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1 Introduction

The research about unlikely intersection is an important subject in Diophan-
tine geometry. Roughly speaking, unlikely intersection means varieties do
not intersect due to natural dimensional reasons. For example, let Z be an
algebraic variety of dimension n, X, Y be two subvarieties of dimension r, s
respectively. In general, we expect thatX∩Y has dimension at most r+s−n.
If the contrary happens, i.e X∩Y has dimension strictly lager than r+s−n,
then we say that X, Y have unlikely intersection.

This leads us to the concept of special subvarieties. Consider a variation
of the above example, let X be a �xed subvariety of an algebraic variety Z,
Y be a set of algebraic subvarieties of Z with certain conditions. Suppose
dimX + dimY < dimZ for all Y ∈ Y . Then by the above argument, we
expect that X∩Y = ∅ for all Y ∈ Y except for a small subset. If the opposite
happens, we can imagine that there must be some special requirement for X,
we call this kind of X special subvariety of Z.

The formulation of special subvarieties depends on the ambient variety
we are discussing. For the case of abelian variety and the case of torus
Gn
m, special subvarieties are exactly the torsion cosets, i.e the translate of

an algebraic subgroup by a torsion point. We also de�ne the weakly special
subvarieties be the those coset of the ambient variety.

Theorem 1.1. (Multiplicative Manin-Mumford)Let V ⊂ X = Gn
m be

a subvariety. Then the following equivalent assertion holds:
(a) If the set of special points of X is Zariski dense in V , then V is a special
subvariety.
(b) A component of the Zariski closure of a set of special points is special.
(c) V contains only �nitely many maximal special subvarieties.

This theorem has an interesting consequence

Corollary 1.2. For a curve V ⊂ C×2 de�ned by a polynomial F (X, Y ) ∈
C[X, Y ], if there are in�nitely many points (ζ, η) ∈ V such that both ζ, η are
root of unities, then F is of the form XnY m = ζ or Xn = ζY m for some root
of unity ζ.

To see this, notice that root of unities are precisely the torsion points
of the torus, and both XnY n = ζ and Xn = ζY m de�ne a translate of a
subtorus by a torsion point.
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Now, we replace X above by an abelian variety, then we get the Manin-
Mumford conjecture, which has been proved by Raynaud.

Theorem 1.3. (Raynaud) Let X be an abelian variety, and V ⊂ X be a
subvariety, then (a),(b) and (c) in Theorem 1.1 holds.

In the context of Shimura variety, we can also de�ne the special and
weakly special subvarieties, there is an analogue of Manin-Mumford conjec-
ture in this case.

Conjecture 1.4. (André-Oort) Let X be an Shimura variety, V ⊂ X be
a subvariety, then (a),(b) and (c) in theorem 1.1 holds.

To get some feeling about this conjecture, take X = C2 for example, we
have the following statement.

Theorem 1.5. Let Σ ⊂ C2 be a set of special points, take Z be a component
of the Zariski closure Σzar of Σ, then Z is one of the following.
1. a poing (x1, x2) such that both coordinates are special points.
2. {x1} × C with x1 special.
3. C× {x2} with x2 special.
4. the image of the Hecke correspondence

j : H→ C2, τ 7→ (j(τ), j(nτ))

for some n ∈ N≥0
5. C2 itself

Where z ∈ C is called special if it is of the form j(τ) for some τ ∈ H
quadratic. We will de�ne special subvarieties of Shimura varieties in general
later.

Several mathematicians including Ben Moonen, Yves André, Andrei Yafaev,
Bas Edixhoven, Laurent Clozel, and Emmanuel Ullmo, proved some partial
results for André-Oort conjecture. Most of them were conditional upon the
generalized Riemann hypothesis. Recently, Jonathan Pila and his collabora-
tors used the theory of o-minimal structures in model theory, proved some
unconditional results of André-Oort conjecture. See [Pil11, Tsi13]

Theorem 1.6. (Pila) André-Oort conjecture is true for Cn.

Theorem 1.7. (Pila-Tsimerman) André-Oort conjecture is true for moduli
space of Abelian surfaces.
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The latest progress was made by Shouwu Zhang, his work about Colmez
conjecture, combined with a new result of Tsimerman [Tsi]

Theorem 1.8. (Tsimerman) Colmez conjecture implies the André-Oort
conjecture for the moduli of Abelian varieties.

We obtain that André-Oort conjecture is true for moduli space of Abelian
varieties.

In order to get a more common statement, we consider Mix-Shimura va-
rieties, which is a common generalization of Abelian varieties and Shimura
varieties. Mixed-Shimura variety is also equipped with a collection of spe-
cial subvarieties and weakly special subvarieties. While we already got some
progress to the André-Oort conjecture, there are still a lot of things worth to
explore in Zilber-Pink conjecture. Recently, by using the tools of o-minimal
structures, Pila and Habegger obtained some partial results of unlikely in-
tersections in the spirit of Zilber-Pink, see [PH]. In this paper, we are going
to introduce their work.

2 Pila-Wilkie counting strategy

2.1 O-minimal structure

One thing to keep in mind is that the idea of de�nability is central in the Pila
and his collaborators' results. In order to understand o-minimal structure,
we �rst review the de�nition of language and structure. For model theory,
see [Mar02]

De�nition 2.1. A language L is given by specifying the following data
1. a set of function symbols F and positive integers nf for each f ∈ F ;
2. a set of relation symbols R and positive integers nR for each R ∈ R;
3. a set of constant symbols C

The numbers nf and nR tell us that f is a function of nf variables and R
is a nR-ary relation. Next, we describe the structures for a certain language
L.

De�nition 2.2. An L structureM is given by the following data:
1. a nonempty set M called the universe, domain or underlying set ofM;
2. a function fM : Mnf →M for each f ∈ F ;
3. a set RM ⊂MnR for each R ∈ R;
4. an element cM ∈M for each c ∈ C
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Once we have an L-structure, we can de�ne sets within that structure
by evaluating equalities and the distinguished relations. In other words, we
have the notion of de�nable sets. To be speci�c:

De�nition 2.3. The set of L-terms is the smallest set T such that
1. c ∈ T for each constant symbol c ∈ C;
2. each variable symbol vi ∈ T for i = 1, ... and;
3. for every f ∈ F , if t1, ..., tnf

∈ T , then f(t1, ..., tnf
) ∈ T

With this notion, we can de�ne L-formulas.

De�nition 2.4. We say that φ is an atomic L-formula if φ is either
1. t1 = t2 where t1, t2 are L-terms;
2. R(t1, ..., tR) where R ∈ R and t1, ..., tR are L-terms.
The set of L formulas is the smallest set W containing the atomic formulas
such that
1. If φ is in W, then ¬φ ∈ W;
2. If φ and ψ are in W, then φ ∨ ψ and φ ∧ ψ are in W;
3. If φ is in W, then ∃viφ and ∀viφ are in W.

We say that a variable v occurs freely in a formula φ if it is not inside a
∃v or ∀v quanti�er. We call a formula sentence if it has no free variables. In
this case, we de�ne what it means for φ(v1, ..., vn) to hold of (a1, ..., an) ∈Mn

De�nition 2.5. Let φ be a formula with free variables from v̄ = (vi1 , ..., vim)
and let ā = (ai1 , ..., aim) ∈Mm, we inductively de�neM � φ(ā) as follows
1. If ψ is t1 = t2, thenM � φ(ā) if tM1 (ā) = tM2 (ā);
2. If φ is R(t1, ..., tR), thenM � φ(ā) if (tM1 (ā), ..., tMnR

(ā)) ∈ RM;
3. If φ is ¬ψ, thenM � φ(ā) ifM 2 ψ(ā);
4. If φ is ψ ∧ θ, thenM � φ(ā) ifM � ψ(ā) andM � θ(ā);
5. If φ is ψ ∨ θ, thenM � φ(ā) ifM � ψ(ā) orM � θ(ā);
6. If ψ is ∃vj, ψ(v̄, vj), then M � φ(ā) if there is b ∈ M such that M �
ψ(ā, b); 6. If ψ is ∀vj, ψ(v̄, vj), thenM � φ(ā) ifM � ψ(ā, b) for all b ∈M

IfM � φ(ā) we say thatM satis�es φ(ā) or φ(ā) is true inM. Now we
can say what is a de�nable set

De�nition 2.6. LetM = {M, ...} be an L-structure. We say that X ⊂Mn

is de�nable if and only if there is an L-formula φ(v1, ..., vn, w1, ..., wm) and
b̄ ∈ Mn such that X = {ā ∈ Mn :M � φ(ā, b̄)}. We say that φ(v̄, b̄) de�nes
X. We say that X is A-de�nable or de�ned over A if there is a formula
ψ(v̄, w1, ..., wl) and b̄ ∈ Al such that ψ(v̄, b̄) de�nes X.
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We can see although these de�nitions are formal, they really coincide with
our intuition. Now we are able to de�ne the o-minimal structure. To know
detailed discussion about o-minimal structures, see [vdD98].

