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1 Introduction

Consider a (positive) real number α and an integer b≥ 2. Then we know that we can
always find an integer m and a sequence (ak)k≥−m with terms in {0, . . . ,b−1} such that

α = a−m . . .a0 . a1a2a3 . . .

:=
∞

∑
k=−m

akb−k.

The expression a−m . . .a0 . a1a2a3 . . . is called the b-ary expansion of α and the terms
ak are the digits of α in base b. Furthermore, recall that we can make the choice of b-ary
expansion unique by excluding the expansions with a tail of (b−1)s.

We say that a real number α is normal in base b if for every n≥ 1, each of the bn pos-
sible blocks of n digits from {0, . . . ,b−1} occurs with frequency 1/bn among all blocks
of n consecutive digits of the b-ary expansion of α . In other words, for any fixed block of
n digits w = x1 . . .xn with xi ∈ {0, . . . ,b−1}, we define Nb

r (α,w) to be the number of oc-
currences of w among the blocks a−m · · ·an−1−m , a1−m · · ·an−m , . . . , ar+1−n−m · · ·ar−m
and we say that α is normal in base b if

lim
r→∞

Nb
r (α,w)

r
=

1
bn .

Moreover, we say that α is (absolutely) normal if it is normal in every base b≥ 2. It is
useful to observe that a real number α with sequence of digits (ak)k≥−m is normal (in
base b) if and only if (ak)k≥1 is the sequence of digits of a normal (in base b) number in
[0,1].

In 1909 Borel [9] used his strong law of large numbers to prove that almost every real
number (with respect to the Lebesgue measure) is absolutely normal. Though his proof
was faulty, it was fixed a year later by Faber [18] and various alternative proofs appeared
since then.

The first known numbers normal in some base b were constructed by Champernowne
[11] in 1933 by concatenating the b-ary expansions of the positive integers. For example

0.12345678910111213141516 . . .

in base 10. Furthermore, he conjectured that the number

0.23571113171923 . . .
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obtained by concatenating the decimal expansion of all the prime numbers is normal in
base 10, and this was proved by Copeland and Erdős [13] in 1946.

A few other examples of numbers normal in some base are known, and in 2002
Becher and Figueira [5] proved the existence of a computable absolutely normal number
by following an old proof by Sierpinski of Borel’s result. Despite the abundance of
normal numbers, though, we currently don’t know of any example which has not been
constructed ad-hoc. In 1950 Borel [10] conjectured that every irrational algebraic number
is absolutely normal, but an answer to this problem seems still out of reach. We don’t
even know if, say, 5 appears infinitely many times in the decimal expansion of

√
2.

1.1 β -expansions

This problem can be generalised as follows. Fix a real number β > 1 and consider
the transformation on [0,1] given by Tβ : x 7→ βx (mod 1). Then we can define the
β -expansion of a number α ∈ [0,1] as

0.x1x2 . . . :=
∞

∑
k=1

xkβ
−k

where xk =
⌊

βT k−1
β

(x)
⌋

for every k≥ 1 and T 0
β

is the identity on [0,1]. Furthermore, we
can extend this to every (positive) real number α by saying that the β -expansion of α is

β
n

∞

∑
k=1

xkβ
−k

where n ≥ 0 is the smallest integer such that α/β n ∈ [0,1] and xk are the digits of
the β -expansion of α/β n. Note that the β -expansion of a real number is unique by
construction.

Now, if β is an integer this is the same as the b-ary expansion defined above, otherwise
the digits xk are all elements of {0, . . . ,bβc}. We cannot naively extend the notion of
normal number to non-integer bases, though. For example, if β = ϕ is the golden ratio,
then 1+1/ϕ = ϕ implies that the sequence 11 will never appear in the ϕ-expansion of a
real number.

In 1957 Rényi [27] proved that Tβ admits a unique ergodic invariant probability
measure µβ , which is absolutely continuous with respect to the Lebesgue measure on
[0,1]. Furthermore, he showed that if β is an integer, then µβ is just the Lebesgue
measure on [0,1].

Observe that if 0.x1x2x3 . . . is the β -expansion of α , then 0.x2x3 . . . is the β -expansion
of Tβ (α). Now fix a sequence of digits w = y1 . . .yn and consider the set Iw of numbers
in [0,1] whose β -expansion starts with y1 . . .yn. If χw is the characteristic function of
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Iw, then by the pointwise ergodic theorem we know that for µβ -almost every number
α ∈ [0,1]

lim
k→∞

1
k

k

∑
i=1

χw(T i−1
β

(α)) =
∫
[0,1]

χw dµβ =
∫

Iw

dµβ (1.1)

and this generalises Borel’s result on the normality in base b of almost every real number.
Indeed, if β is an integer then µβ is the Lebesgue measure, and if w = y1 . . .yn then∫

Iw
dµβ = 1/β n.
As suggested by Adamczewski and Bugeaud in [1], a possible way to generalise

Borel’s conjecture on the normality of irrational algebraic numbers is to ask if identity
(1.1) holds for every algebraic number in [0,1] which is not a periodic point for the
dynamical system (Tβ , [0,1],µβ ). As for Borel’s conjecture, this question is currently
without answer, too.

No knowledge of Ergodic Theory is needed to understand the present work after
this point. The interested reader is invited to consult [14, Chapters 2 and 4] or [37,
Chapters 3 and 5] for an introduction to Ergodic Theory.

1.2 Complexity

Given two real numbers α and β > 1 define the complexity function of the β -expansion
of α as the function pβ

α : Z>0→ Z≥0 that assigns to each positive integer n the number
of distinct (possibly overlapping) blocks of n consecutive digits that appear in the β -
expansion of α .

Note that if α is normal in base b, then pb
α(n) = bn for every n≥ 1 (the converse isn’t

necessarily true). While even showing that pb
α(n) = bn for every irrational algebraic

α is still out of reach, in 2007 Adamczewski and Bugeaud [2] proved that the com-
plexity function pb

α of every irrational algebraic number grows more than linearly (see
corollary 1.3.2 below).

On the other hand, in 1965 Hartmanis and Stearns [19] proposed another notion of
complexity for real numbers, based on a notion of computability introduced by Turing
[39]. Namely, they said that a real number α is computable in time Tα(n) if there is a
multitape Turing machine that can compute the first n terms of the binary expansion of α

in at most Tα(n) operations. Further, they say that α is computable in real time if one
can choose Tα(n) ∈ O(n).

Clearly all rational numbers are computable in real time, and Hartmanis and Stearns
asked if there is any irrational algebraic number which is computable in real time. As far
as the present author knows this question has yet to be answered, but in 1968 Cobham [12]
proposed to restrict this problem to finite-state automata (see chapter 7 for a definition)
and tried to solve it. Loxton and van der Poorten attacked this problem in 1982 [23],
and in 1988 [24] they claimed to have proved that the b-ary expansion of any irrational
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algebraic number cannot be generated by a finite-state automaton. While their proof was
faulty (see Becker [6]), the restricted problem was finally solved by Adamczewski and
Bugeaud in 2007 [2].

1.3 The present work

The aforementioned results from Adamczewski’s and Bugeaud’s paper [2] were based
on the following:

Theorem 1.3.1. Let β > 1 be a Pisot or Salem integer. Let a = (ai)i≥1 be a bounded
sequence of rational integers. If there exists a real number w > 1 such that a satisfies
condition (∗)w (see definition 5.0.9), then the real number

α :=
∞

∑
i=1

ai

β i

either belongs to Q(β ) or is transcendental.

