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Introduction

The idea of the field with one element was first suggested by Tits in relation with algebraic
groups and finite geometries.
Define the n-th q-number nq by nq = 1 + q + q2 + ... + qn−1, clearly n1 = n. Also define the
q-factorial !q as n!q = 1q ·2q... ·nq, again when q = 1 this is just the traditional factorial. Finally
define the q-binomial coefficients as(

n
m

)
q

=
n!q

m!q(n−m)!q
. (0.0.1)

Consider the Grassmannian variety Gn,m(Fq) with q = pk, it is an easy exercise to compute its
cardinality, resulting in

|Gn,m(Fq)| =
(

n
m

)
q

(0.0.2)

one immediately notices the simplicity of this formula, and one might wonder about its meaning
when q = 1. Is there some sort of “variety” which corresponds to the case q = 1?
In the special case of projective space (m = 1) Tits noticed that this corresponds to a degenerate
case of classical axiomatic projective geometry. Namely, if one substitutes the axiom that says
that every line contains more than two points, by an axiom asserting that every line contains
exactly two points, one gets a coherent degenerate projective geometry in which n-dimensional
projective space contains exactly n+1 points. This should correspond to projective space over
a ‘field with one element’ F1.
Moreover, in his work with algebraic groups, Tits suggests the following. Given a Chevalley
group scheme G, one considers its Weyl group W , then W should correspond to the group of
F1-rational points of G. With the growth of interest in the study of F1 geometry, this became a
desired property of an adequate definition of variety over F1. Namely, F1 should be something
lying below Z, and for every Chevalley group scheme G there should be a group scheme G over
F1 such that, after extension of scalars to Z gives G and such that G(F1) = W .
A totally different story, and probably the reason why the interest in F1 grew so much in the
last years, is that of the Riemann Hypothesis. As big as it sounds, I would guess that in the
bottom of every F1 geometer lies the hope that, some day, a proof of the Riemann Hypothesis
will come out from this theory. At least if it doesn’t, new insights in its study might come out
of this.
The story starts with André Weil’s proof of the Riemann Hypothesis for curves over finite fields.
Let X be a scheme of finite type over Z, for every closed point x one can consider its residue
field Fx. Then one can define the zeta function of X as
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ζX(s) =
∏

x ∈ X, x closed

1

1− |Fx|−s
. (0.0.3)

In the case that X = SpecZ one recovers the Riemann zeta function. A generalized Riemann
Hypothesis would be the assertion that all the zeroes of this zeta function have real part 1/2.
In practice this is not so easy, one has to be more careful and take into account the dimension
of the variety, but this gives an idea of the kind of things one is looking to prove.

Upon looking at the fibers over each closed point in SpecZ it is easy to see that

ζX(s) =
∏

p

ζXp(s) (0.0.4)

where ζXp is the so called local zeta function of the fiber. This local zeta function has the exact
same definition as in 0.0.3 but is defined for schemes of finite type over the finite field Fp.

In view of equation 0.0.3 and the RH, one wonders what happens to the zeros of the local zeta
functions, do they have real part equal to 1/2? In the case of complete smooth curves over Fq

this is exactly the case, that is Weil’s theorem or the acclaimed Riemann Hypothesis for curves
over finite fields.

Based on his work in the case of dimension one Weil went even further and formulated a set
of conjectures which came to be known as the Weil conjectures which were a generalization of
the case of dimension one to higher dimensions. After many struggles by many different math-
ematicians they were finally proved for all dimensions by Dwork, Grothendieck and Deligne.

Recently there has been an interest in F1 geometry because Manin, based on work of Kurokawa
and Deninger has proposed adapting the proof of Weil for curves over finite fields to “curves”
over F1 and using that to prove the original Riemann Hypothesis!

Why is this plausible? First notice that the Krull dimension of Z is one so it can be thought of
as some sort of curve. Second, as Z contains points of all the different characteristics the only
possible characteristic for a field over which the hypothetical curve would be defined would be
a “field of characteristic one”.

This thesis consists of three chapters.

In the first chapter we give all the theory which is needed for chapters two and three. In the
first section we discuss sites and sheaves over them (topoi). Then in the second section we
provide the interpretation of schemes as functors on the category of rings, which will be later
used to define F1 schemes. In the third section we give a background on Monoidal categories
and some bicategory theory.

Chapter two is concerned with foundations for F1 geometry. We study a variation to Deitmar’s
geometry of monoids (which was given in [7]) leading to the definition we adopt of F1-schemes
which was first given by Connes and Consani in [7]. In the next section we show a relationship
between Toën and Vaquié’s geometries with our F1-schemes. This part was mainly inspired by
some personal communications with Andrew Salch.

Chapter three is more concrete in flavor, it is all about algebraic groups. In the first section
we give a definition of GLn in any cosmos in the framework of Toën and Vaquié. In the final
section we give the proof due to Connes and Consani in [6] but in a slightly different language
of the result asserting that any Chevalley group scheme can be descended to F12 .
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There have been given many other definitions to the notion of geometry over F1, notably
Borger’s Λ-ring geometries (which is also more general), Deitmar’s monoidal spaces, Soulé’s F1

varieties, and Lopez Peña and Lorscheid’s torified varieties. The interested reader may consult
the excellent survey paper [8].
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Chapter 1

Preliminaries

1.1 Grothendieck Topologies

One of the reasons that the Weil conjectures where difficult to prove, at least in the way that
Weil himself suggested, was that there was a need for a cohomology theory with certain ‘good’
properties. The Zariski topology for algebraic varieties provides a topological space that one
can use to define cohomology, for example Serre’s coherent sheaf cohomology. But for proving
the Weil conjectures, it is too coarse. Using the Zariski topology to define coherent sheaf
cohomology doesn’t give a characteristic zero theory, which was one of the properties that,
according to Weil, such a theory should have. This lack of a ‘good’ topological space to work
with led Grothendieck to define sites.
Sites where invented by Grothendieck as a mean to mimic a topological space in cases where
a sufficiently good topological space is not present. More explicitly, he invented them to be
able to define good cohomology theories such as étale cohomology or crystalline cohomology,
this cohomology theories where shown to have the ‘good’ properties so much wanted. This
invention finally led, in Deligne’s hands, to the full proof of the Weil conjectures.
Sites also help to give a nice characterization of schemes as functors. This is what we will mimic
latter to define F1-schemes.
Let C be any category, for a given object X we denote by hX the functor that sends each Y in
C to the set Hom(Y,X) and each morphism f to the function induced by composition with f ,
h• is itself a functor from C to Hom(Cop, S).
We recall Yoneda’s Lemma:

Proposition 1.1 (Yoneda’s Lemma) For any functor F : Cop → S we have a bijective
natural transformation between hF ◦ h• and F .

If we apply this to hY we get a bijection between Hom(hX , hY ) and Hom(X, Y ), this means
that h• is fully faithful which is usually called the “weak version” of Yoneda’s Lemma.
If a functor F is in the essential image of h• then it is called representable and if F ' hX we
say that X represents F
Next, we give the concept of a sieve.

Definition 1.1 Let C be a category and X an object of it, a sieve S over X is a subfunctor
of hX .
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Given a sieve S over an object X of C and a morphism τ : Y → X we get, by the Yoneda
embedding, a natural transformation hτ : hY → hX . Using this, toghether with the inclusion
S ↪→ hX , we can form the fibered product functor S ×hX

hY .

