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Chapter 0

Introduction

0.1 Statement of the problem and known results

The Problem of realizable classes is one of the main questions which arose around the so called
normal integral basis problem. In particular we consider K a number field (of characteristic zero)
with ring of integers OK and N/K a Galois extension of K (with ring of integers ON ) with Galois
group isomorphic to a finite group Γ. The problem of realizable classes emerges from the important
property that the ring of integers ON is a locally free OK [Γ]-module (this is the assertion of famous
Noether’s criterion which will be recalled in the next chapter, for a definition of locally free module
look at the Appendix) and in particular it defines a class (ON ) in the class group Cl(OK [Γ]) of
locally free OK [Γ]-modules.
If we consider a given group Γ and we denote by R(OK [Γ]) the set of all classes in Cl(OK [Γ])
corresponding to the ring of integers of a Galois extension N/K with Galois group isomorphic to
Γ, we shall call this set R(OK [Γ]) the set of realizable classes. The problem of realizable classes
arises from the desire to characterize this set and to investigate his structure inside Cl(OK [Γ]).

If we consider K = Q the problem of realisable classes is perfectly solved by the famous Taylor’s
Theorem ([Tay81]) proving Fröhlich’s conjecture, which says that, if Γ has no sympletic characters,
then R(ZΓ) = 1 or in other words every tame extension N/Q has a normal integral basis. More
generally, if Γ has such characters, then the elements of R(Z[Γ]) have order at most two in Cl(Z[Γ]).

The problem of main interest nowadays is to characterize R(OK [Γ]) for an arbitrary base field K.
The first step in this direction was taken by Leon R. McCulloh, which in [McC83] described
R(OK [Γ]) in an explicit way for elementary abelian groups Γ and which, after some years, de-
termined R(OK [Γ]) in a less evident form for any abelian group ([McC87]); proving in particular
the “subgroup nature” of the set of realizable classes.
For nonabelian groups instead, we can say that the problem is still open since we have only some
partial and incomplete results, which are presented in the next section.
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0.2 General non abelian case

In this section, we shall try to give a general and comprehensive overview of all the results present
nowadays in the open problem of Realizable Classes in the non abelian context.
Starting from the fact that a general non abelian result doesn’t exist so far, after a general intro-
duction, we’ll explain the two principal approaches used to resolve the problem in particular non
abelian cases, which will be listed afterwards.
Let’s give an explanation of the common situation present in any non abelian particular work.

0.2.1 General Situation

From Maschke’s Theorem, we know that the algebra K[Γ] is semisimple (because the characteristic
of K is zero), and so inside it we can consider M a maximal OK-order, containing OK [Γ].

Recall 0.2.2 (Maximal Orders). Given an integral domain R with quotient field K, we recall that
an R-order Λ in the K-algebra A is a subring of A, with the same unity elements as A, such that
Λ is a finitely generated R-submodule in A satisfying the condition K · Λ = A.
Every K-algebra contains a R-order and a maximal order is defined as an order which is not properly
contained in any other R-order in A. If we consider A a separable K-algebra, there always exists
at least one maximal R-order inside it (without the hypothesis on separability, it may happens that
no maximal orders exists). For a deeper and wide explanation on these subjects, look at [Rei03].

Since we are considering only tame extensions N over K to satisfy Noether’s Criterion, we can
use Fröhlich’s description (look at the Appendix) of class group and consider the class (ON ) in
Cl(OK [Γ]). In the same way, just extending scalars (M⊗OK [Γ] ON ), we can even consider the class
(ON ) in Cl(M).

As we have already defined R(OK [Γ]) the set of realizable classes inside Cl(OK [Γ]), in the same
way, we define R(M) inside Cl(M).

Besides the two already cited results in the abelian case, McCulloh also reached in [McC75] (Prop.
1.2.1) an important conclusion which values with an arbitrary group Γ (abelian or not). This
Proposition asserts that in general we have

R(OK [Γ]) ⊆ Cl◦(OK [Γ]), (0.2.1)

where this last set, which will be called the augmentation kernel, is defined as the kernel of the
map Cl(OK [Γ]) −→ Cl(K), induced by the augmentation map from K[Γ] to K (ε : K[Γ] −→ K,
sending

∑
cγγ −→

∑
cγ). The proof of it is just an application of the functorial property of the

class group and of the fact that in a tame extension the trace is surjective.
Exactly in the same way, we have

R(M) ⊆ Cl◦(M), (0.2.2)

where Cl◦(M) is the kernel of the analogous map Cl(M) −→ Cl(K).
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0.2.3 Overview of known results

In order to understand the recent results on the open problem of Realizable Classes in the non
abelian case, I reviewed the works principally of B. Sodäıgui and the ones of N. P. Byott and M.
Godin.
In all these different articles, we can recognize two principal approaches, which we’ll be explained
later.
In particular the known results nowadays are:

First Approach - Description of R(M) as a group:

• Metacyclic −→ Γ = 〈σ, τ〉 = Cl oµ Cm, where Cl is a cyclic group of order a prime l, while
Cm is a cyclic group of order a natural number m and µ : Cm −→ Aut(Cl) is a faithful
Fl-linear representation of Cm inside Cl. With the assumption that K ∩ Q(ζl) = Q, where
ζl is a primitive l-th root of unity, it was proved that if we define R1(M) ⊆ R(M) as the
set of classes realized by metacyclic extensions N/K of order lm, such that the subextension
K1/K of N/K of degree m is linearly disjoint from K(ζl)/K; then R1(M) forms a subgroup
of Cl◦(M). This work is an extension and also a correction of a previous work by B. Sodäıgui
([Sod97]). Reference: [SS10].

• Dihedral −→ Γ = D4, the Dihedral group of order 8. With the assumptions that K has an
odd class number and that K ∩ Q(i) = Q, where i is such that i2 = −1. Reference: [Sod00b].

• Quaternion −→ Γ = H8, the Quaternion group of order 8. With the assumptions that
K ∩Q(i) = Q, where i is such that i2 = −1. Reference: [Sod99b].
Γ = H4l, the generalized quaternion group of order 4l, with l odd prime number. With the
assumption that 2 and l ramified in K/Q; the author gives the description as subgroups of
two particular subsets of R(M), called R1(M) and R2(M). Reference: [Sod00a].

• Tetrahedral −→ Γ = A4, the alternating Tetrahedral group. With the assumptions that
K ∩ Q(ζ3) = Q, where ζ3 is a primitive 3-rd root of unity and that K has an odd class
number. Reference: [GS03].

• Octahedral −→ Γ = S4, the symmetric octahedral group. With the assumption that K has
an odd class number. Reference: [Sod07].

Second Approach - The equality R(OK [Γ]) = Cl◦(OK [Γ]):

• Dihedral −→ Γ = D4, the Dihedral group of order 8. With the assumption that the ray class
group of OK with modulus 4OK has odd order. Reference: [BS05a].

• Tetrahedral −→ Γ = A4, the alternating Tetrahedral group. Without any assumption. Refer-
ence: [BS05b]. We remark that this is the only non abelian case in which the original problem
given by McCulloh is solved without any assumption on K.

There are also other more recent works, which begin trying to generalize the results for R(M)
reached in [GS03] and [Sod07].
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The first one [GS06], written by N. P. Byott, C. Greither and B. Sodäıgui, proves the conjecture
that R(M) forms a subgroup in Cl◦(M) for a particular set of groups Γ. They indeed consider the
group Γ of the form V oρ C, where V is a F2-vector space of dimension r ≥ 2, C is a cyclic group
of order 2r − 1 and ρ is a linear representation of C in V . It’s important to underline that this
article proves that R(M) forms a subgroup in Cl◦(M), without giving an equality between them,
as done in the previous particular works.
We remark that the group A4 belongs to this set of groups (remark 2 after Prop. 2.3 in the article)
and so in this case we obtain an improvement of the result in [GS03], since we have no assumptions
on the base field K.

Following the previous article we finally cite the article [BS08] by C. Bruche and B. Sodäıgui; in
this work they prove exactly the same result of the previous one, for all the groups Γ of the form
V oρC, where V is a Fp-vector space of dimension r ≥ 2 with p an odd prime number, C is a cyclic
group of order pr − 1 and ρ is a linear representation of C in V . To reach this result they need the
assumption that the base number field K contains a p-th primitive root of unity ζp.
We remark that the group S3 belongs to this set of groups (remark 2 after Prop. 2.3 in the article)
and so in this case we obtain an improvement of the result in [Sod97] for the metacyclic groups S3.

Remark 0.2.4. It’s useful to notice that the proof of the fact that R(OK [Γ]) forms a subgroup in
Cl◦(OK [Γ]) implies that R(M) forms a subgroup in Cl◦(M); indeed the extension of scalars from
OK [Γ] to M induces a surjective morphism Ex : Cl(OK [Γ]) −→ Cl(M) with Ex (R(OK [Γ])) = R(M).

0.3 Structure of our work

In our work, after the first Chapter dedicated to the definition of the Galois algebras and to a
characterization of them, we shall concentrate, in the second Chapter, on the extensions of our
interest: the Tame Galois extensions.

We will enter directly in the heart of the problem in the third Chapter where we shall retrace
the solution of the problem in the abelian case. We will present the article by McCulloh [McC87]
without any particular improvement, but just with some attempts to clarify some parts and to
make the article more clear (“we just put some little glims along the path”).

In the last chapter we will consider the non abelian case A4 in order to explain the two approaches
utilized in the non abelian case and make a good comparison between them.

Concluding, the Appendix is dedicated to some algebraic techniques and properties which are
fundamental along our work.

0.4 Quantitative Problems and Results

In this section we want to cite some problems and results linked to the concept of Realizable Classes.
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One of the first questions which arises studying realizable classes is, given a group Γ and a realizable
class c, how are the Galois Γ-extensions distributed among the realizable classes?

A first answer to this question was given by K. C. Foster in his unpublished Ph.D. thesis at the
University of Illinois ([Fos]), where he considered the case in which Γ is an elementary abelian
l-group for some prime l. If we denote by Ndisc(c,X) the number of tame Γ-extensions N/K which
realize the class c and such that the discriminant of N over Q is less than X, then Foster gave an
asymptotic expression with X −→∞ of Ndisc(c,X) with those particular Γ and he proved that it’s
independent of c; this implies that the tame Γ-extensions are equidistributed among the realizable
classes as X −→∞.

This work was retraced some years later by A. Agboola in [Agb], where he was able to extend the
result to any arbitrary finite abelian groups Γ with the restriction, not on the discriminant, but
on the absolute norm of the product of the primes of K which ramify in N/K, which he called
D(N/K). In particular denoting with ND(c,X) the number of tame Γ-extensions N/K which re-
alize the class c and such that D(N/K) ≤ X and N/K is unramified at all places dividing |Γ|, he
proved that asymptotically the number ND(c,X) is independent of c. He also tried to generalize
the result of Foster to all the abelian group, but he didn’t succeed and contrarily he obtained re-
sults which indicates that probably Foster’s equidistribution doesn’t exist for any arbitrary abelian
group, even if he wasn’t able to prove it.

It is interesting to compare Agboola’s work with the recent article by M. Wood ([Woo10]). In
her work, she determined the probabilities of various local completions of a random Γ-extension
of K. She found that if the extensions are counted looking at their conductor they are almost all
equidistributed, but if we look instead to the discriminant the general behavior is not so good.

Always belonging to this set of “quantitative” results, we also cite the article by A. C. Kable and
D. J. Wright [KW06], which deals with counting the distribution of the Steinitz classes in the class
group for quadratic and cubic extensions.

Finally, we also cite the article [Bri84] by J. Brinkhuis; in a more algebraic way he linked the
problem of realizable classes to the embedding problem and he also found a sort of restriction to
the fact that the realizable classes form a subgroup. As a good (maybe) introduction to this work,
we refer to chapter VI of [Frö83].
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Chapter 1

Galois Algebras

The aim of this chapter is to define Galois extensions and give a good characterization of them.
After a first part dedicated to the definitions and terminology, we shall present the concept of
resolvend linked to the one of normal basis. In the last part we will restrict to the abelian situation
giving a cohomological interpretation, which will be a prelude to the next chapter.
For clarity, we shall explain separately the extensions of fields and the extensions of rings.

1.1 Notation and Terminology

All along this section we denote by K a field of characteristic zero and by Γ a finite group.
Let N be a commutative K -algebra on which Γ acts on the left by K -algebra automorphisms. We
use N Γ to indicate the subfield of fixed elements of N under the action of Γ:

N Γ = {x ∈ N | ∀ γ ∈ Γ : γ.x = x}.

Thanks to the definition, we have K ⊂ N Γ. The K -algebra N is a Galois Γ-extension of K ( even
called Galois algebra over K with group Γ) when the following properties hold:

• N is a commutative semisimple K -algebra,

• N Γ= K;

• [N : K ] = |Γ|.

The basic example is a Galois field extension L/K, with Γ = Gal(L/K). Another important exam-
ple is the case when we consider L = Map(Γ, K ) with pointwise operation, with K embedded via
the constant K-valued functions and with Γ acting in the following way: take f ∈ L and γ ∈ Γ,
and let γ.f(σ) = f(σγ) for all σ ∈ Γ.
(For many equivalent definitions of Galois extensions of rings and even the equivalent of the Funda-
mental Theorem of Galois Theory for the Galois extensions, look at [HR65]. For a usual explanation
of Galois field extensions look at [Bou81]).

7
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1.2 Characterization of Galois extensions

There is a canonical way to characterize Galois Γ-extensions of K, in particular they can be con-
sidered as a particular subgroup of Map(Γ,K c), where K c is the algebraic closure of K.

Let’s describe this better. If we take Ω = ΩK the Galois group of K c/K, we can associate to any
(continuous) homomorphism h : Ω −→ Γ a Galois Γ-extension Kh of K, namely:

Kh = Map Ω(hΓ,K c).

Kh is the set of K c-valued functions on Γ which preserve the action of Ω. We put h on the left of
Γ to denote that Ω acts on it by left multiplication via the homomorphism h, while Ω acts on Kh

in the following way
∀ f ∈ Kh, ω ∈ Ω (ω.f)(γ) = f (h (ω) (γ)) .

More precisely, for f ∈ Kh and for all γ ∈ Γ, ω ∈ Ω we have:

f(ω.γ) = ω (f (γ))
f(h(ω)γ) = ω (f (γ)) . (1.2.1)

It’s easy to see that Kh is a Galois Γ-extension, indeed letting Γ act on Kh by

γ.f(t) = f(tγ) (1.2.2)

and considering K embedded in Kh via the constant K -valued functions, we obtainKh
Γ= K (indeed

the fixed points are exactly the constant valued functions). Moreover looking at (1.2.1), we can see
that f is determined by its values on a set of coset representatives for h(Ω)\Γ and all these values
must be fixed by all the ω ∈ kerh.
So if we consider

Kh = (K c)ker h

it follows that any map in Kh has value in K h (since f(γ) = ω.f(γ)), giving Kh = MapΩ(hΓ,K h).
Moreover Kh is isomorphic as K -algebra to the product of [Γ : h(Ω)] copies of Kh, showing that
Kh is semisimple. Finally since [Kh : K] = |h(Ω)| we have [Kh : K] = |Γ|, proving completely that
Kh is a Galois Γ-extension.
We may stress that if h is surjective, then Kh

∼= Kh so it’s a field; while if h is trivial then Kh is
equal to a product of |Γ| copies of K.

An isomorphism of Galois Γ-extensions of K is an isomorphism of K -algebras, which preserves the
action of Γ. Thanks to this it can be proved that, if we take a Galois Γ-extension of K, then there
is an element h ∈ Hom(Ω,Γ) , such that the Galois extension is isomorphic to Kh (look at Section
1 of Chapter 3 in [Ere]).
Moreover we have Kh

∼= Kh′ if and only if h differs from h′ by an inner automorphism of Γ ( recall:
an inner automorphism is an automorphism θ : Γ → Γ, such that ∀x ∈ Γ, θ(x) = axa−1, given a
fixed a ∈ Γ).
So we have reached the important following Proposition which characterizes Galois algebras.
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Proposition 1.2.0.1. Let Γ be a finite group. The set of isomorphism classes of Galois Γ-
extensions over K is in bijection with the set

Inn(Γ) \Hom(ΩK ,Γ)

of all continuous homomorphisms from ΩK to Γ, up to inner automorphisms of Γ.

In particular, when Γ is abelian, we have that all the inner automorphisms are trivial and so we
obtain that the set of isomorphism classes of Galois Γ-extensions is a commutative group isomorphic
to Hom(ΩK ,Γ).

1.3 Change of the base field (e.g. localization)

In this subsection, we would understand what happens if we change the base field, in particular if
we extend it.

Given N a Galois Γ-extension of K, we consider σ : K −→ F the embedding of K into another
field F . Just extending the scalars, we obtain the Galois Γ-extension F ⊗σ

K
N , where Γ acts via

the second factor and the exponent of the tensor products means that we have a structure on F
of K-algebra via σ. In this way we easily obtain another Galois Γ-extension, depending only on
σ : K −→ F .
Let’s try to describe it in terms of homomorphisms, using an extension σ to the embedding of the
algebraic closure K c −→ F c; which induces a homomorphism between the Galois fields of F and
K:

σ̃ : ΩF −→ ΩK ,

with ΩF = Gal(F c/F ).
For h ∈ Hom(ΩK ,Γ), we obtain hσ̃ ∈ Hom(ΩF ,Γ) and a canonical isomorphism of Galois Γ-
extensions of F :

Fhσ̃ ∼= F ⊗σ
K
Kh. (1.3.1)

To show it we have to underline several observations, first of all we have:

F ⊗σ
K
Kh = F ⊗σ

K
Map ΩK (hΓ,K c) = Map ΩK (hΓ, F ⊗σ

K
K c).

We try now to understand the structure of F ⊗σ
K
K c. Thanks to a standard result, we have

F ⊗σ
K
K c = Map ΩF (Σ, F c);

where Σ represents the set of all possible extensions of σ to embeddings K c −→ F c and the
isomorphism is obtained sending a⊗b to the map γ −→ aγ(b). Thanks to our choice of a particular
embedding K c −→ F c we have the isomorphism of ΩF -sets Σ ∼= σ̃ΩK (the exponent on the left of
ΩK is always to indicate that the action of ΩF is via σ̃) and, using it in the previous isomorphism,
we have:

F ⊗σ
K
Kh
∼= Map ΩK

(
hΓ,Map ΩF

(
σ̃ΩK , F

c
))

;
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which, applying transitivity of (co)-induction, gives

F ⊗σ
K
Kh
∼= Map ΩF ((hσ̃)Γ, F c) = Fhσ̃.

In the particular case when F = Kv is a completion of K we shall use

Kv ⊗
σ

K
Kh
∼= Map ΩKv

(σ̃ΩK ,Kv
c). (1.3.2)

Nevertheless when F is already a subfield of K c containing K, we shall use the embedding identity
K c = F c and if F = K c, then ΩF = 1 and we will have

K c ⊗K Kh
∼= Map(Γ,K c). (1.3.3)

Finally the canonical K-algebra homomorphism Kh −→ F⊗σ
K
Kh, which sends a −→ 1⊗a, becomes,

for Kh −→ Fhσ̃, a −→ σ ◦ a, where with σ we denote even the extension of the original σ to the
embedding K c −→ F c and σ ◦ a is the composite with the homomorphism a : Γ −→ K c.

1.4 Resolvends and Normal Bases

Remembering that any Galois Γ-extension can be considered inside Map(Γ,K c), we now define a
very important map on this last set, called resolvend map:

rΓ : Map(Γ,K c) −→ K c Γ
a −→

∑
γ∈ Γ a(γ)γ−1,

(1.4.1)

where rΓ(a) is called resolvend associated to a.
Remembering the action of Γ on the domain of the map and letting Γ act on K c Γ trivially on
the coefficients belonging to K c, it’s easy to check that the resolvend map is a K c Γ-modules
isomorphism; indeed:

rΓ(γ.a) =
∑
γ′∈ Γ

γ.a(γ′)γ′−1

=
∑
γ′∈ Γ

a(γ′γ)γ′−1

=
∑
τ∈ Γ

a(τ)γτ−1

= γ.rΓ(a).

This is the reason why in the definition of the resolvend map we use γ−1, instead of the easier γ;
without considering the inverse we would not obtain a K c Γ-modules isomorphism.
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Using resolvends, we can find a criterion to understand if a map a ∈ Map(Γ,K c) belongs to Kh:

a ∈ Kh ⇐⇒ ∀ ω ∈ Ω, ω.rΓ(a) =
∑
γ∈ Γ

ω.a(γ)γ−1,

⇐⇒ ∀ ω ∈ Ω, ω.rΓ(a) =
∑
γ∈ Γ

a(h(ω)γ)γ−1,

⇐⇒ ∀ ω ∈ Ω, ω.rΓ(a) =

∑
γ′∈ Γ

a
(
γ′
)
γ′−1

h(ω),

⇐⇒ ∀ ω ∈ Ω, ω.rΓ(a) = rΓ(a)h(ω); (1.4.2)

here Ω acts on K cΓ through its action on the coefficients.

Resolvends are also very important because they give us a criterion to decide if an element is a
normal basis generator of Γ-extensions. Remember that an element a ∈ Kh is a normal basis
generator of Kh/K if the set {γ(a) : γ ∈ Γ} is a basis of Kh/K, or from another point of view if
Kh = KΓ.a.

Proposition 1.4.0.2. Given a ∈ Kh, we have

Kh = KΓ.a⇐⇒ rΓ(a) ∈ (KcΓ)
×
,

denoting with (KcΓ)
×

the group of units of KcΓ.

Proof. It’s not difficult to prove that in general we have the following isomorphism:

K cΓ.a ∼= K c ⊗K KΓ.a , (1.4.3)

moreover from (1.3.3), we have:

K c ⊗K Kh
∼= Map(Γ,K c).

So for a ∈ Kh we have:

Kh = KΓ.a ⇐⇒ K cΓ.a ∼= K c ⊗K Kh
∼= Map(Γ,K c),

⇐⇒ (K cΓ)(rΓ(a)) = K cΓ,

⇐⇒ rΓ(a) ∈ (K cΓ)
×
.

Thanks to this proposition we have an easy criterion to understand if an element in Kh is a normal
basis generator : an element a ∈ Kh is a normal basis generator if and only if its resolvend is
invertible in K cΓ.

At this point an existence’s question arises: has any Galois Γ-extension a normal basis?

In the case of field extensions, the affirmative answer is assured by the well-known Normal Ba-
sis Theorem.



12

Theorem 1.4.1 (Normal Basis Theorem). Let N be a Galois finite extension of a field K, with
Galois group Γ, then a normal basis of N over K exists. In other words, N is a free KΓ-module
of rank 1.

I refer to [Art55] for a proof with K infinite and to [Bou81] and [Jac64] for a proof with whatever
base field K.

In the case of Galois ring extensions instead, we need some particular conditions to obtain a
Normal basis; in general it doesn’t always exist. For a precise Theorem look at [HR65], whereas
for an explicit example of Galois ring extension without a normal basis look at [Ere].

Finally in the case of Galois Γ-extensions for algebras, we’re lucky because an analogous Theo-
rem, as the one for the field, exists. For a proof of it look at [Frö64].

1.5 Change of group

In this part we want to analyze the effect of a change of the acting group Γ. In order to do this, we
consider the homomorphism of finite group f : Γ −→ Γ′, which gives us the following commutative
diagram:

Map(Γ,K c)
r
Γ //

fM∗
��

K cΓ

f∗

��

Map(Γ′,K c)
r
Γ′ //

f∗M

OO

K cΓ′

f∗

OO
(1.5.1)

The two functions between the two Map-sets are defined in the following way:

(fM∗ (a))(γ′) :=
∑
γ∈Γ

f(γ)=γ′

a(γ),

(1.5.2)
f∗M (b) := b ◦ f.