The goal of the present work was to generalise this theorem, which we did with
theorem 5.0.14, and possibly some of its consequences. While we later learned that after
[2] Adamczewski and Bugeaud published a result similar to the one we obtained, our
proof is original and some of the tools we developed are interesting in and of themselves,
notably corollary 4.0.7.

In chapter 2 we recall some generalities about absolute values on a number field.
In chapter 3 we give a brief outline of the Subspace Theorem from Diophantine

Approximation and its history. This Subspace Theorem is the main ingredient in the
proofs of theorem 1.3.1 and of theorem 5.0.14.

In chapter 4 we develop the tools which we use in chapter 5 to prove our generalisation
of theorem 1.3.1.

In chapter 6 we deduce corollary 6.0.19, which generalises some of the results from
[2], for instance the following:

Corollary 1.3.2. Let b≥ 2 be an integer. The complexity function of the b-ary expansion
of every irrational algebraic number α satisfies

liminf
n→∞

pb
α(n)
n

=+∞.

Other results from [2] that follow from our corollary 6.0.19 are the generalisation
of corollary 1.3.2 to Pisot and Salem integers (corollary 6.0.21), as well as a p-adic
analogue of corollary 1.3.2 (corollary 6.0.22).

Finally, in chapter 7 we use theorem 5.0.14 to prove that every k-automatic number is
either rational or transcendental.

6



2 Places and heights

We start by recalling a few notions of algebraic number theory, which we will need to
discuss our main results.

Definition 2.0.3. Let K be an infinite field. An absolute value on K is a function
|·| : K→ R≥0 such that

1. |x|= 0 if and only if x = 0;

2. |xy|= |x||y| for every x,y ∈K;

3. There is a constant C ≥ 1 such that |x+ y| ≤C max{|x|, |y|} for every x,y ∈K.

Further, the absolute value |·| is called non-archimedean if it satisfies (3) with C = 1, i.e.
if it satisfies

|x+ y| ≤max{|x|, |y|} ∀x,y ∈K.

This is called the ultrametric inequality. If |·| doesn’t satisfy this inequality, then it is
said to be archimedean.

Note that 2 implies that |1K|= 1, where 1K is the unit of K. An absolute value such
that |x|= 1 for every x ∈K\{0} is said to be trivial and from now on we will always
assume absolute values to be non-trivial.

Remark 2.0.4. If |·| is non-archimedean and 1K is the unit of K, then |1K|= 1 and the
ultrametric inequality imply that |n ·1K| ≤ 1 for every n ∈ Z.

An absolute value on K gives extra structure to K, in particular it induces a topology
on it, and we call the pair (K, |·|) a field with absolute value. A morphism between two
fields with absolute value (K1, |·|1) and (K2, |·|2) is just a field morphism ϕ : K1→K2
which preserves the extra structure, i.e. such that |x|1 = |ϕ(x)|2 for every x ∈K1.

Definition 2.0.5. Two absolute values |·|1 and |·|2 on K are said to be equivalent if there
is a constant e > 0 such that

|x|1 = |x|
e
2

for every x ∈K.
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Remark 2.0.6. Two absolute values on K are equivalent if and only if they induce the
same topology on K (e.g. see [26, proposition II.3.3]).

Definition 2.0.7. Consider a field with absolute value (K, |·|). An infinite sequence (an)
with terms in K is said to converge (in K, with respect to |·|) if there is an α ∈K such that
limn→∞|an−α|= 0. Furthermore, (an) is said to be Cauchy if limm,n→∞|am−an|= 0,
and we say that (K, |·|) is complete if every Cauchy sequence with terms in K converges
in K.

Now, consider a field with absolute value (K, |·|) which isn’t complete and let R be the
ring of all Cauchy sequences of (K, |·|), where addition and multiplication are defined
component-wise. The set m of sequences converging to 0 is a maximal ideal of R, so
the quotient K̂= R/m is a field. Note that we have a natural inclusion K ↪→ K̂ given by
sending an element x to the class of the constant sequence (x,x, . . .). Furthermore, we
can extend |·| to K̂ as follows: for every α ∈ K̂ represented by a Cauchy sequence (an)
let

|α| := lim
n→∞
|an|

which is well defined because ||am|− |an|| ≤ |am−an| implies that (|an|) is a Cauchy
sequence in R (with respect to the usual absolute value). Finally, it can be shown that
K̂ is complete with respect to |·| and that it is the smallest (with respect to inclusion of
fields with absolute value) complete field containing (K, |·|). Thus the field (K̂, |·|) is
said to be the completion of K with respect to |·|.

Remark 2.0.8. A theorem by Ostrowski shows that for every field K complete with
respect to an archimedean absolute value |·|K there are a constant s > 0 and an injective
homomorphism σ of K to either R or C such that |x|K = |σ(x)|s for every x ∈ K (e.g.
see [26, theorem II.4.2]).

Example 2.0.9. Consider K=Q. For every x ∈Q and for every prime number p define
the absolute values

|x|
∞

:= max(x,−x)

|x|p := p−ordp(x)

where ordp(x) is the unique integer such that x = pordp(x)a/b with a,b ∈ Z and p - ab,
and where for every p we define |0|p = 0.

We see that |·|
∞

is archimedean and the completion of Q with respect to it is Q∞ := R,
while for every prime p the absolute value |·|p is non-archimedean and the completion of
Q with respect to it is denoted by Qp and called the field of p-adic numbers. Furthermore,
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by another of Ostrowski’s theorems we know that every absolute value on Q is equivalent
to either |·|

∞
or |·|p for some prime number p (e.g. see [26, proposition II.3.7]).

Finally, note that these absolute values satisfy the so-called product formula

|x|
∞ ∏

p prime
|x|p = 1 ∀x ∈Q∗.

Consider a field with absolute value (K, |·|). If L is a field extension of K, we say that
an absolute value |·|L on L is an extension of |·| if its restriction to K coincides with |·|.
We have the following:

Proposition 2.0.10. If (K, |·|) is a complete field with absolute value and L is any
algebraic extension of K, then |·| can be extended in a unique way (up to equivalence) to
L. Furthermore, if L is finite over K we have that

|x|=
∣∣NL/K(x)

∣∣1/[L:K]

for every x ∈ L and L is complete with respect to this absolute value.
On the other hand, if L is an algebraic closure of K we have |x| = |σ(x)| for every

x ∈ L and τ ∈ Gal(L,K).

Proof. See [26, theorem II.4.8].

Remark 2.0.11. Even if (K, |·|) is not complete we can always extend |·| to any algebraic
extension L of K, because L is always contained in some algebraic extension of K̂, but
this absolute value may not be unique (up to equivalence).

For example consider K = Q, ϕ1 and ϕ2 the golden ratio and its conjugate, and
L = Q(ϕ1). Then for i = 1,2 let σi : L→ R be the embedding such that ϕ1 7→ ϕi
and observe that the absolute values |·|1, |·|2 on L defined by |x|i := |σi(x)| cannot be
equivalent, because |ϕ1|1 > 1 but |ϕ1|2 < 1.

2.1 Places on a number field

From now on K will be an algebraic number field, unless otherwise stated.

Definition 2.1.1. A real place of K a set {σ} where σ : K→ R is a real embedding of
K, while a complex place of K is a set {σ , σ̄} where σ , σ̄ : K→ C is a pair of conjugate
complex embeddings of K.