Proposition 1.2 The functor S ×hX
hY constructed above is a sieve over Y . It is called the

pullback of S along τ and is denoted by τ ∗S.

Proof. We just have to prove that it is a subfunctor of hY , or more precisely, that the projection
to the second factor is injective. Take any object Z of C, by evaluating the diagram

S ×hX
hY

$$JJJJJJJJJJ

zzuuuuuuuuuu

S

$$I
IIIIIIIII hY

yytttttttttt

hX

on Z we get a corresponding diagram of sets and functions. Now it is clear that the upper right
function is injective so it is a sieve.
Our next definition is central.

Definition 1.2 A Grothendieck topology on C is given by a colection of sieves called covering
sieves satisfying the following axioms:

• For each covering sieve S over X and each morphism Y → X the pull back sieve is a
covering sieve.

• For each X in C the functor hX is a covering sieve.

• If S is a sieve and T is a covering sieve over X such that for each morphism Y → X ∈
T (Y ) the pull back of S is a covering sieve then S is a covering sieve.

Definition 1.3 Let C be a category, then a Grothendieck pretopology on C is a collection of
sets of the form {Ui

σi−→ U ∈ Hom(Ui, U)}i∈I which are called open coverings such that:

• If V → U is an isomorphism then {V → U} is an open covering.

• If {Ui
σi−→ U}i∈I is an open covering and V → U is any morphism then the fibered product

Ui ×U V exists for all i ∈ I and the induced morphisms {Ui ×U V → V }i∈I form an open
covering.

• If {Ui
σi−→ U}i∈I is an open covering and for each i ∈ I we have an open covering

{Vij
ρij−→ Ui}j∈Ji

then {Vij
σi◦ρij−→ U}i∈Ij∈Ji

is an open covering.

The following is the fundamental and motivating example

Example 1.1 If T is a topological space we can consider the category T whose objects are the
open subsets of T and the morphisms are just the inclusions. If we take for open coverings the
usual ones (that is jointly surjective maps), this is a Grothendieck pretopology on T.
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This is clear because every isomorphism is just an identity, the fibered products are given by
intersections and the third condition is clearly true.

The reason for the name ‘pretopology’ is that every pretopology gives rise to a topology in a
natural way:

Proposition 1.3 Given a pretopology P. Let T denote the set of sieves S such that, there
exists an open covering {Ui

σi→ U}i∈I belonging to P such that σi ∈ S(Ui) for all i ∈ I. Then T
is a Grothendieck topology.

This T is called the topology generated by P .

Conversely, given a Grothendieck topology T , we call a set C of the form {Ui
σi→ U} an open

covering of T if the functor S, which sends X to the set of arrows f : X → U such that there
exists an arrow α satisfying f = σi ◦ α for some σi ∈ C, is a covering sieve.

A category with a Grothendieck topology on it is called a site.

Now we want to define sheaves over sites, the idea is to generalize the notion of sheaves over
topological spaces to sheaves over sites. Let T be a topological space. It is a standard inter-
pretation that of a presheaf over T as a contravariant functor from the associated T from last
example to S. So, analogously, we define a presheaf F on a site C as a functor F : Cop → S.

Given a presheaf F on C then for any morphism V
σ−→ U and any element a of F (U) we will

denote the element Fσ(a) of F (V ) by a|σV and when there is no confusion about σ we will just
write a|V .

Now given any set of morphisms {Ui
σi−→ U} and a presheaf F on a site C we get a set of

functions Fσi from F (U) to the various F (Ui) so by universal property of products we obtain
a function Σ : F (U) →

∏
F (Ui). Also for a fixed k we have that, if π1 denotes the projection

to the first factor from Uk ×U Uj to Uk, we obtain, for all j, a function Fπ1 from F (Uk) to
F (Uk ×U Uj); if we compose this with the projection from

∏
F (Ui) to F (Uk) and let k run

through all possible indices we get functions from
∏

F (Ui) to each of the F (Ui ×U Uj) so
again by universal property we obtain a function, which we will call Π1, from

∏
F (Ui) to∏

F (Ui×U Uj). Analogously using the projection π2 to the second factor of Ui×U Uk we obtain
a function called Π2 from

∏
F (Ui) to

∏
F (Ui ×U Uj). Summarizing we have constructed the

diagram

F (U)
Σ−→

∏
F (Ui)

Π1−→
−→
Π2

∏
F (Ui ×U Uj) (1.1.1)

for every presheaf F . Now we can define what is a sheaf

Definition 1.4 A sheaf on a site C is a presheaf S : Cop → S such that, for every open
covering, the corresponding diagram

S(U)
Σ−→

∏
S(Ui)

Π1−→
−→
Π2

∏
S(Ui ×U Uj) (1.1.2)

is an equalizer.
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When C is T from the example this definition goes down to the usual definition of sheaf on a
topological space.
Given a presheaf F on a site C we would like to make an analogous construction to the traditional
construction of the sheafification of a presheaf.

Proposition 1.4 For every presheaf F there is a unique (up to isomorphism) sheaf F ′ with a
morphism F → F ′ such that for every other sheaf F ′′ with morphism F → F ′′ there is a unique
morphism F ′ → F ′′ making the following diagram commute

F //

  A
AA

AA
AA

A F ′

��
F ′′

This F ′ is called the sheafification of F . Another way to see this is that the functor Sh from
presheaves to sheaves which sends a presheaf to its sheafification is a left adjoint to the forgetful
functor. For a reference on this and related subjects check [3] Chapter II.

1.2 Schemes as functors

Throughout this section we will call usual schemes geometric schemes. The category of geo-
metric schemes will be denoted by Sch.
Schemes can be viewed as sheaves on an adequate site. Consider the category R of commutative
rings with unity, we will make its opposite category into a site.
Given a ring A and an element f of it, we will denote by Af the localization of A with respect
to f .

Definition 1.5 The Zariski topology on Rop is the Grothendieck topology generated by the
coverings of the form {Afi

→ A}i∈I which are induced by sets of ring homomorphisms {Afi
←

A}i∈I where the set {fi}i∈I generates A.

The category Rop together with the Zariski topology forms a site which we will denote by Aff.
For a ring R when we want to talk of it as an element of Aff we will write it as SpecR.
We will need the concept of an open covering of functors.

Definition 1.6 Let C be a site and mi : Fi → F be morphisms of presheaves, we say they form
an open covering if, for every representable functor hX with morphism hX → F the fibered
product hX ×F Fi is representable for all i by some Yi in C and the morphisms Yi → X which
induce the projections to the first factor form an open covering in C

Using this, we can now give the main definition of this section:

Definition 1.7 A scheme is a sheaf on Aff which can be covered by representable functors.
The category of schemes is denoted by Sch.

Proposition 1.5 There is an equivalence of categories between Sch and Sch.
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Proof. Given a geometric scheme S we construct a functor S : (Rop)op → S given by S(A) =
Hom(Spec(A), S). We have to show this is a sheaf, so let’s take a covering {Afi

→ A}i∈I

and elements gi of the S(Ai) such that for all i, j the restrictions gi|Afi
⊗AAfj

and gj|Afi
⊗AAfj

coincide. By well known facts the Afi
correspond to open subschemes Dfi

of SpecA and those
generate it’s topology, so this comes down to gluing scheme morphisms. This proves that S is
a sheaf. Now S can be covered by affine schemes and one check that the representable functors
associated to their respective rings cover S.
Conversely one takes a scheme S. If we assume that it is representable by A then it is clear that
S is isomorphic to the functor associated to Spec(A) this gives a functor G from affine schemes
to geometrical schemes. If it’s not representable, then we consider the category of diagrams
S ′ → S where S ′ is affine, then using the restriction of G to this category one can show that S
is ismomorphic to the scheme associated to the direct limit of G.

