the set β(C) of sinks over C such that, for each sink R over C,

R ∈ β(C) ⇐⇒ (R) ∈ τ(C) (3.4)

Here (R) is the sieve generated by R, i.e. the smallest sieve over C containing the sink R. Then β is a
basis on C which generates the given topology τ . Furthermore, for each basis γ on C generating τ and
for all C ∈ Ob(C ), γ(C) ⊆ β(C). In other words, β is the maximal basis on C generating β.

Proof. If R is a sink over C ∈ C , then (R) can be explicitely described as

(R) = {g ∈ Mor(C ) : cod(g) = C ∧ ∃f ∈ R ∃h ∈ C (dom(g), dom(f)) (g = f ◦ h)}. (3.5)

In other words, (R) is the set of morphisms in C which have C as range and factor through some arrow in
R. Using this characterization of (R), it is not difficult to show that β defined as in (3.4) is a pretopology
on C . Indeed, (i’) of Definition 3.1.6 is clearly satisfied as the sieve generated by an isomorphism with
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target C is the maximal sieve over C. To show (ii’) for β, let R = {fi : Ci → C}i∈I ∈ β(C) and take an
arrow g : D → C in C . Consider the family Q = {π2i : Ci ×C D → D}i∈I of pullbacks of each fi along g;
for all k ∈ g−1

((R)) we have that

cod(k) = D and ∃i ∈ I ∃h : dom(k)→ Ci (g ◦ k = fi ◦ h).

By definition of pullback, for each k ∈ g−1((R)) there is a (unique) morphism

t : dom(k)→ Ci ×C D

such that π2i ◦ t = k. Thus, g∗((R)) ⊆ (Q) and then, since g∗((R)) ∈ τ(C) by the stability axiom,
(Q) ∈ τ(C), so that Q ∈ β(C). This shows that property (ii’) of Definition 3.1.6 holds for β. One proves
similarly that β verifies (iii’) as well, so it is a basis on C . Clearly, β generates τ and is maximal among
the bases doing so.

Grothendieck (pre)topologies are used to define the classical notion of sites. In our context, we will
call them Grothendieck sites to distinguish them from the namesake concept introduced in Definition
1.1.3.

Definition 3.1.9. A Grothendieck site is a pair (C , τ), where C is a small category and τ is a
Grothendieck topology on C .
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3.2 Grothendieck topoi and sheaves on a Grothendieck site.
In this section we establish the announced equivalence between our Definition 1.1.3 of a Grothendieck

topos and the usual one, given in terms of sheaves on a Grothendieck site. Let us point out what we
mean by the latter.

Definition 3.2.1. Let (C , τ) be a Grothendieck site. A presheaf F ∈ PSh(C ) is called a sheaf (on the
site (C , τ)) if, for every C ∈ C and every covering sieve s : S � y(C), the map of sets

PSh(C )(s, F ) : PSh(C )(y(C), F )→ PSh(C )(S, F )

is an isomorphism. In other words, every natural transformation S =⇒ F can be uniquely extended to
a natural transformation y(C) =⇒ F . We denote by Sh(C , τ) the full subcategory of PSh(C ) made of
sheaves on the site (C , τ).

A more concrete description of the sheaf property can be given using the notion of matching families.

Let us first introduce the following notation. Suppose given a small category C and a presheaf
P ∈ PSh(C ). For any f : D → C and any x ∈ P (C), we set

x · f := (P (f))(x).

Note that x · (f ◦ g) = (x · f) · g, whenever the composition f ◦ g makes sense.

Definition 3.2.2. Let (C , τ) be a Grothendieck site and let P ∈ PSh(C ). Given C ∈ C and S ∈ τ(C),
a matching family (of elements of P ) for S is a function

x : S −→
⋃
f∈S

P (dom(f)), (f : D → C) 7→ xf ∈ P (D),

such that
∀E ∈ C ∀g ∈ C (E,D) (xf · g = xf◦g). (3.6)

An amalgamation of a matching family x = (xf )f∈S for S is an element x ∈ P (C) such that

∀f ∈ S (x · f = xf ). (3.7)

We can then reinterpret the sheaf condition as follows.

Proposition 3.2.3. Let (C , τ) be a Grothendieck site. A presheaf P ∈ PSh(C ) is a sheaf on (C , τ) if
and only if, for all objects C ∈ C and for all covering sieves S ∈ τ(C), every matching family x for S
has a unique amalgamation.

Proof. Fix C ∈ C and S ∈ τ(C) and let Match(S, P ) be the (small) set of matching families for S. Then
there is a bijection

Match(S, P ) ∼= PSh(S, P ), (3.8)

where on the right-hand side, S is seen as a subfunctor of P . This bijection associates to each x =
(xf )f∈S ∈ Match(S, P ), the natural transformation αx : S =⇒ P such that, for all D ∈ C , αx(D) : SD →
PD sends g ∈ SD to xg. An inverse for this map is the function sending a natural transformation
α : S =⇒ P to the matching family for S given as (αdom(g)(g))g∈S .

Using the identification (3.6), the Proposition is an immediate consequence of Yoneda’s lemma: if P
is a presheaf verifying the condition on matching families, take a matching family α : S =⇒ P for S and
let x ∈ PC be its unique amalgamation. Then, α factors through the inclusion of S into y(C), via the
unique γ : y(C) =⇒ P such that γC(idC) = x. Thus, P is a sheaf. Viceversa, if P is a sheaf, the unique
amalgamation for a matching family α ∈ PSh(C)(S, P ) is exactly γC(idC) (for the unique factorization
γ of α through S � y(C)).

The characterization of sheaves in terms of matching families resembles the usual glueing axioms for
sheaves on a topological space which provide unique amalgamations for compatible families of sections
over a covering of the space itself.
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One can also show that the sheaf condition can be expressed in terms of a certain map being an
equalizer for all C ∈ C and all covering sieves S over C. We do this in the special case when C has
pullbacks, so that we can consider bases for a Grothendieck topology. In this way, we will get immediately
that, for a topological space (X, σ), Sh(X) as defined in Example 1.1.4 is the same as Sh(Op(X), τσ),
where Op(X) is the poset (σ, ⊆) and τσ is the open covering topology on Op(X) (see Example 3.1.4).
We refer the interested reader to [McMo] Chapter III (4.3) for the more general case.

Recall from the last section that, when C is a small category with pullbacks, specifying a Grothendieck
topology on C is equivalent to give a (maximal) basis which generates it (see Propositions 3.1.8 and 3.1.7).

Given a small category C with pullbacks, let then (C , τ) be a Grothendieck site and let β be a basis
generating the Grothendieck topology τ . Given an object C ∈ C and a sink R = {fi : Ci → C}i∈I , if
fi, fj ∈ R, let us denote by π1

ij : Ci ×C Cj → Ci and π2
ij : Ci ×C Cj → Cj the projections from the

pullback.

Proposition 3.2.4. Let (C , τ) be a Grothendieck site where C has pullbacks and let β be a basis
generating the Grothendieck topology τ . A presheaf P ∈ PSh(C ) is a sheaf on the Grothendieck site
(C , τ) if and only if, for any sink {fi : Ci → C} ∈ β(C), the natural map

e : P (C)→ eq

( ∏
i∈I

P (Ci)
∏

(i,j)∈I2

P (Ci ×C Cj)
p //∏

i∈I
P (Ci)

∏
(i,j)∈I2

P (Ci ×C Cj)
q

//

)
(3.9)

is an isomorphism. Here, for x ∈ P (C), (xi)i∈I ∈
∏
i∈I P (Ci) and (i, j) ∈ I2, we have

e(x) := (x · fi)i∈I , [p((xi)i∈I)](i,j) = xi · π1
ij , [q((xi)i∈I)](i,j) = xj · π2

ij .

Proof. See [McMo], Chapter 3, Proposition 4.1.

Remark 3.2.5. The map e in (3.9) above is precisely the map e in (1.1), taking C to be Op(X) and τ to
be the open covering topology τσ for some topological space (X, σ). Note indeed that a basis generating
the Grothendieck topology τσ is given associating to each open U in X, the family of all sets {Ui}i∈I
such that each Ui is contained in U and ∪i∈IUi = U . Thus, Sh(X) = Sh(Op(X), τσ), as announced.

Given the definition of sheaves on a Grothendieck site, we are now ready to prove that they exhaust
(up to equivalences of categories) all Grothendieck topoi.

Theorem 3.2.6. Let (C , τ) be a Grothendieck site. Then the pair (C , Sh(C , τ)) is a site in the sense
of Definition 1.1.3 and Sh(C , τ) is a Grothendieck topos. The left adjoint a : PSh(C ) −→ Sh(C , τ) to
the inclusion of Sh(C , τ) in PSh(C ) is called sheafification functor.

This result is shown in [McMo] Chapter III.5. We outline here the most important steps in the proof.

Note first that Sh(C , τ) is clearly a replete full subcategory of C , so that one needs to find a left
exact reflector a : PSh(C ) −→ Sh(C , τ). To build a, one first constructs an intermediate functor

(−)+ : PSh(C ) −→ PSh(C ), P 7→ P+.

For each P ∈ PSh(C ) the presheaf P+ sends C ∈ C to

P+(C) := colimS∈τ(C) PSh(C )(S, P ) = colimS∈τ(C) Match(S, P ), (3.10)

where the colimits is taken over the poset given by the set τ(C) ordered by reverse inclusion. This
is a directed poset because the intersection of two covering sieves is a covering sieve. Therefore, the
functor (−)+ commutes with finite limits. For each P ∈ PSh(C ) and all C ∈ C , since the identity map
idy(C) : y(C) =⇒ y(C) is a covering sieve, we get a map

ηP (C) : P (C) ∼= PSh(C )(y(C), X)→ P+(C)

The functions (ηX(C))C∈C give rise to a natural transformation ηX : P =⇒ P+ and these natural trans-
formations assemble together into a map of functors η : IdPSh(C ) =⇒ (−)+. This plus contruction has
the following properties:
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• for all P ∈ PSh(C ), P+ is a separated presheaf, i.e. a presheaf G such that, for all covering sieves
s : S � y(C) over C ∈ C , the map

PSh(C )(s,G) : PSh(C )(y(C), G)→ PSh(C )(S,G)

is a monomorphism;

• if P is a separated presheaf, then P+ is a sheaf;

• if F is a sheaf on (C , τ), then, for all P ∈ PSh(C ), the map

PSh(C )(ηP , F ) : PSh(C )(P+, F )→ PSh(C )(P, F )

is an isomorphism.

These properties imply that (−)+, seen as a functor onto the full (and replete) subcategory of PSh(C )
given by separated presheaf, is a left exact reflector for that subcategory. The unit of this adjunction is
given by the natural transformation η. Furthermore, one gets the required left adjoint a to the inclusion
Sh(C , τ) −→ PSh(C ) by setting

a := (−)+ ◦ (−)+ : PSh(C ) −→ Sh(C , τ),

which is left exact, as (−)+ is such.

We can immediately prove the converse to the above result with the following

Theorem 3.2.7 (cf. [Rzk1], Proposition 3.8.). Let (C , Sh(C )) be a site in the sense of Definition 1.1.3.
Then there exists a Grothendieck topology τ on C such that Sh(C ) = Sh(C , τ) (and this is a strict,
set-theoretical equality).

As a consequence, we get the

Corollary 3.2.8. Every Grothendieck topos is equivalent to the category of sheaves over a Grothendieck
site.

We now prove Theorem 3.2.7.

Proof. (Of Theorem 3.2.7). Let us denote by

a: PSh(C ) � Sh(C ) :i

the adjoint pair associated to Sh(C ) ⊆ PSh(C ), so that i : Sh(C ) −→ PSh(C ) is the inclusion and a is
the reflector.

We define a Grothendieck topology τ on C by declaring that, for all C ∈ C , a sieve s : S � y(C)
over C is a covering sieve (i.e. is in τ(C)) precisely when a(s) is an isomorphism. Note that (i) of the
Definition 3.1.3 of a Grothendieck topology is trivial, whereas the stability axiom (ii) follows because a
is left exact. As for the transitivity axiom, suppose given a sieve s : S � y(C) over C and assume there
is a covering sieve t : T � y(C) over C such that, for all C ′ ∈ C and all f ∈ T (C ′), the pullback sieve
f−1s : f−1S � y(C ′) is in τ(C ′). In other words, for all (C ′, f) ∈ El(T ) (the category of elements of T ),
we have that a(f−1s) : a(f−1S)→ a(y(C)) is an isomorphism. Note that, since a is left exact, a(f−1s) is
the pullback of a(s) along a(y(f)). Since a commutes with colimits and with finite limits, we then have
a chain of canonical isomorphisms

aT ∼= a
(
colim(C′, f)∈El(T ) y(C)

) ∼= colim(C′, f)∈El(T ) a(y(C)) ∼= colim(C′, f)∈El(T ) a(f−1S) ∼=

∼= colim(C′, f)∈El(T )(a(y(C ′))×a(y(C)) a(S)) ∼=
(
colim(C′, f)∈El(T ) a(y(C ′))

)
×a(y(C)) a(S) ∼=

∼= a(T )×a(y(C)) a(S),

where the penultimate isomorphism is due to Proposition 2.1.14 applied to the category with weak descent
Sh(C ). Hence, in the commutative diagram

a(T )×a(y(C)) a(S) a(T )// a(T )

a(y(C))

a(t)

��

a(T )×a(y(C)) a(S)

a(S)
��

a(S) a(y(C))
a(s)

//
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the upper horizontal arrow is an isomorphism. Since, by the hypothesis t ∈ τ(C), a(t) is an isomorphism,
we get that also the left vertical arrow is an isomorphism, being a pullback of an iso. It follows that a(s)
is invertible as well, i.e. s ∈ τ(C).

Therefore, τ is a Grothendieck topology on C . Let us denote by

aτ : PSh(C ) � Sh(C , τ) :iτ

the adjoint pair associated to Sh(C , τ) ⊆ PSh(C ). Our goal is to prove that Sh(C ) = Sh(C , τ). By
definition of τ , given an object C ∈ C and a covering sieve s : S � y(C) over C, a(s) is an isomorphism.
Thus, if F ∈ Sh(C ), the map

PSh(C )(s, F ) : PSh(C )(y(C), F )→ PSh(C )(S, F )

is an isomorphism by the second part of Lemma 1.1.7. This shows that Sh(C ) ⊆ Sh(C , τ). In order to
prove the other inclusion, by Lemma 1.1.7 again, it suffices to show that, for any morphism δ : X =⇒ Y
in PSh(C ),

if a(δ) is an isomorphism, then aτ (δ) is an isomorphism. (∗)

We now claim that it is enough to prove (∗) above just when δ is a monomorphism or when δ is a regular
epimorphism. Indeed, let δ ∈ PSh(C ) be such that a(δ) is an isomorphism. We can factor δ = ip, where
i is a monomorphism and p is a regular epi. Since a is left exact, a(i) is a monomorphism in Sh(C ). But
a(δ) is an isomorphism, hence a(i) is an isomorphism as well (invertibility of a(δ) implies that a(i) is a
regular epi and we have just seen that it is also a monomorphism). Thus, also a(p) is invertible. This
shows that we can reduce the proof of (∗) to the cases where δ is either mono or regular epi.

(i) Property (∗) holds if δ is a monomorphism. If δ : X =⇒ Y , write Y as a colimit of representable
presheaves, say Y = colimj∈J V (j), for some small category J and some functor V : J −→
PSh(C ) landing into the representable presheaves. Consider the functor

U(−) := V (−)×Y X : J −→ PSh(C )

Since δ is mono, the maps δj : U(j) → V (j) given by the pullback projections are sieves over
V (j), for each j ∈ J . Since a commutes with pullbacks, we have moreover that each a(δj) is an
isomorphism (as it is a pullback of the isomorphism a(δ)). This means that δj ∈ τ . Note now that
every s ∈ τ has the property that aτ (s) is an isomorphism. Indeed, for all F ∈ Sh(C , τ) the map

Sh(C , τ)(aτ (s), F ) : Sh(C , τ)(aτ (y(C)), F )→ Sh(C , τ)(aτ (S), F )

fits into a commutative diagram

Sh(C , τ)(aτ (y(C)), F ) PSh(C )(y(C), F )
∼= // PSh(C )(y(C), F )

PSh(C )(S, F )

PSh(C )(s,F )

��

Sh(C , τ)(aτ (y(C)), F )

Sh(C , τ)(aτ (S), F )

Sh(C , τ)(aτ (s),F )

��
Sh(C , τ)(aτ (S), F ) PSh(C )(S, F )∼=

//

where the horizontal arrows are the isomorphisms coming from the adjunction (aτ , iτ ), while the
right vertical arrow is an isomorphism because F is a sheaf on the site (C , τ). In particular, each
aτ (δj) is an isomorphism. Since aτ preserves colimits and, by weak descent, X ∼= colimj∈J U(j)
(see Proposition 2.1.14), we get that aτ (δ) is an isomorphism.

(ii) Property (∗) holds if δ is a regular epimorphism. Since aτ preserves colimits, aτ (δ) is a regular
epimorphism. Let us then show that a(δ) is a monomorphism as well. Let θ : X → X ×Y X be the
map induced by the identity of X on the pullback of δ along itself. This map is a monomorphism,
by its very definition (composing it with one of the projections from the pullback gives the identity
on X, which is a monomorphism). Since a preserves pullbacks and a(δ) is an isomorphism, we must
have that a(θ) is iso. By the first case above, it follows that aτ (θ) is an isomorphism as well and
thus aτ (δ) is a monomorphism (as aτ is left exact).
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Remark 3.2.9. Having proved Theorem 3.2.7 and its Corollary, we can then say that categories of sheaves
on a Grothendieck site (i.e. the categories which, up to equivalences, are usually called Grothendieck
topoi) are equivalently and precisely

1. the left exact, replete and reflective subcategories of presheaves categories (where left exact means
that the reflector is left exact);

2. the categories PSh(C )S of S−local objects for a small set S of arrows in PSh(C ) which are left
exact (see Section 1.2).

We have thus described the usual notion of a Grothendieck topos in purely categorical terms. This
characterisation should make the model-theoretical translation of the notion of a topos (what we shall
call a model topos) transparent.
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Chapter 4

Model Categories.

There is no scorn more profound, or on the
whole more justifiable, than that of the men
who make for the men who explain. Ex-
position, criticism, appreciation, is work for
second-rate minds.1

Godfrey H. Hardy,
A Mathematician’s Apology.

Reaching our goal of giving a model categorical analogue to the notion of Grothendieck topoi and
to Giraud’s Theorem will require quite a bit of technical machinery from Model Category Theory. In
this chapter, we will record all the model categorical notions needed in the following. For the sake of a
self-contained work, we shall give all the definitions and the statements of the results that we are going
to use. However, most (if not all) proofs of the main theorems will be omitted. Nevertheless, we shall
give precise references for those results and invite the interested reader to go through them.

4.1 Getting started.

4.1.1 The homotopy category of a model category.
Definition 4.1.1. 1. A model category is a 4-uple

(M , W, Fib(M ), Cof(M )),

where M is a category, W2, Fib(M ) and Cof(M ) are classes of arrows in M (called the classes of
weak equivalences, fibrations and cofibrations respectively) satisfying the following set of axioms.

(M1) M is complete and cocomplete.
(M2) (Two-out-of-three axiom) Given composable arrows f, g in M , if two of f , g and gf are in W,

then so is the third.
(M3) (Retract axiom) If f and g are morphisms in M such that f is a retract of g (in the category

of arrows of M ) and g is in W, Fib(M ) or Cof(M ), then so is f .
(M4) (Lifting axiom) Suppose given a solid commutative diagram in M

A X
f // X

Y

p

��

A

B

i

��
B Y

g
//B

X

k

??

Then there is a dotted filler k : B → X if i is a cofibration and p is a trivial fibration (i.e. an
element in W ∩Fib(M )) or if i is a trivial cofibration (i.e. an element in W ∩Cof(M )) and p
is a fibration.

1 Still, we are very glad to be second-rate minds.
2 For sake of notational coherence, we should have writtenW(M ) as well, but we prefer ease over coherence in this case.
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(M5) (Factorization Axiom) Every map g in M admits two functorial factorizations:
(a) g = qi, where i is a cofibration and q is a trivial fibration;
(b) g = pj, where j is a trivial cofibration and p is a fibration.

If (M , W, Fib(M ), Cof(M )) is a model category, we set TrFib(M ) := Fib(M ) ∩ W and
TrCof(M ) := Cof(M ) ∩W.

2. Given a complete and cocomplete category M , a triple (W, Fib(M ), Cof(M )) of subclasses of
arrows in M is called a model category structure on M if it satisfies the axioms (M2)· · · (M5) above.
The model category (M , W, Fib(M ), Cof(M )) is called the model category associated to the
model category structure given by (W, Fib(M ), Cof(M )).

Example 4.1.2. Every complete and cocomplete category M admits three model category structures
given by declaring one of the three distinguished classes of maps to be the class of isomorphisms in M
and the other two to consist of all maps in M .

Remark 4.1.3. (i) We will commonly denote a model category (M , W, Fib(M ), Cof(M )) just by
M , leaving the classes of maps implicit, at least as long as no risk of confusion arises. Anyway,
it is understood that the classes of weak equivalences, fibrations and cofibrations are part of the
constituent data of a model category.

(ii) If g : X → Y is an arrow in M , we may write:

– g : X
∼→ Y , if g is a weak equivalence in M ;

– g : X � Y , if g is a fibration in M ;
– g : X � Y , if g is a cofibration in M .

Remark 4.1.4. If (M , W, Fib(M ), Cof(M )) is a model category, then M op has a model category
structure as well, with weak equivalences given by those of M , class of cofibrations given by Fib(M ) and
class of fibrations given by Cof(M ). Therefore, we have a duality principle for model categories, so that
every statement that is true for all model categories implies a dual statement in which cofibrations are
replaced by fibrations and fibrations are replaced by cofibrations (and every other categorical notion is
dualized).

Example 4.1.5. Let S be a set and, for each s ∈ S, let Ms be a model category. Then
∏
s∈S Ms

admits a model category structure where the weak equivalences, the fibrations and the cofibrations are
the arrows which are componentwise such.

Example 4.1.6. Let M be a model category and let X ∈M . Denote by

U : M /X −→M and V : X/M −→M

the obvious forgetful functors from the category of objects over X and under X respectively. Then:

• M /X admits a model category structure where an arrow is a weak equivalence, a fibration or a
cofibration if and only if its image under U is a weak equivalence, a fibration or a cofibration in M
respectively;

• X/M admits a model category structure where an arrow is a weak equivalence, a fibration or a
cofibration if and only if its image under V is a weak equivalence, a fibration or a cofibration in M
respectively.

Definition 4.1.7. Let M be a category.

1. Let i : A→ B and p : X → Y be maps in M . If, for every commutative solid diagram of the form

A X
f // X

Y

p

��

A

B

i

��
B Y

g
//B

X

k

??

there is a dotted filler k : B → X, we say that (i, p) is a lifting-extension pair, that i has the left
lifting property (LLP) with respect to p and that p has the right lifting property (RLP) with respect
to i.
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2. If S is a class of maps in M , we denote by RLP(S) (respectively by LLP(S)) the class of maps
which have the right (resp. the left) lifting property with respect to each arrow in S.

Proposition 4.1.8. Let (M , W, Fib(M ), Cof(M )) be a model category.

(a) We have the following equalities of subclasses of arrows in M :

Cof(M ) = LLP(TrFib(M )), TrCof(M ) = LLP(Fib(M )),

Fib(M ) = RLP(TrCof(M )), TrFib(M ) = RLP(Cof(M )).

(b) W, Cof(M ) and Fib(M ) contain all isomorphisms in M and are closed under compositions of
their elements.

(c) TrFib(M ) and Fib(M ) are closed under pullbacks and products, whereas TrCof(M ) and Cof(M )
are closed under pushouts and coproducts.

Proof. Part (a) is Proposition 7.2.3 in [Hir1], whereas (b) and (c) follow formally by the characterisations
of (trivial) fibrations and (trivial) cofibrations as classes of maps having a lifting property.

Definition 4.1.9. Let M be a model category and let ∗ and ∅ be the terminal and the initial object in
M respectively.

1. An object X ∈ M is called fibrant if the unique morphism X → ∗ is a fibration in (the model
category structure on) M . The full subcategory of M generated by the fibrant objects in M is
denoted by Mf

2. An object A ∈M is called cofibrant if the unique morphism ∅ → A is a cofibration in (the model
category structure on) M . The full subcategory of M spanned by the cofibrant objects in M is
denoted by Mc

3. An object W ∈M is called cofibrant-fibrant (or fibrant-cofibrant) if it is both fibrant and cofibrant.
The full subcategory of M spanned by the cofibrant-fibrant objects in M is denoted by Mcf .

We will also need the following notion that will be used thoroughly in the rest of our work.

Definition 4.1.10. Let M be a model category.

1. If X and Y are objects in M , we say that X and Y are weakly equivalent, if there is a finite zig-zag
of weak equivalences connecting them. More precisely, this means that there is a natural number
n ∈ N \ {0} and there are objects W1, . . . , Wn of M for which there exists a diagram in M

X
∼→W1

∼←W2
∼← · · · ∼→Wn

∼← Y,

where each arrow is a weak equivalence in M and can point either to the left or to the right. We
shall use the notation X ≈ Y , to indicate that X and Y are weakly equivalent.

2. If C is a category an F,G : C −→M are functors, then we say that F and G are naturally weakly
equivalent if there is a natural number n ∈ N \ {0} and there are functors W1, . . . , Wn from C to
M such that, for every object A ∈ C , there is a natural zig-zag of weak equivalences

F (A)
∼→W1(A)

∼←W2(A)
∼← · · · ∼→Wn(A)

∼← G(A)

connecting F (A) to G(A). We shall again use the notation F ≈ G to mean that F and G are
naturally weakly equivalent.

Definition 4.1.11. Let M be a model category.

1. Given X ∈M , a fibrant approximation to X is a pair (RX, rX : X → RX) where RX is a fibrant
object in M and rX is a weak equivalence.

2. Given X ∈ M , a cofibrant approximation to X is a pair (QX, qX : QX → X) where QX is a
cofibrant object in M and qX is a weak equivalence.
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3. A functorial fibrant approximation in M is a pair

(R : M −→M , r : IdM =⇒ R),

such that, for all X ∈M , (RX, rX) is a fibrant approximation to X. In particular, we may consider
R as a functor taking values in Mf .

4. A functorial cofibrant approximation in M is a pair

(Q : M −→M , q : Q =⇒ IdM )

such that, for all X ∈ M , (QX, qX) is a cofibrant approximation to X. In particular, we may
consider Q as a functor taking values in Mc.

Remark 4.1.12. We shall commonly denote a fibrant approximation (RX, rX) to X ∈ M simply by
RX, leaving the weak equivalence implicit. Such a weak equivalence, however, is always understood to
be given. Similar remarks apply to cofibrant approximations to X and to functorial fibrant and cofibrant
approximations in M .

Remark 4.1.13. Using the two-out-of-three property for weak equivalences, it is clear that, given an
arrow g : X → Y in a model category M with chosen functorial approximations R and Q, g is a weak
equivalence in M if and only if Rg is a weak equivalence or, equivalently, if and only if Qg is such.

The functorial factorization axiom (M5) of Definition 4.1.1 implies the existence of a functorial fibrant
approximation RM and of a functorial cofibrant approximation QM on M . Indeed, one can simply
factorize, for each object X ∈M , the unique arrow X → ∗ as a trivial cofibration rX : X

∼
� RX followed

by a fibration RX � ∗ and the unique arrow ∅ → X as a cofibration ∅ � QX followed by a trivial
fibration qX : QX

∼
� X.

Definition 4.1.14. Given a model category M , we shall refer to the functorial approximations R = RM

and Q = QM given by the functorial factorization in M as the canonical (functorial) fibrant approxima-
tion and the canonical (functorial) cofibrant approximation in M respectively.

Remark 4.1.15. The canonical fibrant and cofibrant approximations in M verify the following property:
for all X ∈ M , rX is a trivial cofibration in M (and not just a weak equivalence) and qX is a trivial
fibration in M (and not just a weak equivalence).

Every two (functorial) fibrant or cofibrant approximations in M can be connected via a zig-zag of
(natural) weak equivalences. Namely, we have the following, fundamental

Proposition 4.1.16. Let M be a model category and let R and Q be the canonical fibrant and cofibrant
approximations in M respectively. Fix an object X ∈M . Then the following hold.

(i) Let R′X and R′′X be fibrant approximations to X. Then there is a zig-zag of weak equivalences

R′X
∼← RX

∼→ R′′X

as maps in X/M .

(ii) Let Q′X and Q′′X be cofibrant approximations to X. Then there is a zig-zag of weak equivalences

Q′X
∼→ QX

∼← Q′′X

as maps in M /X.

(iii) Let R′, R′′ : M −→ M be functorial fibrant approximations in M . Then R′ is naturally weakly
equivalent to R′′.

(iv) Let Q′, Q′′ : M −→M be functorial cofibrant approximations in M . Then Q′ is naturally weakly
equivalent to Q′′.

Proof. All the claims are proven in several steps in [Hir1], §8.1.

Remark 4.1.17. There is a natural concept of equivalence among zig-zags of weak equivalences between
two fixed objects X and Y in a model category M (see Definition 4.1.10). Essentially, one says that two
zig-zags of weak equvalences between X and Y are equivalent if one can be obtained from the other by
finite iterations of the following operations:
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(i) composing consecutive arrows;

(ii) removing adjacent equal maps which point in different directions.

If any two zig-zags of weak equivalences between X and Y are equivalent, then one says that there is
an essentially unique zig-zag of weak equivalences between X and Y . It can be proven that the zig-zags
of weak equivalences of Proposition 4.1.16 are indeed essentially unique (see Chapter 14 of [Hir1] for
details).

We now present the two archetipical examples of model categories.

Example 4.1.18. We let Top denote a category of topological spaces and continuous maps among them
satisfying the following properties:

• Top is complete and cocomplete;

• Top contains all the CW complexes;

• for all Y ∈ Top, there is a functor Y (−) : Top −→ Top such that, for allX,Z ∈ Top, the underlying
set of Y Z is the set of all continuous maps from Z to Y and there is a natural isomorphism of sets

Top(X × Z, Y ) ∼= Top(X,Y Z).

For example, it is well-known that the category of compactly generated Hausdorff spaces satisfy these
properties (see [Ste]).3

There is a model category structure on Top, called the Quillen model structure on Top, given as
follows:

(i) the weak equivalences are the weak homotopy equivalences, i.e. those maps f : X → Y of topological
spaces which induce isomorphisms on all homotopy groups (for every choice of the basepoint) and
on the set of path components;

(ii) the fibrations are the Serre fibrations, i.e. those maps p : E → X of spaces which have the right
lifting property with respect to the inclusions In ↪→ In+1, for all n ∈ N and with I being the unit
interval [0, 1] (I0 := {0});

(iii) the cofibrations are the maps with the left lifting property with respect to all Serre fibrations which
are also weak homotopy equivalences. Equivalently, the cofibrations are the retracts of relative cell
complexes (see Section 4.2.1).

For this model structure on Top, every space is a fibrant object and cofibrant objects are retracts of cell
complexes. In particular, CW complexes are cofibrant objects.

Example 4.1.19. Let sSet be the category of simplicial sets, that is sSet := PSh(∆), where ∆ is the
simplex category whose objects are the ordinals [n] = n + 1, for n ∈ N. There is a model category
structure on sSet, called again the (Kan-)Quillen model structure on sSet, given as follows:

(i) the weak equivalences are the morphisms f : X → Y of simplicial sets such that their geometric
realization |f | : |X| → |Y | (see Example 4.1.39 below) is a weak homotopy equivalence;

(ii) the fibrations are the Kan fibrations, i.e. those maps p : E → B of simplicial sets which have the
right lifting property with respect to every inclusion Λk[n] ↪→ ∆[n], for all n ∈ N and all 0 ≤ k ≤ n.
(Recall that ∆[n] is the representable presheaf ∆(−, [n]) for [n] ∈ ∆ and Λk[n] is the (n, k)−th
horn, i.e. the subsimplicial set of ∆[n] given by the union of all faces except the k−th one);

(iii) the cofibrations are the monomorphisms.

For this model category structure, every simplicial set is a cofibrant object and the fibrant objects are
exactly the Kan complexes.

3 The category of all topological spaces fails to satisfy the third property listed above. However, such a property is only
needed if we want to consider Top as a simplicial model category (see Section 4.2.3), whereas it is irrelevant if we just need
to treat Top as a plain model category.
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Definition 4.1.20. Let M be a model category with class of weak equivalences given by W. The
(Quillen) homotopy category of M is the localization M [W−1] of M at W (see Definition 1.2.2). We
shall denote such a localization by Ho(M ) (or by Ho(M , W), if necessary), whereas γ : M −→ Ho(M )
will indicate the localization functor (which is the identity on the objects of M ).

Remark 4.1.21. It may be worth pointing out how the localization M [W−1] can be constructed in
general. The objects of such a localization are the same as those of M , whilst arrows from X to Y are
given by equivalence classes of zig-zags of maps in M

X →W1 ←W2 ← · · · →Wn ← Y,

where the arrows pointing to the left are in W. The equivalence relation is the one generated by the
identifications already explained in Remark 4.1.17: we can substitute composable arrows with their
compositions and delete or add pairs of arrows in W of the form w→ • w←.

As we remarked in the Definition 1.2.2 of localization, the category Ho(M ) may well be, a priori,
a large category. In other words, if one requires a category to be, by definition, locally U−small with
respect to a fixed Grothendieck universe U , Ho(M ) might not exist without passing to a larger universe
U ′ 3 U . This is not the case for the homotopy category of a model category. To see this, one needs to
introduce the homotopy relation among maps in M .

Definition 4.1.22. Let M be a model category and let f, g : A→ X be arrows in M .

1. A cylinder object for A is a factorization

A
∐

A� Cyl(A)
∼→ A

of the fold map ∇ : A
∐
A → A into a cofibration i0

∐
i1 : A

∐
A → Cyl(A) followed by a weak

equivalence s : Cyl(A) → A. We may abuse of language and use the term cylinder object for A to
indicate just the object Cyl(A), leaving the cofibration i0

∐
i1 and the weak equivalence s implicit.

2. A path object for X is a factorization

X
∼→ Path(X) � X ×X

of the diagonal map ∆: X → X × X into a weak equivalence r : X → Path(X) followed by a
fibration (p0, p1) : Path(X)→ X ×X. We may abuse of language and use the term path object for
X to indicate just the object Path(X), leaving the weak equivalence r and the fibration (p0, p1)
implicit.

3. A left homotopy from f to g is a map H : Cyl(A)→ X for some cylinder object Cyl(A) for A such
that Hi0 = f and Hi1 = g. We say that f and g are left homotopic, written f l∼ g, if there is a left
homotopy from f to g.

4. A right homotopy from f to g is a map H : A→ Path(X) for some path object Path(X) for X such
that p0H = f and p1H = g. We say that f and g are right homotopic, written f r∼ g, if there is a
right homotopy from f to g.

5. We say that f and g are homotopic, written f ∼ g, if they are both left and right homotopic.

6. The arrow f is a homotopy equivalence if there is a map h : X → A such that hf ∼ 1A and fh ∼ 1X .

Remark 4.1.23. Although we adopted the notation Cyl(A) for a cylinder object for A ∈M , we do not
mean to suggest that this is a functor of A ∈M , or that there is any favourite choice for such a cylinder
object. An analogous consideration applies to path objects Path(A). However, using the functorial
factorization axiom for M , we can get functorial cylinder and path objects for A, obtained by applying
the functorial factorizations to the fold and the diagonal maps A

∐
A→ A and A→ A×A respectively.

These functorial cylinder and path objects have the additional properties that s : Cyl(A)→ A is a trivial
fibration (and not just a weak equivalence) and r : X → Path(X) is a trivial cofibration (and not just a
weak equivalence).

Proposition 4.1.24. Let M be a model category and let f, g : A→ X be arrows in M .
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(i) If f l∼ g and h : X → Y is any morphism in M , then hf l∼ hg. Dually, if f r∼ g and k : B → A is
any arrow in M , then fk r∼ gk.

(ii) If X is fibrant, f l∼ g and k : B → A is an arrow in M , then fk
l∼ gk. Dually, if A is cofibrant,

f
r∼ g and h : X → Y is a morphism in M , then hf r∼ hg.

(iii) If A is a cofibrant object in M , then being left homotopic is an equivalence relation on M (A,X).
Dually, when X is fibrant, being right homotopic is an equivalence relation on M (A,X).

(iv) If A is cofibrant, then f l∼ g implies f r∼ g. Furthermore, if Path(X) is any path object for X, then
there is a right homotopy K : A→ Path(X) from f to g. Dually, if X is fibrant, then f r∼ g implies
f

l∼ g and there is a left homotopy from f to g using any cylinder object for A.

Proof. This is a shortened version of Proposition 1.2.5 in [Hov].

Corollary 4.1.25. Let M be a model category.

(i) Given a cofibrant object A in M and a fibrant object X in M , the left homotopy and the right
homotopy relation coincide and are equivalence relations on M (A,X).