The first one is seen easily to be a K c-module homomorphism, with the important “Frobenius”
relation

b.fM∗ (a) = fM∗ (f∗M (b) .a) ,with a ∈ Map (Γ,K c) and b ∈ Map
(
Γ′,K c

)
;

while the second one is a K c-algebra homomorphism.
Instead on the right side of the diagram, we define the two functions by K c-linearity, in the following
way :

f∗(γ) := f(γ),
(1.5.3)

f∗(γ′) :=
∑
γ∈Γ

f(γ)=γ′

γ;
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The proof of the given formulas and of fact that the initial diagram is commutative is not difficult.
Just as an example we show the commutativity of the diagram following the maps f∗ and fM∗ . For
this we have to show that given a ∈ Map(Γ,K c), we have r

Γ′

(
fM∗ (a)

)
= f∗ (rΓ (a)). Indeed, just

using definitions, we have:

r
Γ′

(
fM∗ (a)

)
=

∑
γ′∈Γ′

fM∗ (a)(γ′)γ′−1,

=
∑
γ′∈Γ′

∑
γ∈Γ

f(γ)=γ′

a(γ)γ′−1,

=
∑
γ∈Γ

a(γ)f(γ−1),

= f∗ (rΓ (a)) .

The other proofs are similar.

From a Galois Γ-extension Kh, it’s not difficult to obtain a Galois Γ′-extension, given the homo-
morphism f : Γ −→ Γ′. Considering Hom(Ω,Γ) and Hom(Ω,Γ′), we have a map between these two
sets induced by f :

F : Hom(Ω,Γ) −→ Hom(Ω,Γ′)
h −→ f ◦ h ,

which sends Inn(Γ)-orbits into Inn(Γ′)-orbits; giving rise to a Γ′-extension Kf◦h = Map Ω(f◦hΓ′,K c).
Thanks to the fact that we are considering the maps fixed by Ω, it’s easy to see that fM∗ , f

∗
M of the

diagram restrict without any problem to:

Kh

fK∗ // Kf◦h.
f∗K

oo (1.5.4)

Looking at the diagram with these restrictions, we have another similar commutative diagram:

Kh

r
Γ //

fK∗
��

K cΓ

f∗

��

Kf◦h
r
Γ′ //

f∗K

OO

K cΓ′ ,

f∗

OO
(1.5.5)

obtaining the formula
r

Γ′

(
fK∗ (a)

)
= f∗ (rΓ (a)) ,

which, thanks to the fact that f∗ is a ring homomorphism, gives us the property that fK∗ preserves
normal basis generators. Indeed, given a normal basis generator a for Kh (with the consequence
that rΓ(a) is a unit), we obtain, using the previous formula, that r

Γ′

(
fK∗ (a)

)
is invertible and so(

fK∗ (a)
)

is a normal basis generator for Kf◦h.
In particular using (co)-induction on the functor Map, we have:

Map Ω(fΓ′,Kh) = Map Ω

(
fΓ′,Map Ω

(
hΓ,K c

))
= Map Ω(f◦hΓ′,K c) = Kf◦h.
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Recalling the discussion after the definition of Kh, we have that if f is surjective, then

Kf◦h ∼= (Kh)kerf (1.5.6)

and the two maps fK∗ and f∗K are exactly the trace and the inclusion, respectively.

1.6 Tensor Product of Galois extensions

Considering the direct product Γ× Γ′, we can make the following identifications:

K cΓ⊗
K c K

cΓ′ = K c(Γ× Γ′)
(
putting γ ⊗ γ′ =

(
γ, γ′

))
,

(1.6.1)
Map(Γ,K c)⊗

K c Map(Γ′,K c) = Map(Γ× Γ′,K c)
(
putting (a⊗ b)

(
γ, γ′

)
= a (γ) b

(
γ′
))

;

Hom(Ω,Γ)×Hom(Ω,Γ′) = Hom(Ω,Γ× Γ′) (defining (h, k) (ω) := (h (ω) , k (ω))) .

In particular thanks to the last two identifications we have:

Kh ⊗K Kk = K(h,k) (1.6.2)

and using the fact that
rΓ(a)⊗ r

Γ′ (b) = r
Γ×Γ′ (a⊗ b), (1.6.3)

we have that if a and b are normal basis generators of Kh and Kk respectively, then their tensor
product is a normal basis generator of K(h,k).

1.7 The Abelian case

In this section we assume Γ abelian, so, as already observed, we have that Hom(Ω,Γ) is isomorphic
to the set of isomorphism classes of Galois Γ-extensions, which in this way is an abelian group with
a defined group law. Let’s describe it better.

We denote by m : Γ × Γ −→ Γ the multiplication homomorphism and so given h, k ∈ Hom(Ω,Γ)
we have h · k = m(h, k). The map m is trivially surjective and then thanks to (1.6.2) and (1.5.6),
we have

Kh· k ∼= (Kh ⊗K Kk)ker(m).

We shall underline here that ker(m) = {(s, s−1)}. Following the work done in the previous sections,
we have the trace map mK

∗ : Kh ⊗K Kk −→ Kh· k. So, taken a ∈ Kh and b ∈ Kk, following (1.5.5)
we have:

rΓ

(
mK
∗ (a⊗ b)

)
= m∗

(
rΓ×Γ (a⊗ b)

)
= m∗ (rΓ (a)⊗ rΓ (b)) ,

where the last equality follows from (1.6.3).
Recalling (1.5.3), we have that m∗ : K cΓ ⊗ K cΓ (= K c (Γ× Γ)) −→ K cΓ is just the algebra
multiplication γ1 ⊗ γ2 −→ γ1γ2, and so from the last equivalence we obtain:

rΓ

(
mK
∗ (a⊗ b)

)
= rΓ(a)rΓ(b); (1.7.1)
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which tells us that if we take a and b normal basis generators of Kh and Kk, respectively, then we
have that mK

∗ (a⊗ b) is a normal basis generator of Kh· k.

1.7.1 Cohomology interpretation in the abelian case

We would now apply cohomology theory of groups, to have a particular description of Hom(Ω,Γ).
We start with the exact sequence of Ω-modules, where Ω acts trivially on Γ:

1 −→ Γ −→ (K cΓ)
× −→ (K cΓ)

×
/Γ −→ 1 (1.7.2)

and we apply Ω-cohomology so that we have the following exact sequence of Ω-modules:

1 −→ (Γ)Ω −→
(

(K cΓ)
×
)Ω
−→

(
(K cΓ)

×
/Γ
)Ω
−→ H1(Ω,Γ) −→ H1(Ω, (K cΓ)

×
) −→ . . . .

Analyzing each terms, we see that:

(Γ)Ω = Γ,(
(K cΓ)

×
)Ω

= (KΓ)
×
,(

(K cΓ)
×
/Γ
)Ω

=: H(KΓ), (1.7.3)

H1(Ω,Γ) = Hom(Ω,Γ) (because Ω acts trivially on Γ),

H1(Ω, (K cΓ)
×

) = 1 (by Hilbert’s Satz 90);

obtaining the following exact sequence

1 −→ Γ −→ (KΓ)× −→ H(KΓ) −→ Hom(Ω,Γ) −→ 1. (1.7.4)

We can even write H(KΓ) = H(KΓ)/Γ, where

H(KΓ) = {γ ∈ (K cΓ)×| ∀ω ∈ Ω,
ω.γ

γ
∈ Γ}. (1.7.5)

Remark 1.7.2 (Hilbert’s Satz 90). Here we used the generalization of Hilbert’s Satz 90 due to
Emmy Noether which states that if N/K is a finite Galois extension of fields with Galois group
Γ = Gal(N/K), then the first cohomology group is trivial:

H1(Γ, N
×

) = 1.

For the original Hilbert’s Satz 90 due to Kummer we refer to chapter 2 of [Mil].

Without using Satz 90, we notice that any element γ in H(KΓ) defines a map φγ : Ω −→ Γ in the
following way:

φγ (ω) =
ω.γ

γ
.
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In this way we find a group homomorphism π : H(KΓ) −→ Hom(Ω,Γ) which induces easily a map
on H(KΓ).
So we can find exactness at the right of the sequence understanding that the coset γΓ, where
γ ∈ H(KΓ), lies in the preimage of a homomorphism h ∈ Hom(Ω,Γ) if and only if ω.γ

γ = h(ω)
for all ω ∈ Ω. We know that Kh has a normal basis a and so using Prop. 1.4.0.2 we have that
rΓ(a) ∈ (K cΓ)

×
and ω.r

Γ
(a)

r
Γ

(a) = h(ω) for all ω ∈ Ω, thanks to (1.4.2). Thus taking γ = rΓ(a) we
prove that the preimage of h is not empty, as wanted.
Moreover we have the important consequence, that we can describe H(KΓ) as follows:

H(KΓ) = {rΓ(a)|KΓ.a = Kh for some h ∈ Hom(Ω,Γ)}, (1.7.6)

in other words H(KΓ) is the set of all resolvends of normal basis generators of Galois Γ-extensions
Kh/K, with h ∈ Hom(Ω,Γ).

1.7.3 Interpretation in terms of characters

Recalling that we consider Γ abelian, in this section we shall give an interpretation of H(KΓ) in
terms of character functions.

We denote by Γ̂ = Hom(Γ,K c×) the group of characters of Γ. Each character χ ∈ Γ̂ can be
extended by linearity to an algebra homomorphism χ : K cΓ −→ K c and we can make the following
identification:

K cΓ = Map(Γ̂,K c),

where any element γ ∈ K cΓ is regarded as a function on Γ̂ by putting γ(χ) = χ(γ) for χ ∈ Γ̂.
We have an action of Ω naturally defined on the group of characters, in particular ω.χ(γ) =
ω.(χ(ω−1. γ)) for al γ ∈ Γ; which allows us to view the action of Ω on K cΓ in terms of characters,
as follows:

ω.γ(χ) = ω.(γ(ω−1.χ)). (1.7.7)

If we take instead the multiplicative group (K cΓ)
×

, it can be identified, after a Z-linearity extension
of homomorphisms, with Hom

(
ZΓ̂, (K c)

×
)

. So, considering the fixed points under the action of

Ω, we have KΓ
×

= HomΩ

(
ZΓ̂, (K c)

×
)

, and we can have an alternative description of (1.7.2), by

applying Hom(−, (K c)
×

) to the sequence

0 // A
Γ̂

// ZΓ̂
det // Γ̂ // 1, (1.7.8)

where A
Γ̂

is the kernel of the map det: ZΓ̂ −→ Γ̂, defined in the following way:

det

∑
χ∈ Γ̂

aχχ

 =
∏
χ∈ Γ̂

χaχ (aχ ∈ Z).
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Since (K c)
×

is divisible (so injective), we obtain another exact sequence

1 // Hom
(

Γ̂, (K c)
×
)

// Hom
(
ZΓ̂, (K c)

×
)

// Hom
(
A

Γ̂
, (K c)

×
)

// 1.

(1.7.9)
Now we can make some identifications: first of all from previous facts we have Hom

(
ZΓ̂, (K c)

×
)

=

(K cΓ)
×

and then it’s well known that ̂̂Γ = Γ, so we have even Hom
(

Γ̂, (K c)
×
)

= Γ. Thanks to
these, we can rewrite the previous exact sequence:

1 // Γ // (K cΓ)
× // (K cΓ)

×
/Γ // 1

1 // Hom
(

Γ̂, (K c)
×
)

// Hom
(
ZΓ̂, (K c)

×
)

// Hom
(
A

Γ̂
, (K c)

×
)

// 1 ,

(1.7.10)
where the third identification derives from the other two. In particular, looking at the fixed points,
we underline the following situation:

(KΓ)
× // H(KΓ)

HomΩ

(
ZΓ̂, (K c)

×
)

rag
// HomΩ

(
A

Γ̂
, (K c)

×
)

;

(1.7.11)

where rag is just the restriction of homomorphisms to A
Γ̂
. It follows, from the previous equivalence

of sets, that if a generates a normal basis of Kh/K, then its resolvend belongs to (K cΓ)
×

and so it’s
a homomorphism rΓ(a) : ZΓ̂ −→ (K c)

×
. We denote its restriction to A

Γ̂
by RΓ(a) : A

Γ̂
−→ (K c)

×
,

obtaining:
RΓ(a) = rag (rΓ (a)) = rΓ(a)Γ. (1.7.12)

We shall call RΓ(a) the reduced resolvend of a. So with this notation we obtain

H(KΓ) = {RΓ(a)|KΓ.a = Kh for some h ∈ Hom(Ω,Γ)}. (1.7.13)

Remembering that γ.rΓ(a) = rΓ(γ.a) for any γ ∈ Γ, we have that the elements of H(KΓ) are in
one to one correspondence with the actual normal bases of the various Galois Γ−algebras Kh/K.
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Chapter 2

Tame extensions and integral
resolvends

The aim of this chapter is to give an integral interpretation of what done in the final part of the
previous chapter for algebraic number fields K and their completion Kv; we will concentrate in
particular on Tame Galois extensions. We shall see that strict analogues exist only for unramified
extensions of the ring of integers (O and Ov).

2.1 Completion

We take K an algebraic number field, or better a finite extension of Q contained in the complex
number field C and we denote by K c the algebraic closure of K. For any prime v of K we take
the completion Kv and we have a natural embedding iv : K c −→ K c

v , where K c
v is the algebraic

closure of the completion. Moreover we denote by ĩv : Ωv −→ Ω the corresponding embedding of
the Galois groups, respectively of K c

v /Kv and of K c/K.
If we take h ∈ Hom(Ω,Γ), then hv = h ◦ ĩv ∈ Hom(Ωv,Γ) and so from (1.3.1) we have

(Kv)hv
∼= Kv ⊗K Kh; (2.1.1)

moreover considering iv as an inclusion, we have that Kh ⊆ (Kv)hv .

2.2 Tame Galois Γ-extensions

Let Ωt (resp. Ωt
v) denote the Galois group of the maximal tame extension Kt/K (resp. Kt

v/Kv) in
K c (resp. in K c

v ); clearly ĩv restricts to ĩv : Ωt
v −→ Ωt.

A Galois Γ-extension Kh/K is called tame when h factors through the quotient map Ω� Ωt or in
other words when we have the following commutative diagram:

Ω
h //

quot. !! !!CCCCCCCCC Γ

Ωt

=={{{{{{{{{

(2.2.1)
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Remark 2.2.1. We can underline that, looking at the diagram, Kh/K is tame ⇐⇒ Kh ⊆ Kt.
Indeed we have Kh/K tame ⇐⇒ Gal(K c,Kt) ⊆ ker(h)⇐⇒ Kh ⊆ Kt.
This means that if we consider Hom(Ωt,Γ) as a subset of Hom(Ω,Γ), then Kh/K is tame if and
only if h ∈ Hom(Ωt,Γ); in which case we also say h is tame.

The same can be done for Kv and we have h tame if and only if hv tame for all primes v of K (for
v infinite we take Kt

v = K c
v ).

For Γ abelian, we call Ht(KΓ) (= Ht(KΓ)/Γ) the preimage of Hom(Ωt,Γ) under the connecting
homomorphism H(KΓ) −→ Hom(Ω,Γ) explained above (the same for Kv).
So we have the following commutative diagram, where the vertical maps are induced by the sup-
pressed iv:

1 // Γ // (KΓ)
× rag

//

��

Ht(KΓ) //

��

Hom(Ωt,Γ) //

��

1

1 // Γ // (KvΓ)
× rag

// Ht(KvΓ) // Hom(Ωt
v,Γ) // 1.

(2.2.2)

Exactly the same, done for the maximal tame extension, can be remade for the maximal unram-
ified extension Knr

v /Kv in K c
v with Galois group denoted by Ωnr

v . So we also call Hnr(KvΓ) (=
Hnr(KvΓ)/Γ) the preimage of Hom(Ωnr

v ,Γ) as above.

2.3 Integral vision

We denote by O, Ot, Oc, andOh the ring of integers in K, Kt, K c, andKh, respectively. The
integral closure Oh of O in Kh is

Oh = Map Ω(hΓ, O c).

As done with Kh, we can see Oh as [Γ : h(Ω)] copies of Oh.
Exactly the same for Ov, O

c
v , O

hv
v and (Ov)hv = Map Ωv

(hvΓ, O c
v ), where for infinite v we take Ov =

Kv.

In the rest of the subsection we denote by v a finite prime of K and also by v the additive valuation
normalized associated. Trying to find an integral analogous of some previous relations we find
(thanks to Section 1.3 and thanks to [Ser79] Chap. 2, Prop. 4)

Ov ⊗O O
c ∼= MapΩv

(Ω, O c
v ) (2.3.1)

and always following the proof in 1.3 we obtain

(Ov)hv
∼= Ov ⊗O Oh. (2.3.2)

The fundamental theorem to start from, in the study of integral Galois module structure, is
Noether’s Criterion:

Theorem 2.3.1 (Noether’s Criterion). The extension (Kv)hv/Kv is tame if and only if it has a
normal integral basis (N.I.B.); i.e., if and only if (Ov)hv = (OvΓ).av for some av ∈ (Ov)hv.

For different proofs of this theorem, look in [Ere] (Chap. 3.4); while a particular proof for the
unramified case will be given in the next Chapter.
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2.4 Trace Map - Duality

The usual trace defined on Map(Γ,K c) is well known and so for any h ∈ Hom(Ω,Γ), thanks to a
restriction on Kh, we have a trace map defined on the set Kh in the usual way:

Tr : Kh −→ K
a −→ Tr(a) =

∑
γ∈Γ a(γ) ; (2.4.1)

satisfying trivially the relation Tr(γ ′. a) = Tr(a), for any a ∈ Kh and γ ′ ∈ Γ.
Associated to it, we have a nondegenerate bilinear form (a, b) −→ Tr(ab), which gives the definition
of dual lattice and discriminant for Galois algebras, as usual. If we take M , an O-lattice in Kh, we
have

M∗ = {b ∈ Kh|Tr(bM) ⊆ O},
(2.4.2)

δ(Oh/O) = [O∗h : Oh]O,

where [ : ]O is the O-module index. It’s not hard to prove that O∗h = Map
(
hΓ, (Oh)∗

)
, in other

words a product of [Γ : h(Ω)] copies of (Oh)∗ , given

δ(Oh/O) = δ(Oh/O)[Γ:h(Ω)] (2.4.3)

where (Oh)∗ and δ(Oh/O) have the usual meaning in Kh/K. So in particular we have that Oh = O∗h
if and only if hv is unramified for all finite primes v.

2.5 Resolvends and integral properties

In this subsection we assume that Γ is abelian. So the canonical involution γ −→ γ−1 in Γ, induces
a canonical involution h −→ h−1 on Hom(Ω,Γ) and involutions on the K c-algebras Map(Γ,K c)
and K cΓ which we shall denote by [−1].
Thus we have the commutative diagram

Ω
h //

h−1

!!BBBBBBBBB Γ

[−1]
}}{{{{{{{{{{

Γ ,

(2.5.1)

which gives us the following results:

(Kh)[−1] = Kh−1 ,

(2.5.2)
rΓ(a[−1]) = rΓ(a)[−1] for a ∈ Map(Γ,K c).

We arrive so at the deeper following result:
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Proposition 2.5.0.1. (a) For any a, b ∈ Map(Γ,K c) we have

rΓ(a)rΓ(b)[−1] =
∑
γ∈Γ

Tr ((γ(a)) b) γ−1.

(b) If Kh = KΓ.a. Let b ∈ Kh satisfying Tr(γ(a)b) = δγ,1 then

rΓ(a)−1 = rΓ(b)[−1],

(c) (OΓ.a)∗ = OΓ.b,

(d) [(OΓ.a)∗ : OΓ.a]O = [OΓ : OΓrΓ(a)rΓ(a)[−1]]O.

Proof. (a) We compute rΓ(a)rΓ(b)[−1] =
∑

σ,τ σ(a)τ(b)σ−1τ . Let γ−1 = σ−1τ so

rΓ(a)rΓ(b)[−1] =
∑
τ,γ∈Γ

τγ(a)τ(b)γ−1 ,

=
∑
γ∈Γ

(∑
τ

τ (γ(a)b)

)
γ−1 ,

=
∑
γ∈Γ

Tr (γ(a)b) γ−1.

(b) The existence of such an element b follows from the separability property which says that the
trace is surjective. From Tr (γ(a)b) = δγ,1 we have

Tr(σ(a)τ(b)) = Tr(τ−1σ(a)b) = δσ,τ ,

and so the proof follows from the formula of the previous point.

(c) This follows from the existence of the element b with the property in point (b).

(d) From the previous point we have

[(OΓ.a)∗ : OΓ.a]O = [OΓ.b : OΓ.a]O
= [OΓrΓ(b) : OΓrΓ(a)]O
= [OΓ : OΓrΓ(a)rΓ(b)−1]O
= [OΓ : OΓrΓ(a)rΓ(a)[−1]]O,

where in the first equality we used point (c), in the second equality the fact that rΓ is an
isomorphism and in the last one we applied point (b).

Moreover we have the following important Theorem, which characterizes the normal integral basis
generators of unramified extensions thanks to their resolvends.
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Theorem 2.5.1 (Condition on resolvend to be N.I.B. generator).

rΓ(a) ∈ (O cΓ)× ⇐⇒ Oh = OΓ · a and δ(Oh/O) = (1). (2.5.3)

Proof. For both sides we have a ∈ Oh and consequently (OΓ · a)∗ ⊇ O∗h ⊇ Oh ⊇ OΓ · a. But, then

rΓ(a) ∈ (O cΓ)
× ⇐⇒ rΓ(a)rΓ(a)[−1] ∈ (OΓ)

×

⇐⇒ (OΓ.a)∗ = (OΓ.a)
⇐⇒ Oh = OΓ.a and [O∗h : Oh] = (1),

where in the second equality we used Proposition 2.5.0.1 and in the last one the inclusion written
at the beginning of the proof.

2.6 Cohomological integral analogue

In this section we try to do the same thing done in the general non integral case, applying Ωv-
cohomology to the following exact sequence:

1 −→ Γ −→ (O c
v Γ)

× −→ (O c
v Γ)

×
/Γ −→ 1. (2.6.1)

In this case we obtain

1 −→ Γ −→ (OvΓ)× −→ H(OvΓ) −→ Hom(Ωnr
v ,Γ) −→ 1, (2.6.2)

where
H(OvΓ) =

(
(O c

v Γ)
×
/Γ
)Ωv

= H(OvΓ)/Γ,

and
H(OvΓ) = (O c

v Γ)
× ∩H(KvΓ).

The exactness on the right of the sequence (2.6.2) essentially only depends on the fact that we are
considering a tame extension (so we have a normal integral basis) and from the local version of
Theorem 2.5.1.
Moreover, as in the general case, we have the following two analogous consequences:

H(OvΓ) = {RΓ(av) |OvΓ.av = (Ov)hv , for some hv ∈ Hom(Ωnr
v ,Γ)}, (2.6.3)

and
Hnr(KvΓ) = H(OvΓ) · rag

(
(KvΓ)

×
)
, or Hnr(KvΓ) = H(OvΓ)(KvΓ)

×
. (2.6.4)

Finally we try to give an analogous of (1.7.11). For any integral ideal m of O, let

Um(O c
v ) = (1 + mO c

v ) ∩ (O c
v )
×

;

in particular if m and v are relatively prime we have Um(O c
v ) = (O c

v )
×

. If m is principal generated
by e we denote Um(O c

v ) just as Ue(O c
v ).

