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A study of quantum error-correcting
codes derived from platonic tilings

Gabriele Spini

8 July 2013



Contents

Contents i

Abstract iii

Introduction iv

1 Backgound and motivation 1

1.1 A brief review of classical cycle codes . . . . . . . . . . . . . . . 1

1.2 Topological quantum codes . . . . . . . . . . . . . . . . . . . . . 4

2 An overview of Platonic surfaces 8

2.1 Platonic graphs: first definitions and properties . . . . . . . . . 8

2.2 From graphs to surfaces . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Further properties of platonic surfaces and of their duals . . . . 13

2.4 The spectrum of πp . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 An alternative construction . . . . . . . . . . . . . . . . . . . . 24

3 Homological systole of platonic surfaces and of their duals 27

3.1 The platonic surface πp . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The dual surface π′n . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 The quantum error-correcting codes issued by platonic tilings 43

4.1 Definition and basic parameters . . . . . . . . . . . . . . . . . . 43

4.2 Sparsity analysis of Cp . . . . . . . . . . . . . . . . . . . . . . . 44

Conclusions 45

i



A Computer simulations 46

A.1 Construction of πp . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.2 Cycles testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.3 Further rank analysis . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53



Abstract

This thesis concerns the study of a family of quantum-error correcting codes

that present low-density parity-check matrices. These codes are of CSS-type

and are obtained from a family of tilings called platonic surfaces ; the possibility

of using this family of surfaces for quantum coding theory has been introduced

by Reina Riemann in her PhD thesis in 2011.

Our work is devoted to revisiting and expanding this study; we first present

an overview of platonic surfaces, using a combinatorial approach based on

graph theory, and study their remarkable properties without restricting us to

those related to the derived codes. Computations regarding symmetry and

spectrum of these graphs are presented, as well as an alternative contruction.

The main new result we introduce is the computation of an upper bound on

the minimal distance of these codes, equal to the homology systole of platonic

surfaces; this yields a relative minimum distance that tends to zero as the

block length goes to infinity.

Finally, we present some computer simulations that are necessary to com-

pute the above bound for some of the platonic surfaces, and that could be

useful for further investigation of the properties of these codes.
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Introduction

It is known that tilings of surfaces yield quantum error-correcting codes with

efficient decoding algorithms; in the present paper, we study a family of codes

obtained in this way. Properties of these codes can be obtained directly in

terms of the underlying surface structure, hence we shall mostly work on the

tilings themselves to investigate the quality of the codes; graph theory will be

our fundamental tool. No knowledge of quantum (or classical) coding theory is

assumed, and we try to make this paper as self-contained as possible to make

it accessible for the readers that are not familiar with the subject.

The aim of this work is to compute the homology systole of a family of

combinatorial surfaces: namely, we will define these to be a special type of

2-complexes, constructed via a combinatorial approach based on graph the-

ory, which is the most natural language for our study. Although these sur-

faces can be given a Riemann-manifold structure, we stick to the topologi-

cal/combinatorial approach; the homology systole of such a family is the small-

est possible length of a cycle whose class is non-zero in a homology quotient

that will be defined.

Our main object of study is a family of combinatorial surfaces called pla-

tonic tilings, which gives rise to a family of quantum error-correcting codes of

CSS (Calderbank, Shor and Steane) type that have low-density parity-check

matrices.

The possibility of using this family of surfaces for quantum error-correction

was introduced by R. Riemann in her doctorate thesis in 2011 [15]; the present

dissertation is essentially devoted to revisiting and expanding the work of Rie-

mann, as well as to collecting various properties of platonic tilings.
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Introduction

The first chapter will present some background information and motivation

for our study, with a short introduction to quantum surface codes; this will be

introducted by a small paragraph on cycle codes of graphs, as this is a very

quick and intuitive way to approach quantum surface codes.

The second chapter provides an overview of the family of platonic graphs

{πn : n ∈ N≥3}, whose remarkable properties have been studied (among

others) by Biggs [3], Brooks [5],[4], Gunnells [10], and Lanphier & Rosenhouse

[12].

We show the high symmetry of these graphs, and discuss their regularity,

the length of their diameter and their eigenvalues; moreover, we stress that

platonic graphs are actually endowed with the structure of a (combinatorial)

surface, so that they can give rise to quantum topological codes. General prop-

erties of the dual surfaces π′n are also presented.

In the third chapter we compute the homology systole of πn and of the

dual surface π′n, i.e. the length of the shortest cycle that is not a sum of faces;

the smallest of these parameters coincides with the minimal distance of the

derived code, and hence the computation of their values (or at least of some

bounds on them) is critical to understand the effectiveness of the code.

This is the section where our work significantly expands Riemann’s one:

exploiting the structure of F2-vector space of the cycles of πn to use dimensional

arguments, we show that the homology systole of platonic graphs is indeed not

bigger than 6 (for n = p a prime); this result was not present in Riemann’s

work.

We also report the covering argument that allows one to prove a logarith-

mic lower bound on the girth of the dual graphs π′n, and discuss how close this

is to Moore’s bound.

In the fourth chapter we discuss the properties of the error-correcting codes

derived from platonic graphs, providing computations regarding their rate,

sparsity and minimal distance.

Finally, the appendix presents the computer simulations that have been
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Introduction

useful to formulate the result on the homological systole of πn; some of the

included programs have been necessary to compute this parameter for some

values of n, and will certainly be useful for further analysis on the sharpness

of the provided bound.
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Chapter 1

Backgound and motivation

We shall first briefly present the main mathematical concepts we will deal with,

i.e. quantum CSS-codes of topological type, and combinatorial surfaces; we

will only cover those aspects more relevant for our purposes (see [8], [16] and

[13] for a more specific study).

1.1 A brief review of classical cycle codes

Among all quantum error-correcting codes, topological codes share several

similarities with classical cycle codes; we shall emphasize these analogies and

present them in a way accessible to readers that are not familiar with quantum

coding theory.

Definition 1.1.1. A (classical) binary linear code is the kernel of a matrix

H ∈ MF2(r × n), called a parity-check matrix of the code. An element of a

code is called a codeword.

The parameters of a code C = ker(H) are [n, k, d], where:

- n is called the block length, equal to the number of columns of H;

- k is called the dimension of the code, and it is indeed its dimension as

an F2-vector space;

- d is called the minimum distance of the code, equal to the minimum

weight (=number of non-zero coordinates) of a non-zero codeword.
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1. Backgound and motivation

One of the objectives of coding theory is, for a fixed block length n, to find

a code with dimension and minimum distance as large as possible.

A classical family of codes is given by the cycle code of any given graph: let

G be a finite, undirected graph, i.e. G := (V,E) where V is a finite set (called

the vertex set) and E ⊆
(
V
2

)
is a family of pairs of vertices, called edges; fix an

ordering of the vertex and edge set, say V : {v1, · · · , v|V |} and E : {l1, · · · , l|E|}.
Then we can define the incidence matrix of the graph H ∈MF2(|V | × |E|) to

be such that Hij = 1 if the vertex vi belongs to lj, and Hij = 0 for all other

couples.

Codewords of cycle codes have an intuitive geometric picture: notice that

elements of FE2 can be seen as characteristic vectors of a set of the edges; now

let us study the orthogonality conditions that define codewords: given W ∈ FE2
(that we will thus also view as a subset of E), we have that W is a codeword if

and only if H ·W t is the zero vector. But this holds if and only if for every line

Hi of H, the scalar product Hi ·W t is equal to zero, which in turn happens if

and only if #{j : Hij = Wj = 1} is even. Now recall that Hij = 1 only when

the edge lj is incident to the vertex vi: this means that H ·W t = 0 if and only

if for every vertex v of the graph, the number of edges belonging to W that are

incident to v is even. We will call cycles the subsets of E with this property;

notice that with this definition, cycles don’t need to be connected.

The parameters of a code derived from a graphG = (V,E) are the following:

- the block length is equal to the number of edges of the graph (trivial by

definition);

- the dimension of the code is equal |E| − |V |+ the number of connected

components of the graph. This is a standard result from graph theory,

not difficult to prove by induction (see [2], for instance);

- the minimum distance is the girth of the graph, i.e. the length of the

shortest non-zero cycle (this is obvious by the above characterization of

codewords).

2



1. Backgound and motivation

Figure 1.1: Petersen’s graph; the derived code has parameters [15,6,5].

The minimum distance of cycle codes of graphs is far from being optimal:

for instance, consider a ∆-regular graph G (i.e, such that every vertex is in-

cident to ∆ edges) with N vertices, and let d be the girth of the graph; then

for every fixed vertex v, and for any r <
⌊
d
2

⌋
, the ball centered at v and of

radius r does not contain cycles (since the distance between to vertices is the

length of the shortest path joining them). Thanks to the absence of cycles,

computing the cardinality of such a ball is rather easy: the number of elements

at distance 1 from v is ∆; the number of element at distance 2 is ∆ · (∆− 1),

and that of elements at distance i is ∆ · (∆− 1)i−1. Thus

#B(v, r) = 1 + ∆ + · · ·+ ∆(∆− 1)r−1,

and therefore by setting r :=
⌊
d
2

⌋
− 1 we get

1 + ∆(∆− 1) + ∆(∆− 1)2 + · · ·+ ∆(∆− 1)b
d
2c−2 < N.

This inequality is known as Moore’s bound ; now if we keep ∆ fixed and we let

N go to infinity, we get

d ≤ 2 · log∆−1N +O(1) ≈ 2 · log∆−1(block length) +O(1)

which means that the minimum distance of cycle codes is at most logarithmic

in the block length.

Cycle codes of graphs, however, are very simple to decode: namely, there

exist algorithms that for any given vector of Fn2 always find the closest codeword

in time polynomial in the block length, which is remarkable in coding theory.

3



1. Backgound and motivation

1.2 Topological quantum codes

Let us first introduce the family of CSS (Calderbank, Shore and Steane) codes:

Definition 1.2.1. A (quantum) CSS-code is described in term of two binary

matrices HX and HZ, having the same number of columns and enjoying the

property that all rows of HX are orthogonal to all rows of HZ.

The parameters of the code are [[n, k, d]] where:

- n is called the block length, and is equal to the number of columns of HX

(or of HZ);

- k is called the dimension of the code, and is equal to n− rkHX − rkHZ ;

- d is called the minimum distance of the code; it is equal to the minimum

between dX and dZ , where:

– dX is the minimum weight of a vector lying in Fn2 , which is orthog-

onal to the space generated by the rows of HZ and does not belong

to the linear span of the rows of HX ;

– dZ is defined in a similar way, with X and Z swapped.

Now, topological CSS-codes can be constructed in a similar way as cycle

codes of graphs: let HX be the incidence matrix of a graph; then HZ must

be a matrix whose rows are characteristic vectors of cycles, because of the

orthogonality condition between rows of the two matrices.

In other words, a CSS code can de defined from any 2-complex, a topological

space obtained from three steps: first, select a (finite) set of points V ; then glue

a set E = {l1, · · · , l|E|} of segments (copies of the interval [0, 1]) to the vertex

set V via maps ϕi : ∂li → V . By ”glueing”, we mean that our topological

space at this step is a disjoint union of vertices and edges with identifications

provided by the glueing maps (i.e. x = ϕi(x) for any x in the boundary

of an edge li); this way we get a graph structure G. Now to complete the

construction, we just need to glue a set of discs F = {f1, · · · , f|F |} (copies of

the open ball in R2) to the graph via maps ψj : ∂fj → G; the final space will
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1. Backgound and motivation

be the disjoint union of the graph and of the discs with identifications given

by these new glueing maps.