(ii) The homotopy relation ∼ on the morphisms in Mcf is an equivalence relation and is compatible
with composition. Therefore, there is a category Mcf/ ∼ with the same objects as those of Mcf and
with Hom-sets given, for A,X ∈Mcf , by M (A,X)/ ∼.

Finally, we get the announced

Theorem 4.1.26. Let M be a model category, Ho(M ) its homotopy category and γ : M −→ Ho(M )
the localization functor. Let also Q and R denote the canonical cofibrant and fibrant replacement functor
on M respectively. Then the following hold.

1. For all X,Y ∈M , there are natural isomorphisms

M (QRX,QRY )/ ∼ ∼= Ho(M )(γX, γY ) ∼= M (RQX,RQY )/ ∼ .

In addition, there is a natural isomorphism

Ho(M )(γX, γY ) ∼= M (QX,RY )/ ∼ .

If X is cofibrant and Y is fibrant, there is a natural isomorphism Ho(M )(γX, γY ) ∼= M (X,Y )/ ∼.
In particular, Ho(M ) is a locally small category.

2. The localization functor γ : M −→ Ho(M ) identifies left or right homotopic maps.

3. A morphism f : A → B in M is a weak equivalence in M if and only if γf is an isomorphism in
Ho(M ).

Proof. See [Hov], Theorem 1.2.10.

Remark 4.1.27. From the last part of Theorem 4.1.26 above, it follows in particular that two objects
X and Y in M are weakly equivalent (see Definition 4.1.10) if and only if they are isomorphic as objects
in the homotopy category Ho(M ).

4.1.2 Quillen pairs and derived functors.

Before defining morphisms of model categories, we state the following

Proposition 4.1.28 (Ken Brown’s Lemma). Let M be a model category. Assume that D is a category
equipped with a distinguished subcategory which satisfies the two-out-of-three property and call the arrows
in such a subcategory weak equivalences in D .

(i) Suppose F : M −→ D is a functor that sends trivial cofibrations between cofibrant objects in M to
weak equivalences in D . Then F takes all weak equivalences between cofibrant objects in M to weak
equivalences in D .

68



(ii) Suppose F : M −→ D is a functor that sends trivial fibrations between fibrant objects in M into
weak equivalences in D . Then F takes all weak equivalences between fibrant objects in M to weak
equivalences in D .

Proof. We prove part (i) as part (ii) follows by duality. Let f : A→ B be a weak equivalence of cofibrant
objects. We can factor the map (f, 1B) : A

∐
B → B in M into a cofibration q : A

∐
B � C followed

by a trivial fibration p : C
∼
� B. Since both A and B are cofibrant objects, both the coprojection

arrows i1 : A → A
∐
B and i2 : B → A

∐
B are cofibrations. Using the two-out-of-three axiom for weak

equivalences, qi1 and qi2 are trivial cofibrations of cofibrant objects. Thus, F (qi1) and F (qi2) are weak
equivalences in D . Since pqi2 = 1B , F (p) is a weak equivalence and hence also F (f) = F (pqi1) is
such.

Proposition 4.1.29. Let M and N be model categories and let

M N

F
%%

M Ncc

G

⊥

be an adjoint pair (where F is the left adjoint). Then the following are equivalent:

(i) F preserves cofibrations and trivial cofibrations;

(ii) G preserves fibrations and trivial fibrations;

(iii) F preserves cofibrations and G preserves fibrations;

(iv) F preserves trivial cofibrations and G preserves trivial fibrations.

Proof. This follows easily from the characterizations of (trivial) (co)fibrations in terms of lifting properties
(see Proposition 4.1.8) and the fact that, given an adjunction F a G as above, if i is a map in M and p
is a map in N , then (Fi, p) is a lifting pair (see Definition 4.1.7) in N if and only if (i, Gp) is a lifting
pair in M . See Proposition 8.5.3 of [Hir1].

We can then give the following

Definition 4.1.30. Let M and N be model categories and let

M N

F
%%

M Ndd

G

⊥

be an adjoint pair. We say that (F,G) is a Quillen pair from M to N , that F is a left Quillen functor
and that G is a right Quillen functor, if one of the equivalent conditions of Proposition 4.1.29 is satisfied.

Quillen functors pass to homotopy categories in a sense that is made precise by the following definition.

Definition 4.1.31. Let M and N be model categories and let D be a category. Let also F : M −→ D
and G : M −→ N be functors. Denote by γM : M −→ Ho(M ) and by γN : N −→ Ho(N ) the
localization functors.

1. A left derived functor of F is a right (!) Kan extension (see Remark 2.2.16)

(LF : Ho(M ) −→ D , ε : LF ◦ γM =⇒ F )

of F along γM .

2. A right derived functor of F is a left (!) Kan extension (see Definition 2.2.14)

(RF : Ho(M ) −→ D , ε : F =⇒ RF ◦ γM )

of F along γM .
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3. A total left derived functor of G is a left derived functor of γN ◦G. We set

L(G) := L(γN ◦G) : Ho(M ) −→ Ho(N ).

4. A total right derived functor of G is a right derived functor of γN ◦G. We set

R(G) := R(γN ◦G) : Ho(M ) −→ Ho(N ).

We shall commonly use the terms total left derived functor or total right derived functor to refer only to
the functor L(G) or to the functor R(G), thus omitting the associated natural transformations.

Theorem 4.1.32. Let M and N be model categories and suppose that

M N

F
%%

M Ncc

G

⊥

is a Quillen pair. Then:

1. the total left derived functor L(F ) : Ho(M ) −→ Ho(N ) of F exists;

2. the total right derived functor R(G) : Ho(N ) −→ Ho(M ) of G exists.

Proof. Let Q : M −→ Mc ⊆ M be any fixed functorial cofibrant replacement in M and consider the
functor

FQ : M −→ N .

Since F is a left Quillen functor, Ken Brown’s Lemma (see Proposition 4.1.28) implies that FQ sends weak
equivalences in M into weak equivalences in N . Thus, by the universal property of Ho(M ), γN ◦ FQ
factors in a unique way through γM : M −→ Ho(M ) as L(F ) ◦ γM . The natural transformation

L(F ) ◦ γM =⇒ γN ◦ F

is given in the X−th component (for X ∈ M ) by the equivalence class in Ho(N ) of the morphism
FQX → FX. Similarly, the total right derived functor of G is constructed as the composite

GR : N −→M ,

where R : N −→ Nf ⊆ N is any fixed functorial fibrant approximation in N and the natural transfor-
mation

γM ◦G =⇒ R(G) ◦ γN

is given using the map GY → GRY , for Y ∈ N .

Remark 4.1.33. 1. In the situation of Theorem 4.1.32, we will sometimes abuse of notation and
indicate by L(F ) (or by R(G)) both the total left derived functor (or the total right derived functor)
of F (respectively of G) and its lifting to the actual model categories given by the composite FQ
(respectively GR). We shall call these liftings point-set (left or right) derived functors. The proof
of Theorem 4.1.32 above shows that γN ◦ FQ = L(F ) ◦ γM (respectively γM ◦GR = R(G) ◦ γN ).

2. In the proof of Theorem 4.1.32 above, different choices of the functorial cofibrant and fibrant
approximations in M and N respectively lead to isomorphic total left and right derived functors
at the level of the homotopy categories, thanks to Proposition 4.1.16, Remark 4.1.17 and Remark
4.1.27. However, the liftings of the total derived functors to the overlying model categories obtained
by choosing two different functorial approximations are only naturally weakly equivalent. Thus, at
the level of model categories, (point-set) derived functors can be considered (defined) only up to
essentially unique zig-zags of weak equivalences.

Proposition 4.1.34. Let M and N be model categories and suppose that

M N

F
%%

M Ncc

G

⊥
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is a Quillen pair. Then there is an adjunction between the homotopy categories

Ho(M ) Ho(N )

L(F )

''
Ho(M ) Ho(N )

gg
R(G)

⊥

which we call the derived adjunction of (F,G).

Proof. Using the natural isomorphisms in 4.1.26, it is enough to find, for X ∈M and Y ∈ N , natural
bijections

N (FQX,RY )/ ∼ ∼= M (QX,GRY )/ ∼, (4.1)

where ∼ is the homotopy relation and we have denoted by Q and R the canonical functorial cofibrant
and fibrant replacements both in M and in N . If ϕ is the adjunction isomorphism for the Quillen pair
(F,G), then ϕQX,RY respects the homotopy relation, hence it gives the desired isomorphism in 4.1 (see
[Hov], Lemma 1.3.10 for details).

Remark 4.1.35. Let us consider the derived adjunction (L(F ),R(G)) as above. ForX ∈M and Y ∈ N ,
let qX : QX

∼→ X and rY : Y
∼→ RY be the weak equivalences given by the functorial factorizations of

∅ → X and of Y → ∗ in M and in N respectively. Finally, let η and ε be the unit and the counit of the
Quillen pair (F,G). Then:

• the unit of the derived adjunction has X−th component given by the composite

X QX
q−1
X // QX GRFQX

G(rFQX)◦ηQX // (4.2)

in Ho(M );

• the counit of the derived adjunction has Y−th component given by the composite

FQGRY RY
εRY ◦F (qGRY ) // RY Y

r−1
Y // (4.3)

in Ho(N ).

Taking into account the homotopy theories (categories) they define, the right notion of equivalence
between model categories is given by pairs of Quillen functors inducing an equivalence of categories once
derived. The property of a derived adjunction to be an equivalence of categories can be checked before
passing to the homotopy categories. Indeed, we give the following

Definition 4.1.36. Let (F,G, ϕ) : M −→ N be a Quillen pair, where F is the left adjoint and ϕ is the
adjunction isomorphism. We say that (F,G) is a Quillen equivalence if, for all cofibrant objects X of M
and for all fibrant objects Y in N , an arrow f : FX → Y is a weak equivalence in N if and only if the
adjoint arrow ϕX,Y (f) : X → GY is a weak equivalence in M .

As announced, we have the following

Proposition 4.1.37. The following are equivalent for a Quillen pair (F,G, ϕ) : M −→ N :

(i) (F,G, ϕ) is a Quillen equivalence;

(ii) the composite

X GFX
ηX // GFX GRFX

G(rFX)//

is a weak equivalence for all cofibrant X ∈M and the composite

FQRY FQY
F (qGY )// FQY Y

εY //

is a weak equivalence for all fibrant Y ∈ N ;

(iii) the derived adjunction of (F,G, ϕ) is an equivalence of categories Ho(M ) ' Ho(N ).

Proof. This is Proposition 1.3.13 in [Hov].
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Definition 4.1.38. We say that model categories M and N are Quillen equivalent if there exists a
zig-zag

M −→M1 ←−M2 −→ · · · ←−Mn −→ N

of Quillen equivalences of model categories, where the displayed arrows represent the left adjoint of the
Quillen equivalence and can point either to the left or to the right.

Here is a fundamental example of Quillen equivalence in Algebraic Topology.

Example 4.1.39. There is an adjoint pair

sSet Top

|·|
%%

sSet Topdd

Sing

⊥ (4.4)

defined as follows:

(i) the functor Sing : Top −→ sSet is called the singular complex functor and sends a space X ∈ Top
to the simplicial set given by Top(∆(−), X), where, for n ∈ N, ∆n is the standard n−simplex in
Rn;

(ii) the functor | · | : sSet −→ Top is called the geometric realization functor and sends a simplicial set
K to the space

colim(a,[n])∈El(K) ∆n,

where El(K) is the category of elements of K. Such a functor can be realized as the left Kan
extension (see Definition 2.2.14) of the Yoneda embedding

y : ∆ −→ sSet

along the embedding
∆ −→ Top

which sends [n] to ∆n.

If we give Top and sSet the Quillen model structures of Examples 4.1.18 and of 4.1.19 respectively, then
the adjunction (4.4) is a Quillen equivalence. Furthermore, the following properties hold:

(a) the geometric realization commutes with finite limits;

(b) for each space X, Sing(X) is a Kan complex;

(c) for each simplicial set K, |K| is a CW-complex.

We end this section by recording the following result that will be needed in Chapter 6 (see Corollary
6.2.4).

Proposition 4.1.40. Let M and N be model categories and suppose that

M N

F
%%

M Ncc

G

⊥

is a Quillen pair. Fix an object X ∈ N . Then the following statements hold.

1. The evident induced adjunction of overcategories

M /GX N /X

F∗

''
M /GX N /X

gg
G∗

⊥

is a Quillen pair, when M /GX and N /X are endowed with the model category structures of
Example 4.1.6.
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2. If X is fibrant in N and (F,G) is a Quillen equivalence, then (F ∗, G∗) is a Quillen equivalence as
well.

Proof. The functors F ∗ sends the object A→ GX of M /GX to the adjunct map FA→ X which is an
object of N /X, whereas G∗ takes Y → X in N /X to GY → GX in M /GX. It is immediate to see
that the adjunction isomorphism for F a G also gives natural isomorphisms

N /X(F ∗(A→ GX), Y → X) ∼= M /GX(A→ GX, G∗(Y → X))

for (A→ GX) ∈M /GX and (Y → X) ∈ N /X. Thus, F ∗ a G∗. Now, an arrow

k : (A→ GX)→ (B → GX)

in M /GX is an arrow k : A→ B in M making the relevant triangle commute. By definition of the model
structure on M /GX, k is a cofibration in M /GX if and only if it is such in M . But F ∗(k) = F (k) and this
is a cofibration in N , hence also in N /X, because F is left Quillen. The dual argument shows that G∗
sends fibrations to fibrations, so that (F ∗, G∗) is a Quillen pair by Proposition 4.1.29. This proves part 1.

Assume now that X is fibrant and that (F,G) is a Quillen equivalence. Let A → GX, Y → X be a
cofibrant object and a fibrant object in M /GX and in N /X respectively. This means that the object A
is cofibrant in M and Y → X is a fibration in N (see Example 4.1.6). Since X is fibrant by hypothesis,
we then get that also Y is such. Consider then a map

h : F ∗(A→ GX)→ (Y → X)

in N /X which, as before, is a map h : FA→ Y in N rendering the evident triangle commutative. Such
a morphism is a weak equivalence in N /X if and only if it is such in N . But A is cofibrant in M
and Y is fibrant in N , so that h : FA → X is a weak equivalence in N if an only if its adjunct map
A→ GY = G∗(h) is a weak equivalence in M because (F,G) is a Quillen equivalence. We conclude that
(F ∗, G∗) is a Quillen equivalence.
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4.2 Remarkable classes of model categories.
In this section, we discuss some examples of nice model categories which we are going to deal with in

the next chapters. In particular, we will see how it may be possible to get a model category structure
on a complete and cocomplete category M by generating cofibrations out of a set of maps as retracts of
transfinite compositions of pushouts of maps in that sets.

4.2.1 Cofibrantly generated model categories.
In this subsection we will give a recipe to prove that a category admits a model structure, minimizing

the conditions that one needs to check. Our rather technical journey to reach this goal starts with the
following

Definition 4.2.1. Let γ be a cardinal and let C be a category.

1. An ordinal α is γ−filtered if it is γ−filtered as a category (see Definition 1.2.9).

2. A γ−sequence in C is a functor F : γ −→ C such that, for all limit ordinals α < γ, the induced
arrow

colimβ<α F (β)→ F (α)

is an isomorphism in C . The map

F (0)→ colimα<γ F (α)

is called the (transfinite) composition of the γ−sequence F .

3. Suppose that D is a subclass of arrows in C . Let also F : γ −→ C be a γ−sequence in C with
the property that, for all β < γ such that β + 1 < γ, the morphism F (β) → F (β + 1) is in D. A
transfinite composition of maps of D is a composition F (0)→ colimα<γ F (α) for some γ−sequence
F as the one above.

The reader is invited to compare the following Definition with the notion of a κ−presentable object
as given in Definition 1.2.9.

Definition 4.2.2. Suppose given a cocomplete category C and a subclass D ⊆ Mor(C ) of morphisms in
C . Let also A be an object in C and κ a cardinal.

1. We say that A is κ−small relative to D if, for all κ−filtered ordinals δ and all δ−sequences F : δ −→
C such that F (β)→ F (β + 1) ∈ D for β + 1 < δ, the canonical map of sets

colimβ<δ C (A,F (β))→ C (A, colimβ<δ F (β))

is an isomorphism. A is said to be small relative to D if it is κ−small relative to D for some cardinal
κ. If D = Mor(C ) and A is small relative to Mor(C ), we simply say that A is small.

2. A is called finite (relative to D) if it is κ−small (relative to D) for some finite cardinal κ.

We are going to combine transfinite compositions and smallness of some objects to prove that specific
kinds of sets of maps give rise to functorial weak factorization systems in a cocomplete category.

Definition 4.2.3. Let I be a class of morphisms in a category C .

1. An arrow in C is I−injective if it is in RLP(I) (see Definition 4.1.7). We set Inj(I) := RLP(I).

2. An arrow in C is an I−cofibration if it is in LLP(Inj(I)). We set Cof(I) := LLP(Inj(I)) =
LLP(RLP(I)).

Definition 4.2.4. Let C be a cocomplete category and let I be a set of morphisms in C . A relative
I−cell complex is a transfinite composition of pushouts of elements in I, i.e. f : A → B is a relative
I−cell complex if and only if there are an ordinal δ and a δ−sequence F : δ −→ C such that f is the
composition of F and, moreover, for every β < δ such that β + 1 < δ, there is a pushout square

C(β) F (β)// F (β)

F (β + 1)
��

C(β)

D(β)

gβ

��
D(β) F (β + 1)//
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with gβ ∈ I. The collection of relative I−cell complexes will be denoted by Cell(I). An object A of C
is an I−cell complex if the map ∅ → A is in Cell(I). (Here ∅ denotes the initial object in C ).

Definition 4.2.5. Let C be a cocomplete category and let I be a set of arrows in C . We say that I
permits the small object argument if the domains of the elements of I are small relative to Cell(I).

Finally, we can state the announced factorization result.

Theorem 4.2.6 (The small object argument). Let C be a cocomplete category and assume that I is a
set of morphisms in C which permits the small object argument. Then there is a functorial factorization
of every arrow in C into a relative I−cell complex followed by an I−injective arrow.

Proof. See [Hov], Theorem 2.1.14.

Definition 4.2.7. A model category M is called a cofibrantly generated model category if there are sets
I and J of arrows in M such that:

(i) I and J permit the small object argument;

(ii) Fib(M ) = Inj(J );

(iii) TrFib(M ) = Inj(I).

The sets I and J are called the set of generating cofibrations and the set of generating trivial cofibrations
respectively.

Remark 4.2.8. (i) Suppose given a cofibrantly generated model category M with generating cofibra-
tions and generating trivial cofibrations given by I and J respectively. Then we have

Cof(M ) = Cof(I) and TrCof(M ) = Cof(J ).

(ii) Note that, in the situation of Definition 4.2.7 above, we are not requiring that the functorial
factorizations existing a priori on the model category M are the ones given by the small object
argument applied to I and J .

The point now is that, under suitable hypotheses, we can use the small object argument to construct
functorial factorizations for a cofibrantly generated model category structure on a bare category C .
Namely, we have the following recognition result, due to Daniel Kan.

Theorem 4.2.9. Let C be a complete and cocomplete category. Suppose that W is a subcategory of C
and that I, J are sets of arrows in C . Then there is a cofibrantly generated model structure on C having
W as the class of weak equivalences, I as the set of generating cofibrations and J as the set of generating
trivial cofibrations if and only if the following conditions are satisfied:

1. W has the two-out-of-three property and is closed under retracts (in the arrow category of C );

2. I and J permit the small object arguments;

3. Cell(J ) ⊆ W ∩ Cof(I) and Inj(I) ⊆ W ∩ Inj(J );

4. at least one of the inclusion in 3. above is an equality.

Proof. See [Hov], Theorem 2.1.19. We just remark that, when conditions 1. · · · 4. are met for a 4-uple
(C , W, I, J ) as in the statement of the Theorem, then the cofibrantly generated model structure on C
can be constructed so as to have functorial factorizations given by the small object argument applied to
I and to J .

There is an improvement of the notion of a cofibrantly generated model category which we will need
later on.

Definition 4.2.10. A model category M is a combinatorial model category if it is a cofibrantly generated
model category and its underlying category is locally λ−presentable, for some regular cardinal λ (see
Definition 1.2.9).

75



Example 4.2.11. For any n ∈ N, let Dn and Sn denote the unit disk in Rn and the n−sphere in Rn+1

respectively. Set also S−1 := ∅ and let I be the closed unit interval [0, 1] in R. Then the category Top
of topological spaces endowed with the Quillen model structure (see Example 4.1.18) forms a cofibrantly
generated model category where:

• the set I of generating cofibrations is given by all the boundary inclusion Sn−1 → Dn, for n ∈ N;

• the set J of generating trivial cofibrations is given by the maps

Dn → Dn × I, x 7→ (x, 0), n ∈ N.

This is proven in §2.4 of [Hov]. However, Top is not a combinatorial model category (for any cofibrantly
generated model structure on it) because it is not locally presentable (see, for example, [AdRo] §1.B).

Example 4.2.12. The Kan-Quillen model category structure on simplicial sets (see Example 4.1.19) is
a cofibrantly generated model category structure such that:

• the set I of generating cofibrations is given by the canonical inclusions ∂∆[n] → ∆[n], for n ∈ N.
(Recall that ∂∆[n] is the boundary simplicial set of ∆[n] whose nondegenerate k−simplices (for
k ≤ n) corresponds to the non-identity, injective and monotone maps [k]→ [n]);

• the set J of generating trivial cofibrations is given by the canonical inclusion Λk[n] → ∆[n], for
n ∈ N \ {0} and 0 ≤ k ≤ n (see Example 4.1.19).

A proof can be found in Chapter 3 of [Hov]. Since sSet is a locally finitely presentable category (see
Example 1.2.11), the Quillen model structure turns sSet into a combinatorial model category.

Example 4.2.13. Let R be a ring and let R−Mod be the category of (say) left R−modules. There is
a cofibrantly generated model category structure on Ch(R −Mod), the category of (unbounded) chain
complexes of R−modules, called the standard model structure, where the weak equivalences are the quasi-
isomorphisms of chain complexes (i.e. those chain maps inducing isomorphisms on homology groups) and
the fibrations are the chain maps which are epimorphisms. This is Theorem 2.3.11 in [Hov]. Note that
the homotopy category of such a model category is the classical derived category of R.

4.2.2 Proper model categories.

In every model category, we can prove the following stability result for weak equivalences under
pushouts and pullbacks.

Proposition 4.2.14. Let M be a model category and suppose that

S :=


A C

i // C

D

g

��

A

B

f

��
B D

p
//


is a commutative square in M .

(i) If S is a pushout square, A and B are cofibrant objects, f is a weak equivalence and i is a cofibration,
then g is a weak equivalence. Thus, every pushout of a weak equivalence between cofibrant objects
along a cofibration is a weak equivalence.

(ii) If S is a pullback square, C and D are fibrant objects, g is a weak equivalence and p is a fibration,
then f is a weak equivalence. Thus, every pullback of a weak equivalence between fibrant objects
along a fibration is a weak equivalence.

Proof. See [Rdy], Theorem B.

Those model categories where the thesis of Proposition 4.2.14 above holds without the hypotheses on
cofibrancy or fibrancy of objects have been given specific names.

Definition 4.2.15. Let M be a model category.

76



1. We say that M is a left proper model category if every pushout of a weak equivalence along a
cofibration is again a weak equivalence.

2. We say that M is a right proper model category if every pullback of a weak equivalence along a
fibration is again a weak equivalence.

3. If M is both a left proper and a right proper model category, we say that M is a proper model
category.

Remark 4.2.16. By Proposition 4.2.14, we get immediately that if in a model category M all objects
are cofibrant (respectively fibrant), then M is a left proper (respectively right proper) model category.
In particular, sSet with the Kan-Quillen model structure (see Example 4.1.19) is a left proper model
category and Top with the Quillen model structure (see Example 4.1.18) is a right proper model category.
It can actually be proven (see Theorems 13.1.11 and 13.1.13 of [Hir1]) that both sSet and Top with the
Quillen model structure are proper model categories.

The primary relevance of left and right proper model categories relies in the simplification they bring
to the theory of homotopy pushouts and of homotopy pullbacks (see Section 4.5 below).

Definition 4.2.17. Let M be a right proper model category and let E be a functorial factorization of
every map f : X → Y as

X
if→ E(f)

pf→ Y,

where if is a trivial cofibration and pf is a fibration.

1. The homotopy pullback of a cospan X g→ Z
h← Y is the pullback of E(g)

pg→ Z
ph← E(h).

2. A commutative square in M
W Y// Y

Z
��

W

X
��
X Z//

is called a homotopy Cartesian square if the canonical map from W to the homotopy pullback of
the cospan X → Z ← Y is a weak equivalence.

Definition 4.2.18. Let M be a left proper model category and let E be a functorial factorization of
every map f : X → Y as

X
if→ E(f)

pf→ Y,

where if is a cofibration and pf is a trivial fibration.

1. The homotopy pushout of a span X g← Z
h→ Y is the pushout of E(g)

ig← Z
ih→ E(h).

2. A commutative square in M
W Y// Y

Z
��

W

X
��
X Z//

is called a homotopy cocartesian square if the canonical map from the homotopy pushout of the
span X ←W → Y to Z is a weak equivalence.

These notions of homotopy pullbacks and pushouts are the right homotopical corrections of the ordi-
nary pullbacks and pushouts, as they are homotopy invariant, in the sense made precise by the following

Proposition 4.2.19. (i) Let M be a right proper model category with a functorial factorization E as
in Definition 4.2.17 and suppose given a commutative diagram in M

Y1
h1−−−−→ Y0

h2←−−−− Y2yf1

yf0

yf2

X1
k1−−−−→ X0

k2←−−−− X2
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where the vertical maps are weak equivalences. Then the induced map of homotopy pullbacks

E(h1)×Y0 E(h2)→ E(k1)×X0 E(k2)

is a weak equivalence.

(ii) Let M be a left proper model category with a functorial factorization E as in Definition 4.2.18 and
suppose given a commutative diagram in M

Y1
h1←−−−− Y0

h2−−−−→ Y2yf1

yf0

yf2

X1
k1←−−−− X0

k2−−−−→ X2

where the vertical maps are weak equivalences. Then the induced map of homotopy pushouts

E(h1)qY0 E(h2)→ E(k1)qX0 E(k2)

is a weak equivalence.

Proof. See Propositions 13.3.4 and 13.5.3 of [Hir1].

As a consequence, we get the following

Proposition 4.2.20. Let M be a model category and suppose given a commutative diagram in M

C ′ D′//

A′

C ′
��

A′ B′// B′

D′
��

C D//

A

C
��

A B// B

D
��

B′

B

�� β
A′

A

�� α

C ′

C

�� γ
D′

D

�� δ

(4.5)

where α, β, δ and γ are weak equivalences.

(i) If M is a right proper model category, then the front square is a homotopy Cartesian square if and
only if the back square is a homotopy Cartesian square.

(ii) If M is a left proper model category, then the front square is a homotopy cocartesian square if and
only if the back square is a homotopy cocartesian square.

Proof. We prove the first part, the second being dual. Let P be the homotopy pullback of C → D ← B
and let P ′ be the homotopy pullback of C ′ → D′ ← B′. Then there is a commutative square in M

A P// P

P ′

η

��

A

A′

α

��
A′ P ′//

where η is induced by β, γ and δ. By Proposition 4.2.19, η is a weak equivalence and α is a weak
equivalence by hypothesis. By the two-out-of-three property for weak equivalences, we conclude.

Finally, we see how several computing processes for the homotopy pullback give naturally weakly
equivalent results.

Proposition 4.2.21. Let
X

g→ Z
h← Y

be a cospan in a right proper model category M . Suppose given factorizations

X
jg→Wg

qg→ Z and Y
jh→Wh

qh→ Z

of, respectively, g and h, such that jg, jh are weak equivalences and qg, qh are fibrations. Then the
homotopy pullback of the cospan

X
g→ Z

h← Y

is naturally weakly equivalent to each of Wg ×Z Wh, Wg ×Z Y and X ×Z Wh.
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Proof. This is Proposition 13.3.7 in [Hir1].

Remark 4.2.22. (i) Proposition 4.2.21 implies that, up to natural zig-zags of weak equivalences, the
homotopy pullback of a cospan in a right proper model category does not depend upon the choice
of the functorial factorization E made in Definition 4.2.17.

(ii) A dual result to Proposition 4.2.21 holds for homotopy pushouts in left proper model categories.

4.2.3 Simplicial model categories.

The category sSet of simplicial sets (as every preseheaf category) admits a symmetric and closed
monoidal structure with respect to the product bifunctor

(−)× (?) : sSet× sSet −→ sSet.

In particular, this means that sSet admits an internal Hom functor, i.e. there is a bifunctor

Map(−, ?) : sSetop × sSet −→ sSet

such that, for all K, L, N ∈ sSet, there are natural isomorphisms

sSet(K × L, N) ∼= sSet(K, Map(L,N)).

For each K, L ∈ sSet, we can explicitly define Map(K,L) as the simplicial set whose n−simplices, for
n ∈ N, are given by

Map(K,L)n := sSet(K ×∆[n], L) (4.6)

Note also that the unit for the product on sSet is given by ∆[0], which is the terminal object in sSet.

Definition 4.2.23. A simplicial category C is a simplicially enriched category, i.e. a category enriched
over the symmetric and closed monoidal category (sSet, ×, ∆[0]).

Given such a simplicial category C and objects X,Y, Z of C, we shall denote by MapC(X,Y ) ∈ sSet
the enriching Hom-object and, when needed, we will denote by

c = cXY Z : MapC(Y,Z)×MapC(X,Y )→ MapC(X,Z)

the enriching composition map.

We shall not establish here the basic concepts in the theory of enriched categories. We shall instead
use them freely: we refer the reader to the bedrock monograph [Kel]. Anyway, we recall that, to any
simplicial category C, we can associate an ordinary category C , called the underlying category of C, such
that:

• Ob(C ) = Ob(C);

• for every X,Y ∈ Ob(C ),

C (X,Y ) := MapC(X,Y )0
∼= sSet(∆[0], MapC(X,Y )).

The composition rule in C is induced by the enriching composition maps in C.

Definition 4.2.24. Let C be a simplicial category and let C be its underlying ordinary category. Given
objects X,Y ∈ C, a map (or an arrow or a morphism) from X to Y is a map f : X → Y in C , i.e. an
element of C (X,Y ) = MapC(X,Y )0. Given maps f : X → Y and g : Y → Z in C, their composition is
the composite map g ◦ f (or, simply, gf) in C .

Remark 4.2.25. We may not bother to distinguish between a simplicial category C and its underlying
category C , unless real risks of ambiguity arise. In particular, we might write sentences like: “Let C be a
simplicial category”. However, what we actually mean is that there is a simplicial category C (which we
suppose given) whose underlying category is (isomorphic to) C . In the same way, we shall not usually
distinguish between a simplicial functor (a sSet−enriched functor) and its underlying ordinary functor.
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Remark 4.2.26. Let C be a simplicial category and X an object in C. Let also g : Y → Z be a map in
C and denote by ig the corresponding map of simplicial sets ∆[0]→ MapC(Y,Z) obtained via the Yoneda
isomorphism

MapC(Y, Z)0
∼= sSet(∆[0], MapC(Y,Z)).

Then any such map g gives rise to maps of simplicial sets

g∗ : MapC(X,Y )→ MapC(X,Z) and g∗ : MapC(Z,X)→ MapC(Y,X)

given as the compositions

MapC(X,Y ) ∆[0]×MapC(X,Y )
∼= // ∆[0]×MapC(X,Y ) MapC(Y, Z)×MapC(X,Y )

ig×1 // MapC(Y,Z)×MapC(X,Y ) MapC(X,Z)
cXYZ //

and

MapC(Z,X) MapC(Z,X)×∆[0]
∼= // MapC(Z,X)×∆[0] MapC(Z,X)×MapC(Y,Z)

1×ig // MapC(Z,X)×MapC(Y,Z) MapC(Y,X)
cY ZX //

respectively. In this way, we get a bifunctor

MapC (−, ?) : C op × C −→ sSet, (X,Y ) 7→ MapC(X,Y ).

Actually, it can be shown (see [Kel], §1.6), that such a bifunctor is the underlying ordinary functor of an
enriched bifunctor

MapC : Cop × C −→ sSet, (X,Y ) 7→ MapC(X,Y ),

where sSet has the enriched structure explained in Example 4.2.27 below. In the following, if there is no
risk of misunderstanding, we may confuse among the two bifunctors and denote both of them as MapC.

Example 4.2.27. sSet is a simplicial category. More precisely, there is a simplicial category SS having
simplicial sets as objects and such that, for all simplicial set K,L,

MapSS(K,L) = Map(K,L)

(see (4.6)), so that the underlying category of SS is (isomorphic to) sSet.

Example 4.2.28. Top, the category of topological spaces, is a simplicial category (recall our convention
in Example 4.1.18). More precisely, there exists a simplicial category T whose objects are topological
spaces and such that, for topological spaces X,Y , we have

MapT(X,Y ) = Top(X ×∆(−), Y ).

(See Example 4.1.39). In particular, the underlying category of T is (isomorphic to) Top.

Before assembling together the notions of simplicial category and that of model category, we need a
couple of further concepts.

Definition 4.2.29. Let C be a simplicial category. We say that C is tensored (over sSet) if, for all
A ∈ C, there is a sSet−adjunction

sSet C

A⊗(−)

$$
sSet Cdd

MapC(A,−)

⊥

Dually, we say that C is cotensored if, for all B ∈ C, there is a sSet−adjunction

sSet Cop

B(−)

&&
sSet Cop
dd

MapC(−,B)

⊥

Remark 4.2.30. Thus, the existence of tensors and cotensors for a simplicial category C is equivalent
to the existence, for every K ∈ sSet and for all A,B ∈ C, of natural sSet−enriched isomorphisms

MapC(A⊗K, B) ∼= Map(K, MapC(A,B)) and MapC(A, BK) ∼= Map(K, MapC(A,B)) (4.7)

respectively. At the level of the underlying category C , this gives natural isomorphisms

C (A⊗K, B) ∼= sSet(K, MapC(A,B)) and C (A, BK) ∼= sSet(K, MapC(A,B)) (4.8)
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Remark 4.2.31. Let M be a simplicial category (see Remark 4.2.25) which is tensored and cotensored
and let C be an arbitrary small category. Then M C is a simplicial, tensored and cotensored category
as well. The tensor and the cotensor are defined objectwise: if F : C −→ M is a functor and K is a
simplicial set, then, for α ∈ C , (F ⊗K)(α) := F (α)⊗K and (FK)(α) := F (α)K , where the tensor and
the cotensor on the right sides are the ones existing on M . If F,G ∈M C , then the enriching simplicial
object MapMC (F,G) ∈ sSet has set of n−simplices given by M C (F ⊗∆[n], G).

Definition 4.2.32. A simplicial model category is a model category M which is also a simplicial category
(see Remark 4.2.25) M satisfying the following axioms:

(SM1) M is tensored and cotensored over sSet;

(SM2) if i : A → B is a cofibration in M and p : X → Y is a fibration in M , then the map of simplicial
sets

MapM (B,X)→ MapM (A,X)×MapM (A,Y ) MapM (B, Y ) (4.9)

is a fibration which is a trivial fibration if either i or p is a weak equivalence.

Example 4.2.33. For each X,K ∈ sSet, set

X ⊗K := X ×K, XK := Map(K,X).

These assignments turn sSet into a simplicial category which is tensored and cotensored. In fact, with the
Kan-Quillen model structure of Example 4.1.19, sSet is a simplicial model category (see [Hov], Theorem
3.1.1 for axiom (SM2)).

Example 4.2.34. Let X ∈ Top and K ∈ sSet. Define

X ⊗K := X × |K|, XK := X |K|

where |K| is the geometric realization of K (see Example 4.1.18 and Example 4.1.39). These assignments
turn Top into a simplicial category which is tensored and cotensored. In fact, with the Quillen model
structure of Example 4.1.18, Top is a simplicial model category.

Remark 4.2.35. Let M be a simplicial model category (see Remark 4.2.25). Then, from the axioms
(SM1) and (SM2), we get that the following hold.

1. If A is a cofibrant object in M , then there is a Quillen pair

sSet M

A⊗(−)

%%
sSet Mdd

MapM (A,−)

⊥

2. If X is a fibrant object in M , then there is a Quillen pair

sSet M op

X(−)

&&
sSet M op
dd

MapM (−,X)

⊥

3. If A is a cofibrant object and X is a fibrant object in M , then the simplicial set MapM (A,X) is a
Kan complex.

We end this section by gathering together the properties of the model structures on sSet and on Top
that we have discovered so far.

Remark 4.2.36. 1. The category sSet of simplicial sets admits a simplicial, combinatorial and proper
model category structure for which every object is cofibrant.

2. The category Top of topological spaces (recall Example 4.1.18 for our convention on topological
spaces) admits a simplicial, cofibrantly generated and proper model category structure for which
every object is fibrant.
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4.3 Functor Categories.