We prove here a Lemma which will be useful for the next important Theorem.
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Lemma 2.6.1. If ye ∈ Ue2(O c
v ), then ye−1

e(y−1) ∈ O c
v .

Proof. If y = 1 we interpret the fraction as 1 and so there’s no problem because 1 ∈ O c
v , while if

v(e) = 0 the proof is trivial because v(ye − 1) ≥ v(y − 1); thus, assuming y 6= 1 and v(e) > 0, we
have to show that v

(
ye−1
e(y−1)

)
≥ 0.

From hypothesis, we have ye ∈ Ue2(O c
v ) and so v(ye − 1) ≥ 2v(e); so

v

(
ye − 1
e(y − 1)

)
≥ v(e)− v(y − 1).

If v(e)− v(y− 1) ≥ 0, we are done. If not, then v(y− 1) ≥ v(e) so v
(

(y − 1)2
)
> v (e (y − 1)), and

since

ye − 1 =
e∑
r=1

(
e

r

)
(y − 1)r ≡ e(y − 1)

(
mod(y − 1)2O c

v

)
we conclude v

(
ye−1
e(y−1)

)
= 0 and again we are done.

We can give now the Theorem which gives us the analogous of (1.7.11).

Theorem 2.6.2. Suppose Γ is abelian.

(a) If |Γ| divides m, then

Hom Ωv

(
ZΓ̂, Um (O c

v )
)
⊆ (OvΓ)

× ⊆ Hom Ωv

(
ZΓ̂, (O c

v )
×
)

(b) If m is divisible both by |Γ| and m2, where m is the exponent of Γ, then

Hom Ωv

(
A

Γ̂
, Um (O c

v )
)
⊆ H(OvΓ) ⊆ Hom Ωv

(
A

Γ̂
, (O c

v )
×
)
.

In particular, if v is relatively prime to |Γ|, then

OvΓ
×

= Hom Ωv

(
ZΓ̂, (O c

v )
×
)
,

and
H(OvΓ) = Hom Ωv

(
A

Γ̂
, (O c

v )
×
)
.

Proof. (a) We know that the maximal O c
v -order of K c

v Γ is Map(Γ̂, O c
v ) and that |Γ| ·Map(Γ̂, O c

v ) ⊆
O c

v Γ. So if |Γ| divides m we have the assertion.
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(b) From the previous section about the non integral part (1.7.10) it follows that (O c
v Γ)

× ⊆
Hom

(
ZΓ̂, (O c

v )
×
)

and (O c
v Γ)

×
/Γ ⊆ Hom

(
A

Γ̂
, (O c

v )
×
)

, so H(OvΓ) ⊆ HomΩv
(A

Γ̂
, (O c

v )
×

). If
v and |Γ| are relatively prime (v(|Γ|) = 0) then we have equality in the previous inclusion from
point (a), so to prove (b) we only need to consider the case v(|Γ|) > 0. We are so interested
in prove the first inclusion of (b).

Let g ∈ HomΩv

(
A

Γ̂
, Um (O c

v )
)
⊆ HomΩv

(
A

Γ̂
, (K)

×
)

= H(KvΓ) =
(

(K c
v Γ)

×
/Γ
)Ωv

. So

g = fΓ for some f ∈ (K c
v Γ)

×
and now it sufficient to prove that f ∈ O c

v Γ, since we can
apply the same argument to g−1 = f−1Γ to get f ∈ (O c

v Γ)
×

. Let f =
∑

γ∈Γ a(γ)γ−1, we
shall prove that a(γ) ∈ O c

v .
Let φ1, . . . , φk a basis for the abelian group Γ̂, each one with order ei, respectively for i =
1, . . . , k. So any element χ ∈ Γ̂ can be represented in the following unique way

χ =
k∏
i=1

φ
ri(χ)
i , where 0 ≤ ri(χ) < ei.

Hence, trivially (review the definition of A
Γ̂
), A

Γ̂
contains the elements (actually they form

a basis for A
Γ̂
)

{eiφi|i = 1, . . . , k} ∪ {d(χ)|χ ∈ Γ̂}

with

d(χ) = χ−
k∑
i=1

ri(χ)φi.

By Fourier inversion, for γ ∈ Γ,

a(γ) = |Γ|−1
∑
χ∈ Γ̂

f(χ)χ(γ) = |Γ|−1
∑
χ∈ Γ̂

(f · γ)(χ),

where the multiplication f · γ ∈ (K c
v Γ)

×
. We note that f · γ lies in the coset fΓ = g, so

changing f by f · γ, we see that it suffices to show a(1) ∈ O c
v , where

a(1) = |Γ|−1
∑
χ∈ Γ̂

f(χ).

Now, for every χ ∈ Γ̂, we have f(χ) ∈ (O c
v )
×

. Indeed if m is the exponent of Γ, then
mχ ∈ A

Γ̂
, so, using the definition of g and the equality fΓ = g, we have the result claimed

just above
f(χ)m = f(mχ) = g(mχ) ∈ Um (O c

v ) ⊆ (O c
v )
×
.

By the definition of d(χ) we have now

f(χ) = f (d (χ))
k∏
i=1

f(φi)ri(χ)
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and since d(χ) ∈ A
Γ̂
, f (d (χ)) = g (d (χ)) ∈ Um(O c

v ). Hence,

f(χ) ≡
k∏
i=1

f(φi)ri(χ) (mod mO c
v ),

and so by the definition of a(1) we obtain

|Γ| · a(1) ≡
∑
χ∈ Γ̂

k∏
i=1

y
ri(χ)
i (mod mO c

v ),

where yi = f(φi).
Now, χ run over Γ̂, so the k-tuple (r1 (χ) , . . . , rk (χ)) runs over all k-tuples of integer (r1, . . . , rk)
with 0 ≤ ri < ei. Hence, since we have that |Γ| = e1 · · · ek and |Γ| divides m, we obtain

a(1) = |Γ|−1
k∏
i=1

(
ei−1∑
ri=0

yrii

)
=

k∏
i=1

yeii − 1
ei(yi − 1)

, (modO c
v );

where if yi = 1 put the corresponding factor equal to 1.
So now, we only need to show that y

ei
i −1

ei(yi−1) ∈ O c
v .

Before applying the previous Lemma which gives us the final proof, we notice that eiφi ∈ A
Γ̂
,

so
yeii = f(φi)ei = g(eiφi) ∈ Um(O c

v ) j Ue2i (O
c
v ),

since from definition and hypothesis we have that ei divides m and m2 divides m. Now
applying the Lemma everything is proved.



Chapter 3

McCulloh’s result in the Abelian
situation - Unramified case

In this chapter and in the following one, we will retrace the proof given by McCulloh in [McC87]
for realizable classes with the group Γ abelian. First of all we shall concentrate on the unramified
case and the in the following chapter we will consider the general tame case, which is more difficult
to solve and understand.
The basic tools used in these chapters are contained in the section A.4 of the Appendix, where the
concept of class of a tame Γ-extension is introduced.

All along this chapter we shall consider just the unramified situation, without considering the gen-
eral tame case. Indeed if we restrict our attention to the unramified extensions, then the work is
easier and lightened by the absence of a component depending on the Stickelberger map, which we
are going to define in the first section of the next chapter.

During this chapter and the following one, given a prime v of K, we choose and fix a generator
π (= πv) of the maximal ideal p of Ov. We denote by q the finite order of the residue class field Ov/p
and p its characteristic. As before we use v to denote even the additive valuation v : (K c

v )
× −→ Q

normalized with respect to Kv, so that v(π) = 1.

3.1 Unramified local resolvends

In this section, we try to well describe the unramified local resolvends, which will be fundamental
to understand the shape of the realisable classes.

It’s better to start recalling some basic notions about the Galois group of unramified extensions.

Maximal Unramified extensions and structure of Ωnr
v

: As well known to understand un-
ramified extensions, we’ve just to look at the residue field extensions. We know by hypothesis that
Ov/p is of finite order q = pr (where p is the characteristic of the field) and so, by finite fields
theory, any extension is a finite field of order qn, obtained adding a primitive (qn − 1)-th primitive

27
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root of unity. Thanks to this, we can pass to the original unramified extension of fields which is
again obtained adding a primitive root of unity as for residue fields extensions. Thanks to the
fact that we are considering an unramified extension, the Galois Group of the field extension is
equal to the Galois Group of the residue field extension (remembering that the Galois Group of
the residue field extension is isomorphic to the quotient between the Decomposition group and the
Inertia group and that we are considering a local and unramified situation, so the Decomposition
Group is equal to the Galois Group of the field extension and the Inertia Group is trivial). In this
case, always using finite fields theory, we have a cyclic Galois Group, generated by the Frobenius
map φ : x −→ xq and so, thanks to this consideration, it follows that Knr

v is obtained from Kv

adding all roots of unity with order coprime with p and its Galois Group Ωnr
v

is a procyclic group
generated by φ (= φv) (for a detailed explanation of these considerations, look at [Art67] and at
[FT91], pag.135-136). Of course from finite fields considerations, all (q − 1)-th roots of unity lie in
Kv.

We recall now, without proving it, the famous Nakayama’s Lemma, which will be useful in the next
Proposition.

Lemma 3.1.1 (Nakayama’s Lemma). Let Λ be a (not necessarily commutative) ring. If M =
L+IM , where M is a finitely generated Λ-module, L ⊂M is a submodule and I an ideal contained
in any maximal ideal (I ∈ rad(Λ)); then M = L.

Thanks to the previous Lemma, we can prove now the following Proposition, which is a particular
case of the already cited Noether Criterion.

Proposition 3.1.1.1. Let hv ∈ Hom(Ωnr
v
,Γ). Then (Ov)hv/Ov has a normal integral basis.

Proof. Like in previous proof, we always consider the local case, without writing v anytime. The
field extension Kh/K is unramified and so, as we’ve seen in the explanation about unramified
extensions, Gal(Kh/K) is isomorphic to the Galois group of the residue field extension K

h
/K.

Now any lifting to Oh of a field basis of Kh
/K is an integral basis. If we denote by β ∈ Oh the

lifting of the normal basis generator β, we have that the set {γ(β)}γ∈Γ is linearly independent over
O (to see it consider any linear combination giving a linear dependence relation among the γ(β)’s
and using the quotient map to the residue field, prove that any coefficient is zero) and it generates
Oh over O, by Nakayama’s Lemma. Indeed if M is the O-submodule of Oh generated by the γ(β)’s,
we have Oh = M + vOh and so Oh = M . Letting b : Γ −→ O c be defined as in the previous proof
by

b(t) =
{
τ(β) if t = h(τ),

0 if t /∈ h(Ωt),

it’s not hard to check that b generates a normal integral basis of Oh/O.

After this general introduction to the unramified context, we can finally enunciate the Theorem
which describes the unramified local resolvends.

Theorem 3.1.2. Let hv ∈ Hom(Ωnr
v
,Γ). If av is a N.I.B. generator of (Ov)hv/Ov, then

RΓ(av) = uv
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where uv ∈ H(OvΓ).
Conversely, let uv ∈ H(OvΓ) and let hv be the image of uv under the connecting homomorphism
H(OvΓ) −→ Hom(Ωnr

v
,Γ). Then (Ov)hv/Ov has a N.I.B. generator av for which RΓ(av) = uv.

Proof. It is just another way of saying that H(OvΓ) is the set of all reduced resolvends of local
normal integral basis generators (look at (2.6.3)).

3.2 Characterization of realizable classes

In this section we will be able to give the desired characterization of the set of realizable classes
in the unramified case, that is to say the set Rnr(OΓ) of classes in Cl(OΓ) of form (Oh) for some
unramified Γ-extension Kh/K. We refer to A.4 for the definition of the idele J(KΓ) and the basic
notions on the idea of class of an unramified (in general tame) Γ-extension.

We shall use the previous section to decompose a representative c ∈ J(KΓ) of such a class in the
form

rag(c) = λ (RΓ (b)) u , (3.2.1)

where u is an idele with components uv, λ is a principal idele map and RΓ(b) ∈ H(KΓ).
The characterization will say that if a class in Cl(OΓ) has a representative c for which rag(c) has
a decomposition like the previous one, then the class is realizable.

3.2.1 Definition of the ideles involved in the unramified case

In this section we define the ideles which will be involved thereafter for the unramified case.
Let H (A (KΓ)), Ht (A (KΓ)) and Hnr (A (KΓ)), respectively, be the restricted direct product of
the H(KvΓ), Ht(KvΓ) and Hnr(KvΓ) with respect to the subgroups H(OvΓ). We can define,
componentwise, the following map:

rag : J(KΓ) −→ H (A (KΓ)) ; (3.2.2)

which is well defined since, by Theorem 2.6.2, we have rag(OvΓ)
× ⊆ H(OvΓ) for all v.

For completeness we also define the unit idele group H (A (OΓ)) =
∏

v H(OvΓ), which allows us to
write rag (U (OΓ)) ⊆ H (A (OΓ)).

Moreover we define the useful principal idele map

λ : H(KΓ) −→ H (A (KΓ)) , (3.2.3)

which arises from the componentwise inclusions H(KΓ) ⊆ H(KvΓ) given by the inclusions iv :
K c −→ K c

v . This is again well defined: if RΓ(a) ∈ H(KΓ) where KΓ.a = Kh, then for all but a fi-
nite number of prime v, hv is unramified and OvΓ.a = (Ov)hv , so that, by (2.6.3), RΓ(a) ∈ H(OvΓ).
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From (2.2.2) it follows that the following diagram commutes:

H(KΓ)

λ

��

KΓ
×rag

oo

λ

��

H (A (KΓ)) J(KΓ).
rag

oo

(3.2.4)

Clearly,

λ
(
Ht (KΓ)

)
= λ (H (KΓ)) ∩Ht (A (KΓ)) , (3.2.5)

λ (Hnr (KΓ)) = λ (H (KΓ)) ∩Hnr (A (KΓ)) . (3.2.6)

3.2.2 Decomposition of unramified global resolvends

We are now ready to get a decomposition of unramified global resolvends, using the results achieved
in the previous local part; in particular we have the following important Theorem.

Theorem 3.2.3. Let h ∈ Hom(Ω,Γ) and suppose KΓ.b = Kh (b is a normal basis generator).
Then h is unramified if and only if there are elements c ∈ J(KΓ) and u ∈ H (A (OΓ)) such that

λ (RΓ (b)) = (rag (c))−1 u.

Moreover, if so, then j(c) = (Oh) ∈ Cl(OΓ).

Proof. (=⇒) We suppose that h is unramified. Exactly as in (A.4.0.1) b ∈ Kh is a normal basis
generator and for all v we have av ∈ (Ov)hv , such that

(Ov)hv = OvΓ.av,

and c = (cv)v ∈ J(KΓ) such that
av = cv.b;

so by (A.4.3), RΓ(av) = (rag(cv))RΓ(b).
Now we can use Theorem 3.1.2 which tells us that

RΓ(av) = uv

where uv ∈ H(OvΓ). In this way u = (uv) v ∈ H (A (OΓ)) and we have

u = (rag (c))λ (RΓ (b)) ,

as we wanted to show.

(⇐=) Conversely, suppose
λ (RΓ (b)) = (rag (c))−1 u,

where c ∈ J(KΓ) and u ∈ H (A (OΓ)). By (2.6.4), we have (rag (c))−1 ∈ Hnr (A (KΓ)) and
u ∈ H (A (OΓ)) ⊆ Hnr (A (KΓ)). Thus we obtain

λ (RΓ (b)) ∈ λ (H (KΓ)) ∩Hnr (A (KΓ)) = λ (Hnr (KΓ)) ,
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which tells that h is unramified.

Moreover, locally we have for any v

RΓ(b) = (rag (cv))−1 uv ∈ Hnr (KvΓ) .

So, by (2.2.2), RΓ(b) and uv have the same image hv in Hom(Ωnr
v
,Γ), and so by Theorem 3.1.2,

uv = RΓ(av) where OvΓ.av = (Ov)hv . Hence, recalling the remark made after (A.4.3), we have
j(c) = (Oh) in Cl(OΓ).

3.2.4 The Realizable classes form a subgroup

In this section we arrive to the most important result which says that the realizable classes form a
subgroup in the unramified abelian case.

We start by defining the important set of realizable classes obtained by unramified extensions

Rnr(OΓ) = {(Oh)|h ∈ Hom(Ωnr
K ,Γ)}.

We can also define
Rnr(OΓ) = j−1 (Rnr (OΓ)) , (3.2.7)

where j : J(KΓ) −→ Cl(OΓ) is the usual quotient map.

Here we have the important Theorem, which gives us the result we are looking for in the unramified
case.

Theorem 3.2.5 (Unramified case). Let c ∈ J(KΓ). Then

c ∈ Rnr(OΓ)⇐⇒ rag(c) ∈ λ (H (KΓ)) H (A (OΓ)) .

Proof. (=⇒) We take h ∈ Hom(Ωnr,Γ) and suppose that (Oh) = j(c). By the Normal basis
Theorem, we take b such that KΓ.b = Kh. Then using Theorem 3.2.3, we find c ′ ∈ J(KΓ) and u ∈
H (A (OΓ)) with j(c ′) = j(c) and λ (RΓ (b)) = (rag (c ′))−1 u.
Then bringing rag(c ′) to the other side, we obtain rag(c ′) ∈ λ (H (KΓ)) H (A (OΓ)).
Since j(c) = j(c ′), we have c−1c ′ ∈ λ(KΓ

×
)U(OΓ), so we deduce that

rag(c−1c ′) ∈ λ (H (KΓ)) H (A (OΓ)) ,

obtaining the first implication.

(⇐=) If we suppose that rag(c) ∈ λ (H (KΓ)) H (A (OΓ)), then

rag(c) = λ (RΓ (b))−1 u,

where KΓ.b = Kh for some h ∈ Hom(Ω,Γ) and u ∈ H (A (OΓ)). Using Theorem 3.2.3, we conclude
that h is unramified and j(c) = (Oh).
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We give an alternative formulation of the previous Theorem, using the following map

Cl(OΓ) = J(KΓ)

λ(KΓ× )U(OΓ)

Rag
// H(A(KΓ))
λ(H(KΓ))H(A(OΓ)) , (3.2.8)

where Rag is induced by rag : J(KΓ) −→ H (A (KΓ)). Indeed from Theorem 3.2.5, we have the
following Corollary.

Corollary 3.2.6. In same hypothesis as before:

Rnr(OΓ) = ker(Rag).

In particular, Rnr(OΓ) is a subgroup of Cl(OΓ).

From (2.2.2), we observe that the kernel of rag : J(KΓ) −→ H (A (KΓ)) is
∏

v Γ ⊆ U(OΓ) and so
we have

Cl(OΓ) =
J(KΓ)

λ(KΓ×)U(OΓ)
∼=

rag J(KΓ)
λ(rag KΓ×) rag U(OΓ)

,

⊆ H (A (KΓ))
λ(rag KΓ×) rag U(OΓ)

.

So we can give an explicit description of the set of realizable classes realized by unramified exten-
sions.

Corollary 3.2.7. Under the previous isomorphism, we have

Rnr(OΓ) ∼=
rag J(KΓ) ∩ λ (H (KΓ)) H (A (OΓ))

λ(rag KΓ×)rag U(OΓ)
.



Chapter 4

McCulloh’s result in the Abelian
situation - Tame case

In this chapter, as already announced, we will consider McCulloh’s proof for the more general and
complex tame case. We will see that some parts are exactly equal to the unramified situation, even
if in this case we have to introduce a new tool which is fundamental to get the final result: the
Stickelberger map.

4.1 The Stickelberger map and its transpose

We start here introducing the so called Stickelberger map, an important tool which is fundamental
to produce reduced resolvends of local normal integral basis generator in the tame situation and
describe their prime factorization. After its definition, we shall try to discover different proper-
ties of the Stilckelberger map and we will see how this map is linked to the set of reduced resolvends.

For Γ abelian, we define a Q-bilinear map

〈 , 〉 : QΓ̂×QΓ −→ Q (4.1.1)

as follows on basis elements. Given χ ∈ Γ̂, γ ∈ Γ, we know that χ(γ) is a root of unity because Γ
is a finite group and we define 〈χ, γ〉 as the unique rational number characterized by

χ(γ) = e2πi〈χ,γ〉, 0 ≤ 〈χ, γ〉 < 1. (4.1.2)

The Stickelberger map
Θ = ΘΓ : QΓ̂ −→ QΓ (4.1.3)

is the Q-linear transformation defined for α ∈ QΓ̂ by

Θ(α) =
∑
γ∈Γ

〈α, γ〉γ. (4.1.4)

The Stickelberger module is the set

S = SΓ = Θ(ZΓ̂) ∩ ZΓ, (4.1.5)

33
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which is well characterized by the following Proposition.

Proposition 4.1.0.1. For α ∈ ZΓ̂,

Θ(α) ∈ ZΓ⇐⇒ α ∈ A
Γ̂
.

In particular, Θ defines, by restriction, a Z-homomorphism

ΘΓ : A
Γ̂
−→ ZΓ,

whose image is the Stickelberger module

SΓ = ΘΓ(A
Γ̂
).

Proof. We recall that det(
∑

χ aχχ) =
∏
χaχ and so if α ∈ ZΓ̂ and γ ∈ Γ, by bilinearity of the

Stickelberger map we have
(det (α)) (γ) = e2πi〈α,γ〉,

indeed if α =
∑

χ aχχ, aχ ∈ Z, then (det (α)) (γ) =
∏
χ χ(γ)aχ = e2πi

∑
χ〈χ,γ〉aχ and by bilinearity,∑

χ

aχ〈χ, γ〉 = 〈
∑
χ

aχχ, γ〉 = 〈α, γ〉.

Hence
Θ(α) ∈ ZΓ⇐⇒ ∀ γ, 〈α, γ〉 ∈ Z,

which means
Θ(α) ∈ ZΓ⇐⇒ ∀ γ, (det (α)) (γ) = 1⇐⇒ α ∈ ker(det) = A

Γ̂
.

The last assertion of the Proposition now is trivial.

Now we’re going to play with the different possible Ω-actions on Γ, in order to find a particular
action of Ω on Γ such that Θ : QΓ̂ −→ QΓ preserves Ω-action.
If we denote by m the exponent of Γ, then (Z/mZ)

×
acts (canonically) as the group of auto-

morphisms of the group of m-th roots of unity µm and it also acts (canonically) as a group of
automorphisms of any group of exponent m, in particular Γ and Γ̂.
Let

κ : Ω −→ (Z/mZ)
×

be the “m-th cyclotomic character” of Ω, obtained restricting the action of Ω to µm; in other words

ω.ζ = ζκ(ω)

for all ζ ∈ µm, ω ∈ Ω. We underline that if µm ⊆ K then the map κ is trivial, because any m-th
root of unity is fixed by Ω in this case.
We denote by Γ(n), for any n ∈ Z, the group Γ considered as an Ω-module via κn : Ω −→ (Z/mZ)

×
,

that is to say that Ω acts on Γ in the following way:

ω.γ = γκ
n(ω) for γ ∈ Γ, ω ∈ Ω.

Thus Γ(0) denotes Γ with the trivial action of Ω, instead if we consider Γ(−1) we have

ω.γ = γκ(ω−1) for γ ∈ Γ, ω ∈ Ω.

By the previous remark, if µm ⊆ K then we have Γ(n) = Γ(0) for all n.
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Remark 4.1.1. If we view Γ as a group of characters of Γ̂, it has a natural Ω-action given by
(ω.γ)(χ) = ω. (γ (χ)) for γ ∈ Γ, χ ∈ Γ̂ and ω ∈ Ω. Since γ(χ) is an m-th root of unity we have
that ω.γ = γκ(ω) and so we can identify Γ with Γ(1) and thanks to this, we have

KΓ̂ ∼= Map Ω (Γ (1) ,K c) .