An infinite place of K is either a real or complex place, while a finite place of K is a
non-zero prime ideal p of OK. We denote by MK, M∞

K, and M0
K the sets of places, infinite

places, and finite places of K, respectively.
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Remark 2.1.2. If r1 and r2 are the numbers of real and complex places of K, respectively,
then we know that r1 +2r2 = [K : Q].

Similarly to what we did for Q in example 2.0.9, for each place v of K we can define
an absolute value |·|v as follows (for every x ∈K):

|x|v := |σ(x)| if v = {σ} is real

|x|v := |σ(x)|2 = |σ̄(x)|2 if v = {σ , σ̄} is complex

|x|v := NK(p)
−ordp(x) if v = p is finite

where NK(p) = |OK/p| is the absolute norm of p, ordp(x) is the exponent of p in the
prime factorisation of (x), and where for every p we define |0|p = 0.

Remark 2.1.3. Let ρ : L→K be an isomorphism of algebraic number fields and consider
a place v of K. Then we can define a place v◦ρ of L by

v◦ρ :=


{σρ} if v = {σ} is real
{σρ, σ̄ρ} if v = {σ , σ̄} is complex
ρ−1(p) if v = p is finite

and the corresponding absolute value is |x|v◦ρ = |ρ(x)|v for every x ∈ L.

Remark 2.1.4. It can be showed that every algebraic number field which is complete with
respect to a non-archimedean absolute value is isomorphic (as a field with absolute value)
to a finite extension of Qp for some prime number p (e.g. see [26, proposition II.5.2]).

Note that for any pair of distinct places u,v of K the absolute values |·|u and |·|v cannot
be equivalent. Moreover, using the results mentioned in remarks 2.0.8 and 2.1.4 one can
prove that the completion Kv of K with respect to |·|v is isomorphic to:

• R if v is a real place;

• C if v is a complex place;

• a finite extension of Qp if v = p is a finite place and p∩Z= (p).

Remark 2.1.5. Any archimedean absolute value |·|K on K is equivalent to |·|v for some
v ∈M∞

K. Indeed, consider the completion K̂ and the natural inclusion ι : K→ K̂. Then
by remark 2.0.8 we know that K̂ is isomorphic to either R or C: in the first case |·|K
is equivalent to |ι(·)| = |·|v with v = {ι} a real place, while in the second case |·|K is
equivalent to |ι(·)|= |·|v with v = {ι , ῑ} a complex place.
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Remark 2.1.6. Let x be a non-zero element of K. Then the Chinese Remainder Theorem
and |OK/(pe)|= pe[K:Q] imply that NK((x)) = |OK/(x)|=

∣∣NK|Q(x)
∣∣. This, combined

with the product formula for Q, gives the product formula for K:

∏
v∈MK

|x|v = 1 ∀x ∈K∗.

Remark 2.1.7. The following inequality is sometimes useful:

|x1 + · · ·+ xn|v ≤ nev max(|x1|v, . . . , |xn|v) ∀v ∈MK ∀x1, . . . ,xn ∈K

where ev is 1 if v is real, 2 if v is complex, and 0 if v is finite. In particular, ∑v∈M∞
K

ev =

[K : Q].

Definition 2.1.8. Consider a finite extension L⊃K of number fields and places v,V of
K,L, respectively. We say that V lies above v (or that v lies below V ) if the restriction of
|·|V to K is a power of |·|v.

Remark 2.1.9. This happens precisely when v,V are archimedean and the embeddings
of v are the restriction of the embeddings of V , or if v = p and V =P are prime ideals of
OK and OL, respectively, such that P⊃ p.

Furthermore, if V lies over v the completion LV is a finite extension of Kv. Indeed, if
v and V are infinite then [LV : Kv] is 1 or 2, while if v = p and V =P are finite we have
[LV : Kv] = e(P|p) f (P|p), where e(P|p) and f (P|p) denote the ramification index and
residue class degree of P over p.

Proposition 2.1.10. Consider a finite extension L⊃K of number fields. Further, let v
be a place of K and let V1, . . . ,Vg be the places of L lying over v. Then

|α|Vk
= |α|[LVk :Kv]

v for all α ∈K,k ∈ {1, . . . ,g} (2.1)
g

∏
k=1
|α|Vk

=
∣∣NL/K(α)

∣∣
v for all α ∈ L (2.2)

g

∑
k=1

[LVk : Kv] = [L : K]. (2.3)

Proof. This is clear if v and V are infinite, thus suppose that v = p and Vk =Pk (k ∈
{1, . . . ,g}) are finite, with Pk ⊃ p. Then (2.1) follows from the fact that for every α ∈K
and k ∈ {1, . . . ,g} we have

|α|Vk
= NL(Pk)

−ordPk (α) = NK(p)
−e(Pk|p) f (Pk|p)ordPk (α) = |α|[LVk :Kv]

v .
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For the second identity see [21, Chapter II, section 6], while (2.3) follows from the other
two identities, because for α ∈K∗ we have

|α|∑
g
k=1[LVk :Kv]

v =
g

∏
k=1
|α|Vk

=
∣∣NL/K(α)

∣∣
v = |α|

[L:K]
v .

2.2 Heights and S-units

Definition 2.2.1. Let S be a finite set of places of K which contains all the infinite places.
An x ∈K is said to be an S-integer if |x|v ≤ 1 for every place not in S. The S-integers
form a ring, denoted by OS. The units in OS are called S-units and their group is denoted
by O∗S .

Remark 2.2.2. If S = M∞
K then by remark 2.0.4 we know that OS = OK and O∗S =

O∗K. Otherwise S = M∞
K∪{p1, . . . ,pr} and OS = OK[(p1 · · ·pr)

−1], while the S-units are
precisely the elements x of K such that all the prime factors of (x) are in {p1, . . . ,pr}.

Example 2.2.3. If K=Q and S = {∞, p1, . . . , pr}, then ZS = Z[(p1 · · · pr)
−1] and

Z∗S = {x =±pe1
1 · · · p

er
r ∈Q : e1, . . . ,er ∈ Z}.

2.2.1 S-norm and S-height

Definition 2.2.4. Fix a set S as in definition 2.2.1. The S-norm of x ∈K is

NS(x) := ∏
v∈S
|x|v.

Observe that the S-norm is multiplicative. Moreover, suppose that S = M∞
K ∪

{p1, . . . ,pr} and consider an x ∈ K∗. Then there are some integers e1, . . . ,er and a
fractional ideal a of OK such that

(x) = pe1
1 · · · p

er
r a

and pi - a for every i ∈ {1, . . . ,r}. Thus by the product formula we have

NS(x) = ∏
v/∈S
|x|−1

v = ∏
p∈M0

K\{p1,...,pr}
NK(p)

ordp(x) = NK(a).

Remark 2.2.5. In particular, if ε is an S-unit then a= OK, so NS(ε) = 1.
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Now consider a finite extension L of K and

T = M∞
L ∪P1∪·· ·∪Pr

where Pi is the set of prime ideals P of OL lying above pi, i.e. such that P∩OK = pi,
for every i ∈ {1, . . . ,r}. Then OT is the integral closure in L of OS and

NT (x) = NL(aOL) = NK(a)
[L:K] = NS(x)[L:K]

for every x ∈K∗.

Definition 2.2.6. We define the S-height of x = (x1, . . . ,xn) ∈ On
S as

HS(x) = HS(x1, . . . ,xn) := ∏
v∈S

max(|x1|v, . . . , |xn|v).

Note that if n = 1 then HS(x) = NS(x).