Among all possible 2-complexes, the following surfaces are somewhat nat-

ural candidates for the construction of a CSS code:

define a (combinatorial) surface to be a graph, together with a favoured set

of elementary cycles (i.e., that are not union of other non-zero cycles) called

faces, satisfying the following properties:

(i) two arbitrary faces are either disjoint or share a unique edge, and every

edge belongs to exactly two faces;

(ii) for any vertex v of the graph, if Fv denotes the set of faces incident

to v, then any edge common to two faces of Fv contains v; moreover

if γv denotes the graph whose vertices are elements of Fv, joined by an

edge whenever the two corresponding faces share an edge, then γv is an

elementary cycle.

This allows us to define the dual surface, whose vertices are faces of the

original surface, such that two vertices are joined by an edge whenever the

corresponding faces share an edge; faces are given by the elementary cycles γv

of the above definition.

Given a combinatorial surface, we then have a natural way to define its

associated topological quantum code: the matrix HX will be, as previoulsy

stated, the incidence matrix of the underlying graph; the matrix HZ will be

the matrix whose rows are characteristic vectors of faces.

As one might expect, parameters of a topological code can be expressed in

term of of the associated surface:

- the block length will be equal to the number of edges of the surface;

- the dimension will be equal to twice the number of connected components

of the surface minus its Euler characteristic;

- the minimum distance will be equal to the shortest non-zero cycle of the

surface or of its dual that cannot be written as sum of faces.
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1. Backgound and motivation

Topological codes have similar drawbacks as classical cycle codes: it has

been recently proved by Delfosse [7] that if the rate k/n of such a code is

non-vanishing, then the minimum distance is at most logarithmic in the block

length; however, topological codes have highly remarkable decoding permfor-

mances.

It will be useful to present an example: we shall discuss Toric codes, intro-

duced by Kitaev [11]; this is actually the first family of topological quantum

codes ever proposed.

View the torus T as a square with opposite sides identified; then divide it

into a square grid of size m × m. This gives us a surface in the sense that

has been discussed above: the graph structure is given by the one-dimensional

grid, and the faces are the squares. This way, lines of HX are vectors of weight

4 representing the four edges incident to each vertex, and lines of HZ represent

squares.

The parameters of this code are [[n, k, d]] = [[2m2, 2,m]]: indeed, n is the

number of edges of the graph, and k can be computed by the above formula

in terms of the parameters of the tiling. Finally, an example of a cycle that

is not sum of faces is given by a vertical or horizontal line in the grid, i.e. a

shortest non-contractible cycle: this is of length m, and it is immediately seen

to be outside the linear span of the faces; since this toric graph is self-dual, it

will suffice to show that cycles of legnth less than m are always sum of faces

to prove that d = m. This can be showed rather quickly by noticing that such

cycles can be embedded in a planar portion of the graph, and that all cycles

6



1. Backgound and motivation

are sum of faces in planar graphs.

Our work will be devoted to the study of the family of topological quantum

codes derived from platonic surfaces, a generalization of the five platonic solids.

7



Chapter 2

An overview of Platonic surfaces

In this chapter, we shall focus on the properties of platonic tilings, that are

remarkable even aside from their effects on the construction of quantum codes.

Platonic graphs have been studied by several authors: Brooks [4], [5] mainly

focuses on an approach based on modular curves, while we will rather use graph

theory; we shall first discuss the good symmetry properties of platonic tilings

and of their dual, then compute their spectrum, following the work of Gunnells

[10] and of DeDeo, Lanphier and Minei [6]. We shall see that the eigenvalues

are optimal with respect to expansion properties. We will see that platonic

graphs have a very small diameter, which is equal to the number of distinct

eigenvalues minus 1; we will also see that platonic graphs are distance-regular.

Finally, we will present an alternative construction by Biggs [3].

2.1 Platonic graphs: first definitions and prop-

erties

Definition 2.1.1. Let n ∈ N≥3; we define the platonic n-th graph to be

πn := (Vn, En) where:

- the vertex set Vn is defined by

Vn :=

{(
a

b

)
∈ Z/nZ× Z/nZ : gcd(a, b, n) = 1

}/
∼

8



2. An overview of Platonic surfaces

where (
a

b

)
∼
(
a′

b′

)
⇐⇒

 a = a′

b = b′
or

 a = −a′

b = −b′
;

- the edge set En is defined by(
a

b

)(
c

d

)
∈ En ⇐⇒ det

[
a c

b d

]
≡ ±1 mod n.

Notice that the condition ”gcd(a, b, n) = 1” is equivalent to

”ka = kb = 0⇒ k = 0 ∈ Z/nZ”, and that in the case n = p a prime, we have

that

Vp =

{(
a

b

)
∈ (Fp)2 \ {0}

}/
∼;

moreover, #Vp = p2−1
2

(= half the number of non-zero elements of Fp).
Also notice that when n is not a prime, the definition of Vn is not universally

accepted: for instance for n = pm a prime power, DeDeo, Lanphier and Minei

[6] define Vn :=
{(

a
b

)
∈ (Fn × Fn) \ {0}

}
/ ∼.

From now on, the notation
(
a
b

)
shall both denote elements of Z/nZ×Z/nZ

and of Vn (that is to say, their classes modulo ±1); what we mean should be

clear from the context.

We have the following properties:

Proposition 2.1.1. For every couple of vertices
(
a
b

)
,
(
c
d

)
∈ Vn such that

det

[
a c

b d

]
∈ (Z/nZ)×, we have that #

(
N
(
a
b

)
∩N

(
c
d

))
= 2 (where N(X) de-

notes the neighbourhood of X, i.e. all the vertices connected to X).

In particular, for any edge in πn there are exactly two paths of length 2

joining the first and the last vertex of the edge; we will refer to this as the

two-step property.

Proof. We have that a given
(
x
y

)
belongs to N

(
a
b

)
∩N

(
c
d

)
if and only if

det

[
a x

b y

]
= ±1

det

[
c x

d y

]
= ±1

9



2. An overview of Platonic surfaces

Notice that up to exchanging a solution
(
x
y

)
with its opposite

(−x
−y

)
, we may

assume that det

[
a x

b y

]
= 1.

Now the matrix

[
a c

b d

]
is invertible, since its determinant belongs to

(Z/nZ)×; thus the equation
(
x
y

)
=

[
a c

b d

] (
r
s

)
always admits a solution, namely

∀
(
x
y

)
∈ Vn ∃ r, s ∈ Z/nZ such that(

x

y

)
= r

(
a

b

)
+ s

(
c

d

)
.

Let D := det

[
a c

b d

]
; the above equations become


1 = r · det

[
a c

b d

]

±1 = s · det

[
c a

d b

]

i.e. {
r = D−1

s = ±D−1

Thus S := N
(
a
b

)
∩N

(
c
d

)
=
{
D−1 ·

[(
a
b

)
±
(
c
d

)]}
We can easily see that #S = 2: indeed, if by contradiction

D−1 ·
[(
a
b

)
+
(
c
d

)]
= ±D−1 ·

[(
a
b

)
−
(
c
d

)]
, then either

2 ·
(
c
d

)
=
(

0
0

)
or 2 ·

(
a
b

)
=
(

0
0

)
, which would imply 2 = 0 ∈ Z/nZ by definition of

Vn, impossible since n ≥ 3.

Proposition 2.1.2. For every X =
(
a
b

)
∈ Vn, we have that N(X) is a (con-

nected) cycle of length n; in particular, πn is regular of degree n.

Proof. We first prove that N(X) 6= ∅, i.e. that the equation 1 = det

[
a x

b y

]
=

ya− xb has solutions mod n; notice that if this is the case, then this equality

automatically implies gcd(x, y, n) = 1, i.e.
(
x
y

)
∈ Vn.

10



2. An overview of Platonic surfaces

If we set k := gcd(a, b), then by definition of Vn, we have that gcd(k, n) = 1,

i.e. k is invertible mod n; now write k as a linear combination of a and b, say

k = y′a− x′b: by reducing the equation mod n and by multiplying by k−1, we

get

1 = (k−1y′)a− (k−1x′)b =: ya− xb (∈ Z/nZ).

Thus N(X) 6= ∅; as noticed in the above proposition, every
(
x
y

)
in Vn can

be written as a linear combination of X and of any of its neighbours, i.e.(
x
y

)
= r
(
a
b

)
+ s
(
c
d

)
for a fixed

(
c
d

)
∈ N(X).

If
(
x
y

)
∈ N(X), then we may assume without loss of generality that 1 =

det

[
a x

b y

]
(= s), and thus

N(X) =

{
Xs :=

(
c

d

)
+ s ·

(
a

b

)
: s ∈ Z/nZ

}
/ ∼ .

Notice that every Xs is connected to Xs+1, and thus N(X) is a cycle; to prove

that it has cardinality n, it suffices to show that Xs � Xs′ ∀s 6= s′:

- if Xs = Xs′ , then
(
c
d

)
+ s
(
a
b

)
=
(
c
d

)
+ s′

(
a
b

)
,

i.e. (s− s′)
(
a
b

)
=
(

0
0

)
, which implies s = s′ by definition of Vn;

- if Xs = −Xs′ , then
(
c
d

)
+ s
(
a
b

)
= −

(
c
d

)
− s′

(
a
b

)
,

i.e. 2
(
c
d

)
= −(s+ s′)

(
a
b

)
; thus

2 = det

[
a 2c

b 2d

]
= det

[
a −(s+ s′)a

b −(s+ s′)b

]
= 0,

a contradiction since n ≥ 3.

2.2 From graphs to surfaces

Proposition 2.1.2, together with the two-step property, allows us to define a

tiling of a surface from these graphs:

Definition 2.2.1. A (combinatorial) surface is a triplet S := (V,E, F ) where

11



2. An overview of Platonic surfaces

- V is a set of vertices and E is a set of edges of V , i.e. (V,E) is a graph;

- F is a collection of cycles called faces satisfying the following properties:

(i) every element of F is an elementary cycle, i.e. it cannot be written

as the union of two non-empty cycles;

(ii) two arbitrary faces are either disjoint or share a unique edge, and

every edge belongs to exactly two faces;

(iii) for any vertex v ∈ V , if Fv denotes the set of faces incident to v,

then any edge common to two faces of Fv contains v; moreover if

γv denotes the graph whose vertices are elements of Fv, joined by

an edge whenever the two corresponding faces share an edge, then

γv is an elementary cycle.

Definition 2.2.2. For every n ≥ 3, we define the platonic n-th surface to be

Sn := (Vn, En, Fn) where Fn := {cycles of length 3 in πn}; we will often denote

the surface Sn simply by πn.

Recall that given two graphs G = (V,E) and G′ = (V ′, E ′), a morphism of

graphs between G and G′ is a map Φ : V → V ′ that sends edges to edges; an

isomorphism of graphs is a morphism that is bijective on vertices and edges.

Proposition 2.2.1. We have that Sn is indeed a surface in the sense of the

above definition.

Proof. (i) Triangles are obviously elementary since cycles cannot have length

1 nor 2 by definition of a graph.

(ii) The fact that two distinct faces are either disjoint or share a unique edge

is a general property of all cycles of length 3: indeed, if C1 and C2 are

two such cycles, then #(C1 ∩ C2) cannot be equal to 2, since an edge of

a cycle of length 3 is uniquely determined by the other two edges; thus

#(C1 ∩ C2) can only be either 0 or 1, as requested.

The fact that every edge belongs to exactly two faces has been proved

by Prop. 2.1.1 - it is nothing but the two-step property.

12



2. An overview of Platonic surfaces

(iii) A length-3 cycle incident toX ∈ Vn must be of the form (XX ′, X ′X ′′, X ′′X)

for some X ′, X ′′ ∈ N(X), with X ′X ′′ ∈ En; but as seen in the proof of

the above proposition, N(X) is an elementary cycle, i.e. we may lebel

its elements as N(X) = {Xm : m ∈ Z/nZ} where Xm 6= Xm′ ∀m 6= m′

and XmXm+1 ∈ En ∀m ∈ Z/nZ.