Given a model category M and a small category C , the obvious guess for weak equivalences in M C

(the natural transformations which are objectwise weak equivalences in M ) can not be shown, in general,
to form the class of weak equivalences for some model category structure on M C . However, imposing
some conditions either on the base model category M or on the exponent category C , we can indeed
prove the existence of a model category structure on the category of functors from C to M with weak
equivalences given pointwise. When such model structures on functor categories exist, it makes also sense
to ask whether the colimit or the limit functor are Quillen functors and in some circumstances it turns
out that this is indeed the case. In particular, when M is a cofibrantly generated model category, the
projective model structure is available on M C (for any small category C ) and the colimit functor is a left
Quillen functor. In fact, this is a key property of cofibrantly generated model categories, which explain
their preeminent role in the theory of model categories. Paraphrasing a famous claim made by Mac
Lane4, we could well say that cofibrantly generated model categories are defined to get the projective
model structure and the projective model structure is defined so as to turn the colimit into a Quillen
functor.

4.3.1 The projective and the injective model structure.

Definition 4.3.1. Let M be a model category and let C be a small category. We say that a natural
transformation τ : F =⇒ G between functors F,G : C −→M is

(i) a natural weak equivalence (or a pointwise weak equivalence) if, for all i ∈ C , τi : F (i) −→ G(i) is a
weak equivalence in M ;

(ii) a pointwise fibration if, for all i ∈ C , τi : F (i) −→ G(i) is a fibration in M ;

(iii) a pointwise cofibration if, for all i ∈ C , τi : F (i) −→ G(i) is a cofibration in M .

Definition 4.3.2. Let M be a model category and C a small category.

1. The projective model structure (or the Bousfield-Kan model structure) on M C , if it exists, is the
model category structure where weak equivalences and fibrations are the pointwise weak equiva-
lences and the pointwise fibrations respectively.

2. The injective model structure (or the Heller model structure) on M C , if it exists, is the model
category structure where weak equivalences and cofibrations are the pointwise weak equivalences
and the pointwise cofibrations respectively.

Proposition 4.3.3. Let M be a model category and let C be a small category. Denote by

c : M −→M C

the constant functor, taking an object X ∈M to the constant C−diagram at X.

1. Assume that the projective model structure exists on M C . Then there is a Quillen pair

(M C )proj M

colim

%%
(M C )proj M

ff
c

⊥

2. Assume that the injective model structure exists on M C . Then there is a Quillen pair

M (M C )inj

c

&&
M (M C )injdd

lim

⊥

4 “As Eilenberg-Mac Lane first observed, “category” has been defined in order to be able to define “functor” and “functor”
has been defined in order to be able to define “natural transformations”.” ([McL], §I.4)
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Proof. The existence of the adjunctions (for any small category C ) is equivalent to (co)completeness of
M . The fact that c is a right (respectively, a left) Quillen functor for the projective (respectively, for the
injective) model structure on M C is obvious from the definition of such a model structure.

Here are the needed existence theorems for the projective and the injective model structures.

Theorem 4.3.4. Let M be a cofibrantly generated model category and let C be a small category. Then:

1. M C is a cofibrantly generated model category with respect to the projective model structure;

2. if, in addition, M is a combinatorial model category (see Definition 4.2.10), then so is M C with
the projective model structure;

3. if, in addition, M is left or right proper (see Definition 4.2.15), then so is M C with the projective
model structure.

4. if, in addition, M is a simplicial model category (see Remark 4.2.25), then so is M C with the
projective model structure and with the simplicial structure of Remark 4.2.31.

Proof. The first part of the result is Theorem 11.6.1 in [Hir1]. The second claim follows because, if D
is a locally presentable category, then, for any small category C , DC is locally presentable as well (see
Corollary 1.54 in [AdRo]). The third point is Remark A.2.8.4 in [Lur] and, finally, the last part of the
Theorem can be found in [Hir1], §11.7.

Theorem 4.3.5. Let M be a combinatorial model category and let C be a small category. Then:

1. M C is a combinatorial model category with respect to the injective model structure;

2. if, in addition, M is left or right proper, then so is M C with the injective model structure;

3. if, in addition, M is a simplicial model category, then so is M C with the injective model structure
and with the simplicial structure of Remark 4.2.31.

Proof. See Proposition A.2.8.2 and Remark A.2.8.4 in [Lur].

Thus, given a combinatorial model category M , there are at least two model structures that we can
put on functor categories M C . It turns out that they are Quillen equivalent.

Proposition 4.3.6. Let M be a combinatorial model category and C any small category. Then there is
a Quillen equivalence

(M C )proj (M C )inj

Id
))

(M C )proj (M C )injii
Id

⊥

Proof. Since the two model structures share the same weak equivalences, one just needs to check that a
projective cofibration is a pointwise cofibration and, viceversa, that an injective fibration is a pointwise
fibration. The first half is Proposition 11.6.3 in [Hir1], whereas the second follows from the first. For,
if τ : F =⇒ G is a fibration in the injective model structure, then it has the right lifting property with
respect to all trivial pointwise cofibrations, hence also to all trivial cofibrations for the projective model
structure.

When the projective or the injective model structure exists (for cofibrantly generated or combinatorial
model categories), they allow us to lift Quillen adjunctions to functor categories, as stated by the following

Proposition 4.3.7. Let

M N

F
%%

M Ncc

G

⊥

be a Quillen pair between model categories and let C be a small category. Assume that:

(i) either both M and N are cofibrantly generated

(ii) or both M and N are combinatorial model categories.
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Then there are Quillen pairs

(M C )proj (N C )proj

F◦−
))

(M C )proj (N C )projii
G◦−

⊥ or (M C )inj (N C )inj

F◦−
))

(M C )inj (N C )injii
G◦−

⊥

respectively which are Quillen equivalences if (F,G) was a Quillen equivalence to start with.

Proof. From the definitions of the projective and the injective model structures, it is clear that (F ◦
−, G ◦ −) is a Quillen pair. The part on Quillen equivalences follows because every fibrant or cofibrant
object in either the projective or the injective model structure is also such objectwise.

Remark 4.3.8. Since sSet is a simplicial, combinatorial and proper model category (see Remark 4.2.36),
for any small category C , sSetC is a simplicial, combinatorial and proper model category both with the
projective and the injective model structure. Unless differently stated, we shall however always implicitely
assume that sSetC , when seen as a model category, is endowed with the projective model structure.

4.3.2 The Reedy model structure.
There is a quite peculiar property of the indexing small category C that ensures the existence of a

model structure on M C for any model category M . We introduce such a property in the following

Definition 4.3.9. A Reedy category is a 4-uple

(C , C+, C−, deg),

where:

• C is a category;

• C+ and C− are two subcategories of C containing all objects of C (this kind of subcategories are
sometimes called wide subcategories or lluf subcategories5);

• deg : Ob(C )→ ω is a function into the first limit ordinal ω and is called the degree function.

These data need to satisfy the following axioms:

(R1) for every arrow f+ in C+ which is not an identity morphism, deg(cod(f+)) > deg(dom(f+));

(R2) for every arrow f− in C− which is not an identity morphism, deg(cod(f−)) < deg(dom(f−));

(R3) for every arrow f ∈ C , there exists a unique factorization f = f+f−, where f− ∈ C− and f+ ∈ C+.

Remark 4.3.10. As usual, we shall commonly refer to a Reedy category (C , C+, C−, deg) mentioning
only the underlying category C and assuming, implicitely, that all the other data are given and available.
We may also rephrase conditions (R1) and (R2) by saying simply that every arrow in C+ raises degree
and every arrow in C− lowers degree.

Definition 4.3.11. Let C be a Reedy category.

1. If C+ is the discrete lluf subcategory of C , we say that C is an inverse category.

2. If C− is the discrete lluf subcategory of C , we say that C is a direct category.

Remark 4.3.12. 1. If C is a Reedy category, then so is C op by setting (C op)+ := (C−)op and
(C op)− := (C+)op. The degree function is the same as that of C .

2. If C and D are Reedy categories, then C ×D is a Reedy category as well, with (C ×D)+ = C+×D+

and (C × D)− = C− × D−. The degree function is given by deg(C,D) = deg(C) + deg(D), for
C ∈ C and D ∈ D .

We will need in particular the following examples of Reedy categories.
5 The term “lluf” is “full” spelled backwards. Note that, as a full subcategory is completely determined by its class

of objects, so a lluf subcategory is totally understood when its class of arrows is specified. Moreover, the only full lluf
subcategory of a category is that category itself.
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Example 4.3.13. Let I be the pushout category, I = b ← a → c (where we do not display iden-
tity morphisms). I admits a direct category structure so that I+ := I and I− is the discrete lluf
subcategory of I . In this case, deg(a) = 0 and deg(b) = 1 = deg(c).

Example 4.3.14. There is another Reedy structure on I given by taking I+ as a → c and I− as
b← a, so that deg(b) = 0, deg(a) = 1 and deg(c) = 2.

Example 4.3.15. There is a a Reedy structure on the simplex category ∆ given by defining ∆+ as the
lluf subcategory of ∆ consisting of injective maps and ∆− as the lluf subcategory consisting of surjective
maps. The degree of [n] ∈ ∆ is n ∈ ω.

In order to describe the model structure on M C for a Reedy category C and a model category M ,
we have to introduce some further notations.

Definition 4.3.16. Let C be a Reedy category and let α be an object of C .

1. The latching category of C at α is the category ∂(C+ ↓ α) defined as the full subcategory of (C+ ↓ α)
consisting of all the objects except 1α.

2. The matching category of C at α is the category ∂(α ↓ C−) defined as the full subcategory of
(α ↓ C−) consisting of all the objects except 1α.

Given a small Reedy category C and an object α ∈ C , the forgetful functors U : ∂(C+ ↓ α) −→ C
and V : ∂(α ↓ C−)→ C induce functors

U∗ : M C −→M ∂(C+↓α) and V ∗ : M C −→M ∂(α↓C−)

for any (model) category M .

Definition 4.3.17. Let C be a small Reedy category and let M be a model category. Fix also α ∈ C .

1. The latching functor at α is the functor Lα : M C −→M given as the composition

Lα : M C M ∂(C+↓α)U∗ //M ∂(C+↓α) M
colim // (4.10)

For a functor F : C −→M , the object

LαF = colim∂(C+↓α) U
∗F = colim(β→α)∈∂(C+↓α) Fβ (4.11)

is called the latching object of F at α. The induced canonical arrow

lα : LαF → Fα (4.12)

is called the latching map of F at α.

2. The matching functor at α is the functor Mα : M C −→M given as the composition

Mα : M C M ∂(α↓C−)V ∗ //M ∂(α↓C−) M
lim // (4.13)

For a functor F : C −→M , the object

MαF = lim∂(α↓C−) V
∗F = lim(α→β)∈∂(α↓C−) Fβ (4.14)

is called the matching object of F at α. The induced canonical arrow

mα : Fα →MαF (4.15)

is called the matching map of F at α.

We can now state the existence theorem of a model structure for functor categories with exponent
given by a small Reedy category.

Theorem 4.3.18. Let C be a small Reedy category and M a model category. Then M C admits a model
category structure by declaring that an arrow τ : F =⇒ G in M C is
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(i) a weak equivalence if and only if it is a pointwise weak equivalence;

(ii) a (Reedy) cofibration if and only if, for all α ∈ C , the relative latching map

Fα qLαF LαG −→ Gα (4.16)

is a cofibration in M .

(iii) a (Reedy) fibration if and only if, for all α ∈ C , the relative matching map

Fα −→ Gα ×MαGMαF (4.17)

is a fibration in M .

Proof. The most difficult axioms to check among those for a model category structure are the lifting and
the factorization ones (see Definition 4.1.1). The idea is to construct the needed maps and factorizations
inductively on the degree of objects of C . See [Hir1], §15.3.16 for a complete proof.

Definition 4.3.19. Given a model category M and a small Reedy category C , the model category
structure described in Theorem 4.3.18 above is called the Reedy model structure on M C .

Remark 4.3.20. Let C be a small Reedy category. If M is a left or right proper model category, then so
is M C when endowed with the Reedy model structure. If M is a simplicial model category (see Remark
4.2.25), then so is M C when endowed with the Reedy model structure and with the simplicial structure
of Remark 4.2.31. See [Hir1], Theorem 15.3.4.

Remark 4.3.21. Suppose that C is a small direct category. Then, for all α ∈ C , the matching category
∂(α ↓ C−) is empty. It follows that, given any model category M , a Reedy fibration in M C is precisely
a pointwise fibration. In particular, if M is a cofibrantly generated model category, then the projective
and the Reedy model structures on M C coincide. Dually, if C is a small inverse category, then a Reedy
cofibration in M C is precisely a pointwise cofibration, so that, when M is a combinatorial model category,
the injective and the Reedy model structures on M C coincide (see Definition 4.2.7, Definition 4.2.10 and
Section 4.3.1).

If we are given an arbitrary small Reedy category, Remark 4.3.21 can be rearranged and takes the
form of the following two results.

Proposition 4.3.22. Let C be a small Reedy category and let M be a model category. Fix a natural
transformation τ : F =⇒ G of functors from C to M .

(i) If τ is a Reedy cofibration, then, for every object α ∈ C , both the map τα : Fα → Gα and the induced
map of latching objects LαF → LαG are cofibrations in M .

(ii) If τ is a Reedy fibration, then, for every object α ∈ C , both the map τα : Fα → Gα and the induced
map of matching objects MαF →MαG are fibrations in M .

Proof. This is [Hir1], Proposition 15.3.11.

Remark 4.3.23. From Proposition 4.3.22 above, it follows in particular that, if F is Reedy cofibrant in
M C (for a small Reedy category C ), then, for all α ∈ C , both Fα and LαF are cofibrant objects in M .
A dual result holds for Reedy fibrant diagrams.

Theorem 4.3.24. Let M be a combinatorial model category and let C be a small Reedy category. Then
there are Quillen equivalences

(M C )inj (M C )Reedy

uu
Id

(M C )inj (M C )Reedy

Id

55
⊥ (M C )Reedy (M C )proj

uu
Id

(M C )Reedy (M C )proj

Id

55
⊥

Proof. It is an immediate consequence of Proposition 4.3.22 above, since all the model structures on M C

have the same weak equivalences.

Example 4.3.25. Let I = b ← a → c be the pushout category (where we do not display identity
morphisms) and let M be a model category.
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(i) Endow I with the direct category structure of Example 4.3.13 and consider the associated Reedy
model structure on M I . Let F : I −→ M be a functor. The formulas for the latching objects
give LbF ∼= LcF ∼= Fa and LaF ∼= ∅ (the initial object of M ). It follows that the latching maps
lb and lc can be identified with the maps Fa → Fb and Fa → Fc respectively, whilst la is the map
from the initial object to Fa. Therefore, a span

Fb ← Fa → Fc

is cofibrant for this Reedy model category structure on M I exactly when all objects in the span
are cofibrant and all maps are cofibrations in M .

(ii) Endow I with the Reedy category structure of Example 4.3.14 and consider the associated Reedy
model structure on M I . Let F : I −→ M be a functor. In this case, LaF ∼= LbF ∼= ∅ and
LcF ∼= Fa, whereas the latching maps are the obvious ones. Thus, a span

Fb ← Fa → Fc

is cofibrant for this Reedy model category structure on M I exactly when all objects in the span
are cofibrant and at least one of the two maps is a cofibration in M .

Example 4.3.26. With the notations of Example 4.3.25 above, let I op be the pullback category. We
then get what follows.

(i) Endow I op with the inverse category structure given as the dual of the direct structure of Example
4.3.13. Then a cospan

Fb → Fa ← Fc

is Reedy fibrant exactly when all objects in the cospan are fibrant and all maps are fibrations in
M .

(ii) Endow I op with the Reedy structure which is the dual of the one in Example 4.3.14. Then a
cospan

Fb → Fa ← Fc

is Reedy fibrant exactly when all objects in the cospan are fibrant and at least one of the two maps
is a cofibration in M .

Example 4.3.27. Let M be a model category and let ∆ be the simplex category. The category M ∆

is called the category of cosimplicial objects in M , while the category M ∆op

is called the category of
simplicial objects in M . Both of these categories admit a Reedy model structure induced by the Reedy
structures on ∆ and on ∆op of Example 4.3.15.

We saw in Proposition 4.3.3 that when the projective or the injective model structures are available on
a functor category, the colimit or the limit functor are left or right Quillen functors respectively. For the
Reedy model structure, this is not quite true in general. However, we can describe exactly the properties
that a Reedy category C needs to have in order to turn the colimit or the limit functors into Quillen
functors.

Definition 4.3.28. Let C be a Reedy category.

1. We say that C has cofibrant constants if, for all α ∈ C , the latching category ∂(C+ ↓ α) is either
empty or connected.

2. We say that C has fibrant constants if, for all α ∈ C , the matching category ∂(α ↓ C−) is either
empty or connected.

Example 4.3.29. (i) The simplex category ∆ is a Reedy category with fibrant constants.

(ii) Every direct (respectively inverse) category is a Reedy category with fibrant (respectively cofibrant)
constants. In particular, the pushout category I (respectively, the pullback category I op) with the
direct category structure of Example 4.3.13 (respectively, with the inverse category structure given
by the dual of the direct structure of Example 4.3.13) is a Reedy category with fibrant (respectively
cofibrant) constants.
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(iii) The pushout category I (respectively, the pullback category I op) with the Reedy structure of
Example 4.3.14 (respectively, with the Reedy structure given by the dual of the Reedy structure of
Example 4.3.14) is a Reedy category with fibrant (respectively cofibrant) constants.

As announced, we have the following

Theorem 4.3.30. Let C be a Reedy category.

1. C has fibrant constants if and only if, for all model categories M ,

colim: (M C )Reedy −→M

is a left Quillen functor.

2. C has cofibrant constants if and only if, for all model categories M ,

lim: (M C )Reedy −→M

is a right Quillen functor.

Proof. This is Theorem 15.10.8 of [Hir1].

4.3.3 Model structures for simplical functors.
In this paragraph, we briefly explore generalizations of the projective and the injective model structure

to categories of simplicial functors.

Let C and D be simplicial categories with C small. Then there exists a simplicial category [C,D] whose
objects are simplicial functors (that is, sSet−enriched functors); for simplicial functors F,G : C −→ D,
the enriching object Map[C,D](F,G) is defined as the sSet−enriched end

Map[C,D](F,G) :=

∫
n∈C

MapD(F (n), G(n))

(See [Kel], §2.1 and §2.2.). In particular, the underlying category of [C,D] is the category [C,D]O of
simplicial functors and simplicial (i.e. sSet−enriched) natural transformations among them. A simplicial
functor F : C −→ D gives rise to an underlying ordinary functor

FO : C −→ D

between the underlying categories of C and D respectively. Such an FO sends an object A ∈ C into
FA ∈ D and a map g : A → B ∈ MapC(A,B)0 = C (A,B) to F0(g) ∈ MapD(FA,FB)0 (see Definition
4.2.24). From now on, we will not use different notations to distinguish between [C,D] and its underlying
category or between a simplicial functor F : C −→ D and its underlying ordinary functor FO (see Remark
4.2.25).

Suppose now that D is tensored and cotensored by (simplicial) functors A ⊗ (−) : sSet −→ D and
B(−) : sSet −→ Dop for all A,B ∈ D (see Definition 4.2.29). Then also [C,D] is tensored and cotensored:
tensors and cotensors are defined objectwise (see also Remark 4.2.31). For example, when F ∈ [C,D] is
a simplicial functor, for each K ∈ sSet we put

(F ⊗K)(n) := F (n)⊗K, n ∈ C.

Given simplicial sets K and L, the needed map

(F ⊗ (−))KL : Map(K,L)→ Map[C,D](F ⊗K,F ⊗ L) =

∫
n∈C

MapD(F (n)⊗K,F (n)⊗ L)

is induced by the universal property of the enriched end from the maps

(F (n)⊗ (−))KL : Map(K,L)→ MapD(F (n)⊗K,F (n)⊗ L),

when n ∈ C.

We can now state the enriched versions of Theorems 4.3.4 and 4.3.5.
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Theorem 4.3.31. Let C be a small simplicial category and let D be a simplicial combinatorial model
category (see Definition 4.2.32). Consider the simplicial tensored and cotensored category [C,D]. The
following hold.

1. [C,D] is a simplicial combinatorial model category with respect to the projective model structure
for which a (simplicial) natural transformation τ : F =⇒ G between simplicial functors F and G is
a weak equivalence (respectively a fibration) if, for every n ∈ C, the component τn : F (n) → G(n)
is a weak equivalence (respectively a fibration) in (the underlying category of) D.

2. [C,D] is a simplicial combinatorial model category with respect to the injective model structure for
which a (simplicial) natural transformation τ : F =⇒ G between simplicial functors F and G is a
weak equivalence (respectively a cofibration) if, for every n ∈ C, the component τn : F (n) → G(n)
is a weak equivalence (respectively a cofibration) in (the underlying category of) D.

Furthermore, if D is a left or right proper model category, then so is [C,D] with either the projective or
the injective model structure.

Proof. This follows from Remark A.2.8.4, Example A.3.2.18, Theorem A.3.3.2 and Remark A.3.3.4 of
[Lur].

Remark 4.3.32. We will mainly use the above Theorem 4.3.31 in the special case where D = sSet (see
Remark 4.2.36). As in Remark 4.3.8, unless differently stated, we will always implicitely assume that, for
a small simplicial category C, [C, sSet] is endowed with the projective model structure.
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4.4 Function complexes in model categories.
In this section, we will see how to define, for each model category M , a (derived) mapping space bifunc-

tor maph : M op ×M −→ sSet assigning to every pair (X,Y ) of objects in M a simplicial set (actually,
a Kan complex) maph(X,Y ) which, in degree 0, is given by M (QX,RY ) for a cofibrant approximation
QX and a fibrant approximation RY of X and Y respectively. Although this bifunctor does not turn
M into a simplicial model category, it serves as a homotopical correction to the Hom sets of a model
category M : each maph(X,Y ) is a simplicial set whose set of path components is naturally isomorphic
to Ho(M )(X,Y ) and such a mapping space can be used to detect weak equivalences. Furthermore, this
mapping space behaves well with respect to Quillen adjunctions and Quillen equivalence. We begin this
section by introducing the notions of cosimplicial and simplicial resolutions which are needed to define
the bifunctor maph.

4.4.1 (Co)simplicial resolutions and frames.
Let M be a model category and let X ∈ M . We will denote the constant cosimplicial object at X

by cc∗X and the constant simplicial object by cs∗X (see Example 4.3.27).

Definition 4.4.1. Let M be a model category and let X ∈M .

1. A cosimplicial resolution of X is a cofibrant approximation X̃ → cc∗X in the Reedy model structure
on M ∆. If the weak equivalence X̃ → cc∗X is a Reedy trivial fibration, we say that the cosimplicial
resolution is a fibrant cosimplicial resolution.

2. A simplicial resolution of X is a fibrant approximation cs∗X → X̂ in the Reedy model structure on
M ∆op

. If the weak equivalence cs∗X → X̂ is a Reedy trivial cofibration, we say that the simplicial
resolution is a cofibrant simplicial resolution.

3. A functorial (fibrant) cosimplicial resolution on M is a pair (F, ι) in which F : M −→ M ∆ is
a functor and ι : F =⇒ cc∗ is a natural transformation such that ιY : FY → cc∗Y is a (fibrant)
cosimplicial resolution of Y .

4. A functorial (cofibrant) simplicial resolution on M is a pair (G,µ) in which G : M −→M ∆op

is a
functor and µ : cs∗ =⇒ G is a natural transformation such that µY : cs∗Y → GY is a (cofibrant)
simplicial resolution of Y .

Remark 4.4.2. Let M be a model category and fix X ∈M . Suppose that X̃ → cc∗X and cs∗X → X̂
are cosimplicial and simplicial resolutions of X respectively. By Proposition 4.3.22 and Remark 4.3.23,
X̃0 → X is a cofibrant approximation to X and X → X̂0 is a fibrant approximation to X. Furthermore,
from the definitions it follows that X̃1 is a cylinder object for X̃0, whereas X̂1 is a path object for X̂0

(see Definition 4.1.22).

Since M ∆ and M ∆op

are model categories, they have canonical functorial fibrant and cofibrant
approximations which give functorial simplicial and cosimplicial resolutions on M .

Theorem 4.4.3. Let M be a model category, let (QReedy, qReedy) be the canonical cofibrant approximation
on M ∆ and let (RReedy, rReedy) be the canonical fibrant approximation on M ∆op

(see Definition 4.1.14).

1. The pair (QReedy ◦ cc∗, (qReedy)cc∗) is a functorial fibrant cosimplicial resolution (F, ι) on M .

2. The pair (RReedy ◦ cs∗, (rReedy)cs∗) is a functorial cofibrant simplicial resolution (G,µ) on M .

Cofibrant and fibrant resolutions on a model category are essentially unique, as witnessed by the
following

Proposition 4.4.4. Let M be a model category.

1. Any two (co)simplicial resolutions of X ∈ M are connected by an essentially unique zig-zag (see
Remark 4.1.17) of weak equivalences.

2. Any two functorial (co)simplicial resolutions on M are connected by an essentially unique zig-zag
(see Remark 4.1.17) of weak equivalences.

Proof. See Proposition 16.1.17 and Proposition 16.1.18 of [Hir1].
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A way to build (co)simplicial resolutions is provided by the following notion.

Definition 4.4.5. Let M be a model category and let X be an object of M .

1. A cosimplicial frame on X is a cosimplicial object X∗ in M together with a weak equivalence
X∗ → cc∗X in the Reedy model structure on M ∆ such that

(i) X∗0 → X is an isomorphism;
(ii) if X is a cofibrant object of M , then X∗ is a cofibrant object in M ∆.

2. A simplicial frame onX is a simplicial objectX∗ in M together with a weak equivalence cs∗X → X∗
such that

(i) X → (X∗)0 is an isomorphism;
(ii) if X is a fibrant object of M , then X∗ is a fibrant object in M ∆op

.

As usual, we may refer to a cosimplicial or to a simplicial frame on X by mentioning only the object
X∗ or X∗ respectively, leaving the weak equivalences X∗ → cc∗X and cs∗X → X∗ implicit.

Remark 4.4.6. Here is a recipe to construct cosimplicial resolutions for an object X in a model category
M (see Proposition 16.6.6 in [Hir1]):

(i) Take a cofibrant approximation QX → X to X in M .

(ii) Pick a cosimplicial frame (QX)∗ → cc∗(QX) on QX.

(iii) The composite map (QX)∗ → cc∗(QX)→ cc∗X is a cosimplicial resolution of X.

There is of course a dual result for simplicial resolutions, involving fibrant approximations and simplicial
frames.

Using the Reedy structure on ∆ and on ∆op (see Remark 4.3.12 and Example 4.3.15), it is possible
to prove the following

Theorem 4.4.7. Let M be a model category. Then the functorial factorizations on M provides a
functorial cosimplicial frame and a functorial simplicial frame on M . More precisely, there are functors

(−)◦ : M −→M ∆ and (−)◦ : M −→M ∆op

and natural transformations

i : (−)◦ =⇒ cc∗(−) and j : cs∗ =⇒ (−)◦

such that:

1. for all X ∈ M , iX : X◦ → cc∗X and cs∗X → X◦ are cosimplicial and simplicial frames on X
respectively;

2. for all X ∈M , the map iX is a Reedy trivial fibration (and not just a weak equivalence), whereas
the map jX is a Reedy trivial cofibration (and not just a weak equivalence).

Proof. This follows from Proposition 16.6.8 of [Hir1].

Remark 4.4.8. There is an analogous result to Proposition 4.4.4 for frames (see Theorem 16.6.10 of
[Hir1]). Thus, any two functorial cosimplicial frames on M are connected by an essentially unique zig-zag
of weak equivalences and the same is true for simplicial frames.

Definition 4.4.9. For any model category M , we will refer to the functorial cosimplical and simplicial
frames induced by the functorial factorization on M of Theorem 4.4.7 as the canonical cosimplicial frame
and simplicial frame respectively.

Definition 4.4.10. A framed model category is a triple (M , (−)∗, (−)∗), where M is a model category,
while (−)∗ : M −→M ∆ and (−)∗ : M −→M ∆op

are functorial cosimplicial and simplicial frames on M
respectively.

Hence, any model category is canonically a framed model category. We shall also need the following

Example 4.4.11. Let M be a simplicial model category (see Remark 4.2.25). Then we get a framed
model category structure on M by defining, for each object X ∈M ,

X∗ := X ⊗∆[−], X∗ := X∆[−],

where (−)⊗ (?) and (−)(?) denote the tensor and the cotensor bifunctors on M (see Proposition 16.6.23
of [Hir1]). We will call these frames on M the standard frames on M .
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4.4.2 Homotopy Function Complexes
As announced, we can use cosimplicial and simplicial resolutions to define, for each pair of objects in

M a simplicial set of maps among them.

Definition 4.4.12. Let M be a model category and let X,Y be objects in M .

1. A left homotopy function complex from X to Y is a triple

(X̃, RY, M (X̃, RY )),

where X̃ is a cosimplicial resolution of X, RY is a fibrant approximation to Y and M (X̃, RY ) is
the simplicial set whose set of n−simplices (for n ≥ 0) is given by M (X̃n, RY ).

2. A right homotopy function complex from X to Y is a triple

(QX, Ŷ , M (QX, Ŷ )),

where QX is a cofibrant approximation to X, Ŷ is a simplicial resolution of Y , and M (QX, Ŷ ) is
the simplicial set whose set of n−simplices (for n ≥ 0) is given by M (QX, Ŷn).

3. A two-sided homotopy function complex from X to Y is a triple

(X̃, Ŷ , diag M (X̃, Ŷ )),

where X̃ is a cosimplicial resolution of X, Ŷ is a simplicial resolution of Y and diag M (X̃, Ŷ ) is
the simplicial set whose set of n−simplices (for n ≥ 0) is given by M (X̃n, Ŷn).6

We will commonly refer to a homotopy function complex (left, right or two-sided) by mentioning only
the simplicial set appearing in the triple which defines it, leaving the other ingredients implicit.

Remark 4.4.13. We gather here some facts about homotopy function complexes.

(i) Given objects X and Y in M , any homotopy function complex (left, right or two-sided) is a Kan
complex.

(ii) Suppose given objects X and Y in M . Then for every couple (f, g), where f : X• → X̃ is a map
of cosimplicial resolutions of X and g : RY → R′Y is a map of fibrant resolutions of Y , we get
an induced weak equivalence of simplicial sets M (X̃, RY ) → M (X•, R′Y ) sending an n−simplex
s : X̃n → RY to g ◦ s ◦ fn. Here a map of cosimplicial resolutions is simply a map in M ∆, while a
map g : RY → R′Y of fibrant resolutions Y → RY and Y → R′Y is just a map in the undercategory
Y/M . Now, a change of left homotopy function complexes map is any morphism of simplicial sets
h : M (X̃, RY ) → M (X•, R′Y ) which is induced by a couple of maps (f, g) as above. Then, any
two left homotopy function complexes from X to Y are connected by an essentially unique zig-zag
of change of left homotopy function complexes maps. In particular, any two left homotopy function
complexes from X to Y are weakly equivalent. The same kind of remark applies to right and to
two-sided homotopy function complexes (with the corresponding notions of change of homotopy
function complexes maps).

(iii) We can define functorial left, right and two-sided homotopy function complexes on a model category
M in the obvious way as functors M op ×M −→ sSet sending each pair of objects (X,Y ) to a
left, right or two-sided homotopy function complex from X to Y (see [Hir1], §17.5). Similarly, one
defines change of functorial left, right or two-sided homotopy function complex maps and proves
that any two functorial left, right or two-sided homotopy complexes are connected by an essentially
unique zig-zag of such maps.

Using any functorial cosimplicial or simplicial resolution as well as any functorial fibrant or cofibrant
replacement on a model category M , we can see that every model category admits functorial left, right and
two-sided homotopy complexes. Up to homotopy, all these left, right and two-sided homotopy function
complexes can be identified, as witnessed by the following

6 Setting, for all n,m ∈ N, M (X̃, Ŷ )n,m := M (X̃n, Ŷm), we get a bisimplicial set (i.e. a simplicial simplicial set) and
diagM (X̃, Ŷ ) is its diagonal.
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Theorem 4.4.14. Let M be a model category. For every ordered pair

(maph
1(−, ?) : M op ×M −→ sSet, maph

2(−, ?) : M op ×M −→ sSet)

where maph
1 and maph

2 are functorial left, right or two-sided homotopy function complexes, there is a
uniquely defined (up to homotopy) and natural (up to homotopy) pointwise homotopy equivalence

h1,2 : maph
1(−, ?) =⇒ maph

2(−, ?).

Furthermore, given any other functorial left, right or two-sided homotopy function complex maph
3(−, ?),

if
h1,3 : maph

1(−, ?) =⇒ maph
3(−, ?) and h2,3 : maph

2(−, ?) =⇒ maph
3(−, ?)

are the corresponding pointwise homotopy equivalences, then there is a homotopy

h2,3 ◦ h1,2 ' h1,3.

Proof. See [Hir1], Theorem 17.5.30.

This justifies the following

Definition 4.4.15. Let M be a model category.

1. For any pair (X,Y ) of objects in M , a homotopy function complex from X to Y is any left, right
or two-sided homotopy function complex from X to Y . We will denote such a homotopy function
complex by maph(X,Y ).

2. A (functorial) homotopy function complex on M (or a (derived) mapping space on M ) is any func-
torial left, right or two-sided homotopy function complex on M . We will denote such a functorial
homotopy function complex by maph(−, ?) : M op ×M −→ sSet.

3. Given an arrow g : Y → X in M and an object B ∈ M , we will denote by g∗ : maph(B, Y ) →
maph(B,X) the morphism maph(1B , g) induced by g, for some homotopy function complex maph(−, ?)
on M . Dually, we will denote by g∗ : maph(X,B)→ maph(Y,B) the morphism maph(g, 1B).

Example 4.4.16. Let M be a simplicial model category (see Remark 4.2.25). If A is a cofibrant object
in M and X is a fibrant object in M , then the enriching simplicial set MapM (A,X) is a homotopy
function complex maph(A,X). This follows from Example 4.4.11.

As a consequence of Theorem 4.4.14 above, we get the

Corollary 4.4.17. Let M be a model category, let B be an object of M and let g : Y → X be a morphism
in M .

(i) If g∗ : maph(B, Y ) → maph(B,X) is a weak equivalence for some homotopy function complex
maph(−, ?), then g∗ : maph′(B, Y ) → maph′(B,X) is a weak equivalence for any other homotopy
function complex maph′(−, ?).

(ii) If g∗ : maph(X,B) → maph(Y,B) is a weak equivalence for some homotopy function complex
maph(−, ?), then g∗ : maph′(X,B) → maph′(Y,B) is a weak equivalence for any other homotopy
function complex maph′(−, ?).

Homotopy function complexes are to model categories M as ordinary Hom-set bifunctors are to or-
dinary categories D . We try to explain this motto with the following few results.

Firstly, we can use homotopy function complexes to detect weak equivalences, exactly as we can use
Hom-sets to detect isomorphisms.

Proposition 4.4.18. Let M be a model category and maph(−, ?) a homotopy function complex on M .
Then the following are equivalent, for a morphism g : X → Y in M .

1. g is a weak equivalence.

2. For every object B in M , the induced map g∗ : maph(B,X)→ maph(B, Y ) is a weak equivalence.
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3. For every cofibrant object B in M , the induced map g∗ : maph(B,X) → maph(B, Y ) is a weak
equivalence.

4. For every object Z in M , the induced map g∗ : maph(Y,Z)→ maph(X,Z) is a weak equivalence.

5. For every fibrant object Z in M , the induced map g∗ : maph(Y,Z)→ maph(X,Z) is a weak equiv-
alence.

Proof. This is [Hir1], Theorem 17.7.7.

Homotopy function complexes on a model category M can also be thought of as higher counterparts
to the Hom-sets of the homotopy category on M , in a sense made precise by the following

Proposition 4.4.19. Let M be a model category with homotopy function complex maph(−, ?) and ho-
motopy category Ho(M ). Then there are natural isomorphisms

π0 maph(X,Y ) ∼= Ho(M )(X,Y ),

for X,Y ∈M .

Proof. By Theorem 4.4.14 we can take maph(X,Y ) to be M (X̃, RY ) for a (functorial) cosimplicial
resolution of X and a (functorial) fibrant approximation of Y in M . By Remark 4.4.2, X̃0 is a cofibrant
approximation to X and X̃1 is a cylinder object for X. Hence, by Remark 4.1.24, two 0−simplexes
s, t : X̃0 → RY of maph(X,Y ) are in the same path-component of maph(X,Y ) (i.e. represent the same
element in π0 maph(X,Y )) if and only if they are (left) homotopic. This means that π0 maph(X,Y ) =

π0M (X̃, RY ) is isomorphic to the set M (QX,RY )/ ∼, where ∼ is the (left) homotopy relation (see
Definition 4.1.22). Theorem 4.1.26 says that this latter set is naturally isomorphic to Ho(M )(X,Y ), as
required.

Finally, homotopy function complexes have the expected behaviour with respect to Quillen functors
and Quillen equivalences.

Proposition 4.4.20. Let

M N

F
%%

M Ncc

G

⊥

be a Quillen pair between model categories M and N . Let maph
M (respectively maph

N ) be a homotopy
function complex on M (respectively on N ) and denote by LF (resp. by RG) a point-set left derived
functor of F (resp. a point-set right derived functor of G). Thus, LF = F ◦Q and RG = G ◦R, where Q
is a functorial cofibrant replacement on M and R is a functorial fibrant replacement on N (see Remark
4.1.33). Then the following statements hold.