Remark 2.2.7. For every ε ∈ O∗S and for every x = (x1, . . . ,xn) ∈ On
S we have

HS(εx) = ∏
v∈S

max(|εx1|v, . . . , |εxn|v) = NS(ε)HS(x) = HS(x).

2.2.2 Absolute heights

In this section consider a fixed algebraic closure Q of Q.

Definition 2.2.8. The absolute (multiplicative) height of a number α ∈Q is defined as

H(α) := ∏
v∈MK

max(1, |α|v)
1/[K:Q]

where K⊂Q is any number field containing α . Furthermore, the absolute logarithmic
height of α is h(α) := logH(α).

Note that (2.2) from proposition 2.1.10 implies that H(α) is independent from the
choice of field containing α .

Now fix a number field K. Then for every α ∈K∗ we immediately see that

h(α) =
1

[K : Q] ∑
v∈MK

log(max(1, |α|v)) .

Lemma 2.2.9. Consider α,α1, . . . ,αn ∈Q, m ∈ Z, and an automorphism σ of Q. Then

1. h(σ(α)) = h(α);
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2. h(α1 · · ·αn)≤ ∑
n
i=1 h(αi);

3. h(α1 + · · ·+αn)≤ log(n)+∑
n
i=1 h(αi);

4. h(αm) = |m|h(α) if α 6= 0.

Proof. The first property is a direct consequence of remark 2.1.3. The second follows
from

max(1,xy)≤max(1,x)max(1,y)

for every x,y > 0. The fourth property follows from max(1,xn) = max(1,x)n for every
x ∈ R. And finally the third property follows from remark2.1.7 because if K is an
algebraic number field which contains α1, . . . ,αn, then

h(α1 + · · ·+αn) =
1

[K : Q] ∑
v∈MK

log(max(1, |α1 + · · ·+αn|v))

≤ 1
[K : Q] ∑

v∈MK

log(max(1,nev max(|α1|v, . . . , |αn|v))

≤ 1
[K : Q] ∑

v∈MK

ev log(n)+
1

[K : Q] ∑
v∈MK

log(max(1, |α1|v, . . . , |αn|v))

≤ log(n)+
1

[K : Q] ∑
v∈MK

log(max(1, |α1|v) · · ·max(1, |αn|v))

= log(n)+
n

∑
i=1

h(αi).
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3 The Subspace Theorem

For our main result we will need to prove a corollary of (one form of) a powerful and
versatile theorem, known as the Subspace Theorem. Following the excellent Bourbaki
talk [7] by Y. Bilu, to give it some context and motivation we will start with a few special
cases.

From now on Q is the set of algebraic numbers in C and for every absolute value on Q
we choose an extension to Q. Furthermore, K is a fixed algebraic number field, K a fixed
algebraic closure of K, and for every absolute value on K we choose an extension to K.

3.1 Roth’s theorem

Recall that by Dirichlet’s approximation theorem the inequality∣∣∣∣α− x
y

∣∣∣∣≤ |y|−2

has infinitely many solutions in coprime non-zero integers x,y whenever α is an irrational
number. In 1955 K. F. Roth [29] showed that, in some sense, this is the best possible
case when α is algebraic; namely, he proved the following:

Theorem 3.1.1 (Roth). If α is a real algebraic number of degree d ≥ 3, then for every
ε > 0 there is a constant c(α,ε)> 0 such that∣∣∣∣α− x

y

∣∣∣∣≥ c(α,ε)max(|x|, |y|)−2−ε (3.1)

for every x,y ∈ Z with y 6= 0.

Remark 3.1.2. Note that Roth’s theorem holds if α is rational or quadratic, too (as long
as x

y 6= α), but then it is weaker than (3.2) below. Also, it trivially holds even if α ∈C\R,
because then |α−ξ | ≥ Im(α) for every ξ ∈Q.

This theorem has a long history. Already in 1855 Liouville proved the existence of a
constant c(α)> 0 such that

|α−ξ | ≥ c(α)H(ξ )−d (3.2)
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for every ξ ∈Q with ξ 6= α , where α is an algebraic number of degree d. Liouville’s
result is too weak for many applications in Diophantine Approximation, though. In 1909
A. Thue showed [38] the existence of a constant c(α,ε) > 0 such that (3.1) holds for
every ε > d/2−1 when α is an algebraic number of degree d ≥ 3. In 1921 C. L. Siegel
[36] refined this to ε ≥ 2

√
d−2, in 1949 A. O. Gel’fond and F. Dyson independently

improved this to ε >
√

2d−2, and in 1955 Roth made the final step. However, it should
be noted that Liouville’s result is effective, meaning that it gives a way to compute the
constant c(α) explicitly, while those of Thue, Gel’fond, Dyson, and Roth are not.

In 1958 D. Ridout [28], then a student of K. Mahler, extended Roth’s theorem to the
case of non-archimedean absolute values by proving the following:

Theorem 3.1.3 (Ridout). Let S be a finite set of places of Q containing the infinite place
and for each v ∈ S fix an algebraic number αv. Then for every ε > 0 the inequality

∏
v∈S

min
{

1,
∣∣∣∣αv−

x
y

∣∣∣∣
v

}
< max(|x|, |y|)−2−ε

has at most finitely many solutions x,y ∈ Z with y 6= 0.

Finally, it is worth noting that S. Lang extended the theorems of Roth and Ridout to
cover approximation of algebraic numbers by elements of a fixed number field. The
interested reader may find the statement and proof of this theorem in Lang’s classic book
[22, Chapter 7] or in the more recent volume [20, Part D] by Hindry and Silverman.

3.2 Statement of the Subspace Theorem

Recall that n linear forms in m variables

L1 = a1,1X1 + · · ·+am,1Xm , . . . , Ln = a1,nX1 + · · ·+am,nXm

with coefficients in some field F are said to be linearly independent if and only if the
vectors

(a1,1, . . . ,am,1) , . . . , (a1,n, . . . ,am,n)

are linearly independent in Fm.
In 1972 W. M. Schmidt [34] proved the following (see also his lecture notes [35])

Theorem 3.2.1 (Subspace Theorem, Schmidt). Fix n≥ 2 and consider linearly indepen-
dent linear forms L1, . . . ,Ln in n variables with coefficients in Q. Then for every C > 0
and ε > 0 the solutions of

|L1(x) · · ·Ln(x)| ≤C‖x‖−ε with x ∈ Zn

lie in the union of finitely many proper subspaces of Qn, where ‖x‖ := max(|x1|, . . . , |xn|).
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Note that with n = 2, L1(x,y) = xα− y, and L2(x,y) = x we recover Roth’s theorem.
Still, this result proved insufficient for many applications and it was later generalised by
H. P. Schlickewei [30, 31], similarly to how Ridout generalised Roth’s theorem.

Theorem 3.2.2 (Subspace Theorem, Schlickewei). Let S be a finite set of places of Q,
including the infinite place, and for every v ∈ S let L1,v, . . . ,Ln,v be linearly independent
linear forms in n variables with coefficients in Q. Then for any fixed ε > 0 the solutions
of

∏
v∈S

n

∏
i=1
|Li,v(x)|v ≤ HS(x)−ε with x ∈ Zn

S \{0}

lie in the union of finitely many proper linear subspaces of Qn.

Unfortunately, even this formulation proved insufficient for many applications: one
needs to extend it to the case where the variables x1, . . . ,xn are chosen from an arbitrary
number field. This, too, was done by Schlickewei [32].