Corollary 1.1 For every ring R, hSpecR is a sheaf.

The definition we will adopt in the next chapter for F1-schemes is based on this result, so we
define F1 schemes as functors on certain categories (together with some natural transformation).

1.3 Monoidal categories

Toën and Vaquié’s construction [9] is based on monoidal categories. In fact, what they start
with is a closed, symmetric, complete and cocomplete monoidal category. We will call such a
category a cosmos.

Definition 1.8 A monoidal category is a category M together with a functor

⊗ : M×M→M

called tensor product, an object I called identity and natural isomorphisms

α : (A⊗B)⊗ C → A⊗ (B ⊗ C),

ρ : A⊗ I→ A

and
λ : I⊗ A→ A.

Satisfying compatibility conditions, namely the diagrams

((A⊗B)⊗ C)⊗D

α⊗D
��

α // (A⊗B)⊗ (C ⊗D) α // A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D α
// A⊗ ((B ⊗ C)⊗D)

A⊗α

OO
(1.3.1)

and
A⊗ (I⊗B) α //

A⊗λ ((QQQQQQQQQQQQ
(A⊗ I)⊗B

ρ⊗B

��
A⊗B

(1.3.2)

commute.
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Definition 1.9 A monoidal category M is called closed if, for every object A in M, the functor
A⊗ • : M→M has a right adjoint.

If such a right adjoint exists, it is called the internal Hom and we will denote it by A• : M→M.

Definition 1.10 A symmetric monoidal category is a monoidal category M together with a
natural isomorphism

σ : A⊗B → B ⊗ A

such that the diagrams

A⊗B
σ //

Id %%KKKKKKKKKK B ⊗ A

σ

��
A⊗B

(1.3.3)

A⊗ (B ⊗ C)
A⊗σ //

α
vvmmmmmmmmmmmm

A⊗ (C ⊗B)
α

((QQQQQQQQQQQQ

(A⊗B)⊗ C
σ

((QQQQQQQQQQQQ
(A⊗ C)⊗B

σ⊗Bvvmmmmmmmmmmmm

C ⊗ (A⊗B) α // (C ⊗ A)⊗B

(1.3.4)

and

A⊗ I

ρ
$$JJJJJJJJJJ

σ // I⊗ A

λ
��

A

(1.3.5)

commute.

We will now study the morphisms between monoidal categories. At first sight, one is tempted
to think of functors between monoidal categories as functors preserving the tensor product and
the identity. It turns out that this kind of functor is too restrictive and does not appear very
much in “nature”. The following definition is something at first sight a little awkward but
behaves better as we will see later.

Definition 1.11 A lax monoidal functor is a functor F : C1 → C2 between the monoidal
categories C1 and C2, together with a natural transformation

mA,B : F (A)⊗2 F (B)→ F (A⊗1 B)

and a morphism

m : I2 → F (I1).

If these are isomorphisms then F is called a strong monoidal functor. If the arrows are
reversed in the definition then it is called a colax monoidal functor.
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This is related to a standard issue in higher category theory. There a distinction is made
between strict functors and lax functors. It’s the same sort of distinction as the one between
bicategories and 2-categories. This is even more evident when one sees a monoidal category as
a bicategory with only one object (in the same way as monoids can be seen as categories with
just one object).
Clearly if F is strong then it is both lax and colax. From now on we will denote both the
natural transformation and the morphism of the definition with the same letter.
Monoidal categories are a natural environment to define monoids.

Definition 1.12 Let C be a monoidal category. A monoid in C is an object M together with
a morphism µ : M ⊗M → M called multiplication and a morphism e : I→ M called identitiy
such that the following diagrams commute

M ⊗M ⊗M
M⊗µ //

µ⊗M

��

M ⊗M

µ

��
M ⊗M µ

//M

(1.3.6)
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Chapter 2

F1-schemes

2.1 Geometry of monoids

Consider the category M0 of monoids with zero, whose objects are commutative monoids con-
taining an absorbent element (0·a = 0 for all a). Morphisms in M0 are monoid homomorphisms
which preserve the absorbent element.
For the sake of shortness, throughout this work, the word monoid will refer exclusively to an
object of the category M0.
We can give now a (possible) definition of the field with one element.

Example 2.1 The field with one element is the monoid F1 = {0, 1} with usual multiplication
from the ring Z/2Z.

Let M be an object of M0, an ideal I of M is a subset of it such that 0 ∈ I and IM = I.
A prime ideal is an ideal such that its complement is a non empty multiplicatively closed set.
If S is a multiplicatively closed set we can form the localization S−1M whose elements are a

s

with a ∈ M and s ∈ S, modulo the equivalence relation a
s

= b
t

iff there is a u ∈ S such that
uta = usb. When S is the complement of a prime ideal p we will denote it by Mp.
A field is a ring without nontrivial ideals, in analogy one could define the analogous to a field
to be a monoid without nontrivial ideals. It is easy to see that this gives monoids of the form
A ∪ {0} where A is an abelian group.

Example 2.2 The monoid F1n = Z/nZ ∪ {0} is called the algebraic extension of degree n of
F1.

Example 2.3 Let M be a monoid, then we can form another monoid M [X1, ..., Xn] which
consists of all monomials of the form

aXe1
1 Xe2

2 ...Xen
n

with a ∈M and nonnegative exponents with the obvious multiplication.

Every monoid M has a unique maximal ideal (or otherwise said, every monoid is local). This
is easy to see as it consists of all non invertible elements of M . We denote this by mM .
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Definition 2.1 A morphism F : M1 →M2 is said to be a local morphism if F (mM1) ⊂ mM2.

Given a monoid M we define Spec(M) to be the set of its prime ideals. For each ideal I we
consider the set V (I) of prime ideals which contain it, and we define a topology on Spec(M)
which has those as its closed sets. Finally we take the sheaf of monoids which assigns to every
open set U the monoid O(U) which is formed by the functions f : U →

∏
p∈U Mp such that

F (p) ∈ Mp and for each p ∈ U there exists an open neighborhood V of p, an h not belonging
to any q ∈ V and a g such that f(q) = g/h for every q ∈ V .

Definition 2.2 A monoidal space is a topological space L together with a sheaf of monoids OL

on it. A morphism between the monoidal spaces L and K consists of a continuous function
f : L→ K and a sheaf morphism OK → f∗(OL) which induces a local morphism (in the sense
of the previous definition) on the stalks.

It is immediate that, for every monoid M , Spec(M) is a monoidal space.

Definition 2.3 An affine M0-scheme is a monoidal space isomorphic to SpecM for some M .

Now we can define M0-schemes

Definition 2.4 An M0-scheme is a monoidal space which can be covered by affine M0-schemes.
A morphism of M0-schemes is a morphism of monoidal spaces.