(i) For all X ∈M and Y ∈ N , we have

maph
N ((LF )X,Y ) ≈ maph

M (X, (RG)Y )

(see Definition 4.1.10).

(ii) If (F,G) is a Quillen equivalence, then, for all X,X ′ ∈M and all Y, Y ′ ∈ N , we have

maph
M (X,X ′) ≈ maph

N ((LF )X, (LF )X ′) and maph
N (Y, Y ′) ≈ maph

M ((RG)Y, (RG)Y ′).

Proof. The first part is a consequence of the following observation together with Theorem 4.4.14 and
Proposition 4.4.18. Given a cofibrant objectW in M and a fibrant object Z in N , let W̃ be a (functorial)
cofibrant resolution of W . Then, since the Quillen pair (F,G) lifts to a Quillen pair

(M ∆)Reedy (N ∆)Reedy

F◦−
))

(M ∆)Reedy (N ∆)Reedyii
G◦−

⊥
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(see Example 4.3.15, Theorem 4.3.18 and Proposition 15.4.1 of [Hir1]), we get that FW̃ is a (functorial)
cosimplicial resolution of the cofibrant object FW , so that we have a (natural) isomorphism

N (FW̃ , Z) ∼= M (W̃ ,GZ).

Now, if (F,G) is also a Quillen equivalence, then we have that, for all cofibrant object W of M , the
composite map

W → GFW → GRFW

is a weak equivalence in M (see Proposition 4.1.37). Therefore, using Theorem 4.4.18, we get the following
chain of naturally weakly equivalent simplicial sets

maph
M (X,X ′) ≈ maph

M (QX,QX ′) ≈ maph
M (QX,GRFQX ′)

(†)
≈ maph

N (FQX,RFQX ′) ≈

≈ maph
N (FQX,FQX ′) = maph

N ((LF )X, (LF )X ′),

where (†) follows from the first part because QX is cofibrant and RFQX ′ is fibrant. Using the fact that,
for all fibrant object Z in N , the composite map

FQGZ → FGZ → Z

is a weak equivalence in N , one sees also that maph
N (Y, Y ′) ≈ maph

M ((RG)Y, (RG)Y ′). The proof is
then complete.
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4.5 Homotopy (co)limits.
Given a model category M and a small category I , (co)completeness of M ensures the existence of

all (co)limits of functors I −→ M . Hence, upon choosing a (co)limit for any object of M I , one can
always consider the colimit and limit functors, together with their adjoints as in

M I M

colim

%%
M I Mcc

c

⊥ and M M I

c
&&

M M I
cc

lim

⊥ ,

where c is the diagonal (constant) functor.

However, the (co)limit functor is not, in general, homotopy invariant (or homotopical), i.e. given a
natural transformation τ : F =⇒ G : I −→M which is a pointwise weak equivalence, it is not true that
the induced arrow

colim τ : colimF −→ colimG (or lim τ : limF −→ limG)

is a weak equivalence in M . For example, if I is the pushout category

• •oo •• //

and M is Top (with the conventions and the Quillen model structure of Example 4.1.18), then we can
consider the following diagrams in M

F = ∗ Snoo Dn+1Sn // and G = ∗ Snoo ∗Sn //

(here Sn −→ Dn+1 is the boundary inclusion of the n-sphere into the (n + 1)−unit disk). We have
an obvious natural weak equivalence τ : F =⇒ G which is the identity on ∗ and on Sn and collapses
the whole Dn+1 to a point. However, colimF ∼= Sn+1 and colimG ∼= ∗, so that the induced map
colimF −→ colimG is not a weak equivalence.

We will thus define homotopy (co)limits as suitable deformations (“homotopy correction”) of the
ordinary (co)limits so that they become homotopy invariant. This will be done by emulating what happens
with Quillen functors: although they need not to preserve all weak equivalences, their compositions with
functorial cofibrant or fibrant approximations do so. Even if, in general, it might be meaningless to ask
whether the colimit or the limit functors are Quillen functors (because the functor category M I may
not admit a model category structure), using the theory of homotopical categories it is still possible to
consider generalizations of cofibrant and fibrant approximations whose compositions with the colimit or
the limit functor are homotopical.

4.5.1 Homotopical categories.
In this first subsection, we follow “the Blue Beast” [DHKS]7 and introduce some concepts and re-

sults in the theory of homotopical categories that we need to define a meaningful notion of homotopy
(co)limits. However, before starting, a remark is needed. In what follows, we shall also consider functor
categories of the form N M where M is not necessarily small, even if, in general, these categories are not
locally small. This is mainly because we will be also interested in the case where M is a complete and
cocomplete category and the smallness condition for such categories would imply that they need to be
posets (admitting arbitrary infima and suprema, see [McL], §V.2 Proposition 3). Therefore, the smallness
request would trivialize our discussion too much. We then ask the reader to forgive our sloppiness about
size problems for functor categories, reassured by the fact that a proper, formal treatment of this issue is
possible, enlarging the working universe (see, for example, the discussion in §8.1 of [DHKS]).

Definition 4.5.1. A homotopical category is a pair (H ,W), where H is a category andW is a subclass
of the class of all morphisms in H having the following properties:

(i) for all objects A of H , idA ∈ W;
7 Apparently, Daniel Kan used that expression to refer to its work [DHKS], as reported by a memorial note in his honour

jointly written by Clark Barwick, Michael Hopkins, Haynes Miller and Ieke Moerdijk. The author is grateful to Matan
Prasma for pointing this fact out and letting him know about the abovementioned note which he eagerly read.
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(ii) W satisfies the two-out-of-six property, i.e. if f, g, h are morphisms in H such that the two
compositions gf and hg exist and are in W, then also f, g, h and hgf belong to W.

The elements of the distinguished class W are called weak equivalences.

As usual, we will commonly leave the class of weak equivalences in a homotopical category implicit.

Remark 4.5.2. Assuming that both gf and hg are identity morphisms or that at least one among f, g
and h is an identity morphism, one readily proves that, if (H , W) is a homotopical category, then W
contains all isomorphisms in H and has the two-out-of-three property. In particular, W is a subcategory
of H .

Definition 4.5.3. Let H and L be homotopical categories.

1. A functor F : H −→ L is called a homotopical functor if it preserves weak equivalences, i.e. for
any weak equivalence f : A→ B in H , F (f) : F (A)→ F (B) is a weak equivalence in L .

2. Given (not necessarily homotopical) functors, F,G : H −→ L , a natural weak equivalence from F
to G is a natural transformation τ : F =⇒ G such that, for all A ∈H , the A−th component τA of
τ is a weak equivalence in L .

3. Two homotopical functors F,G : H −→ L are naturally weakly equivalent if there is a zig-zag of
natural weak equivalences connecting them.

4. A homotopical functor F : H −→ L is a homotopical equivalence (of homotopical categories) if
there is a homotopical functor G : L −→H such that the composite functors F ◦G and G ◦F are
naturally weakly equvalent to IdL and IdH respectively.

5. We will denote by (L H )W the full subcategory of the functor category L H given by homotopical
functors. (So, in particular, morphisms between two homotopical functors are given by all natural
transformations between them).

We have the following, unsurprising result, whose proof is immediate and will thus be omitted.

Proposition 4.5.4. Let L be a homotopical category.

(i) If C is an ordinary category, then the functor category L C is a homotopical category with weak
equivalences given by natural weak equivalences.

(ii) If H is a homotopical category, then the category (L H )W is a homotopical category with weak
equivalences given by natural weak equivalences.

Model categories fit perfectly into the theory of homotopical categories, since

Proposition 4.5.5. Let (M , W, Cof(M ), Fib(M )) be a model category. Then (M , W) is a homo-
topical category.

Proof. We have to prove that weak equivalences in a model category satisfy the 2-out-of-6 property. Let
then

A B
f // B C

g // C D
h //

be composable morphisms in M with gf and hg weak equivalences. If γ : M −→ Ho(M ) is the local-
ization functor, we have that γ(gf) is an isomorphism in Ho(M ). Since γ(f)(γ(gf))−1 is an inverse for
γ(g), g is a weak equivalence in M (see Theorem 4.1.26). Using the two-out-of-three property, we then
get that also f, h and hgf are weak equivalences, as required.

Remark 4.5.6. Combining Propositions 4.5.4 and 4.5.5 we get, in particular, that for any model category
M and for any small category I , the functor category M I is a homotopical category where weak
equivalences are those natural transformations that are objectwise weak equivalences in M . For a model
category M and a small category I , we will always consider M I as a homotopical category with respect
to this class of pointwise weak equivalences.

Definition 4.5.7. Let (H , W) be a homotopical category. The homotopy category Ho(H ) of (H , W)
is the (possibly large) localization H [W−1] of H with respect to W (see Definition 1.2.2).

97



Remark 4.5.8. Using the homotopy category of a homotopical category, given a functor F : H −→ L
between homotopical categories, we can define the notions of left or right derived functor, total left or right
derived functor and point-set left or right derived functor for F exactly as we did for functors between
model categories (see Definition 4.1.31 and Remark 4.1.33).

As we have already remarked, to deal with the bad homotopical behaviour of limits and colimits, we
need to find a way to study functors between homotopical categories which are not necessarily globally
homotopical, but become such when restricted to suitable subcategories of their domain. More precisely,
we give the following

Definition 4.5.9. Let H be a homotopical category and H0 a full subcategory of H . We say that
H0 is a left (resp. right) deformation retract of H if there is a pair (Q, q) (respectively (R, r)), where
Q : H −→ H (respectively R : H −→ H ) is a homotopical functor sending A ∈ H to Q(A) ∈ H0

(respectively sending A ∈H to R(A) ∈H0) and

q : Q =⇒ idH (respectivley r : idH =⇒ R)

is a natural weak equivalence. We call the pair (Q, q) (respectively the pair (R, r)) a left deformation
(respectively a right deformation) of H into H0.

Definition 4.5.10. Let F : H −→ L be a functor between homotopical categories. We say that F
is left deformable (respectively right deformable) if there is a left (respectively a right) deformation
retract H0 of H such that the restriction of F to H0 is homotopical. In this case a left (respectively a
right) deformation of H into H0 is called a left (respectively right) F-deformation and H0 is called an
F−deformation retract.

Clearly, every homotopical functor is both left and right deformable. Using cofibrant and fibrant
replacement functors for a model category M and applying Ken Brown’s Lemma (see Proposition 4.1.28)
we get immediately the following result, which provides a plethora of further examples for deformable
functors.

Theorem 4.5.11. Let M be a model category and let Mc and Mf denote the full subcategory of M
consisting of cofibrant and fibrant objects respectively. Then the following properties hold.

1. Mc is a left deformation retract of M , whereas Mf is a right deformation retract of M .

2. Every functor between model categories preserving weak equivalences between cofibrant (resp. fi-
brant) objects is left (resp. right) deformable. In particular, every left (resp. right) Quillen func-
tor F : M −→ N is left (resp. right) deformable and Mc (resp. Mf ) is a left (resp. right)
F−deformation retract.

The above result comes as no surprise: left and right deformations for a homotopical category are
defined exactly so as to generalise the properties of functorial cofibrant and fibrant replacements for
a model category respectively. Similarly, deformable functors can be thought of as the homotopical
abstraction of Quillen functors from the model-categorical setting. For example, we have the following

Proposition 4.5.12. Let F : H −→ L be a left (respectively right) deformable functor. Then F admits
a point-set left (respectively right) derived functor, hence also a total left (respectively right) derived
functor, LF (respectively, RF ). If (Q, q) (respectively (R, r)) is a left F−deformation (respectively a
right F−deformation), then LF = FQ (respectively RG = GR).

Proof. This follows using a completely similar argument to the one given in the proof of Theorem 4.1.32.

Now, our definition of homotopy (co)limits should not just give us homotopical replacements of ordi-
nary (co)limits, but should as well encode in itself a homotopical counterpart to the constituent property
of (co)limits to be unique up to isomorphisms. This is possible through the following notions.

Definition 4.5.13. Let H be a homotopical category.

1. We say that H is homotopically contractible, if the unique (homotopical) functor H −→ 1, where
1 is the terminal (homotopical) category, is a homotopical equivalence of homotopical categories
(see Definition 4.5.3).
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2. Given a non empty set I, we say that objects Xi (i ∈ I) of H are canonically weakly equivalent
(or homotopically unique) if the full (homotopical) subcategory of H spanned by those Xi’s and
by all the objects in H which are weakly equivalent8 to any of them is homotopically contractible.

Remark 4.5.14. Using the two-out-of-three property for weak equivalences in a homotopical category
H (see Remark 4.5.2, we get that, if H is homotopically contractible, then every map in H is a weak
equivalence and any two objects in H are weakly equivalent (see [DHKS], §13).

Definition 4.5.15. Let H be a homotopical category. An object Z ∈H is called homotopically initial
(resp. homotopically terminal) if there exist functors F0, F1 : H −→ H and a natural transformation
τ : F0 =⇒ F1 (resp. τ : F1 =⇒ F0) such that:

(i) F0 is naturally weakly equivalent (see Definition 4.5.3) to cZ : H −→ H , the constant functor at
Z;

(ii) F1 is naturally weakly equivalent to idH ;

(iii) τZ is a weak equivalence in H .

Remark 4.5.16. Amotivation for the above definition may come from the following somehow unorthodox
characterization of terminal and initial objects in a category D . An object Z ∈ D is initial (respectively
terminal) if and only if there is a natural transformation σ : cZ =⇒ IdD (respectively σ : IdD =⇒ cZ),
where cZ is the constant functor at Z, such that σZ : Z → Z is an isomorphism.

The following Proposition explains the terminology just introduced.

Proposition 4.5.17. Let H be a homotopical category and let Z be a homotopically initial (resp. homo-
topically terminal) object in H . Then an object A ∈ H is a homotopically initial (resp. homotopically
terminal) object in H if and only if it is weakly equivalent to Z. Furthermore, homotopically initial
(resp. homotopically terminal) objects are homotopically unique (see Definition 4.5.13).

Proof. This follows from the definitions. See [DHKS], Proposition 38.3.

Given a (not necessarily homotopical) functor F : H −→ L , where H and L are homotopical
categories, we can consider the full subcategory of the overcategory (L H ↓ F ) consisting of all those
natural transformations σ : G =⇒ F where G is a homotopical functor. We will denote such a full
subcategory by ((L H )W ↓ F ). Note that it naturally inherits a structure of homotopical category from
(L H )W . Similarly, we can define (F ↓ (L H )W ). Homotopically initial and terminal objects in these
homotopical categories are given special names.

Definition 4.5.18. Let H and L be homotopical categories and let F : H −→ L be a (not neces-
sarily homotopical) functor between them. A left approximation (respectively right approximation) is a
homotopically terminal (respectively initial) object in ((L H )W ↓ F ) (respectively in (F ↓ (L H )W )).

A sufficient condition for the existence of left and right approximations is provided by the following

Theorem 4.5.19. Let H and L be homotopical categories and let F : H −→ L be a (not necessarily
homotopical) functor between them. If F is left deformable (resp. right deformable), then there exists a
left approximation (resp. a right approximation) of F .

Proof. We prove only the left version, the other being dual. Let H0 be a left deformation retract with
left deformation (Q, q) such that F is homotopical when restricted to H0. Note that FQ is a homotopical
functor, so (FQ,Fq) is an object in D := ((L H )W ↓ F ). We claim that actually (FQ,Fq) is a left
approximation for F . Indeed, let (H,σ) be an object in D and consider the diagram

H F
σ

//

HQ

H

Hτ

��

HQ FQ
σQ // FQ

F

Fτ

��

8 Of course, as in the model categorical case, two objects of a homotopical category are weakly equivalent if there is a
zig-zag of weak equivalences connecting them, see Definition 4.1.10.
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which commutes by naturality of σ. We can then define a functor F1 : D −→ D which sends (H,σ) into
(HQ,σHq). Since q is a natural weak equivalence and H is a homotopical functor, Hq is a natural weak
equivalence HQ =⇒ H, thus it is a weak equivalence in the homotopical category D between the object
(HQ,σHq) and the object (H,σ). Therefore, F1 is naturally weak equivalent to IdD . If we define F0 as
the constant functor with value (FQ,Fq), we actually have that the assignment (H,σ) 7→ σQR defines
(the (H,σ)−th component of) a natural transformation F1 =⇒ F0 such that

F1(FQ,Fq) = (FQQ,FqFQq)
FqQ−→ (FQ,Fq) = F0(FQ,Fq)

is a weak equivalence in D , as FQ is a homotopical functor. Thus, (FQ,Fq) is a left approximation for
F .

Remark 4.5.20. Combining Proposition 4.5.12 and Theorem 4.5.19, we then get that, if F : H =⇒ L
is a left deformable functor and (Q, q) is a left F−deformation, then (FQ, Fq) is both a point-set left
derived functor and a left approximation for F .

Remark 4.5.21. Let F : H −→ L be a left deformable functor and let I be a small category. Then the
functor F ∗ = F ◦− : H I −→ L I is left deformable. Indeed, if (Q, q) is a left F−deformation for the left
F−deformation retract H0, then (Q∗ = Q ◦ −, q∗) is a left F ∗-deformation for the left F ∗−deformation
retract H I

0 . Here q∗ : Q∗ =⇒ IdH I is the natural transformation whose X−th component, for a functor
X : I −→H , is the natural transformation qX(−) : QX(−) =⇒ X(−). In particular,

L(F ◦ −) = F ∗Q∗

is a left point-set derived functor (and a left approximation) of F ∗ = F ◦ −, which we will call the
left point-set derived functor of F ∗ associated to LF = FQ. Note that, by definition, for a functor
X : I −→ H , (L(F ◦ −))(X) = F ◦ Q ◦ X = (LF ) ◦ X. Of course, a dual remark holds for right
deformable functors.

4.5.2 Definition and properties of homotopy (co)limits.

Theorem 4.5.22. Let M be a model category and let I be a small category. Then the colimit and the
limit functors

colim: M I −→M , lim: M I −→M

are left and right deformable respectively.

Proof. This is a particular instance of Theorem 20.5 of [DHKS]. Following [Shu], we just mention briefly
how to get a left colim-deformation, the construction of a right lim-deformation being dual. Let ∆I be
defined as the category of simplices of the nerve NI of I , i.e. ∆I = El(NI ), the category of elements
of NI . There is a projection functor

P : ∆I −→ I

which sends an n−simplex i0 → ii · · · → in of NI to in and we can consider the induced functor

P ∗ = (−) ◦ P : M I −→M ∆I .

Now, the category ∆I is a Reedy category (see Example 15.1.19 of [Hir1]), so we can take a functorial
Reedy cofibrant replacement (Q, q) in (M ∆I )Reedy. The composite

M I P∗−→M ∆I Q−→M ∆I LanP∗−→ M I

functor (see Definition 2.2.14) together with the composite natural transformation

LanP∗(qP∗) : LanP∗ QP
∗ =⇒ LanP∗ P

∗ =⇒ IdMI

give the desired left colim-deformation.

Due to Theorem 4.5.22, it makes now sense (compare with [Shu], Theorem 5.4) to give the following

Definition 4.5.23. Let M be a model category and let I be a small category. Denote by colimI and
limI the colimit and the limit functors M I −→M respectively.
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1. A homotopy colimit (of shape I ) on M is a pair

(hocolimI := colimI Q, colimI q), (4.18)

where (Q, q) is a left colimI -deformation of colimI . Given such a homotopy colimit, for X ∈M I ,
the object hocolimX ∈M is called a homotopy colimit of X.

2. A homotopy limit (of shape I ) on M is a pair

(holimI := limI R, limI r), (4.19)

where (R, r) is a right limI -deformation of limI . Given such a homotopy limit, for X ∈M I , the
object holimX ∈M is called a homotopy limit of X.

Remark 4.5.24. Unsurprisingly, in the following we will usually refer to a homotopy colimit (of shape
I on a model category M ) just as the functor hocolimI , leaving the companion natural transformation
implicit. The same notational remark applies to homotopy limits.

Remark 4.5.25. From Definition 4.5.23, we get in particular that, for a small category I and a model
category M :

(i) hocolimI is a homotopical functor from M I to M ;

(ii) hocolimI comes equipped with a natural transformation hocolimI =⇒ colimI ;

(iii) hocolimI is both a point-set left derived functor and a left approximation of colimI (see Remark
4.5.20;

(iv) if hocolim1
I and hocolim2

I are two homotopy colimits of shape I on M , then there is a zig-zag
of natural weak equivalences over colimI between them, i.e. hocolim1

I and hocolim2
I are weakly

equivalent as objects in the overcategory
((

M (MI )
)
W
↓ colimI

)
(see Definition 4.5.18).

We also get the following result, which is proven in [DHKS], §20.2:

(v) there is an adjoint pair

Ho(M I ) Ho(M )

hocolimI

((
Ho(M I ) Ho(M )

hh
cI

⊥

where cI is the constant-diagram functor cI : M −→M I and it makes sense to consider hocolimI

and cI at the level of the homotopy categories, as both of them are homotopical functors of
homotopical categories (recall our convention on the homotopical structure on M I given in Remark
4.5.6).

Dual properties hold for holimI .

Remark 4.5.26. We defined homotopy colimits and limits for model categories in terms only of their
underlying structure of homotopical categories. It follows in particular that, if M and M are model
categories with the same underlying category and the same class of weak equivalences, any homotopy
(co)limit on M will be a homotopy (co)limit on M and viceversa.

Left and right Quillen functors are homotopically compatible with homotopy colimits and homotopy
limits respectively.

Proposition 4.5.27. Let M and N be model categories and let

M N

F
%%

M Ncc

G

⊥

be a Quillen pair (see Definition 4.1.30). Denote by LF and by RG left and right point-set derived
functors of F and of G respectively. Let also L(F ◦−) and R(G◦−) be the left and right point-set derived
functors associated to LF and to RG respectively (see Remark 4.5.21). For a small category I , consider
homotopy colimit and limit functors

hocolimM , holimM : M I −→M and hocolimN , holimN : N I −→ N

on M and on N respectively. Then:
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1. the functors
hocolimN ◦ L(F ◦ −) and LF ◦ hocolimM

are canonically weakly equivalent (see Definition 4.5.13) as homotopical functors over the canoni-
cally isomorphic functors

colimN (F ◦ −)
∼=−→ F colimM ;

2. the functors
RG ◦ holimN and holimM ◦ R(G ◦ −)

are canonically weakly equivalent as homotopical functors over the canonically isomorphic functors

G limN ∼=−→ limM (G ◦ −) .

Proof. By [DHKS] §20.4, the composition of a homotopy colimit on M with a left approximation of
F and the composition of a left approximation of F ◦ − with a homotopy colimit on N are both left
approximations of the canonically isomorphic functors colimN (F ◦ −) ∼= F colimM and dually for right
approximations of G and homotopy limits in M and in N . This gives us what required.

Remark 4.5.28. We will usually refer to the thesis of Proposition 4.5.27 by saying that the (point-set)
left derived functor of a left Quillen functor preserves homotopy colimits and, dually, the (point-set) right
derived functor of a right Quillen functor preserves homotopy limits. More generally, given a homotopical
functor L : M −→ N between model categories, we will say that L preserves (or commutes with)
homotopy colimits if, for any small category I , L(hocolimI ) and hocolimI (L) are canonically weakly
equivalent as homotopical functors from M I to N . Dualizing, we also get the notion of preserving
homotopy limits.

When working with Quillen equivalences, we can improve Proposition 4.5.27 as follows.

Proposition 4.5.29. Let M and N be model categories and let

M N

F
%%

M Ncc

G

⊥

be a Quillen equivalence (see Definition 4.1.36). Denote by LF and by RG left and right point-set derived
functors of F and of G respectively. Let also L(F ◦−) and R(G◦−) be the left and right point-set derived
functors associated to LF and to RG respectively (see Remark 4.5.21). For a small category I , consider
homotopy colimit and limit functors

hocolimM , holimM : M I −→M and hocolimN , holimN : N I −→ N

on M and on N respectively. Then:

1. the functors
hocolimM ◦ R(G ◦ −) and RG ◦ hocolimN

are weakly equivalent as homotopical functors N I −→M ;

2. the functors
LF ◦ holimM and holimN ◦ L(F ◦ −)

are weakly equivalent as homotopical functors M I −→ N .

Proof. To avoid possible sources of confusions, we denote by LF and by RG the total left and right
derived functors of F and of G, which are (by definition) the right and left Kan extensions of γN ◦ LF
and of RG ◦ γM along γM and γN respectively. Here γM : M −→ Ho(M ) and γN : N −→ Ho(N ) are
the localization functors. Similarly, we indicate by L(F ◦ −) and by R(G ◦ −) the total left and right
derived functors of F ◦ − and of G ◦ − respectively.

Recall now that Mc (the full subcategory of M spanned by the cofibrant objects) is a left F−deformation
retract and Nf (the full subcategory of N spanned by fibrant objects) is a right G−deformation retract
(see Theorem 4.5.11). Thus, the condition for the Quillen pair (F,G) to be a Quillen equivalence (see
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Definition 4.1.36) can be interpreted by saying that, for some (specific) left F−deformation retract M0

of M and for some (specific) right G−deformation retract N0 of N , the following property, called the
Quillen condition, holds: given any pair of objects (X,A) ∈ M0 × N0, an arrow FX → A is a weak
equivalence in N if and only if its adjunct X → GA is a weak equivalence in M . With this formulation,
the Quillen condition makes sense for any adjoint pair

H L

F
%%

H Ldd

G

⊥

between homotopical categories which is a deformable adjunction, i.e. it is such that F is left deformable
and G is right deformable. Moreover, it can be proven (see [DHKS], §45) that:

• a deformable adjunction (F,G) as above satisfies the Quillen condition for some pair (H0, L0),
where H0 is a left F−deformation retract and L0 is a right G−deformation retract, if and only if
it satisfies the Quillen condition for any such pair (H0, L0);

• given a deformable adjunction (F,G), the total left derived functors of F and G gives rise to an
adjoint pair

Ho(H ) Ho(L )

LF
((

Ho(H ) Ho(L )
hh

RG

⊥

which is an equivalence of categories if (F,G) satisfies the Quillen condition.

Now, if (F,G) is our starting Quillen equivalence, the adjoint pair

M I N I

F◦−
''

M I N I
dd

G◦−

⊥

is deformable by Remark 4.5.21 and clearly satisfies the Quillen condition because (F,G) does so.
Therefore, we have a (non-commutative) diagram of categories and functors

Ho(M I ) Ho(N I )

L(F◦−)
**

Ho(M I ) Ho(N I )
ii
R(G◦−)

'Ho(M I )

Ho(M )

hocolimM

��

Ho(N I )

Ho(N )

hocolimN

��
Ho(M ) Ho(N )

LF
))

Ho(M ) Ho(N )
ii

RG

'

where it makes sense to consider hocolimM and hocolimN as functors between the homotopy
categories of their domains and codomains, because both of them are homotopical functors by
definition. Part 1. of Proposition 4.5.27 says that there is a (canonical) natural isomorphism

hocolimN ◦ L(F ◦ −) ∼= LF ◦ hocolimM .

It follows that also hocolimM ◦ R(G ◦−) ∼= RG ◦hocolimN , which gives the first part of the thesis
(because the total right derived functor of G and of RG are isomorphic). The second part is dual.

4.5.3 Computing homotopy (co)limits.
Although any two homotopy colimits of shape I on the model category M are naturally weakly

equivalent, they may look quite different as functors M I −→ M . We present here some of these
different features so as to point out that our definition of homotopy (co)limits comprises common and
used constructions in homotopy theory that are sometimes referred to as homotopy (co)limits themselves.
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Colimits and limits as Quillen functors. The first situation we consider is described by the following
Corollary to Theorem 4.5.11.

Corollary 4.5.30. Let M be a model category and let I be a small category such that the functor
category M I admits a model category structure for which the colimit (resp. the limit) functor

colim: M I −→M (resp. lim: M I −→M )

is a left (resp. right) Quillen functor. Then, for any cofibrant replacement functor Q : M I −→ M I

(resp. for any functorial fibrant replacement functor R : M I −→M I ) on M I , the composition

colim ◦ Q (resp. lim ◦ R )

is a homotopy colimit functor (resp. a homotopy lmit functor) of shape I on M .

Remark 4.5.31. Here are the most common and relevant cases to which Corollary 4.5.30 applies:

(i) if M is a cofibrantly generated model category (see Definition 4.2.7), then, for all small categories
I , the colimit functor is a left Quillen functor for the projective model structure on M I . If M is in
additional a combinatorial model category (see Definition 4.2.10), then, for all small categories I ,
the limit functor is a right Quillen functor for the injective model structure on M I (see Proposition
4.3.3 and Theorems 4.3.4 and 4.3.5);

(ii) if I is a Reedy category with fibrant constants (see Definitions 4.3.9 and 4.3.28), then for all
model categories M , the colimit functor is a left Quillen functor with respect to the Reedy model
structure on M I (see Theorems 4.3.18 and 4.3.30). Dually, if I is a Reedy category with cofibrant
constants, then for all model categories M , the limit functor is a right Quillen functor with respect
to the Reedy model structure on M I .

A specific instance of (ii) in Remark 4.5.31 above is given by taking I to be either the pushout or the
pullback category, endowed with one of the Reedy category structures of Examples 4.3.13 and 4.3.14 (see
also Remark 4.3.12). Homotopy colimits and limits over these indexing categories deserve the obvious
names

Definition 4.5.32. Let I be the pushout category I = b← a→ c and let M be a model category.

1. A homotopy colimit of shape I on M is called a homotopy pushout on M and denoted as

(−)qh(?) (•) : M I −→M , (X → Y ← Z) 7→ X qhY Z.

2. A homotopy limit of shape J := I op on M is called a homotopy pullback on M and denoted as

(−)×h(?) (•) : M J −→M , (X → Y ← Z) 7→ X ×hY Z.

For the following couple of results, we need to recall a piece of notation. Given a natural number n,
we denote by [n] the ordinal n+ 1 regarded as a posetal category (i.e. as the category associated to the
underlying poset of n+ 1).

Proposition 4.5.33. Let M be a model category and let J be the pullback category. Let also

R : M −→M

be a functorial fibrant replacement on M and let

δ : M [1] −→M [2]

be a functorial factorization of every arrow f : X → Z in M into a weak equivalence w(f) : X → E(f)
followed by a fibration p(f) : E(f)→ Z, so that

δ(f) = X
w(f)−→ E(f)

p(f)−→ Z.

Then the following statements hold.
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(i) The functor

R′ : M J −→M J , (X
f→ Z

g← Y ) 7→ (E(Rf)
p(Rf)−→ RZ

p(Rg)←− E(Rg))

is (part of) a right deformation for M J and the full subcategory of M J spanned by the image
of R′ is a right deformation retract of M J on which the pullback functor limJ is homotopical.
Hence, limJ ◦ R′ is a homotopy pullback on M .

(ii) The functor

R′′ : M J −→M J , (X
f→ Z

g← Y ) 7→ (RX
Rf−→ RZ

p(Rg)←− E(Rg))

is (part of) a right deformation for M J and the full subcategory of M J spanned by the image
of R′′ is a right deformation retract of M J on which the pullback functor limJ is homotopical.
Hence, limJ ◦ R′′ is a homotopy pullback on M .

A dual thesis holds for the pushout category I , cofibrant replacement functors on M and functorial
factorizations of a map in M into a cofibration followed by a weak equivalence.

Proof. By Example 4.3.26, R′ and R′′ are fibrant replacement functors for the Reedy model category
structures on M J given by the dual of the Reedy structures of Example 4.3.13 and of Example 4.3.14
respectively. Since J has cofibrant constants (see Example 4.3.29), the result follows from Corollary
4.5.30 and Remark 4.5.31.

Remark 4.5.34. In Definition 4.2.17, we already considered the notion of homotopy pullback for a cospan
in a right proper model category M , so that, a priori, there may be some ambiguity with Definition 4.5.32
above. However, keeping the same notations of Proposition 4.5.33, it is not difficult to see that the results
in Section 4.2.2 imply that the functor

R′′′ : M J −→M J

given by

R′′′ : (X
f→ Z

g← Y ) 7→ (E(f)
p(f)−→ Z

p(g)←− E(g))

is (part of) a right deformation for M J and the full subcategory of M J spanned by the image of
R′′′ is a right deformation retract of M J on which the pullback functor limJ is homotopical. Hence,
limJ ◦ R′′′ is a homotopy pullback on M , so that Definitions 4.2.17 and 4.5.32 are compatible. A dual
result holds of course for homotopy pushouts in a left proper model category.

When dealing with right or left proper model categories, we can drastically simplify the description
of homotopy pullbacks and pushouts given in Proposition 4.5.33.

Proposition 4.5.35. Let M be a right proper model category and let J be the pullback category. Let
also

δ : M [1] −→M [2]

be a functorial factorization of every arrow f : X → Z in M into a weak equivalence w(f) : X → E(f)
followed by a fibration p(f) : E(f)→ Z, so that

δ(f) = X
w(f)−→ E(f)

p(f)−→ Z.

Then the functor

R : M J −→M J , (X
f→ Z

g← Y ) 7→ (E(f)
p(f)−→ Z

g←− Y )

is (part of) a right deformation for M J and the full subcategory of M J spanned by the image of R is a
right deformation retract of M J on which the pullback functor limJ is homotopical. Hence, limJ ◦ R is
a homotopy pullback on M . A dual thesis holds for left proper model categories, pushouts and functorial
factorizations of a map in M into a cofibration followed by a weak equivalence.
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Proof. Since R is built up using a functorial factorization of arrows in M , using the two-out-of-three
property of weak equivalences, it is easy to see that R is a homotopical functor. We have an obvious
natural weak equivalence

r : IdMJ =⇒ R, r
(X

f→Z g←Y )
:= (w(f), idZ , idY ) : (X

f→ Z
g← Y )→ (E(f)

p(f)−→ Z
g←− Y )

as in the commutative diagram

X Z
f //

Y

Z

g

��

E(f) Z
p(f)
//

Y

Z

g

��

X

E(f)
w(f) ##

Z

Z

idZ
##

Y

Y

idY

##

where w(f) is a weak equivalence by hypothesis. Note that, up to now, we have not used the hypothesis of
right properness for M . We claim that the pullback functor limJ is homotopical on the full subcategory
of M consisting of those cospans A → B ← C where A → B is a fibration. In particular, limJ would
be homotopical on the full subcategory of M J spanned by the image of R as well. Suppose then given
a solid commutative diagram in M as the one below

A B// //

C

B
��

A′ B′// //

C ′

B′
��

A

A′
∼ ##

B

B′

∼
##

C

C ′

∼

##

Form the pullbacks of the back and front cospans so as to get the following commutative cube in M

A B// //

C

B
��

A×B C C//A×B C

A
��

A′ B′// //

C ′

B′
��

A′ ×B′ C ′ C ′//A′ ×B′ C ′

A′
��

A

A′
∼ %%

B

B′

∼
%%

C

C ′

∼

%%

A×B C

A′ ×B′ C ′

h

%%

By Proposition 4.2.21, the front and the back square in the cube above are homotopy Cartesian squares
(see Definition 4.2.17) and therefore Proposition 4.2.20 implies that the dotted arrow h is a weak equiv-
alence.

Definition 4.5.36. Let M be a model category and let (−)×h(?) (•), (−)qh(?) (•) be homotopy pullback
and homotopy pushout functors on M respectively (see Definition 4.5.32). We say that a commutative
square

C D//

A

C
��

A B// B

D
��

is a homotopy pullback square (respectively a homotopy pushout square) if the composite map

A→ B ×C D → B ×hC D (respectively B qhA C → B qA C → D)

is a weak equivalence.
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Remark 4.5.37. Since any two homotopy pullbacks (resp. any two homotopy pushouts) are weakly
equivalent as functors under the ordinary pullback functor (resp. over the ordinary pushout functor),
Definition 4.5.36 above is well-given, in the sense that a commutative square

C D//

A

C
��

A B// B

D
��

in M is a homotopy pullback square (resp. a homotopy pushout square) if and only if the relevant map
out of A (resp. into D) is a weak equivalence for some homotopy pullback functor (−)×h(?) (•) (resp. for
some homotopy pushout functor (−)qh(?) (•)) on M .

As an immediate consequence of Remark 4.5.34 and of Proposition 4.5.35, we get the following

Corollary 4.5.38. Let M be a right proper model category. Then a commutative square

C D//

A

C
��

A B// B

D
��

in M is a homotopy pullback square if and only if it is a homotopy Cartesian square (see Definition
4.2.17). A dual thesis holds for left model categories, homotopy pushout and homotopy cocartesian squares.

Homotopy (co)limits as (co)ends. We now turn to another possible description of homotopy col-
imits and limits in an arbitrary model category in terms of suitable (co)ends.

The first ingredient we need is a construction made on arbitrary model categories to mimic the tensors
and the cotensors (see Definition 4.2.29) available in a simplicial model category (see Definition 4.2.32).

Definition 4.5.39. Let M be a model category.