Theorem 3.2.3 (p-adic Subspace Theorem). Let S be a finite set of places of K containing
all the infinite places. Further for each v ∈ S let L1,v, . . . ,Ln,v be linearly independent
linear forms in X1, . . . ,Xn with coefficients from K. Then for any fixed ε > 0 the solutions
of

∏
v∈S

n

∏
i=1
|Li,v(x)|v ≤ HS(x)−ε with x ∈ On

S \{0} (3.3)

lie in the union of finitely many proper linear subspaces of Kn.

A detailed proof of this theorem can be found in the recent book [8] by E. Bombieri
and W. Gubler. The interested reader is invited to consult this very book or Bilu’s
Bourbaki talk [7] for a flavour of the many interesting applications of this theorem.

Finally, it is important to mention that the proofs of all of these results are ineffective,
in that they don’t provide a way to actually determine the involved subspaces. There are
some quantitative versions of the Subspace Theorem, though, obtained by J. H. Evertse,
H. P. Schlickewei, and R. G. Ferretti that give an upper bound on the number of subspaces
(see for example [17] or [16]).
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4 A useful lemma

Again, in what follows K is assumed to be an algebraic number field.

Definition 4.0.4. Let Jn = {1, . . . ,n}. A sum y= x1+ . . .+xn is said to be non-degenerate
if it is non-zero and every subsum is non-zero, i.e. if for every non-empty subset I⊆ Jn we
have ∑i∈I xi 6= 0. Further, given I ⊆ Jn we shall call y an I-sum if ∑i∈I xi is non-degenerate
and equal to y.

Lemma 4.0.5 (Key). Let S be any finite set of places of K. For each v ∈S consider a
linear form Lv = αv(X1 + · · ·+Xn)−Xn+1 with αv algebraic not in K and let Lv = Xn+1
for v ∈M∞

K \S . Further, let S = M∞
K∪S . Then for any fixed ε > 0

∏
v∈S
|Lv(x)|v ≤ HS(x)−ε (4.1)

has, up to multiplication by S-units, only finitely many non-degenerate solutions x ∈
(O∗S )

n× (OS \{0}), i.e. solutions such that x1 + . . .+ xn is non-degenerate.

Proof. First note that, since x1, . . . ,xn are all S-units by hypothesis, (4.1) is equivalent to

∏
v∈S
|x1 · · ·xnLv(x)|v ≤ HS(x)−ε (4.2)

and that the solutions of (4.2) lie in the union of finitely many proper linear subspaces of
Kn+1 by the p-adic Subspace Theorem. Let T be one such subspace, with equation, say,
θ1X1 + . . .+θn+1Xn+1 = 0.

If θn+1 6= 0 then we can assume without loss of generality that θn+1 =−1. Furthermore,
since we are considering only solutions with xn+1 6= 0, at least another one of
θ1, . . . ,θn must be non-zero, say θn. Also note that αv− θi 6= 0 for every i ∈
{1, . . . ,n} and for every v ∈S because αv /∈K by hypothesis. Now consider the
linear forms {

L′v = (αv−θ1)X1 + · · ·+(αv−θn)Xn if v ∈S

L′v = θ1X1 + · · ·+θnXn otherwise

and observe that

rank{X1, . . . ,Xn−1,L′v}= n for every v ∈ S.
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Moreover, if x = (x1, . . . ,xn+1) is a solution of (4.2) in T , then x′ = (x1, . . . ,xn) is
a solution of

∏
v∈S

∣∣x1 · · ·xn−1L′v(x
′)
∣∣
v ≤ HS(x′)−ε (4.3)

because HS(x′) ≤ HS(x). By the p-adic Subspace Theorem we know that the
solutions of (4.3) lie in the union of finitely many proper linear subspaces of Kn,
and viewing any such subspace as a proper linear subspace of Kn+1 we can then
reduce to the following case:

If θn+1 = 0 then without loss of generality we may assume θn = 1. Now, for every
j ∈ {1, . . . ,n−1} define θ ′j := 1−θ j and note that at least one of the θ ′j must be
non-zero because otherwise every solution in T would be degenerate. Further, up
to adding finitely many finite places to S, we may assume that each non-zero θ ′j is
an S-unit.

We proceed by induction on n, observing that there are no solutions in T for n = 1,
because u 6= 0 for every u ∈O∗S . Then suppose n > 1. For any non-empty subset
I ⊆ Jn−1 = {1, . . . ,n−1} define an I-solution (of (4.1) in T ) as a non-degenerate
solution x ∈ T of (4.1) such that θ ′1x1 + · · ·+θ ′n−1xn−1 is an I-sum. Further, let{

Lv,I = αv(∑I Xi)−Xn+1 if v ∈S

Lv,I = Xn+1 otherwise.

Now note that if x = (x1, . . . ,xn+1) is a non-degenerate solution of (4.1), then there
is a non-empty I ⊆ Jn−1 such that x is an I-solution. Hence x′ = (θ ′i xi (i ∈ I);xn+1)
is a non-degenerate solution of

∏
v∈S

∣∣Lv,I(x′)
∣∣
v = ∏

v∈S
|Lv(x)|v ≤ HS(x)−ε �{θi}I HS(x′)−ε

so by the induction hypothesis we deduce that there are only finitely many possible
values for ( xi

xn
)i∈I . Then fix a tuple (di)i∈I of such values and let D = 1+∑I di.

Further, observe that D 6= 0 because x is non-degenerate, so up to adding finitely
many finite places to S we may assume D ∈ O∗S . Then let{

LI
v = αv

(
∑Jn−1\I X j +Xn

)
−Xn+1 if v ∈S

LI
v = Xn+1 otherwise

and note that x non-degenerate implies that x′′ = (x j,Dxn,xn+1) j∈Jn−1\I is a non-
degenerate solution of

∏
v∈S

∣∣LI
v(x
′′)
∣∣
v = ∏

v∈S
|Lv(x)|v ≤ HS(x)−ε �D HS(x′′)−ε
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hence, again by the induction hypothesis, we conclude that there are only finitely
many possible choices for x up to multiplication by an S-unit. This is enough to
prove the lemma because Jn−1 has only finitely many (non-empty) subsets.

Remark 4.0.6. Note that if u ∈ O∗S , then Lv(ux) = uLv(x) for every v ∈ S. Hence if x is
a solution of (4.1), then ux is a solution, too. Therefore if #S > 1, then (4.1) has either
infinitely many solutions (overall) or no solution at all.

Corollary 4.0.7. Let S,T be finite sets of places of K such that S contains all the infinite
places. Further, for every v ∈ T fix an algebraic number αv not in K. Then for every
fixed ε > 0 and M > 0

∏
v∈T

∣∣∣∣αv−
x
y

∣∣∣∣
v
< HS(x,y)−1−ε (4.4)

has, up to multiplication by an S-unit, at most finitely many solutions in x ∈OS \{0} and
y a non-degenerate sum of at most M S-units.

Proof. First note that we may assume T ⊆ S. Indeed, |x|v ≤ 1 and |y|v ≤ 1 for every
v ∈ T \S because x,y ∈ OS. Thus HS(x,y)≥ HS∪T (x,y).

Now suppose that x,y is a solution of (4.4) with y the non-degenerate sum of
u1, . . . ,un ∈ O∗S . Then from [15, theorem 2] follows that for any v ∈ S and for any
δ > 0 we have

max(|x|v, |y|v)�max(|x|v, |u1|v, . . . , |un|v)HS(u)−δ/#S

where u=(u1, . . . ,uk) and where the constants implied by the Vinogradov symbol depend
only on K,S,n, and δ . Taking the product over all v ∈ S this gives

HS(x,y)� HS(x,u1, . . . ,un)HS(u)−δ � HS(x,u1, . . . ,un)
1−δ .