Thus a face incident to X is of the form Fm := (XXm, XmXm+1, Xm+1X)

for some m ∈ Z/nZ, and hence any edge common to two faces must

necessarily be of the form XXk for some k ∈ Z/nZ. Moreover the map

N(X)→ FX

Xm 7→ Fm

is an isomorphism of graphs, so that the property is proved.

Notice that #En = n
2
·#Vn (since πn is n-regular) and #Fn = 2

3
·#E (every

edge is common to two faces, every face has three edges). This allows us to

compute easily these parameters when n is a prime, since we have a simple

formula to express the cardinality of the set of vertices:

Remark 2.2.1. For any prime p ≥ 3, the parameters of the platonic tiling πp

are

#Vp =
p2 − 1

2
, #Ep =

p · (p2 − 1)

4
, #Fp =

p · (p2 − 1)

6
.

We can define the dual surface π′n := (V ′n = Fn, E
′
n = En, F

′
n = Vn); for

n = 3, 4, 5, it can be easily proved that via this contruction, we find the pla-

tonic solids (hence the name of ”platonic graphs”): π3 ≡ π′3 is the tetrahedron,

π4 is the octahedron, π′4 is the cube, π5 is the icosahedron and π′5 is the do-

decahedron.

2.3 Further properties of platonic surfaces and

of their duals

We shall now present some remarkable properties of πn and of π′n.

13



2. An overview of Platonic surfaces

Theorem 2.3.1. For all n ≥ 3, we have that πn is arc-transitive: that is to

say, for every four vertices X, Y, Z,W ∈ Vn such that XY ∈ En, ZW ∈ En,

there exists an isomorphism of graphs ϕ : πn → πn such that ϕ(X) = Z and

ϕ(Y ) = W .

In particular, πn is also vertex-transitive for every n ≥ 3.

Proof. Let G := {M ∈MZ/nZ(2× 2) : det(M) = 1}/〈±Id〉
(= PSL2(Fp) for n = p a prime); then G acts on Vn via left multiplication: for

[M ] ∈ G, define

ϕ[M ] : Vn → Vn(
a

b

)
7→M ·

(
a

b

)
We have that ϕ[M ] is well-defined, i.e. it just depends on the class of M in G

thanks to the definition of Vn; it is obviously a bijection since the matrices we

are considering are invertible. Moreover ϕ[M ] is a morphism of graphs:

indeed, let
((
a
b

)
,
(
c
d

))
∈ En; we may assume without loss of generality that

det

[
a c

b d

]
= 1. Then we have that

det

[
M

(
a

b

)
M

(
c

d

)]
= det(M) · det

[
a c

b d

]
= 1

⇒
(
ϕ[M ]

(
a

b

)
, ϕ[M ]

(
c

d

))
=

(
M

(
a

b

)
,M

(
c

d

))
∈ En.

We thus get an isomorphism of graphs ϕ[M ] : πn → πn for every [M ] ∈ G; we

are thus left to prove that for every couple of edges l, l′ ∈ En there exists a

ϕ[M ] sending l to l′:

let l =
((
a
b

)
,
(
c
d

))
, l′ =

((
x
y

)
,
(
z
w

))
; again, we may assume without loss of

generality that det

[
a c

b d

]
= det

[
x z

y w

]
= 1.

We need to find an M ∈ MZ/nZ(2 × 2) with determinant equal to 1 such

that {
M
(
a
b

)
=
(
x
y

)
M
(
c
d

)
=
(
z
w

) ;

14



2. An overview of Platonic surfaces

this happens ⇐⇒ M

[
a c

b d

]
=

[
x z

y w

]
⇐⇒ M =

[
x z

y w

][
a c

b d

]−1

. Such

an M clearly has determinant 1, and thus the theorem is proved.

Also notice that the matrix M ′ :=

[
x −z
y −w

][
a c

b d

]−1

would also have

worked, which means that we can decide whether to send the vertex
(
a+c
b+d

)
to(

x+z
y+w

)
or to

(
x−z
y−w

)
.

Corollary 2.3.1. π′n is arc-transitive in the sense of the above proposition,

and thus also vertex transitive, ∀n ≥ 3.

Proof. Let l1, l2 be two arbitrary edges of π′n, say

l1 =

((
a

b

)(
c

d

)(
e

f

)
,

(
a

b

)(
c

d

)(
e′

f ′

))
,

l2 =

((
x

y

)(
z

w

)(
h

k

)
,

(
x

y

)(
z

w

)(
h′

k′

))
.

Then as seen in the proof of the above theorem, we may find a matrix M ∈
MZ/nZ(2× 2) having determinant 1 such that

M

(
a

b

)
=

(
x

y

)
, M

(
c

d

)
=

(
z

w

)
,

M

(
e

f

)
=

(
h

k

)
, M

(
e′

f ′

)
=

(
h′

k′

)
.

Indeed, the first two equations are straightforward from the proof; the third

and fourth ones come from the remark at the end of the proof, since
(
e
f

)
=
(
a±c
b±d

)
and

(
e′

f ′

)
=
(
a∓c
b∓d

)
, and similarly for

(
h
k

)
and

(
h′

k′

)
. Thus if we define

ϕ′[M ] : V ′n → V ′n

{α, β, γ} 7→ {Mα,Mβ,Mγ}

we get a map that is well-defined (since multiplication by M preserves inci-

dence, and thus sends triangles to triangles), and that sends the (oriented)

edge l1 to l2; moreover it is clearly a morphism of graphs (since if two faces

share an edge αβ, then their images will share MαMβ) and it is bijective since

the matrix M is invertible.

We have therefore constructed the requested isomorphism of graphs.

15



2. An overview of Platonic surfaces

Proposition 2.3.1. For every prime p ≥ 5, we have that the diameter of πp

is equal to 3.

Proof. Let = diam(πp) = dist(x, y) for x, y ∈ Vp. Since πp is vertex-transitive,

we may assume that x =
(

0
1

)
; we then have two cases:

- y =
(
α
β

)
with α 6= 0: thus α ∈ F×p , and we have that(

0
1

)(
1

α−1(1+β)

)
∈ Ep and

(
1

α−1(1+β)

)(
α
β

)
∈ Ep: thus dist(x, y) ≤ 2.

- y =
(

0
β

)
: then necessarily β ∈ F×p , and thus we get

(
0
1

)(
1
1

)
∈ Ep,(

1
1

)(
β−1

1+β−1

)
∈ Ep,

(
β−1

1+β−1

)(
0
β

)
∈ Ep;

thus dist(x, y) ≤ 3.

Now notice that N
(

0
1

)
=
{(

1
k

)
: k ∈ Fp

}
and

N
(

0
β

)
=
{(

β−1

h

)
: h ∈ Fp

}
; thus if β 6= 0,±1 (and such a β exists if p ≥ 5), we

have that

N

(
0

1

)
∩N

(
0

β

)
= ∅,

i.e. dist
((

0
1

)
,
(

0
β

))
≥ 3.

Thus diam(πp) = 3 for p ≥ 5.

Remark 2.3.1. We shall see that the number of distinct eigenvalues of πp is

4 for every prime p ≥ 5, so that

diam(πp) + 1 = #{distinct eigenvalues of πp}.

Remark 2.3.2. It can be easily seen that diam(π3) = 1, i.e. π3 is the complete

graph on 4 vertices (we had actually already noticed that it is a tetrahedron).

Corollary 2.3.2. πp (and thus also π′p) is connected for every prime p ≥ 3.

Now this actually allows us to prove that all platonic graphs are distance-

regular for every p prime: first recall the following

Definition 2.3.1. A graph G = (V,E) of diameter D is said to be distance-

regular if for every i = 0, · · · , D there are integeres ai, bi, ci ∈ N≥0 such that

for every couple of vertices v, w ∈ V with dist(v, w) = i we have that

# (∂Bi(v) ∩N(w)) = ai, # (∂Bi+1(v) ∩N(w)) = bi,

16
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# (∂Bi−1(v) ∩N(w)) = ci.

(where ∂Bj(x) denotes the elements of V at distance j from x, N(y) denotes

the neighbours of y).

Notice that in particular any such graph is regular of degree k = ai+ bi+ ci

(for any i); the vector

(b0, · · · , bd−1; c1, · · · , cd)

is called the intersection vector of G, and its elements are called intersection

numbers ; also notice that we always have

b0 = # (∂B1(v) ∩N(v)) = k, c0 = bD = 0, k = ai + bi + ci ∀ i.

Proposition 2.3.2. The platonic graphs πp are distance-regular for every

prime p ≥ 5, with intersection vector

(b0, b1, b2; c1, c2, c3) = (p, p− 3, 1; 1, 2, p) .

Proof. Let v, w ∈ Vp be at distance i; thanks to the vertex-transitivity of the

graph, we may assume v =
(

0
1

)
. Let w =

(
α
β

)
; since the diameter of πp is equal

to 3, we only have three cases to discuss:

i=1: since vw ∈ Ep, N(w) = (N(w)∩{v})t(N(w)∩N(v))t(N(w)∩∂B2(v));

but N(w) ∩ {v} = {v} and #(N(w) ∩N(v)) = 2 thanks to the two-step

property, so that

b1 = #(∂B2(v)∩N(w)) = #N(w)−#(N(w)∩{v})−#(N(w)∩N(v)) =

p− 1− 2 = p− 3.

We also have c1 = #(∂B0(v) ∩N(w)) = 1.

i=2: recall that from the proof of proposition 2.3.1, since d
((

0
1

)
,
(
α
β

))
= 2, we

have that α ∈ F×p \ {±1}; moreover, thanks again to the proof of the

proposition,

∂B3

((
0

1

))
=

{(
0

γ

)
: γ ∈ F×p \ {±1}

}
and thus

∂B3

((
0

1

))
∩N

(
α

β

)
=

(
0

α−1

)
17



2. An overview of Platonic surfaces

which implies b2 = #(∂B3(v) ∩N(w)) = 1; moreover, since

det

[
0 α

1 β

]
= −α ∈ F×p ,

we have by proposition 2.1.1 that 2 = #(N(v) ∩N(w)) = c2.

i=3: again by proposition 2.3.1, we have α = 0, β 6= 0,±1, and thus

∂B3

((
0

1

))
∩N

(
0

β

)
=

{(
0

γ

)
: γ ∈ F×p \ {±1}

}
∩
{(

β−1

δ

)
: δ ∈ Fp

}
= ∅.

Thus N(w) = N(w) ∩ ∂B2(v), so that c3 = #(N(w) ∩ ∂B2(v)) = p.

Remark 2.3.3. The tetrahedron π3 is well-known to be distance-regular (it

is actually distance-transitive) with intersection vector (3; 1); thus all platonic

graphs πp are distance-regular for p (odd) prime.

2.4 The spectrum of πp

Recall that given any graph G = (V,E), we can define its adjacency matrix to

be AG ∈MC(|V |×|V |) where Aij = 1 if the vertex vi is connected to vj, Aij = 0

for all other pairs of vertices. The spectrum of the graph G is defined to be the

set of eigenvalues of AG; equivalently, if we set CV := {functions f : V → C},
the spectrum of G can be defined to be the set of eigenvalues of the adjacency

operator Ad : CV → CV where Ad(f)(v) :=
∑

w∈N(v) f(w). Notice that since

all adjancency matrices are symmetric, the spectrum of any graph is real.

In this section we will compute the spectrum of the platonic graphs πp for

any odd prime p; the knowledge of the spectrum of a graph is relevant to un-

derstand if it has good expansion properties, i.e. if any subset of the vertex set

that is not too big is connected to a huge number of vertices in its complement.

Graphs with good expansion properties are useful in many areas, particularly

in computer sciences (e.g., to build efficient networks) and cryptography; the

difference between the largest and second largest eigenvalues of a graph yields

18
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a lower bound on the expansion ratio of the graph, a parameter that express

the quality of its expansion properties. Therefore, a graph is more interesting

from this point of view if it has a large spectral gap, i.e. a large difference

between the first and second largest eigenvalues; we shall see that platonic

graphs are asymptotically optimal in this sense.