1. Let X ∈M ∆ and K ∈ sSet. We define the object X ⊗K ∈M by

X ⊗K := colim([n],s)∈∆K X([n]), (4.20)

where ∆K is the category of simplices of K, i.e. the category El(K) of elements of K.

2. Let Y ∈M ∆op

and K ∈ sSet. We define the object Y K ∈M by

Y K := lim([n],s)∈(∆K)op Y ([n]). (4.21)

Remark 4.5.40. From the definitions, it is easy to see that, in the situation of Definition 4.5.39, we get
bifunctors

(−)⊗ (•) : M ∆ × sSet −→M and (−)(•) : M ∆op

× sSetop −→M

Note, for example, that, for X ∈M ∆ andK ∈ sSet, X⊗K is simply (LanyX)(K), where y : ∆ −→ sSet
is the Yoneda embedding (see Definition 2.2.14). Furthermore, for all X ∈M ∆ and all Y ∈M ∆op

, we
have adjoint pairs

sSet M

X⊗(−)

''
sSet Mgg

M (X,−)

⊥ and M sSetop

M (−,Y )

))
M sSetop
gg

Y (−)

⊥

Here M (X,−) is the functor sending A ∈ M to the simplicial set M (X,A) such that, for n ∈ N,
M (X,A)n = M (X[n], A) and similarly for M (−, Y ) (compare with the analogous definitions given in
Definition 4.4.12).
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Recall now that in Section 4.4.1 we defined frames (see Definition 4.4.5) and framed model categories
(see Definition 4.4.10). We also saw that every model category has a canonical structure of framed model
category induced by its canonical functorial factorizations (see Definition 4.4.9).

Definition 4.5.41. Let (M , (−)∗, (−)∗) be a framed model category and let C be a small category.

1. For any X ∈M C and any K ∈ sSetC op

, we define the object X∗ ⊗C K ∈M by the coend

X ⊗∗C K :=

∫ α∈C

(X(α))∗ ⊗K(α) (4.22)

2. For any X ∈M C and any K ∈ sSetC , we define the object HomC
∗ (K,X) ∈M as the end

HomC
∗ (K,X) :=

∫
α∈C

(X(α))
K(α)
∗ (4.23)

Remark 4.5.42. As in Remark 4.5.40, in the situation of Definition 4.5.41, we get bifunctors

(−)⊗∗C (•) : M C × sSetC op

−→M and HomC
∗ (−, •) : (sSetC )op ×M C −→M

such that, for a fixed object X ∈M C , there are adjoint pairs

sSetC op

M

X⊗∗C (−)

''
sSetC op

Mgg

M (X,−)

⊥ and M (sSetC )op

M (−,X)
**

M (sSetC )op
gg

HomC
∗ (−,X)

⊥

(see [Hir1], Proposition 19.2.13).

The following result says that we can think to X ⊗∗C K and to HomC
∗ (K,X) as generalizations of

colimX and limX respectively.

Proposition 4.5.43. Let (M , (−)∗, (−)∗) be a framed model category and let C be a small category.
Denote by P : C op −→ sSet and by P ′ : C −→ sSet the constant functors at ∆[0]. Then there are
isomorphisms

X ⊗∗C P ∼= colimX and HomC
∗ (P ′, X) ∼= limX

which are natural in X ∈M C .

Proof. See [Hir1], Proposition 19.2.9.

We can now give the following

Definition 4.5.44. Let (M , (−)∗, (−)∗) be a framed model category and let C be a small category.
Denote by Q : M −→M and by R : M −→M the canonical cofibrant and fibrant replacement functors
respectively (see Definition 4.1.14).

1. The framed homotopy colimit (of shape C ) on M (with respect to the frame ((−)∗, (−)∗) on M )
is the functor hocolim∗C : M C −→M given, for all X ∈M C , by

hocolim∗C (X) := (Q ◦X)⊗∗C N(− ↓ C )op,

where N(− ↓ C )op : C op −→ sSet is the functor sending α ∈ C to the nerve of the category
(α ↓ C )op.

2. The framed homotopy limit (of shape C ) on M (with respect to the frame ((−)∗, (−)∗) on M ) is
the functor holim∗,C : M C −→M given, for all X ∈M C , by

holim∗,C (X) := HomC
∗ (N(C ↓ −), R ◦X),

where N(C ↓ −) : C −→ sSet is the functor sending α ∈ C to the nerve of the category (C ↓ α).
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Remark 4.5.45. Our Definition 4.5.44 above differs from the definitions of homotopy colimits and
limits given in [Hir1], §19.1 by the fact that the author there does not utilize any functorial cofibrant
and fibrant replacement (and does not use the attribute framed for homotopy (co)limits either). In other
words, retaining the same notations of Definition 4.5.44, if hocolimH

C (X) denotes the homotopy colimits
in the sense of [Hir1] for X : C −→ M , then hocolim∗C (X) = hocolimH

C (QX). We needed to make this
cofibrant correction, as hocolimH

C is not a homotopical functor on M C , but only on (Mc)
C (see [Hir1],

Theorem 19.4.2), so that there would have been no hope to show that a framed homotopy colimit is indeed
a homotopy colimit (in the sense of Definition 4.5.23) if we had to follow [Hir1]. As a consequence of our
choice, the results about hocolimH

C that in [Hir1] are claimed to be true for pointwise cofibrant diagrams
on M (or for maps between such diagrams) hold true for our hocolim∗C without such an assumption.
Dual remarks apply to framed homotopy limits with respect to Hirschhorn’s definition.

Remark 4.5.46. Let (M , (−)∗, (−)∗) be a framed model category and let C be a small category. By
Proposition 4.5.43, if P : C op −→ sSet is the constant functor at ∆[0], the unique map N(− ↓ C )op =⇒ P
induces a map

X ⊗∗C N(− ↓ C )op =⇒ colimC X

natural in X ∈M C . If Q is the canonical functorial cofibrant replacement on M , the natural transfor-
mation Q ◦ (−) =⇒ IdMC induces then a map of functors hocolim∗C (•) =⇒ (•) ⊗∗C N(− ↓ C )op. All in
all, we then get a map

hocolim∗C (X)→ colimC X (4.24)

which is natural in X ∈M C , i.e. hocolim∗C is a functor over colimC . Similarly, we get a map

limC X → holim∗,C X (4.25)

again natural in X ∈M C .

The following result says that the specific choice of the frame in the definition of framed homotopy
(co)limits is unessential.

Proposition 4.5.47. Let M ′ = (M , (−)∗, (−)∗) and M ′′ = (M , (−)•, (−)•) be framed model
categories with the same underlying model category M .

1. For any small category C , there is an essentially unique zig-zag of natural weak equivalences between
hocolim∗C and hocolim•C .

2. For any small category C , there is an essentially unique zig-zag of natural weak equivalences between
holim∗,C and holim•,C .

Proof. Keeping Remark 4.5.45 in mind, this is Theorem 19.4.3 of [Hir1].

Remark 4.5.48. In view of Proposition 4.5.47, we will just write hocolim∗C and holim∗,C and refer to
them as framed homotopy colimit and framed homotopy limit on M , without explicitly mentioning the
cosimplicial and the simplicial frames involved.

Remark 4.5.49. Let M be a simplicial model category with tensor functor (−)⊗(?) and cotensor functor
(−)(•) (see Remark 4.2.25, Definition 4.2.29 and Definition 4.2.32). Consider the standard cosimplicial
and simplicial frames (−)∗ and (−)∗ on M induced by the simplicial structure (see Example 4.4.11). It
can then be proven (see Proposition 16.6.6 of [Hir1]) that, for all A ∈ M and all K ∈ sSet, there are
natural isomorphisms

A∗ ⊗K ∼= A⊗K and AK∗
∼= AK ,

where the left hand sides are given as in Definition 4.5.39. Therefore, for a small category C and a functor
X : C −→M , we can write

hocolim∗C (X) =

∫ α∈C

QX(α)⊗N(α ↓ C )op and holim∗,C (X) =

∫
α∈C

(RX(α))N(C↓α),

where Q and R are the canonical cofibrant and fibrant approximations respectively.

By Remarks 4.5.45 and 4.5.46, framed homotopy colimits are homotopical functors over the colimit
functor and dually for framed homotopy limits. Therefore, it makes sense to ask whether they are
homotopy colimits and limits in the sense of Definition 4.5.23. Indeed, we have the following
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Theorem 4.5.50. Every framed homotopy (co)limit is a homotopy (co)limit.

The above result is elegantly proven in [Shu], §8 (see, in particular Theorem 8.5) and Appendix A, for
the simplicial case, i.e. for framed homotopy (co)limits in a simplicial model category (with respect to
the standard frames on it). However, using the theory of frames as well as the properties of the functors
(−)⊗∗C (•) and Hom∗,C (see [Hir1], §19.2 and 19.3), one can rephrase the whole proof of Theorem 4.5.50
given in [Shu] to adapt it to general framed homotopy (co)limits, as remarked by the author himself (see
again [Shu], Appendix A).

We conclude this section by stating the homotopical version of the fact that covariant and contravariant
Hom-functors for an ordinary category D preserve limits existing in D or in Dop respectively.

Proposition 4.5.51. Let M be a model category and let maph(−, ?) : M op×M −→ sSet be a homotopy
function complex on M (see Definition 4.4.15). Given a small category C , consider a functor X : C −→
M and an object A ∈M . Then the following hold.

1. The simplicial sets
maph(hocolimC X,A) and holimC maph(X,A)

are naturally weakly equivalent.

2. The simplicial sets
maph(A,holimC X) and holimC maph(A,X)

are naturally weakly equivalent.

Proof. Since any two homotopy (co)limits are naturally weakly equivalent, by Proposition 4.4.18 and
Theorem 4.5.50 it is enough to prove the claim for framed homotopy (co)limits. Noticing that we can
always assume, up to a weak equivalence, that the object A ∈M is fibrant (for the first part) or cofibrant
(for the second part), the thesis for framed homotopy (co)limits is [Hir1], Theorem 19.4.4 (see also Remark
4.5.45).
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Chapter 5

Localizations and Small Presentations
of Model Categories.

Da v tselom mire ne otyshchete vy podobnogo
naslazhden’ia! Zdes’, imenno zdes’ po-
drazhaet Bogu chelovek. Bog predostavil sebe
delo tvoren’ia, kak vysshee vsekh naslazh-
den’e, i trebuet ot cheloveka takzhe, chtoby
on byl podobnym tvortsom blagodenstviia
vokrug sebia. I eto nazyvaiut skuchnym de-
lom!

Nikolai V. Gogol’, Mjortvyje duši.

Having all the needed model categorical notions at our disposal, we can now start homotopifying some
of the constructions and the results that we saw in Chapters 1 and 2. A general leitmotiv to produce
homotopical versions1 of notions and results in ordinary Category Theory consists of replacing every
occurence of the category Set of sets with the category sSet of simplicial sets2 and of “homotopically
correcting” categorical concepts, for example substituting colimits with homotopy colimits3 or left ad-
joints with point-set and total left derived functors of left Quillen functors (see Remark 4.1.33). So, for
instance, the role played by presheaves categories in our theory of Grothendieck topoi should be now
played by simplicial presheaves in the theory of model topoi. In fact, following [Dug1] we will determine
in which sense, for a small category C , the category sPsh(C ) of simplicial presheaves on C is the free
homotopical cocompletion of C in analogy to the well-known fact that PSh(C ) is the free cocompletion of
C . We shall also define what a (homotopical) small presentation for a model category is (see Definition
1.2.5 for the corresponding notion in ordinary Category Theory) and we shall see that every combinato-
rial model category admits such a small presentation, thus providing the model theoretical analogue of
Theorem 1.2.6. In order to do this, we will need to understand what ought to be a meaningful notion of
localization for model categories and get some basic properties of it. This is accomplished through the
theory of (left) Bousfield localizations, which we will explain in the first section below, quoting [Hir1] for
the most important theorems.

This chapter is an expanded version of Section 5 in [Rzk1]. Our Theorem 5.3.8 below proves a claim
made by Rezk about particularly nice small simplicial presentations for simplicial model categories. Such
a statement appears in the proof of Theorem 6.9 in [Rzk1] but is not explicitly shown to be true there.

5.1 Localizing Model Categories.

5.1.1 Left localizations and S-local equivalences.
Localizing a category to a class of maps means finding a universal category where those maps become

isomorphisms, through the action of a suitable localization functor. Localizing a model category to a class
1 Here homotopical really means model-theoretical.
2 The “add an s” rule.
3 The “add an h” rule.
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of maps should then mean finding a universal model category where those maps become weak equivalences,
again through the action of an appropriate localization functor between model categories. However, a
priori such a localization functor may be either a left Quillen or a right Quillen functor and we thus get
the corresponding distinct (but dual) notions of left localization and right localization. Since we will only
need the former one, we refrain from developing the theory of right localizations and focus only on the
left version.

Definition 5.1.1. Let M be a model category and let S be a class of morphisms in M . A left localization
of M with respect to S, if it exists, is a couple

(MS , j : M −→MS) (5.1)

where MS is a model category and j is a left Quillen functor such that the total left derived functor
Lj : Ho(M ) −→ Ho(MS) sends the images of elements of S in Ho(M ) to isomorphisms in Ho(MS).
Such a pair (MS , j) is also required to be initial among those with the same property.

Clearly, if it exists, a left localization of M with respect to S is unique up to within a unique
isomorphism (of pairs such as (5.1))

Remark 5.1.2. As mentioned above, we will only consider left localizations of model categories, hence,
from now on, we will drop the directional adjective “left” in our exposition and just talk about a localization
of a model category M with respect to a class S ⊆ Mor(M ). Although this may result in a potential
ambiguity with the notion of localization of an ordinary category (see Definition 1.2.2), the only categorical
localization we are interested in when dealing with model categories is the homotopy category, to which
we already reserved specific name and notation. Hence, in the following, all localizations of a model
category M will be understood in the sense of Definition 5.1 above. We will also often use the phrase
“localization of M with respect to S” to refer to just one of the two components of (MS , j), leaving the
other one implicit.

Note that, trivially, if S coincides with the class W of weak equivalences of a model category M , the
localization of M with respect to S exists and is given by IdM : M −→M . We will see in a while under
which hypotheses on M (and on S) a localization MS is guaranteed to exist.

To describe localizations and their properties, we need to consider the following notions, which is a
generalization to model categories of Definition 1.2.4.

Definition 5.1.3. Let M be a model category and let S be a class of morphisms in M . Let also
maph : M op ×M −→ sSet be a homotopy function complex on M (see Definition 4.4.15).

1. An object W of M is called S-local if it is fibrant in M and for every map f : A → B in S the
induced map of homotopy function complexes

f∗ : maph(B,W )→ maph(A,W )

is a weak equivalence.

2. A map g : X → Y in M is called an S−local equivalence if for every S−local object W the induced
map of homotopy function complexes

g∗ : maph(Y,W )→ maph(X,W )

is a weak equivalence.

Remark 5.1.4. Let M be a model category and S a class of maps in M .

(i) As in the case of localizations, a priori some conflicts between Definition 5.1.3 and Definition 1.2.4
may arise. However, as in Remark 5.1.2, when dealing with model categories S-local objects will
be always understood in the sense of Definition 5.1.3 above, unless differently stated.

(ii) By Theorem 4.4.14, the induced maps f∗ and g∗ that appear in Definition 5.1.3 above are weak
equivalences for one choice of homotopy function complex on M if and only if they are weak
equivalences for any such a choice. Thus the notions of S-local object and of S-local weak equivalence
are independent of the chosen mapping space maph. This kind of remark will apply to all the notions
and the results that we will give and state in terms of homotopy function complexes.
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(iii) From the definitions, it follows immediately that every element of S is an S−local equivalence.

Remark 5.1.5. Let S be a class of maps in a model category M . Say that an object W in M is quasi
S-local if, for every map f ∈ S, the induced map of homotopy function complexes

f∗ : maph(cod(f),W )→ maph(dom(f),W )

is a weak equivalence (for one and hence for any homotopy function complex maph(−, ?) on M ). In other
words, an S−local object is a fibrant quasi S−local object and an object W ∈M is quasi S−local if and
only if any of its fibrant approximations is an S−local object. In particular, a map g in M is a quasi
S−local equivalence (with the obvious meaning) if and only if it is an S−local equivalence. It follows
that adding or dropping the fibrancy request in the definition of an S−local object does not result in any
gain or loss of generality. However, we decided to follow the standard convention in the literature (see,
for example, [Hir1] or [Low]) and insisted on asking an S−local object to be fibrant to start with.

Remark 5.1.6. For a model category M and a class S of maps in M , being an S−local object is a
weakly homotopy invariant property for fibrant objects. Namely, if X and Y are weakly equivalent fibrant
objects, then X is S−local if an only if Y is S−local. Indeed, up to taking fibrant replacements of all the
weak equivalences in a zig-zag connecting X and Y , we can suppose that X and Y are weakly equivalent
through fibrant objects. Hence, it is enough to show that, if X and Y are fibrant objects and g : X → Y
is a weak equivalence, then X is S−local if and only if Y is such. But this follows immediately from the
fact that, for every f : A→ B and any homotopy function complex on M , in the commutative square

maph(B, Y ) maph(A, Y )
maph(f,1Y )

//

maph(B,X)

maph(B, Y )
��

maph(B,X) maph(A,X)
maph(f,1X) // maph(A,X)

maph(A, Y )
��

the vertical arrows are weak equivalences by Theorem 4.4.18.

Using S−local objects and S−local equivalences, we can describe when the total left derived functor
of a left Quillen functor F : M −→ N sends the image of an element of S in Ho(M ) to an isomorphism
in Ho(N ) and we can do this just by examining F itself.

Theorem 5.1.7. Let

M N

F
%%

M Ncc

G

⊥

be a Quillen pair between model categories M and N and let S be a class of maps in M . Then the
following statements are equivalent.

1. The total left derived functor LF : Ho(M ) −→ Ho(N ) of F takes the images in Ho(M ) of elements
of S into isomorphisms in Ho(N ).

2. The left adjoint F takes cofibrant approximations to an element of S into a weak equivalence in
N .4

3. The right adjoint G takes every fibrant object of N into an S−local object of M .

4. The left adjoint F takes every S-local equivalence between cofibrant objects into a weak equivalence
in N .

Proof. The equivalence between 1. and 2. follows from the explicit description of the total left derived
functor of F given in the proof of Theorem 4.1.32, together with the fact that a left Quillen functor F
takes one cofibrant approximation Qg to a map g into a weak equivalence in M if and only if it takes
any cofibrant approximation to g into a weak equivalence in M (see [Hir1], proposition 8.1.24).

4 A cofibrant approximation of a map f : X → Y in M is of course a map f̃ : QX → QY between cofibrant approximations
iX : QX → X and iY : QY → Y of X and Y respectively such that f ◦ iX = iY ◦ f̃ .
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To show that 2. is equivalent to 3., let f : A → B be a morphism in S and take a cosimplicial
resolution f̃ : Ã → B̃ of f , i.e. consider a Reedy cofibrant approximation to the map cc∗f in M ∆,
where cc∗ : M −→M ∆ is the constant diagram. Since Reedy cofibrations are pointwise such, it follows
that f̃0 : Ã0 → B̃0 is a cofibrant approximation to f . Furthermore, since F lifts to a left Quillen func-
tor on M ∆, F (f̃) : F (Ã) → F (B̃) is a cosimplicial resolution of F (f̃0). Now, by Theorem 4.4.18, we
have that F (f̃0) is a weak equivalence in N if and only if, for all fibrant objects Z in N , the map of
simplicial sets N (F (B̃), Z) → N (F (Ã), Z) is a weak equivalence. This, in turn, holds if and only if
M (B̃,GZ)→M (Ã, GZ) is a weak equivalence. By what we have already remarked, if F takes at least
one cofibrant approximation to f into a weak equivalence, it sends all such cofibrant approximations to
f into weak equivalences, hence we get the equivalence between 2. and 3.

The proof that 3. and 4. are equivalent is similar.

The class of S−local equivalences has the same formal properties shared by the class of weak equiva-
lences in a model category.

Theorem 5.1.8 (cf. [Rzk1], §5.3). Let M be a model category and let S be a class of maps in M . Then
the following statements hold.

(i) Every weak equivalence in M is an S−local equivalence.

(ii) The class of S−local equivalences satisfies the two-out-of-three property (see Definition 4.1.1).

(iii) The class of S−local equivalences is closed under retracts (in the arrow category of M ).

(iv) Suppose given a homotopy pushout square

Y Y ′//

X

Y

f

��

X X ′
t // X ′

Y ′

g

��

in M (see Definition 4.5.36) where f is an S−local equivalence. Then g is an S−local equivalence.

(v) Let τ : X =⇒ Y be a natural transformation between functors X,Y : J −→M and assume that τj
is an S−local equivalence for all j ∈J . Then hocolim τ is an S−local equivalence as well.

Remark 5.1.9. Since any two homotopy colimits on M are naturally weakly equivalent (see Remark
4.5.25), the two-out-of-three property for S−local equivalences implies that (v) in Theorem 5.1.8 above
holds for one homotopy colimit if and only if it holds for any homotopy colimit.

Proof. (Of Theorem 5.1.8). The first part follows from Theorem 4.4.18, whereas (ii) and (iii) can be
deduced by applying a functorial homotopy function complex maph on M and using the two-out-of-three
property and the closure under retracts for weak equivalences of simplicial sets.

For the fourth point, given a homotopy pushout square as in the statement of the Theorem, let
I = b← a→ c be the pushout category with the direct category structure of Example 4.3.13. Let Q be
a functorial cofibrant approximation in the Reedy model structure of M I and let

QY
Qf←− QX Qt−→ QX ′

be the result of applying Q to the span Y f←− X
t−→ X ′ of M . By Example 4.3.25, QY, QX and QX ′

are cofibrant objects in M , while Qf and Qt are cofibrations in M . Consider then the following solid
diagram in M

Y Y ′//

X

Y

f

��

X X ′// X ′

Y ′
��

QY P//

QX

QY
��

QX QX ′// QX ′

P
��

X ′

QX ′

�� ∼
X

QX

�� ∼

Y

QY

�� ∼
Y ′

P

�� h
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where P := QY
∐
QX QX

′ is cofibrant, X ′ → Y ′ is the given g and the arrows marked as weak equiva-
lences are such by definition of Q and of the weak equivalences in (M I )Reedy. Note that, since f is an
S−local equivalence, by (i) and (ii) above, Qf : QX → QY is also an S−local equivalence. As I has
fibrant constants (see Example 4.3.29), Corollary 4.5.30 and Remark 4.5.31 imply that P is a homotopy
pushout for the span (f, t) and then by hypothesis we have that the dotted h is a weak equivalence.
Hence, again by parts (i) and (ii), the above diagram shows that g : X ′ → Y ′ is an S−local equivalence
if an only if QX ′ → P is such. We will thus prove this second claim. Let then W be an S−local object
and pick a simplicial resolution Ŵ of W . We get a pullback square

M (QY, Ŵ ) M (QX, Ŵ )
(Qf)∗

//

M (P, Ŵ )

M (QY, Ŵ )

��

M (P, Ŵ ) M (QX ′, Ŵ )//M (QX ′, Ŵ )

M (QX, Ŵ )

(Qt)∗

��
(5.2)

of simplicial sets, where all objects are homotopy function complexes and (Qf)∗, (Qt)∗ are fibrations
because Qf and Qt are cofibrations and W is fibrant in M (see [Hov], Corollary 5.4.4). Since Qf is an
S−local equivalence we have that (Qf)∗ is a weak equivalence and therefore

M (P, Ŵ )→M (QX ′, Ŵ )

is a weak equivalence, because it is the pullback of a weak equivalence along a fibration ((Qt)∗) in the
right proper model category sSet. Since W was chosen as an arbitrary S−local object, this shows that
QX ′ → P is an S−local equivalence and so also g needs to be such, as we already observed.

Finally, for (v), take a homotopy function complex maph on M . Note that, if W is an S−local
object, since maph(hocolimi∈I X(i),W ) is naturally weakly equivalent to holimi∈I maph(X(i),W ) (see
Proposition 4.5.51), the map

(hocolimi∈I τi)
∗ : maph(hocolimi∈I Y (i),W )→ maph(hocolimi∈I X(i),W )

is naturally weakly equivalent to the map

holimi∈I τ∗i : holimi∈I maph(Y (i),W )→ holimi∈I maph(X(i),W )

which is a weak equivalence, because each τ∗i is a weak equivalence by hypothesis.

The following result gives a sufficient condition for an S−local equivalence to be an actual weak
equivalence in M .

Proposition 5.1.10. Let M be a model category and S a class of maps in M . Then any S−local weak
equivalence between S−local objects is a weak equivalence in M .

Proof. Let g : X → Y be an S−local weak equivalence between S−local objects X and Y and let
maph(−, ?) be a homotopy function complex on M . Then the maps

g∗ : maph(Y,X)→ maph(X,X) and g∗ : maph(Y, Y )→ maph(X,Y )

are both weak equivalences of simplicial sets. By Proposition 17.7.6 of [Hir1], this is enough to conclude
that g is a weak equivalence.

Definition 5.1.11. Let M be a model category and let S be a class of morphisms in M .

1. An S-localization of an object X ∈M is a couple (RSX, j : X → RSX) where RSX is an S−local
object and j is an S−local equivalence.

2. An S-localization of a map g : X → Y is a triple

((RSX, jX : X → RSX), (RSY, jY : Y → RSY ), RSg : RSX → RSY ),

where (RSX, jX : X → RSX) and (RSY, jY : Y → RSY ) are S−localizations of X and Y respec-
tively and RSg is a morphism in M such that (RSg) ◦ jX = jY ◦ g.
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As usual, we will refer to S−localizations (RSX, j : X → RSX) of an object X mentioning only the
S−local object RSX or the S−local equivalence j, leaving the other ingredient implicit. A similar remark
applies to S−localizations of maps.

The existence of some kind of localizations for certain classes of model categories will give us the exis-
tence of functorial S−localizations. We end this section by stating a couple of results about S−localizations.

Proposition 5.1.12. Let M be a model category and let S be a class of arrows in M .

(i) Given a fibrant object X in M and an S−localization j : X → RSX of X, j is a weak equivalence
if and only if X is S−local.

(ii) If RSg : RSX → RSY is an S−localization of a map g : X → Y in M , then g is a weak equivalence
if and only if RSg is an S−local equivalence.

Proof. (i) This follows immediately from Proposition 5.1.10 and Remark 5.1.6.

(ii) By the two-out-of-three property for S−local equivalences (see Theorem 5.1.8), g is an S−local
equivalence if and only if RSg is an S−local equivalence. We conclude using again Proposition
5.1.10.

5.1.2 Left Bousfield localizations.
The kind of localizations we will use have the property that the weak equivalences in the localization

are given exactly by the S−local equivalences for some subclass S of morphisms in a model category M .

Definition 5.1.13. Let M be a model category and let S be a class of morphisms in M . A (left)
Bousfield localization of M with respect to S, if it exists, is the model category LSM with underlying
category M and such that:

1. weak equivalences in LSM are the S−local equivalences in M (see Definition 5.1.3);

2. cofibrations in LSM are all and only the cofibrations in M ;

3. fibrations in LSM are given by the maps in M having the right lifting property with respect to
those morphisms in M which are both cofibrations and S−local equivalences.

In the following, we will only consider left Bousfield localizations as defined in Definition 5.1.13 above,
hence we will simply call them Bousfield localizations.

Remark 5.1.14. Let M be a model category and let S be a class of morphisms in M . Assume that
the Bousfield localization LSM exists. Then, from Definition 5.1.13 and from Theorem 5.1.8, it follows
immediately that:

(i) there is a Quillen pair

M LSM

IdM

((
M LSMgg

IdM

⊥ ;

(ii) every weak equivalence in M is a weak equivalence also in LSM ;

(ii) the class of trivial fibrations of LSM equals the class of trivial fibrations of M .

Calling the model category described in Definition 5.1.13 a Bousfield localization would probably not
be fair if we could not prove that, if such a Bousfield localization exists, it is indeed a localization (in
the sense of Definition 5.1.1).5 Luckily, we have the following results which show exactly that Bousfield
localizations deserve their names.

Proposition 5.1.15. Let M be a model category and let S be a class of morphisms in M . Suppose that
the Bousfield localization LSM of M with respect to S exists and let F : M −→ N be a left Quillen
functor from M to a model category N . If F takes every cofibrant approximation to a map in S into a
weak equivalence in N , then F is a left Quillen functor when considered as a functor from LSM to N .

5 After all, in Mathematics, we could well say that nomina nuda tenemus.
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Proof. Let G : N −→ M be the right adjoint to F : M −→ N which is also a right adjoint to F
when we consider it as a functor from LSM , because LSM and M have the same underlying category.
To show that G : N −→ LSM is a right Quillen functor it is enough to show that it preserves trivial
fibrations and fibrations between fibrant objects (see Proposition 8.5.4 of [Hir1]). The first property is
clear, because TrFib(LSM ) = TrFib(M ) and G : N −→ M is a right Quillen functor. On the other
hand, the hypothesis on F and Theorem 5.1.7 imply that if p : X → Y is a fibration between fibrant
objects in N , then Gp : GX → GY is a fibration in M between S-local objects. This gives that Gp is a
fibration in LSM (see [Hir1], Proposition 3.3.16).

Theorem 5.1.16. Let M be a model category and let S be a class of morphisms in M . Suppose that
the Bousfield localization LSM of M with respect to S exists. Then

(LSM , IdM : M −→ LSM )

is a localization of M with respect to S (see Definition 5.1.1).

Proof. Let F : M −→ N be a left Quillen functor into a model category N and assume that its total left
derived functor LF : Ho(M ) −→ Ho(N ) sends the images of elements of S in Ho(M ) into isomorphisms
in Ho(N ). Then of course there is a unique functor F̄ : LSM −→ N such that F̄ ◦ IdM = F and such
an F̄ is F itself. The hypothesis on LF and Theorem 5.1.7 give that F : M −→ N sends every cofibrant
approximation to an element in S into a weak equivalence in N . By Proposition 5.1.15, this implies that
F : LSM −→ N is a left Quillen functor, as required.

We can describe the relations between the homotopy theories presented by LSM and by M as follows.

Proposition 5.1.17 (cf. [Rzk1], §5.3). Let M be a model category and let S be a class of maps in M .
Assume that the Bousfield localization LSM of M with respect to S exists and denote by

M LSM

a
((

M LSMgg

i

⊥

the associated adjoint pair, so that both a and i are the identity functors on M . Let also

Ri : LSM −→M and Ri : Ho(LSM ) −→ Ho(M )

be a point-set left derived functor and the total left derived functor of i respectively (see Definition 4.1.31
and Remark 4.1.33). Then the following properties hold.

1. Ri is fully faithful.

2. Ri induces an equivalence of categories between Ho(LSM ) and the full subcategory of Ho(M )
consisting of (the images under the localization functor γM : M −→ Ho(M ) of) the S-local objects
in M .

3. The simplicial sets
maph

LSM (X,Y ) and maph
M ((Ri)X, (Ri)Y )

are naturally weakly equivalent, for X,Y ∈M .

Proof. Denote by La and by La the total left derived functor and a point-set left derived functor of a.
Write also La = a ◦ Q and Ri = i ◦ RS , where (Q, q) is a functorial cofibrant replacement in M and
(RS , rS) is a functorial fibrant replacement in LSM . Note that, since both a and i are the identity on
M , for an object X ∈M , we simply have (La)(X) = QX and (Ri)(X) = RSX.

1. Since La is left adjoint to Ri, it suffices to show that the counit (La)(Ri) =⇒ IdHo(LSM ) of this
adjunction is an isomorphism. By the description of the counit of the derived adjunction given in
Remark 4.1.35, this happens if and only if, for all fibrant objects Y in LSM , the map εY ◦aqiY is a
weak equivalence in LSM , where εY is the Y−th component of the counit of the adjunction a a i.
Since both a and i are identity functors this amounts to say that, for each fibrant object Y ∈ LSM ,
the map qY : QY → Y is a weak equivalence in LSM . This is of course true because qY is a weak
equivalence in M (as (Q, q) is a functorial cofibrant replacement in M ) and weak equivalences in
M are weak equivalences in LSM by Theorem 5.1.8.

118



2. Note first that, if Y is an object in M , then (Ri)(Y ) = (Ri)Y = RSY is really an S-local object
in M . Indeed, by Theorem 5.1.7, i takes every fibrant object of LSM (such as RSY ) into an
S-local object of M , since clearly a sends any cofibrant approximation to a map in S into a weak
equivalence in LSM (as weak equivalences in M are S-local equivalences). Conversely, if A is an S-
local object in M , then the weak equivalence A ∼S−→ RSA in LSM is an S−local equivalence in M
between S−local objects. By Proposition 5.1.10, ∼S is then a weak equivalence in M and therefore
A and RSA = (Ri)(A) are isomorphic in Ho(M ). This proves that Ri is essentially surjective on
the full subcategory spanned by the S-local objects in Ho(M ), so that we can conclude by the first
part above.

3. Let X,Y be objects of M . Since weak equivalences in LSM are sent to weak equivalences by
maph

LSM (see Proposition 4.4.18), the simplicial set maph
LSM (X,Y ) is naturally weakly equiva-

lent to maph
LSM (RSX,RSY ). Since RSY is fibrant in LSM , maph

LSM (RSX,RSY ) is naturally
weakly equivalent to LSM (R̃SX,RSY ) for a cosimplicial resolution of RSX (see Definitions 4.4.1
and 4.4.12). Now, the Quillen pair a a i lifts to a Quillen pair a ◦ (−) a i ◦ (−) between the
categories of cosimplicial objects of M and of LSM (see Example 4.3.27) endowed with the Reedy
model structure induced by the Reedy structure on ∆ (see Example 4.3.15). Hence, in particu-
lar, any functorial Reedy cofibrant approximation in M ∆ will be also a functorial Reedy cofibrant
approximation in (LSM )∆. Since cosimplicial resolutions of an object A of a model category N
are, by definition, Reedy cofibrant approximations of cc∗A (the constant cosimplicial object at A),
we can take R̃SX to be a cosimplicial resolution of RSX in M . Since RSY is fibrant also in M
(because it is an S−local object), we then get the following chain of naturally weakly equivalent
simplicial sets (see Definition 4.1.10):

maph
LSM (X,Y ) ≈ LSM (R̃SX,RSY ) = M (R̃SX,RSY ) ≈

≈ maph
M (RSX,RSY ) = maph

M ((Ri)X, (Ri)Y ),

as required.

We finally address the question of existence of Bousfield localizations.

Our existence theorem for Bousfield localizations deals with a class of model categories called cellular
model categories.

Definition 5.1.18. A cellular model category is a cofibrantly generated model category (see Definition
4.2.7) M for which:

• cofibrations are effective monomorphisms (dual notion to that of effective epimorphism given in
Definition 1.3);

• there are sets I and J of generating cofibrations and generating trivial cofibrations respectively
such that the domains of elements of J are small relative to I (see Definition 4.2.2) and both the
domains and the codomains of the elements of I are compact (in the sense of [Hir1], Definition
11.4.1).

The notion of compactness we refer to above is quite technical and we will not explain it here. For
our purposes, it is enough to know what follows.

Remark 5.1.19. The category Top of topological spaces and the category sSet of simplicial sets with
respect to the Quillen model category structure (see Examples 4.1.18 and 4.1.19) are both cellular model
categories (see Proposition 12.1.4 of [Hir1]). Furthermore, if M is a cellular model category and C is a
small category, then M C is a cellular model category with respect to the projective model structure (see
Definition 4.3.2 and Theorem 4.3.4).

We can now state the following

Theorem 5.1.20. Let M be a model category which is either

(a) a left proper and cellular model category (see Definitions 4.2.15 and 5.1.18)
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or

(b) a left proper and combinatorial model category (see Definition 4.2.10).

Then, for every set S of morphisms in M , the Bousfield localization LSM of M with respect to S
exists and is again a left proper, cellular model category or a left proper, combinatorial model category
respectively. Furthermore, we also have that:

(i) the fibrant objects of LSM are exactly the S-local objects of M ;

(ii) if M is a simplicial model category, then also LSM is a simplicial model category with simplicial,
tensored and cotensored structures given by those of M (see Definitions 4.2.32 and 4.2.29).

Proof. See [Hir1], Theorem 4.1.1 and [Bar], Theorem 4.7.

Remark 5.1.21. We stress that Theorem 5.1.20 ensures the existence of Bousfield localizations LSM
for a set S of maps in M and not for an arbitrary class of maps.

Remark 5.1.22. Since the only kinds of localizations that we will consider are Bousfield localizations,
from now on, given a model category M and a class S of maps in M , we will indicate LSM simply by
MS .

Given a small category I and a small simplicial category C the model categories

sPsh(I ) := sSetI op

and sPsh(C) := [Cop, sSet] (5.3)

with the projective model structure are left proper, combinatorial and simplicial model categories (see
Theorems 4.3.2 and 4.3.31). We will call the elements of sPsh(I ) and of sPsh(C) simplicial presheaves
on I and on C respectively. By Theorem 5.1.20, for every set S of maps in sPsh(I ) or in sPsh(C), the
Bousfield localizations

sPsh(I )S and sPsh(C)S

exist and are again left proper, simplicial and combinatorial model categories.
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5.2 Universal Homotopy Theories.
Following [Dug1], in this section we are going to see in which sense the category of simplicial presheaves

on a small category C is the homotopical counterpart of the category of presheaves on C .