Proposition 4.1.1.1. The linear transformation ΘΓ : QΓ̂ −→ QΓ(−1) preserves the action of Ω.

Proof. Given ω ∈ Ω, χ ∈ Γ̂ and γ ∈ Γ(−1) we have

(ω.χ)(γ) = ω. (χ (γ)) = χ(γ)κ(ω) = χ(γκ(ω)) = χ(ω−1.γ),

obtaining 〈ω.χ, γ〉 = 〈χ, ω−1.γ〉. Then

Θ(ω.χ) =
∑
γ∈Γ

〈ω.χ, γ〉γ =
∑
γ∈Γ

〈χ, ω−1.γ〉γ =
∑
γ∈Γ

〈χ, γ〉(ω.γ) = ω. (Θ (χ)) .

Thanks to Prop. 4.1.0.1 and Prop. 4.1.1.1 we can consider the transpose map

Θt = Θt
Γ

: Hom
(
ZΓ(−1), (K c)

×
)
−→ Hom

(
A

Γ̂
, (K c)

×
)
,

where Θt(f) = f ◦ Θ. If Ω acts on homomorphisms as usual by (ω.f)(χ) = ω.
(
f
(
ω−1.χ

))
,

we see that the transpose map is an Ω-homomorphism; so by restriction we obtain the useful
homomorphism

Θt : HomΩ

(
ZΓ (−1) , (K c)

×
)
−→ HomΩ

(
A

Γ̂
, (K c)

×
)

= H(KΓ), (4.1.6)

which connects the Stickelberger map with resolvends.

The domain of the transpose map Hom Ω

(
ZΓ (−1) , (K c)

×
)

is identified with the group of units of
the K-algebra Map Ω (Γ (−1) ,K c), which is not canonically isomorphic to Map Ω (Γ (+1) ,K c).
Indeed a function in Map Ω (Γ (−1) ,K c) is determined by its values on a set of Ω-orbit representa-
tives Γ′ ⊆ Γ(−1) and with the only request that the value at such a representative γ′ ∈ Γ′ is fixed by
the stabilizer of γ′. Now for any χ ∈ Γ̂ and γ ∈ Γ(−1), we have χ(ω.γ) = χ(γκ(ω)−1

) = ω−1. (χ (γ)) ,
so ω fixes γ ′ if and only if it fixes χ(γ ′) for all χ ∈ Γ̂ and so the values χ(γ ′)’s are fixed by the
stabilizer as required. For γ ∈ Γ, let K(γ) denote the field obtained from K by adjoining χ(γ) for
all χ ∈ Γ̂. Then, evaluating at the elements of Γ′, we obtain

Map Ω (Γ (−1) ,K c) ∼=
∏
γ′∈Γ′

K(γ′). (4.1.7)

Moreover Γ(−1) and Γ(+1) have the same Ω-orbits and the same stabilizers, since γ = ω.γ′ in
Γ(−1)⇐⇒ γ′ = ω.γ in Γ(+1). Thus we can apply exactly the same argument as before, to obtain

Map Ω (Γ (+1) ,K c) ∼=
∏
γ′∈Γ′

K(γ′). (4.1.8)
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As a consequence, we have

Map Ω (Γ (−1) ,K c) ∼= Map Ω (Γ (+1) ,K c) ∼= KΓ̂,

where the isomorphism depends on the choice of the set of orbit representatives Γ′ (so it is not
canonical).

We denote by O(γ) the ring of integers in K(γ) and by Λ the maximal O-order of the K-algebra
Map Ω (Γ (−1) ,K c); which is Map Ω (Γ (−1) , O c). So, using the previous isomorphism, we obtain:

Map Ω (Γ (−1) , O c) = Λ ∼=
∏
γ′∈Γ′

O(γ′), (4.1.9)

Map Ω (Γ (−1) ,K c) = KΛ ∼=
∏
γ′∈Γ′

K(γ′),

Map (Γ (−1) , O c) = O cΛ,
Map (Γ (−1) ,K c) = K cΛ.

In this way we can abbreviate (4.1.6) to give

Θt : KΛ
× −→ H(KΓ). (4.1.10)

Localization. Regarding iv : K −→ K c
v as an inclusion, Γ̂ as Hom

(
Γ, (K c

v )
×
)

and the cyclotomic
character κv just as the restriction of κ to Ωv ⊆ Ω; we can now give a local interpretation of
the previous result. Indeed locally we can consider Λv = Map Ωv

(Γ(−1), O c
v ), which is just the

completion Ov ⊗O Λ, since

Ov ⊗O Map Ω (Γ (−1) , O c) = Map Ω (Γ (−1) , Ov ⊗O O
c)

= Map Ω

(
Γ (−1) ,Map Ωv

(Ω, O c
v )
)

= Map Ωv
(Γ (−1) , O c

v ) ;

where in the first equality we just used the property of the tensor product, in the second we used
the already known equality Ov ⊗O c ∼= O c

v and in the last one we applied coinduction.
Using exactly the same arguments as before, we obtain the local homomorphism

Θt : (KvΛv)
× −→ H(KvΓ),

now we just observe that KvΛv = KvΛ and then we have the following commutative diagram

KΛ
× Θt //

��

H(KΓ)

��

(KvΛ)
× Θt // H(KvΓ),

(4.1.11)

where the vertical maps are inclusions induced by the inclusion iv and the commutativity is easily
proved considering the vertices as Hom groups.
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4.2 Decomposition of tame local resolvends

In this section, using the results reached in the previous part, we try to obtain a decomposition of
tame local resolvends, useful to understand the shape of the set of realizable classes.

As done for the unramified case, we need now to recall, in an explicit way, some well known notions
about the Galois Group of tame extensions.

Maximal Tame extensions and structure of Ωt
v
: As well explained in [Ere], the Maximal

Tame extension is obtained by the compositum of all split tame extensions. In particular K t
v is

obtained from K nr
v , adjoining the values π

1
n with n prime to p (we choose a coherent set of radicals

π
1
n , such that (π

1
mn )

n
= π

1
m for all m, n). Always considering iv as an inclusion of K c ⊆ K c

v , for
each n, we have in K c

v a distinguished primitive n-th root of unity ζn
(

which is iv
(
e

2π i
n

))
. From

this we obtain that Ωt
v
/Ωnr

v
is a procyclic group generated by σ (= σv), where

σ(π
1
n ) = ζnπ

1
n for (n, p) = 1.

Now lifting φ from Ωnr
v

to Ωt
v
, fixing all the different π

1
n for (n, p) = 1, we have that Ωt

v
is generated

by σ and φ; with the identity φσφ−1 = σq. This last identity easily follows, looking at the value of
σ and φ on the various π

1
n and ζn for (n, p) = 1.

If we pass to the abelianization Ωt ab
v

(
= Ωt

v
/[Ωt

v
,Ωt

v
]
)
, we have, from the last equality, that σq−1 is

the commutator of σ and φ and so Ωt ab
v

is the direct product of the cyclic group of order (q − 1)
generated by σ with the procyclic group generated by φ; where σ and φ are the images of σ and φ
in the abelianization. This is the group of interest for us since we are considering Γ abelian and so
Hom(Ωt

v
,Γ) = Hom(Ωt ab

v
,Γ).

Now we can proceed in our investigation of the tame local resolvends’ decomposition. Using the
map evaluation at σ, we have

Hom(Ωt
v
,Γ) −→ Γ

h −→ h(σ) ,

whose Kernel is, thanks to the previous consideration, Hom(Ωnr
v
,Γ).

Thanks to the fact that we are considering the abelianization, we have that σ is of order (q − 1)
and so h(σ) ∈ Γ(q−1), the subgroup of Γ of elements of order dividing q − 1. Hence we have

Ht(KvΓ)/Hnr(KvΓ) ∼= Hom(Ωt
v
,Γ)/Hom(Ωnr

v
,Γ) ∼= Γ(q−1),

where the first isomorphism is canonical, arising from the surjection H(KvΓ) −→ Hom(Ωv ,Γ);
instead the second one depends on the distinguished generator σ which depends on iv .

The decomposition Theorem that we will prove, we shall give even a section of the map Ht(KvΓ) −→
Γ(q−1); depending on the distinguished prime elements π of Ov. The section is the following: for

each γ ∈ Γ(q−1), we define fv,γ ∈ (KvΛ)
×

= HomΩv

(
ZΓ (−1) , (K c

v )
×
)

in the following way

fv,γ (τ) =
{
πv if τ = γ 6= 1,
1 otherwise

for any τ ∈ Γ.
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To check the Ωv-invariance of fv,γ is enough to notice that Kv contains the (q − 1)-roots of unity
so that any element of order dividing (q − 1) is fixed by Ωv as is πv , the prime element. Recalling
that

Θt : (KvΛ)
×

= HomΩv

(
ZΓ (−1) , (K c

v )
×
)
−→ H(KvΓ),

since fv,γ ∈ (KvΛ)
×

, then Θt(fv,γ ) ∈ H(KvΓ). The map γ −→ Θt(fv,γ ) will give us the desired
section.

Lemma 4.2.1. Given fv,γ ∈ (KvΛ)
×

defined as above, for any α ∈ A
Γ̂
, we have(

Θt
(
fv,γ

))
(α) = π〈α,γ〉.

Proof. It is just an easy computation:

(
Θt
(
fγ
))

(α) = fγ (Θ (α)) = fγ

(∑
τ∈Γ

〈α, τ〉τ

)
=
∏
τ∈Γ

fγ (τ)〈α,τ〉 = π〈α,γ〉,

where in the last equality we used the definition of fγ (τ).

Proposition 4.2.1.1. Let γ ∈ Γ(q−1) with order e and let hv ∈ Hom(Ωt
v
,Γ) be defined by

hv(σv) = γ, hv(φv) = 1. Then K hv
v = Kv(π

1
e ) and Θt(fv,γ ) = RΓ(bv) where bv generates a normal

integral basis of (Ov)hv/Ov. In particular, Θt(fv,γ ) ∈ H t(KvΓ) and Θt(fv,γ ) −→ γ under the map
H t(KvΓ) −→ Γ(q−1).

Proof. In the proof we’ll always refer to the local situation even if not explicitly, so we will write
h, K, Ωt, fγ to indicate hv, Kv, Ωt

v
, fv,γ etc..

The case γ = 1 is easy, indeed in this case h = 1 and so Kh = K and Oh(= Map(Γ, O)) has
a trivial normal integral basis generator b where b(τ) = 0 if τ 6= 1 and b(1) = 1. But then rΓ(b) = 1
like Θt(fγ ), since fγ = 1.

Now we analyze the case with γ of order e > 1. First of all, ker(h) is generated by σe and
φ thanks to their definition. So we can see that Kh = K(π

1
e ) indeed π

1
e is fixed by both the

generators and if we look at the order we have

[Ωt : ker(h)] = e = [K(π
1
e ),K].

Moreover we easily find a normal integral basis generator for Oh/O, which is the element

β =
1
e

e−1∑
r=0

π
r
e ∈ Oh,

since (p, e) = 1. To see that it’s a normal integral basis generator we compute σi(β) for i =
0, ..., e− 1:

σi(β) =
1
e

e−1∑
r=0

ζrie π
r
e ,
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and we have
e−1∑
i=0

σi(β)ζ−kie =
1
e

e−1∑
r=0

π
r
e

e−1∑
i=0

ζ(r−k)i
e = π

k
e for k = 0, ..., e− 1;

where in the last equality we used orthogonality of roots of unity. But ζe ∈ O, since e divides
(q − 1) and the π

k
e ’s form an integral basis since Oh/O is totally ramified. Hence, it’s easy to see

that the element b ∈ Oh defined by

b(t) =
{
τ(β) if t = h(τ), τ ∈ Ωt

0 if t /∈ h(Ωt)

generates a normal integral basis of Oh/O. Moreover, since h(Ωt) = 〈γ〉,

rΓ(b) =
e−1∑
i=0

b(γi)γ−i =
e−1∑
i=0

σi(β)γ−i,

just from definition. If we take χ ∈ Γ̂, from the order of γ, it follows that 〈χ, γ〉 = k
e , 0 ≤ k < e.

So we have χ(γ) = ζke and

rΓ(b)(χ) =
e−1∑
i=0

σi(β)ζ−kie = π
k
e = π〈χ,γ〉,

which says that for any α ∈ A
Γ̂
, RΓ(b)(α) = π〈α,γ〉. Thus, using Lemma 4.2.1, it follows that

RΓ(b) = Θt(fγ ) (since Θt(fγ ) ∈ Hom
(
A

Γ̂
, (K c)

×
)

and so it’s just defined from its values on A
Γ̂
) .

The two last remarks of the Proposition are now easy because the connecting homomorphism
H(KΓ) −→ Hom(Ω,Γ) sends RΓ(b) −→ h ∈ Hom(Ωt,Γ) and because h(σ) = γ ∈ Γ(q−1). ( We
underline that fγ and RΓ(b) depend only on the choice of π, whereas rΓ(b) depends also on the
choice of the radicals π

1
n .)

We can finally enunciate the Theorem which gives us the desired Decomposition of tame local
resolvends.
Now any tame extension of Kv with ramification index e is contained in the composite of Kv(π

1
e )

with an unramified extension. The decomposition in the following Theorem is a reflection of this
fact.

Theorem 4.2.2. Let hv ∈ Hom(Ωt
v
,Γ). If av is a N.I.B. generator of (Ov)hv/Ov, then

RΓ(av) = Θt(fv,γ )uv

where hv(σv) = γ ∈ Γ(q−1) and uv ∈ H(OvΓ). Conversely, let γ ∈ Γ(q−1) and uv ∈ H(OvΓ), and
let hv be the image of Θt(fv,γ )uv under the connecting homomorphism Ht(KvΓ) −→ Hom(Ωt

v
,Γ).

Then hv(σv) = γ and (Ov)hv/Ov has a N.I.B. generator av for which RΓ(av) = Θt(fv,γ )uv.

Proof. Again in the proof we shall omit the subscript v. Let h ∈ Hom(Ωt,Γ), since Γ is abelian,
we can decompose h uniquely as a product h = h1h2 where h1, h2 ∈ Hom(Ωt,Γ) with h1(φ) =
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1 = h2(σ) so that h(σ) = h1(σ) and h(φ) = h2(φ). Particularly we have that h2 is unramified. By
Noether’s Criterion, both in the tame and in the unramified case, we can find a1 and a2 N.I.B.
generators for Oh1 and Oh2 , respectively, over O.
First of all we shall prove that

rΓ(a1)rΓ(a2) = rΓ(a′) (4.2.1)

where a′ is a N.I.B. generator for Oh/O.

We observe that under the isomorphism Gal(Kh/K) ∼= h(Ω), the inertia group is isomorphic
to 〈h(σ)〉, with order e; then

δ(Oh/O) = NKh/K(D) = (pe−1)f = p
(e−1)|h(Ω)|

e ,

where in the first equality we used the usual formula linking the discriminant and the different, in
the second and in the last one we used the tame property and the usual property of norm in the
ramified case. Similar formulas exist for h1 and h2, so from (2.4.3) it follows that

δ(Oh/O) = p
(e−1)|Γ|

e = δ(Oh1/O),
δ(Oh2/O) = (1) (because unramified). (4.2.2)

Let a′ = m∗(a1 ⊗ a2), then clearly a′ ∈ Oh and by formula on resolvends we have rΓ(a′) =
rΓ(a1) rΓ(a2), so it only remains to show that it’s a N.I.B. generator. Clearly

rΓ(a′)rΓ(a′)[−1] =
(
rΓ (a1) rΓ (a1)[−1]

)(
rΓ (a2) rΓ (a2)[−1]

)
.

Hence by (2.5.0.1), first of all we have OΓ = OΓ rΓ(a2) rΓ(a2)[−1] since h2 is unramified, and thus

[(OΓ.a′)∗ : OΓ.a′]O = [OΓ : OΓrΓ(a1)rΓ(a1)[−1]]O
= δ(Oh1/O) = δ(Oh/O).

Since (OΓ.a′)∗ ⊇ O∗h ⊇ Oh ⊇ OΓ.a′, it follows that OΓ.a′ = Oh, as we wanted to prove.

(=⇒) Now, let a be any N.I.B. generator of Oh/O, and let γ = h(σ). Then since h1(σ) = γ
and h1(φ) = 1, by Prop. 4.2.1.1 we may choose a1 such that RΓ(a1) = Θt(fγ ). Moreover, a = w.a′

where w ∈ OΓ
×

, so
rΓ(a) = w rΓ(a1) rΓ(a2) = rΓ(a1)rΓ(w.a2),

so
RΓ(a) = RΓ(a1) RΓ(w · a2) = Θt(fγ )u

where u = RΓ(w.a2) ∈ H(OΓ), proving the first assertion of the Theorem.

(⇐=) Conversely, let γ ∈ Γ(q−1) and u ∈ H(OΓ). By Prop. 4.2.1.1, Θt(fγ ) = RΓ(a1) where
OΓ.a1 = Oh1 with h1 defined by h1(σ) = γ, h1(φ) = 1. Of course h1 is the image of rΓ(a1)
under Ht(KΓ) −→ Hom(Ωt,Γ). Moreover by (2.6.3), u = RΓ(a2) where OΓ.a2 = Oh2 for some
h2 ∈ Hom(Ωnr,Γ). Of course then h2 is the image in Hom(Ωt,Γ) of RΓ(a2) and h2(σ) = 1.
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Hence, by multiplicativity, if h is the image under Ht(KΓ) −→ Hom(Ωt,Γ) of Θt(fγ )u, then
h = h1 h2. Since h1(φ) = 1 = h2(σ) we have h(σ) = h1(σ) = γ and we may apply (4.2.1) obtaining
Θt(fγ )u = RΓ(a1)RΓ(a2) = RΓ(a) where a generates a N.I.B. of Oh/O.

Let Fv

(
⊆ (KvΛ)

×
)

be the set of all fv,γ for γ ∈ Γ(q−1). Since the order of the group of those roots
of unity in Kv with order prime to v is (q − 1), we have

γ ∈ Γ(q−1) ⇐⇒ v(|γ|) = 0 and Kv(γ) = Kv,

so we obtain
Fv = {fv,γ |v(|γ|) = 0,Kv(γ) = Kv},

where |γ| denotes the order of γ (for infinite v, we put Fv = {fv,1} = {1}).

4.3 Characterization of realizable classes

Following the analogous section in the previous chapter, now we will be able to give the desired
characterization of the set of realizable classes, that is to say the set R(OΓ) of classes in Cl(OΓ) of
form (Oh) for some tame Γ-extension Kh/K. For the basic notions used in the section, we always
refer to A.4.

We shall use the previous section’s decomposition of the tame local resolvends to decompose a
representative c ∈ J(KΓ) of such a class in the form

rag(c) = λ (RΓ (b)) Θt(f)u ,

where f and u are ideles with components fv and uv respectively, λ is a principal idele map and
RΓ(b) ∈ H(KΓ).
The characterization will say that if a class in Cl(OΓ) has a representative c for which rag(c) has
a decomposition like the previous one with f an arbitrary idele in KΛ, then the class is realizable.

We easily link this situation to the unramified one looking at (3.2.1), we remark here that now in
our decomposition we need a now component Θt(f), given by the Stickelberger map.

4.3.1 Definition of the ideles involved in the tame case

To work in the tame case, we have to add some new ideles to the set of ideles defined in the sub-
section 3.2.1.

Let J(KΛ) be the restricted direct product of the (KvΛ)
×

with respect to the subgroups Λ
×
v , for

all primes v (actually the infinite prime has no role and could be omitted from now on).
Thanks to this, we can define, componentwise, the following map:

Θt : J(KΛ) −→ H (A (KΓ)) , (4.3.1)
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which is well defined, since we have

Λ
×
v = HomΩv

(
ZΓ (−1) , (O c

v )
×
)

which, thanks to Theorem 2.6.2, says that whenever v(|Γ|) = 0 (so except a finite number of cases)
we get

Θt(Λ
×
v ) ⊆ HomΩv

(
A

Γ̂
, (O c

v )
×
)
.

We also define the unit idele group U(Λ) =
∏

v(Λv)
×

and we can remark that in general we have
not Θt (U(Λ)) ⊆ H (A (OΓ)).

Moreover we define the useful principal idele map

λ : KΛ
× −→ J(KΛ), (4.3.2)

which arises from the componentwise inclusions KΛ
× ⊆ (KvΛ)

×
given by the inclusions iv : K c −→

K c
v (it’s not difficult to prove that it’s well defined).

From (4.1.11) it follows that the following diagram commutes:

KΛ
× Θt //

λ

��

H(KΓ)

λ

��

J(KΛ) Θt // H (A (KΓ)) .

(4.3.3)

4.3.2 Decomposition of tame global resolvends

We define F ⊆ J(KΛ) in the following way

f ∈ F ⇐⇒ f ∈ J(KΛ) and fv ∈ Fv for all v. (4.3.4)

Now given fv ∈ Fv, we have fv 6= 1 =⇒ fv /∈ Λ
×
v , so it follows that if f ∈ F , then fv = 1 for

almost all v. We will consider the elements of Fv themselves as ideles embedded in F via the map
(KvΛ)

× −→ J(KΛ).
The nontrivial elements of Fv will be called the prime F -elements lying over v. Thus from the
previous remark, the elements of F are finite products of prime F -elements lying over distinct
primes v of K. From Proposition 4.2.1.1 it follows that

Θt(f) ∈ Ht (A (KΓ)) for all f ∈ F. (4.3.5)

We can state now the tame analogous of Theorem 3.2.3 which gives the useful decomposition of
a tame global resolvend; for the proof we use some facts present in A.4. We underline once again
that also in the global situation, a new component, depending on the Stickelberger map, arises in
the decomposition of tame resolvends and it distinguishes the tame case from the unramified one.
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Theorem 4.3.3. Let h ∈ Hom(Ω,Γ) and suppose KΓ.b = Kh (b is a normal basis generator).
Then h is tame if and only if there are elements c ∈ J(KΓ), f ∈ F , and u ∈ H (A (OΓ)) such that

λ (RΓ (b)) = (rag (c))−1 Θt(f)u.

Moreover, if so, then j(c) = (Oh) ∈ Cl(OΓ) and f is unique.
In particular, f = (fv)v, where for each finite v, fv = fv,γ , with γ = hv(σ v); so fv 6= 1 if and only
if hv is ramified and f = 1 if and only if h is unramified.

Proof. (=⇒) We suppose that h is tame. Exactly as in (A.4.0.1) b ∈ Kh is a normal basis generator
and for all v we have av ∈ (Ov)hv , such that

(Ov)hv = OvΓ.av,

and c = (cv)v ∈ J(KΓ) such that
av = cv.b;

so by (A.4.3), RΓ(av) = (rag(cv))RΓ(b).
Now we can use the decomposition of tame local resolvends given in Theorem 4.2.2 which tells us
that

RΓ(av) = Θt(fv)uv

where fv = fv,γ ∈ Fv with hv(σv) = γ ∈ Γ(q−1) and uv ∈ H(OvΓ). In particular if v is unramified,
so for all but finitely many primes, we have fv = 1; which tell us that f = (fv)v ∈ F . Moreover
u = (uv) v ∈ H (A (OΓ)) and we have

Θt(f)u = (rag (c))λ (RΓ (b)) ,

as we wanted to show.