Fix an odd prime p; to discuss the spectrum of the platonic p-th graph, we

will need a decomposition of πp:

Definition 2.4.1. We shall define the following group action:

F×p × Vp → Vp(
k,
(
a
b

))
7→ k ·

(
a
b

)
:=
(
ka
kb

)
.

We say that two vertices in the same orbit are associates; notice that this is

not an action of graphs, since it does not preserve edges.

Now fix a vertex v ∈ Vp; the orbit of v has cardinality p−1
2

(since −w = w

for every w ∈ Vp). Also notice that if w ∈ Vp is a vertex that is not associate

to v, then it is adjacent to a unique associate of v: indeed, write

v =

(
a

b

)
, w =

(
c

d

)
.

Since w is not an associate of v, we have that D := det

[
a c

b d

]
6= 0, and thus

w is only adjacent to D−1 · v = −D−1 · v.

Now for every associate k · v of v, consider the ”cap” Ckv := {kv}∪N(kv),

which is a ”wheel” having center kv connected to the vertices of the p-gon

N(kv). Notice that caps of different associates are disjoint, since if kv 6= k′v,

then kv /∈ N(k′v), k′v /∈ N(kv) and N(kv) ∩N(k′v) = ∅.
Thus the cardinality of the union of all caps is

#

( ⊔
w associates to v

Cw

)
=

∑
w associates to v

#Cw =
p− 1

2
· (p+ 1) =

p2 − 1

2
= #Vp.

This means that the (disjoint) union of all caps exhausts the vertex set of πp.

Moreover, we have that if a vertex w is not associate to v, then it is connected

to exactly two vertices on the p-gon of each cap, and to one associate of v.
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Indeed, we have already seen that every such a w is adjacent to exactly

one associate of v; now thanks to the transitivity of πp, we may assume that

v =
(

0
1

)
; thus w =

(
c
d

)
with c 6= 0, since w is not associate to v. For every

k ∈ F×p , the p-gon of the cap Ckv is equal to
{(

k−1

x

)
: x ∈ Fp

}
; thus in order

to look for elements of this form adjacent to w, we have to solve the equation

±1 = det

[
c k−1

d x

]
= cx− dk−1,

which has exactly two solutions since c 6= 0.

This construction will allow us to build the eigenvectors of the adjacency

matrix Ap of πp:

Definition 2.4.2. Fix a vertex v ∈ Vp; we then define the following vectors of

CVp :

(1) Sv : Vp → C is such that

Sv(w) :=

{
p if w = k · v for some k ∈ F×p , i.e. if w is associate to v;

−1 otherwise.

(2) Let χ : F×p → C× be a non-trivial character with χ(−1) = 1; then we set

P+
χ,v : Vp → C to be such that

(a) P+
χ,v(k · v) := χ(k)

√
p for all k ∈ F×p ;

(b) P+
χ,v(w) := χ(k), if w is not associate to v and k · v is the (unique)

associate to v adjacent to w.

(3) Let χ be as in (2); we then define P−χ,v in a similar way to P+
χ,v, simply

by putting −√p instead of
√
p in point (a).

Remark 2.4.1. The definitions of P+
χ,v and of P−χ,v are well-posed since

χ(−1) = 1: indeed, this implies that χ(−k) = χ(−1) · χ(k) = χ(k).

Proposition 2.4.1. We have that Sv, P
+
χ,v and P−χ,v are eigenvectors for the

adjacency operator Ap of πp with eigenvalues −1,
√
p and −√p, respectively.
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Proof. We shall first study Sv: consider the cap decomposition of Vp with

centers the associates of v; if kv is an associate of v, then none of its neighbours

can be associate to v since associates are never adjacent: thus

Ap(Sv)(kv) =
∑

x∈N(kv)

Sv(x) =
∑

x∈N(kv)

(−1) = −p = −Sv(kv).

If w is not associate to v, then it has been showed that it is adjacent to a

unique associate of v, say kv; hence

Ap(Sv)(w) =
∑

x∈N(w)

Sv(x) = Sv(kv) +
∑

x∈N(w), x 6=kv

Sv(x) = p+ (p− 1)(−1)

= 1 = −Sv(w)

which means that Sv is an eigenvector with eigenvalue −1.

Now let us focus on P+
χ,v: consider the same cap decomposition, and let kv

be an associate of v; then every neighbour x of kv is not associate to v, and

thus we have

Ap(P
+
χ,v)(kv) =

∑
x∈N(kv)

P+
χ,v(x) =

∑
x∈N(kv)

χ(k) = p · χ(k)

=
√
p · χ(k)

√
p =
√
p · P+

χ,v(kv).

Now let w be a vertex that is not associate to v; then it has been showed

that it is adjacent to exactly one associate of v, say kv, and to two ele-

ments on the p-gon of each associate of v; now if we list the associates of

v as
{
h · v : h = 1, · · · p−1

2

}
, we then have

Ap(P
+
χ,v)(w) =

∑
x∈N(w)

P+
χ,v(x) = P+

χ,v(kv) +
∑

x∈N(w), x 6=kv

P+
χ,v(x)

= χ(k)
√
p+

p−1
2∑

h=0

2 · χ(h).

But now, since χ(−1) = 1 we have that χ(h) = χ(−h) for every h ∈ F×p , and

thus
p−1
2∑

h=0

2 ·χ(h) =

p−1
2∑

h=0

χ(h) +

p−1
2∑

h=0

χ(h) =

p−1
2∑

h=0

χ(h) +

p−1
2∑

h=0

χ(−h) =
∑
h∈F×p

χ(h) = 〈χ, 1〉
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where 1 is the trivial character, 1(h) = 1 for every h ∈ F×p ; but the character

χ is different from 1 by assumption, and thus it is orthogonal to it, i.e. the

above expression is equal to zero: this implies that

Ap(P
+
χ,v)(w) = χ(k)

√
p =
√
p · P+

χ,v(w).

Thus P+
χ,v is an eigenvector with eigenvalue

√
p; a similar computation shows

that P−χ,v is an eigenvector with eigenvalue −√p.

Definition 2.4.3. We define the eigenspaces S := 〈Sv : v ∈ Vp〉 (with eigen-

value −1), P+ := 〈P+
χ,v : χ ∈ F̂×p , χ 6= 1, χ(−1) = 1, v ∈ Vp〉 (with eigenvalue

√
p) and P− := 〈P−χ,v : χ ∈ F̂×p , χ 6= 1, χ(−1) = 1, v ∈ Vp〉 (with eigenvalue

−√p).

Now we have that these are actually all the possible eigenvectors of Ap that

are associated to eigenvalues different from the regularity p: we will just sketch

the proof of this fact in the following definition; a formal proof can be found

in the article by Gunnells [10]. In [6], DeDeo, Lanphier and Minei extend this

computations to the platonic graph πq for q a prime power, although with the

alternative definition that was given at the beginning of this chapter.

Proposition 2.4.2. We have that dim(S) = p and dim(P±) = (p+1)(p−3)
4

.

Proof. Sketch. The proof follows from representation theory: first notice that

the group Γp := PSL2(Fp) acts on the graph πp via left multiplication, as it

was seen in the proof of the edge-transitivity of πp. This implies that CVp is a

Γp-module: simply define, for f ∈ CVp and M ∈ Γp, M · f(v) := f(M · v) for

every v ∈ Vp.
Thus CVp can be seen as a linear representation of Γp: it is then natural

to look for isomorphisms between its eigenspaces and some irreducible repre-

sentations of Γp, that are well-known (see [1] or [14], for instance). Via this

procedure, one can find that S is isomorphic as an Γp-module to the Steinberg

representation St of degree p; the computation for P± is more complicated,

and follows these steps: first fix a character χ with the properties discussed

above, and define the subspaces P±χ := 〈P±χ,v : v ∈ Vp〉. Then these Γp-modules

can be isomorphic either to the principal series representation PSχ or to the
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split principal series SPS±, depending on the character χ; the dimensions of

the spaces P± turn out to be as stated.

Corollary 2.4.1. The eigenvalues of Ap are p with multiplicity 1, −1 with

multiplicity p and ±√p with multiplicity (p+1)(p−3)
4

each.

Proof. Since πp is p-regular and connected, p is an eigenvalue with multiplicity

1; the multiplicities of the eigenvalues −1 and ±√p have been computed above.

Now

1 + p+ 2 · (p+ 1)(p− 3)

4
=
p2 − 1

2
= dim(CVp)

which proves that these are the only eigenvalues.

Remark 2.4.2. The number of distinct eigenvalues of πp is thus 4, which is

equal to the diameter of πp plus one (see the previous section); this means that

the bound diam(πp) + 1 ≤ #{distinct eigenvalues of πp} is tight.

Also notice that λ := max{|λi| : λi eigenvalue of πp, λi 6= p} =
√
p; we

shall now prove that this value is optimal, i.e. it cannot be asymptotically

smaller.

Indeed, for every d-regular graph with n vertices, we have that λ ≥ d · n−d
n−1

;

to see this, consider the adjacency matrix A of the graph, then construct a

lower and an upper bound on the trace of A2:

- every element on the diagonal of A2 is the number of closed walks of

length 2 beginning (and ending) at the corresponding vertex, and thus

it is exactly equal to d (the number of walks given by moving back and

forth along any edge incident to the vertex); thus Tr(A2) = nd.

- on the other hand, if {λi : i = 1, · · · , n} denotes the spectrum of A,

then Tr(A2) =
∑
λ2
i ≤ d2 + (n− 1)λ2.

We thus find

nd ≤ d2 + (n− 1)λ2 ⇒ λ2 ≥ d · n− d
n− 1

.

Now in our case, n = p2−1
2

, d = p, so that n−d
n−1

goes to 1 as p tends to

infinity, i.e.

λ ≥ √p · (1− o(1)) as p→∞.
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2.5 An alternative construction

We shall now present the family {T (p) : p odd prime} of 3-regular graphs

discussed by Norman Biggs in [3]; as we shall see, they coincide with π′p for

some values of p.

Definition 2.5.1. Let p be an odd prime, and let P1(p) be the projective line

over Fp; we will view it as Fp t {∞}. For every set of four (distinct) points

x1, x2, x3, x4 of P1(p), we define their cross-ratio to be

(x1, x2;x3, x4) :=
(x1 − x3)(x2 − x4)

(x1 − x4)(x2 − x3)
∈ Fp

when one of these points is equal to ∞, we simply neglect the corresponding

factors: e.g. (x1, x2;x3,∞) := (x1−x3)
(x2−x3)

.

Notice that when we swap two points in the first and/or second couple, the

cross-ratio is either unchanged or becomes the inverse: more precisely,

(x2, x1;x3, x4) = (x1, x2;x4, x3) = (x1, x2;x3, x4)−1

(x2, x1;x4, x3) = (x1, x2;x3, x4).

Thus the following definition is well-posed:

Definition 2.5.2. Two unordered couples {x1, x2}, {x3, x4} of points of P1(p)

are said to be harmonic conjugated if and only if (x1, x2;x3, x4) = −1.

Now this allows us to define a graph T (p): the vertex set V (T (p)) will

consist of all unordered triplets {x, y, z} of P1(p), and each triplet {x, y, z} will

be adjacent to the three triplets

{x′, y, z}, {x, y′, z}, {x, y, z′}

where x′, y′ and z′ are chosen in such a way that the couples {x, x′} and {y, z}
are harmonic conjugated, as well as {y, y′} and {x, z}, and as {z, z′} and {x, y}.

Remark 2.5.1. Notice that given any three distinct points α, β, γ of P1(p),

it is always possible to find a t ∈ P1(p) which is solution of the equation

(α− β)(t− γ)

(α− γ)(t− β)
= −1.
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2. An overview of Platonic surfaces

Moreover, such a t must clearly be different from α, β and γ; this means that

every vertex of T (p) has indeed 3 neighbours, i.e. T (p) is 3-regular.