De�nition 2.7. Let L be some language including a binary relation symbol
< and possibly some other data.We say that an L-structureM is o-minimal
if <M is a total order of M and every de�nable subset of M is a �nite unions
of singletons and intervals.

The �rsthand example of o-minimal structure is

Example 2.8. (Tarski) The ordered �eld of real numbers R̄ := (R, <,+,×,−)
is o-minimal.

There is also an important case which we will use later

Example 2.9. (van den Dries via Garbrielov) The structure

Ran := (R, <,+,×, {f}f :[0,1]n→R restricted analytic)

is o-minimal.

Then, it is also worthy to mention that not every structure is o-minimal:

Example 2.10. The structure

M = {R,+, <, sin}

is not o-minimal.

To see this, notice that in this case, πiZ = sin−1(0) is de�nable set, but
it is not a �nite unions of singletons and intervals.

For o-minimal structures, the most important properties are �niteness
theorem and cell-decomposition theorem. For �niteness result, we consider
the de�nable family.

Theorem 2.11. Let M = {M, ...} be an o-minimal structure. Let A ⊂
Mm ×Mn be de�nable and suppose that for each x ∈Mm the �ber

Ax = {y ∈Mn; (x, y) ∈ A}

is �nite. Then there is N ∈ N such that |Ax| ≤ N for all x ∈Mm.

The cell decomposition theorem says that we can splits a de�nable set
into �nitely many de�nable subsets of simple forms. This simple form is
called a cell.
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De�nition 2.12. Fix an o-minimal structure M. Let (i1, ..., im) be a se-
quence of zeros and ones of length m. An (i1, ..., im)-cell is a de�nable subset
of Mn obtained by induction on m as follows:
1. a (0)-cell is a one-element set {r} ⊂ M , a (1)-cell is an interval (a, b) ⊂
M ;
2. suppose (i1, ..., im)-cells are already de�ned; then an (i1, ..., im, 0)-cell is
the graph Γ(f) of a function f ∈ C(X), where C(X) is the set of all contin-
ues de�nable functions from X to M and X is an (i1, ..., im)-cell; further and
(i1, ..., im, 1)-cell is a set

(f, g)X := {(x, r) ∈ X ×M ; f(x) < r < g(x)}

where f, g ∈ C(X)∞ := C(X) ∪ {−∞,+∞} and f(x) < g(x) for all x ∈ X

For a decomposition, we mean the following thing.

De�nition 2.13. A decomposition of Mn is a special kind of partition of Rn

into �nitely many cells. The de�nition is by induction on m:
1. a decomposition of M1 = M is a collection

{(−∞, a1), (a1, a2), ..., (ak,+∞), {a1}, ..., {ak}}

where a1 < ... < ak are points in R;
2. a decomposition of Mn+1 is a �nite partition of Mn+1 into cells A such
that the set of projections π(A) is a decomposition of Mn.

Further, we say that a decompositionD ofMn is to partition a set S ∈Mn

if each cell in D is either part of S or disjoint from S, in other words, S is a
union of cells in D. Now we state the cell decomposition theorem.

Theorem 2.14. (Cell decomposition) We have
1. Given any de�nable sets A1, ..., Ak ⊂Mn, there is a decomposition of Mn

partitioning each of Ai;
2. For each de�nable function f : A→M,A ⊂Mn, there is a decomposition
D of Mn partitioning A such that the restriction f |B : B → M o each cell
B ∈ D with B ⊂ A is continuous.

2.2 Counting theorem and its generalizations

In this section, we will work in a �xed o-minimal structre over R. The original
Pila-Wilkie counting theorem describes how the number of points of certain
bounded height in a de�nable set grows. First we recall the notion of height
of a rational number and the height function.
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De�nition 2.15. We de�ne the multiplicative height of a rational number
by H(0) = 0 and H(a

b
) = max{|a|, |b|} when a and b are coprime integers.

For a tuple x̄ = (x1, ..., xn) ∈ Qn we de�ne H(x̄) = max{H(xi); 1 ≤ i ≤ n}.

De�nition 2.16. Let X ⊂ Rn be any set and t ∈ R+. We de�ne X(Q, t) :=
{x̄ ∈ X ∩ Qn;H(x̄) ≤ t}. Notice that X(Q, t) is always a �nite set. We
de�ne the counting function N(X, t) := ]X(Q, t).

We hope that for certain kinds of X, we have for all ε > 0, there is a
c > 0, such that N(X, t) < ctε for all t � 0. To do so, we must exclude
the case that X contains semi-algebraic subset, the subset with polynomial
growth property.

De�nition 2.17. We say that Y ⊂ Rn is semi-algebraic if it is de�nable in
the structure (R, <,+,×).

De�nition 2.18. Given a set X ⊂ Rn we de�ne the algebraic part Xalg to
be the union of all in�nite, connected semialgebraic subsets Y ⊂ X. The
transcendental part of X is X tr := X\Xalg.

With these de�nition, we may state the counting theorem, see theorem
1.8 in [PW06]

Theorem 2.19. (Pila-Wilkie) Let X ⊂ Rn be a de�nable set in some o-
minimal expansion of the real �eld and let ε > 0. Then there exists a constant
c = c(X, ε) > 0 such that for t ≥ 1 we have N(X tr, t) ≤ ctε

Later, Pila generalizes this theorem to count algebraic points. Let k ≥ 1
be an integer. We de�ne the k-height of a real number the corresponding
counting function as follows.

De�nition 2.20. Let x ∈ Rn, if [Q(x) : Q] ≤ k, then there is a polynomial
with coprime integer coe�cients akT k + ...+a0 which vanishes x, let H(x) =
max{|ak|, ..., |a0|}; otherwise, let Hk(x) = ∞. For x̄ ∈ Rn, we set Hk(x̄) =
max{Hk(x1), ..., Hk(xn)}.

De�nition 2.21. Let X ⊂ Rn be any subset, t ≥ 1. We de�ne

Nk(X, t) := {x̄ ∈ X;Hk(x̄) ≤ t}

Just like Theorem 2.19, we have the following growth condition, see the-
orem 1.5 in [Pil09]

Theorem 2.22. (Pila) Let X ⊂ Rn be a de�nable set in some o-minimal
expansion of the real �eld and let ε > 0. Then there exists a constant c =
c(X, k, ε) > 0 such that for t ≥ 1 we have Nk(X

tr, t) ≤ ctε
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Due to this spirit, in order to get a proposition for us to use, we need the
language of blocks. We have the following theorem, see [Pil11]

Theorem 2.23. Let F ⊂ Rl×Rm be a de�nable set, we view F as a de�nable
family parametrised by Rl. Let ε > 0, k be a positive integer.There is a �nite
number J = J(F, k, ε) blocks

W (j) ⊂ Rkj × Rl × Rm

each parametrised by Rkj × Rm, and a constant c = c(F, k, ε) such that
1. For all (r, x) ∈ Rkj × Rl and all j, the �ber W (j)

(r,x) ⊂ Fx;
2. For all x ∈ Rl and t ≥ 1 the set Nk(Fx, t) is contained in the union of at
most ctε blocks of the form W

(j)
(r,x) for suitable j and r ∈ Rkj .