Analogously to the last section in the previous chapter an M0-Scheme X gives a functor M0 →
S given by

X(M) = Hom(SpecM, X)

and is called the functor of points.
Clearly, F1 is an initial object of M0, so, in analogy with the case of the category R, one can
think of the objects of M0 as “F1-algebras”. Even after saying this, later we will give a slightly
different definition of F1-algebra.
Following this line of thought, one is pushed to think of M0-schemes as “F1-schemes”. The
trouble with this definition is that the relation with usual schemes is not directly obvious, and
there is no reasonable or natural way to say, for example, when a Z-scheme is defined over F1.
This is very similar to Deitmar’s seminal definition but he uses the category M of monoids
instead of monoids with zero. In his work he overcomes this issue by using the analogous of
the functor

β : M0 → R

which is a left adjoint to the obvious forgetful functor β∗ : R→M0. It is defined by

β(M) = Z[M ]

where Z[M ] is the quotient of the ring of polynomials in variables from M by the ideal generated
by all polynomials of the form ab − c where ab = c in M , 1M − 1 and the polynomial 0M (of
degree one, not to be confused with the zero polynomial).
One way of keeping track of the link between F1-schemes and regular ones was proposed by
Soulé, and subsequently refined by Connes and Consani. In this work we will adopt their
definition as the definition of F1-schemes.
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Definition 2.5 An F1-scheme is a triple X = (X, X, eX) where X is the functor of points
of an M0-scheme, X is the functor of points of a scheme and eX is a natural transformation
between X ◦ β∗ and X such that for every field K, eX(K) is bijective.

2.2 Gluing categories

Consider a pair of categories C1 and C2 and a pair of adjoint functors F1, F2 between them. In
such a way that we have a functorial bijection ad : Hom(F1(X1), X2) → Hom(X1, F2(X2)) for
all X1, X2 in C1 and C2 respectively.
The functoriality of this bijection means, more explicitly, that for any X1, Y1 in C1 and X2, Y2

in C2, we have the following equalities:

ad(f ◦ g ◦ F1(h)) = F2(f) ◦ ad(g) ◦ h (2.2.1)

ad−1(F2(f) ◦ g ◦ h) = f ◦ ad−1(g) ◦ F1(h) (2.2.2)

Definition 2.6 The gluing of C1 and C2, denoted by C1C2 is the category whose objects are
the disjoint union of the objects of C1 and C2, and whose morphisms consist of:

• Hom(X, Y )C1C2 = Hom(X, Y )Ci
if X and Y both lie in Ci (i = 1 or 2),

• Hom(X, Y )C1C2 = Hom(F1(X), Y )C2 if X ∈ C1 and Y ∈ C2,

• Hom(X, Y )C1C2 = ∅ if X ∈ C2 and Y ∈ C1.

Furthermore, suppose g : X → Y and f : Y → Z, composition is defined as follows:

• f ◦ g = f ◦i g if all of X, Y and Z lie in Ci (i = 1 or 2).

• f ◦ g = f ◦2 g if X belongs to C1 and Y and Z to C2.

• f ◦ g = f ◦2 F1(g) if X and Y belong to C1 and Z to C2

Proposition 2.1 Given categories C1 and C2 with adjoint functors F1 and F2 as before, and
given an arbitrary category C, there is an isomorphism of categories between the category of
functors Hom(C1C2, C) and the category of triples (A1, A2, α) where A1 and A2 are functors
from C1 and C2 to C respectively and α is a natural transformation between A1 ◦ F2 and A2.

Proof. First let’s take a functor A : C1C2 → C, then restricting it to C1 and C2 we obtain
functors A1 and A2 as the ones we want. Now, let’s take an object X of C2. We define
αX : A1F2(X)→ A2(X) as Aad−1(IdF2(X)) in this definition we are viewing ad−1(IdF2(X)) both
as an element of Hom(F1F2(X), X)C2 and as an element of Hom(F2(X), X)C1C2 .
Let’s now show that α is a natural transformation. Take a morphism f : X → Y in C2, then

A2(f) ◦ αX = A(f) ◦ (Aad−1(IdF2(X))) = A(f ◦ ad−1(IdF2(X))) (2.2.3)

this, by 2.2.2 with X2 = X, Y2 = Y and X1 = F2(X), equals



20 F1-schemes

Aad−1(F2(f) ◦ IdF2(X)) = Aad−1F2(f)

= Aad−1(IdF2(Y ) ◦ F2(f))

= A(ad−1(IdF2(f)) ◦ F1F2(f))

again by 2.2.2. By definition of composition in C1C2 this equals the following:

A(ad−1(IdF2(Y )) ◦ F2(f)) = Aad−1(IdF2(Y )) ◦ AF2(f)

= αY ◦ A1F2(f).

Conversely, given a triple (A1, A2, α), we define a functor A : C1C2 → C as follows: for every
object X we define

A(X) =

{
A1(X) X ∈ C1

A2(X) X ∈ C2
(2.2.4)

and for every morphism f : X → Y

A(f) =


A1(f) X, Y ∈ C1

A2(f) X, Y ∈ C2

αY ◦ A1ad(f) X ∈ C1 Y ∈ C2

(2.2.5)

in the third condition we are using the fact that f is both a morphism in C1C2 and in C2.
Let’s show A is a functor. It is clear that A takes identity morphisms to identity morphisms.

Now, take X
g→ Y

f→ Z in C1C2. If all of X, Y and Z lie in one of C1 or C2 there’s nothing to
prove. In the case that X, Y are in C1 and Z in C2 we have

A(f ◦ g) = αZ ◦ A1ad(f ◦ g)

by 2.2.5. Now, by definition of composition in C1C2 this equals

αZ ◦ A1ad(f ◦ F1(g)) = αZ ◦ A1(ad(f) ◦ g)

= αZ ◦ A1ad(f) ◦ A1(g)

= A(f) ◦ A(g)

where we used once more the adjointness. In the case that X is in C1 and Y and Z are in C2

we have
A(f ◦ g) = αZ ◦ A1ad(f ◦ g)

viewing g as a morphism from F1(X) to Y in C2 and using 2.2.1 this equals

αZ ◦ A1(F2(f) ◦ ad(g)) = αZ ◦ A1F2(f) ◦ A1ad(g)

using that α is a natural transformation this equals

A2(f) ◦ αY ◦ A1ad(g) = A(f) ◦ A(g).

Now suppose that C1 and C2 are both monoidal categories with tensor products ⊗1 and ⊗2

respectively and unit objects I1 and I2 respectively. We want to give conditions over F1 and F2

so that C1C2 becomes a monoidal category in a natural way.
Recall that a bicategory B consists of the following data:
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• A set ObjB whose elements are called objects.

• For each pair (A, B) of objects a (small) set Hom(A, B) whose elements are called 1-cells.
If f ∈ Hom(A, B) we say A is the source and B is the target of f .

• For each pair of 1-cells (f, g) having the same source and target a (smaller) set whose
elements are called 2-cells.

If two 1-cells f and g satisfy that the target of f is the same as the source of g then one can form
the horizontal composition g ◦ f . Also with 2-cells one can form the vertical composition.These
operations are associative and have identities, well, in te case of 2-cells this is exact but in the
case of 1-cells this properties are satisfied “up to isomorphism”.
It turns out that the “good” notion of morphism between monoidal categories is that of a
lax monoidal functor. We will denote the bicategory of monoidal categories with 1-cells lax
monoidal functors and 2-cells monoidal natural transformations byMON .

Proposition 2.2 Let C1, C2, F2, F1 be two monoidal categories, F1 left adjoint to F2 as above
and suppose that F2 is lax monoidal with natural transformation nA,B and morphism n , then
F1 is colax monoidal.