(⇐=) Conversely, suppose
λ (RΓ (b)) = (rag (c))−1 Θt(f)u,

where c ∈ J(KΓ), f ∈ F, and u ∈ H (A (OΓ)). By (4.3.5) we have Θt(f) ∈ Ht (A (KΓ)), while
by (2.6.4) we have (rag (c))−1 ∈ Hnr (A (KΓ)) ⊆ Ht (A (KΓ)) and u ∈ H (A (OΓ)) ⊆ Ht (A (KΓ)).
Thus we obtain

λ (RΓ (b)) ∈ λ (H (KΓ)) ∩Ht (A (KΓ)) = λ
(
Ht (KΓ)

)
,

which tells that h is tame.

Moreover, locally we have for any v

RΓ(b) = (rag (cv))−1 Θt(fv)uv ∈ Ht (KvΓ) .

Thus, by (2.2.2), RΓ(b) and Θt(fv)uv have the same image hv in Hom(Ωt
v
,Γ), and so by Theorem

4.2.2, Θt(fv)uv = RΓ(av) where OvΓ.av = (Ov)hv and fv = fv,γ with γ = hv(σv). Hence f is
uniquely determined by h. Moreover, recalling the remark made after (A.4.3), we have j(c) = (Oh)
in Cl(OΓ).
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4.3.4 Towards the main Theorem: The Modified Ray Class Group

Let m be an integral ideal of O and recall that for each of these ideals we have defined Um(O c
v ) =

(1 + mO c
v ) ∩ (O c

v )
×

.
For each v we denote by U

′
m(Λv) the subgroup of gv ∈ (KvΛ)

×
= Map

Ωv

(
Γ (−1) , (K c

v )
×
)

satisfying
the following condition

gv ∈ U
′
m(Λv)⇐⇒ gv(γ) ∈ Um(O c

v ) for γ ∈ Γ, γ 6= 1. (4.3.6)

Let the value on 1 be arbitrary. We define the idelic analogues

U
′
m(Λ) =

(∏
v

U
′
m (Λv)

)
∩ J(KΛ).

Proposition 4.3.4.1. If m is divisible by |Γ| and m2 (where m is the exponent of Γ), then

Θt
(
U
′
m(Λ)

)
⊆ H (A (OΓ)) .

Proof. With these hypothesis, by (2.6.2), we have HomΩv

(
A

Γ̂
, Um (O c

v )
)
⊆ H(OvΓ), so it suffices

to show that for each v we have

Θt
(
U
′
m (Λv)

)
⊆ HomΩv

(
A

Γ̂
, Um (O c

v )
)
.

Now everything is easy because, given gv ∈ U
′
m(Λv) and α ∈ A

Γ̂
, we have(

Θt (gv)
)

(α) = gv (Θ (α)) =
∏
γ∈Γ

gv(γ)〈α,γ〉.

Since 〈α, 1〉 = 0 the value in 1 gives no complications, so the right side does not depend on gv(1)
and it lies in Um(O c

v ).

We can now define the modified ray class group mod m of Λ, in the following way

Cl
′
m(Λ) = J(KΛ)/λ(KΛ

×
)U
′
m(Λ),

where the elements will be called modified ray classes mod m of Λ.

We shall give now a characterization of the modified ray class in terms of the field components of
KΛ.
Following (4.1.9) we have that the algebra KΛ can be decompose in its field components in the
following way

KΛ =
∏
H

K(H),

where H ∈ Ω \ Γ(−1) are the Ω-orbits and K(H) = Map
Ω

(H,K c). The projection map KΛ −→
K(H) is given by restriction of functions from Γ(−1) to H and thanks to the evaluation at t ∈ H
we have the isomorphism

K(H) = Map
Ω

(H,K c) ∼= (K c)ΩK(t) = K(t);
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with ΩK(t) stabilizer of t in Ω. The isomorphism depends on t and making it running over H, the
isomorphism runs over all K-isomorphisms K(H) −→ K(t).

Passing to the ring of integers, we can define

O(H) = Map
Ω

(H,O c).

For each prime v we consider the completions K(H)v = Kv ⊗K K(H) and O(H)v = Ov ⊗O O(H).
In order to give a decomposition of the modified ray class group, we have to decompose each
component on the right side of its definition. We start proving that

J(KΛ) =
∏
H

J (K (H)) ,

where as usual J (K (H)) is the idele group of K(H) (the restricted direct product of the K(H)
×
v

with respect to the O(H)
×
v .)

First of all, localizing, we have
KvΛ =

∏
H

K(H)v

and using coinduction and Section 1.3, we obtain

K(H)v = Kv ⊗K K(H)
= Map

Ω
(H,Kv ⊗K K c)

= Map
Ω

(
H,Map

Ωv
(Ω,K c

v )
)

= Map
Ωv

(H,K c
v ),

where again the projection map

KvΛ = Map
Ωv

(Γ (−1) ,K c
v ) −→ K(H)v = Map

Ωv
(H,K c

v ),

is the restriction of functions from Γ(−1) to H.

Remark 4.3.5. We underline that K(H)v is no more a field, but it can be decomposed in field
components as done for K(Λ), using the set of Ωv-orbits Ωv \H which is in bijection with the set
of those primes w of K(H) lying over v of K.
For gv ∈ (KvΛ)

×
=
∏
H K(H)

×
v , we write gv = (gv,H)H where gv,H ∈ K(H)

×

v .

In the same way, we have
Λv =

∏
H

O(H)v (4.3.7)

and from the fact that restricted products commute naturally with finite products we have

J(KΛ) =
∏
H

J (K (H)) .
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So we denote an element g ∈ J(KΛ) as g = (gH)H with any component gH ∈ J (K (H)) and
J (K (H)) is naturally embedded in J(KΛ).
Moreover,

U(Λ) =
∏
H

U (O (H)) where U (O (H)) =
∏
v

O(H)
×
v ,

and passing to the quotient we get

J(KΛ)/U(Λ) =
∏
H

J (K (H)) /U (O (H)) .

The factors of the product on the right are identified with the fractional ideals I (O (H)) of K(H),
thus J(KΛ)/U(Λ) with the group of invertible fractional Λ-ideals in KΛ. For a ∈ I(Λ) we write
a = (aH)H ∈

∏
H I (O (H)).

In this context, we consider the image in I(Λ) of the prime F -elements. Using the definition
of Fv, if fv,γ 6= 1 in Fv, then: v is finite, γ 6= 1, Kv(γ) = Kv, v(|γ|) = 0 and fv,γ ∈ K(H)

×
v ,

where H is the Ω-orbit of γ, since fv,γ (τ) = 1 for τ /∈ H. Since Kv(γ) = Kv, v splits completely in
K(γ) ∼= K(H), which means that Ωv fixes γ; so in our notation

K(H)v = Map Ωv
(H,K c

v ) = Map(H,Kv).

The primes of K(H) lying over v then correspond naturally to the elements of H. Moreover for
τ ∈ H, fv,γ (τ) = 1 if τ 6= γ and fv,γ (γ) = πv, so clearly the image of fv,γ in I (O (H)) is the prime
ideal corresponding to γ ∈ H, giving the following Proposition.

Proposition 4.3.5.1. The images in I(Λ) of the prime F -elements lying over v are the invertible
prime ideals of Λ arising from the prime ideals of relative degree one over v in those components
K(H)/K for which H 6= 1 and v(|γ|) = 0 for γ ∈ H.

We can now obtain the decomposition we’re looking for, indeed by (4.3.6) and (4.3.7) we have

U
′
m(Λv) = K(1)

×
v ×

∏
H 6=1

U
′
m (O (H)v)

where we define U
′
m (O (H)v) = Map Ωv

(H,Um (O c
v )), so making the product over all primes v we

have
U
′

m
(Λ) = J (K (1))×

∏
H 6=1

Um (O (H))

where Um (O (H)) =
∏

v U
′
m (O (H)v). From the decomposition of KΛ we have

λ(KΛ
×

) =
∏
H

λ
(
K (H)

×
)

and hence we obtain the desired decomposition

Cl
′
m(Λ) ∼=

∏
H 6=1

Clm (O (H)) ,
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where Clm (O (H)) is the ray class group mod m of the component K(H),

Clm (O (H)) =
J (K (H))

λ
(
K (H)

×
)

Um (O (H))
.

Thus we can now formulate the following Proposition.

Proposition 4.3.5.2. Let g ∈ J(KΛ) and let V be a finite set of primes of K. Then the modified
ray class mod m of g contains an element f ∈ F , such that fv = 1 for all v ∈ V .
Moreover f can be chosen so that fH 6= 1 for each H 6= 1. In particular each class in Cl

′
m(Λ)

contains infinitely many elements of F and they can be chosen with support disjoint from any
preassigned finite set of primes V .

Proof. Let g = (gH )H with gH ∈ J (K (H)). By the generalized Dirichlet Theorem for primes
in arithmetic progression, each ray class mod m contains infinitely many prime ideals of relative
degree one in K(H)/K. By the previous Proposition, if H 6= 1 and v(|γ|) = 0 for γ ∈ H, then
these prime ideals are the images of prime F -elements. So, for each H 6= 1, we may choose a prime
F -element, called fH 6= 1, in the ray class mod m of K(H) represented by gH in such a way that
the fH lies over distinct primes of K not belonging to V .
Then gHf

−1
H
∈ λ

(
K (H)

×
)

Um (O (H)), so letting f1 = 1 we can define f = (fH )H and we obtain

f ∈ F and gf−1 ∈ λ(KΛ
×

)U′m(Λ) as wanted.

4.3.6 The Realizable classes form a subgroup

We are ready now to reach the analogous result for the tame case of section 3.2.4, in particular
we shall describe the shape of the set of realizable classes R(OΓ) in Cl(OΓ) realized by tame
extensions, which is defined as:

R(OΓ) = {(Oh)|h ∈ Hom(Ωt
K ,Γ)}.

Passing to the idelic context, we can also define

R(OΓ) = j−1 (R (OΓ)) , (4.3.8)

where j : J(KΓ) −→ Cl(OΓ) is the usual quotient map.

In the easy case we have R(ZΓ) = 1 and so R(ZΓ) = λ(QΓ
×

)U(ZΓ).

Here we have the important Theorem corresponding to the unramified result present in Theorem
3.2.5, which gives us the result we are looking for; also in the tame case we have an analogous
characterization of the idelic version of the set of realizable classes even if this time we have a
component depending on the Stickelberger map.

Theorem 4.3.7 (Tame case). Let c ∈ J(KΓ). Then

c ∈ R(OΓ)⇐⇒ rag(c) ∈ λ (H (KΓ)) H (A (OΓ)) Θt (J (KΛ)) .

Moreover, if c ∈ R(OΓ), then there is an h ∈ Hom(Ωt,Γ) with j(c) = (Oh) such that
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(a) Kh is a field,

(b) the only subfield of Kh unramified over K is K itself,

(c) the discriminant δ(Oh/O) is relatively prime to any preassigned ideal of O.

Proof. (=⇒) We take h ∈ Hom(Ωt,Γ) and suppose that (Oh) = j(c). By the Normal basis
Theorem, we take b such that KΓ.b = Kh. Then using Theorem 4.3.3, we find c ′ ∈ J(KΓ), f ∈
F, and u ∈ H (A (OΓ)) with j(c ′) = j(c) and λ (RΓ (b)) = (rag (c ′))−1 Θt(f)u.
Then bringing rag(c ′) to the other side, we obtain rag(c ′) ∈ λ (H (KΓ)) H (A (OΓ)) Θt (J (KΛ)).
Since j(c) = j(c ′), we have c−1c ′ ∈ λ(KΓ

×
)U(OΓ), so we deduce that

rag(c−1c ′) ∈ λ (H (KΓ)) H (A (OΓ)) ,

obtaining the first implication.

(⇐=) In the general ramified case, let m be an ideal of O divisible by |Γ| and m2. By the previous
Proposition and the definition of the modified ray class group, g ≡ f modλ(KΛ

×
)U′m(Λ), for some

f ∈ F with support disjoint from any preassigned finite set of primes and fH 6= 1 for all Ω-orbits
H 6= 1 of Γ(−1). In anyway, by (4.1.10), we have Θt(KΛ

×
) ⊆ H(KΓ) and, by Proposition 4.3.4.1,

Θt
(
U′m (Λ)

)
⊆ H (A (OΓ)) so Θt(g) ≡ Θt(f) modλ (H (KΓ)) H (A (OΓ)) and so, changing b, h and

u as necessary, we may assume g = f . So applying now Theorem 4.3.3, we conclude that h is tame
and j(c) = cl(Oh), as we wanted to show.

(c) To prove this part, is enough to observe that h is ramified only at primes v for which fv 6= 1.

(a) Now let consider Σ a proper subgroup of Γ, Γ = Γ/Σ, and h : Ω −→ Γ the composite of
h with the quotient map Γ −→ Γ.
We show now that h is ramified. From the definition of Γ(−1) it follows that if γ ∈ Γ(−1) and
ω ∈ Ω, then γ and γω generate the same subgroup of Γ. From the fact that Γ is not trivial, there is
a Ω-orbit H of Γ(−1) all elements of which have nontrivial image in Γ. But fH 6= 1, so in particular
there is a prime v such that fv,H 6= 1, i.e., fv = fv,γ for some γ ∈ H. So by the uniqueness of f in
(4.3.3), hv(σv) = γ ∈ H; hence hv(σv) 6= 1, which says that hv is ramified and so h is ramified.
To show that Kh is a field, we have to prove that h(Ω) = Γ, so by contradiction we consider the
non trivial quotient Γ = Γ/h(Ω) which gives h = 1, so h unramified which is a contradiction. So
h(Ω) cannot be a proper subgroup of Γ.

(b) Finally, every subfield of Kh over K is the fixed field (Kh)Σ of some subgroup Σ of Γ. Again
we consider the quotient Γ = Γ/Σ and the quotient map h. By the discussion on the change of
the acting group, (Kh)Σ ∼= Kh and so if Σ 6= Γ, then (Kh)Σ is ramified over K, proving (b) and
completing the proof.

Remark 4.3.8. By (c) if we consider |Γ| as an ideal, we find h ′ such that j(c) = (Oh ′) and
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δ(Oh/O) relatively prime to |Γ|; or in other words h ′ is domestic. So any realisable class is even
given by a domestic extension.

We give an alternative formulation of the previous Theorem, using the following commutative dia-
gram

Cl(OΓ) = J(KΓ)

λ(KΓ× )U(OΓ)

Rag
//

Rag ′

++WWWWWWWWWWWWWWWWWWWWWW

H(A(KΓ))
λ(H(KΓ))H(A(OΓ))

p

��

H(A(KΓ))
λ(H(KΓ))H(A(OΓ))Θt(J(KΛ)) ,

(4.3.9)

where Rag was already defined in the previous chapter, while p is just a quotient map and Rag ′ =
p ◦ Rag. Thus, from Theorem 4.3.7, we have the following Corollary.

Corollary 4.3.9. In same hypothesis as before:

R(OΓ) = ker(Rag ′).

In particular, R(OΓ) is a subgroup of Cl(OΓ).

In the same way as done for the unramified case, we can also give an explicit description of the set
of realizable classes.

Corollary 4.3.10. In the general tame case, we have

R(OΓ) ∼=
rag J(KΓ) ∩ λ (H (KΓ)) H (A (OΓ)) Θt (J (KΛ))

λ(rag KΓ×)rag U(OΓ)
.

4.4 Link between the Stickelberger module here defined and Stick-
elberger’s Theorem

After the important result reached in the previous part which well describes the behavior of the
set of realizable classes, we would now to underline the link between the Stickelberger map defined
at the beginning of this chapter and the classical Stickelberger Theorem.

The famous Stickelberger Theorem is well known by basic Galois module theory and it says that
the classgroup of the cyclotomic extension Q(q) (the splitting field over Q of the polynomial xq−1)
is annihilated by a particular element θ ∈ Z[Gal (Q(q)/Q)] (for a precise statement and proof of
this Theorem we refer to Chapter 1 in [Ere]).

One would know why we called ΘΓ the Stickelberger map and SΓ the Stickelberger module. The
reason of these names is well explained in Section 7 in [McC87] and it arises by some annihilation
results depending on ΘΓ and SΓ , generally defined on the quotient Cl(OΓ)/R(OΓ).
Without going into details, in this section we try to give an overview of the annihilation results
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reached by McCulloh.

In the first part, using the pairing

[ , ]Γ : HomΩ(ZΓ̂,ZΓ(−1))× J(KΛ) −→ J(KΓ)
(Φ, γ) −→ Φt(γ)

and defining the module S = (EndΓ (ZΓ(−1)) ◦ΘΓ) ∩ HomΓ

(
ZΓ̂ZΓ(−1)

)
, it’s proved the first

general annihilation result which says that

[S, J(KΛ)]Γ ⊆ R(OΓ).

Starting from this general result and passing from J(KΛ) to J(KΓ), McCulloh arrived to a gener-
alization of the classical relations, already cited, on the ideal classgroup of Q(q).

In particular the intermediate step is to consider E a commutative ring of endomorphisms of Γ
over which Γ̂ is cyclic.
Thanks to the pairings

[ , ]E : ZΓ(−1)× J(KΛ) −→ J(KΓ)
{ , }E : ZE × J(KΓ) −→ J(KΓ) ,

McCulloh showed that
[SΓ , J(KΛ)]E ⊆ R(OΓ)

and
{SE , J(KΓ)]E ⊆ R(OΓ),

where SE ⊆ ZE is the unique submodule such that SEs1 = SΓ (with s1 the element such that
Γ = Es1).
Using C = E

×
and considering K[µE ] a particular quotient algebra of KΓ, McCulloh defined a

Stickelberger ideal SC in Z(C) such that

Cl(O[µE ])SC ⊆ R(O[µE ]),

where O[µE ] and R(O[µE ]) are the images of OΓ and R(OΓ) in K(µE) and Cl(O[µE ]), respectively.

This is the result which generalizes Stickelberger’s Theorem, indeed if K = Q and Γ is cyclic of
order q, then K[µE ] = Q(q) and R(Z[µE ]) = (1) since R(ZΓ) = 1, giving the classical annihilation
result on cyclotomic extensions.



Chapter 5

The case of A4

In this chapter, we will explain the two approaches, preluded in the introduction, used to solve the
non abelian case applied to the group Γ = A4. For the description of the group A4 and of all its
elements as x and y, we remand to the Appendix A.2.
We shall try to sectionize what follows in different steps, in order to have the possibility to underline
the common elements in the two approaches and to give a pleasant presentation.

Looking at the Appendix, where a good algebraic background can be found, in our presentation
we shall focus on the case of Γ = A4, the alternating tetrahedral group of order 12; treated with
the first approach in [GS03] and with the second one in [BS05b]. We consider this particular case
because it is one of the only two groups treated with both the approaches and because it is the
only one for which a clear result about the set of realizable classes is given without any restriction
on the base field ([BS05b]).

From the Introduction we already know that

R(M) ⊆ Cl◦(M)

and that
R(OK [Γ]) ⊆ Cl◦(OK [Γ]).

The already cited work [GS03], following the first approach, makes use of the maximal order M

and, with some assumptions on the base field K, it arrives to prove the reverse inclusion for R(M);
in particular it proves the following Theorem.

Theorem 5.0.1. Let K a number field not containing ω (a primitive 3-rd root of unity) and with
odd class number. Then we have

R(M) = Cl◦(M) ∼= Cl (K(ω))× Cl(K).

Found the Wedderburn’s decomposition in simple components of the semisimple algebra K[Γ], the
main idea of this approach is to use the Hom-description given by Fröhlich, through the different
irreducible characters of Γ, to find a representative class in Cl(M) and then to prove that the set

51
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R(M) is the subgroup Cl◦(M), via the concept of Steinitz class which will be later recalled.

Even if the main problem proposed by McCulloh consists in describing R(OK [Γ]), we can read
R(M) as a “good approximation” of the desired set. So the lack of this first approach is that we
will not arrive to solve the original given problem, even if we reach a good approximation (and so
a vivid hope to obtain it even in the required form) of it.

An answer to the description of R(OK [Γ]) is given some years later in [BS05b], where without any
assumption on the base field K is proved that Cl◦(OK [Γ]) ⊆ R(OK [Γ]). Thus the main Theorem
of the Chapter is the following.

Theorem 5.0.2. Given a number field K and Γ = A4, then R(OK [Γ]) = Cl◦(OK [Γ]).

Remark 5.0.3. As an obvious Corollary, we have that the set of realizable classes for the alter-
nating group A4 forms a subgroup in Cl(OK [Γ]).

5.1 K[A4], Cl(M), Cl◦(OK [A4]) and the ray class group

We recall here some results already presented in the Appendix which are fundamental for our pre-
sentation.

We already know the Wedderburn decomposition of K[A4] (look at the Appendix A.3) and we can
write it in a compact way using K ′ defined as

K ′ =


K ×K if ω ∈ K,

K(ω) if ω /∈ K;

where ω is the usual 3-rd root of unity.
Indeed using K ′, we have

K[A4] ∼= K ×K ′ ×M3(K)

and we obtain
Cl(M) ∼= Cl(K)× Cl(K ′)× Cl(K).

As well explained in the Appendix, using the modified Hom-description we can identify the repre-
senting homomorphism f with the set of values it assumes on the irreducible characters over K.
Since the irreducible characters over K depend on whether ω belongs to K or not, we can write

Hom◦
ΩK

(RA4 , J (Qc)) = J(K ′)× J(K)

and
Hom◦

ΩK
(RA4 , (Qc)×) = K ′

× ×K× .

Thus, regarding Det◦ (U (OK [A4])) as a subgroup of J(K ′) × J(K), the Hom-description of the
augmentation kernel becomes

Cl◦(OK [A4]) ∼=
J(K ′)× J(K)(

K ′× ×K×
)

Det◦ (U (OK [A4]))
. (5.1.1)
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Given a nonzero ideal a in OK , recall the definition of the ray class group Cla(OK):

Cla(OK) =
J(K)

K×Ua(OK)
,

where
Ua(OK) = {u ∈ U(OK) | u ≡ 1(mod?a)}.

We can extend this notion to the integral closure OK′ of OK in K ′. Indeed if ω /∈ K we just apply
the definition; while if ω ∈ K, we have that any nonzero ideal a in OK′ is the product a1a2 of two
nonzero ideals a1, a2 in OK and we put

Cla(OK′) = Cla1(OK)× Cla2(OK).

We can now use the ray class group to obtain a surjection into the augmentation kernel, as well
explained by the following Proposition.

Proposition 5.1.0.1. The natural map J(K ′) × J(K) −→ Cl◦(OK [Γ]) given by (5.1.1), induces
a surjection

Cla(OK′)× Cl8(OK) −→ Cl◦(OK [Γ]), (5.1.2)

where a is an ideal of OK′ divisible only by primes of OK above 2 and 3 and where the subscript 8
denotes the principal ideal 8OK .

Proof. For a proof we refer to [BS05b].

5.2 The Embedding Problem

In the solution of the problem, using the fact that A4 = C3 o ∆ and by means of the already cited
results in the abelian case (applied to C3), we will always start taking a cyclic extension E/K of
order 3 and then we would embed it in a tetrahedral extension N/K. In order to get it, we have
to solve an embedding problem and the following important Lemma will help us in this direction.

Lemma 5.2.1 (Immersion Problem). Let K be a number field, E/K a cyclic extension of degree
3 and E(

√
b)/E a quadratic extension of E. Then the following are equivalent:

(i) The Galois closure of E(
√
b)/K is a tetrahedral extension N/K,

(ii) NE/K(b) is a square in K;

If (ii) is satisfied, then we can take N = E(
√
b,
√
σ(b)) (where σ is the generator of the cyclic

Galois group of degree 3).