Remark 2.24. One thing to keep in mind is that block is something similar
to semi-algebraic sets. To see the relation between theorem2.23 and theorem
2.22, notice that latter means if X satis�es Nk(X, t) ≥ ctε, then the algebraic
part of X is nonempty. In theorem2.23, we take l = 0,then if Nk(F, t) >
ctε,then this theorem tells us that F must contains a block, so the algebraic
part is nonempty.

We need to express a useful theorem. The proof of which needs a gener-
alization of theorem 2.23, which is stated as following.

Theorem 2.25. Let F, k, ε be in theorem 2.23. There exists a �nite number
J = J(F, k, ε) of block families

W (j) ⊂ Rkj × Rl × Rm

parametrised by Rkj × Rl, for each j a continuous, de�nable function

α(j) : W (j) → Rn

and a constant c = c(F, k, ε) with the following properties.
1. For all j ∈ {1, ..., J} and all (r, x) ∈ Rkj × Rl we have

Γ(α(j))(r,x) ⊂ {(y, z) ∈ Fx; z ∈ F iso
(x,y)}

where F iso
(x,y) is the set consists all the z ∈ F(x,y) such that z is isolated in

F(x,y);
2. Say x ∈ Rl and Z = Fx. If t ≥ 1, the set Z∼,iso(k, t) is contained in
the union of at most ctε graphs Γ(α(j))(r,x) for suitable j ∈ {1, .., j}. Where
Z∼,iso(k, t) is set consists of all (y, z) ∈ Z such that Hk(y) ≤ t and z is
isolated in Zy.
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Proof. Consider the set

F ′ = {(x, y, z) ∈ F ; z ∈ F iso
(x,y)}

By theorem 2.14, we write F = C1 ∪ ... ∪ CN be a cell decomposition of F .
Then F(x,y) = (C1)(x,y)∪ ...∪(CN)(x,y). Each (Ci)(x,y) is either empty or a cell.
Since the local dimension of Ci are constant, so F

′ is precisely the union of
some Ci. Thus F

′ is de�nable. Now suppose the theorem is true for F ′, the
corresponding blocksW j, de�nable functions α(j) and the constant c(F ′, k, ε)
also satis�ed the requirement for F .
By the reason above, from now on, we assume F = F ′. Notice that for any
(x, y), F(x,y) is discrete and de�nable, hence �nite, by theorem 2.11, there is
a constant c1 such that |F(x,y)| ≤ c1 for all (x, y).

Write π : Rl×Rm×Rn → Rl×Rm be projection map to the �rst two parts.
We make a decompositon of F as follows. Let E1 = π(F ), de�nable. By the
property of de�nability, there is a function f1 : E1 → Rn such that Γ(f1) ⊂ F .
This image is de�nable, so F\Γ(f1) also. Now replace F by F\Γ(f1), we
repeat the same procedure as above. Since every time, the cardinality of
F(x,y) decreases strictly, so the procedure terminates in c2 ≤ c1 steps. Thus,
we got E1, ..., Ec1 ⊂ Rl×Rm and de�nable functions fi : Ei → Rn, such that

c2⋃
i=1

Γ(fi) = F

Take suitable cell decomposition of Γ(fi) whenever necessary, we may assume
that each fi is de�nable and continuous. Now we apply theorem 2.23 to each
Ei, we got Ji block familiesW

(j)
i ⊂ Rki,j×Rl×Rm parametrized by Rki,j×Rl

with properties in that theorem. Now consider the function

α
(j)
i : W

(j)
i → Rn (r, x, y) 7→ fi(x, y)

which is de�nable and continuous. Now we have Γ(α
(j)
i )(r,x) ⊂ Fx for all

(r, x). For x ∈ Rl, t ≥ 1, let (y, z) ∈ Z∼,iso(k, t) = Z∼(k, t) with Z = Fx.
Then (x, y, z) ∈ Γ(fi) for some i. Hence y ∈ (Ei)x(k, t), thus by theorem
2.23, there is a constant ci only depends on Ei, k, ε, such that y is inside
one of at most cit

ε blocks of the form (W
(j)
i )(r,x). Thus (y, z) ∈ Γ(α

(j)
i )(r,x).

Finally, take c be maximal of all ci, after renumbering these α
(j)
i and W

(j)
i ,

the theorem follows.

Now we are able to state the important theorem which we are going to
use later.
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Theorem 2.26. Let F ⊂ Rl × Rm × Rn be a de�nable family parametrised
by Rl. Let ε > 0, k be a positive integer. Write π1, π2 be the projections
Rm×Rn → Rm and Rm×Rn → Rn respectively. Then there exists a constant
c = c(F, k, ε) with the following properties. Say x ∈ Rl and let Z be the �ber
Fx. If t ≥ 1 and Σ ⊂ Z∼(k, t) := {(y, z) ∈ Z;Hk(y) ≤ t)} with

#π2(Σ) > ctε

there exists a continuous function β : [0, 1] → Z such that the following
properties hold.
1. The composition π1 ◦ β : [0, 1]→ Rm is semi-algebraic and its restricition
to (0, 1) is real analytic;
2. The composition π2 ◦ β is not constant;
3. We have π2(β(0)) ∈ π2(Σ);
4. If the o-minimal structure admits analytic cell decomposition, then β|(0,1)
is real analytic.

Proof. Take the constant c = c(F, k, ε) as in the theorem 2.25. Let x, Z,Σ, t
as in the hypothesis. First, if Σ 6⊆ Z∼,iso(k, t), we �x an element (y, z) ∈
Σ\Z∼,iso(k, t), then Hk(y) ≤ t and the connected component of Zy contain-
ing z has positive dimension. This component is de�nably connected. Take
a de�nable and continuous path α : [0, 1] → Zy connecting α(0) = z with
any other point α(1) 6= z such that Γ(α) is inside this component. Let
β : [0, 1] → Z de�ned by t 7→ (y, α(t)). Thus π1 ◦ β is constant, hence
semi-algebraic and its restriction to (0, 1) is real analytic. Since π2 ◦ β(0) =
α(0) = z 6= α(1) = π2 ◦ β(1), so π2 ◦ β is not constant. Since (y, z) ∈ Σ,
hence π2 ◦ β(0) = z ∈ π2(Σ). Since ∃s ∈ (0, 1), such that β|(0, s) is real
analytic, hence after rescaling, we are able to make β|(0, 1) be real analytic,
which veri�es part 4. In this case, we are done.

Now we have reduced to the case Σ ⊂ Z∼,iso(k, t). By theorem 2.25, the
set Σ is contained in the union of at most ctε graphs of continuous and de-
�nable functions. Using Pigeonhole principle, there exists (y, z), (y′, z′) ∈ Σ
with z = π2(y, z) 6= π2(y

′, z′) = z′ lie in a same graph. To be explicit, there
is a block family W ⊂ Rk × Rm × Rn and a continuous, de�nable function
α : W → Rn, with (y, z), (y′, z′) ∈ Γ(α)(r,x) for some r ∈ Rk.

As a block containing y, y′, W(r,x) is connected. Hence there exists a
continuous and de�nable map γ : [0, 1] → W(r,x) with γ(0) = y, γ(1) = y′.
Since block is locally a semi-algebraic set, so for every s, the point γ(s)
has a semi-algebraic neighborhood in W(r,x). Since [0, 1] is compact, hence
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there is an open subinterval (a, b) ⊂ [0, 1], such that γ((a, b)) has an semi-
algebraic neighborhood with γ(a) 6= γ(b). After rescaling, we may assume
(a, b) = (0, 1), so γ itself is semi-algebraic. Now we set

β(s) = (γ(s), α(r, x, γ(s))

so this de�nes a function β : [0, 1]→ Z. Since α, γ are continuous and de�n-
able, so is β.

Since β semi-algebraic, so is π1 ◦ β. Thus the �rst assertion in part
1 holds. Since π2(β(0)) = z 6= z′ = π2(β(1)), so part 2 follows. Us-
ing π2(β(0)) = z ∈ π2(Σ), which yields part 3. For the second assertion
in part 1, recall thatRalg admits analytic cell decomposition. There exists
0 = a0 < a1 < ... < aj+1 = 1 such that each π1 ◦ β|(ai,ai+1) : (ai, ai+1) → Rm

is real analytic. By continuity and part 2, there is one such interval (ai, ai+1)
such that the restriction of π1 ◦ β on it is not constant. Let i be the minimal
index with this property, so π2(β(ai)) = π2(β(0)) = z. Now after rescaling,
we may assume ai+1 = 1, then part 3 follows.