Proof. Just consider the natural transformation given by

mA,B = ad−1(nF1(A),F1(B) ◦ ad(IdF1(A))⊗1 ad(IdF1(B))) (2.2.6)

from F1(A⊗1 B) to F1(A)⊗2 F1(B) and the morphism

m = ad−1(n) (2.2.7)

from F1(I1) to I2.
Moreover, suppose that F1 is also lax monoidal, that is, all the adjunction lies inside MON .
Then we have the following

Proposition 2.3 Suppose C1, C2, F1, F2 are as above with F1 lax monoidal, then C1C2 becomes
a monoidal category.

Proof. We have to define a bifunctor

⊗ : C1C2 × C1C2 → C1C2

so take A
f→ B and C

g→ D then

f ⊗ g =



f ⊗i g A, B, C,D ∈ Ci i = 1, 2
F1(f)⊗2 g A, B ∈ C1 C, D ∈ C2

f ⊗2 F1(g) C, D ∈ C1 A, B ∈ C2

F1(f)⊗2 g ◦2 mA,C A, B, C ∈ C1 D ∈ C2

f ⊗2 F1(g) ◦2 mA,C A, C,D ∈ C1 B ∈ C2

f ⊗2 g A ∈ C1 B, C, D ∈ C2

f ⊗2 g C ∈ C1 A, B, D ∈ C2

f ⊗2 g ◦2 mA,C A, C ∈ C1 B, D ∈ C2

. (2.2.8)
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Lets show this is indeed a functor so take A0
g1→ A1

f1→ A2 and B0
g2→ B1

f2→ B2. If all of A0, A1,
A2, B0, B1, B2 lie in one of C1 or C2 it follows immediately from the functoriality of ⊗1 or ⊗2

respectively. Suppose all lie in C1 except A2 then we have

f1 ⊗ f2 ◦ g1 ⊗ g2 = (f1 ⊗2 F1(f2) ◦2 mA1,B1) ◦ (g1 ⊗1 g2)

= f1 ⊗2 F1(f2) ◦2 mA1,B1 ◦2 F1(g1 ⊗1 g2)

= f1 ⊗2 F1(f2) ◦2 F1(g1)⊗2 F1(g2) ◦2 mA0,B0

= (f1 ◦2 F1(g1))⊗2 (F1(f2) ◦2 F1(g2)) ◦2 mA0,B0

= (f1 ◦ g1)⊗2 F1(f2 ◦1 g2) ◦2 mA0,B0

= (f1 ◦ g1)⊗ (f2 ◦ g2)

If A1 and A2 are in C2 and the rest in C1 then

f1 ⊗ f2 ◦ g1 ⊗ g2 = f1 ⊗2 F1(f2) ◦ (g1 ⊗2 F1(g2) ◦2 mA0,B0)

= f1 ⊗2 F1(f2) ◦2 g1 ⊗2 F1(g2) ◦2 mA0,B0

= (f1 ◦2 g1)⊗2 (F1(f2) ◦2 F1(g2)) ◦2 mA0,B0

= (f1 ◦2 g1)⊗2 F1(f2 ◦1 g2) ◦2 mA0,B0

= (f1 ◦ g1)⊗ (f2 ◦ g2)

If A0, A1, A2 in C2 and the others in C1 then

f1 ⊗ f2 ◦ g1 ⊗ g2 = f1 ⊗2 F1(f2) ◦2 g1 ⊗2 F1(g2)

= (f1 ◦2 g1)⊗2 (F1(f2) ◦ F1(g2))

= (f1 ◦2 g1)⊗2 F1(f2 ◦1 g2)

= (f1 ◦ g1)⊗ (f2 ◦ g2)

If B0 and B1 are in C1 and the rest are in C2 then

f1 ⊗ f2 ◦ g1 ⊗ g2 = f1 ⊗2 f2 ◦2 g1 ⊗2 F1(g2)

= (f1 ◦2 g1)⊗2 (f2 ◦2 F1(g2))

= (f1 ◦ g1)⊗2 (f2 ◦ g2)

= (f1 ◦ g1)⊗ (f2 ◦ g2)

If B0 is in C1 the rest in C2 then it is trivial. If A2 and B2 are in C2 and the rest in C1 then

f1 ⊗ f2 ◦ g1 ⊗ g2 = (f1 ⊗2 f2 ◦2 mA1,B1) ◦ g1 ⊗1 g2

= f1 ⊗2 f2 ◦2 mA1,B1 ◦2 F1(g1 ⊗1 g2)

= f1 ⊗2 f2 ◦2 F1(g1)⊗2 F1(g2) ◦2 mA0,B0

= (f1 ◦2 F1(g1))⊗2 (f2 ◦2 F1(g2)) ◦2 mA0,B0

= (f1 ◦2 F1(g1))⊗ (f2 ◦2 F1(g2))

= (f1 ◦ g1)⊗ (f1 ◦ g2)
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If A1, A2, and B2 are in C2 and the rest in C1 then

f1 ⊗ f2 ◦ g1 ⊗ g2 = f1 ⊗2 f2 ◦ (g1 ⊗2 F1(g2) ◦2 mA0,B0)

= f1 ⊗2 f2 ◦2 g1 ⊗2 F1(g2) ◦2 mA0,B0

= (f1 ◦2 g1)⊗2 (f2 ◦2 F1(g2)) ◦2 mA0,B0

= (f1 ◦ g1)⊗2 (f2 ◦ g2) ◦2 mA0,B0

= (f1 ◦ g1)⊗ (f2 ◦ g2)

If A0 and B0 are in C1 and the rest in C2 then

f1 ⊗ f2 ◦ g1 ⊗ g2 = f1 ⊗2 f2 ◦ (g1 ⊗2 g2 ◦2 mA0,B0)

= f1 ⊗2 f2 ◦2 g1 ⊗2 g2 ◦2 mA0,B0

= (f1 ◦2 g1)⊗2 (f2 ◦2 g2) ◦2 mA0,B0

= (f1 ◦ g1)⊗ (f2 ◦ g2)

The identity object is
I = I1

and we define the natural isomorphisms κ : A⊗ I→ A by

κA =

{
κ1

A A ∈ C1

κ2
A ◦ IdA ⊗m A ∈ C2

, (2.2.9)

λ : I⊗ A→ A defined by

λA =

{
λ1

A A ∈ C1

λ2
A ◦m⊗ IdA A ∈ C2

(2.2.10)

and α : (A⊗B)⊗ C → A⊗ (B ⊗ C) by

αA,B,C =



αi
A,B,C A, B, C ∈ Ci i = 1, 2

α2
F1(A),F1(B),C ◦mA,B ⊗ IdC A, B ∈ C1 C ∈ C2

α2
F1(A),B,F1(C) A, C ∈ C1 B ∈ C2

IdA ⊗m−1
B,C ◦ α2

A,F1(B),F1(C) B, C ∈ C1 A ∈ C2

α2
A,B,F1(C) C ∈ C1 A, B ∈ C2

α2
A,F1(B),C B ∈ C1 A, C ∈ C2

α2
F1(A),B,C A ∈ C1 B, C ∈ C2

. (2.2.11)

We have to check that these are indeed natural isomorphisms, the isomorphism part follows di-
rectly from the definitions. We won’t do all of them because it’s a tedious exercise. Nevertheless
let’s do it for α.
Take A1

f→ A2, B1
g→ B2 and C1

h→ C2. Suppose A1, A2, B1 ∈ C1 and B1, C1, C2 ∈ C2 then

αA2,B2,C2 ◦ (f ⊗ g)⊗ h = α2
F1(A2),B2,C2

◦ (F1(f)⊗2 g ◦2 mA1,B1)⊗ h

= α2
F1(A2),B2,C2

◦2 (F1(f)⊗2 g ◦2 mA1,B1)⊗2 h

= α2
F1(A2),B2,C2

◦2 (F1(f)⊗2 g ◦2 mA1,B1)⊗2 (h ◦2 IdC1)

= α2
F1(A2),B2,C2

◦2 (F1(f)⊗2 g)⊗2 h ◦2 mA1,B1 ⊗2 IdC1

= F1(f)⊗2 (g ⊗2 h) ◦2 α2
F1(A1),F1(B1),C1

◦2 mA1,B1 ⊗2 IdC1

= f ⊗ (g ⊗ h) ◦ αA1,B1,C1
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The rest of the cases are similar. The last thing we have to check are the coherence conditions
but these, once more, are an easy (although lengthy) exercise.