Also notice that the cardinality of the vertex set of T (p) is equal to the

number of unordered triplets of P1(p), i.e.

#V (T (p)) =

(
#P1(p)

3

)
=

(
p+ 1

3

)
=
p · (p2 − 1)

6

which is the cardinality of π′p.

We have the following

Proposition 2.5.1. When p ≡ 1 mod (4), we have that T (p) has two (iso-

morphic) connected components; when p ≡ 3 mod (4), it is connected.

When p ≡ 1 mod (4), Biggs actually denotes with T (p) one of the two

connected components of the graph; we shall adopt the same notation.

Theorem 2.5.1. The map

Φ : π′p → T (p){(
a

b

)
,

(
c

d

)
,

(
e

f

)}
7→
{
a

b
,
c

d
,
e

f

}
,

where x
0

:=∞, is a covering of graphs for every p ≥ 3, i.e. for every vertex v

of π′n, the restriction map Φ∣∣N(v)
: N(v) → T (p) is a bijection between N(v)

and N(Φ(v)).

Proof. sketch: first notice that the map is well defined, i.e. the quotients a
b
, c
d

and e
f

are pairwise different: this is because the three vectors they are obtained

from cannot be proportional, since they are adjacent in πp.

Φ is a morphism of graphs: by proposition 2.1.1, we may assume that(
e
f

)
=
(
a+c
b+d

)
, up to change the order of the couples; now this will allow us

to determine explicitely the three neighbours of
{(

a
b

)
,
(
c
d

)
,
(
e
f

)}
in terms of a,

b, c and d. An immediate computation will then show that their image are

adjacent to the image of the original vertex.

We have to prove that for any vertex v′ of V ′p , the induced map from

neighbours of v′ to neighbours of Φ(v′) is a bijection; since we have already
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2. An overview of Platonic surfaces

showed that both graphs are 3-regular, it will suffice to show that these induced

maps are injective.

Finally, it can be proved that Φ is surjective on vertices, so that the theorem

is proved.

Corollary 2.5.1. For p ≡ 1 mod (4), the map Φ : π′p → T (p) is a two-folded

covering; for p ≡ 3 mod (4), it is an isomorphism of graphs.

Proof. The result is immediate since #(T (p)) = #(π′p)/2 when p ≡ 1 mod (4)

(recall that all fibers have the same cardinality), and #(T (p)) = #(π′p) when

p ≡ 3 mod (4).
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Chapter 3

Homological systole of platonic

surfaces and of their duals

Recall that given any graph G = (V,E), the set of union of edges P(E) has a

natural structure of F2-vector space: for instance, by viewing a subset of E as

a characteristic vector in {0, 1}E, we may view P(E) as {0, 1}E = FE2 ; we can

also explicitely define A+B := A ∪B \ (A ∩B), for A,B ⊆ E.

Thanks to this structure, one can define the homological or homology systole

of a surface S = (V,E, F ) to be the length of its shortest cycle that is not sum

of faces; from another point of view, we can define the spaces of formal sums

with binary coefficients of vertices, edges and faces, i.e.

C0(S) :=

{∑
v∈V

λvv : λv ∈ F2

}
,

C1(S) :=

{∑
l∈E

λll : λl ∈ F2

}
,

C2(S) :=

{∑
f∈F

λff : λf ∈ F2

}
.

We then have two boundary maps ∂2 : C2(S)→ C1(S) and ∂1 : C1(S)→ C0(S)

that send every face f to the sum of its edges
∑

l∈f l and every edge l to the

sum of its 2 vertices
∑

v∈l v, extended by F2-linearity.

It can be easily seen that the composition of the two maps is equal to zero

(thus giving a complex); moreover, the kernel of ∂1 is the set of cycles of the
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3. Homological systole of platonic surfaces and of their duals

graph and the image of ∂2 is the set of sum of faces of S, both with the sum

operation defined above. The homology systole of S is therefore equal to the

length of the shortest element of Ker∂1 whose homology class is non-trivial in

Ker∂1/Im∂2.

In the present chapter we study the homology systole of πp and of π′p; we

shall see that it is constant for πp, and at least logarithmic in p for π′p.

3.1 The platonic surface πp

We shall begin with πp for p prime: this computation and its consequences were

not present in Riemann’s work, and it will provide the minimum distance of the

error-correcting codes issued from πp; our strategy to compute the homology

systole will be to exploit the vector space structure of the set of cycles of πp

to use dimension theory:

Proposition 3.1.1. Let F := Fp denote, as usual, the set of faces of πp; then

dim〈F 〉 = #F − 1

(
=
p(p2 − 1)

6
− 1

)
.

Proof. This is actually a property that is common to all faces set of any con-

nected graph: we need to show that rank(F ) = #F − 1.

First notice that any face x is the sum of all other faces: indeed,∑
y∈F\{x}

y =
∑

y∈F\{x}

∑
e∈y

e =
∑
e∈Ep

∑
y∈F\{x} : e∈y

e =
∑
e∈Ep

#{y ∈ F \ {x} : e ∈ y}e.

But now, #{y ∈ F \ {x} : e ∈ y} =

{
2 if e /∈ x
1 if e ∈ x

by the definition of faces; since we are in characteristic 2, we thus get∑
y∈F\{x}

y =
∑
e∈x

e = x ⇒ rank(F ) ≤ #F − 1.

Now to see that equality holds, it suffices to show that any face x ∈ F

cannot be written as a sum of less than #F − 1 faces: let x ∈ F \ F ′, F ′ ⊂ F

being an arbitrary subset with #F ′ ≤ #F − 2.
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3. Homological systole of platonic surfaces and of their duals

Then there exists a face z ∈ F \ (F ′ ∪ {x}); moreover since the graph (and

hence its dual) is connected, we may assume that z share an edge e with an

element of F ′ ∪ {x}: if by contradiction all elements of F \ (F ′ ∪ {x}) did not

share edges with the complementary set F ′∪{x}, then they would share edges

only with themselves, thus being a connected component strictly contained in

the graph, which is a contradiction.

Now such an edge e cannot belong to x (since all of its edges belongs to

exactly two faces, one being x and the other belonging to F ′ by assumption)

⇒ e ∈ F ′; but then #{y ∈ F ′ : e ∈ y} = 1, since e also belongs to z /∈ F ′,
and thus

e /∈ x, e ∈
∑
y∈F ′

y ⇒ x 6=
∑
y∈F ′

y

⇒ dim〈F 〉 = rank(F ) = #F − 1.

Theorem 3.1.1. For p � 0 a prime, let dp := length of the shortest cycle of

πp that is not sum of faces; then dp ≤ 6.

Proof. Let F := Fp denote the set of faces of πp; it will suffice to find a family

H of cycles of length at most 6 such that dim〈H〉 ≥ dim〈F 〉 (this would imply

H * 〈F 〉 ⇒ there exists a cycle c ∈ H \ 〈F 〉, that is to say of length at most

6 and that is not sum of faces).

We will define H to be derived from the family of all cycles of length 6

having extremal points
(

0
α

)
and

(
0
β

)
: first, let A denote the family of all subsets

of Vp of cardinality 2, containing only vertices with first coordinate equal to

zero:

A :=

{{(
0

α

)
6=
(

0

β

)}
: α, β ∈ F×p

}
∈
(
F×p
2

)
.

A will be the set of ”extremal points” of H; now to shorten the notation, let

α :=
(

0
α

)
∈ Vp; we define, for {α, β} ∈ A,

E{α,β} :=

{
paths of the form

(
0

α

)
—

(
α−1

γ

)
—

(
β−1

α(γβ−1 + (−1)ε)

)
—

(
0

β

)

: γ ∈ Fp, ε ∈ {0, 1}
}
.
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3. Homological systole of platonic surfaces and of their duals

Now these are clearly (open) paths in πp, of length 3 since α 6= β ⇒ α−1 6=
±β−1(it is actually rather easy to show that these are all the paths of length

3 between α and β).

Now our cycles will be union of two elements of E{α,β}:

C{α,β} :=
{
x+ y : x 6= y ∈ E{α,β}

}
.

We have that C{α,β} only contains elements of length 4 or 6: let x 6= y ∈ E{α,β};
then

x↔
{(

α−1

γ

)
,

(
β−1

α(γβ−1 + (−1)ε1)

)}
=: {x1, x2}

y ↔
{(

α−1

δ

)
,

(
β−1

α(δβ−1 + (−1)ε2)

)}
=: {y1, y2}

Now since α 6= β, we have that α−1 6= ±β−1, and thus x1 6= y2, x2 6= y1;

therefore if x 6= y, we can only have 3 cases:

-x1 = y1: then necessarily x2 6= y2, and thus x + y is a cycle of length 4 with

starting point
(

0
β

)
;

-x2 = y2: then necessarily x1 6= y1, and thus x + y is a cycle of length 4 with

starting point
(

0
α

)
;

-x1 6= y1 and x2 6= y2: we then get a cycle of length 6.

Our family H will clearly be given by the set of all these cycles, i.e.

H :=
⋃

{α,β}∈A

C{α,β}.

We will now compute the dimension of 〈H〉: first notice that

dim〈H〉 = dim〈
⋃

{α,β}∈A

C{α,β}〉 = dim
∑
{α,β}∈A

〈C{α,β}〉.

We shall now prove that dim
∑
{α,β}∈A〈C{α,β}〉 =

∑
{α,β}∈A dim〈C{α,β}〉: notice

that ≤ always holds; thus to prove the claim we just have to show that any

non-trivial sum of the form
∑
{α,β}∈AX{α,β} with X{α,β} ∈ 〈C{α,β}〉 is never

zero.
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3. Homological systole of platonic surfaces and of their duals

But this can be easily seen: indeed, given any {α, β} in A and any

X{α,β} ∈ 〈C{α,β}〉, we have that X{α,β} contains edges of the form(
α−1

γ

)
—
(

β−1

α(γβ−1+(−1)ε)

)
, since edges of these kind belong to one single element

of E{α, β} (since α 6= ±β and
(
α−1

γ

)
=
(
α−1

δ

)
⇐⇒ γ = δ, and similarly for ε),

and thus cannot erase each other when the corresponding elements of E{α, β}
are summed.

But edges of this kind cannot belong to any element of 〈C{α′,β′}〉 for any

{α′, β′} 6= {α, β} (since either α 6= ±α′,±β′ or β 6= ±α′,±β′); this implies that

when we consider a non-trivial sum
∑
{α,β}∈AX{α,β} with X{α,β} ∈ 〈C{α,β}〉,

edges of the form
(
α−1

γ

)
—
(

β−1

α(γβ−1+(−1)ε)

)
cannot erase each other, so that the

sum is different from zero and the claim is proved.

Therefore dim〈H〉 =
∑
{α,β}∈A dim〈C{α,β}〉; now we only have to compute

these dimensions.

We claim that dim〈C{α,β}〉 = #E{α,β}−1: indeed, fix an element z ∈ E{α,β};
then

C{α,β} =
{
x+ y : x 6= y ∈ E{α,β}

}
⊇
{
z + w : w ∈ E{α,β} \ {z}

}
=: K.

Now if x 6= y are two elements different from z, then x+ y = (z + x) + (z + y)

with x, y ∈ E{α,β} \ {z}, and thus{
x+ y : x 6= y ∈ E{α,β}

}
⊆ 〈
{
z + w : w ∈ E{α,β} \ {z}

}
〉

⇒ 〈C{α,β}〉 = 〈K〉.

Now the elements of E{α,β} are linearly independent (we have shown above

that every ”central edge”
(
α−1

γ

)
—
(

β−1

α(γβ−1+(−1)ε)

)
of an element cannot belong

to any other element of E{α,β}), and hence also the elements of K are linearly

independent; therefore

dim〈C{α,β}〉 = rank(K) = #K = #E{α,β} − 1.