For part 4, suppose that the o-minimal structure admits analytic cell
decomposition. Using the same method in the proof in part 3, we know that
π2 ◦ β|[0,1] is real analytic. Thus β|(0,1) is real analytic. We are done.
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3 Zilber-Pink conjecture

We have already mentioned the Zilber-Pink conjecture in the introduction
part. This conjecture has several di�erent expressions. One way to formulate
this conjecture is using the language of unlikely intersection.

Conjecture 3.1. (Zilber-Pink, formualtaion 1) For X a mixed shimura
variety over a �eld K of characteristic zero, V ⊂ X be a subvariety of di-
mension r, write

X [r+1] = ∪H(K)

where H in this union runs through all the special subvarieties of X with
codimension at least r + 1. Then

V ∩X [r+1]

is not zariski dense in V .

Since in X, a subvariety of dimension r and another subvariety of codi-
mension at least r + 1 "do not likely" have intersection, so this formulation
really coincide with the intuition. Another formulation of Zilber-Pink con-
jecture using the language of optimal subvarieties.

De�nition 3.2. Given A ⊂ X, denote 〈A〉 be the smallest special subvariety
containing A. The defect of A is de�ned as

δ(A) = dim 〈A〉 − dimA

Notice that 〈A〉 is well de�ned since the collection of special subvarieties
is closed under taking irreducible components of intersections.

De�nition 3.3. Let X be a mixed Shimura varietiy or a semi-abelian variety
de�ned over C. Let V ⊂ X be a subvariety. A subvariety A ⊂ V is called
optimal(for V in X) if there is no special subvariety B with A ( B ⊂ V such
that

δ(B) ≤ δ(A)

We write Opt(V ) for the set of all optimal subvarieties for V . Now we
are able to formulate Zilber-Pink conjecture.

Conjecture 3.4. (Zilber-Pink, formualtaion 2)Let X be a mixed Shimura
variety or a semi-abelian variety de�ned over C. Then Opt(V ) is �nite.

Two hypothesis appear to be important to making progress toward Zilber-
Pink conjecture. They are: the arithmetic one called "Large Galois Or-
bit"(LGO), and the transcendental onecalled "Weakly Complex Ax"(WCA).
The hypothesis LGO for our cases can be stated as following.
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De�nition 3.5. Let K be a �eld which is a �nitely generated Q−algebra.
Suppose X = Y (1)n or an abelian variety de�ned over K and V ⊂ X is a
subvariety which is also de�ned over K. Let s ≥ 0, we say that LGOs(V )
is satis�ed if there exists a constant κ > 0 with the following property. For
any P ∈ V (K) such that {P} is an optimal singleton of V with dimension
dim 〈P 〉 ≤ s we have

∆(〈P 〉) ≤ (2[K(P ) : K])κ

If r ≥ 0, we say that X satis�es LGOs
r is LGOs(V ) is satis�ed for all V ⊂ X

de�ned over K with dimV ≤ r.
Finally, we say that X satis�es LGO if it satis�es LGOs

r for all r, s ≥ 0

Note that the number ”2” appeared in the right hand side of the inequality
above is necessary. Since if this ”2” is omitted, then this inequality can not
hold for P which is de�ned over K. We will give the de�nition of WCA later.

For the later using, it is now worthy to give the notion of geodesic optimal
subvarieties. Let X be a mixed Shimura variety or a semi-abelian variety
over C. Similar to special subvarieties, the set of weakly special subvarieties
are also closed under taking intersections and irreducible components, so
for every subvarietyW ⊂ X, there is a smallest weakly special subvariety
containing W , which we denote as 〈W 〉geo. We write

δgeo(W ) = dim 〈W 〉geo − dimW

as the geodesic defect of W .

De�nition 3.6. Let V ⊂ X be a subvariety. A subvariety W ⊂ V is said to
be geodesic optimal(for V in X) if there is no subvariety Y with W ( Y ⊂ V
such that

δgeo(Y ) ≤ δgeo(W )

An important proposition is that in our case, optimal subvarieties are
always geodesic optimal.

Theorem 3.7. Let X be an abelian variety or Y (1)n, and let V be a subva-
riety. An optimal subvariety of V is geodesic optimal in V .

In the next two chapters, we discuss Pila's progress in the Zilber-Pink
conjecture. In the context of Abelian varieties, we will give some partial
results in sense of both formulation 1 and formulation 2, while in the context
of product of modular curves, we will only gave a conditional result in the
sense of formulation 2.
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4 Unlikely intersection in abelian varieties

4.1 Special subvarieties and complexity

The special subvarieties of an abelian variety are the torsion cosets, and
weakly special subvarieties are the cosets. Now we de�ne the complexity as
follows. Let A be an abelian variety de�ned over C with dimension g ≥ 1,
and L is an ample line bundle on A. The degree of A is the intersection
number degLA = (Lg[A]) ≥ 1.

De�nition 4.1. If W is a special subvariety of A, which is the translate of
an abelian subvariety B of A by a torsion point. We de�ne its arithmetic
complexity ∆arith(W ) be the minimum of the order of the torsion points in
W . The complexity is de�ned as

∆(W ) = max{∆arith(W ), degLB}

It can be proved that after replacing L by another ample line bundle, the
corresponding complexity only changes up to a controlled factor. Thus we
do not have to emphasize the choice of ample line bundle in the de�nition of
complexity.

4.2 Ax-Schanuel type Conjectures

In the case of abelian varieties, the transcendental conjecture of type Ax-
Schanuel which we will use are already theorems. Now we state the theorem
in Ax's spirit that are su�cient to handle our unlikely intersection problem.

Let A be an abelian variety de�ned over C. Thus the exponential map
exp : T0(A) → A(C) is a compex analytic group homomorphism. The theo-
rem of Ax is the following.

Theorem 4.2. (Ax). Let U ⊂ T0(A) be a complex vector subspace and
z ∈ T0(A). Let K be an irreducible analytic subset of an open neighborhood
of z in z+U . Let Y = exp(K)

zar
be the zariski closure of exp(K), then Y is

irreducible and
δgeo(Y ) ≤ dimU − dimK

For the proof, see Corollary 1 of [Ax72]. The following theorem is called
Ax-Lindemann-Weierstrass theorem, which we will also use later.

Theorem 4.3. (Ax). Let β : [0, 1] → T0(A) be real semi-algebraic and
continuous with β|(0,1) real analytic. Then exp(β([0, 1]))

zar
is a coset.
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Now it is worthy to explain how this theorem connect to the classical
Lindemann-Weierstrass theorem, we use the explanation in section 3.1.1 of
[Gao14]. Recall that the classical Lindemann-Weierstrass theorem means the
following.

Theorem 4.4. (Lindemann-Weierstrass) Let x1, ..., xn ∈ Q. If they are
Q−linearly independent, then ex1 , ..., exn are algebraically independent over
Q

Using geometric language, Lindemann-Weierstrass theorem can be refor-
mulated as following.

Theorem 4.5. (Lindemann-Weierstrass, geometric terms) Let unif =
(exp, ..., exp) : Cn → C×n. Let Y be an irreducible algebraic subvariety of
C×n, Z is a maximal irreducible algebraic variety contained in unif−1(Y ),
then Z is a translate of a Q−linear subspace of Cn.

Observe that in the above theorem, unif = (exp, ..., exp) is precisely the
uniformization map in the Shimura sense. In the context of abelian varieties,
the uniforization map is precisely the exponential map T0(A) → A(C). So
we have the analogue statement.

Theorem 4.6. Let A, exp : T0(A) → A(C) as above. Let Y be an semi-
algebraic subset of A, Z is a maximal algebraic subvariety contained in exp−1(Y ),
then Z is weakly special.