2.3 The site M0R

We will use some pieces of bicategory theory. If B is a bicategory we will denote horizontal
composition by ◦ and vertical composition by ∗

Definition 2.7 Let B be a bicategory. An adjoint pair (f1 : X1 → X2, f2 : X2 → X1) in B is
a pair of 1-cells such that there exist 2-cells η1 : X1 → f2 ◦ f1 and η2 : f1 ◦ f2 → X2 such that

(η2 ◦ f1) ∗ (f1 ◦ η1) = f1

and
(f2 ◦ η2) ∗ (η1 ◦ f2) = f2

Let (f1, f2) be an adjoint pair as in the definition. In the case of categories this gives a usual
pair of adjoint functors. We want to generalize the construction of the gluing of C1 and C2 to
this more general context.

Definition 2.8 Let (f1 : X1 → X2, f2 : X2 → X1) be an adjoint pair in a bicategory B. Then
we say that an object X is a gluing of X1 and X2 along (f1, f2) if there are essentially unique
1-cells i1 : X1 → X and i2 : X2 → X with 2-cells α1 : i1 → i2 ◦ f1 and α2 : i1 ◦ f2 → i2 such
that

(i2 ◦ η2) ∗ (α1 ◦ f2) = α2

and such that for any other object Y with 1-cells j1, j2 and 2-cells β1, β2 satisfying the same
properties, there exists an essentially unique 1-cell f (called the gluing of j1 and j2 along (β1, β2))
such that

f ◦ i1 ' j1

and
f ◦ i2 ' j2.

In the case of categories or monoidal categories we easily can prove the following

Proposition 2.4 In the bicategories CAT and MON the gluing of categories is a gluing.

Consider the bicategoryMON , the objects are monoidal categories, the 1-cells are lax monoidal
functors and the 2-cells are monoidal natural transformations. A monoidal natural transfor-
mation is a natural transformation which correctly interacts with the lax monoidal structure
of the functors.
We can see that an adjoint pair in this bicategory corresponds to the ones we used in the
previous proposition. Also it is possible to see the construction of the gluing of C1 and C2 as a
lax colimit both in the bicategoryMON and CAT .
In the following we will put Connes and Consani’s F1-schemes in the framework of Toën and
Vaquié. The basic idea is that a triple (X, X, eX) can be seen as a functor in the category of
monoids of a certain cosmos.
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Proposition 2.5 There is a bifunctor fromMON to CAT which takes a symmetric monoidal
category and gives the category of monoid objects inside it.

Proof. The functor will be denoted by Ξ.
First we have to say how Ξ treats the 1-cells and 2-cells. So take a lax monoidal functor
F : M1 →M2 with natural transformation µA,B : F (A)⊗F (B)→ F (A⊗B) and µ : I2 → F (I1),
we have to check it induces a functor between Ξ(M1) and Ξ(M2).
Let M be a monoid in M1 with product p : M ⊗ M → M and identity e : I1 → M , we
have natural product and identity defined in F (M) by p′ = F (p) ◦ µM,M and e′ = F (e) ◦ µ.
Associativity follows from the commutativity of the following diagram

(F (M)⊗ F (M))⊗ F (M)

��

// F (M ⊗M)⊗ F (M)

��

// F (M)⊗ F (M)

��
F ((M ⊗M)⊗M)

��

// F (M ⊗M)

��
F (M)

F (M ⊗ (M ⊗M)) // F (M ⊗M)

OO

F (M)⊗ (F (M)⊗ F (M)) // F (M)⊗ F (M ⊗M)

OO

// F (M)⊗ F (M)

OO

(2.3.1)

Identity follows from the commutativity of the following diagram

F (M)⊗ F (I1)

��

// F (M)⊗ F (M)

��

F (I1)⊗ F (M)oo

��
F (M)⊗ I2

66mmmmmmmmmmmm

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX F (M ⊗ I1) //

))RRRRRRRRRRRRRR
F (M ⊗M)

��

F (I1 ⊗M)oo

uullllllllllllll
I2 ⊗ F (M)

hhQQQQQQQQQQQQ

rrfffffffffffffffffffffffffffffff

F (M)

(2.3.2)
And symmetry comes from

F (M)⊗ F (M)

��

σ2 // F (M)⊗ F (M)

��
F (M ⊗M)

''OOOOOOOOOOO

F (σ1) // F (M ⊗M)

wwooooooooooo

F (M)

(2.3.3)

Also, take a monoidal natural transformation η : F1 → F2 : M1 → M2 it induces a natural
transformation from Ξ(F1) to Ξ(F2), the only thing we have to check is that for a monoid M
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in Ξ(M1) ηM is a morphism of monoids, this comes from the commutativity of the following
two diagrams

F1(M)⊗ F1(M) //

��

F2(M)⊗ F2(M)

��
F1(M ⊗M) //

��

F2(M ⊗M)

��
F1(M) // F2(M)

(2.3.4)

I2

||xx
xx

xx
xx

x

""F
FF

FF
FF

FF

F1(I1)

��

// F2(I1)

��
F1(M) // F2(M)

(2.3.5)

Finally it is clear that Ξ preserves vertical composition and horizontal composition strictly. So
we have proved Ξ is a strict bifunctor.
Now we will apply the previous construction to a particular case. So consider the category S0

of pointed sets. The morphisms are just functions which preserve the distinguished point.
Take S0 and S1 in S0, with distinguished points 00 and 01 respectively. We define

S0 ⊗ S1 = S0 × S1/ ∼ (2.3.6)

where ∼ is an equivalence relation where (01, a) ∼ (b, 02) for all a and b and the rest of the
points are just equivalent to themselves.

Proposition 2.6 The category S0 with that tensor product and identity the single point forms
a cosmos.

The proof is trivial.
Consider also the category Ab of abelian groups, it is known that it is also a monoidal category
with the usual tensor product.
Also, we have a pair of adjoint functors between them: For : Ab → S0 the forgetful functor
that sends each abelian group to its underlying pointed set (the identity is the point). This
has a left adjoint Z[ ] which sends every pointed set S to the group Z[S] the free abelian group
generated by the non-distinguished points of S.

Proposition 2.7 The pair (Z[ ], For) is an adjoint pair in MON .