Proof. For a proof of it, look at [Mar90] pag. 365.
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Remark 5.2.2. The situation in the Lemma is well represented by the following diagram:

N = E
(√

b,
√
σ(b)

)
2

ttttttttttt

LLLLLLLLLLLL

L = E
(√

b
)

2
LLLLLLLLLLLLL

L′ = E
(√

σ(b)
)

ppppppppppppppp

E

〈σ〉3

K

(5.2.1)

5.3 Fröhlich’s Hom-description and irreducible characters for A4

Once we have the irreducible characters over the field K, one can apply Fröhlich’s Hom-description
(look at the Appendix A.5) to calculate a representative f ∈ HomΩK

(RA4 , J(Qc)) of the class
corresponding to the given extension, by its values on the irreducible characters over K.

In particular if ω ∈ K the f ∈ HomΩK
(RA4 , J(Qc)) can be identified with its set of values(

f(χ0), f(χ1), f(χ2
1), f(χ2)

)
∈ J(K)4,

while if ω /∈ K then we associate to f the triple

(f(χ0), f(χ1), f(χ2)) ∈ J(K)× J (K(ω))× J(K).

If we want to find a representative f ∈ Hom◦ΩK (RA4 , J(Qc)) the computation is the same even if
we don’t consider f(χ0) since it’s equal to 1 by assumption (look at the Appendix A.5.10).

So considering N/K a tame tetrahedral extension with normal basis generator α and local nor-
mal integral basis generator αv, it’s better to give a look at each computation considering each
irreducible character. We don’t write explicitly f(χ2

1) since it’s analogous to the computation for
f(χ1).
In the computations we make use of the cyclic subextension E/K fixed by ∆ with normal integral
basis c. Moreover we consider the biquadratic extension N/E with normal basis generator η and
local normal integral basis generator ηv.

Trivial character χ0

Thanks to the fact that χ0 is 1-dimensional and trivial, we have (αv|χ0) = TrNv/Kv
(αv) and

(α|χ0) = TrN/K(α), where Tr is the usual trace map. In both cases we have that the value
of the trace map is a unit (thanks to the basis properties), so taking αv

(
TrNv/Kv

(αv)
)−1 and
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α
(
TrN/K(α)

)−1 if necessary, we can assume that α and αv are such that the trace assumes value
1, giving

f(χ0) = (1).

One dimensional non trivial character χ1

If we consider χ1 we can restrict it to C3 and obtain a non trivial character denoted by χ1 (non
trivial because the kernel of χ1 is ∆). Thanks to the fact that we are considering a 1-dimensional
character, we use the property of the Fröhlich-Lagrange resolvent to restrict to the extension E/K
in the following way

(αv|χ1)N/K = (TrNv/Ev
(αv)|χ1)E/K , (5.3.1)

(α|χ1)N/K = (TrN/E(α)|χ1)E/K . (5.3.2)

We stress that the two new elements, obtained considering the trace map over N/E, are still basis
generators for the OK, v[C3]-module OE, v and the K[C3]-module E (it comes from the first chapter
on Galois Algebra).
In this way we have

f(χ1) =

((
TrNv/Ev

(αv)|χ1

)
E/K(

TrN/E(α)|χ1

)
E/K

)
.

Three dimensional character χ2

To determine f(χ2) we use the fact that χ2 = IndA4
∆ φ, where φ is the non trivial character of ∆

which fixes x. Indeed there is a result of Fröhlich (look at [Frö75], Theorem 12, pag.165) which
solves this situation.
Fröhlich’s formula says that there are λ and λv, invertible elements in the rings K[∆] and OK, v[∆],
such that

(α|χ2)φ(λ) = NE/K

(
(η|φ)N/E

)
e(E/K), (5.3.3)

(αv|χ2)φ(λv) = NE/K

(
(ηv|φ)N/E

)
e(Ev/Kv), (5.3.4)

where φ is extended by linearity to K[∆] and Kv[∆], while e(E/K) is the square root of the discrim-
inant of a basis of E over K and e(Ev/Kv)2OK, v is the discriminant of Ev/Kv. NE/K

(
(η|φ)N/E

)
denotes the product

∏
γ∈Gal(E/K) γ

(
(η|γ−1φ)N/E

)
; since in our situation φ assumes only values

{±1}, γ−1φ = φ and NE/K is exactly the usual norm NE/K :

NE/K

(
(η|φ)N/E

)
= NE/K

(
(η|φ)N/E

)
=

∏
γ∈Gal(E/K)

γ
(
(η|φ)N/E

)
.

Thus we obtain the following Lemma.

Lemma 5.3.1. We consider the cyclic extension E/K with normal basis generator c embedded
in the tetrahedral extension N/K with normal basis generator α and local normal integral basis



56

generator αv. We also take the biquadratic extension N/E with normal basis generator η and local
normal integral basis generator ηv. Then using the notation given above, we have that

f(χ2) =
(
e(Ev/Kv)
e(E/K)

NE/K

(
(ηv|φ)N/E
(η|φ)N/E

)
φ(λ)
φ(λv)

)
.

where φ is extended by linearity to K[∆] and Kv[∆], while e(E/K) is the square root of the dis-
criminant of a basis of E over K and e(Ev/Kv)2OK, v is the discriminant of Ev/Kv.

In particular as a basis of E over K we can take the set {σi(c)}0≤i≤2 (the element σ, as denoted
in the appendix, is the generator of the cyclic group of order 3 or in other words of the Galois
group of E/K, this is a base since c is a normal basis generator for E/K) and reading the proof of
Fröhlich’s formula we understand that λ is the determinant of the matrix (λij) over K[∆] given by

σi(c)η =
2∑
j=0

λijσ
j(α) for 0 ≤ i ≤ 2. (5.3.5)

An analogous thing can be done for λv.

Remark 5.3.2. The element e(E/K) is a global element belonging to K
×

, so in the Hom-description
it can even be ignored.

Remark 5.3.3 (Simplification in the case over the maximal order M). Since φ(λ) and φ(λv) are
units, the maps sending the 1-dimensional characters to 1 and χ2 to the value φ(λ) (resp. φ(λv))
are in Hom ΩK

(RA4 ,K
c×) (resp. Hom ΩK

(RA4 , U(K c))); thus we can “erase” them in the Hom-
description with the maximal order M and obtain

f(χ2) =
(
e(Ev/Kv)
e(E/K)

NE/K

(
(ηv|φ)N/E
(η|φ)N/E

))
.

5.4 First Approach

We are now ready to enter deeply in the heart of the first approach and from now one, in this
section, we shall consider only the case of K not containing ω. First of all let’s describe the use
of the Steinitz classes which are of fundamental importance in the first approach treating with the
maximal order M. With the assumption on K and ω, the situation is the following:

N

������
>>>>>>

E

3 666666 K(ω)

2������

K

(5.4.1)
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5.4.1 Components of the class M⊗OK [A4] ON and Steinitz class

Using the description of f given in the previous section, we are ready now to understand the com-
ponents ci with 0 ≤ i ≤ 2 of the class M⊗OK [A4] ON in the three components of Cl(M).

If we consider the cyclic (of degree 2) Galois Group S = 〈s〉 of K(ω)/K, where s(ω) = ω2 and
s2(ω) = ω, taking the Stickelberger element θ := s−2 + 2s−1 (which is equal to s2 + 2s, since
s−1 = s) and using [Sod88] (Theorem 2.2(1)), we have((

TrN/E(α), χ1

)
E/K

)3
OK(ω) = (I(χ1))3 θ (J (χ1)) ,

where I(χ1) is a fractional ideal of OK(ω), and J(χ1) is a square free integral ideal of OK(ω), uniquely
determined by TrN/E(α), such that J(χ1) is relatively coprime with s (J(χ1)).

Recall 5.4.2 (Steinitz class). If we have N/K an extension of number fields of degree n, we have
that ON is a torsion free OK-module of rank n and in particular ON u On−1

K ⊕ I, where I is an
ideal of OK (for this result look at Theorem 1.2.19 in [Coh00]).
The class of I in Cl(K) is defined as the Steinitz class of N/K or of ON and it’s denoted by
ClK(ON ).
The structure of ON as an OK-module is determined up to isomorphism by its rank and its Steinitz
class (Theorem 13 pag.95 in [FT91]).

We use now Steinitz classes in the following Proposition to determine the components ci defined
above.

Proposition 5.4.2.1. Following the previous notation, we have

(i) c0 is the trivial class in Cl(K).

(ii) c1 is the class of (I(χ1))−1 (or of OE) in Cl (K(ω)).

(iii) c2 = ClK(OE)NE/K (ClE(OL)) in Cl(K), where L/E is a quadratic subextension of N/E.

Proof. (i) This first result is trivial from the fact that f(χ0) = (1).

(ii) From the discussion on the value of f(χ1), we understand that f(χ1) = f(χ1), indeed f(χ1) =(
(TrNv/Ev (αv)|χ1)E/K

(TrN/E(α)|χ1)E/K

)
and the two trace values are still basis generators, giving the equality

with f(χ1).
From this fact, we reduce to study the extension E/K, which is cyclic of degree 3 and tame
(since N/K is so). From the fact that the cyclic group C3 is abelian and that K doesn’t
contain ω, we have that all the irreducible representations over K are one dimensional and,
as done before, if we consider M′ the OK-maximal order in K[C3] (where C3 is the cyclic
group of order 3) we obtain

Cl(M′) ∼= Cl(K)× Cl (K(ω)) ∼= Cl(OK [C3]);
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where the last isomorphism is given by the fact that we are considering an abelian group.
Applying the Hom-description here, we have that the class of M′⊗OK [C3]OE is represented by
the map f which sends the trivial characters of C3 to 1 and χ1 to f(χ1). Looking in [Sod88]
(Theorem 2.3), we have that the component of the class of M′ ⊗OK [C3] OE in Cl (K(ω)) is
the class of (I(χ1))−1, as we wanted to show.

(iii) If we consider M2 the maximal OE-order in E[∆], we can act as before to find a representative
of the class of M2 ⊗OE[∆]

ON in Cl(M2). Since we have four 1-dimensional representations
over E, the class group is written in simple components as

Cl(M2) ∼= Cl(E)4

and the representative f2 of the class desired, sends the trivial character to 1 and for any
other characters φ of ∆ is defined componentwise as (f2(φ))v = (ηv|φ)N/E

(η|φ)N/E
. Considering φ the

character which induces χ2, if we take L/E the quadratic subextension fixed by Ker(φ), we
denote by φ the restriction of φ to Gal(L/E).
As already done before, we can restrict to L/E, obtaining

(ηv|φ)N/E
(η|φ)N/E

=

(
TrNv/Lv

(ηv)|φ
)
L/E(

TrN/L(η)|φ
)
L/E

.

Looking at [Sod99a] (pag. 52− 53), we see that the class in Cl(E) of the content of the idele
with components the elements on the right of the previous formula is exactly ClE(OL).

We consider now the terms e(Ev/Kv)
e(E/K) and we denote by H the ideal of OK which is the content

of the idele with these components. Since e(Ev/Kv)2OK, v is the discriminant of Ev/Kv (the
local discriminant), if we denote by ∆(E/K) the discriminant of E/K, then we have

I2 =
∆(E/K)
e(E/K)2

.

As d := e(E/K)2 is the discriminant of a basis of E/K, we have, from a result of Artin (look

in the next section for reference and a good explanation), that ClK(OE) = Cl

(√
∆(E/K)

d

)
=

Cl(H).

Putting all together, we obtain now that

f(χ2) =
(
e(Ev/Kv)
e(E/K)

NE/K

(
(ηv|φ)N/E
(η|φ)N/E

))
= ClK(OE)NE/K (ClE(OL)) ,

as we wanted to show.
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5.4.3 The structure of the Realizable classes over the maximal order

This is the final step which leads to the proof of the fact that R(M) is a subgroup of Cl◦(M),
proving in particular that R(M) is the whole Cl◦(M). While we have already talked of the proof of
the first inclusion (⊆) in the Introduction (like a reference we always consider [McC75]), the other
inclusion (⊇) will take the whole effort in our proof.

Anticipation of the proof of the inclusion (⊇). In order to have an easier explanation and
also to visualize the skeleton of the method utilized in this kind of problem, we will divide the
second part of the proof of this inclusion in three smaller problems: an Immersion Problem, use of
the Artin’s result and use of Class Field Theory.

The Immersion Problem regards the fact that, after the first part of the proof, we’ll have a cyclic
extension of number fields E/K of degree 3 and we would find an extension N/E such that N/K
is a tetrahedral extension.

During the proof, we shall make use of the Steinitz class of an extension L/E and in particular we
would compute it. To succeed, using the discriminant ∆(L/E) of the extension L/E, we’ll apply
the famous Artin’s result, which will be recalled later.

Finally in the computation of the discriminant, we would control the ramification in the extension
L/E and to get it we shall apply a general result of Class Field Theory.

Before of the main result, let’s recall the important results by Artin which will be used in the proof.

Proposition 5.4.3.1 (Artin’s Result). Given an extension of number fields L/E, we have

ClE(OL) ∼= Cl

(√
∆(L/E)

d

)
,

where ∆(L/E) is the discriminant of L/E and d is the discriminant of a basis of L/E.

Proof. For the original proof of it look at [Art50].

We enter now in detail in the main result over the maximal order, giving the proof of Theorem
5.0.1. From the isomorphism Cl(M) ∼= Cl(K) × Cl (K (ω)) × Cl(K), it follows that Cl◦(M) ∼=
Cl (K(ω))× Cl(K).

Proof of Theorem 5.0.1. As already remarked, we have only to prove that Cl (K(ω))×Cl(K) ⊆
R(M).
So given (x1, x2) ∈ Cl (K(ω)) × Cl(K), we want to construct a tame tetrahedral extension N/K
such that the components of the class of M⊗OK [A4] ON are (x1, x2).

We start from the first components x1 ∈ Cl (K(ω)). If we consider the Stickelberger ideal
S = 1

3θZ[S] ∩ Z[S], where S is the already defined cyclic Galois Group of K(ω)/K, then we have
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that S = Z[S], since 1
3θ(2s− s

2) = 1.
Following [Sod88] (Theorem 2.4, with l = 3 and N substituted by E), R(M′) can be identified
with Cl (K(ω)), so there exists a tame cyclic extension E/K of degree 3, such that the class of
M′ ⊗OK[S]

OE in Cl (K(ω)) is x1. Moreover E/K can be chosen such that it ramifies at least over
one place.

We focus now on the second component x2 and we’ll separate under the small three problems
already citated.
Let c ∈ Cl(K) such that

x2 = cClK(OE).

Here we use the fact that the class number of K is odd, indeed if it’s so, we find c′ ∈ Cl(K) such
that c = (c′)2. From Theorem 10.1 in [Was96], NE/K : Cl(E) −→ Cl(K) is surjective, since E/K
is ramified; so there is C ∈ Cl(E) such that NE/K(C) = c′.

Immersion Problem. Once we have the cyclic (abelian) extension E/K of degree 3, we want now
to find an extension N/E such that N/K is the tame tetrahedral extension we are looking for. To
solve this problem, we would use the already recalled Lemma 5.2.1, which says that if we find an
element b ∈ E such that NE/K(b) is a square in K, then E is embeddable in the tame tetrahedral

extension N = E
(√

b,
√
σ(b)

)
.

Class Field Theory. In order to find such an element b, we’ll make use of a Class Field Theory
result. If we consider Cl4(OE), the modified ray class group modulo 4OE , just by definition we
have the canonical surjection from Cl4(OE) −→ Cl(E), which let us to find a fractional ideal I
of OE so that Cl(I−1) = C; then thanks to the Tchebotarev density Theorem in ray classgroups
(look at [Neu86], Theorem 6.4) we get m ∈ E× and a prime ideal B of OE such that:

• B ∩OK splits completely in E/K,

• mOE = I2B,

• m ≡ 1 mod4OE .

Applying σ we have σ(m)OE = σ(I)2σ(B) and so

(mσ(m))OE = (Iσ(I))2 Bσ(B).

If we call b := mσ(m), it’s not a square in E (since B and σ(B) are distinct) and we can consider
the quadratic extension L = E(

√
b)/E. This is exactly the element we were looking for, indeed its

norm over K is a square since NE/K(b) = NE/K(mσ(m)) =
(
NE/K(m)

)2, letting us to embed E/K

in the tame tetrahedral extension N = E
(√

b,
√
σ(b)

)
.

Artin’s result. Moreover the decomposition laws in the extension E(
√
b)/E are well known (look

at section 39 in [Hec81]) and the only primes which ramify are B and σ(B). Thus we have
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∆(L/E) = Bσ(B) and, thanks to the already cited result of Artin [Art50], we obtain ClE(OL) =
Cl(
√

∆(L/E)) = Cl (Iσ(I))−1, which assures that

ClE(OL) = Cσ(C).

In conclusion, calculating the norms we get

NE/K (ClE(OL)) = NE/K (Cσ(C)) = NE/K(C2) = c′
2 = c,

which yields
x2 = ClK(OE) c = ClK(OE)NE/K (ClE(OL)) .

After all, by Proposition 5.4.2.1, we see that the components of the class of ON (where N is the
constructed number field) in Cl (K(ω)) × Cl(K) are exactly (x1, x2); completing the proof of the
Theorem.

5.5 Refinement: Main Theorem

After the presentation of the approach which leads to describe R(M), in this section all our efforts
shall regard the proof of the inclusion R(OK [Γ]) ⊇ Cl◦(OK [Γ]). In other words, given an element
in Cl◦(OK [Γ]), we would find a tame tetrahedral extension N/K such that the corresponding class
is exactly the considered element.
We recall that from now on we don’t make any assumption on the base field K as done over the
maximal order, in particular ω can belong or not to K.

5.5.1 Construction of the tame tetrahedral extension N/K

From the Hom-description, any element in Cl◦(OK [Γ]) is represented by the pair of ideles (c1, c2) ∈
J(K ′) × J(K) and thanks to Proposition 5.1.0.1 we can multiply c1 (resp. c2) by elements in the
set K ′

×
Ua(OK′) (resp. K

×
U8(OK)) without any change.

So beginning with the given pair (c1, c2), we shall construct a tame tetrahedral extension N/K,
which shall represent the given class.
The first intermediate step to take is to link the given pair with a cyclic extension E/K of degree
3.

Existence of a suitable cyclic subextension E/K and its resolvents

Following the description of A4 given in the previous chapter, we have that the quotient A4/∆ is
the cyclic group C3 of order 3. Moreover, for the cyclic group C3, the modified Hom-description
gives

Cl◦(OK [C3]) ∼=
J(K ′)

K ′×Det◦ (U (OK [C3]))
.

Thanks to the fact that the cyclic group is abelian (so we can use the results of McCulloh)
and the fact that the Stickelberger ideal in Z[Aut(C3)] is the whole Z[Aut(C3)], we have that
R(OK [C3]) = Cl◦(OK [C3]). Thus, using Theorem 5.1 in [McC83], we can find a tame cyclic exten-
sion E/K, ramified in at least one place, for which the class (OE) ∈ Cl◦(OK [C3]) is represented
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exactly by the given c1 ∈ J(K ′). From now on the cyclic extension E/K will be fixed.

We will now use the Hom-description modified for the augmentation kernel to give a representative
for the class (OE) in terms of resolvents. To do it we need to choose a normal basis generator c′′

and some local normal integral basis generators c′v for the extension E/K.

Since E/K is tame (so the ring of integers is locally free), for any place v we take a local normal
integral basis generator cv ∈ OE, v.

For each place not above 2, we want to modify cv in order to have the trace equal to 1. To do
it it’sufficient to take c′v = cv

(
TrEv/Kv

(cv)
)−1, indeed it remains a local normal integral basis

generator but with local trace equal to 1 (thanks to the linear properties of the trace map):

OE, v = OK, v[C3]c′v and TrEv/Kv
(c′v) = 1.

For all the places over 2 (they are a finite number) instead, we consider an element c′ ∈ E closed
to cv, such that c′ is a local normal integral basis generator at these places (it can be found since
we only require a finite number of conditions to solve). If we set c′′ = c′

(
TrE/K(c′)

)−1 and c′v = c′′

for al these finite v over 2 we still have

OE, v = OK, v[C3]c′v and TrEv/Kv
(c′v) = 1,

while in the global sense we obtain (since a linearly independent set of elements in the local field
is still linearly independent passing to the global field)

E = K[C3]c′′ and TrE/K(c′′) = 1;

as wanted.

We can now express the representative in terms of the resolvents, distinguishing the two possible sit-
uations which depend on the “position” of ω respect to K. Following the modified Hom-description,
the class (OE) is then represented in Cl◦(OK [C3]) by the idele c′1 ∈ J(K ′) given by

c′1 =


(

((c′v|χ1))v
(c′′|χ1) ,

((c′v|χ2
1))

v

(c′′|χ2
1)

)
if ω ∈ K,(

((c′v|χ1))v
(c′′|χ1)

)
if ω /∈ K;

(5.5.1)

where χ1 and χ2
1 are the two nontrivial characters of dimension 1 over K; indeed we can recall that,

depending on whether ω belongs or not to K, we have two or only one nontrivial 1-dimensional
character over K.
If we are able to prove that instead of the given c1 we can take this particular c′1, we shall have
that, from the definitions set above, all the components for the place over 2 are trivial (equal to 1).
The following Proposition will help us in this direction.

Proposition 5.5.1.1. Given the pair (c1, c2) and the idele c′1 defined as above, there exists an idele
c′2 ∈ J(K), such that the pair (c′1, c

′
2) represents the same class in Cl◦(OK [Γ]) as (c1, c2).
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Proof. Since (OE) is represented by both c1 and c′1, using the modified Hom-description in the case
of the cyclic group C3, we obtain

c−1
1 c′1 = k (Det(αv))v ,

with k ∈ K ′
×

and αv ∈ OK, v[C3]
×

such that Det(αv)(χ0) = 1. If we lift any local element αv from
the cyclic situation to the general Γ situation, we have

αv = a0v + a1vσ + a2vσ
2 ∈ OKv [Γ]

×
;

where with σ we denote even the lift of the generator of the cyclic group C3. Then the determinant
applied to this element with the 1-dimensional characters remains the same and we find ε ∈ J(K)
such that

(c−1
1 c′1, ε) = (k, 1)Det ((αv)v) ∈ (K ′

× ×K×)Det◦ (U(OK [Γ])) ⊂ J(K ′)× J(K).

Thus we can multiply (c1, c2) by this last pair without any change, obtaining the equality inside
class group

(c1, c2) = (c1, c2)(c−1
1 c′2, ε) = (c′1, c2ε) = (c′1, c

′
2),

which gives us the proof.

Thus from now on we can assume that c1 is represented by (5.5.1), in particular we have all the
components c1v relative to the places over 2 equal to 1.

Once we have the cyclic extension E/K, we would embed it in a tame tetrahedral extension N/K,
using the embedding result given by Lemma 5.2.1.

Embedding of E/K in a tame tetrahedral extension N/K

Exactly as we have already done, we would use Lemma 5.2.1 in the previous section to embed E/K
in a tame tetrahedral extension N/K. In order to succeed we need an element n ∈ E which is not a
square but such that its norm over K is a square in K. Once we have it, then N = E

(√
n,
√
σ(n)

)
will be the extension of K required. Before finding explicitly the element n, we go on assuming we
have this extension N/K and we will see what we will require from the definition of n.

If we consider the extension N = E
(√

n,
√
σ(n)

)
, we find the second component in the Hom-

description, computing the representative homomorphism on the character χ2. The value f(χ2) is
given by Lemma 5.3.1 and, thanks to the remark immediately after it, we have

f(χ2) = e(Ev/Kv)NE/K

(
(ηv|φ)N/E
(η|φ)N/E

)
φ(λ)
φ(λv)

; (5.5.2)

where we use the same notation of the Lemma.