Now we show theorem 4.6 implies theorem 4.3. Let Y = exp(β([0, 1]))
zar

as in theorem 4.3, let W be an irreducible algebraic subset of T0(A) which
contains β([0, 1]) and contained in exp−1(Y ), maximal among these prop-

erties. Then Y = exp(W )
zar
, theorem 4.6 implies that W is weakly spe-

cial. Hence exp(W ) is an irreducible subvariety of A(C). Now we have

Y = exp(W )
zar

= exp(W ) is weakly special, i.e a coset. This gives us some
intuition about the theorem 4.3.

4.3 A �niteness result

Suppose A is an abelian variety de�ned over C, we have the following �nite-
ness result for the geodesic optimal subvarieties.

Theorem 4.7. For any subvariety V ⊂ A, there exists a �nite set(only
depends on V ) of abelian subvarieties of A with the following property. If W
is a geodesic optimal subvariety of V , then 〈W 〉geo is a translate of the said
set.
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In order to prove this theorem, we choose a basis of the period lattice
ΩA = H1(A,Z) ⊂ T0A such that we can identify T0A with Rn as a real
vector space, in this basis Ω ∼= Z2g. Now for the subvariety V as in the
theorem, we set

V = exp|−1(−1,1)2g(V (C))

Then V is a de�nable subset of R2g. Also, by the isomorphism mentioned
above, V is also a complex analytic subset of (−1, 1)2g ⊂ T0A. Thus it is also
a complex analytic space. The proof of the theorem require the argument of
dimension. Now we review the de�nition of the (local) dimension of de�nable
set in a certain structure.

De�nition 4.8. The dimension of a non-empty de�nable set X ⊂ Rm is
de�ned by maximum of i1 + ...+ im such that X contains an (i1, ..., im) cell.
The dimension of empty set is −∞.

For the local dimension, we have

Theorem 4.9. Let X ⊂ Rm, x ∈ Rm. Then there is an integer d such that
dim(U ∩ X) = d for all su�ciently small de�nable neighborhood U of x in
Rm.

De�nition 4.10. Using the above notation, we de�ne dimxX = d.

In this section, we add the subscript C to the dimension symbol to signify
the (local) dimension as a complex analytic space. Observing that dimC =
2 = 2 dimC C, generalize this idea, we have following lemma.

Lemma 4.11. Let Z be a de�nable analytic subset of a �nite dimension
C−vector space. Let z ∈ Z, then we have dimz Z = 2 dimC,z Z.

Now we write O = End(T0A), the endomorphism of T0A as a C−vector
space. Suppose 0 ≤ r ≤ g be an integer, for element (z,M) ∈ V ×O, we set
three conditions:
(a) dimC kerM = r;
(b) For all N ∈ O with kerM ( kerN : dim kerN − dimz V ∩ (z + kerM) <
dim kerN − dimz V ∩ (z + dimN).
(c) For all M ′ ∈ O with kerM ′ ( kerM : dimz V ∩ (z + kerM ′) < dimz V ∩
(z + kerM).
Now de�ne Er be the set of (z,M) satisfying all the three conditions (a),(b)
and (c). We have the following important lemma.

Lemma 4.12. Using the above notation.
1. If (z,M) ∈ Er, there is an abelian subvariety B ⊂ A with T0B = kerM .
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2. The set {kerM ; (z,M) ∈ Er} is �nite.
3. LetW be a geodesic optimal subvariety of V and let 〈W 〉geo be the translate
of the ablian subvariety B ⊂ A. If r = dimCB and M ∈ O with T0B =
kerM , then (z,M) ∈ Er for some z ∈ (−1, 1)2g.

Before proving this lemma, we give two lemma about basic properties
about dimension theory and abelian varieties.

Lemma 4.13. Let A,B be two analytic sets in a complex space X, then for
all smooth point P ∈ A ∩B, we have

dimC,P (A ∩B) ≥ dimCA− dimCB − dimCX

Lemma 4.14. Let A be an abelian variety of dimension g over C, W ⊂ A is
an subvariety contains 0, such that A is the smallest abelian variety contains
W . Then the map

φ : W g → A (w1, ..., wg) 7→ w1 + ...+ wg

is surjective.

Now we prove lemma 4.12

Proof of Lemma 4.12. For part 1, Let (z,M) ∈ Er. We apply the Ax's
theorem 4.2 to U = kerM . We take a complex analytically irreducible
component K ⊂ V ∩ (z+U) with dimCK = dimC,z V ∩ (z+U). By shrinking
K to an open neighorhood of z we may assume that K is irreducible and
de�nable in Ran(not necessarily a component). Let Y ⊂ A be as in Ax's
theorem. Then 〈Y 〉geo is the translate of an abelian subvariety B = Y−exp(z)
of A. Since exp(K) ⊂ Y + exp(z), we have K ⊂ z + T0(B) and so

K ⊂ z + U ∩ T0(B)

By the condition (c) of the de�nition of Er, we have U ∩ T0(B) = U , thus
U ⊂ T0(B).

Next we prove the equality holds. Suppose the contrary that U ( T0(B),
select N ∈ O such that kerN = T0(B). Using the condition (b) of the
de�nition of Er and the observation that Y ⊂ V ∩ ((z) +B), we have

dimU − dimK = dimU − dimz V ∩ (z + U)

< dimT0(B)− V ∩ (z + T0(B))

≤ dimT0(B)− dimz exp|−1(−1,1)2g(Y (C))
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Using lemma 4.11, we passe this to complex dimension, we get dimC U −
dimC,zK < dimC− dimC,z = δgeo(Y ). This contradicts with Ax's theorem
4.2. Thus we must have kerM = U = T0(B) and part 1 follows.

For part 2, let kerM as in the question. We �x a C−basis for T0(A), thus
every kerM correspond to a g × g matrix. Let π2 : T0(A) × End(T0(A)) →
End(T0(A)) be the projection to the second coordinate, then we have a map
to the Grassmannian.

φ : π2(Er)→ G(r, n) M 7→ kerM

Since π2(Er) is de�nable in Ran, so is φ(π(Er)). By part 1, kerM is the
tangent space o an abelian subvariety of A, but A has at most countably
many abeian subvarieties thus kerM has at most countably many possibil-
ities. Thus φ(π(Er)) is also at most countable. Thus as a de�nable and at
most countable set, φ(π(Er)) is �nite, part 2 has been done.

For part 3, let W,B as in the question. Since W is geodesic optimal, it
is an irreducible component of V ∩ 〈W 〉geo. Let z ∈ V such thatexp(z) is a
smooth complex point of W that is not contained in any other irreducible
component of V ∩ 〈W 〉geo. We will prove that (z,M) ∈ Er.

Since dimM = dimB = r, condition (a) follows.

For condition (b), suppose the contrary that there is a N ⊂ O such that
T0(B) ⊂ kerN and

dim kerN − dimz V ∩ (z + kerM) ≥ dim kerN − dimz V ∩ (z + dimN) (1)

We �x K as in the proof of part 1. Let Y = exp(K)
zar
, then Ax's theorem

4.2 implies that δgeo(Y ) ≤ dimC kerN − dimCK. Since the exponential map
is locally biholomorphic, our choice of z implies that z is a smooth point
of the complex analytic set V ∩ (z + T0(B)) which at z has local dimension
dimCW . So by the above inequality, we have

δgeo(W ) = dimC T0(B)− dimCW ≥ dimC kerN − dimCK ≥ δgeo(Y ) (2)

By smoothness, V ∩ (z+ kerN) has a unique component K ′ passing through
z. The dimension property in lemma 4.13 implies

dimC,zK ∩ (z + T0(B)) ≥ dimC,zK + dimC,z T0(B)− dimC kerN (3)

Inequality (2) and the above discussion imply hat the right hand side is at
least dimCW . But K ∩ (z + T0(B)) ⊂ V ∩ (z + T0(B)), by comparing their
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local dimensions on z we �nd that K ∩ (z+T0(B)), and hence K, contains a
neighborhood of z. This implies that W ⊂ Y . Since W is geodesic optimal,
combine this with (2), we get W = Y . So dimCK ≤ dimCW . But the left
hand side of (3) is at most dimCK, so we also have dimCK ≥ dimCW . Thus
dimCK = dimCW . Substitute this to (2), we get dimC T0(B) ≥ dimC kerN ,
which contradicts our assumption. So condition (b) follows.