So we can apply all the above constructions to this pair and form the monoidal category S0Ab.
This is again a cosmos.
Even more, the category of monoids of this category is equivalent to the gluing of the categories
M0 and R along the pair (Z[ ], For), since Ξ preserves adjunctions. And this category has F1

as initial object.
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Now we can apply Toën and Vaquié’s construction and obtain S0Ab-schemes.
From Proposition 2.1 we immediately notice that an F1-scheme gives an S0Ab-scheme, but not
conversely since there’s also the issue of the bijective natural transformation on fields.
So we can give an alternative, equivalent, definition of F1-schemes, but also one can generalize
to F1-algebras.

Definition 2.9 Let R be an object of M0R. An A-algebra is an element A of M0R together
with a morphism R→ A.

Definition 2.10 Let R be an object of M0R. An R-scheme is a sheaf in the category of
R-algebras such that , in every field, the natural transformation associated is bijective.

We saw that not all S0Ab schemes are F1-schemes. In particular not every affine S0Ab-scheme
is an F1-scheme, but we do have the following.

Proposition 2.8 For every M in M0 SpecM defines an F1-scheme.

Proof. Clearly, by Proposition 2.1 SpecM defines a triple (X, XZ, e) as we want. We just have
to prove that for every field F , e induces a bijection between X ◦ For(F ) and XZ(F ) and in
this case this is Hom(M, For(F )) → Hom(M, F ) by definition of morphisms in M0R this is
true.

Corollary 2.1 SpecF1 and SpecF1n are F1-schemes.

Let n be a positive integer and let An be the functor An : M0R → S given by An(X) = Xn.
It is called the affine space of dimension n.

Proposition 2.9 The functor An is an F1-scheme.

Proof. Just consider the, monoid F1[X1, X2, ..., Xn], it doesn’t take time to convince oneself
that An is representable by it. So by Proposition 2.8 we are done.
Finally we define the extension of scalars.

Definition 2.11 Let M0 be an element of M0R and M1 be an M0-algebra. Let S be an M0-
scheme, then we define the extension of scalars of S to M1 as the restriction of the functor S
to the subcategory of M1-algebras. We donote it by

S ×M0 SpecM1

.
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Chapter 3

Algebraic groups

3.1 Group objects

Consider an arbitrary category C and form the category Hom(Cop, G). For any functor F in
this category we can compose it with the forgetful functor from G to S and obtain an element
of Hom(Cop, S). If this functor is representable by an object X then we call it a group object
in the category C.
If C has finite products this is equivalent to having morphisms µ, e and i such that:

µ : X ×X → X

i : X → X

e : ∗C → X

X × ∗C
IdX×e//

&&LLLLLLLLLLL X ×X

µ

��
X

(3.1.1)

X ×X ×X
µ×IdX //

IdX×µ
��

X ×X

µ

��
X ×X µ

// X

(3.1.2)

X
IdX×i//

��

X ×X

µ

��
C e

// X

(3.1.3)

In the case that C is the category of schemes we get group schemes, in the case that it is the
category of F1-schemes we get F1 group schemes.
Examples:
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Example 3.1 Consider the functor Gm which sends an object X of M0R to its multiplicative
group X×. This is a group object in M0R.

This is a functor because for any morphism f : X → Y in M0R an invertible element of X
has to go to an invertible element in Y so this is a group homomorphism. This is representable
by F1[X, X−1] so by proposition 2.8 this is an F1-scheme. More generally, by restricting this
functor to the smaller categorie of M -algebras one can define accordingly the multiplicative
group over M .

Definition 3.1 An F1n-group scheme is a group object in the category of F1n-schemes.

3.2 GLn

Take and arbitrary symmetric monoidal closed complete and cocomplete category C (i.e. a
cosmos). For a monoid M in C we define ModM as the category of modules over M , where a
module is an object A of C with a multiplication M ⊗A

m→ A such that the following diagrams
commute

(M ⊗M)⊗ A

��

p⊗A //M ⊗ A

m

��
A

M ⊗ (M ⊗ A)
M⊗m //M ⊗ A

m

OO

(3.2.1)

I⊗ A

%%KKKKKKKKKKK
e⊗A //M ⊗ A

m

��
A

(3.2.2)

A morphism in ModM is a morphism in C that preserves multiplication.

Example 3.2 Every monoid M is naturally an M-module with multiplication given by the
multiplication of the monoid.

Lemma 3.1 Given an M-module A and a morphism u : I → A there is a unique morphism
of M-modules u′ : M → A extending u, or more explicitly, u′ fits in the following commutative
diagram

I
e

��

u

  A
AA

AA
AA

A

M
u′
// A
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Proof. For existence we define u′ = m◦M⊗u◦ρ−1. The fact that it is a morphism of monoids
follows from the commutativity of

M ⊗M

p

��

''OOOOOOOOOOOO
//M ⊗ (M ⊗ I) //M ⊗ (M ⊗ A) //M ⊗ A

��

(M ⊗M)⊗ I

OO

��

// (M ⊗M)⊗ A

OO

��
M //M ⊗ I //M ⊗ A // A

(3.2.3)

and it extends u because the diagram

I

��

##G
GG

GG
GG

GG
G

��

I⊗ I

��

// I⊗ A

�� ##G
GGGGGGGG

M //M ⊗ I //M ⊗ A // A

(3.2.4)

commutes. The unicity follows also from the previous diagram.

Let M and N be monoids of C and l a monoid morphism from M to N then every N -module
A is naturally an M -module with multiplication m ◦ l ⊗ A.

Lemma 3.2 In the above situation, given an M-module morphism F : M → A, it can be
extended uniquely to an N-module homomorphism F ′ : N → A.

Proof. Existence and unicity follows from the previous lemma by composing F with e : I→M
because we get morphisms l ◦ e and F ◦ e satisfying the hypothesis of that lemma, we just have
to check that it does extend F which follows from the commutative diagram

M

l
��

//

##G
GG

GG
GG

GG
M // A

N

##G
GG

GG
GG

GG
M ⊗ I

��

//M ⊗M

��

OO

//M ⊗ A

��
N ⊗ I // N ⊗M // N ⊗ A

DD																

(3.2.5)

The aim of the section is to provide a definition of GLn(M) for every monoid M in every cosmos
by defining a functor from the category of M -algebras to G.

Proposition 3.1 The coproduct in ModM commutes with the forgetful functor from ModM to
C.
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Proof. Let {Ai}i∈I be a family of M -modules. It is enough to check that
∐

i∈I Ai is an
M -module. As the tensor product is a left adjoint it preserves coproducts so M ⊗

∐
Ai is

a coproduct of the M ⊗ Ai, so the multiplication morphisms mi : M ⊗ Ai → Ai induce a
multiplication m : M ⊗

∐
Ai →

∐
Ai.

The axioms are satisfied immediately because they are satisfied by the Ai and using the universal
property of coproducts.
Now we can formulate our definition

Definition 3.2 Let C be a cosmos, then the General Linear Group GLn is the functor GLn :
C→ G given by

Gln(A) = Aut(
n∐
1

A) (3.2.6)

where Aut denotes the group of automorphisms (as A-modules).

The main theorem of this section is

Theorem 3.1 GLn is a C-group functor.