We start by recalling a basic fact of presheaves categories that characterises them completely, up to
isomorphism, via a universal property. Note that we basically used this result in the proof of Proposition
2.2.17.

Theorem 5.2.1. Let C be a small category. Then the Yoneda embedding

y : C −→ PSh(C )

exhibits PSh(C ) as the free cocompletion of C , that is, given any functor F : C −→ D into a cocomplete
category D , there is a unique (up to isomorphism) cocontinuous functor LF : PSh(C ) −→ D making the
following diagram commutative

C PSh(C )
y //C

D

F

��

PSh(C )

D

LF

��

up to an invertible natural transformation LF ◦ y
∼=

=⇒ F . Furthermore, such an LF can be defined as the
left Kan extension of F along y (see Definition 2.2.14), hence it is left adjoint to the functor

D(F (−), ?) : D −→ PSh(C ), A 7→ (D(F (−), A) : C op −→ Set).

Remark 5.2.2. The proof of the above result (that can be found, for example, in [McMo], §1.5) relies on
the basic observation that every presheaf on a small category is isomorphic to a colimit of representables6.
More precisely, if X is a presheaf on C and El(X) is its category of elements, then

X ∼= colim(x,A)∈El(X) yA.

Since an object (x,A) of El(X) determines and is determined uniquely by a map yA −→ X, i.e. by an
object of (y ↓ X), we can also write

X ∼= colim(s : yA−→X)∈(y↓X) yA (5.4)

The homotopical version of Theorem 5.2.1 above is the main result of [Dug1]. In order to state it,
given a small category C , we let

r : C −→ sPsh(C ) (5.5)

be the composite of the Yoneda embedding y : C −→ PSh(C ) with the embedding

PSh(C ) −→ sPsh(C )

which sends a presheaf F : C op −→ Set to the simplicial presheaf mapping an object A ∈ C op to the
discrete simplicial set having in each dimension n the set F (A). Note that such a functor PSh(C ) −→
sPsh(C ) is simply the constant functor sending a presheaf F to the constant simplicial object on it, when
we see sPsh(C ) as the category PSh(C )∆op

of simplicial objects in PSh(C ).

The embedding r is called the (discrete) simplicial Yoneda embedding. We will actually denote such
an r again by y, seen this time as a functor y : C −→ sPsh(C ).

Theorem 5.2.3. Let C be a small category. Then, any functor γ : C −→M into a model category M
factors through sPsh(C ) in the sense that there is a Quillen pair

sPsh(C ) M

Re=Reγ

&&
sPsh(C ) M

gg
Sing=Singγ

⊥

6 We have already used this fundamental fact several times in Chapters 1 and 2.
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(where sPsh(C ) has the projective model structure) and there is a natural weak equivalence

η : Re ◦y ∼
=⇒ γ,

as in the (non-commutative) diagram:

C sPsh(C )
y //C

M

γ

''

sPsh(C )

M

Re

��

sPsh(C )

M

YY

Singa
��

Moreover, the category of all such factorizations of γ through sPsh(C ) is contractible.

Here the category of factorizations of γ through sPsh(C ) is the category Fact(γ) having as objects
triples (L,R, τ), where L: sPsh(C ) � M :R is a Quillen pair (left adjoint on the left) and τ is a natural
weak equivalence τ : Re ◦y ∼

=⇒ γ. A morphism (L,R, τ) → (L′, R′, τ ′) in Fact(γ) is simply a natural
transformation σ : L =⇒ L′ between the left adjoints such that τ ′ ◦ σR = τ .

Proof. We just sketch the main ideas of the proof. The whole point is to show that Fact(γ) is equivalent
to the category cos(γ) of cosimplicial resolutions of γ. Here a cosimplicial resolution of γ is a functor
Γ: C −→M ∆ equipped with a natural weak equivalence ι : Γ

∼
=⇒ cc∗ ◦ γ such that ιA : Γ(A)→ cc∗(γA)

is a cosimplicial resolution of γ(A) (see Definition 4.4.1) for all A ∈ C . Since it is a well-established result
(see [Hir1], Theorem 16.7.5) that cos(γ) is a contractible category, also Fact(γ) would be (non-empty
and) contractible.

Thus, it is enough to show that Fact(γ) and cos(γ) are equivalent categories. Given a factorization
of γ, say (L,R, τ), we get a cosimplicial resolution Γ of γ by sending A ∈ C to Γ(A) := L(yA ×∆[−]).
Here, for each n ∈ N, yA×∆[n] is the product in the category sPsh(C ) of yA with the constant functor
C op −→ sSet at ∆[n]. This assignment defines indeed a cosimplicial resolution of γ because:

(i) each yA is a cofibrant object in sPsh(C ) with the projective model structure. This follows from
the description of the sets of generating (trivial) cofibrations for the cofibrantly generated model
structure on sPsh(C ) (see [Hir1], Example 11.5.31);

(ii) yA ×∆[−] is a cosimplicial resolution of yA: this follows from (i) above, Remark 4.2.31, Remark
4.4.6 and Example 4.4.11;

(iii) left Quillen functors preserve cosimplicial resolutions of cofibrant objects (see [Hir1], Proposition
16.2.1).

Viceversa, if we are given a cosimplicial resolution Γ: C −→ M ∆ of γ we get a factorization of γ by
setting

L : sPsh(C ) −→M , F 7→ Γ⊗γ F :=

∫ A∈C

Γ(A)⊗ F (A)

and
R : M −→ sPsh(C ), X 7→M (Γ(−), X),

where, for G ∈M ∆ andK ∈ sSet, G⊗K is defined as in (4.20). The natural weak equivalence L◦y ∼
=⇒ γ

is obtained, for B ∈ C , through the following chain of isomorphisms

L(y(B)) = Γ⊗γ yB =

∫ A∈C

Γ(A)⊗ C (A,B)
(†)∼=
∫ A∈C

(Γ(A))0 · C (A,B) ∼=

∼= (Γ(B))0
∼→ γB,

where:
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• in the right hand side of the isomorphism (†), (Γ(A))0 · C (A,B) :=
∐

C (B,A)(Γ(A))0 ∈M and the
isomorphism follows as

colim([n],s)∈∆(C (A,B))(Γ(A))n ∼= colim([0],s)∈∆(C (A,B))(Γ(A))0
∼= (Γ(A))0 · C (A,B),

where the first isomorphism is due to the fact that the only non degenerate simplices in C (A,B)
(seen as a discrete simplicial set) are the 0−th simplices, whereas the second isomorphism holds
because the category over which the colimit is taken is a discrete category;

• the last isomorphism follows from the coend form of the Yoneda lemma (also known as the Ninja
Yoneda Lemma, see [Lor], Proposition 2.1);

• the last map is the weak equivalence given by the fact that Γ(B) is a cosimplicial resolution of γ(B).

The analogy between the homotopical properties of sPsh(C ) and the categorical properties of PSh(C )
comprises also a model-categorical version of Remark 5.2.2 in the following sense. Let C be a small
category and let X be a simplicial presheaf on C . There is a functor

Γ: C ×∆ −→ sPsh(C ), (A, [n]) 7→ yA×∆[n].

As above, here y is the discrete simplicial Yoneda embedding and yA×∆[n] is the product in the category
sPsh(C ) of yA with the constant functor C op −→ sSet at ∆[n]. We can then consider the over-category
(Γ ↓ X) whose objects are pairs

((A, [n]), yA×∆[n]→ X)

With a slight abuse of notation, we shall indicate this over-category as (C×∆ ↓ X). Note that (C×∆ ↓ X)
is the category of elements of X when we see it not as a functor C op −→ sSet but as a presheaf
C op ×∆op −→ Set. We have a functor

V : (C ×∆ ↓ X) −→ sPsh(C ), ((A, [n]), yA×∆[n]→ X) 7→ yA×∆[n].

We then get a composite map
hocolimV −→ colimV −→ X

(for any choice of the homotopy colimit functor hocolim: sPsh(C )(C×∆↓X) −→ sPsh(C )) and we denote
hocolimV by hocolim(C ×∆ ↓ X). Note that the map colimV → X is actually an isomorphism, because
it is a specific instance of (5.4), when we see the simplicial presheaf X on C as a presheaf over C ×∆.

Proposition 5.2.4. Let C be a small category and let X ∈ sPsh(C ). Then the canonical map

hocolim(C ×∆ ↓ X)→ X

is a weak equivalence.

Proof. See [Dug1], Proposition 2.9.

Note now that, as remarked in the proof of Theorem 5.2.3, the functor sending A ∈ C to yA×∆[−] is
a cosimplicial resolution of the simplicial Yoneda embedding. Thus, we have a natural weak equivalence
Γ
∼

=⇒ cc∗y. Considering the functor

U : (C ×∆ ↓ X) −→ sPsh(C ), ((A, [n]), yA×∆[n]→ X) 7→ yA,

such a weak equivalence of functors lifts to a natural weak equivalence V ∼
=⇒ U . Hence, for all simplicial

presheaves X ∈ sPsh(C ), we get a zig-zag of weak equivalences

hocolimU
∼← hocolimV

∼→ X

thanks to Proposition 5.2.4.

Remark 5.2.5. Keeping the parallelism with (5.4), we can write hocolimU as

hocolim((A,[n]), yA×∆[n]→X)∈(C×∆↓X) yA, (5.6)

so that we can rephrase the above discussion by saying that every simplicial presheaf is (naturally weakly
equivalent to) a homotopy colimit of representables.
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Corollary 5.2.6. Let C be a small category and let M be a model category. Suppose that

L : sPsh(C ) −→M

is a homotopical functor which preserves homotopy colimits (see Remark 4.5.28). Then there is a Quillen
pair

sPsh(C ) M

Re

&&
sPsh(C ) M

gg
Sing

⊥

such that L is naturally weakly equivalent to a (hence to any) point-set left derived functor L(Re) of Re
(see Remark 4.1.33).

Proof. By Theorem 5.2.3, there are a Quillen pair Re: sPsh(C ) � M :Sing and a natural weak equiv-
alence η : Re ◦y ∼

=⇒ L ◦ y. Write now L(Re) = Re ◦ Q for a functorial cofibrant approximation Q in
sPsh(C ). By Proposition 5.6 and Remark 5.2.5, for each X ∈ sPsh(C ) there is a functor

U : I −→ sPsh(C )

from a small category I and landing into representable simplicial presheaves (i.e. into the (essential)
image of y : C −→ sPsh(C )) such that we have naturally weakly equivalent objects hocolimU ≈ X
(see Definition 4.1.10). Thus, η induces a weak equivalence hocolimi∈I ReU(i)

∼→ hocolimi∈I LU(i).
Therefore, we have the following chain of naturally weakly equivalent objects

LX ≈ L(hocolimi∈I U(i))
Hp
≈ hocolimi∈I LU(i)

∼← hocolimi∈I ReU(i)
∼← hocolimi∈I L(Re)(U(i))

(†)
≈

(†)
≈ L(Re)(hocolimi∈I U(i)) ≈ L(Re)(X),

where the two sides of (†) are naturally weakly equivalent by Proposition 4.5.27. This gives us what
required.
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5.3 Homotopical small presentation.

Given a small category C , Theorem 5.2.1 and Remark 5.2.2 say that we can think to the category
PSh(C ) of presheaves over C as (freely) generated by adjoining formal colimits of (diagrams of) objects in
C . Consequently, the process of forming, for a set S of maps of morphisms in PSh(C ), the subcategory
of S−local objects (in the sense of Definition 1.2.4) which is a localization of PSh(C ) (in the sense of
Definition 1.2.2) can be understood as adding relations (given by the elements of S) to the generators in
C . In Section 1.2 we showed that in this way we recover exactly (up to equivalences of categories) all the
locally presentable categories.

Theorem 5.2.3 and Remark 5.2.5 suggest that the homotopification of these results should start by
considering, for a small category C , the category sPsh(C ) of simplicial presheaves on C . Indeed, sPsh(C )
can be thought of as the model category generated by adding formal homotopy colimits of (diagrams of)
elements in C . We then give the following Definition, which can be interpreted as a formalization of the
idea of presenting a model category M by giving generators and relations.

Definition 5.3.1. Let M be a model category. A (homotopical) small presentation for M is a triple

(C , S, L: sPsh(C ) � M :U),

where C is a small category, S is a set of maps in sPsh(C ) and

sPsh(C ) M

L
&&

sPsh(C ) M
hh

U

⊥

is a Quillen pair such that:

1. the total left derived functor of L takes the images of maps of S in Ho(sPsh(C )) into isomorphisms
in M ;

2. the induced Quillen pair

sPsh(C )S M

L
&&

sPsh(C )S M
hh

U

⊥

is a Quillen equivalence (see Theorem 5.1.16 and Remark 5.1.22).

When such a homotopical small presentation for M exists, we will say that M admits (homotopical)
small presentation or that M has (homotopical) small presentation.

Remark 5.3.2. In Definition 5.3.1 above, we added the attribute “homotopical” to the concept of small
presentation for a model category M in order to discern that notion from the one given in Definition 1.2.5
for a general category D . However, in the following, when dealing with model categories we will only be
interested in homotopical small presentations, hence we will simply talk about small presentations for
model categories, always meaning homotopical small presentations.

Example 5.3.3. Consider the embedding of the simplicial category ∆ into the category Top of topo-
logical spaces sending a non-empty finite ordinal [n] to the n−standard simplex ∆n in Rn. By Theorem
5.2.3, there is an associated Quillen pair

sPsh(∆) Top

Re
''

sPsh(∆) Top
hh

Sing

⊥

Here sPsh(∆) is (identifiable with) the category of bisimplicial sets and Re is just the usual realization |X|
of a bisimplicial set X (see [Hir1], §15.11). Now, this Quillen pair is not a Quillen equivalence because the
representables ∆[n] need not to be contractible (whereas their realizations ∆n are such). However, it turns
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out that, if ∗ is the terminal object in sPsh(∆) and we set S := {∆[n] → ∗ : n ∈ N} ⊆ Mor(sPsh(∆)),
then the induced adjoint pair

sPsh(∆)S Top

Re
''

sPsh(∆)S Top
hh

Sing

⊥

is indeed a Quillen equivalence (see [Dug1], Example 5.6). Thus, Top admits small presentation. Of
course, there is also a much simpler small presentation for Top, given by the Quillen equivalence

sSet Top

|·|
%%

sSet Topdd

Sing

⊥

of Example 4.1.39. Note indeed that sSet ∼= sPsh(1) (where 1 is the terminal category) and, for any
model category M , M ∼= M∅.

The homotopical version of Theorem 1.2.6 is the main result of [Dug2]. We state it here together with
an important Corollary.

Theorem 5.3.4 ([Dug2], Theorem 1.1). Every combinatorial model category (see Definition 4.2.10)
admits small presentation.

Corollary 5.3.5. Let M be a model category and suppose that M is Quillen equivalent to a category
N admitting small presentation (see Definition 4.1.38). Then M admits small presentation as well.

Proof. This follows from Corollary 6.5 of [Dug1], since, for all small categories C and for any set S of
maps in sPsh(C ), the Bousfield localization sPsh(C )S is a combinatorial model category (see Theorem
5.1.20).

We shall not give a proof of Theorem 5.3.4 here. However, we will explicitely show how to get a version
of it for simplicial combinatorial model categories, imitating the flow of thoughts described in [Dug2].
First of all, we need the following variation of Definition 5.3.1. Recall that, given a small simplicial
category C (see Definition 4.2.23), the simplicial category sPsh(C) := [Cop, sSet] of simplicial functors
from Cop to sSet endowed with the projective model structure is a simplicial, combinatorial and left
proper model category (see Theorem 4.3.31), hence the Bousfield localization sPsh(C)S exists for every
small set S of maps in sPsh(C)S , by Theorem 5.1.20.

Definition 5.3.6. Let M be a model category. A small simplicial presentation for M is a triple

(C, S, L: sPsh(C) � M :U),

where C is a small simplicial category, S is a set of maps in sPsh(C) and

sPsh(C) M

L
&&

sPsh(C) M
hh

U

⊥

is a Quillen pair such that:

1. the total left derived functor of L takes the images of maps of S in Ho(sPsh(C)) into isomorphisms
in M ;

2. the induced Quillen pair

sPsh(C)S M

L
&&

sPsh(C)S M
hh

U

⊥

is a Quillen equivalence (see Theorem 5.1.16 and Remark 5.1.22).

When such a small simplicial presentation for M exists, we will say that M admits small simplicial
presentation or that M has small simplicial presentation.
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Using Dugger’s Theorem 5.3.4, we can show the following

Proposition 5.3.7. A model category M admits small presentation if and only if it admits small sim-
plicial presentation.

Proof. Every small ordinary category C can be seen as a simplicial category C̄ where the simplicial set
of morphism from X ∈ C to Y ∈ C is the set C (X,Y ) seen as a discrete simplicial set. Furthermore, in
this case, sPsh(C̄) ∼= sPsh(C ). We thus get that if M has small presentation, it has also small simplicial
presentation. The reverse implication follows because, given a small simplicial category C and a small
set S of morphisms in sPsh(C), sPsh(C)S is a combinatorial model category by Theorem 5.1.20, hence
we can use Theorem 5.3.4 to get a small presentation for sPsh(C)S .

The result we would like to prove is the following

Theorem 5.3.8. Let M be a simplicial combinatorial model category. Then M has a small simplicial
presentation

sPsh(C) M

L

%%
sPsh(C) M

gg
U

⊥

in which L and U are simplicial functors and C is a small, full and simplicial subcategory of M consisting
of fibrant and cofibrant objects. Furthermore, the simplicial Yoneda embedding

y : C −→ sPsh(C)

factors through the subcategory of S-local objects in sPsh(C).

Here the simplicial Yoneda embedding is the fully faithful simplicial functor

y : C −→ sPsh(C), A 7→ MapC(−, A)

Note that, when C is an ordinary small category seen as a discrete simplicial category, y : C −→ sPsh(C)
is just the discrete simplicial Yoneda embedding y : C −→ sPsh(C ) discussed in Section 5.2 above.

Before we start delving into the proof of Theorem 5.3.8, we need to recall some facts about Enriched
Category Theory. Essentially, what we want is the simplicial version of Theorem 5.2.1 saying that sPsh(C)
is the free simplicial cocompletion (i.e. the free cocompletion under simplicial weighted colimits) of a small
simplicial category C.

Theorem 5.3.9. Let C be a small simplicial category and let D be a cocomplete simplicial category, i.e. a
simplicial category admitting all small weighted colimits (see [Kel], Chapter 3). Then, for every simplicial
functor γ : C −→ D, there is a unique simplicial functor (up to isomorphisms of simplicial functors)

Lγ : sPsh(C) −→ D

such that the following diagram commutes up to an invertible simplicial natural transformation Lγ ◦y
∼=

=⇒
γ:

C sPsh(C)
y //C

D

γ

��

sPsh(C)

D

Lγ

��

Furthermore, the functor Lγ can be taken as the simplicial left Kan extension Lany γ of γ along y and
thus has a simplicial right adjoint

MapD(γ(−), ?) : D −→ sPsh(C), A 7→ (MapD(γ(−), A) : Cop −→ sSet).

Proof. See [Kel], Theorem 4.51 (and, more generally, Chapter 4).
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Remark 5.3.10. The cocompleteness condition on the simplicial category D in Theorem 5.3.9 above is
the (simplicially) enriched analogue of the usual cocompleteness for ordinary categories and, in general,
it is a stronger requirement than the simple cocompleteness of the underlying category D of D. However,
if D is a tensored and cotensored simplicial category (see Definition 4.2.29) whose underlying category
is cocomplete, then D admits all weighted colimits and thus it is cocomplete as a simplicial category (see
[Kel], §3.10). In particular, every simplicial model category M is a cocomplete simplicial category, so that
it satisfies the hypothesis of Theorem 5.3.9.

Lemma 5.3.11. Let C be a small simplicial category and let M be a simplicial model category. Suppose
given a simplicial functor γ : C −→ M such that, for all A ∈ C, γ(A) is a cofibrant object in M. Then
the simplicial adjunction

sPsh(C) M

Lany(γ)

%%
sPsh(C) M

gg
MapM(γ(−),?)

⊥

of Theorem 5.3.9 is a Quillen pair.

Proof. Given a fibration X � Y in M, the morphism

MapM(γ(−), X)→ MapM(γ(−), Y )

is a fibration in sPsh(C) with the projective model structure. Indeed, for every A ∈ C, the map
MapM(γ(A), X) → MapM(γ(A), Y ) is a fibration of simplicial sets, as γ(A) is cofibrant in the simpli-
cial model category M (see Remark 4.2.35). For the same reasons, the right adjoint MapM(γ(−), ?) also
preserves trivial fibrations, as required.

We also need the following technical result about combinatorial model categories from [Dug2]

Lemma 5.3.12. Let M be a combinatorial model category with sets of generating cofibrations and trivial
cofibrations given by I and J respectively (see Definition 4.2.7 and Definition 4.2.10). Let also λ be a
regular cardinal such that the underlying category of M is λ-locally presentable (see Definition 1.2.9).
Then there exists a cardinal κ ≥ λ satisfying the following properties.

(i) The domains and the codomains of elements of I and J are κ-presentable (see Definition 1.2.9),
so that fibrations and trivial fibrations are preserved by κ-filtered colimits.

(ii) There exist cofibrant and fibrant replacement functors on M preserving κ-filtered colimits.

(iii) κ-filtered colimits of weak equivalences are weak equivalences, i.e. if D =⇒ D′ : I −→ M is
a natural weak equivalence between functors from a κ-filtered category I , then the induced map
colimD → colimD′ is a weak equivalence as well.

(iv) There exist functorial factorizations of maps X → Y in M as X
∼
� X̄ � Y and X � Ȳ

∼
� Y

such that, if X and Y are κ−presentable, then so are X̄ and Ȳ as well.

Proof. Since I and J are sets and every object in a locally presentable category is presentable (see
Remark 1.2.10), there is certainly a cardinal λ1 ≥ λ such that property (i) holds (recall that if an object
is µ−presentable, it is also µ′-presentable for any (regular) cardinal µ′ ≥ µ). By [Dug2], Proposition 2.3
there are cardinals λ2, λ3 and λ4 verifying properties (ii), (iii) and (iv) respectively. Taking κ as the
maximum among these λj ’s, we get the thesis.

Remark 5.3.13. Let M be a combinatorial model category and let κ be a cardinal as in Lemma 5.3.12.

1. Since κ ≥ λ and M is λ−presentable, it is also κ-presentable, so that we can write every object in
M as a κ-filtered colimit of κ-presentable objects.

2. By (iii) of Lemma 5.3.12 we get in particular that, when I is a small κ−filtered category,

colimI : M I −→M

is a homotopy colimit functor of shape I on M (see Definition 4.5.23) because it is a homotopical
functor (see Remark 4.5.6).

128



3. A κ-filtered colimit of fibrant objects in M is again fibrant. Indeed, if F : I −→M is a functor from
a κ-filtered category I into the subcategory of fibrant objects in M , the map colimi∈I F (i) → ∗
into the terminal object of M is a fibration if and only if it has the right lifting property with
respect to every generating trivial cofibration (see Definition 4.2.7). But this last fact follows now
easily because the domains and the codomains of generating trivial cofibrations are κ-presentable,
so that each map dom(f)→ colimi∈I F (i), for f a generating trivial cofibration, factors as

dom(f)→ F (i0)→ colimi∈I F (i)

for some i0 ∈ I and the map F (i0)→ ∗ is a fibration by hypothesis.

4. If X is a κ-presentable object in M , there is a cosimplicial resolution X̃ ∼→ cc∗X of X such that,
for all n ∈ N, X̃n is κ-presentable. This is proven in [Dug2], Lemma 6.3.

5. Let X be a κ-presentable object in M and let F : I −→M be a functor from a κ-filtered category
I and such that F (i) is a fibrant object in M , for every object i ∈ I . Take then a cosimplicial
resolution X̃ of X such that, for every n ∈ N, X̃n is a κ-presentable object in M . Then, the
canonical map

colimi∈I M (X̃, F (i))→M (X̃, colimi∈I F (i))

is an isomorphism because it is pointwise such (recall that, for A ∈ M and n ∈ N, M (X̃, A)n :=

M (X̃n, A)). Now, since colimI is a homotopy colimit and M (X̃, A) is a homotopy function complex
maph(X,A) (see Definition 4.4.15) for any fibrant objectA, we then get that hocolimI maph(X,F (i))
and maph(X,hocolimi∈I F (i)) are naturally weakly equivalent (observe that, by 3. above, the ob-
ject colimi∈I F (i) is fibrant in M ). All in all, we have obtained that, for any k−presentable object
X and any functor F : I −→M ,

maph(X,hocolimi∈I F (i)) ≈ hocolimI maph(X,F (i)).

The last ingredient we need is the following

Proposition 5.3.14 ([Dug2], Proposition 3.2). Let M and N be combinatorial model categories with
M left proper and let F : M −→ N be a left Quillen functor with right adjoint G. Assume that, for
any fibrant object X ∈ M , the canonical map LF (G(X)) → X is a weak equivalence, where LF is any
point-set left derived functor of F (see Remark 4.1.33). Then there exists a set S of maps in M such
that LF sends elements of S into weak equivalences in N . Moreover, the induced left Quillen functor
F : MS −→ N is (part of) a Quillen equivalence.

We can finally give the announced

Proof. (Of Theorem 5.3.8). Let κ be a cardinal as in Lemma 5.3.12 and we can safely assume that the
initial and the terminal objects in M are κ-presentable as well. LetMκ be the full subcategory generated
by any set of representatives of isomorphism classes of κ-presentable objects in M (see Remark 1.2.10
and also Chapter 2 of [Dug2]). We take C to be the small full simplicial subcategory of M spanned by
the fibrant-cofibrant objects inMκ, so that MapC(A,B) = MapM(A,B), for objects A,B ∈ C. Let also
ι : C −→M be the (simplicial) inclusion functor. By Theorem 5.3.9, we get a simplicial adjunction

sPsh(C) M

L

&&
sPsh(C) M

hh
U

⊥

where L = Lany(ι) and U = MapM(ι(−), ?) and Lemma 5.3.11 says that (L,U) is actually a Quillen
pair. By Theorem 4.3.2 and Proposition 5.3.14, to get that (L,U) extends to a Quillen equivalence from
sPsh(C)S for some small set S of maps in sPsh(C), it is enough to prove that, for all fibrant objects
X ∈M, the natural map

(LL)(U(X))→ X

is a weak equivalence (see Remark 4.1.35, noticing that we can avoid taking the (point-set) right derived
functor of U , as X is fibrant to start with). Since (the underlying category of) M is locally presentable
and by our choice of κ, we can write X ∼= colimj∈J Wj for a functor W : J −→ M from a κ-filtered
category J and landing into κ-presentable objects (see Remark 5.3.13). We claim that, up to weak
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equivalences, we can actually assume that each Wj is a fibrant-cofibrant κ-presentable object in M. This
is because, by (iv) of Lemma 5.3.12 and since ∅ and ∗ are κ-presentable, there are functorial cofibrant
and fibrant approximations Q,R : M −→M respectively such that, if A is a κ-presentable, then QA and
RA are κ-presentable as well. Furthermore, if B ∈M is a cofibrant (resp. fibrant), then RB (resp. QB)
is fibrant-cofibrant. Hence, since colimj∈J is a homotopical functor (see again Remark 5.3.13), we get
natural weak equivalences

colimj∈J RQWj
∼←− colimj∈J QWj

∼−→ colimj∈J Wj
∼= X

and colimj∈J RQWj is a fibrant object as it is a κ-filtered colimit of fibrant objects. Now, if RU = U ◦R′
is a point-set right derived functor of U (so that R′ is a functorial fibrant approximation on M ), we get
the following commutative diagram in M

LL(RU(colimj∈J RQWj)) LL(RU(colimj∈J QWj))oo ∼ LL(RU(colimj∈J QWj)) LL(RU(X))
∼ //

R′(colimj∈J RQWj) R′(colimj∈J QWj)oo ∼
R′(colimj∈J QWj) R′(X)

∼ //

LL(RU(colimj∈J RQWj))

R′(colimj∈J RQWj)
��

LL(RU(colimj∈J QWj))

R′(colimj∈J QWj)
��

LL(RU(X))

R′(X)
��

It follows that the rightmost vertical map is a weak equivalence if and only if the leftmost vertical map is
a weak equivalence. But, since both colimj∈J (RQWj) and X are fibrant to start with, those two vertical
arrows are naturally weakly equivalent to the canonical maps

LL(U(colimj∈J (RQWj))→ colimj∈J RQWj and LL(U(X))→ X

respectively. We then see that LL(U(colimj∈J RQWj)) → colimj∈J (RQWj) is a weak equivalence if
and only if LL(U(X))→ X is so.

Thus, we conclude that, up to relabelling colimj∈J (RQWj) as X, we have come down to the case
X ∼= colimj∈J Wj , where eachWj is κ-presentable and fibrant-cofibrant. Now, there is a weak equivalence

colimj∈J UWj → U(colimj∈J Wj) ∼= UX

in sPsh(C). Indeed, for every object A in C, the A−th component of the above map is given as

colim(UWj)(A) = colimj∈J MapM(A,Wj)→ MapM(A, colimj∈J Wj) ∼= (UX)(A) (5.7)

by definition of U and of the enriching Hom-simplicial sets in C. This latter map is a weak equivalence
by Remark 5.3.13 5. because colimj∈J is a homotopical functor and MapM(A,Wj), MapM(A,X) are
homotopy function complexes maph(A,W (j)), maph(A,X) respectively, as A is cofibrant and W (j), X
are fibrant in the simplicial model category M (see Example 4.4.16). Since κ-filtered colimits in sSet are
homotopy colimits7, we then get a composite weak equivalence

hocolimj∈J UWj
∼→ colimj∈J UWj

∼→ UX

where the first map is a weak equivalence because it is pointwise such. Since left derived functors of left
Quillen functors commute with homotopy colimits, our map (LL)(U(X))→ X is then weakly equivalent
to the map

hocolimj∈J (LL)(UWj)→ colimj∈J (LL)(UWj)→ X

Finally, since L(UWj) ∼= Wj (because UW (j) is representable, see [Kel], Proposition 4.23), and both
hocolimj∈J , colimj∈J preserves weak equivalences, hocolimj∈J (LL)(UWj) and colimj∈J (LL)(UWj)
are naturally weakly equivalent to hocolimj∈J Wj and colimj∈J Wj respectively. Hence, the map

hocolimj∈J (LL)(UWj)→ colimj∈J (LL)(UWj)→ X

is weakly equivalent to
hocolimj∈J Wj → colimj∈J Wj → X

7 Up to using Lemma 5.3.12 for the locally finitely presentable category sSet and redefining the cardinal κ so that it
satisfies also this property, together with the other ones we need.
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which is a weak equivalence as it is the composite of weak equivalences. Hence, as already remarked, by
Proposition 5.3.14, we get that there is a set S of maps in sPsh(C) such that (L,U) passes to a Quillen
equivalence

sPsh(C)S M

L

&&
sPsh(C)S M

hh
U

⊥

so that we get our small simplicial presentation for M. To conclude that y : C −→ sPsh(C) factors
through the S−local objects, just note that each B ∈ C is a fibrant object in M (by our choice of C),
so UB = MapM(ι(−), B) = MapC(−, B) = yB is a fibrant object in sPsh(C)S because U is a right
Quillen functor not only into sPsh(C) but also into sPsh(C)S . By Theorem 5.1.20, this means that each
UB = yB is an S−local object in sPsh(C), as required.

Remark 5.3.15. Since, for a small ordinary category I and for any small set T of morphisms in
sPsh(I ), the category sPsh(I )T is a simplicial combinatorial model category, we can apply Theorem
5.3.8 to get a small simplicial presentation for sPsh(I )T in the form sPsh(C)S , where C is a small
simplicial category which is not discrete in general (compare with the proof of Proposition 5.3.7). This
is because C can be chosen as a full simplicial subcategory of sPsh(I )S and, for F,G ∈ sPsh(I )S ,
MapsPsh(I )S (F,G) = MapsPsh(I )(F,G) is not a discrete simplicial set in general (see Remark 4.2.31 for
the simplicial structure on simplicial presheaves).
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Chapter 6

Giraud’s Theorem for model topoi.

Inevitabilmente, noi ci costruiamo. Mi spiego.
Io entro qua, e divento subito, di fronte a lei,
quello che devo essere, quello che posso essere
- mi costruisco - cioè, me le presento in una
forma adatta alla relazione che debbo con-
trarre con lei. E lo stesso fa di sé anche lei
che mi riceve.

Luigi Pirandello, Il piacere dell’onestà.

We have finally come to the core of our work. We give here the definition of a model topos and
formulate a Giraud-type theorem for such model topoi. We can accomplish this task exactly as in the
ordinary categorical framework by introducing the descent properties for model categories (see Section
6.1). These properties are verified in model topoi and are actually sufficient to characterise them among
categories with small simplicial presentation (see Section 6.2). The reader may want to go back to Chap-
ter 2 from time to time in order to compare the results in ordinary Category Theory exposed there with
their model-categorical counterparts explained below. We conclude our work with Section 6.3. where,
using Giraud’s Theorem, we give a brief (and somehow sketchy) account of one of the main and most
interesting examples of model topoi which can be constructed out of a Grothendieck site (C , τ) (see
Definition 3.1.9). Indeed, given a small category C and a Grothendieck (pre)topology τ on it, one can
define a model category structure on sPsh(C ) which, unlike the projective and the injective model struc-
tures, takes into account the added structure given by τ . We will call this model structure the Jardine
model structure on sPsh(C ) (associated to (C , τ)) and we will denote the associated model category by
sPsh(C )Jar. Its fibrant objects will be homotopy sheaves (on the Grothendieck site (C , τ), i.e. simplicial
presheaves satisfying a homotopical version of the classical sheaf conditions in presence of a Grothendieck
(pre)topology (see (3.9)). In this way, we somehow complete our homotopified picture of classical sheaf
theory: as Grothendieck topoi are categories admitting a left exact small presentations and coincide with
categories of sheaves on a Grothendieck site, so model topoi are model categories admitting a (homotopi-
cally) left exact small (simplicial) presentation and include model categories which present the homotopy
theory of homotopy sheaves on a Grothendieck site.

This last chapter is probably the one where our gaps-filling work with respect to [Rzk1] is more
accentuated. In comparison with Section 6 of [Rzk1], we give here a slightly different formulation of the
descent properties for a model category and point out how the notions of model topos and of descent
are invariant under Quillen equivalences. Using another work by Rezk ([Rzk2]), we also show explicitly
how to conclude that every model topos has descent (cf. [Rzk1], Proposition 6.6). Our proof of Giraud’s
Theorem for model topoi (see Theorem 6.2.2 below) follows closely the sketch given in [Rzk1] but tries
to work out the needed details. Our Section 6.3 below explains Example 6.3 of [Rzk1]. Although a proof
of the fact that the Jardine model structure on simplicial presheaves gives rise to a model topos may
possibily be found in [ToVe], our use of Giraud’s theorem to show that this is indeed the case is somewhat
original, at least to the best of our knowledge.
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6.1 Descent for model categories.

Definition 6.1.1. Let M be a model category and let S be a class of maps in M . Assume that the left
Bousfield localization MS of M with respect to S exists and consider the associated Quillen pair

M MS

a
''

M MSff

i

⊥

(see Definition 5.1.13, Remark 5.1.14 and Remark 5.1.22). We say that MS is a (homotopical) left exact
localization (of M with respect to S) if the (point-set) left derived functor La of a preserves homotopy
pullback squares (see Definition 4.5.36). This means that, if

C D//

A

C
��

A B// B

D
��

is a homotopy pullback square in M , then

La(C) La(D)//

La(A)

La(C)
��

La(A) La(B)// La(B)

La(D)
��

is a homotopy pullback square in MS .

Remark 6.1.2. As usual, we will drop the attribute homotopical from now on and just talk about left
exact localizations of model categories M . In fact, recall that in the adjunction a a i of Definition 6.1.1,
both a and i are the identity functors on M (see Remark 5.1.14), so the only non-trivial kind of left
exactness we can require to a is the homotopical one.

We are now ready to give the central definition of our work (compare with Definition 1.1.3).

Definition 6.1.3. 1. A model site is a pair (C, S), where C is a small simplicial category and S is a
set of maps in sPsh(C) such that the localization sPsh(C)S is left exact.

2. A model topos is a model category M which is Quillen equivalent (see Definition 4.1.38) to a left
exact localization sPsh(C)S for some model site (C, S).

Remark 6.1.4. Let M be a model topos. From Definition 6.1.3 above we get that

(i) M has small simplicial presentation (see also Corollary 5.3.5 and Proposition 5.3.7);

(ii) if N is a model category which is Quillen equivalent to M (see Definition 4.1.38), then N is a
model topos as well.

Example 6.1.5. The most basic example of model topos is of course given by the category sSet of
simplicial sets (with the Kan-Quillen model structure of Example 4.1.19) and, more generally, by sPsh(C)
for any small simplicial category C.