For condition (c). Suppose on the contrary that there is M ′ ∈ O with
kerM ′ ( T0(B) and

dimz V ∩ (z + kerM ′) = dimz V ∩ (z + kerM)

The set on the right hand side is a complex analytically space, smooth at z,
and contains the one in the left hand side, so these two sets coincide on an
open neighborhood of z in (−1, 1)2g. Therefore, an open neighborhood of 0
in W (C) − exp(z) is contained in the group exp(kerM ′). Thus this group
contains an non-empty subset of

dimA∑
i=1

(W (C)− exp(z))

By lemma 4.14, this sum equals B. Hence T0(B) ⊂ kerM ′, contradicts
our assumption. Thus condition (c) follows. Now we already proved that
(z,M) ∈ Er.

Now we are able to prove the �niteness property.

Proof of Theorem 4.7. Suppose W is a geodesic optimal subvariety of V .
Take M ∈ O such that 〈W 〉geo is the translate of an abelian subvariety
whose tangent space is kerM . Let r = dimCB, by part 3 of lemma 4.12,
there exists a z, such that (z,M) ∈ Er. Then, by part 2 of lemma 4.12,
these kind of kerM lie in a �nite set. So 〈W 〉geo is the translate of an abelian
subvariety comes from a �nite set.

A direct application of the �niteness theorem is discussing the anomalous
subvarieties, which we will use later.

De�nition 4.15. Let A, V be as above. A subvariety W ⊂ V is called
anomalous if

dimW ≥ max{1, dim 〈W 〉geo + dimV − dimA+ 1}

If in addition W is not contained in any strictly larger anomalous subvariety
of V , then we call W be maximal anomalous. The complement in V of the
union of all anomalous subvarieties of V is denoted by V oa.
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An important property is the openness of V oa.

Theorem 4.16. Let A, V be as above, then V oa is open in V .

Proof. We �rst claim that maximal anomalous varieties are always geodesic-
optimal. In fact, let W ⊂ be an anomalous subvariety, then there exists
a geodesic-optimal subvariety Y of V with δgeo(Y ) ≤ δgeo(W ). So by the
de�nition of anomalous subvariety, we have

dimY ≥ dim 〈Y 〉geo−dim 〈W 〉geo + dimW ≥ dim 〈Y 〉geo + dimV −dimA+ 1

Since dimY ≥ dimV ≥ 1, we see that Y is anomalous. As W is maximal
anomalous, we have W = Y , so W is geodesic-optimal.

Now by theorem 4.7, 〈W 〉geo is the translate of an abelian subvariety com-
ing from a �nite set which depends only on V . Let B be such an abelian
subvariety. We denote MB be the set consisting of Y ⊂ V maximal anoma-
lous such that 〈Y 〉geo is a translate of B, UB be the union of the elements
in MB, and write q : V → A/B be the restriction of the quotient map
A → A/B. Now the points in UB are precisely those P ∈ V (K) such that
dim(q−1(q(P )) ≥ dimB. By the property of dimension, we got UB is closed
in V . Thus V oa, as the complement of V by �nitely many such UB, is open
in V .

Finally, we remark that V oa = ∅ if and only if there exists a abelian
subvariety B such that

dimφ(V ) < min{dimA/B, dimV }

where φ : A→ A/B be the quotient map.

4.4 An upper bound of complexity

In this section, we let A be an abelian variety de�ned over a number �eld K
of dimension g and L be an ample line bundle on A. After replacing L by
L⊗L⊗(−1), we may assume L is symmetric. Let ĥ be the Néron-Tate height
associated to this line bundle, then it is a quadratic form. Let d ≤ g, we
write λA(d) be the supremum of all possible dim(A/H) × rankHom(A,A/
H), where H runs through all abelian subvarieties of A de�ned over K̄ with
dimension d. With this notation, we have the following theorem

Theorem 4.17. There is a constant c = c(A,L) > 0 such that for all P ∈
A(K̄)

∆arith(〈P 〉) ≤ c[K(P ) : K]6g+1
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and
degLH ≤ c[K(P ) : K]60g

4

max{1, ĥ(P )}λA(dim〈P 〉)

where H = 〈P 〉 − P . In particular,

∆(〈P 〉) ≤ c[K(P ) : K]60g
4

max{1, ĥ(P )}λA(dim〈P 〉)

4.5 Partial results about the optimal subvarieties

In this section, we give some partial result of Zilber-Pink conjecture in the
sense of formulation 1. The assumption about Large Galois Orbit implies the
Zilber-Pink conjecture for the abelian varieties over number �elds. Although
the LGO remains open, we are still able to get some weaker unconditional
results toward the �nal conjecture. Now suppose A is an abelian variety
de�ned over a number �eld K, and L is a symmetric ample line bundle on
A. Let ĥ denotes the Néron-Tate height associated to this line bundle.

De�nition 4.18. Let V ⊂ A is a subvariety de�ned over K. Let κ ≥ 0.
We de�ne Opt(V, κ) be the set of those W ∈ Opt(V ) such that there exists
a point P ∈ W (K) with ĥ(P ) ≤ (2[K(W ) : K])κ, here K(W ) is the �eld of
de�nition of W .

With this notation, we are able to formulate our unconditional result.

Theorem 4.19. Let A be an abelian variety de�ned over a �eld K which is
a �nitely generated Q algebra. Let V ⊂ A be a subvariety de�ned over K.
1. Say r, s ≥ 0 and all the quotients of A de�ned over a �nite extension of
K satisfy LGOs

r. Then

{W ∈ Opt(V ); codimVW ≤ r, dim 〈W 〉 − dim 〈P 〉geo ≤ s}

is �nite.
2. If K is a number �eld, then Opt(V, κ) is �nite for all κ ≥ 0.

Now if LGO is true, then LGOs
r holds for all r, s ≥ 0. Let r = s = g =

dimA, by theorem 4.19, we have Opt(V ) is �nite. That means LGO implies
Zilber Pink conjecture.

4.6 Intersection with special subvarieties

In this section, we give some partial result of Zilber-Pink conjecture in the
sense of formulation 2.
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Theorem 4.20. Let A be an abelian variety de�ned over a number �eld K,
L is an ample symmetric line bundle with ĥ be the associated Néron-Tate
height. Suppose V ⊂ A is a subvariety de�ned over K. Then
1. If κ ≥ 0, then

{P ∈ V (K) ∩ A[1+codimAV+dimV ]; ĥ(P ) ≤ κ}

is not Zariski dense in V .
2. If κ ≥ 0, then

{P ∈ V (K) ∩ A[1+dimV ]; ĥ(P ) ≤ κ}

is contained in a �nite union of proper special subvarieties of A.
3. The set V oa(K) ∩ A[1+dimV ] is �nite.
4. Suppose dimV ≥ 1 and dimφ(V ) = min{dimA/B, dimV } for all abelian
subvarieties B ⊂ A, where φ : A → B is the quotient map. Then V (K) ∩
A[1+dimV ] is not Zariski dense in V .
5. Let Γ ⊂ A(K) be a �nitely generated subgroup and let

Γ = {P ∈ A(K);∃n ∈ Z≥1, nP ∈ Γ}

Then ⋃
V oa(K) ∩ (H + Γ)

is �nite, where in the union, H runs through all the special subvarieties of A
with codimension at least 1 + dimV .
6. Let V as in part 4, and Γ as in part 5, we have⋃

V (K) ∩ (H + Γ)

is not Zariski dense in V , where in the union, H also runs through all the
special subvarieties of A with codimension at least 1 + dimV .

Proof. For part 1, let P ∈ V (K) ∩ A[1+codimAV+dimV ] with ĥ(P ) ≤ κ. Then
P is contained in an optimal subvariety W of V such that δ(A) ≤ δ(〈P 〉) =
dim(〈P 〉). So W contains point P of height at most κ ≤ (2[K(W ) : K])κ, we
have W ∈ Opt(V, κ). By theorem 4.19, the latter set if �nite. For every such
W , δ(W ) ≤ dim(〈P 〉) < dim 〈V 〉 − dimV . Thus P is contained in a �nite
union of proper subvarieties of V , hence not Zariski dense.