But this quantity can be easily computed: indeed, it is immediately seen that

if (γ, ε) 6= (γ′, ε′), then the corresponding elements of E{α,β} are different, and

hence

#E{α,β} = #(Fp × F2) = 2p.
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3. Homological systole of platonic surfaces and of their duals

We then have

dim〈H〉 =
∑
{α,β}∈A

#E{α,β} − 1 =
∑
{α,β}∈A

(2p− 1) = (2p− 1) ·#A.

Now computing the cardinality of A is very easy: we have p − 1 choices for

an α 6= 0, and thus p−1
2

choices for
(

0
α

)
since

(
0
α

)
=
(

0
−α

)
; we then have p − 3

choices for β 6= 0,±α, and thus p−3
2

choices for
(

0
β

)
. Finally, this number

must be divided by two since we are considering unordered couples, and hence

#A = p−1
2
· p−3

2
· 1

2
= (p−1)(p−3)

8

⇒ dim〈H〉 =
(p− 1)(p− 3)(2p− 1)

8
∼

p→∞

p3

4

and dim〈F 〉 =
p · (p2 − 1)

6
− 1 ∼

p→∞

p3

6

⇒ for p� 0, we have dim〈H〉 > dim〈F 〉.

Remark 3.1.1. To study the case of p small, notice that with the above

notation we have

dim〈H〉 − dim〈F 〉 =

(
(p− 1)(p− 3)(2p− 1)

8

)
−
(
p(p2 − 1)

6
− 1

)
=

1

24
(2p3 − 27p2 + 34p+ 15).

Now if we define P (x) := 2x3−27x2 +34x+15, we have that P (13) = 288 > 0;

moreover,

P ′(x) = 6x2 − 54x+ 34 ≥ 0 ⇐⇒
x ≤ 27−

√
525

6
≈ 0.681

or x ≥ 27 +
√

525

6
≈ 8.319

⇒ P (x) ≥ P (13) > 0 ∀x ≥ 13, i.e. dp ≤ 6 for all p ≥ 13.

Moreover, it can be easily proved, via computer simulations, that the cycle

of figure 3.1 is not sum of faces for p = 7, 11; see the following chapter on Sage

simulations for more details.

Finally, for p = 3, 5, the graph πp is planar, and hence all cycles are sum

of faces, i.e. d3 = d5 = 0. We have thus proved that

dp ≤ 6 ∀p prime.
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3. Homological systole of platonic surfaces and of their duals

Figure 3.1: A cycle which is not sum of faces for p = 7, 11.

3.2 The dual surface π′n

We shall now discuss the case of π′n, the dual surface; as we will see, its systole

is considerably bigger - we will be able to prove a logarithmic lower bound for

the girth of the graph.

This result is proved by providing a covering of our graph by the infinite,

3-regular tree (recall that π′n is 3-regular for every n, since the faces of πn are

triangles).

We define inductively the infinite graph T3, whose vertex set V is contained

in (Z×Z)3; it will be proved that this is nothing but a labelling of the infinite,

3-regular tree.

Definition 3.2.1. Define the three functions ”left child”, ”right child” and

”parent” to be

LC : (Z× Z)3 → (Z× Z)3(
a
b

)(
c
d

)(
e
f

)
7→

(
a
b

)(
a+c
b+d

)(
c
d

)
RC : (Z× Z)3 → (Z× Z)3(

a
b

)(
c
d

)(
e
f

)
7→

(
c
d

)(
c+e
d+f

)(
e
f

)
P : (Z× Z)3 → (Z× Z)3(

a
b

)(
c
d

)(
e
f

)
7→

{ (
a−e
b−f

)(
a
b

)(
e
f

)
if b− f > 0 or (b− f = 0 and a− e > 0)(

a
b

)(
e
f

)(
e−a
f−b

)
otherwise.

Definition 3.2.2. We define the Farey tree T3 recursively: its root is

R :=
(

0
1

)(
1
1

)(
1
0

)
∈ (Z×Z)3, and the neighbours of an element X already present

are LC(X), RC(X), P (X).

33



3. Homological systole of platonic surfaces and of their duals

Remark 3.2.1. The definition is well-posed, i.e. if X ∈ N(Y ), then Y ∈
N(X).

To see this, first notice that every element of T3 is of the form
(
x
y

)(
x+z
y+w

)(
z
w

)
,

simply because R is of this form and all ”left children”, ”right children” and

”parents” have this property.

Also notice for every element X of T3 we have that its couples
(
α
β

)
are all

distinct and are such that either β > 0 or (β = 0 and α > 0): indeed, the root

R satisfies this property, and if an element X ∈ (Z×Z)3 satisfies this property,

then so do LC(X), RC(X) and P (X) (simply look at the definitions).

This implies that for every element X of T3, P (LC(X)) = X, P (RC(X)) =

X and either LC(P (X)) = X or RC(P (X)) = X: for instance, if X =(
a
b

)(
c
d

)(
e
f

)
, then

(
c
d

)
=
(
a+e
b+f

)
, and thus P (LC(X)) =

(
a
b

)(
c
d

)(
c−a
d−b

) (
=
(
a
b

)(
c
d

)(
e
f

))
since either f = d − b > 0 or f = 0 and e = c − a > 0; the other cases are

similar.

Therefore, Y ∈ N(X) ⇐⇒ X ∈ N(Y ) ∀X, Y ∈ T3.

Now this construction can be re-expressed in the following terms, which

will be useful for our purposes: define a sequence of roots{
Rm :=

(
m

1

)(
m+ 1

1

)(
1

0

)}
m∈Z

such that Rm is connected to Rm−1 and Rm+1 for every m ∈ Z, and a sequence

of ”subroots”

{R′m := LC(Rm)}m∈Z
such that R′m is connected to Rm for all m; then attach to every subroot its

two ”children”, then their ”children” and so on.

It is immediately seen that we get again the Farey tree: the sequence {Rm}
is nothing but the root R = R0 together with all of its ”ancestors” and all of its

”right descendants” (proof is very easy by induction). We will denote by Bm

the rooted tree consisting of Rm and of all of its descendants; B0 is generally

called the Stern-Brocot tree, but it is not unusual to find it under the name of

Farey tree (that in our work designates T3).

These two equivalent definitions will allow us to prove the following

Proposition 3.2.1. T3 is indeed a tree, i.e. it has no cycles.
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3. Homological systole of platonic surfaces and of their duals

Proof. Since T3 is connected and 3-regular, the claim amounts to prove that

T3 is actually the 3-regular tree; to prove this, we will view the construction

of T3 as a labelling Φ : T → (Z × Z)3 of the 3-regular tree T , and prove that

two different vertices of T are never given the same label.

To be more precise, we may construct T as follows: start with a sequence

{rn}n∈Z of roots, such that rn is connected to rn−1 and rn+1 for every n, then

attach to every root rn a copy Bn of the binary rooted tree. It is immediately

seen that we actually obtain the infinite, 3-regular tree; we get T3 as the

labelling

Φ : T → (Z× Z)3

that sends every root rn to Rn, and all ”descendants” of a root to the corre-

sponding ”descendants” defined via the left and right ”children” functions.

Now by contradiction, assume that there exist two distinct vertices x 6= y

of T having same label, i.e. such that Φ(x) = Φ(y); denote by Bn the binary

rooted tree that x belongs to (here we actualy denote by Bj a binary rooted

tree together with its root rj), and by Bm that of y.

We will now study the labelling of the ”fathers” of x and y: if x 6= rn,

define x1 to be the only neighbour of x that is closer to the root rn; if x = rn,

set x1 := rn−1, and define in a similar way y1.

Then iterate this procedure recursively: if xk is not a root, define xk+1 as

the only neighbour of xk that is closer to the root of xk; if xk is a root, then

define xk+1 to be the previous one, and similarly for yk.

We have only two possible cases:

(i) xk = yk =: z for some k ∈ N: assume that k is the smallest possible

integer with this property, i.e. xk−1 6= yk−1, where we set x0 := x and

y0 := y; notice that since x 6= y, we cannot have xl = yl for every l ≥ 0,

which means that such a k exists.

Then by using the first definition of our labelling, Φ(xk−1) = P (k−1)(Φ(x)) =

P (k−1)(Φ(y)) = Φ(yk−1); but at the same time, Φ(xk−1) = LC(Φ(xk)) =

LC(Φ(z)) and Φ(yk−1) = RC(Φ(xk)) = RC(Φ(z)) (we may assume this

without loss of generality, up to exchanging x and y).

Now LC(α) 6= RC(α) for every α ∈ T3, hence leading to a contradiction.
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3. Homological systole of platonic surfaces and of their duals

(ii) xk 6= yk for every k ≥ 0: then by taking k � 0, we have that both xk

and yk are roots, say xk = rnx and yk = rny .

We then get Rnx = Φ(xk) = P (k)(Φ(x)) = P (k)(Φ(y)) = Φ(yk) = Rny , a

contradiction since all roots have different labels by definition.

In order to define a covering T3 → π′n, we will need to prove some further

properties concerning T3:

Lemma 3.2.1. For any vertex X :=
(
a
b

)(
c
d

)(
e
f

)
of T3, we have that

b · e− a · f = b · c− a · d = d · e− c · f = 1

i.e., the determinants of the matrices obtained by joining two columns of X

are all equal to −1.

Proof. The root R clearly satisfies this property; it is then immediately seen

that if X satisfies this property, then so do LC(X), RC(X) and P (X) (by

linearity on the columns of the determinant).

Corollary 3.2.1. Every couple
(
α
β

)
of every element of T3 is such that

gcd(α, β) = 1.

Proof. Trivial since the above equations are Bézout’s identities.

We can now define the coverings T3 → π′n:

Definition 3.2.3. For every n ≥ 3, define

Ψn : V (T3)→
(
Vn
3

)
((

a

b

)(
c

d

)(
e

f

))
7→

{(
a mod n

b mod n

)
〈±1〉

(
c mod n

d mod n

)
〈±1〉

(
e mod n

f mod n

)
〈±1〉

}
.

Notice that element in the codomain are ordered triplets, whereas the codomain

contains unordered elements.

From now on, we shall fix n and denote Ψn simply by Ψ.
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Remark 3.2.2. The definition is well-posed: indeed, given any couple
(
x
y

)
belonging to a vertex of T3, by corollary 3.2.1 we have that gcd(x, y) = 1, so

that in particular gcd(x, y, n) = 1 for every n ≥ 3.

Also notice given any
((

a
b

)(
c
d

)(
e
f

))
∈ V (T3), by lemma 3.2.1 the three ver-

tices corresponding to
(
a
b

)
,
(
c
d

)
and

(
e
f

)
are adjacent in πn, so that they form a

triangle; therefore, the map Ψ has codomain the faces of πn, i.e.

Ψ : V (T3)→ Fn = V ′n.

As said before, we have the following

Theorem 3.2.1. The map Ψ : T3 → π′n is a covering of graphs.

To prove this result, we shall proceed through several steps:

Lemma 3.2.2. Ψ : V (T3) → V ′n is a morphism of graphs, i.e. it sends edges

to edges.

Proof. LetX =
(
a
b

)(
c
d

)(
e
f

)
be a vertex of T3; thenN(X) = (LC(X), RC(X), P (X))

and each of these three elements shares two couples with X by definition. Thus

the three corresponding faces of π′n share an edge with Ψ(X), i.e. they are ad-

jacent to it.

Lemma 3.2.3. For every X ∈ V (T3), the restriction map

Ψ∣∣N(X)
: N(X)→ N(Ψ(X)) is bijective.

Proof. Since both T3 and π′n are regular of degree 3, it will suffice to show

that Ψ∣∣N(X)
is injective. Now, let X =

(
a
b

)(
c
d

)(
e
f

)
, and recall that N(X) =

(LC(X), RC(X), P (X)); therefore, Ψ(LC(X)) contains the edge
(
a
b

)(
c
d

)
(here

we mean their classes modulo n and ±1), Ψ(RC(X)) contains
(
c
d

)(
e
f

)
and

Ψ(P (X)) contains
(
a
b

)(
e
f

)
.