Example 6.1.6. Since Top with the Quillen model structure is Quillen equivalent to sSet (see Examples
4.1.18 and 4.1.39), Remark 6.1.4 says that Top is a model topos as well. However, it may be worth
pointing out that, unlike sSet, Top is not a Grothendieck topos. (Here by Top we mean, say, the
category of compactly generated and Hausdorff topological spaces).

Definition 6.1.7. Let M be a model category and let J be a small category. Suppose given a natural
transformation τ : X =⇒ Y between functors X,Y : J −→ M . We say that τ is (homotopically)
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equifibered if, for every arrow j → k in J , the commutative square

X(k) Y (k)
τk
//

X(j)

X(k)
��

X(j) Y (j)
τj // Y (j)

Y (k)
��

is a homotopy pullback square in M .

With the concept of homotopically equifibered natural transformations at hand, we can give the
following, fundamental

Definition 6.1.8 (cf. [Rzk1], §6.5). Let M be a model category. We say that M has (or satisfies)
descent if the following properties hold in M .

(P1) Let Y → Z be a map in M . Suppose given a functor

K : I −→ Arr(M )/(Y → Z),

where I is a small category, Arr(M ) is the category of arrows in M and Arr(M )/(Y → Z) is the
category of objects in Arr(M ) over (Y → Z) ∈ Arr(M ). Write, for each i ∈ I ,

K(i) =


Zi Z//

Pi

Zi
��

Pi Y// Y

Z
��

 (6.1)

and assume that, for every i ∈ I , the commutative square (6.1) is a homotopy pullback square.
Then the induced commutative square

hocolimi∈I Zi Z//

hocolimi∈I Pi

hocolimi∈I Zi
��

hocolimi∈I Pi Y// Y

Z
��

(6.2)

is a homotopy pullback square. Here the maps hocolimi∈I Pi → Y and hocolimi∈I Zi → Z
are given as the composite maps hocolimi∈I Pi → colimi∈I P (i) → Y and hocolimi∈I Zi →
colimi∈I Z(i)→ Z respectively.

(P2) Let Y → Z be a map in M and suppose given a functor

K : I −→ Arr(M )/(Y → Z),

for a small category I . Writing, for each i ∈ I , K(i) as in (6.1) above, we get functors

P : I −→M , i 7→ Pi and Z• : I −→M , i 7→ Zi

and a natural transformation τ : P =⇒ Z•. Assume that τ is homotopically equifibered and that
the canonical maps hocolimi∈I Pi → Y , hocolimi∈I Zi → Z are weak equivalences. Then, for
every i ∈ I , the square (6.1) is a homotopy pullback square.

Remark 6.1.9. With a slight abuse of language, we will usually refer to the datum of the functor K
appearing in Definition 6.1.8 by saying that we are given functorial commutative squares (or functorial
homotopy pullback squares) in M

Zi Z//

Pi

Zi
��

Pi Y// Y

Z
��

indexed by a small category I .
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There are some observations about properties (P1) and (P2) in the definition of descent that may
be worth pointing out. The reader should keep in mind Proposition 2.1.14 and Remark 2.1.15 for a
comparison with the categorical notion of weak descent.

Remark 6.1.10. The notion of descent does not depend upon the specific choices of the homotopy colimit
functors involved. This means that, for a fixed small category I , a model category M satisfies (P1) and
(P2) of Definition 6.1.8 with respect to one fixed homotopy colimit functor hocolimi∈I : M I −→ M
if and only if it satisfies those properties for any such homotopy colimit functor. The reason is that
the maps hocolimi∈I Pi → Y and hocolimi∈I Zi → Z considered in (P1) and in (P2) factors (by their
own definitions) through the colimits colimi∈I Pi and colimi∈I Zi respectively and every two homotopy
colimit functors of shape I are weakly equivalent as functors over colimi∈I (see Remark 4.5.25). This
implies, for example, that, in the situation of (P1), if hocolimi∈I and hocolim1

i∈I are two homotopy
colimit functors of shape I , then (6.2) is a homotopy pullback square if and only if the same square
where hocolimi∈I is substituted with hocolim1

i∈I is a homotopy pullback square as well, because those
two squares are weakly equivalent.

Remark 6.1.11. Property (P1) of descent implies what follows. Let M be a model categories where
(P1) holds. Suppose we are given functorial cospans

Xi Z//

Y

Z
��

in M indexed by the small category I . Then hocolimi∈I (Xi ×hZ Y ) ≈ (hocolimi∈I Xi) ×hZ Y (see
Definition 4.1.10). Indeed, if R is a right deformation retract for the pullback functor, we have functorial
homotopy pullback squares

RXi RZ//

Xi ×hZ Y = RXi ×RZ RY

RXi

��

Xi ×hZ Y = RXi ×RZ RY RY// RY

RZ
��

where RXi → RZ ← RY := R(Xi → Z ← Y ). We thus get the zig-zag of weak equivalences

hocolimi∈I (Xi ×hZ Y )
∼→ (hocolimi∈I RXi)×hRZ RY

∼← (hocolimi∈I Xi)×hZ Y (6.3)

where the right-pointing arrow is a weak equivalence by (P1), whereas the left-pointing arrow is a weak
equivalence because the homotopy pullback is a homotopical functor.

Remark 6.1.12. Property (P2) of descent has the following consequence. Let M be a model category
satisfying (P2) and suppose given a homotopically equifibered natural transformation τ : Y =⇒ X be-
tween functors X,Y : I −→M , for a small category I . Write hocolimi∈I = colim ◦ QI , where QI is
a left (colimi∈I )-deformation. Then, for each i ∈ I , the commutative square

QIX(i) hocolimi∈I Xi
//

QI Y (i)

QIX(i)

QI τi

��

QI Y (i) hocolimi∈I Yi// hocolimi∈I Yi

hocolimi∈I Xi

hocolimi∈I τi

��

(6.4)

is a homotopy pullback square. Indeed, QI τ is clearly homotopically equifibered because, for every arrow
j → k in I , we have a commutative cube in M

Y (k) X(k)//

Y (j)

Y (k)
��

Y (j) X(j)// X(j)

X(k)
��

QI Y (k) QIX(k)//

QI Y (j)

QI Y (k)
��

QI Y (j) QIX(j)// QIX(j)

QIX(k)
��

X(j)

QIX(j)

�� ∼
Y (j)

QI Y (j)

�� ∼

Y (k)

QI Y (k)

�� ∼
X(k)

QIX(k)

�� ∼
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and the front face is a homotopy pullback square by hypothesis. Thus the fact that (6.4) is a homotopy
pullback square is just a specific instance of (P2).

We stressed in Remark 6.1.10 that our formulation of descent does not depend upon the chosen models
for homotopy colimits in a model category M . However, what we actually want is a notion of descent
which does not depend upon the chosen model for the homotopy theory presented by M . In other words,
we want descent to be invariant under Quillen equivalences. Before proving that this is actually the case,
we need the following result from general model category theory.

Lemma 6.1.13. Let

M N

F
%%

M Ncc

G

⊥

be a Quillen pair between model categories M and N . Then the following hold.

(i) Any point-set right derived functor RG of G (see Remark 4.1.33) preserves homotopy pullback
squares.

(ii) If (F,G) is a Quillen equivalence, then any point-set left derived functor LF of F preserves homotopy
pullback squares as well.

Proof. Write RG = G ◦ R, where R is a functorial fibrant approximation in N . We consider the right
deformation for the pullback functor on N which sends a cospan X → Y ← Z in N to the cospan
R′X � R′Y � R′Z that is obtained by considering RX → RY ← RZ and functorially factoring the two
maps RX → RY and RZ → RY as a weak equivalence followed by a fibration (see Proposition 4.5.33).
Note that R′X, R′Z and R′Y are all fibrant objects.

(i) Suppose given a homotopy pullback square

X Z//

Y

Z
��

P

X
��

P Y//

in N . Applying R to vertices and arrows of this square we thus get another homotopy pullback
square, so that we have a weak equivalence RP ∼→ R′(RX)×R′(RZ)R

′(RY ) = RX×hRZRY . Since G
is a right adjoint and preserves weak equivalences between fibrant objects, we get a weak equivalence

GRP
∼→ G(R′(RX)×R′(RZ) R

′(RY )) ∼= GR′(RX)×GR′(RZ) GR
′(RY )

As G is a right Quillen functor, the pullback on the right hand side is the limit of a cospan made
of fibrations between fibrant object, so that

GR′(RX) GR′(RZ)//

GR′(RX)×GR′(RZ) GR
′(RY )

GR′(RX)
��

GR′(RX)×GR′(RZ) GR
′(RY ) GR′(RY )// GR′(RY )

GR′(RZ)
��

is a homotopy pullback square, i.e. GR′(RX)×GR′(RZ) GR
′(RY )→ GR′(RX)×hGR′(RZ) GR

′(RY )
is a weak equivalence. Since the homotopy pullback is a homotopical functor, we also have a
weak equivalence GRX ×hGRZ GRY

∼→ GR′(RX)×hGR′(RZ) GR
′(RY ). Therefore, the commutative

triangle
GRP GRX ×hGRZ GRY//GRP

GR′(RX)×hGR′(RZ) GR
′(RY )

∼

&&

GRX ×hGRZ GRY

GR′(RX)×hGR′(RZ) GR
′(RY )

∼

��

and the two-out-of-three property for weak equivalence imply that RGP → RGX ×hRGZ RGY is a
weak equivalence, as required.
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(ii) Write LF as F ◦ Q for Q a functorial cofibrant replacement in M and consider any homotopy
pullback square

X Z//

Y

Z
��

P

X
��

P Y//

in M . We have the following commutative cube in N

RFQX RFQZ//

RFQP

RFQX
��

RFQP RFQY// RFQY

RFQZ
��

FQX FQZ//

FQP

FQX
��

FQP FQY// FQY

FQZ
��

RFQY

FQY

�� ∼
RFQP

FQP

�� ∼

RFQX

FQX

�� ∼
RFQZ

FQZ

�� ∼

so that the front square is a homotopy pullback square in N if and only if the back square is such.
Hence we need to show that h : RFQP → RFQX×hRFQZRFQY is a weak equivalence in N . Now,
RFQX ×hRFQZ RFQY = R′RFQX ×R′RFQZ R′RFQY , so we get a map

Gh : GRFQP → G(R′RFQX ×R′RFQZ R′RFQY ) ∼= GR′RFQX ×GR′RFQZ GR′RFQY

As in part (i) above, there are weak equivalences

GR′RFQX ×GR′RFQZ GR′RFQY
∼→ GR′RFQX ×hGR′RFQZ GR′RFQY

and
RGLFX ×hRGLFZ RGLFY ∼→ GR′RFQX ×hGR′RFQZ GR′RFQY

and they are such that Gh is a weak equivalence if and only if the map

RGLFP → RGLFX ×hRGLFZ RGLFY

is a weak equivalence. Consider now the following commutative square in M

RGLFP RGLFX ×hRGLFZ RGLFY//

QP

RGLFP
��

QP QX ×hQZ QY// QX ×hQZ QY

RGLFX ×hRGLFZ RGLFY
��

The left vertical arrow is a weak equivalence because QP is cofibrant and (F,G) is a Quillen
equivalence (see Proposition 4.1.37). The same reason, together with the fact that the homotopy
pullback is a homotopical functor, gives that the right vertical arrow is a weak equivalence. Finally,
since P → X ×hZ Y is a weak equivalence by hypothesis, so is QP → QX ×hQZ QY . Therefore, we
get that RGLFP → RGLFX×hRGLFZRGLFY is also a weak equivalence. By the above discussion,
this implies that Gh is a weak equivalence as well. But h is a map between fibrant objects in N and
then, since G is the right adjoint in a Quillen equivalence, the fact that Gh is a weak equivalence
allows us to conclude that also h is a weak equivalence.1

Proposition 6.1.14. Let

M N

F
%%

M Ncc

G

⊥

be a Quillen equivalence between model categories M and N . Then M has descent if and only if N has
descent.

1 The right adjoint G : N −→ M in a Quillen equivalence reflects weak equivalences between fibrant objects, i.e. if
h : A→ B is an arrow between fibrant objects such that Gh is a weak equivalence, then so is h. See [Hov], Corollary 1.3.16.
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Proof. We will only show that if M has descent then so has N , the other implication is similar. Write
LF = F ◦Q and RG = G ◦R where Q and R denotes, as usual, a functorial cofibrant approximation in
M and a functorial fibrant approximation in N respectively.

(P1) Suppose given a functorial homotopy pullback square in N

Zi Z//

Pi

Zi
��

Pi Y// Y

Z
��

indexed by the small category I (see Remark 6.1.9).We need to show that

h : hocolimN
i∈I Pi →

(
hocolimN

i∈I Zi

)
×hZ Y

is a weak equivalence in N . By Lemma 6.1.13, we get functorial homotopy pullback squares in M
given by

RGZi RGZ//

RGPi

RGZi
��

RGPi RGY// RGY

RGZ
��

Since M has (P1), we obtain a weak equivalence

hocolimM
i∈I RGPi

∼→
(

hocolimM
i∈I RGZi

)
×hRGZ RGY

Applying LF to such a map we find a weak equivalence

k : LF
(

hocolimM
i∈I RGPi

)
∼→ LF

((
hocolimM

i∈I RGZi
)
×hRGZ RGY

)
in N . But now this morphism is naturally weakly equivalent to our h, which is then a weak
equivalence itself2. For the domain of k this is because LF commutes with homotopy colimits (see
Proposition 4.5.27 and Remark 4.5.28) and because there is a natural weak equivalence LFRGPi

∼→
RPi, for each i ∈ I , since (F,G) is a Quillen equivalence (see Proposition 4.1.37). For the codomain
of k, using again commutativity with homotopy colimits of LF as well as the properties of Quillen
equivalences, we get instead

LF
((

hocolimM
i∈I RGZi

)
×hRGZ RGY

) (†)
≈
(
LF (hocolimM

i∈I RGZi)
)
×hLFRGZ LFRGY ≈

≈
(

hocolimN
i∈I LFRGZi

)
×hLFRGZ LFRGY ≈

(
hocolimN

i∈I Zi

)
×hZ Y

(see Definition 4.1.10), where (†) follows because LF preserves homotopy pullback squares.

(P2) Suppose given functorial commutative squares in N

D(i) :=


Zi Z//

Pi

Zi
��

Pi Y// Y

Z
��


indexed by a small category I and satisfying the hypotheses of property (P2) as in Definition 6.1.8.
Considering the functorial commutative squares

RGD(i) :=


RGZi RGZ//

RGPi

RGZi
��

RGPi RGY// RGY

RGZ
��


2 This works under the assumption that the relevant square in the homotopy category commutes. Even if we could not

verify it fully, we expect this to be true because all the weak equivalences involved are built as canonical maps, whereas the
zig-zags of weak equivalences we consider are essentially unique.
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in M , we get that RGP =⇒ RGZ• is equifibered. (Here Z• denotes the functor i→ Zi from I to
M ). This is because P =⇒ Z• is equifibered by hypothesis and RG preserves equifibered natural
transformations, as it preserves homotopy pullback squares. Furthermore, since hocolimN Pi → Y
is a weak equivalence in N , we have

hocolimM
i∈I RGPi ≈ RG

(
hocolimN Pi

)
∼→ RGY

(see Proposition 4.5.29), so that3 hocolimM
i∈I RGPi

∼→ RGY and analogously hocolimM
i∈I RGZi

∼→
RGZ. By (P2) in N , for every i ∈ I , RGD(i) is thus a homotopy pullback square. But now, in
the following commutative cube in N

RZi RZ//

RPi

RZi
��

RPi RY// RY

RZ
��

LFRGZi LFRGZ//

LFRGPi

LFRGZi
��

LFRGPi LFRGY// LFRGY

LFRGZ
��

RY

LFRGY

�� ∼

RPi

LFRGPi

�� ∼

RZi

LFRGZi

�� ∼

RZ

LFRGZ

�� ∼

the back square is a homotopy pullback square by Lemma 6.1.13 and the diagonal arrows are weak
equivalences because (F,G) is a Quillen equivalence. Therefore, also the front square is a homotopy
pullback square, so that D(i) is such as well.

The rest of this section is devoted to show the following

Proposition 6.1.15. Every model topos has descent.

The proof of Proposition 6.1.15 is not completely straightforward and we will need some auxiliary
results from [Rzk2] for it. We are going to adopt the following strategy.

(S1) We show that sSet has descent.

(S2) We prove that, for a small simplicial category C, sPsh(C) has descent.

(S3) We verify that, if M is a model category with descent, then every left exact localization MS of M
also has descent.

Having (S1)· · · (S3) at hand, we can conclude that Proposition 6.1.15 holds because having descent
for a model category is invariant under Quillen equivalences (see Proposition 6.1.14).

We then proceed to validate (S1)· · · (S3) separately.

(S1) We start by introducing a notion which makes sense in every model category M .

Definition 6.1.16. Let M be a model category and let I be a small category. A functor X : I −→M
is called a homotopy colimit diagram if the map

hocolimI X → colimI X

is a weak equivalence.

Note that the definition does not depend upon the choice of the homotopy colimit of shape I on M .
The concept of homotopy colimit diagram plays a central role in the following result, which we borrow
from [Rzk2].

3 See footnote 2.
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Theorem 6.1.17. Let τ : X =⇒ Y be a natural transformation between functors X,Y : I −→ sSet from
a small category I and assume that Y is a homotopy colimit diagram. Then the following statements
hold.

1. If, for any i ∈ I , the following square

Y (i) colimI Y//

X(i)

Y (i)

τi

��

X(i) colimI X// colimI X

colimI Y

colimI τ

��

(6.5)

is a homotopy pullback square, then X is a homotopy colimit diagram.

2. If X is a homotopy colimit diagram and τ is equifibered, then, for all i ∈ I , the square (6.5) is a
homotopy pullback square.

Proof. This is a particular instance of [Rzk2], Theorem 1.4 (see also Example 3.12 there).

We now show how Theorem 6.1.17 implies descent for simplicial sets.

As for (P1), let us consider functorial homotopy pullback squares in sSet indexed by a small category
I as in (6.2). Since sSet is a proper model category (see Remark 4.2.16), for every i ∈ I , a homotopy
pullback for the cospan Zi → Z

f← Y is given as the ordinary pullback Zi ×Z E(f) for a (functorial)
factorization

Y
∼→ E(f)

f ′

� Y

of f into a weak equivalence followed by a fibration (see Proposition 4.5.35). Thus, by the hypothesis
that Pi → Zi ×hZ Y is a weak equivalence, we get the following commutative square in sSet

hocolimi∈I (Zi ×Z E(f)) (hocolimi∈I Zi)×hZ E(f)//

hocolimi∈I Pi

hocolimi∈I (Zi ×Z E(f))

∼

��

hocolimi∈I Pi (hocolimi∈I Zi)×hZ Y// (hocolimi∈I Zi)×hZ Y

(hocolimi∈I Zi)×hZ E(f)

∼

��

where the vertical arrows are weak equivalences because the homotopy colimit is homotopical. Hence,
it is enough to show that the bottom horizontal map is a weak equivalence. Write hocolimi∈I =
colimi∈I ◦QI , whereQI is a left (colimi∈I )-deformation. Set Z̄ := colimi∈I (QIZ)(i) = hocolimi∈I Z(i)
and consider, for every i ∈ I , the following pullback square

D(i) :=


(QIZ•)(i) Z̄//

(QIZ•)(i)×Z E(f) ∼= (QIZ)(i)×Z̄ (Z̄ ×Z E(f))

(QIZ•)(i)
��

(QIZ•)(i)×Z E(f) ∼= (QIZ)(i)×Z̄ (Z̄ ×Z E(f)) Z̄ ×Z E(f)// Z̄ ×Z E(f)

Z̄
��


Note that the right vertical map is a fibration (it is the pullback along Z̄ → Z of the fibration f ′ : E(f) �
Z), so that D(i) is a homotopy pullback square (see Proposition 4.2.21 and Corollary 4.5.38). We also
have an isomorphism

colimi∈I

(
(QIZ•)(i)×Z E(f)

) ∼=→ Z̄ ×Z E(f)

because sSet is a Grothendieck topos, so it satisfies (categorical) weak descent (see Proposition 2.1.11,
Proposition 2.1.14 and Remark 2.1.15). Now, since QIZ• is a homotopy colimit diagram (there is a weak
equivalence hocolimi∈I (QIZ•)(i)

∼→ hocolimi∈I Z(i) and the right-hand side is the colimit of QIZ•),
Theorem 6.1.17, says that we have a weak equivalence

hocolimi∈I

(
(QIZ•)(i)×Z E(f)

) ∼→ colimi∈I

(
(QIZ•)(i)×Z E(f)

) ∼= Z̄ ×Z E(f)
def
=

= (hocolimi∈I Z(i))×Z E(F )
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Finally, the commutative diagram

hocolimi∈I

(
(QIZ•)(i)×Z E(f)

)
(hocolimi∈I Z(i))×Z E(F )

∼ // (hocolimi∈I Z(i))×Z E(F ) (hocolimi∈I Z(i))×hZ E(F )
∼ //hocolimi∈I

(
(QIZ•)(i)×Z E(f)

)

hocolimi∈I (Z(i)×Z E(F ))

∼

))
hocolimi∈I (Z(i)×Z E(F ))

(hocolimi∈I Z(i))×Z E(F )
OO

hocolimi∈I (Z(i)×Z E(F ))

(hocolimi∈I Z(i))×hZ E(F )
55

gives that our map hocolimi∈I (Z(i)×Z E(F ))→ (hocolimi∈I Z(i))×hZ E(F ) is a weak equivalence, as
required. Thus, sSet verifies (P1).

We now turn to prove that (P2) holds for sSet. Take then functorial commutative squares in sSet

K(i) :=


Zi Z//

Pi

Zi
��

Pi Y// Y

Z
��


indexed by a small category I as in the statement of (P2) in Definition 6.1.8, so that the induced
natural transformation τ : P =⇒ Z• is equifibered and we have weak equivalences hocolimi∈I Pi

∼→ Y ,
hocolimi∈I Zi

∼→ Z. Writing as above hocolimi∈I = colimi∈I ◦ QI , we then get that also QI τ is
equifibered. Hence, Theorem 6.1.17 gives that, for each i ∈ I , there is a homotopy pullback square

(QIZ•)(i) colimi∈I (QIZ•)(i) = hocolimi∈I Zi//

(QIP )(i)

(QIZ•)(i)
��

(QIP )(i) colimi∈I (QIP )(i) = hocolimi∈I Pi// colimi∈I (QIP )(i) = hocolimi∈I Pi

colimi∈I (QIZ•)(i) = hocolimi∈I Zi

��

We then conclude as the following commutative cube in sSet

Zi Z//

Pi

Zi
��

Pi Y// Y

Z
��

(QIZ•)(i) hocolimi∈I Zi//

(QIP )(i)

(QIZ•)(i)
��

(QIP )(i) hocolimi∈I Pi// hocolimi∈I Pi

hocolimi∈I Zi
��

Y

hocolimi∈I Pi

�� ∼

Pi

(QIP )(i)

�� ∼

Zi

(QIZ•)(i)

�� ∼

Z

hocolimi∈I Zi

�� ∼

witnesses that our starting K(i) is indeed a homotopy pullback square.

(S2) Given a small simplicial category C, descent for sPsh(C) (with the projective model structure)
follows formally from the pointwise definition of weak equivalences and from the fact that in sPsh(C)
homotopy colimit and limits can be computed pointwise. A quick explanation for this comes by notic-
ing that the formulas for framed homotopy (co)limits in a simplicial category of Remark 4.5.49 can be
expressed as weighted (sSet-)colimits and limits (once we see an ordinary category as a discrete simpli-
cial category) and in the sSet−enriched category of sSet−enriched functors weighted (co)limits (exist
and) can be computed objectwise (see [Kel], §3.3). Thus, fixing a functorial cofibrant approximation
Q in sPsh(C), we get, for a functor X : I −→ sPsh(C) from a small category I and for A ∈ C,
(hocolimX)(A) ∼= (QX)(A)⊗IN(− ↓ I )op, where I denotes the category I seen as a discrete simplicial
category, (−)⊗I (?) denotes the colimit of the left-hand side weighted by the right-hand side and, finally,
where (QX)(A) is the (ordinary) functor I −→ sSet sending i ∈ I to (QX)i(A). Since now, for each
i ∈ I , (QX)i(A) is a cofibrant approximation of (Xi)(A) because cofibrant objects for the projective
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model structure are pointwise such, (QX)(A) ⊗I N(− ↓ I )op computes (up to weak equivalences) the
homotopy colimit in sSet of (X(−))(A) : I −→ sSet. In other words, the functor

A 7→ hocolimi∈I Xi(A)

is a homotopy colimit for X. The same kind of remark applies to homotopy limits in sPsh(C) as well.

(S3) Let M be a model category having descent and suppose that MS (exists and) is a left exact
localization of M , for some class S of maps in M (see Definition 6.1.1). We want to prove that also MS

has descent. Consider the associated Quillen pair

M MS

a
((

M MSgg

i

⊥

where both functors are the identity on (the underlying category of) M and a is left exact. Write
(La)(−) = (a ◦Q)(−) = Q(−) and (Ri)(−) = (i ◦ RS)(−) = RS(−), for functorial cofibrant and fibrant
approximations Q and RS on M and on MS respectively.

In order to verify (P1) for MS , consider functorial commutative squares

K(i) :=


Zi Z//

Pi

Zi
��

Pi Y// Y

Z
��


in MS indexed by a small category I and assume that each K(i) is a homotopy pullback square. Since Ri
preserves homotopy pullback squares (see Lemma 6.1.13), we get functorial homotopy pullback squares

RSK(i) :=


RSZi RSZ//

RSPi

RSZi
��

RSPi RSY// RSY

RSZ
��


in M . Property (P1) for M now gives a weak equivalence

hocolimi∈I RSPi
∼→ (hocolimi∈I RSZi)×hRSZ RSY

and applying La we then obtain a weak equivalence

k : La (hocolimi∈I RSPi)
∼→ La

(
(hocolimi∈I RSZi)×hRSZ RSY

)
in MS . Now this morphism is naturally weakly equivalent to the map

h : hocolimS
i∈I Pi →

(
hocolimS

i∈I Zi

)
×hZ Y

which is then a weak equivalence itself4. (Here hocolimS
i∈I denotes a homotopy colimit of shape I on

MS). For the domain this is because La commutes with homotopy colimits (see Proposition 4.5.27 and
Remark 4.5.28) and Q is a cofibrant approximation not only in M but also in MS (because MS has the
same cofibrant objects of M but more weak equivalences). As for the codomain, using again that La
commutes with homotopy colimits, we get instead

La
(
(hocolimi∈I RSZi)×hRSZ RSY

) (†)
≈
(
La (hocolimi∈I RSZi)×La(RSZ) La(RSY )

)
≈

≈
(

hocolimS
i∈I La(RSZi)

)
×hLa(RSZ) La(RSY ) =

(
hocolimS

i∈I QRSZi

)
×hQRSZ QRSY ≈

4 See footnote 2.
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≈
(

hocolimS
i∈I Zi

)
×hZ Y,

(see Definition 4.1.10), where (†) follows from the fact that a is left exact.

As for (P2), suppose given again functorial commutative squares K(i) in MS as above and such that
the induced natural transformation τ : P =⇒ Z• is equifibered and the maps hocolimi∈I Pi → Y and
hocolimi∈I Zi → Z are weak equivalences. Then, as in the proof of Proposition 6.1.14, we get that
RSK(i) are functorial commutative squares in M verifying the hypotheses for (P2) in M . Therefore,
each RSK(i) is a homotopy pullback square in M . Since a is left exact by hypothesis, we then get that,
for every i ∈ I ,

QRSZi QRSZ//

QRSPi

QRSZi
��

QRSPi QRSY// QRSY

QRSZ
��

is a homotopy pullback square which is naturally weakly equivalent in MS to our starting K(i). Thus,
K(i) is a homotopy pullback square as well.
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6.2 Model-categorical Giraud’s Theorem.
Before stating and proving the central theorem of our work, we show a consequence of descent.

Proposition 6.2.1. Let M be a model category with descent and let I be a small category. Suppose
given a commutative square

X B
f

//

A

X
��

A Y// Y

B

g

��
(6.6)

in M I with f and g homotopically equifibered and assume that such a square is objectwise a homotopy
pullback square in M . Then the induced square of homotopy colimits

hocolimI X hocolimI B//

hocolimI A

hocolimI X
��

hocolimI A hocolimI Y// hocolimI Y

hocolimI B
��

is a homotopy pullback square in M .

Proof. We choose the model for the homotopy pullback described in part 1. of Proposition 4.5.33. Thus, if
B → C ← D is a cospan in M , its homotopy pullback is given as the limit of the cospan RB � RC � RD
obtained by functorially replacing the objects and the arrows of B → C ← D by fibrant objects and
fibrations respectively. Set also B̄ := hocolimI B and analogously for Ā, X̄ and Ȳ . We must then prove
that the map

Ā→ X̄ ×hB̄ Ȳ

is a weak equivalence.

Writing hocolimI = colim ◦ QI for a left colimI −deformation QI , we define functors

X ′, Y ′, A′ : I −→M

by setting, for j ∈ I ,

X ′(j) := R(QIB)(j)×RB̄ RX̄, Y ′(j) := R(QIB)(j)×RB̄ RȲ ,

A′(j) := R(QIB)(j)×RB̄ (RX̄ ×RB̄ RȲ )

Note that X ′(j) = (QIB)(j)×h
B̄
X̄, Y ′(j) = (QIB)(j)×h

B̄
Ȳ and

A′(j) = R(QIB)(j)×RB̄ (X̄ ×hB̄ Ȳ )
∼→ R(QIB)(j)×hRB̄ (X̄ ×hB̄ Ȳ ),

where the (natural) weak equivalence is given by the fact that A′(j) is a pullback of a cospan made of
fibrations between fibrant objects. Note also that we have, for j ∈ I , canonical isomorphisms

A′(j) = R(QIB)(j)×RB̄ (RX̄ ×RB̄ RȲ ) ∼= (R(QIB)(j)×RB̄ RX̄)×RB̄ RȲ ∼=

∼=
((
R(QIB)(j)×RB̄ RX̄)×R(QIB)(j) R(QIB)(j)

))
×RB̄ RȲ ∼=

∼=
(
R(QIB)(j)×RB̄ RX̄

)
×R(QIB)(j)

(
R(QIB)(j)×RB̄ RȲ

)
= X ′(j)×R(QIB)(j) Y

′(j)

and again we have a weak equivalence X ′(j) ×R(QIB)(j) Y
′(j)

∼→ X ′(j) ×hR(QIB)(j) Y
′(j) for the same

reason as above. Thus we obtain a weak equivalence

A′(j)
∼→ X ′(j)×hR(QIB)(j) Y

′(j).

Observe now that, since f and g are homotopically equifibered, so are QI f and QI g. Hence, by (P2)
in M (see also Remark 6.1.12), we get weak equivalences

(QIX)(j)
∼→ (QIB)(j)×hB̄ X̄ = X ′(j) and (QI Y )(j)

∼→ (QIB)(j)×hB̄ Ȳ = Y ′(j)
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for every j ∈ I . The hypothesis that (6.6) is objectwise a homotopy pullback square implies that we
also have a weak equivalence

(QIA)(j)
∼→ (QIX)(j)×h(QIB)(j) (QI Y )(j)

again for each j ∈ I . Therefore, we obtain composite (natural) weak equivalences

(QIA)(j)
∼→ X ′(j)×hR(QIB)(j) Y

′(j)

Passing to the homotopy colimit, we deduce that there is a weak equivalence

k : hocolimj∈I (QIA)(j)
∼→ hocolimj∈I

(
X ′(j)×hR(QIB)(j) Y

′(j)
)

Now, for each j ∈ I , there is a map

(QIA)(j)
∼→ R(QIA)(j)→ A′(j) = R(QIB)(j)×RB̄ (RX̄ ×RB̄ RȲ )

induced by R(QIA)(j) → R(QIB)(j), R(QIA)(j) → RX̄ and R(QIA)(j) → RȲ . The homotopy
colimit of these maps fits into the commutative triangle

k : hocolimj∈I (QIA)(j) hocolimj∈I

(
X ′(j)×hR(QIB)(j) Y

′(j)
)

∼ //k : hocolimj∈I (QIA)(j)

hocolimj∈I A′(j)
))

hocolimj∈I A′(j)

hocolimj∈I

(
X ′(j)×hR(QIB)(j) Y

′(j)
)

∼

OO

so that we get a weak equivalence

hocolimj∈I (QIA)(j)
∼→ hocolimj∈I A′(j) = hocolimj∈I

(
R(QIB)(j)×RB̄ (RX̄ ×RB̄ RȲ )

)
But now we have functorial homotopy pullback squares

R(QIB)(j) RB̄//

A′(j)

R(QIB)(j)
��

A′(j) RX̄ ×RB̄ RȲ// RX̄ ×RB̄ RȲ

RB̄
��

because all the morphisms appearing are fibrations among fibrant objects. Thus, by (P1), we have

hocolimj∈I A′(j)
∼→
(
hocolimj∈J R(QIB)(j)

)
×hRB̄

(
X̄ ×hB̄ Ȳ

)
(recall that X̄ ×h

B̄
Ȳ = RX̄ ×RB̄ RȲ ). We then obtain a composite weak equivalence

hocolimj∈I (QIA)(j)
∼→
(
hocolimj∈J R(QIB)(j)

)
×hRB̄

(
X̄ ×hB̄ Ȳ

) ∼→
∼→
(
hocolimj∈J RB(j)

)
×hRB̄

(
X̄ ×hB̄ Ȳ

)
There is a commutative diagram

Ā B̄ ×h
RB̄

(
X̄ ×h

B̄
Ȳ
)

//

hocolimj∈I (QIA)(j)

Ā

∼

��

hocolimj∈I (QIA)(j)
(
hocolimj∈J RB(j)

)
×h
RB̄

(
X̄ ×h

B̄
Ȳ
)∼ //

(
hocolimj∈J RB(j)

)
×h
RB̄

(
X̄ ×h

B̄
Ȳ
)

B̄ ×h
RB̄

(
X̄ ×h

B̄
Ȳ
)

OO

∼

Here the bottom map is the composition

l : Ā→ X̄ ×B̄ Ȳ ∼= B̄ ×B̄
(
X̄ ×B̄ Ȳ

)
→ B̄ ×RB̄

(
X̄ ×B̄ Ȳ

)
→ B̄ ×hRB̄

(
X̄ ×hB̄ Ȳ

)
and the above square witnesses that it is a weak equivalence. We conclude that the composite map

Ā
∼→ B̄ ×hRB̄

(
X̄ ×hB̄ Ȳ

) ∼→ RB̄ ×hRB̄
(
X̄ ×hB̄ Ȳ

) ∼→ X̄ ×hB̄ Ȳ

is a weak equivalence, as required.
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As announced, we can now turn to the following

Theorem 6.2.2 (Giraud’s Theorem for Model Topoi, cf. [Rzk1], Theorem 6.9). Let M be a model
category. Then M is a model topos if and only if it has small simplicial presentation and satisfies descent.