For part 2, we prove by induction on dimV . If dimV = 0, then V is a
point, the set in the assertion is either empty or a point contained in a proper
algebraic subgroup of A. Now let r > 0, suppose the assertion is true for
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V of dimension smaller than r, let dimV = r. If V is already contained in
some proper algebraic subgroup of A, then we are done. Otherwise, observe
that special subvarieties are those components of proper algebraic subgroups,
we have 〈V 〉 = A. As in part 1, the set in the assertion is contained in
V1 ∪ ... ∪ Vl where Vi ∈ Opt(V, κ) which is a proper subvariety of V . Let
P be a point in the set in the assertion, then P ∈ Vi for some i. We have
P ∈ Vi(K)∩A[1+dimV ] ⊂ Vi(K)∩A[1+dimVi], by the induction hypothesis, the
latter is contained in �nitely many proper algebraic subgroups of A. Thus
the set in the assertion is also contained in �nitely many proper algebraic
subgroups of A. So we proved the case of dimV = r.

For part 3, if V oa = ∅, then we are done. Otherwise, V 6= X and is
not contained in any proper abelian subvarieties of A. By the main the-
orem on page 407 in [Hab09], we know the Néron-Tate height is bounded
on V oa(K) ∩ A[dimV ], thus in particular bounded V oa(K) ∩ A[dimV ]. Let P
inside this intersection, then P is contained in an optimal subvariety W with
δ(W ) ≤ dim 〈P 〉. Then, dimA− dimV − 1 ≥ dim 〈P 〉 ≥ dim 〈W 〉 − dimW .
But P ∈ V oa(K), so W is not anomalous, by de�nition, we have either
dimW < 1 or dimW < dim 〈W 〉geo + dimV − dimA + 1, the latter the im-
possible by the reasoning above, so dimW = 0. Thus W = {P} ∈ Opt(V, κ),
since Opt(V, κ) is �nite, we proved this assertion.

For part 4, recall that V oa is Zariski open in V . The condition in the
theorem means V oa is not empty. Thus the set in the assertion is the union
of a �nite set and a proper closed subset in V , which is not Zariski dense in V .

For part 5, we are going to use the method of the proof of theorem
5.3 in [Pin05]. Suppose P1, ..., Pt are the Z− independent elements which
generate the free part of group Γ. Since every proper subgroup of A has
only �nitely many components, so after multiply a positive integer, we may
assume the Zariski closure in At of the subroup generated by (P1, ..., Pt) is
an abelian subvariety B. Write V ′ = V × {(P1, ..., Pt)} ⊂ A × B. For all
x ∈ Γ = {P ∈ A(K);∃n ∈ Z≥1, nP ∈ Γ}, write x = h + γ, where h in some
H of codimension at least 1 + dimV , γ ∈ Γ). Choose integers n > 0 and
n1, ..., nt, such that nγ = n1P1 + ...+ ntPt. Then we have nγ = φ(P ), where
φ = (n1, ..., nt) : At → A. Inside A×B, we have

(nx, nP ) = (nh+ nγ, nP ) = (nh+ φ(P ), nP ) = (nh, 0) + (φ, n)(P )

Thus we have

(x, P ) ∈ G := n−1(H × {0}+ (φ, n)(B))
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Since dimG = dimH + dimB, so codimA×BG = codimAH ≥ dimV + 1. So
we have

(
⋃

V oa(K) ∩ (H + Γ))× {P} ⊂ V ′(K) ∩ (A×B)[dimV+1]

So in the above relation, the Néron-Tate height of the left hand side is
bounded by a constant κ only depends on V and Pi.

Now for x ∈
⋃
V oa(K)∩(H+Γ), write P ′ = (x, P ). Then P ′ is contained

in an optimal subvariety W ′ ⊂ V ′ such that δ(W ′) ≤ δ(P ′). So dim 〈W ′〉 −
dimW ′ ≤ δ(P ′) = dim 〈P ′〉 ≤ dim(A×B)− dimV ′ − 1. The image of 〈W ′〉
under the projection A×B → B is an irreducible component of an algebraic
group which contains P , so it must equal B. So each �ber of this projection
is a coset of dimension dim 〈W ′〉 − dimB. Observe that W ′ = W × P is
contained in one of such �bers. So we have

dim 〈W 〉geo ≤ dim 〈W ′〉 − dimB ≤ dimW ′ + dimA− dimV ′ − 1

since dimA′ = dimA, dimV ′ = dimV , we have

dimW ≥ dimV + dim 〈W 〉geo − dimA+ 1

Since x ∈ W (K) ∩ V oa(K), so W is not anomalous. Thus dimW = 0,W ′ =
{(x, P )}, we have W ′ ∈ Opt(V ′, κ), which is �nite by theorem 4.19.

For part 6, similar to part 4, we know that V oa is open and non empty
in V , so the set in the assertion is a union of �nite set and a proper closed
subset of V , hence not Zariski dense.

The above concern the general subvariety. Now if V ⊂ A is a curve, we
have better results. Before stating the theorem, we �rst recall the height
bound property given by G.Rémond, corollary 1.6, [Ré07]

Theorem 4.21. Let A be an abelian variety de�ned over a number �eld K
with an ample symmetric line bundle and its associated Néron-Tate height.
Suppose that V is a curve in A which is not contained in any proper algebraic
subgroup of A, then the Néron-Tate height is bounded on V (K) ∩ A[2].

Now we state the unconditional result for curves.

Theorem 4.22. Let A be an abelian variety de�ned over a number �eld K.
Suppose V ⊂ A is a subvariety de�ned over K.
1. The set

{W ∈ Opt(V ); codimVW ≤ 1}
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is �nite.
2. If V is a curve then Opt(V ) is �nite.
3. If V is a curve that is not contained in any proper algebraic subgroup of
A,then V (K) ∩ A[2] is �nite.

Proof. For part 1, we �rst claim that for every s ≥ 0, LGO1
s . In fact,

let Y ⊂ A be a subvariety with dimY ≤ 1. Since the case that V is
a point is evident, we may assume V is a curve. Let {P} ∈ V (K) is
an optimal singleton, then dim 〈P 〉 = δ(P ) < δ(V ) = dimV − 1. Write
〈V 〉 = B + Q, 〈P 〉 = C + Q, with C,B ⊂ A be abelian subvarieties and
Q ∈ Ator. Thus P −Q is contained in an abelian subvariety C of B of codi-
mension at least 2, by theorem 4.21, we have ĥ(P − Q) is bounded. Thus
ĥ(P ) = 1

2
(ĥ(P − Q) + ĥ(Q) − 2ĥ(P − 2Q)) ≤ 1

2
ĥ(P − Q) is also bounded.

Now using this upper bound and theorem 4.17, we get LGOs(V ), thus LGO1
s

is true. By part 1 of theorem 4.19, we obtain our conclution.

For part 2, if V is a curve, then codimWV ≤ 1 satis�es automatically, so
by part 1, we know that Opt(V ) is �nite.

For part 3, for every P ∈ V (K)∩A[2], there is a special subvariety Y ⊂ A
of codimension at least 2 such that P ∈ V (K) ∩ Y (K). So 〈P 〉 ⊂ Y , thus
δ(P ) ≤ dimY ≤ dimA− 2, since 〈V 〉 = A, thus δP ≤ dim 〈P 〉 − 2 < δ 〈V 〉.
Therefore, {P} is an optimal singleton of V , since Opt(V ) is �nite by part
2, we only have �nitely many such P , we are done.
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5 Unlikely intersection in the products of mudu-

lar curves

The structure of this chapter is almost the parallel as we treat abelian vari-
eties. However, there are still lots of di�erences in details.

5.1 Special subvarieties and complexity

We have de�nition of special subvarieties for general Shimura varieties, that
is the subvarieties of Hodge type. In the particular case of X = Y (1)n, we
are able to describe its special and weakly special subvarieties in an explicit
way as follows.