Thus if by contradiction two elements of {Ψ(LC(X)),Ψ(RC(X)),Ψ((X))}
would coincide, then they would share two edges with Ψ(X), and would hence

coincide with it; we will then get Ψ(X) ∈ N(Ψ(X)), a contradiction.

Proposition 3.2.2. The morphism of graphs Ψ : T3 → π′n is surjective on

vertices.
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3. Homological systole of platonic surfaces and of their duals

Proof. We shall actually prove a stronger result, i.e. that the restriction map

Ψ∣∣B0
: B0 → π′n is surjective on vertices.

Recall that B := B0 is defined as the tree having root R =
(

0
1

)(
1
1

)(
1
0

)
, with

child R′ =
(

0
1

)(
1
2

)(
1
1

)
and with all left and right descendants of R′; now a very

well-known property of this ”Stern-Brocot tree” (see [9], for instance) affirmes

that the ”middle couples”
(···
···

)(
x
y

)(···
···

)
of vertices of B exhaust the set

A :=

{(
x

y

)
∈ N× N : 0 < x < y, gcd(x, y) = 1

}
.

Now let F :=
{(

a
b

)(
c
d

)(
e
f

)}
be a face of πn; to find a preimage in V (B), we

shall focus on the first vertex
(
a
b

)
:

choose representatives a, b ∈ N such that 0 < a < b (possible up to adding

multiples of n); now by definition of Vn, we have that gcd(a, b, n) = 1, and this

allows us to choose coprime representatives:

let k := gcd(a, b) > 0; then we may factor a and b as a = a′ · k

b = b′ · k
with a′, b′ > 0;

we have that gcd(k, n) = 1; thus if we set

h :=
∏

primes p|a′, p-k

p

and we choose representatives
(

ã:=a
b̃:=b+h·n

)
, we still have 0 < ã < b̃, and moreover

gcd(ã, b̃) = 1: indeed, if p is a prime dividing ã = a, then we have two cases:

- either p divides k, and so it divides b but not n nor h, and hence cannot

divide b+ h · n;

- or p does not divide k, and thus it necessarily divides a′ and h but does

not divide b, and thus does not divide b+ h · n either.

Thus there exists a vertex
(···
···

)(
a
b

)(···
···

)
∈ B; now its right child will be of the

form
(
a
b

)(
a+c
b+d

)(
c
d

)
(since all middle couples are sum of the two external couples).

The left descendants up to distance n− 1 of this elements are(
a

b

)(
a+ c

b+ d

)(
c

d

)
,

(
a

b

)(
2a+ c

2b+ d

)(
a+ c

b+ d

)
, · · · ,

(
a

b

)(
na+ c

nb+ d

)(
(n− 1)a+ c

(n− 1)b+ d

)
.
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3. Homological systole of platonic surfaces and of their duals

But now,
(
a
b

)(
c
d

)
represents an edge of πn by corollary 3.2.1, and thus by propo-

sition 2.1.1 these triplets represents all faces adjacent to
(
a
b

)
(see chapter 1 for

more details); hence necessarily one of these elements must be sent to F via

Ψ, which proves the proposition.

The theorem is thus completely proved: Ψn : T3 → π′n is a covering for all

n ∈ N≥3.

Remark 3.2.3. Notice that this also implies that π′n is connected (and thus

πn too) for every n ∈ N≥3, since T3 is obviously connected; we had proved this

result in Chapter 1 only for n = p a prime.

One final lemma will allow us to prove a logarithmic lower bound on the

girth of π′n:

Lemma 3.2.4. Let V =
(
a1
b1

)(
a2
b2

)(
a3
b3

)
be a vertex of T3 having distance m from

the root R =
(

0
1

)(
1
1

)(
1
0

)
; then |aj|, |bj| ≤ Fib(m+ 2) for every j = 1, 2, 3, where

Fib(k) denotes the k-th Fibonacci number (the Fibonacci sequence begins at

Fib(0) = 0).

Proof. We shall prove a sligthly stronger result, namely that there exists an

i ∈ {1, 2, 3} such that:

• |ai|, |bi| ≤ Fib(m+ 2);

• |aj|, |bj| ≤ Fib(m+ 1) ∀ j 6= i.

Indeed, by induction on m:

- m = 0: the claim is trivial since Fib(1) = Fib(2) = 1 and |aj|, |bj| ∈
{0, 1} for V = R.

- m; m+1: let W =
(
c1
d1

)(
c2
d2

)(
c3
d3

)
be the neighbour of V that is closest to

R, i.e. d(R,W ) = m, d(W,V ) = 1. Hence by inductive hypothesis, there

exists an i ∈ {1, 2, 3} such that |ci|, |di| ≤ Fib(m+ 2) = Fib((m+ 1) + 1)

and |cj|, |dj| ≤ Fib(m+ 1) for all the other j.

Now we have that V is either a ”child” of W or its ”parent”; in any case,

by definition of these functions it will share two elements with W , say
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3. Homological systole of platonic surfaces and of their duals

(
ck
dk

)
and

(
cl
dl

)
. Hence elements in these couples have modulus at most

Fib(m+1)+1); thus to conclude, it suffices to show that the elements of

the remaining couple
(
aj
bj

)
have modulus not greater than Fib((m+1)+2).

But the remaining couple is either the sum or the difference of the other

two couples, so the moduli of its elements satisfy the relation |aj| ≤ |ck|+ |cl||bj| ≤ |dk|+ |dl|.

Now, at most one element between |ck| and |cl| is ≤ Fib((m+1)+1), and

the other one is≤ Fib(m+1): hence |aj| ≤ Fib((m+1)+1)+Fib(m+1) =

Fib((m+ 1) + 2), and the same clearly holds for |bj|.

The lemma is thus proved.

Theorem 3.2.2. Let g(n) denote the girth of π′n, i.e. the length of its shortest

non-zero cycle; then g(n) ≥ c · log n + O(1) where c = 2/ log(ϕ) ≈ 4.156,

ϕ = 1+
√

5
2

being the golden ratio.

As an immediate consequence, the same bound holds for the homological

systole d′n of π′n.

Proof. Fix n ≥ 3, and set Ψ := Ψn; first notice that given any (connected)

path l = (v0v1, v1v2, · · · , vm−1vm) of π′n, we may find a path

l′ = (w0w1, w1w2, · · · , wm−1wm) in T3 (still connected) such that Ψ(l′) = l:

indeed, first select any set of m edges w0w
′
1, w1w

′
2, · · · , wm−1w

′
m such that

Ψ(wjw
′
j+1) = vjvj+1 for every j = 0, · · ·m − 1; this is possible since Ψ is a

covering of graphs, and thus in particular it is surjective on edges.

Let us focus on the first two edges w0w
′
1 and w1w

′
2: we have that Ψ(w′1) =

v1 = Ψ(w1), and hence Ψ(LC(w′1)) = Ψ(LC(w1)) since the ”left child” map

LC only involves algebraic operations, and similarly for RC and P . Now

w′2 ∈ N(w1), and thus w′2 is either a ”child” or the ”parent” of w1; but then

v2 = Ψ(w′2) = Ψ(w′′2) for some w′′2 ∈ N(w′1), i.e. Ψ(w′1w
′′
2) = v1v2.

Now it suffices to replace w1w
′
2 with w′1w

′′
2 and to iterate this procedure on

the following edges to get the claim.
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3. Homological systole of platonic surfaces and of their duals

Now let C be a cycle of π′n that realizes the girth; thanks to the above proce-

dure, we may find a connected path C ′ in T3 such that length(C ′) =length(C) =

g(n) and such that Ψ(C ′) = C. Denote by Vstart and Vend the starting and end-

ing point of C ′; thanks to the transitivity of T3 and of π′n, we may assume that

R =
(

0
1

)(
1
1

)(
1
0

)
is the ”middle point” of C ′, i.e. R ∈ C ′ and

d(R, Vstart) =

⌊
g(n)

2

⌋
, d(R, Vend) =

⌈
g(n)

2

⌉
.

Now since Ψ(Vstart) = Ψ(Vend), necessarily at least one element of a couple

belonging to Vstart or to Vend must have modulus greater then (n− 1)/2:

indeed, for any two distinct vertices α =
(
a1
b1

)(
a2
b2

)(
a3
b3

)
, β =

(
x1
y1

)(
x2
y2

)(
x3
y3

)
of

T3, we have that |aj|, |bj|, |xj|, |yj| ≤ n−1
2

for every j implies Ψ(α) 6= Ψ(β): by

contradiction, let Ψ(α) = Ψ(β); then{(
a1 mod n

b1 mod n

)
〈±1〉

,

(
a2 mod n

b2 mod n

)
〈±1〉

,

(
a3 mod n

b3 mod n

)
〈±1〉

}

=

{(
x1 mod n

y1 mod n

)
〈±1〉

,

(
x2 mod n

y2 mod n

)
〈±1〉

,

(
x3 mod n

y3 mod n

)
〈±1〉

}

⇒

{(
a1

b1

)
〈±1〉

,

(
a2

b2

)
〈±1〉

,

(
a3

b3

)
〈±1〉

}
=

{(
x1

y1

)
〈±1〉

,

(
x2

y2

)
〈±1〉

,

(
x3

y3

)
〈±1〉

}
But then necessarily{(

a1

b1

)
,

(
a2

b2

)
,

(
a3

b3

)}
=

{(
x1

y1

)
,

(
x2

y2

)
,

(
x3

y3

)}
since we have showed in remark 3.2.1 that all couples

(
z
w

)
belonging to elements

of T3 are such that either w > 0 or (w = 0 and z > 0): this implies that the

couple
(−z
−w

)
cannot belong to any element of T3.

This means that the two vertices are just two (different) permutation of the

same three couples; now to conclude, it suffices to notice that
(
a2
b2

)
=
(
a1+a3
b1+b3

)
and

(
x2
y2

)
=
(
x1+x3
y1+y3

)
: hence since none of the involved couples can be zero,

necessarily
(
a2
b2

)
=
(
x2
y2

)
.

But then we must have
(
a1
b1

)
=
(
x3
y3

)
and

(
a3
b3

)
=
(
x1
y1

)
(since α 6= β); but this

is a contradiction, since by lemma 3.2.1, we will then have

−1 = det

(
a1 a3

b1 b3

)
= − det

(
x1 x3

y1 y3

)
= 1.
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3. Homological systole of platonic surfaces and of their duals

This proves the claim: at least one element x belonging to a couple of Vstart or

of Vend has modulus greater then (n − 1)/2. Now, thanks to lemma 3.2.4, we

have that
n− 1

2
< |x| ≤ Fib

(⌈
g(n)

2

⌉
+ 2

)
=

[
ϕd

g(n)
2 e+2

√
5

]
where the braces symbol denotes the nearest integer function, and ϕ = 1+

√
5

2

is the golden ratio; by expliciting g(n) we thus find

g(n) ≥ 2

logϕ
· log n+O(1).