If we choose 0 < δ < 1, then ε(1−δ )> 0 and x,u1, . . . ,un is a solution of

∏
v∈T
|αvy− x|v ∏

w∈S\T
|x|w ≤ HS(x,y)∏

v∈T

∣∣∣∣αv−
x
y

∣∣∣∣
v

�K,S,n,δ HS(x,u1, . . . ,un)
−ε(1−δ ). (4.5)

By the key lemma (4.5) has at most finitely many solutions up to multiplication by an
S-unit, thus the result follows immediately by letting n range over the positive integers
less than M.

Note that this corollary gives an improvement on the theorems of Roth and Ridout for
a special kind of solutions, in that here we have an exponent −1− ε instead of −2− ε .
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Remark 4.0.8. Corollary 4.0.7 implies that the decimal expansion of an algebraic number
cannot have “too long” blocks of zeroes. More precisely, let 0.a1a2 . . . be the decimal
expansion of an (irrational) algebraic number α and for every integer n > 0 define `(n)
to be the minimal `≥ 0 such that an+` 6= 0. Then `(n) = o(n) for n→ ∞.

Indeed, consider K=Q, S = {∞,2,5}, T = ∞, and M = 1. Then corollary 4.0.7 gives
that

|α− x|< H(x)−1−ε

has at most finitely many solutions in S-integers x; in particular in rational numbers
x with terminating decimal expansion. Now suppose that limsupn→∞ `(n)/n > 0, i.e.
suppose that there are a constant c > 0 and a strictly increasing infinite sequence of
integers (nk)k≥1 such that `(nk)> cnk. Further, let

xk = 0.a1a2 . . .ank =:
p

10nk
.

Then H(xk) = max(p,10nk) = 10nk , so there is an ε > 0 such that (for k large enough)

|α− xk| ≤ 10−nk−`(nk)+1 < H(xk)
−1−ε

contradicting corollary 4.0.7.
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5 A transcendence criterion

We shall now introduce some notation, following [2]. Let A be a finite alphabet and
consider a word W on A . We denote by |W | the length of W and for any positive
integer n we write W n for the concatenation of W with itself n times. Further, for any
positive real number x, we write W x for W bxcW ′, where W ′ is a prefix of W of length
d(x−bxc)|W |e.

Definition 5.0.9. Let a = (ai)i≥1 be a sequence of elements of A , which we identify
with the infinite word a1a2 . . . , and let w > 1 be a real number. We say that a satisfies
condition (∗)w if it is not eventually periodic and if there are two infinite sequences of
finite words (Un),(Vn) such that:

1. For any index n the word UnV w
n is a prefix of a;

2. The sequence
(
|Un|
|Vn|

)
is bounded from above by a constant D > 0;

3. The sequence (|Vn|) is strictly increasing.

Example 5.0.10. It is fairly straightforward to construct a sequence that satisfies condi-
tion (∗)w for a given w > 1. For example, let A = {0,1} and define the sequences (Un)
and (Vn) as follows: let U1 = 0, V1 = 1 and for every n > 1 consider

Un =Un−1V w
n−1 and Vn =

|Un| times︷ ︸︸ ︷
dd · · ·d

where d = 0 if n is even and d = 1 if n is odd. Then simply let (ai) be the limit sequence
of Un for n→ ∞.

For a more interesting example, note that in corollary 7.0.29 we prove that every
non-periodic k-automatic sequence satisfies condition (∗)w. In particular, the classic
Thue-Morse sequence (see example 7.0.24) satisfies condition (∗)w with w = 3/2.

Definition 5.0.11. Let a be a sequence satisfying condition (∗)w for some w > 1 and
write sn and rn for the lengths of Un and Vn, respectively. Then we define the n-th
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(ultimately) periodic approximant of a to be the sequence b(n) given by{
b(n)i = ai for 1≤ i≤ rn

b(n)rn+i+hsn
= arn+i for 1≤ i≤ sn and h≥ 0.

Note. The n-th periodic approximant of a is indeed ultimately periodic, with preperiod
Un and period Vn.

Remark 5.0.12. Let a,b(n),rn,sn as in definition 5.0.11 and assume that the terms of a
are in K. Then in K[[X ]] we have

∞

∑
i=1

b(n)i X i =
rn

∑
i=1

ai X i +
∞

∑
i=rn+1

b(n)i X i

=
rn

∑
i=1

ai X i +X rn

(
sn

∑
i=1

arn+i X i

)(
∞

∑
h=0

Xhsn

)

=
rn

∑
i=1

ai X i +
X rn

1−X sn

sn

∑
i=1

arn+i X i. (5.1)

Let v be a place of K and denote by Kv the completion of K at v. Further, let (ai)i≥0
be a sequence with terms in Kv. To lighten the notation, we define

∞

v -∑
i=0

ai := lim
m→∞

m

∑
i=0

ai with respect to |·|v

provided the limit exists.

Remark 5.0.13. Consider a β ∈K and a place v of K such that |β |v > 1. If (ai)i≥0 is a
sequence of elements of K such that there is a constant Cv > 0 with |ai|v <Cv for every
i≥ 0 then

∞

v -∑
i=0

ai

β i

converges in Kv. Indeed we just need to prove that the partial sums form a Cauchy
sequence: for every m > n≥ 0 we have

If v is non-archimedean then by the ultrametric inequality∣∣∣∣∣ m

∑
i=n

ai

β i

∣∣∣∣∣
v

≤Cv|β |−n
v .
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If v is archimedean let dv be 1 if v is real or 2 if v is complex. Then∣∣∣∣∣ m

∑
i=n

ai

β i

∣∣∣∣∣
v

≤

(
m

∑
i=n

∣∣∣∣ ai

β i

∣∣∣∣1/dv

v

)dv

≤Cv
|β |−n

v

1−|β |−1/dv
v

.

Furthermore, this gives an upper bound for
∣∣∣v -∑

∞

i=0
ai
β i

∣∣∣
v

in terms of just Cv and |β |v.

Recall that the absolute (multiplicative) height of α ∈K is defined as

H(α) := ∏
v∈MK

max(1, |α|v)
1/[K:Q]

and that the absolute logarithmic height of α is h(α) := logH(α).

Theorem 5.0.14. Fix an algebraic number field K. Then fix a non-zero β ∈ K and a
place v of K such that |β |v > 1. Now consider a = (ai) a sequence with terms in a finite
subset A ⊆ OK. If there is w > 1 such that a satisfies condition (∗)w and

1+
w−1
D+1

> [K : Q]
h(β )

log|β |v

where D > 0 is the upper bound of the sequence (|Un|/|Vn|) from condition (∗)w, then

αv =
∞

v -∑
i=1

ai

β i

is either in K or transcendental.

Proof. Assume αv /∈K and write sn and rn for the lengths of Un and Vn from the definition
of condition (∗)w, respectively. Then for every positive integer n define

α
(n)
v =

∞

v -∑
i=1

b(n)i
β i

where b(n) is the n-th periodic approximant of a and observe that

αv−α
(n)
v =

∞

v -∑
i=rn+dwsne+1

ai−b(n)i
β i .
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Moreover, by substituting β−1 in (5.1) we have

β
rn(β sn−1)α(n)

v = β
rn+sn(1−β

−sn)

(
rn

∑
i=1

ai

β i +
β−rn

1−β−sn

sn

∑
i=1

arn+i

β i

)

=
rn

∑
i=1

ai β
rn−i(β sn−1)+

sn

∑
i=1

arn+i β
sn−i

=: Pn(β ).