De�nition 5.1. A strongly special curve in Hn is the image of a map of the
form

H→ Hn, 7→ (g1, ..., gn)

where g1 = 1, g2, ..., gn ∈ GL+
2 (Q).

De�nition 5.2. Let R = (R0, ..., Rk) be a partition of {1, ..., n} such that
only R0 is allowed to be empty. Denote HRj be the corresponding cartesian
product. A weakly special subvariety of Hn is a product

Y =
k∏
j=0

Yj

where Y0 ∈ HR0 is a special point and, for j = 1, ..., k, Yj is a strongly special
curve in HRj .

De�nition 5.3. A weakly special subvariety is called a special subvariety if
each coordinate of Y0 is a CM point of H

Recall that z ∈ H is a CM point if the corresponding elliptic curve has
complex multiplication. In other words, [Q(z) : Q] = 2, i.e a quadratic point.
Now for a CM point z, write aT 2 + bT + c ∈ Z[T ] be its primitive minimal
polynomial, denote ∆(z) = b2 − 4ac. Also, for all g ∈ GL+

2 (Q), there exists
a modular polynomial ΦN such that ΦN(j(z), j(gz)) = 0 for all z. Then we
are able to de�ne the complexity of an special subvariety of Hn.

De�nition 5.4. For a special subvariety Y ∈ Hn as above we de�ne its
complexity

∆(Y ) = max{∆(z), N(g)}
where z runs through all the coordinates of Y0 and g runs through all the
element in GL+

2 (Q) appeared in the de�nition of Y .
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The weakly special and special subvarieties of X = Y (1)n are the image
of the ones in Hn under j invariant, more precisely.

De�nition 5.5. Let π : Hn → Y (1)n be the cartesian product of j invariant.
A (weakly) special subvariety of Y (1)n is the image j(Y ) for some Y (weakly)
special. The complexity of j(Y ) is the complexity of Y .

It can be proved that for a special subvariety T ⊂ Y (1)n, if T = π(Y ) =
π(Y ′) for Y, Y ′ ⊂ Hn special, then ∆(Y ) = ∆(Y ′), thus ∆(T ) is well-de�ned.

Further, weakly special subvarieties come in families. Given a partition
(R0, ..., Rk) as in the de�nition of weakly special subvarieties, we may form
a new partition S in which the elements in R0 are made into individual
parts, the parts R1, ..., Rk are retained, and let S0 be empty. For every
g ∈

∏k
i=1GL

+
2 (Q) correspond to a unique special subvariety T of X. And

for this T , every t ∈ HR0 corresponds to a unique weakly special subvariety,
we call this translate of T by t, which we denoted by Tt.

5.2 Weakly Complex Ax

In the following we formulate the WCA hypothesis in the context of Y (1)n.
While the Ax-Schanuel type conjectures we are using in the abelian varieties
are already proved, the ones in modular curves are still unknown. We need
several de�nitions.

De�nition 5.6. By a subvariety U ⊂ Hn we mean an irreducible complex
analytic component of W ∩ U for some algebraic subvariety W ⊂ C.

De�nition 5.7. By a component we mean a complex-analytically irreducible
component of W ∩π−1(V ) inside Hn where W ⊂ U and V ⊂ X are algebraic
varieties.

By these notations the WCA can be stated as follows.

Conjecture 5.8. (WCA:Formulation 1) Let U ′ be a weakly special sub-
variety of U . Put X ′ = π(U ′) and let Y be a component of W ∩ π−1(V ),
where W ⊂ U ′ and V ⊂ X ′ are algebraic subvarieties. If Y is not contained
in any proper weakly special subvariety of U ′, then

dimY ≤ dimV + dimW − dimX ′

Then we give another formulation of WCA.
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De�nition 5.9. Fix a subvariety V of X.
1. If W is a component, we de�ne its defect by δ(W ) = dimW

zar − dimW .
2. A component W with respect to V is called optimal for V if here is no
strictly larger component Y with respect to V such that δ(Y ) ≤ δ(W ).
3. a component W with respect to V is called geodesic if it is a component
of Y ∩ V for some weakly special subvariety Y with Y = W

zar
.

Conjecture 5.10. (WCA:Formulation 2) Let V ⊂ X be a subvariety.
An optimal component with respect to V is geodesic.

It can be proved that two formulations are equivalent.

5.3 A �niteness result

Let X = Y (1)n. In order to state the �niteness result. We need the notion of
Mobius subvarieties. The de�nition of Mobius subvarieties is analogue to that
of weakly special subvarieties except that the matrices g are allowed to be
any element in GL+

2 (R) rather than GL+
2 (Q). Similar to special subvarieties,

Mobius also come in families of "translates", which are de�ned similarly
to that of special subvarieties. Any component Y ⊂ Hn is contained in a
smallest Mobius subvariety LY , which has a Mobius defect

δM(Y ) = dimLY − dimY

For a subvariety V of X, a component Y ⊂ π−1(V ) is called Mobius optimal
(for V in X) if there is no component Z with Y ( Z ⊂ π−1(V ) such that
δM(Z) ≤ δM(Y ). Now we have

Theorem 5.11. Assume WCA. Let V ⊂ X be a subvariety. Given a parti-
tion (R0, ..., Rk) of {1, ..., n} such that only R0 is allowed to be empty. Then
the set of

g ∈
k∏
i=1

GL+
2 (R)Ri

such that for some translate of Mg intersects π−1(V ) in a component which
is Mobius optimal for V is �nite modulo the action by

∏
i SL2(Z)Ri.

Proof. By WCA, any g in the assertion corresponds to a weakly special sub-
variety. Thus all the gi in the de�nition of g belong to GL+

2 (Q), thus the g in
the question comes from a countable set. Notice that for every such g, there
is a translate of which under SL2(Z)Ri such that the optimal component
has points of its full dimension in certain �xed fundamental domain, say Fn0 ,
and thus the optimality can be checked de�nably by considering dimensions
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of the intersection of π−1(V ) ∩ Fn0 . Therefore, in the structure of Ran,exp,
there is a de�nable countable and hence �nite set of g that represent all the
SL2(Z)−orbits.

Now we are able to show the �niteness result, which can be regarded as
an analogue of theorem 4.7.

Theorem 5.12. Assume WCA. Let V ⊂ X be a subvariety. Then there
is a �nite set of "basic special subvarieties" such that every weakly special
subvariety which has a geodesic-optimal component in its intersection with V
is a translate of one of them.

Proof. We pick the �nite set as in theorem 5.11. Since we assumedWCA, all g
in this set correspond to weakly special families. Also, every g ∈

∏
GL+

2 (Q)
havinga translate with a geodesic-optimal intersection will also appear in
this set. Thus Take the set of basic special subvarieties be those special
subvarieties determined by the g in the above set, we are done.

5.4 A conditional result for optimal subvarieties

In this section, we prove that by assuming both the hypothesis of Weakly
complex Ax and Large Galois Orbit, the Zilber-Pink conjecture for Y (1)n is
true.

Theorem 5.13. Assuming LGO and WCA for X = Y (1)n. Let V ⊂ X be
a subvariety. Then Opt(V ) is �nite.

Proof. We prove the theorem by induction on the dimension of V . If dimV =
0, then V itself is a point, the assertion holds. Now suppose dimV = r > 0
and the assertion is true for all subvarieties of dimension smaller than r. Take
K be the �eld of V which is a �nitely generated Q algebra. Since all optimal
subvarieties are automatically geodesically optimal, by the �niteness result,
the subvarieties in Opt(V ) are the component of the translate of a special
subvariety which comes from a set consisting �nitely many so called "basic
special subvarieties".

Now �x a basic special subvariety T ⊂ X in this �nite set. It su�ces
to show that only �nitely many translates of T intersect V exists an opti-
mal component. Let XT be the translate spece, i.e the space of parameters
of T , by the de�nition of translation, XT is a suitable Y (1)m for some m ≤ n.
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Write φ : X → Y (1)m for the quotient map. By the property of generic
smoothness([Har77] III Corollary 10.7), there is a Zariski open and dense
subset V ′ ⊂ V such that φ|V ′ : V ′ → φ(V ′) is smooth.
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