Remark 3.2.4. This theorem allows us to compare the girth of π′n with the

value provided by Moore’s bound: namely for a d-regular graph G with N

vertices, the girth g(G) of G satisfies the inequality

g(G) ≤ 2 · logd−1N +O(1)

as N → ∞; for the dual platonic surface π′p (p being an odd prime), the

regularity is d = 3 and the number of vertices is equal to the number of faces

of the graph πp, i.e. p(p2−1)
6

. Now by the above theorem we have that

g(π′p) ≥
2

logϕ
· log p+O(1) =

2

3 logϕ
· log p3 +O(1) =

2 log 2

3 logϕ
· log2 p

3 +O(1);

now let k := 2 log 2
3 logϕ

, and notice that log2 p
3 = log2

p2(p−1)
6

+ o
(

log2
p2(p−1)

6

)
,

which implies that

g(π′p) ≥ (k + o(1)) · logd−1N

where k ≈ 0.9603.
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Chapter 4

The quantum error-correcting

codes issued by platonic tilings

4.1 Definition and basic parameters

We shall now study the quantum codes derived from previous constructions and

results. As many several properties were obtained only for platonic surfaces

πp for p odd prime, we will stick to this case also in the present chapter. Fix

p ≥ 3 a prime; our stabilizer group Sp will be the subgroup of the Pauli group

generated by the rows of the matrices HX and HZ , where

- HX ∈ M|Vp|,|Ep|(F2) is the incidence matrix of πp, or equivalently the

matrix whose rows are characteristic vectors of faces of π′p;

- HZ ∈ M|Fp|,|Ep|(F2) is the incidence matrix of π′p, or equivalently the

matrix whose rows are characteristic vectors of faces of πp.

where, of course, zeroes of HX and of HZ are replaced by I (the identity

matrix), ones of HX are replaced by X =

(
0 1

1 0

)
and ones of HZ are replaced

by Z =

(
1 0

0 −1

)
.
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4. The quantum error-correcting codes issued by platonic tilings

Here are the parameters of the code Cp := C(Sp):

- the block length is

N = Np = |Ep| =
p · (p2 − 1)

4
.

- Since πp is connected, the dimension is 2k with

k = kp = 2− |Vp|+ |Ep| − |Fp| = 2− p2 − 1

2
+
p · (p2 − 1)

4
− p · (p2 − 1)

6

=
1

12

(
p3 − 6p2 − p+ 10

)
.

- The minimum distance d = dp of the code is the length of the shortest cycle

of πp or of π′p which is not sum of faces; therefore from the discussion in chapter

2, for p ≥ 7 we have

d ∈ {4, 5, 6}.

We may also compute the asymptotic rate of the code:

lim
p→∞

kp
Np

= lim
p→∞

p3

12
− p2

2
− p

12
+ 5

2
p3

4
− p

4

=
1

3
.

4.2 Sparsity analysis of Cp
We shall now prove that the family of quantum error-correcting codes {Cp}p≥3

has sparse parity-check matrices, hence proving that these are LDPC codes:

- first start with the matrix HX , the incidence matrix of πp. Every row

represents a vertex, and its weight is the number of edges incident to the vertex;

the length of every row is equal to the number of edges of πp, and thus we find

for the row corresponding to the vertex v ∈ Vp:

weight of a row

cardinality of a row
=

#{N(v)}
#Ep

=
p

p3−p
4

∼p→∞ 4 · p−2 → 0.

- for the matrix HZ , every row is the characteristic vector of a face f : hence

weight of a row

cardinality of a row
=

#f

#Ep
=

3
p3−p

4

∼p→∞ 12 · p−3 → 0.
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Conclusions

The study of platonic surfaces has revealed remarkable properties of regularity

and symmetry of these objects; the quantum error-correcting codes derived

from them present good qualities such as sparse sparity-check matrices and

constant rate, but are also seriously affected by the small value of their mini-

mum distance, which is at most 6 for all prime-index codes.

This bound is obtained from the homology systole of the platonic surface

πp, while dual surfaces present far better parameters (their girth being equal to

almost one half of the maximal asymptotical value given by Moore’s bound).

The latter computation, concerning dual surfaces π′n, hold for all values of n,

while the previous one was obtained only for n prime; thus the distance of

the code could be increasing for the values of n that we have not investigated,

although as shown by Delfosse [7] the overall distance cannot significantly

exceed a logarithm of the length.

Further analysis of the given results for n not prime may also need a differ-

ent approach, since many of the computations that we have presented strongly

rely on properties of Fp: for instance, neighbours of a given vertex of πp can be

easily computed thanks to the existence of multiplicative inverses in F×p , while

for arbitrary integers we can just know their number and some properties they

enjoy; moreover, our computation of the homology systole of platonic graphs

deeply relied on dimension counting, which again may be difficult to perform

in the non-prime case.

Different tools might therefore be needed to carry on further investigation

on the quality of quantum codes obtained from platonic tilings.
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Appendix A

Computer simulations

The present chapter will be devoted to present simulations regarding platonic

surfaces; the program we have used is Sage (www.sagemath.org), version 5.7.

The goal of these simulations is essentially to investigate some properties

of the platonic surfaces πn; we will just deal with the case n = p an odd prime.

These programs have been used, among the other things, to compute the upper

bound on the homological systole provided in chapter 2 for p = 7, 11.

A.1 Construction of πp

We shall present some first programs to build objects related to the graph πp:

first of all, a simple command to construct vertices of the graph. Recall that

these are nothing but classes of F2
p \
{(

0
0

)}
modulo ±1; now elements of F2

p will

be built as 2-by-1 matrices with coefficients in Fp, and for each class
[(

α
β

)]
〈±1〉

we will choose the only representative
(
α
β

)
with 0 < α ≤ p−1

2
or with α = 0

and 0 < β ≤ p−1
1

: namely,

def pl_class(x,p):

if 0<float(x[0][0])<=float((p-1)/2)

or (x[0][0]==0 and 0<float(x[1][0])<=float((p-1)/2)):

return(x)

else:

return(-x)
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A. Computer simulations

pl class will be the function that associates to every element the represen-

tative of its class with the above property; this will be used to define the vertex

set in the following way:

def pl_vertices(p):

l=list(MatrixSpace(GF(p),2,1))

#first create the vector with all elements of F_p^2

V=[]

for i in range(1,len(l)): #the first element of l, l[0], will

#be the zero couple, which must not

#be considered

if pl_class(l[i],p)==l[i]:

V.append(l[i])

return(V)

We then create the list of all edges of πp:

def pl_edges(l):

l=pl_vertices(p)

L=[]

for i in range(len(l)):

for j in range(i+1,len(l)):

if det(matrix( [ [ l[i][0][0] , l[j][0][0] ] ,

[ l[i][1][0] , l[j][1][0] ] ] ))^2 == 1:

L.append([l[i],l[j]])

#for every vertex v, we look for all other adjacent

#vertices; to avoid repetitions, we look for them

#only in the positions of the list following v.

return(L)

We can also build the adjacency matrix of πp, which can be useful if one

wants to use the ”graph” class functions of Sage:

def pl_adj(p):

M=zero_matrix(GF(2),len(l),sparse=true) #first define
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#a zero matrix with desired dimensions.

l=pl_vertices(p)

for i in range(len(l)):

for j in range(i+1,len(l)):

#then use the same procedure as the "edge" command:

if det(matrix( [ [ l[i][0][0] , l[j][0][0] ] ,

[ l[i][1][0] , l[j][1][0] ] ] ))^2 == 1:

M[i,j]=M[j,i]=1

#exploit symmetry of the matrix to speed up

#construction.

return(M)

The list of all faces shall now be contructed:

def pl_faces(p):

e=pl_edges(p)

L=[]

c=0 #a tool variable

for x in e:

z=[x[0],x[1],pl_class(x[0]+x[1],p)]

#this builds one of the two faces containing the edge;

#via this procedure, we can construct all faces (see

#chapter 1), but we may get doubles.

for y in L:

if all(t in y for t in z):

c=1

break

#a simple, brute force-method to avoid doubles:

#just check that the face is different from all

#previously constructed ones.

if c==0:

L.append(z)

c=0

return(L)
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A.2 Cycles testing

Throughout this section, we present a simple method to understand if a cycle

is or not sum of faces: first, we need to construct the incidence matrix of the

dual surface π′p, i.e. the matrix whose rows are characteristic vectors of faces

of πp.

def dual_inc(p):

e=pl_edges(p)

f=pl_faces(p)

M=zero_matrix(GF(2),len(f),len(e),sparse=true)

#first construct a zero matrix of the desired dimensions.

for i in range(len(f)):

for j in range(len(e)):

if all(x in f[i] for x in e[j]):

M[i,j]=1

#simple brute force: for each edge, look

#for all the faces containing it.

return(M)

Now to decide whether a cycle C is sum of faces or not, first write it as a

characteristic vector lC of length #E; then compute the rank of the incidence

matrix of the dual graph π′p, and see if it changes after adding lC : it will change

if and only if lC is not sum of faces (since this will happen if and only if lC is

not contained in the linear span of the faces).

Therefore the following function will return 1 if and only if the input cycle

is not sum of faces:

def faces_test(l,p):

#l will be the desired vector.

M=dual_inc(p)

L=list(M)

L.append(l)

N=matrix(L)
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return( rank(N)-(p*(p^2-1)/6-1) )

#recall that the rank of the dual incidence matrix has been

#computed in chapter 2.

The following lines will contruct our ”test cycle”: simply two different paths

joining the vertices
(

0
1

)
and

(
0
2

)
, namely

def test_vector(p):

e=pl_edges(p)

w=[column_matrix(GF(p),[0,1])]

w.append(column_matrix(GF(p),[1,0]))

w.append(pl_class(column_matrix(GF(p),[2^(-1),1])),p)

w.append(column_matrix(GF(p),[0,2]))

w.append(pl_class(column_matrix(GF(p),[2^(-1),1+2^(-1)])),p)

w.append(column_matrix(GF(p),[1,1]))

#first construct the cycle as a list of edges,

#then build the associated characteristic vector:

r=[0]*len(e)

#initialize it as a zero vector;

for k in range(6):

for i in [i for i,x in enumerate(e) if

all(t in x for t in [w[k],w[(k+1)%6]]) ]:

r[i]=1

#then find the positions of the edges and mark them

#with 1.

return(r)
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A. Computer simulations

This ”test cycle” is not sum of faces for p = 7, 11, 13, 17, 19; since an upper

bound on the homological systole dp of πp was computed only for p ≥ 13 (or

p = 3, 5), this proves that dp ≤ 6 for every p ≥ 3.

The command line to verify this is simply:

faces_test(test_vector(p),p)

Remark A.2.1. Notice that the efficiency of these programs can be easily

increased, since each of them compute the vertex set of πp or its edge set, and

thus the relative instructions are carried out several times when we test our

cycle: the actual version we used was modified so that these quantitities are

computed just once.

A.3 Further rank analysis

Throughout this section, we will provide a program to compute the rank of

the family of cycles presented in chapter 2; although such a computation was

carried out without simulations, this tool may still be useful for further analysis

on πp. For instance, one could try to compute exactly the homology systole dp

of these graphs by adapting the same method to other families of cycles (recall

that our computation only proves dp ∈ {4, 5, 6} for p ≥ 7).

The following program will return the matrix whose lines are characteristic

vecors of cycles of the form

def rank_test(p):

l=pl_edges(p)
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A. Computer simulations

w=[]

for delta in GF(p):

for gamma in GF(p):

if float(delta)<float(gamma):

for beta in GF(p):

if 0<float(beta)<=(p-1)/2:

for alpha in GF(p):

if float(beta)<float(alpha)<=(p-1)/2:

for epsilon1 in range(2):

for epsilon2 in range(2):

if delta/beta+(-1)^epsilon1<>gamma/beta+(-1)^epsilon2:

w.append(column_matrix(GF(p),[0,alpha]))

w.append(pl_class(column_matrix(GF(p),[alpha^(-1),delta]),p))

w.append(pl_class(column_matrix(GF(p),

[beta^(-1),alpha*(delta/beta+(-1)^epsilon1)]),p))

w.append(column_matrix(GF(p),[0,beta]))

w.append(pl_class(column_matrix(GF(p),

[beta^(-1),alpha*(gamma/beta+(-1)^epsilon2)]),p))

w.append(pl_class(column_matrix(GF(p),[alpha^(-1),gamma]),p))

M=zero_matrix(GF(2),len(w)/6,len(l),sparse=true)

for j in range(len(w)/6):

for k in range(6):

for i in [i for i,x in enumerate(l)

if all(t in x for t in [w[j*6+k],w[j*6+(k+1)%6]]) ]:

M[j,i]=1

return(M)

The rank of this matrix will be equal to (p−1)(p−3)(2p−1)
8

.
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