In particular, note that Pn is a polynomial of degree at most rn + sn−1. Now let

S := M∞
K∪{u ∈MK : |β |u 6= 1} S := {u ∈ S : |β |u > 1}

and observe that
|Pn(β )|u�A ,u rn + sn

for every u ∈ S\S . Furthermore, by remark 5.0.13∣∣∣αv−α
(n)
v

∣∣∣
v
=

∣∣∣∣αv−
Pn(β )

β rn+sn−β rn

∣∣∣∣
v
�A ,β ,v |β |−rn−wsn−1

v .

Since (sn) is increasing by condition (∗)w and we are assuming αv /∈K, this implies that
α
(n)
v admits infinitely many different values. Indeed, otherwise there would be an N > 0

such that αv = α
(N)
v ∈K. Now define d1 := #(S\S ) and

` := [K : Q]
h(β )

log|β |v
=

1
log|β |v

(
∑

u∈S
log|β |u

)
.

For x = (β rn+sn,−β rn,Pn(β )) we have

HS(x) = ∏
u∈S

max(|β |rn+sn
u , |β |rn

u , |Pn(β )|u)

�A ,S\S (rn + sn)
d1 ∏

u∈S
max(|β |rn+sn

u , |β |rn
u , |Pn(β )|u)

�A ,S (rn + sn)
d1 ∏

u∈S
|β |rn+sn

u

= (rn + sn)
d1|β |`(rn+sn)

v .

Thanks to corollary 4.0.7, this means that we’re done if we can prove that there are
constants C,ε > 0 such that

C(rn + sn)
εd1|β |(1+ε)`(rn+sn)

v ≤ |β |rn+sn+(w−1)sn
v .
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Taking logarithms and rearranging, this is equivalent to

log(C)+ εd1 log(rn + sn)≤
(
(1− `(1+ ε))(rn + sn)+(w−1)sn

)
log|β |v.

Now, by hypothesis we know that rn
sn

is bounded from above by D > 0, thus

(w−1)sn

rn + sn
=

w−1
rn
sn
+1
≥ w−1

D+1
.

Further, note that log(rn+sn)
rn+sn

takes its maximum for rn + sn = 3, thus it follows that it is
enough to find C′,ε > 0 such that

log(C′)+ εd1
log(3)

3
≤
(

1+
w−1
D+1

− `− ε`

)
log|β |v

which is indeed possible because by hypothesis 1+ w−1
D+1 − ` > 0.

In [1] Adamczewski and Bugeaud proved a similar statement with a more manageable
hypothesis on a. Namely, they said that a satisfies condition (∗)ρ for some real constant
ρ ≥ 1 if there are two sequences of finite words (Un),(Vn) and a sequence of positive
real numbers (wn) such that:

1. For any index n the word UnV wn
n is a prefix of a;

2. |UnV wn
n |/|UnVn| ≥ ρ for any index n;

3. The sequence (|V wn
n |) is strictly increasing.

Then they defined the Diophantine exponent of a as

D(a) := sup
{

ρ ∈ R≥1 : a satisfies condition (∗)ρ

}
noting that for any sequence we have 1≤ D(a)≤+∞ and that D(a) = +∞ for every a
eventually periodic.

Mimicking the proof of theorem 5.0.14, with the appropriate modifications in the
setting and the final estimates, we can prove the following slightly more general statement
than the one from [1]:

Theorem 5.0.15. Fix an algebraic number field K. Then fix a non-zero β ∈ K and a
place v of K such that |β |v > 1. Now consider a sequence a = (ai) with terms from a
finite subset A ⊆OK. If

D(a)> [K : Q]
h(β )

log|β |v
then

αv =
∞

v -∑
i=1

ai

β i

is either in K or transcendental.
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Proof. Since the supremum of a set is either itself in the set or is an accumulation point
of that set, by hypothesis we can find a real number ρ such that

ρ > [K : Q]
h(β )

log|β |v
=: `

and such that a satisfies condition (∗)ρ . Let (Un),(Vn), and (wn) as in the definition of
condition (∗)ρ and define rn,sn as the lengths of Un,Vn respectively.

Suppose that α /∈K. Mimicking the proof of theorem 5.0.14 with wn instead of w we
can find an infinite sequence (α

(n)
v ) such that∣∣∣αv−α

(n)
v

∣∣∣
v
�A ,β ,v |β |−rn−wnsn−1

v

and

α
(n)
v =

Pn(β )

β rn+sn−β rn

where Pn is a polynomial of degree at most rn + sn− 1 with coefficients in K. Still
following the proof of theorem 5.0.14 we see that for x = (β rn+sn,−β rn,Pn(β )) we have

HS(x)�A ,S (rn + sn)
d1|β |`(rn+sn)

v

where S := M∞
K∪{u ∈MK : |β |u 6= 1}, S := {u ∈ S : |β |u > 1}, and d1 := #(S\S ).

Thanks to corollary 4.0.7, this means that we’re done if we can prove that there are
constants C,ε > 0 such that with x = (β rn+sn,−β rn,Pn(β )) we have

CHS(x)1+ε ≤ |β |rn+wnsn+1
v

for every n ≥ 1. Using the above estimate, taking logarithms, and rearranging we see
that it is enough to find C,ε > 0 such that

log(C)+(1+ ε)d1 log(rn + sn)≤
(
rn +wnsn +1− `(1+ ε)(rn + sn)

)
log|β |v.

Now observe that for every index n we have

rn +wnsn +1
rn + sn

≥ rn + dwnsne
rn + sn

=
|UnV wn

n |
|UnVn|

≥ ρ

by condition (∗)ρ . Furthermore, note that log(rn+sn)
rn+sn

takes its maximum for rn + sn = 3.
Thus it follows that it is enough to find C′,ε > 0 such that

log(C′)+(1+ ε)d1
log(3)

3
≤
(
ρ− (1+ ε)`

)
log|β |v

which is possible because by hypothesis ρ > `.

27



Remark 5.0.16. In [3] Adamczewski and Bugeaud state that the hypothesis of theo-
rem 5.0.15 is stronger than the one from theorem 5.0.14, but this doesn’t seem to be the
case.

Indeed, suppose that a is a non-eventually periodic sequence which satisfies condition
(∗)w for some w > 1. Now let (Un),(Vn),D as in the definition of condition (∗)w and
consider the constant sequence (wn) with wn = w. Then the first hypothesis of condition
(∗)ρ is clearly satisfied. Further, up to extracting a subsequence we have that |V w

n | =
dw|Vn|e is strictly increasing, because (|Vn|) is strictly increasing and w > 1. Finally,
writing as usual rn = |Un| and sn = |Vn|, we have

|UnV w
n |

|UnVn|
=

rn + dwsne
rn + sn

= 1+
d(w−1)sne

rn + sn
≥ 1+

w−1
D+1

=: ρ > 1.

Thus if a satisfies the hypothesis of theorem 5.0.14, then it satisfies the hypothesis of
theorem 5.0.15, too, so the latter is actually weaker than the former.