Proof. We have to show that the definition given is functorial, so take a morphism f : M → N
in Ξ(C). Take also an automorphism α of

∐n
1 M . Denote by i1, ..., in the immersions from M

to
∐n

1 M and by j1, ..., jn the immersions from N to
∐n

1 N .
By composing f with the j’s we get j1 ◦ f, ..., jn ◦ f , which are M -morphisms from M to

∐n
1 N ,

so by the universal property of coproducts we get an M -morphism F :
∐n

1 M →
∐n

1 N .
Now consider the M -morphisms F ◦ α ◦ i1, ..., F ◦ α ◦ in, by Lemma 3.2 they can be extended
to N -morphisms b1, ..., bn from N to

∐n
1 N and by universality of coproducts this gives an

endomorphism f̂(α) of
∐n

1 N . Moreover, by construction, it satisfies f̂(α) ◦ F = F ◦ α. Using
the same construction for the inverse of α we see that α̂ is an automorphism.
Even more, by the way we constructed it, one can see that f̂ commutes with composition and
preserves identities, so it is a group homomorphism. So if we set GLn(f) = f̂ we are done.

3.3 Chevalley groups as F12-schemes

The construction of Chevalley gives a group scheme G over Z. This G can be seen as a functor
from rings to groups, the objective of this section is to extend G to a functor from F12-A to sets
and show that it gives an F12-scheme following Connes and Consani.

Definition 3.3 A root system Ω = (L, Φ, Φ∨) is a triple consisting of:

• A lattice L, that is, a free module over Z of finite dimension.

• A finite subset Φ of L whose elements are called roots.

• A set Φ∨ of group homomorphisms φ∨ : L → Z, one assigned to each root φ and called
its co-root.
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Satisfying:

• Φ generates L⊗Q as a vector space.

• φ∨(φ) = 2 for every φ in Φ.

• If φ and kφ are in Φ with k in Q then k = ±1.

• For each φ1, φ2 ∈ Φ, φ2 − φ∨1 (φ2)φ1 belongs to Φ

Root systems come form the theory of Lie groups, to every compact Lie group (more precisely
to every Lie algebra) one can associate a root system. What Chevalley did was to build the
analogous algebraic groups over finite fields. Chevalley associates to every root system a group
scheme G over Z which, for diferent root systems and finite fields G(Fq) gives one of the so-called
finite groups of Lie type.
What Tits suggested was that one can also define such groups for the field with one element,
and that that would give the Weyl group of the root system.
To each root φ one associates a reflection ρφ : L→ L defined by ρφ(x) = x− φ∨(x)φ.
The group generated by all the ρφ, φ ∈ Φ, is called the Weyl group of the root system and
is denoted by W . An element ρ of W is called a reflection if it is conjugate to one of the
generating reflections for some φ ∈ Φ. The set of reflections in W will be denoted by R.

Proposition 3.2 In a root system Ω the lattice L can be bijected with Z in such a way that
it divides Φ in two, positive and negative. The set of positive roots is denoted by Φ+ and it
satisfies the following:

• If φ1 and φ2 are in Φ+ and φ1 + φ2 is in Φ then φ1 + φ2 is in Φ+

• Exactly one of φ and −φ belongs to Φ+ for every φ in Φ

Now we define Φ0 to be the set {φi|i ∈ I} of indecomposable roots, that is, the set of roots in
Φ+ which can’t be written as a sum of other positive roots with positive coefficients. Also we
define mij, for i, j ∈ I, as the minimum integer such that (ρφi

◦ ρφj
)mij = 1.

Proposition 3.3 With that definition mij ≥ 1, it is equal to 1 if i = j and it is greater than
1 if i is different from j

Now we define the extended Coxeter group V (Ω) which is defined by the following generators
and relations: the generators are qi with i ∈ I and gρ with ρ ∈ R, and the relations are

qiqjqi... = qjqiqj... (3.3.1)

where there are mij factors on each side,

q2
i = gρφi

, (3.3.2)

qigρq
−1
i = gρφi

(ρ) (3.3.3)
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and

gρgρ′ = gρ′gρ. (3.3.4)

We also define U(Ω) ⊂ V (Ω) the subgroup generated by all the gρ with ρ ∈ R.
Let A be an F12-algebra (that is a monoid or ring A together with an element ε such that
ε2 = 1). Then we define TΩ(A) = Hom(L, A∗). Also for each ρ ∈ R we define hρ an element of
TΩ(A) defined by hρ(x) = εφ∨(x) for ρ = ρφ and extended to all of R.

Definition 3.4 The normalizer functor is the functor NΩ given by NΩ(A) = TΩ(A)oV (Ω)/H
where H is the graph of the homomorphism U(Ω) → TΩ(A) defined in the generators of U(Ω)
by gρ 7→ h−1

ρ

We also have a projection p : NΩ(A)→ W (Ω) which is induced by Id× f where f is the group
homomorphism V (Ω)→ W (Ω) given by f(qi) = ρφi

and f(gρ) = 1.

Definition 3.5 For w in W we define Φw = {φ ∈ Φ+|w(φ) < 0, w ∈ W}

Let G be the Chevalley group scheme associated with the root system Ω. We recall the following
standard construction. We have a maximal torus T of G and its normalizer N . To every root
r corresponds a subgroup Xr of G and an isomorphism xr : A→ Xr.
Recall that the maximal unipotent group of G, U is the subgroup generated by Xr with r ∈ Φ+

and t ∈ A. Define Uw as the subgroup generated by Xr with r ∈ Φw.
The following is a theorem of Chevalley. Recall that the Weyl group of G is defined as W =
N (K)/T (K) for any field K (it doesn’t depend on the choice of K).

Theorem 3.2 Let K be a field, and let a ∈ G(K) then there exists a unique w ∈ W and a
unique triple (x, n, x′) such that x ∈ U(K), n ∈ N (K), x′ ∈ Uw(K) with p(n) = w satisfying
a = xnx′.

Now we can define the functor G.

Definition 3.6 Let Ω be a root system, then we define the Chevalley functor G : F12-A → S

as

G
Ω

= AΦ+ ×
∐

w∈W

(p−1(w)× AΦw) (3.3.5)

where by abuse of notation we use A to denote the extension of scalars

A×F1 SpecF12

We finally get to the main theorem of this section, which is a rephrasing of Theorem 5.1 of [6].

Theorem 3.3 G
Ω

is an F12-scheme and it satisfies

G
Ω
×F12

SpecZ ' G. (3.3.6)
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Proof.
The fact that the restrictions to M0 and R are respectively an M0-scheme and a scheme follows
immediately from the definition by Proposition 2.9.
Given a field K we have to show that the natural transformation eG induced by G

Ω
is bijec-

tive on K-points, but this also follows readily by the bijectivity of the corresponding natural
transformation of A.
Now, for the last part, let G ′ = G ×F12

Z. We know by Theorem 3.2 that for every field K
every element of G can be written uniquely as a product xnx′ where x ∈ U(K), x′ ∈ Uw(K)
and n ∈ N (K) with p(n) = w for some w in the Weyl group. So we can define a morphism
φ : G ′ → G and clearly it is bijective on K-points. Now G and G ×F1 Z are schemes over Z so
we can consider each of the fibers over Fp and over Q.It is clear that both G and G ′ are smooth.
So the fibers are also smooth. As φ is an isomorphism on the geometric points for every fiber,
we see that φ is an isomorphism on the fibers, so it is a closed immersion.
By the fiberwise criterion for flatness ([1], exp. IV) φ is flat. A closed immersion which is
flat is also open, so φ is an isomorphism onto one of the connected components of G,but G is
connected so φ is an isomorphism.

One notices that this doesn’t say anything about G being a group scheme and in fact one cannot
prove so much, nonetheless this is the closest result to Tits proposal.
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