Remark 5.5.2. Up to now we haven’t use any congruence condition to develop the problem, but
at this moment we see from the formula above the presence of a so called “tension” between the
different elements involved, indeed we have that the elements λ and λv are linked to the normal
basis generators and to the local normal integral ones of the different extensions considered.
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We proceed now making some remarks about the element e(Ev/Kv). From its definition we imme-
diately observe that the content of the idele

(
e(Ev/Kv)2

)
v

is the discriminant ideal ∆(E/K). Now
the discriminant ideal ∆(E/K) is a square of an ideal

√
∆(E/K) of OK ; this follows from the fact

that the order of E/K is 3 and from the well-known result on the valuation of the different (look
at [Ser79], Prop. 4 chap. 4).

Thus we can rewrite (5.5.2) as

f(χ2) =
√

∆(E/K) NE/K

(
(ηv|φ)N/E
(η|φ)N/E

)
φ(λ)
φ(λv)

. (5.5.3)

Since to solve the problem we would obtain f(χ2) = c2, we are lead, by the “morphology” of the

previous equation, to write
√

∆(E/K)

c2
as the norm of a class. In order to do it we recall that if

an extension E/K contains no unramified subextensions, then the norm map Cl(E) −→ Cl(K)
is surjective ([Was96] Theorem 10.1) and, generalizing this results to the ray class group, we also
get a surjection between Cl8(OE) and Cl8(OK). Since E/K in our case is ramified at some place
of K, then we can take b a ray class in Cl8(OE) such that

(
NE/K(b)

)
=
(√

∆(E/K)
)

(c2)−1 in
Cl8(OK); where with (c2) we denote the class related to the idele c2.

To link the extension N/K and this class b, we make use now of the Tchebotarev density Theorem
for ray class groups, which gives us the following Lemma.

Lemma 5.5.3. We can find two ideals q1, q2 of OE, such that

• they are totally split over K and above different ideals in OK ,

• q1 is in the same class b of Cl8(OE),

• q2 is in the same class as q−1−σ
1 in Cl64(OE).

The first condition of the Lemma gives us the element n which we were looking for to obtain the
tetrahedral extension N/K. Indeed, using even the third condition, we have

q1+σ
1 q2 = mOE ,

with m ≡ 1(mod?64OE) and if we put n := mσ(m), we easily see that its norm over K is the
square of NE/K(m) and it’s not a square in E since

nOE = (q1+σ
1 q2)1+σ = (qσ1 )2q1+σ2

1 q1+σ
2 (5.5.4)

and q1, qσ
2

1 , q2, qσ1 are distinct prime ideals in OE (because q1, q2 are totally split over K and above
different ideals in OK).

The second condition of the Lemma instead gives us the linking with the class b, indeed we have(
NE/K(q1)

)
=
(√

∆(E/K)
)

(c2)−1. (5.5.5)
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Remark 5.5.4. From the ramification Theory in a biquadratic extension and from the fact that

n ≡ 1(mod?64OE),

it follows that the tetrahedral extension N/K is tamely ramified and that all places of E over 2 split
completely in N .

In order to prove that the extension N/K is exactly the one needed to prove the main Theorem,
we have to analyze the resolvents for N/K; but to get it, first of all we need them for N/E.
This is the very clever and technical part of the solution, we find explicitly the basis generator η
and ηv, in order to have a “good” result computing

NE/K

(
(ηv|φ)N/E
(η|φ)N/E

)
.

More precisely we will show the following Lemma.

Lemma 5.5.5. The idele of E given by (
(ηv|φ)N/E

)
v

(η|φ)N/E

has content (qσ1 )−1.

5.5.6 The extension N/E and its resolvents

The biquadratic extension N/E, as explained above from the immersion problem, has the Galois
group which is isomorphic to the group ∆ of order 4 (∼= C2 × C2, where C2 is the cyclic group of
order 2).
We have the following easy Proposition on the structure of the group algebra K[∆].

Proposition 5.5.6.1. The group algebra K[∆] contains the following idempotent elements which
are orthogonal in pairs:

e0 =
1
4

(1 + x+ y + xy),

e1 =
1
4

(1 + x− y − xy),

e2 =
1
4

(1− x+ y − xy),

e3 =
1
4

(1− x− y + xy).

Moreover the element
η =

1
4
(
1 +
√
n
) (

1 +
√
σ(n)

)
is a normal basis generator for the extension N/E.
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Proof. We just verify that e2
0 = e0 and that e0 · e1 = 0, the other controls are exactly analogous.

Just using the fact that x2 = y2 = 1 and xy = yx, we have

e0 · e0 =
1
16

(4 + 4x+ 4y + 4xy) = e0,

e0 · e1 =
1
16

(1 + x+ y + xy + x+ x2 + xy + x2y − y − yx− y2 − xy2 − xy − x2y − xy2 − x2y2)

= 0.

Assuming that x (resp. y) corresponds to the element of Gal(N/E) fixing
√
n
(

resp.
√
σ(n)

)
, we

calculate how the idempotents act on η:

e0η =
1
4
,

e1η =
1
4
√
n,

e2η =
1
4

√
σ(n),

e3η =
1
4

√
nσ(n).

From that, the second assertion of the Proposition easily follows.

We will now get from η a set of local normal integral basis generators for any place v, in order to
calculate the resolvents of the extension N/E which are of our interest.

For all places above 2 we have no problems, because, since n ≡ σ(n) ≡ 1(mod?4OE) by the last
remark in the previous section, η is also a local normal integral basis generator for all the places
above 2.

For all the other places of E we will specify case by case the local normal integral basis generator.
From (5.5.4) we also get

σ(n)OE = (qσ
2

1 )2qσ+1
1 qσ+σ2

2 ,

nσ(n)OE = (q1+σ+σ2

1 )2qσ+σ2

1 q1+σ2

2 . (5.5.6)

Thus we obtain the following precise result.

Proposition 5.5.6.2. For each place v, fix a uniformizer π(v) of OE, v, and define

ηq1 = (e0 + e1 + e2 + π(q1)−1e3)η,
ηqσ1

= (e0 + π(qσ1 )−1e1 + e2 + π(qσ1 )−1e3)η,

η
qσ

2
1

= (e0 + e1 + π(qσ
2

1 )−1e2 + π(qσ
2

1 )−1e3)η,

ηqσ2
= (e0 + e1 + e2 + π(qσ2 )−1e3)η,

ηv = η for v 6= q1, qσ1 , qσ
2

1 , qσ2 .
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Then we have
ON, v = OE, v[∆]ηv ,

for all the places v.

We can now compute the resolvents associated to the character φ of ∆. Thanks to the fact that
the character is 1-dimensional, as explained in the Appendix (A.5.3), we have to compute an usual
Lagrange resolvent. Thus we have

(η|φ)N/E =
∑
δ∈∆

δ(η)φ(δ−1)

= η + x(η)− y(η)− xy(η)
= 4e1η

=
√
n,

and locally, in the same way, we get (ηv|φ)N/E = 4e1ηv, which gives

(ηv|φ)N/E =
√
n for all v 6= qσ1 ,

(ηqσ1
|φ)N/E = π(qσ1 )−1√n.

Thus as a corollary of these computations about the resolvents in N/E, we get the proof of Lemma
5.5.5.

As already done for η and c, it remains now to choose α and αv, such that they coincide on the
places above 2 and such that they allow us to close the circle and prove the main Theorem.

5.5.7 Places not above 2

First of all we set the values αv for all the places not above 2.
If we consider α′v any local normal integral basis generator for the extension N/K, we can use the
trace map from N to E to get a local normal integral basis generator for E/K. For the extension
E/K we have already considered as local normal integral basis generator the element cv, so these
two elements differ for a unit; explicitly

cv = kvTrNv/Ev
(α′v)

with kv ∈ OK, v[C3]
×

, which can be lift to the element kv ∈ OK, v[Γ]
×

.
Setting k′v = kve0 + (1 − e0) ∈ OK, v[Γ]

×
and αv = k′vα

′
v, we still have a local normal integral

basis generator αv and we can easily compute the trace from Nv to Ev:

TrNv/Ev
(αv) = (1 + x+ y + xy)(k′vα′v)

= 4e0

(
kve0 + (1− e0)

)
α′v

= (4e0kve0 + 4e0 − 4e0)α′v
= kvTrNv/Ev

(α′v)
= cv. (5.5.7)
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From this and using the fact that cv has trace 1, we deduce that

TrNv/Kv
(αv) = TrEv/Kv

(cv) = 1.

We can concentrate now on the places above 2.

5.5.8 Places above 2

First of all we start remarking that, since any place above 2 splits completely in N/E, we have
N2
∼= E4

2 as Galois algebras over K2 and in particular the isomorphism is given by

z −→ (z, y(z), x(z), yx(z)) .

Thanks to this isomorphism, we identify ON, 2 with O4
E, 2 and we have

y(z1, z2, z3, z4) = (z2, z1, z4, z3),
x(z1, z2, z3, z4) = (z3, z4, z1, z2),
σ(z1, z2, z3, z4) = (σ(z1), σ(z4), σ(z2), σ(z3)) .

(5.5.8)

Now considering the elements β′ and α′ in N2 defined as follows

β′ = (1, 0, 0, 0), α′ = cβ′ = (c, 0, 0, 0),

we have that they are local normal integral basis generators for N/E and N/K respectively at
all places above 2 (indeed looking at the action of the element in Γ we understand that they gen-
erate a normal basis) and moreover TrN/E(β′) = 1 (since computing the trace we get (1, 1, 1, 1) = 1).

We now want to get from this local elements an element α ∈ N which is a local normal integral
basis generator for N/K at all places above 2; to do it we shall use the already quoted Nakayama’s
Lemma.
If we take an element β ∈ N , so that

β ≡ β′(mod8ON2), TrN/E(β) = 1,

and an element α = cβ; then we get

OK, 2[Γ]α+ 8ON, 2 = OK, 2[Γ]α′ + 8ON, 2 = ON, 2.

Applying now the Nakayama’s Lemma we obtain that α is a local normal integral basis generator
at all places above 2, since the Lemma says that ON, 2 = OK, 2[Γ]α. In the same way one can verify
that β at these places is a local normal integral basis generator for N/E.
Moreover we have that the trace takes value 1 since

TrN/K(α) = TrE/K
(
TrN/E(α)

)
= TrE/K

(
cTrN/E(β)

)
= TrE/K(c) = 1.

Finally we consider this α as the normal basis generator for N/K we need (it’s a normal basis
generator, since it’s a local one at the places above 2). For all the places v above 2 we consider

αv = α, λv = λ, e(Ev/Kv) = e(E/K),

where λ and e(E/K) are defined by (5.3.1). In these places we have αv local normal integral basis
generator and cv = c.



69

5.5.9 Investigation of λ

If we consider the normal integral basis generator α set above and the local ones αv, we have the
following Proposition on the element λ defined by (5.3.5).

Proposition 5.5.9.1. The element λ defined by (5.3.5) satisfies the following congruence

λ ≡ 1(mod 8OK, 2[∆]).

Proof. Both η and β′ are local normal integral basis generator for N/E above 2 and so they differ
by a unit µ′ ∈ OE, 2[∆]

×
, obtaining

β′ = µ′η.

Since we have that n ≡ 1(mod? 64OE), we can find an element f ∈ OE, 2 with f ≡ 1(mod 32OE, 2)
and f2 = n. Using the previous isomorphism ON, 2 ∼= O4

E, 2, we can write
√
n = (f,−f, f,−f),√

σ(n) = (σ(f), σ(f),−σ(f),−σ(f)) .

Thus using the computation we have done in the proof of Prop. 5.5.6.1, we get

e0η =
1
4

(1, 1, 1, 1),

e1η =
1
4

(f,−f, f,−f),

e2η =
1
4

(σ(f), σ(f),−σ(f),−σ(f)) ,

e3η =
1
4

(fσ(f),−fσ(f),−fσ(f), fσ(f)) .

If we consider β′ = (1, 0, 0, 0), then we can write it as

β′ = e0η +
e1η

f
+

e2η

σ(f)
+

e3η

fσ(f)

and, since f ≡ σ(f) ≡ 1(mod 32OE, 2), we obtain

µ′ = e0 +
e1

f
+

e2

σ(f)
+

e3

fσ(f)
≡ 1(mod 8OE, 2[∆]).

We know that β ≡ β′(mod8ON, 2) and so from β′ = µ′η we get

β ≡ η(mod 8ON, 2).

Since σ(β) ≡ σ(β′) = β′ ≡ β(mod 8ON, 2), we have from the equality α = cβ that

σj(c)β ≡ σj(c)σj(β) = σj(α)(mod 8ON, 2) for 0 ≤ j ≤ 2

and consequently
σj(c)η ≡ σj(α)(mod 8ON, 2) for 0 ≤ j ≤ 2.

So the matrix which defines λ is congruent to the identity modulo 8OK, 2[∆] and hence its deter-
minant λ is congruent to 1(mod 8OK, 2[∆]); as we wanted to prove.
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5.5.10 From the resolvents’ quotients to the new idele y′

In order to obtain the proof of the main Theorem we now prove the following Lemma using formula
(5.5.3).

Lemma 5.5.11. The idele c′2 = f(χ2) = ((αv|χ2)N/K)
v

(α|χ2)N/K
∈ J(K) determines the same class in

Cl8(OK) as c2.

Proof. By Proposition 5.5.9.1 we have that φ(λ)
(φ(λv))v

∈ K
×
U8(OK), so we can “erase” this factor in

(5.5.3). Moreover from Lemma 5.5.5 we have

NE/K

((
(ηv|φ)N/E

)
v

(η|φ)N/E

)
= NE/K

(
(q−1

1 )σ
)

= NE/K

(
q−1

1

)
.

So concluding c′2 determines in Cl8(OK) the same class of NE/K(q1)−1
√

∆(E/K), which by (5.5.5)
is exactly the class determined by c2.

Remark 5.5.12 (Places above 2). We understand here the reason why we have always distinguished
the places above 2. In order to prove that φ(λ)

(φ(λv))v
∈ K

×
U8(OK), the only places v which can give

some “problems” are the places above 2, this follows from the definition of U8(OK) and in particular
from the need for a specific investigation of the places above the only prime divisor of 8, which is 2.

5.5.13 Proof of the main Theorem

We can now use all the results we achieved in order to exhibit the inclusion requested by the proof
of the main Theorem. In particular we want to show that the class (ON ) (where N/K is the
extension constructed above) in Cl◦(OK [Γ]) is the same of the class represented by the given pair
(c1, c2) ∈ J(K ′)× J(K).

First of all we have

(α|χ0)N/K = TrN/K(α) = 1,
(αv|χ0)N/K = TrNv/Kv

(αv) = 1 for all v;

so we can use the normal basis generator α and the local normal integral basis generators αv in
computing the quotients of resolvents which give the class (ON ).
In particular the class (ON ) is represented by the couple (c′1, c

′
2), where c′1 comes from the resolvents

with the non trivial 1-dimensional characters; while c′2 is defined by Lemma 5.5.11.
Remembering that in function of the “position” of ω respect to K we have one 1-dimensional
character χ1 (if ω /∈ K) or two 1-dimensional characters χ1 and χ2

1 (if ω ∈ K), we can compute
the resolvents, restricting ourself on the extension E/K, in the following way:

(α|χi1)N/K = (TrN/E(α)|χi1)E/K = (c′′|χi1)E/K ,

(αv|χi1)N/K = (TrNv/Ev
(αv)|χi1)E/K = (c′v|χi1)E/K ,
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where i = 1, 2 and χi1 means the restriction of the character to E/K.
So it follows that c′1 is given by (5.5.1) and we have c′1 = c1 by the result of Proposition 5.5.1.1.

Thus we have that the class (ON ) is represented by the couple (c1, c
′
2). But we know that c2 and c′2

are in the same class in Cl8(OK) by Lemma 5.5.11 and so we have the desired result that (c1, c
′
2)

and (c1, c2) represent the same class in Cl◦(OK [Γ]), proving the inclusion Cl◦(OK [Γ]) ⊆ R(OK [Γ]).

5.6 Conclusion and final comparison between the two approaches

As a conclusion of this chapter and even of the whole work, we can retrace and underline the
similarities and the differences between the two approaches.

First of all we have seen that, in both the two works, we start linking to the abelian case of C3.
This comes from the structure of the group A4 which has the cyclic group as a direct factor. The
abelian case C3 is “comfortable” thanks to the cited works by McCulloh which erase any doubt in
an abelian situation.

Thus given the cyclic extension E/K, we would then embed it in a tetrahedral extension whose
class represents the given element in Cl(OK).
The embedding of E/K is not so difficult using Lemma 5.2.1, but the arduousness comes when
we want to look at the component in the Hom-description which derives from the 3-dimensional
character χ2.
In particular we get the formula

f(χ2) =
(
e(Ev/Kv)
e(E/K)

NE/K

(
(ηv|φ)N/E
(η|φ)N/E

)
φ(λ)
φ(λv)

)
.

It’s exactly here that the main difference between the two approaches arises when we try to treat
and handle this formula.

In the case over the maximal order M we have already remarked that the formula simplifies because
we can ignore the term with λ and λv. So, after this simplification, the use of the Steinitz classes,
with some assumption on the base field K, leads to the solution of the problem, giving us the
desired tetrahedral extension.

Contrarily in the refinement of the previous result, we have no more a simplification on the previous
formula and we need to consider also the factors depending on λ and λv. In order to do it, we have
seen that in this approach we need to find particular normal basis generators and normal integral
basis generators for the different extensions involved. Once we have it, using the modified ray class
group, the conclusion is not so far.
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5.7 Open questions

Had we more time, we would have liked to tackle the following problems:

The first question which arises after this chapter is: how can we deduce from the result R(OKA4) =
Cl◦(OKA4) in [BS05b] the equality R(M) = Cl◦(M), reached in [GS03]?

As we have seen in the case of A4, we get that the set of realizable classes coincides exactly with
the augmentation kernel; while in his work [McC87], McCulloh proved that R(OKΓ) = ker(Rag′)
for Γ abelian and in general he proved, in an unpublished work, that R(OKΓ) ⊆ ker(Rag′) for any
group Γ (not necessarily abelian). It would be interesting to link the sets Cl◦(OKΓ) and ker(Rag′)
in order to know when we have an equality between them. For example in the case of Γ = A4, it’s
possible to prove that Cl◦(OKA4) = ker(Rag′).

It would be also inspiring to understand just the existence of a solution to the problem of finding
an extension which gives the given class, before discovering it explicitly as done in the case of A4.

Another desire which arises after our work is to know how the tame extensions are distributed
among the realizable classes. In order to answer this question, we have already cited the quantita-
tive results in the Introduction which go in this direction, but is it also possible to give a strictly
algebraic interpretation and answer to this question?

The further step after this work, would be to reach a sort of general and axiomatic context under
which we have the proof of the fact that the set of realizable classes forms a subgroup (we can
observe that the works [GS06] and [BS08] cited in section 0.2.3 of the Introduction, under some
points of view, go in this direction). For example, it would be interesting to find a result on R(OKΓ)
analogous to the one reached for A4, when we consider the set of groups treated in [BS08], namely
Γ = (Fp)r o Cpr−1.

In this final section, we can also mention some recent results on Steinitz Classes, reached by A.
Cobbe. As done for the set of realizable classes, using Steinitz classes, one can also define Rt(K,Γ)
as the set of classes which are Steinitz classes of a tamely ramified Γ-extension of K. It is conjec-
tured that this set is always a group, while this is not true in the wildly ramified case. A. Cobbe,
in his work [Cob10] and in his preprints available at his website, proved the conjecture for a large
set of groups Γ.
Using the augmentation map defined in the introduction, it is possible to link the set of realizable
classes of our interest with the set of realizable Steinitz classes and it would be inspiring to catch
some information for our work from these recent results on Steinitz classes.

Finally, to solve the case of A4 we always used field extensions, how can the problem (and also the
solution) change if we consider Galois algebras and not only fields?
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Algebraic Techniques

In this appendix we recall some algebraic techniques and definitions which are useful along our
work. In particular we shall explain the fundamental Hom-description of the class group given by
Fröhlich.

A.1 Locally free modules

All our efforts start from the fact that given a tame Galois extension N/K, the ring of integers ON
is a locally free OK [Γ]-module; where Γ is the Galois group of the extension. Let’s recall better the
definition of locally free module.

Definition A.1.1 (Locally free module). Given a ring R and an R-order U, a locally free U-module
X is a finitely generated U-module so that the Uv-module Xv is free, for all prime divisors v of R.

So in our case the fact that ON is a locally free OK [Γ]-module means that, for any place v of K it
exists an element αv ∈ ON such that

ONv = OKv [Γ]αv.

The element αv is called a local normal integral basis generator and this condition holds for any
tame extension thanks to the already cited Noether’s Criterion.

A.2 Presentation of the group Γ and its characters

The starting point for all our work is to find the irreducible representations of the group Γ and its
characters over a not algebrically closed field K (the so called rationality question).

When we are looking for irreducible representations over C, everything is simpler and well explained
in the first section of [Ser77]. The situation becomes harder when we pass to the field K. After a
general overview of the basic results over C, we will try to give an idea of the passage to K, which
will be of fundamental importance for the following sections.
After this general explanation, we shall give some non abelian examples, following the cases treated
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by B. Sodäıgui in the articles cited in the Introduction.

For the definitions of linear representations, irreducible representations and characters we refer
to the already cited work of Serre; here we just recall the basic tools to discover the number of
irreducible representations of Γ over C and its characters’ table.

Given a group Γ of order g, we have a number of irreducible representations over C equal to
the number of conjugacy classes of Γ and in particular we have the formula∑

n2
i = g,

where ni is the dimension of the different irreducible representations, which allows us to discover
the dimension of the different irreducible representations over C.
A characters is associated to any of these representations and, defined the scalar product in the set
of characters

(φ|ψ) =
1
g

∑
γ∈Γ

φ(γ)ψ(γ),

we have that a representation V with character φ is irreducible if and only if (φ|φ) = 1; while
given two characters χ and χ′ of two non isomorphic irreducible representations, we have the
orthogonality relation (χ|χ′) = 0.
While in an abelian group all the irreducible representations are 1-dimensional, in a non abelian
case the situation is more complicated but easily solvable thanks to the previous results. Let’s give
a look to some examples of irreducible representations over C.

D2n with focus on D4

This group is the group of rotations and reflections of the plane which preserve a regular polygon
with 2n vertices. In particular we have 2n rotations (rk with 0 ≤ k ≤ 2n− 1 and r the rotation of
angle π/n) and 2n reflections, telling us that the order of the group is 4n. Given any reflection s,
any element can be uniquely written either as rk with 0 ≤ k ≤ 2n−1 or as srk with 0 ≤ k ≤ 2n−1;
where s and r are linked by the relation srs = r−1.
For any of this group we have 4 one dimensional representations, obtained letting ±1 corresponding
to r and s in all possible ways, and n− 1 representations of dimension 2.

In the particular case of D4 (the group of rotations and reflections of the plane preserving a square),
we have 5 conjugacy classes and so, after the always present four 1-dimensional representations, we
have the following 2-dimensional representation

r −→
(
i 0
0 −i

)
sr −→

(
0 −i
i 0

)
.