Proof. From Remark 6.1.4 and Proposition 6.1.15 it follows that the two conditions in the Theorem
are necessary for a model category to be a model topos. Suppose then that M admits small simplicial
presentation and has descent. In particular, M is Quillen equivalent to a simplicial and combinatorial
model category (see Theorem 4.3.31 and Theorem 5.1.20). Since having small simplicial presentation
and descent as well as being a model topos are invariant properties under Quillen equivalences, we can
assume that M is a simplicial and combinatorial model category. By Theorem 5.3.8, there are a small
full simplicial subcategory C of M made of fibrant-cofibrant objects and a Quillen equivalence

sPsh(C)S M
&&

sPsh(C)S M
hh
⊥

for some small set S of maps in sPsh(C). Observe that, since M has descent, so has sPsh(C)S . Further-
more, we also have that the simplicial Yoneda embedding y : C −→ sPsh(C) lands into S−local objects.
We now prove that the associated Quillen pair

sPsh(C) sPsh(C)S

a
((

sPsh(C) sPsh(C)Shh
i

⊥

is such that a is homotopically left exact. Setting P := sPsh(C) and E := sPsh(C)S , let then

X B//

P

X
��

P Y// Y

B
��

(6.7)

be a homotopy pullback square in P. We need to show that

h : La(P )→ La(X)×hLa(B) La(Y ) is a weak equivalence (∗)

Before doing this, we need to make another observation. As in Remark 5.1.5, we say that an object W
in P is quasi S-local if, for every map g in S, the induced map of homotopy function complexes

g∗ : maph(cod(g),W )→ maph(dom(g),W )

is a weak equivalence. Now, there is a simplicially enriched analogue of Proposition 5.6, namely, given
a simplicially enriched functor X : Dop −→ sSet (for a small simplicial category D), there is a functor
U : J −→ sPsh(D) (from a small category J ) such that each U(j) is of the form yA⊗∆[n] (for some
A ∈ D and n ∈ N) and we have a natural weak equivalence

hocolimJ U
∼→ X

(see [Rsc], Theorem 3.2 and its proof). In our case, for every object A ∈ C, yA is an S−local object
and, since yA is cofibrant in sPsh(C), yA⊗∆[−] is a cofibrant resolution for yA (see Example 4.4.11).
Thus, for every n ∈ N, we have a weak equivalence yA⊗∆[n]→ yA, so that every yA⊗∆[n] is a quasi
S−local object (because homotopy function complexes sends weak equivalences to weak equivalences, see
Proposition 4.4.18). Therefore, by the above discussion we get that, for each X ∈ sPsh(C) there is a
natural weak equivalence hocolimJ U

∼→ X where U : J −→ sPsh(C) lands into quasi S-local objects.
For the rest of the proof, we will refer to this result by saying that

every X ∈ sPsh(C) is a homotopy colimit of quasi S-local objects. (∗∗)

As for the categorical counterpart seen in the proof of Proposition 2.2.18, we now show that (∗) holds
through a sequence of specific cases.
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(a) Property (∗) holds when X, B and Y are quasi S-local objects. Up to taking functorial fibrant
approximations in P of the vertices in (6.7), since being a homotopy pullback square is invariant
under weak equivalences of squares, we can suppose that X, B and Y are S−local objects. As
usual, a homotopy pullback in E of the cospan

(X → B ← Y ) = (aX → aB ← aY )

can be taken as the ordinary pullback of RSX � RSB � RSY in E where the latter cospan is
obtained by the former functorially replacing objects with fibrant ones and arrows with fibrations
in E = PS . Thus, we have a weak equivalence of cospans in E

X B//

Y

B
��

RSX RSB//

RSY

RSB
��

X

RSX

∼S ##

B

RSB

∼S
##

Y

RSY

∼S
##

(6.8)

The displayed weak equivalences, being such in E = PS , are S−local equivalences in P by definition
of the Bousfield localization. Since RSX, RSB and RSY are fibrant objects in E, they are S−local
objects in P and then each ∼S is an S-local equivalence between S−local objects in P, so that it is
an actual weak equivalence in P (see Sections 5.1 and 5.2). On the other hand, fibrations in E = PS
are such also in P, so that the cospan RSX � RSB � RSY can be used to compute the homotopy
pullback of X → B ← Y not only in E but also in P and the hypothesis on (6.7), says that the
canonical map P → RSX ×RSB RSY is a weak equivalence in P and hence in E as well. This says
that

aX aB//

aP

aX
��

aP aY// aY

aB
��

is a homotopy pullback square (recall that a is an identity functor) in E. A fortiori, also

La(X) La(B)//

La(P )

La(X)
��

La(P ) La(Y )// La(Y )

La(B)
��

is a homotopy pullback square in E (because a cofibrant approximation in P is such also in E), so
that h is a weak equivalence.

(b) Property (∗) holds when B and Y are quasi S-local objects. By (∗∗), up to rewriting every vertex
in (6.7) as a homotopy colimit in P of quasi S−local objects (and relabelling again those homotopy
colimits as P, Y, X and B respectively), since being a homotopy pullback square is invariant under
weak equivalences of squares and La is homotopical, we can assume that X = hocolimj∈J U(j)
in P, where each U(j) is a quasi S−local object. Write hocolimj∈J = colim ◦ QJ , for a left
(colimj∈J )-deformation. Taking the usual model for the homotopy pullback in P (a homotopy
pullback for X → B ← Y is the ordinary pullback of RX � RB � RY ), consider, for each j ∈J ,
the following commutative diagram

QJU(j)×hB Y = RQJU(j)×RB RY X ×hB Y = RX ×RB RY//QJU(j)×hB Y = RQJU(j)×RB RY

RQJU(j)
��

X ×hB Y = RX ×RB RY

RX
��

RQJU(j) RX//

X ×hB Y = RX ×RB RY RY//

RX RB//

RY

RB
��

(6.9)

where all objects are fibrant, all maps are fibrations and the two squares are pullback squares. In
particular, the outer square is a homotopy pullback square, so (P1) in P gives the canonical weak
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equivalence

hocolimj∈J

(
QJU(j)×hB Y

) ∼→ (
hocolimj∈J RQJU(j)

)
×hRB RY

Now, there is a commutative square

X ×hRB RY
(
hocolimj∈J RU(j)

)
×hRB RY∼

//

hocolimj∈J

(
QJU(j)×hB Y

)

X ×hRB RY
��

hocolimj∈J

(
QJU(j)×hB Y

) (
hocolimj∈J RQJU(j)

)
×hRB RY

∼ //
(
hocolimj∈J RQJU(j)

)
×hRB RY

(
hocolimj∈J RU(j)

)
×hRB RY

∼

��

where the right vertical arrow, writing X ×hRB RY = RX ×RRB RRY , is induced by the evident
maps QJU(j) ×hB Y = RQJU(j) ×RB RY → RX ×RRB RRY . Thus, we get a composite weak
equivalence

hocolimj∈J

(
QJU(j)×hB Y

) ∼→ X ×hRB RY
∼→ RX ×hRB RY.

Since there is a weak equivalence X ×hB Y
∼→ RX ×hRB RY , we also get that the map

l : hocolimj∈J

(
QJU(j)×hB Y

) ∼→ X ×hB Y = RX ×RB RY

is a weak equivalence (such a map is induced by the evident map RQJU(j)×RBRY → RX×RBRY ,
where the left-hand side is QJU(j)×hB Y ). On the other hand, in (6.9) the objects RQJU(j), RB
and RY are S−local. Thus, from part (a) we get functorial homotopy pullback squares

La(RQJU(j)) La(RB)//

La
(
QJU(j)×hB Y

)

La(RQJU(j))
��

La
(
QJU(j)×hB Y

)
La(RY )// La(RY )

La(RB)
��

(6.10)

so that (P1) in E gives the canonical weak equivalence

hocolimj∈J La
(
QJU(j)×hB Y

) ∼→ (
hocolimj∈J La(RQJU(j))

)
×hLa(RB) La(RY )

This map is naturally weakly equivalent to the canonical map

La(X ×hB Y )→ La(RX)×hLa(RB) La(RY )

which is then a weak equivalence itself5. For the domain, this follows because La commutes with
homotopy colimits and we can apply La to the weak equivalence l to get again weak equivalence.
For the codomain, this follows because, using once more that La commutes with homotopy colimits,
we have(
hocolimj∈J La(RQJU(j))

)
×hLa(RB)La(RY ) ≈ La

(
hocolimj∈J (RQJU(j))

)
×hLa(RB)La(RY ) ≈

≈ La(RX)×hLa(RB) La(RY )

Hence, the square

La(RX) La(RB)//

La
(
X ×hB Y

)

La(RX)
��

La
(
X ×hB Y

)
La(RY )// La(RY )

La(RB)
��

is a homotopy pullback square in E. Since (6.7) is a homotopy pullback square in P (and La is
homotopical), this latter square is weakly equivalent to

La(X) La(B)//

La(P )

La(X)
��

La(P ) La(Y )// La(Y )

La(B)
��

so that (∗) is a weak equivalence.
5 See footnote 2.
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(c) Property (∗) holds when B is a quasi S-local objects. This is proven exactly as in (b), except for the
fact that we can drop the hypothesis on Y by using the thesis of (b). Indeed, in the proof of part
(b) above, we used the hypothesis that both Y and B were quasi S-local objects only when we had
to conclude that (6.10) was a homotopy pullback square. However, if we now know that B alone is
a quasi S-local object, we still get that (6.10) is a homotopy pullback square because RQJU(j) is
an S−local object and we have (b) at hand.

(d) Property (∗) holds for general X, B and Y. Reasoning as in (b) above, we can suppose that B =
hocolimj∈J W (j) in P where W : J −→ P is a functor landing in quasi S-local objects. Write
hocolimJ = colimJ ◦ QJ and take the same model of the homotopy pullback as in (b). We have
already argued above that we just need to show that the canonical map

La
(
X ×hB Y

)
= La (RX ×RB RY )→ La(RX)×hLa(RB) La(RY )

is a weak equivalence. Define functors U, V : J −→ P by setting, for j ∈J ,

U(j) := QJW (j)×hBX = RQJW (j)×RB RX, V (j) := QJW (j)×hB Y = RQJW (j)×RB RY.

(P1) in P gives then canonical weak equivalences

hocolimj∈J U(j)
∼→
(
hocolimj∈J RQJW (j)

)
×hRB RX

and
hocolimj∈J V (j)

∼→
(
hocolimj∈J RQJW (j)

)
×hRB RY

The same proof as the one we used in (b) above to conclude that the map named there as l was a
weak equivalence now shows that we can obtain from these arrows natural weak equivalences

w : hocolimj∈J U(j)
∼→ B ×hB X = RX and v : hocolimj∈J U(j)

∼→ RY

From the definitions of U and V , we also obtain the following commutative diagrams in P, for each
j ∈J ,

U(j)×RB RY ∼= U(j)×RQJW (j) V (j) V (j)//U(j)×RB RY ∼= U(j)×RQJW (j) V (j)

U(j)
��

V (j)

RQJW (j)
��

U(j) RQJW (j)//

V (j) RY//

RQJW (j) RB//

RY

RB
��

Here all objects are fibrant, all morphisms are fibrations, the two squares are (homotopy) pullback
squares and the outer square is a (homotopy) pullback square. Note now that the natural transfor-
mations U(−) =⇒ RQJW (−) and V (−) =⇒ RQJW (−) are homotopically equifibered because,
for every arrow j → k in J , the relevant squares are pullback squares where all maps are fibrations
between fibrant objects. Proposition 6.2.1 then gives a natural weak equivalence

hocolimj∈J

(
U(j)×RQJW (j) V (j)

) ∼→ (
hocolimj∈J U(j)

)
×hhocolimj∈J RQJW (j)

(
hocolimj∈J V (j)

)
Utilizing the weak equivalences w and v above and the same kind of reasoning as the one used to
get the weak equivalence l in (b), we actually obtain a natural weak equivalence

hocolimj∈J

(
U(j)×RQJW (j) V (j)

) ∼→ RX ×hRB RY

which then also provides a natural weak equivalence

u : hocolimj∈J

(
U(j)×RQJW (j) V (j)

) ∼→ X ×hB Y

This map is induced by the cocone

U(j)×RQJW (j) V (j) ∼= RQJW (j)×RB (RX ×RB RY )→ RX ×RB RY = X ×hB Y.

Since each RQJW (j) is an S-local object and U(−) =⇒ RQJW (−) and V (−) =⇒ RQJW (−) are
homotopically equifibered, by part (b), we get that also the natural transformations La(U(−)) =⇒
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La(RQJW (−)) and La(V (−)) =⇒ La(RQJW (−)) are homotopically equifibered. By (c) above,
we have a canonical weak equivalence

La(U(j)×RB RY )
∼→ La(U(j))×hLa(RQJW (j)) La(V (j))

Hence, Proposition 6.2.1 for E provides the canonical weak equivalence

hocolimj∈J La(U(j)×RB RY )
∼→

∼→
(
hocolimj∈J La(U(j))

)
×hhocolimj∈J La(RQJW (j))

(
hocolimj∈J La(V (j))

)
This map is now naturally weakly equivalent to our canonical map

La
(
X ×hB Y

)
→ La(RX)×hLa(RB) La(RY )

which is then a weak equivalence6. For the domain this follows from commutativity of La with
homotopy colimits and using the above weak equivalence u. For the codomain, we just use again
preservation of homotopy colimits by La together with the weak equivalences v and w above.

Remark 6.2.3. At a first inspection, it may look like we did not use property (P2) of descent in the
proof of Giraud’s Theorem above. However, its use is actually hidden in the proof of Proposition 6.2.1,
which was fundamental to validate part (d).

We end this section with the following result which, as in the categorical counterpart, has a relatively
easy proof when Giraud’s Theorem is available.

Corollary 6.2.4. Let M be a model topos and let X be a fibrant object in M . Then the overcategory
M /X with the model structure of Example 4.1.6 is a model topos.

Proof. Since M is a model topos, there is a Quillen equivalence

sPsh(C)S M

L
&&

sPsh(C)S M
hh

U

⊥

for some small simplicial category C and a set S ⊆ Mor(sPsh(C)). By Proposition 4.1.40, since X is
fibrant, there is an induced Quillen equivalence of overcategories

sPsh(C)S/UX M /X

L∗

))
sPsh(C)S/UX M /X

ii
U∗

⊥

Now, the point is that sPsh(C)S/UX is still a combinatorial model category: the fact that it is cofi-
brantly generated follows from [Hir2] whereas locally presentablility can be deduced using the charac-
terization given in Theorem 1.2.20 (see also [CRV], Remark 3). Therefore, by the results in Section 5.3,
sPsh(C)S/UX has small simplicial presentation and hence also M /X has.

We then need to prove that M /X satisfies descent. We shall prove that M /X verifies property (P1),
the proof for (P2) being analogous but easier. Suppose given functorial homotopy pullback squares in
M /X

Pi Y//Pi

Zi
��

Y

Z
��

Zi Z//

Pi

X
��

Zi

�� ��

Y

yy

(6.11)

6 See footnote 2.
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indexed by a small category I . A way to obtain a Reedy fibrant replacement of the cospan

(Zi → X)→ (Z → X)← (Y → X) (6.12)

in M /X is given as follows. Fix a functorial factorization E of arrows f in M into a weak equivalence
dom(f)

∼→ E(dom(f)) followed by a fibration E(dom(f)) � cod(f). Applying E to the maps into X in
the cospan (6.12), we get another cospan in M /X

(EZi � X)→ (EZ � X)← (EY � X) (6.13)

Note that all objects EZi, EZ and EY are fibrant in M . In particular, we also get a cospan EZi →
EZ ← EY in M and we can factor each of those maps using E again. This gives a cospan in M /X

(EEZi � X) � (EEZ � X) � (EEY � X) (6.14)

where EEZi, EEZ and EEY are still fibrant objects in M . We have then a diagram in M

EEZi EEZ//EEZi

X
��

EEZ EEYooEEZ

X
��

EEY

X
��

(6.15)

where all objects are fibrant and all arrows are fibrations in M . Now, a homotopy pullback of the original
cospan (6.12) in M /X is given by the ordinary pullback of the cospan (6.14) in M /X. Such a pullback
is given by taking the pullback EEZi×EEZ EEY in M and then considering the map into X fitting into
the following commutative square

EEZi ×EEZ EEY EEZ// EEZ X//EEZi ×EEZ EEY

EEY77EEY

EEZ
��

EEY

X
""

EEZi ×EEZ EEY

EEZi
''
EEZi

EEZOO

EEZi

X<<

where all objects are fibrant and all morphisms are fibrations in M 7. By construction, EEZi×EEZEEY
is a homotopy pullback of Zi → Z ← Y in M . Hence, the weak equivalence

(Pi → X)
∼→ (Zi → X)×h(Z→X) (Y → X)

in M /X that we have by hypothesis also witnesses that we get functorial homotopy pullback squares

Zi Z//

Pi

Zi
��

Pi Y// Y

Z
��

in M . (P1) for M now gives a homotopy pullback square in M

hocolimi∈I Zi Z//

hocolimi∈I Pi

hocolimi∈I Zi
��

hocolimi∈I Pi Y// Y

Z
��

7 Given a cospan (A → X) → (B → X) ← (C → X) in M /X, we can form the pullback A ×B C in M . The pullback
square in M having A ×B C as its northwest corner is actually a commutative square over X and witnesses that the
canonical map A ×B C → X given as the composite A ×B C → C → X (or A ×B C → A → X) is indeed the pullback
object of the starting cospan in M /X.
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and this square is actually a homotopy pullback square

hocolimi∈I Pi Y//hocolimi∈I Pi

hocolimi∈I Zi
��

Y

Z
��

hocolimi∈I Zi Z//

hocolimi∈I Pi

X
��

hocolimi∈I Zi

�� ��

Y

yy

in M /X. Since colimi∈I Pi → X is the colimit object in M /X of the diagram in M /X given by

I 3 i 7→ (Pi → X)

and analogously for colimi∈I Zi → X (see Remark 2.1.4), we also get that hocolimi∈I Pi → X and
hocolimi∈I Zi → X are homotopy colimits in M /X of the diagrams i 7→ (Pi → X) and i 7→ (Zi → X)
respectively. Indeed, if hocolimI = colimI ◦ QI for a left (colimI )−deformation Q : M I −→ M I ,
then, since Q comes equipped with a natural weak equivalence q : Q

∼
=⇒ IdMI , there is an induced

functor Q/X : (M /X)I −→ (M /X)I sending a functor T• : i 7→ (Ti → X) to

(Q/X)(T ) : i 7→ ((QT )i → Ti → X)

(here T is the functor I −→ M sending i ∈ I to Ti ∈ M ). It is immediate to see that Q/X is
homotopical and the obvious natural transformation q/X : Q/X

∼
=⇒ Id(M/X)I induced by q makes

(Q/X, q/X) a left deformation retract for the colimit functor (M /X)I −→ M /X. We can then
conclude that M /X has (P1).
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6.3 Local model structures and homotopy sheaves.
As announced in the introduction to this chapter, given a Grothendieck site (C , τ) (see Definition

3.1.9), we outline in this last section how to obtain a model category structure on sPsh(C ) using the
given Grothendieck topology τ . Looking for the fibrant objects with respect to such a model category
sPsh(C )Jar, we will discover a meaningful notion of homotopy sheaves on such a site. Actually, we will
see that there are different model categories which, being Quillen equivalent to sPsh(C )Jar, present the
same homotopy theory build upon (C , τ): their interplay will allow us to show that sPsh(C )Jar is a
model topos. Our exposition is heavily based on [Jar1], [Jar2], [DHI] and [Rzk2] to which we will refer
for the proof of the most important results.

Let then (C , τ) be a Grothendieck site, which we fix once and for all throughout the whole section.
We also denote by

PSh(C ) Sh(C , τ)

a
))

PSh(C ) Sh(C , τ)
ii

i

⊥

the associated adjunction, so that i is the inclusion and a is the sheafification functor (see Section 3.2).
We would like to construct a homotopy theory out of (C , τ).

As anticipated above, the first approach we will take is to define a model category structure on
sPsh(C ) based on τ . Since this model structure will have as cofibrations all and only the monomorphism,
we actually need to construct a suitable class of weak equivalences. To do so, we start with an observation
about weak equivalences of simplicial sets.

Given a simplicial set K, one of the equivalent ways to define its homotopy groups is via its geometric
realization (see Example 4.1.39). Namely, one can set, for all n ∈ N \ {0} and all p ∈ K0,

πn(K, p) := πn(|K|, |p|) and π0(K) := π0(|K|). (6.16)

Then, by the description of the Kan-Quillen model structure on sSet (see Example 4.1.19), a map
f : K −→ L of simplicial sets is a weak equivalence if and only if the obvious induced maps

π0(f) : π0(K)→ π0(L) and πn(f, p) : πn(K, p)→ πn(L, f0(p))

are isomorphisms, for all n ≥ 1 and all p ∈ K0. Now, there is a way to characterise weak equivalences
eliminating the base points. Indeed, given a simplicial set K, define, for each n ≥ 1,

πn(K) :=
∐
p∈K0

πn(K, p).

This is naturally an object in the overcategory Set/K0 by

πn(K)→ K0, πn(K, p) 3 α 7→ p ∈ K0

and the operations on each πn(K, p) gives a group-object structure to πn(K) → K0 in Set/K0
8. Each

map f : K → L of simplicial sets gives rise to maps πn(f) : πn(K) → πn(L) of sets fitting into the
following commutative square

K0 L0
f0

//

πn(K)

K0

��

πn(K) πn(L)
πn(f) // πn(L)

L0

��

(6.17)

for all n ≥ 1. In other words, for every positive integer n we get functors

πn : sSet −→ Arr(Set),

where Arr(Set) is the arrow category of Set. From the definitions of all the objects involved and the
description of pullbacks in Set, we get the following

8 This is easily seen when one notices that, given a category D and an object A ∈ D , the product of two objects in D/A
is given by the pullback of the corresponding cospan in D , together with the canonical arrow into A.
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Lemma 6.3.1. A map f : K −→ L of simplicial sets is a weak equivalence if and only if both the following
properties are satisfied:

(i) π0(f) is an isomorphism;

(ii) for all n ≥ 1, the square (6.17) is a pullback square.

Functoriality of π0 and of each πn allow us to extend the above constructions to simplicial presheaves
on C . Namely, for each F ∈ sPsh(C ) and all m ∈ N we get presheaves

πm(F ) : C op −→ Set, A 7→ πm(F (A))

and, for all n ≥ 1, we also get maps of presheaves

πn(F ) −→ F0,

where F0 is the presheaf of sets on C sending A ∈ C to the set of 0-simplexes of the simplicial set F (A).
We can now give the following

Definition 6.3.2. A map τ : F =⇒ G of simplicial presheaves is a local weak equivalence if the following
properties are satisfied:

(i) the induced map aπ0(F )→ aπ0(G) is an isomorphisms of sheaves on (C , τ);

(ii) the induced commutative square

aF0 aG0
//

aπn(F )

aF0

��

aπn(F ) aπn(G)// aπn(G)

aG0

��

is a pullback square of sheaves on (C , τ), for every n ≥ 1.

Remark 6.3.3. From Lemma 6.3.1, since the sheafification functor is left exact, we get that every
pointwise weak equivalence of simplicial presheaves is a local weak equivalence.

Remark 6.3.4. Suppose that (C , τ) is the site (Op(X), τ) where X is a topological space, Op(X) is
the poset of open subsets in X and τ is the open cover topology on Op(X) (see Example 3.1.4). For
each x ∈ X and any F ∈ sPsh(X) := sPsh(Op(X)), we can consider the simplical set Fx which sends
[n] ∈ ∆op to (Fn)x, the stalk at x of the presheaf Fn. We will call such an Fx ∈ sSet the stalk of F
at x. We then get that a map τ : F =⇒ G in sPsh(X) is a local weak equivalence if and only if, for
all x ∈ X, the induced map of stalks τx : Fx −→ Gx are weak equivalences of simplicial sets (see [Lur],
Remark 6.5.2.2). Essentially, this follows using Lemma 6.3.1 and the fact that homotopy groups commute
with filtered colimits of simplicial sets, together with the observations that isomorphisms of (pre)sheaves
can be checked stalkwise and stalks do not change upon sheafification. This explains the choice of the
attribute local in Definition 6.3.2.

The following Theorem is due to J. F. Jardine and says that we can make local weak equivalences
part of a very nice model category structure on sPsh(C ).

Theorem 6.3.5. There is a (unique) model category structure on sPsh(C ) with weak equivalences given by
local weak equivalences and cofibrations consisting of all monomorphisms. The associated model category
is denoted by sPsh(C )Jar and is a proper, simplicial and cofibrantly generated model category in which
every object is cofibrant. (Here the simplicial, tensored and cotensored structures are the pointwise ones
given in Remark 4.2.31).

Proof. See [Jar1], Theorem 2 and Corollary 4 as well as [Jar2], Theorem 18.

Remark 6.3.6. If Sh(C , τ) = PSh(C ) (this happens, for example, when τ is the trivial topology on
the small category C , see Example 3.1.4), the model category structure given by Theorem 6.3.5 is the
injective model structure on sPsh(C ) (see Theorem 4.3.5).

The homotopy theory defined by sPsh(C )Jar can be presented also via a model structure on the
category of simplicial sheaves. Namely, we have the following result.

155



Theorem 6.3.7. Let sSh(C , τ) be the category Sh(C , τ)∆op

of simplicial objects in Sh(C , τ). Declare
a map of simplicial sheaves to be a local weak equivalence if it is so when seen as a map of simplicial
presheaves. Then the following hold.

1. There is a (unique) model category structure on sSh(C , τ) with weak equivalences given by local
weak equivalences and cofibrations consisting of all monomorphisms. The associated model category
is denoted by sSh(C , τ)Joy or simply by sSh(C )Joy and is a proper, simplicial and combinatorial
model category in which every object is cofibrant.

2. The adjoint pair

sPsh(C )Jar sSh(C , τ)Joy

a◦−
))

sPsh(C )Jar sSh(C , τ)Joyii
i◦−

⊥

induced by a a i is a Quillen equivalence.

Proof. See Theorem 5 of [Jar1].

Remark 6.3.8. The model category structure of Theorem 6.3.7 is denoted by sSh(C )Joy since it is due
to A. Joyal who communicated it to A. Grothendieck in a private letter ([Joy]).

Note that, since both sPsh(C )Jar and sSh(C )Joy are simplicial combinatorial model categories, The-
orem 5.3.8 applies and gives small simplicial presentations for them. The point is that they also have
descent. To show this, observe first that, in view of Theorem 6.3.7 above, it is enough to prove that
sSh(C )Joy satisfies descent (see Proposition 6.1.14). Now, Theorem 6.1.17 is proven to be true in [Rzk2]
not only for simplicial sets but also for sSh(C )Joy. In Section 6.1 we exploited Theorem 6.1.17 to obtain
descent for sSet and our proof relied on the fact that sSet is a Grothendieck topos and a proper model
category. Since sSh(C )Joy shares the same properties (recall that, if E is a Grothendieck topos, then so
is E D for every small category D , see Corollary 2.2.5), that proof for simplicial sets applies verbatim to
show that sSh(C )Joy has descent as well. Giraud’s Theorem for model topoi then gives

Theorem 6.3.9. sPsh(C )Jar and sSh(C )Joy are model topoi.

As announced, it is possible to give a description of the fibrant objects in sPsh(C )Jar which leads to
a meaningful notion of homotopy sheaves. The idea, of course, is that of mimicking the sheaf condition
(3.9) and adapting it to our homotopical context, where we deal with simplicial presheaves instead of
presheaves of sets.

As a motivation, we start by looking at (3.9) from another perspective. From now on, we suppose
that C has pullbacks and that β is a basis for our Grothendieck topology τ on C (see Definition 3.1.6,
Proposition 3.1.7 and Proposition 3.1.8). Fix X ∈ C , a covering sink {fi : Ui → X}i∈I in β(X) and a
presheaf of sets P ∈ PSh(C ). In (3.9), we considered the diagram

∏
i∈I

P (Ui)
∏

(i,j)∈I2

P (Ui ×X Uj)
p //∏

i∈I
P (Ui)

∏
(i,j)∈I2

P (Ui ×X Uj)
q

// (6.18)

where the maps p and q are induced by the pullback projections. Setting, for each n ∈ N \ {0} and every
n−uple (i1, . . . , in) of elements in I, Ui1i2···in := Ui1 ×X Ui2 ×X · · · ×X Uin , we can actually prolong that
diagram further to

P (U•) :=

( ∏
i∈I

P (Ui)
∏

(i,j)∈I2

P (Uij)
//∏

i∈I
P (Ui)

∏
(i,j)∈I2

P (Uij)//
∏

(i,j)∈I2

P (Uij)
∏

(i,j,k)

P (Uijk)
//∏

(i,j)∈I2

P (Uij)
∏

(i,j,k)

P (Uijk)//∏
(i,j)∈I2

P (Uij)
∏

(i,j,k)

P (Uijk)//
∏

(i,j,k)

P (Uijk)
∏

(i,j,k,l)

P (Uijkl)
//∏

(i,j,k)

P (Uijk)
∏

(i,j,k,l)

P (Uijkl)
//∏

(i,j,k)

P (Uijk)
∏

(i,j,k,l)

P (Uijkl)//
∏

(i,j,k)

P (Uijk)
∏

(i,j,k,l)

P (Uijkl)//
∏

(i,j,k,l)

P (Uijkl)
//∏

(i,j,k,l)

P (Uijkl)
//∏

(i,j,k,l)

P (Uijkl) //∏
(i,j,k,l)

P (Uijkl) //
∏

(i,j,k,l)

P (Uijkl) //
· · ·
)

(6.19)

where again all the maps are induced by the various projections from the pullbacks. Now, it turns out
that the equalizer of (6.18) and the limit of P (U•) coincide. So we can reinterpret the sheaf condition
(3.9) for P (with respect to the given covering {fi : Ui → X}i∈I) as asking the natural map

P (X)→ limP (U•)

to be an isomorphism. We can rewrite this conclusion in a fancier way. The category Set has a trivial
model category structure where weak equivalences are given by isomorphisms, whereas the class of cofi-
brations and the class of fibrations coincide and consist of all maps of sets (see Example 4.1.2). Clearly,
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homotopy limits and colimits with respect to such a model structure coincide with ordinary limits and
colimits, so that we can actually restate the sheaf condition (3.9) by saying that the natural map

P (X)→ holim

( ∏
i∈I

P (Ui)
∏

(i,j)∈I2

P (Uij)
//∏

i∈I
P (Ui)

∏
(i,j)∈I2

P (Uij)//
∏

(i,j)∈I2

P (Uij)
∏

(i,j,k)

P (Uijk)
//∏

(i,j)∈I2

P (Uij)
∏

(i,j,k)

P (Uijk)//∏
(i,j)∈I2

P (Uij)
∏

(i,j,k)

P (Uijk)//
∏

(i,j,k)

P (Uijk)
//∏

(i,j,k)

P (Uijk)
//∏

(i,j,k)

P (Uijk) //
∏

(i,j,k)

P (Uijk) // · · ·
)

(6.20)

is a weak equivalence with respect to the trivial model category structure on Set (and for all covering
sink in β(X) for any X ∈ C ).

Remark 6.3.10. The request that the map (6.20) is a weak equivalence actually makes sense when
Set is just given the structure of a trivial homotopical category where weak equivalences are all and
only the isomorphisms. This is exactly the structure of homotopical category that Set inherits from the
homotopical category sSet when it is considered as the full subcategory of sSet consisting of discrete
simplicial sets (the so-called (homotopy) 0-types).

The above Remark says that one should think of (6.20) as asking for a certain map of simplicial sets
to be a weak equivalence. Indeed, the condition in (6.20) is meaningful not only when P is a presheaf of
sets (i.e. a discrete simplicial presheaf) but also for any simplicial presheaf. We give the following

Definition 6.3.11. A simplicial presheaf P : C op −→ sSet which is objectwise fibrant is said to satisfies
Čech descent for the covering sink {fi : Ui → X}i∈I in β(X) (X ∈ C ) if the canonical map (6.20) is a
weak equivalence of simplicial sets. If P ∈ sPsh(C ) is not objectwise fibrant, we say that P satisfies Čech
descent for the covering sink {fi : Ui → X}i∈I if some objectwise fibrant approximation of P does so.

Note that Definition 6.3.11 is given so that if P =⇒ F is a pointwise weak equivalence of simplicial
presheaves, then P satisfies Čech descent for a covering sink if and only if F does so.

One may now guess that we will call homotopy sheaves those simplicial presheaves satisfying Čech
descent for all covering sinks. However, this would not allow us to completely characterise the fibrant
objects in sPsh(C )Jar. The problem with Čech descent (as we will see at the end of the section), is that
it gives a strong enough homotopical condition on an objectwise fibrant simplicial presheaf P only when
there is a positive integer n ∈ N such that P (X) has no non-trivial homotopy groups in dimension n or
higher, uniformly inX ∈ C (that is, when there is an n such that each P (X) is a (homotopy) (n−1)−type).

The issue is solved by substituting Čech descent with descent with respect to a hypercover. To introduce
this concept properly, we first need some auxiliary definitions. Recall that, for integers n ∈ N and
0 ≤ k ≤ n, Λk[n] ∈ sSet denotes the (n, k)−th horn (see Example 4.1.19). As in section 5.2, we denote
by

y : C op −→ sPsh(C )

the simplicial Yoneda embedding which sees each representable functor associated to X ∈ C as a discrete
simplicial set.

Definition 6.3.12. Let τ : F =⇒ G be a map in sPsh(C ) and let X ∈ C .

1. We say that a commutative diagram such as

∆[n]⊗ yX G//

Λk[n]⊗ yX

∆[n]⊗ yX
��

Λk[n]⊗ yX F// F

G

τ

��

(6.21)

for n ∈ N and 0 ≤ k ≤ n, has local liftings if there is a covering sieve S of X such that, for every
arrow V → X in S, the induced diagram

∆[n]⊗ yV G//

Λk[n]⊗ yV

∆[n]⊗ yV
��

Λk[n]⊗ yV F// F

G

τ

��

has a diagonal filler ∆[n]⊗ yV → F .
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2. We say that τ is a local fibration if every square (6.21) has local liftings.

3. We say that τ is a local acyclic fibration if it is both a local weak equivalence and a local fibration.

We can now give the following

Definition 6.3.13. Let X ∈ C . A hypercover of X is a pair

(U, U =⇒ yX),

where U ∈ sPsh(C ) and U =⇒ yX is a map of simplicial presheaves such that:

(i) for every n ∈ N, Un is a coproduct of representable presheaves. Namely, for every n ∈ N, there is a
set An and a family {Uαn}αn∈An of objects of C such that

Un =
∐

αn∈An

y(Uαn) ;

(ii) U =⇒ yX is a local acyclic fibration (see Definition 6.3.12).

Given a covering sink {Ui → X}i∈I , setting, for each n ∈ N,

Un :=
∐

(i0,i1,··· ,in)∈In+1

y(Ui0ii···in) ,

where Ui0ii···in is the iterated pullback over X as above, the natural map U =⇒ yX turns U into an
hypercover of X which is sometimes called the Čech complex associated to the given covering sink. We
then generalize Definition 6.3.11 as follows

Definition 6.3.14. Let X ∈ C and let (U, U =⇒ yX) be a hypercover of X so that each Un is a
coproduct of representables y(Uαn), for {Uαn}αn∈An ⊆ Ob(C ).

1. An objectwise fibrant simplicial presheaf P is said to satisfy descent for the hypercover U =⇒ yX
if the canonical map

P (X)→ holim

( ∏
α0∈A0

P (Uα0)
∏

α1∈A1

P (Uα1)
//∏

α0∈A0

P (Uα0)
∏

α1∈A1

P (Uα1)//
∏

α1∈A1

P (Uα1)
∏

α2∈A2

P (Uα2)
//∏

α1∈A1

P (Uα1)
∏

α2∈A2

P (Uα2)//∏
α1∈A1

P (Uα1)
∏

α2∈A2

P (Uα2)//
∏

α2∈A2

P (Uα2)
//∏

α2∈A2

P (Uα2)
//∏

α2∈A2

P (Uα2) //
∏

α2∈A2

P (Uα2) // · · ·
)

is a weak equivalence. Here, the displayed map within brackets are induced by the simplicial
structure of U . If P is an arbitrary simplicial presheaf, we say that it satisfies descent for the
hypercover U =⇒ yX if some objectwise fibrant approximation of P does so.

2. An objectwise fibrant simplicial presheaf P is called a homotopy sheaf if it satisfies descent for all
hypercovers U =⇒ yX, for any X ∈ C .

Remark 6.3.15. There are different ways to characterise hypercovers and the descent property with
respect to them for a simplicial presheaf. We just mention the following elegant paraphrasing of descent
for a simplicial presheaf which follows from Lemma 4.4. in [DHI]. A simplicial presheaf P satisfies descent
for a hypercover U =⇒ yX if and only if the induced map of homotopy function complexes

maph
sPsh(C )(yX,P )→ maph

sPsh(C )(U,P )

is a weak equivalence of simplicial sets. Here maph
sPsh(C )(−, •) denotes a homotopy function complex

on either sPsh(C )inj or on sPsh(C )proj (see Definition 4.4.12).

We finally get the promised

Theorem 6.3.16. Let (C , τ) be a Grothendieck site. Let sPsh(C )inj and sPsh(C )proj denote the category
of simplicial presheaves on C endowed with the injective and the projective model structure respectively
(see Definition 4.3.2). Then the following hold.

1. The Bousfield localization of sPsh(C )inj with respect to the class H of all hypercovers exists and
coincides with sPsh(C )Jar.
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2. The fibrant objects in sPsh(C )Jar are given by the fibrant objects in sPsh(C )inj which are homotopy
sheaves.

3. The Bousfield localization sPsh(C )proj,H of sPsh(C )proj with respect to the class H of all hypercovers
exists. The fibrant objects of such a localization are given by the homotopy sheaves.

4. sPsh(C )proj,H and sPsh(C )Jar are Quillen equivalent.

A proof of the above Theorem can be found in Section 6 of [DHI]. Observe that 4. follows from 1. and
3. because sPsh(C )proj and sPsh(C )inj are Quillen equivalent via the identity functors and this Quillen
equivalence passes to the Bousfield localizations (see [Hir1], Theorem 3.3.20). Such a Quillen equivalence
essentially tells us that, in order to present the homotopy theory of homotopy sheaves, we can get rid of
the injective-fibrancy condition in 2. of Theorem 6.3.16, by considering the projective model structure on
sPsh(C ) to start with. This is desirable, as in sPsh(C )proj the fibrant objects are exactly the objectwise
fibrant simplicial presheaves, whereas the description of fibrant objects in sPsh(C )inj is more inexplicit.
(Note however that passing from the injective to the projective model structure causes the loss of the
cofibrancy property for all objects in sPsh(C ) and in its Bousfield localizations).

We conclude our work by reporting the following result (see [DHI], Corollary A.9), which explains our
previous comment on sufficiency of Čech descent for n−types.

Proposition 6.3.17. Let P be an objectwise fibrant simplicial presheaf. Assume that there is an n ∈ N
such that, for all X ∈ C , πk(P (X), p) ∼= 0 for every 0−simplex p of P (X) and all k ≥ n. Then P is a
homotopy sheaf if and only if it satisfies Čech descent for all covering sinks.
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