So for D4 we have 5 characters, represented in the following table:
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1 r r2 s sr

χ0 1 1 1 1 1
χ1 1 1 1 -1 -1
χ2 1 -1 1 1 -1
χ3 1 -1 1 -1 1
χ4 2 0 -2 0 0

The Alternating Group A4

The alternating group A4 is the group of all even permutations of a set of four elements {a, b, c, d}.
It can even be considered as the group of rotations in R3 which stabilize a regular tetrahedron with
barycenter the origin.
It contains 12 elements which are:

• the identity element 1,

• 3 elements of order 2: x = (ab)(cd), y = (ac)(bd), z = (ad)(bc),

• 8 elements of order 3: σ = (abc), (acb), . . . , (bcd).

If we consider the cyclic subgroup C3 = {1, σ, σ2} and the normal subgroup ∆ = {1, x, y, z}, we
have the relations

σxσ−1 = z, σzσ−1 = y and σyσ−1 = x,

with C3 ∩∆ = 1. In particular A4 is the semidirect product of these two sets,

A4 = ∆ o C3.

In this group we have 4 conjugacy classes, which are: {1}, {x, y, z}, {σ, σx, σy, σz}, {σ2, σ2x, σ2y, σ2z};
so an equal number of irreducible characters over C. Thanks to the equivalence on the dimensions
12 = n2

1 + n2
2 + n2

3 + n2
4, we easily see that we have three 1-dimensional irreducible representations

and one 3-dimensional representation over C.
The three 1-dimensional characters χ0, χ1, χ1

′ derive from the characters of the cyclic C3 and they
are defined by χ(δ ·σk) = χ(σk). While we can easily understand the character of the 3-dimensional
irreducible representation, just using the orthogonal relations on characters.
We give here the characters table:

1 x σ σ2

χ0 1 1 1 1
χ1 1 1 ω ω2

χ1
′ 1 1 ω2 ω

χ2 3 -1 0 0

where with ω we denote the primitive 3-rd root of unity e
2πi
3 .

It’s not difficult to prove that the 3-dimensional representation is induced by any non trivial 1-
dimensional representation of ∆ (for example by φ defined as φ(1) = φ(x) = 1 and φ(y) = φ(z) =
−1), giving χ2 = IndA4

∆ φ.
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The Symmetric Group S4

The symmetric group S4 is the group of all permutations of a set of 4 elements {a, b, c, d}. It can
even be considered as the group of all rigid motions which stabilize a regular tetrahedron.
This groups contains 24 elements, divided into 5 conjugacy classes, which are:

• the identity element 1,

• 6 transpositions: (ab), (ac), (ad), (bc), (bd), (cd),

• 3 elements in A4 of order 2: x = (ab)(cd), y = (ac)(bd), z = (ad)(bc),

• 8 elements of order 3: (abc), (acb), . . . , (bcd),

• 6 elements of order 4: (abcd), (abdc), (acbd), (acdb), (adbc), (adcb).

If we consider the subgroup H = {1, x, y, z} and the normal subgroup L of permutations leaving
fixed the element d, we can see S4 as the semidirect product of these two sets:

S4 = LoH.

Each representation of L extends to S4 just letting the character act trivially on the elements of H
(χ(l · h) = χ(l)); obtaining in this way two 1-dimensional representations and a 2-dimensional one.
After that, thanks to the usual formula connecting the order of the group and the dimensions
of the irreducible representations, we see that we need two other 3-dimensional representations.
One 3-dimensional irreducible representation is the standard representation of S4, which is the
permutation representations of S4 on C4 quotient by the trivial subrepresentation; while the other
3-dimensional representation is given by this last one tensor the non trivial representation of di-
mension one.

Remark A.2.1. The values of the characters of S4 are all integers, it’s important to note that it
can be proved that for any symmetric group we have this property on the characters of irreducible
representations.

We can give now the characters’ table of S4:

1 (ab) (ab)(cd) (abc) (abcd)
χ0 1 1 1 1 1
ε 1 -1 1 1 -1
θ 2 0 2 -1 0
φ 3 1 -1 0 -1
εφ 3 -1 -1 0 1

Remark A.2.2. Since any character has values in an algebraic extension of Q, we can consider
any representation over Q c instead that over C.
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Once we have the irreducible representations over C (or over Q c) of a group Γ, a question arises:
how can we deduce from them, the irreducible representations over a not necessarily algebrically
closed field K? For the answer we have to look at the Galois group Gal(Q c/K), in particular any or-
bit of it gives an irreducible character over K (as a reference we can consider section §74 in [CR87]).

So for example, regarding A4 with the assumption that K is linearly disjoint from Q(ω); we have
three irreducible characters over K:

• χ0 the trivial character;

• χ1 the character of degree 1, which is defined by χ1(σ) = ω and χ1(x) = 1 (so with kernel=∆);

• χ2 the character of degree 2, which is defined by: χ2(σ) = 0 and χ2(x) = −1. It is induced,
as explained in the case over C, by a nontrivial character φ of ∆: χ2 = IndA4

∆ φ.

Remark A.2.3. In the case that K contains the root of unity ω, we still have the two nontrivial
1-dimensional characters χ1 and χ2

1, together with χ0 and the 3-dimensional one.

A.3 The semisimple algebra K[Γ]

Once we know the characters’ table of the group we’re treating, we would know the structure of
the group algebra K[Γ] ( recall that any element of the group algebra is of the form

∑
γ∈Γ aγγ,

where aγ ∈ K).
The first important result that we invoke is the famous Maschke’s Theorem:

Theorem A.3.1 (Maschke’s Theorem). Given K a field of characteristic not dividing the order
|Γ|, we have that the group algebra associated K[Γ] is semisimple.

For a proof of this result we remand to pag. 43 of Vol. 1 in [CR87].

As a corollary of it we have that K[Γ] is a product of matrix algebras over division ring of fi-
nite degree over K.
Moreover, when we take K algebraically closed, we have

K[Γ] u
h∏
i=1

Mni(K),

where h is the number of irreducible representations and ni is the dimension of each representation.

In our general case, we have that K is of characteristic zero, ensuring us the semisemplicity of
the group algebra; but it’s not in general algebraically closed, complicating seriously the descrip-
tion of the simple components.

The main result in a not necessarily algebraically closed case makes use of the Schur’s Index and
can be found in section 74 of [CR87] with a resume at pag. 330 of the same book.
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It says that for any K (not necessarily algebraically closed), the group algebra associated to Γ has
the following Wedderburn’s decomposition:

K[Γ] ∼=
h∏
i=1

Mni(Di),

where Di is a skewfield (or in other word a division ring) with center K(χi), which is the extension
of K obtained by adding to K the values of the correspondent character χi; moreover the dimension
of Di over K(χi) is equal to the square of the Schur index m2

i relative to K and the dimension of
the matrix group ni is linked with the Schur index thanks to the formula mini = χi(1).

Remark A.3.2. We remark that in the 1-dimensional case we have χi(1) = 1 and so necessarily
mi = ni = 1. While when a character is realizable over K, then the Schur index is equal to 1
(indeed the Schur index over K is even defined as the smallest positive integer m such that there
exists an extension L of K of degree m so that the character χi can be realized over L), so in
this case we have ni equal to the dimension of the correspondent representation and the respective
simple component in the group algebra is Mni(K).

We can now apply all these considerations to the non abelian groups considered in the previous
section. Looking just at the characters’ table and thinking about the transposition of characters over
a field (not necessarily algebrically closed) K, we obtain the following group algebra decomposition,
for any K of characteristic zero:

• D4 −→ All the irreducible representations are realizable over K, so we have

K[D4] ∼= K4 ×M2(K);

• A4 −→ Given ω a primitive 3-rd root of unity, if K doesn’t contain ω, the non trivial 1-
dimensional representation has values in K(ω), while the 3-dimensional one is realizable over
K, so we have

K[A4] ∼= K ×K(ω)×M3(K),

while if K contains ω we have

K[A4] ∼= K ×K ×K ×M3(K);

• S4 −→ For any symmetric group, as already remarked, all the irreducible representations are
realizable over K; so we have

K[S4] ∼= K ×K ×M2(K)×M3(K)×M3(K).

A.4 The class of a tame Γ-extension

In this section we use the notation of the first three chapters. Thanks to Noether’s criterion, we
know that if Kh/K is tame, then Oh is locally free as an OΓ-module and it determines a class (Oh)
in the locally free class group Cl(OΓ). The aim of this section is to describe (Oh) in the idelic form
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developed by Fröhlich.

Assuming Γ abelian for simplicity, we define

Cl(OΓ) =
J(KΓ)

λ(KΓ×)U(OΓ)
, (A.4.1)

where J(KΓ), the idele group of KΓ, is the restricted product of the groups (KvΓ)
×

with respect
to the subgroups (OvΓ)

×
for all primes v of K; U(OΓ), the group of unit ideles, is

∏
v(OvΓ)

×
;

and λ(KΓ
×

), the group of principal ideles, is the image of KΓ
×

under the canonical embedding
λ : KΓ

× −→ J(KΓ). We also denote by j the canonical quotient map

j : J(KΓ) −→ Cl(OΓ). (A.4.2)

In the following Proposition we are able to define (Oh).

Proposition A.4.0.1. Let b ∈ Kh a normal basis generator and, for all v, av ∈ (Ov)hv be given
such that

Kh = KΓ.b and (Ov)hv = OvΓ.av for all v.

For each v, let cv be the unique element of (KvΓ)
×

such that
(
in (Kv)hv

)
av = cv · b.

Then c = (cv)v ∈ J(KΓ) and j(c) in Cl(OΓ) depends only on Ov and not on the choice of b and
of the av; we denote j(c) by (Oh).

Proof. The existence and uniqueness of cv are immediate from the fact that

(Kv)hv = KvΓ.b = KvΓ.av,

so we find a unique c = (cv)v ∈
∏

v(KvΓ)
×

with the property request. Moreover it belongs to
J(KΓ) because Oh and OΓ ·b can differ at only finitely many primes v, so for all primes but a finite
set we have

(Ov)hv = OvΓ.b = OvΓ.av,

by (2.3.2), so cv ∈ (OvΓ)
×

for almost all v.
Finally changing b or av we only change c by principal or unit idele, respectively, leaving in this
way the class j(c) of c in Cl(OΓ) unchanged.

We can rewrite the previous Proposition in terms of resolvends, obtaining

rΓ(av) = cvrΓ(b) in H(KvΓ),

whence
RΓ(av) = rag(cv)RΓ(b) in H(KvΓ). (A.4.3)

The previous equality (A.4.3) is the characteristic equation of (Oh) for the following reason. If
rag(c′v) = rag(cv) for all primes v, then c′v = cvsv where sv ∈ Γ for all v. Hence (sv)v ∈ U(OΓ)
and (c′v) determines the same class in Cl(OΓ) as (cv)v.
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A.5 Hom-description

Following [Frö83], we will give an analogous definition of the class group Cl(U) of an order U in
K[Γ], which is fundamental for all our work.

Given a finite group Γ, its additive group of virtual characters RΓ (linear combinations of the
irreducible complex characters of Γ) is an ΩK-module (recall that ΩK = Gal(K c/K)), under the
action:

χω(γ) = (χ (γ))ω , ω ∈ ΩK .

Now let J(Q c) the idele group of Q c, it’s not difficult to see that it exists a number field F
containing K, which is Galois over Q and such that

HomΩK
(RΓ, J (Q c)) = HomΩK

(RΓ, J (F )) = HomGal(F/K)
(RΓ, J (F )) ,

which is the group of Galois equivariant homomorphisms; the base group of our definition of class
group.
We proceed now to give a generalization of the notion of determinant. Let A be a commutative
K-algebra then we have a natural action of ΩK on the tensor product Q c ⊗K A via the action on
the first factor.
Given a representation

T : Γ −→ GLnQ c,

we extend it to a homomorphism of algebras

T : AΓ −→ Mn(Qc ⊗K A);

which, restricting it to the invertible elements, becomes

T : AΓ× −→ GLn(Qc ⊗K A).

Thanks to the following commutative diagram

AΓ×
T //

Detχ

%%JJJJJJJJJJJJJJJJJJJJJJJJJJ GLn(Qc ⊗k A)

det

��

(Qc ⊗K A)× ,

(A.5.1)

where det is the usual determinant; we define a new determinant

Detχ : AΓ× −→ (Qc ⊗K A)×,

depending only on the character of the representation χ (because the determinant remains the same
in a class of conjugated elements).
If we even consider another representation with character θ, we have

Detχ+θ(a) = Detχ(a) ·Detθ(a)
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and by letting
Detχ−θ(a) = Detχ(a) · (Detθ(a))−1 ,

we can extend the map χ −→ Detχ(a) to the homomorphism

Det(a) : RΓ −→ (Qc ⊗K A)×

χ −→ Det(a)(χ) = Detχ(a) ;
(A.5.2)

called the generalized determinant of a ∈ AΓ×.
If χ is the character of a representation T , then χω

−1
is that of the representation Tω

−1
, where

Tω
−1

(γ) = ω−1 (T (γ)); then, given a ∈ AΓ×, we have

(
Det

χω−1 (a)
)ω

= ω

Det

∑
γ∈Γ

aγω
−1 (T (γ))


= Det

ω
∑
γ∈Γ

aγω
−1 (T (γ))


= Det

∑
γ∈Γ

aγT (γ)


= Detχ(a).

This easy result allows us to define the homomorphism

Det : (AΓ)× −→ HomΩK

(
RΓ, (Qc ⊗K A)×

)
a −→ Det(a) .

(A.5.3)

If we take A = Kv and in KvΓ the order Uv (when v is infinite, consider Uv = KvΓ), then we have
Qc ⊗K Kv = (Qc)v and considering Uv(Qc) the group of units of the ring of integers in (Qc)v, just
by restriction we obtain

Det : U×v −→ HomΩK
(RΓ, Uv (Qc)) ,

as Detχ(a) is clearly a unit for a ∈ U×v .
Making product over all primes v we define

U(U) =
∏
v

U×v

and in the same way
U(Qc) =

∏
v

Uv(Qc).

So going over the product we have the homomorphism

Det : U(U) −→ HomΩK
(RΓ, U (Qc)) ⊂ HomΩK

(RΓ, J (Qc)) ,

whose image we denote by Det (U (U)).
Now we can give the desired Hom-description of the class group, indeed in [Frö83], starting from
the original definition of the class group of an order given through the Grothendieck group H0(U),
is proved the following Theorem.
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Theorem A.5.1 (Hom-description). (i) Let X be a locally free rank one U-module. So we can
choose a free generator v of V = X ⊗OK K over KΓ and for any prime v in K a free
generator xv of the local Xv over Uv. Then they are both generator of Vv over KvΓ and so

xv = vλv, λv ∈ (KvΓ)×.

Define for any v and for any character χ

fv(χ) = f(χ)v = Detχ(λv).

Then fv ∈ HomΩK
(RΓ, (Qc)v

×), so

f ∈ HomΩK
(RΓ, J(Qc))

and its class (f) modulo HomΩK
(RΓ, (Qc)×)Det(U(U) only depends on the isomorphism class

of X.

(ii) There is a unique isomorphism

Cl(U) ∼=
HomΩK

(RΓ, J (Qc))

HomΩK
(RΓ, (Qc)×)Det (U (U))

so that for any locally free rank one module X, the class (X) maps onto the corresponding
class (f) as constructed above.

Without going into details, we can take this last isomorphism as definition of the class group of an
order.

Remark A.5.2 (Hom-description for a maximal order). As explained by Fröhlich in [Frö83] (In-
terpretation 1 after Prop. 2.1), in the case of a maximal order M, the Hom-description becomes:

Cl(M) ∼=
HomΩK

(RΓ, J (Qc))

HomΩK
(RΓ, (Qc)×)HomΩK

(RΓ, U(Qc))
.

A.5.3 Resolvents

We introduce here the notion of resolvent, which is one of the main ingredient in the non abelian
approaches, trying to investigate its main properties and its importance in the Hom-description
given above.

Given a Galois extension of fields N/K, with Galois group Γ, we consider A a commutative K-
algebra. Then extending scalars we have that N ⊗K A is free of rank one over A[Γ], with Γ acting
via N . Given a ∈ N ⊗K A free generator, we have that the element

∑
γ∈Γ γ(a)γ−1 belongs to

((N ⊗K A) Γ)× (for the proof look at [Frö83]).
Let a be in N ⊗K A (not necessarily free generator), we define the resolvent of a by

(a|χ) = Detχ

∑
γ∈Γ

γ(a)γ−1

 = Det

∑
γ∈Γ

γ(a)T (γ)−1

 ;
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where T is the representation with character associated χ. By the result claimed above, we have
that if a is a free generator of N ⊗K A over A[Γ], then (a|χ) ∈ (K c ⊗K A)× and so the map
χ −→ (a|χ) lies in HomΩN

(
RΓ, (K c ⊗K A)×

)
.

Remark A.5.4. When we are in the abelian case, any representation is 1-dimensional, and so the
resolvent here defined becomes the usual Lagrange resolvent

(a|χ) =
∑
γ∈Γ

γ(a)χ(γ−1).

If we assume that the Galois extension N/K is tame, then by Noether Criterion we have that ON
is locally free over OK [Γ] (ON,v = ON ⊗OK OK,v is free of rank one over OK,v[Γ], for all prime
divisors v), and thus defines a class (ON )OK [Γ] ∈ Cl(OK [Γ]).
Thanks to the notion of resolvent, we can now find a representative function of this class, following
the Hom-description. Indeed in [Frö83] we can find the following Theorem.

Theorem A.5.5. Let a be a free generator of N over K[Γ] and, for each prime divisor v of K, let
αv be a free generator of ON,v over OK,v[Γ]. For χ ∈ RΓ, define (α|χ) ∈

∏
v(Qc

v
)× by

(α|χ)v = (αv|χ).

Then (α|χ) ∈ J(Qc) and the map

χ −→ (α|χ)
(a|χ)

is a representative of (ON )OK [Γ].

A.5.6 The structure of Cl(M)

Thanks to the structure of the group algebra K[Γ], we can now investigate the shape of the class
group Cl(M). To discover its structure, we shall make use of some results presented in [Rei03].

First of all we recall the definition of the Eichler condition relative to a Dedekind domain R
with field of quotients K. In the definition, with the notion of “non-R” prime of K we denote a
prime of K which doesn’t derive from an ideal of R; when K is a number field it means the infinite
primes of K.

Definition A.5.7. The central simple K-algebra A satisfies the Eichler Condition relative to R,
if either

• K is an algebraic number field and (A : K) 6= 4 if A ramifies at every “non-R” prime of K,
or

• K is a function field and some “non-R” prime of K does not ramify in A

When A doesn’t satisfy the Eichler condition, it’s called a totally definite quaternion algebra.
The Eichler condition for a separable algebra becomes:
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Definition A.5.8. Given an R-order Λ in a separable K-algebra A. For each simple components
Ai of A, let Ri denote the integral closure of R in the center of Ai. A satisfies the Eichler condition
relative to R if for each i, Ai satisfies it relative to Ri.

Considering a central simple K-algebra A, we recall even the definition of ClAR, the modified ray
class group modS; where S denotes the set of all infinite primes of K ramified in A.
It’s just a modified definition of the original class group of R: given PA(R) = {Rα : α ∈
K× and αp > 0 for each p ∈ S}, we define the modified ray class group as

ClAR =
{multiplicative group of R-ideals in K}

PA(R)
;

it’s not difficult to remark that the modified ray class group coincides with Cl(R) when the set S
is empty.

A general result of Jacobinski (look at [Rei03] pag.344) allows to understand the structure of
Cl(Λ); which, in the particular case of a maximal order M in a separable K-algebra A satisfying
the Eichler condition, is deductible just considering the central simple components.

The central simple situation is now easy thanks to a result of Swan ([Rei03] pag.313), for any
maximal order M in a central simple K-algebra A (K field of quotients of the Dedekind domain
R) we have

Cl(M) ∼= ClAR,

where ClAR denotes the modified ray class group modS.

Thanks to all these considerations is now easy to describe Cl(M) for the previous non abelian
groups. Let’s give a look:

• K[D4] ∼= K4 ×M2(K) −→ Cl(M) ∼= Cl(K)5;

• K[A4] ∼= K × K(ω) ×M3(K) −→ Cl(M) ∼= Cl(K) × Cl (K (ω)) × Cl(K) in the first case,
while K[A4] ∼= K ×K ×K ×M3(K) −→ Cl(M) ∼= Cl(K)4 in the second one;

• K[S4] ∼= K ×K ×M2(K)×M3(K)×M3(K) −→ Cl(M) ∼= Cl(K)5.

Remark A.5.9. The Eichler condition is satisfied in any of these situations, just observing the
dimension of the simple components over their center.
We have also to observe that there are examples of non abelian groups, for which the Eichler
condition is not satisfied; for some examples look at [Rei03].

A.5.10 The Hom-description of Cl◦(OK [Γ])

Using the already presented Hom-description, we will now give a particular Hom-description of
Cl◦(OK [Γ]) in order to well investigate it.

The analogue Hom-description for the augmentation kernel arises from the following Proposition,
where with χ0 we denote the trivial character.
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Proposition A.5.10.1. Given f ∈ Hom ΩK
(RΓ, J(K)), if f(χ0) = 1 then (f) ∈ Cl◦(OK [Γ]).

Conversely any class in Cl◦(OK [Γ]) can be written as (f) with f(χ0) = 1.

Proof. The augmentation map is exactly the linear extension of the trivial character χ0 of Γ and
so the induced homomorphism

ε? : Cl(OK [Γ]) −→ Cl(OK) ∼=
J(K)

K×U(OK)

is given by ε? ((f)) = (f(χ0)). Thus the class (f) lies in the kernel Cl◦(OK [Γ]) of the induced
homomorphism if and only if the content of the idele f(χ0) ∈ J(K) is a principal ideal of OK .
So if f(χ0) = 1 it is easily a principal ideal and then (f) ∈ Cl◦(OK [Γ]).
To prove the other inclusion instead we take (f) ∈ Cl◦(OK [Γ]) and we have f(χ0) = b ∈ J(K)
where b = ku with k ∈ K

×
and u ∈ U(OK). Now we can define b̂ ∈ HomΩK

(RΓ, J(K)) as

b̂(χ) = bχ(1) and exactly in the same way we define k̂ and û. In this way we have that k̂ ∈
HomΩK

(
RΓ,K

×
)

and û = Det(u) since u ∈ U(OK). Thus we have b̂ = k̂û = k̂Det(u) ∈

HomΩK

(
RΓ,K

×
)

Det (U(OK)) and b̂(χ0) = b.

If we consider f ′ = b̂−1f then f and f ′ define the same class and in particular f ′(χ0) = f(χ0)

b̂(χ0)
= 1,

as we wanted to prove.

The Proposition explains the following Hom-description of the augmentation kernel, in particular

Cl◦(OK [Γ]) ∼=
Hom◦

ΩK
(RΓ, J (Qc))

Hom◦
ΩK

(RΓ, (Qc)×)Det◦ (U (OK [Γ]))
,

where with the exponent ◦ we denote the fact that we consider only homomorphisms f acting
trivially on the character χ0 (the trivial one). Indeed this assertion comes from the previous
Proposition and from the fact that it can be proved as in the Proposition that

Hom◦
ΩK

(RΓ, J (Qc)) ∩HomΩK
(RΓ,K

×
)Det (U(OK [Γ])) = Hom◦

ΩK
(RΓ, (Qc)×)Det◦ (U (OK [Γ])) .

Given the Γ-extension N/K, the class (ON ) in Cl◦(OK [Γ]) is always described as quotient of resol-
vents as in A.5.5, even if we have to take the normal basis generator a and the local one αv such
that TrN/K(a) = 1 and TrNv/Kv

(αv) = 1 for all v (this indeed is the condition to have f(χ0) = 1,
just looking at the remark A.5.4).
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To Elena and her cheerful presence

“Roads? Where we’re going we don’t need roads!”