This author doesn’t know if there is some case where theorem 5.0.15 is applicable but
theorem 5.0.14 isn’t, or if these two theorems are are actually equivalent. It is worth to
point out that the problem in proving the latter doesn’t lie in showing that if a satisfies
condition (∗)ρ for some ρ > 1 then it also satisfies condition (∗)w for some w > 1, but it
lies in showing that for any c > 1 if ρ > c, then we can choose w, (Un), and (Vn) such
that

1+
w−1
D+1

> c

where D is defined as in condition (∗)w.
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6 Some consequences

Definition 6.0.17. The complexity function of a sequence a is the number pa(n) of
distinct blocks of consecutive n terms of a. In other words, if a = (ai)i≥1, then pa(n) is
the number of distinct sequences among (a1, . . . ,an),(a2, . . . ,an+1), . . . .

Remark 6.0.18. Note that the complexity function of a periodic sequence is bounded.

Corollary 6.0.19. Fix K,β ,v as in theorem 5.0.15, fix an algebraic closure Q of Q such
that K⊂Q, and suppose that

[K : Q]
h(β )

log|β |v
< 1+

1
c

for some real constant c > 0. Further, fix an algebraic number α ∈Q\K and a finite
subset A ⊂ OK. If a = (ai)i≥m with m ∈ Z is a sequence with terms in A such that

α =
∞

v -∑
i=1

ai

β i

then the complexity function pa(n) of a satisfies

liminf
n→∞

pa(n)
n

> c. (6.1)

Proof. We follow the general idea of the proof of [1, theorem 3].
Suppose that pa(nk)≤ cnk for some strictly increasing infinite sequence of positive

integers (nk). If, for any positive integer `, we denote by A(`) the prefix of a of length `,
then by the Pigeonhole Principle we know that there is (at least) a word Wk of length nk
which occurs (at least) twice in A((c+1)nk). Therefore we can find (possibly empty)
words Bk,Dk,Ek and a non-empty word Ck such that

A((c+1)nk) = BkWkDkEk = BkCkWkEk.

Now, if |Ck| ≥ |Wk|, then we can find a (possibly empty) word Fk such that

A((c+1)nk) = BkWkFkWkEk.
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Hence, setting Uk = Bk, Vk = WkFk, and wk = |WkFkWk|/|WkFk| we have that
UkV

wk
k = BkWkFkWk is a prefix of a,

∣∣V wk
k

∣∣> nk, and∣∣UkV
wk
k

∣∣
|UkVk|

= 1+
|Wk|
|BkWkFk|

≥ 1+
nk

cnk
= 1+

1
c
.

If, on the other hand, |Ck|< |Wk|, then Ck is a prefix of Wk and we can find a real wk > 0
such that

CkWk =Cwk
k .

Hence, setting Uk = Bk and Vk = Ck we have that UkV
wk
k = BkCkWk is a prefix of a,∣∣V wk

k

∣∣= |CkWk|> nk, and∣∣UkV
wk
k

∣∣
|UkVk|

= 1+
|Wk|
|BkCk|

≥ 1+
nk

cnk
= 1+

1
c
.

Therefore in either case we found sequences (Uk),(Vk),(wk) such that

1. UkV
wk
k is a prefix of a;

2.
∣∣UkV

wk
k

∣∣/|UkVk|> 1+1/c for every index k;

3. The sequence (
∣∣V wk

k

∣∣) is strictly increasing.

Thus a satisfies condition (∗)1+1/c, hence D(a)≥ 1+1/c. Finally, from theorem 5.0.15
it follows that either α is in K or it is transcendental, against the hypothesis of the
corollary.

This result is especially interesting whenever [K : Q] h(β )
log|β |v

= 1. For example, this
happens when β is an imaginary quadratic integer, because then there is only one place
v (archimedean, corresponding to the embedding β 7→ β ) for which |β |v ≥ 1. Thus we
immediately deduce the following:

Corollary 6.0.20. Fix an imaginary quadratic integer β ∈ C different from ±i or(
(1+ i

√
3)/2

)k for some k ∈ Z, and consider an algebraic number α ∈ C \Q(β ). If
a = (ai)i≥m with m ∈ Z is a sequence with terms in a finite subset of OQ(β ) such that

α =
∞

∑
i=1

ai

β i

(where the limit is taken in C), then the complexity function pa(n) of a satisfies

liminf
n→∞

pa(n)
n

=+∞.
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Proof. Note that every imaginary quadratic integer β is either of the form a+ ib
√

d with
a,b,d ∈ Z, b 6= 0, and d > 0 squarefree (but possibly 1) if d 6≡ 3 (mod 4), or of the form
(a+ ib

√
d)/2 with a,b both even or both odd if d ≡ 3 (mod 4). Thus |β |> 1 unless β is

one of ±i or
(
(1+ i

√
3)/2

)k for some k ∈ Z, so we can apply the previous corollary.

Another case where [K : Q] h(β )
log|β |v

= 1 is when β is a Pisot (or Salem) integer, i.e.
when β is a real algebraic integer greater than 1 and all of the conjugates of β different
from it lie in the open (respectively, closed) complex unit disc. For example every integer
greater than 1 is a Pisot number, as is the golden ratio.

This case is particularly relevant because if β is a Pisot integer, then a real α is in
Q(β ) if and only if it has an ultimately periodic β -expansion, which was proved by
Schmidt in 1980 [33]. In general every number with a periodic β -expansion must lie in
Q(β ), but the converse may not hold. To the best of this author’s knowledge there are no
other known necessary or sufficient conditions on β for it to hold.

Corollary 6.0.21. Fix a Pisot or Salem integer β > 1. If α is real algebraic number
with non-periodic β -expansion, then the complexity function pa(n) of its β -expansion
satisfies

liminf
n→∞

pa(n)
n

=+∞.

Proof. Observe that if a sequence is ultimately periodic, then its complexity function is
bounded by a function of the lengths of its period and preperiod. Hence the conclusion
immediately follows from corollary 6.0.19, thanks to Schmidt’s result.

Finally, consider a prime number p and the completion Qp of Q. Then recall that
every number α ∈Qp admits a p-adic expansion

α =
∞

∑
k=−m

ak pk

with m ∈ Z and ak ∈ {0, . . . , p− 1} for every k ≥ −m, where the limit is taken with
respect to |·|p. Moreover, α ∈ Q if and only if the sequence (ak)k≥−m is ultimately
periodic (e.g. see [26, chapter II, sections 1 and 2]).

Corollary 6.0.22. Fix a prime number p and consider an infinite sequence a = (ak)k≥−m
with terms in {0, . . . , p−1} which isn’t ultimately periodic. If there is a w > 1 such that
a satisfies condition (∗)w (or if D(a)> 1), then the p-adic number

α =
∞

∑
k=−m

ak pk

is transcendental.
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Proof. Note that

α =
∞

∑
k=−m

ak pk =
∞

∑
k=−m

ak

(p−1)k

and since p is a rational integer we have that h(1/p) = ∑v∈MQ |1/p|v = |1/p|p = p. Thus
the statement follows from theorem 5.0.14 (or theorem 5.0.15) because a not ultimately
periodic implies that α /∈Q.
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7 Automatic numbers

Given a finite alphabet A , in what follows we will denote by A ∗ the free monoid
generated by A , i.e. the set of finite words on A with the operation of concatenation
(where the identity is the empty word).

Consider an integer k ≥ 2 and denote by Σk the set {0, . . . ,k−1}. A k-automaton is a
tuple

A = (Q,Σk,δ ,q0,∆,τ)

where Q and ∆ are finite sets, q0 ∈ Q, δ : Q×Σk→ Q, and τ : Q→ ∆. The set Q is the
set of states, Σk and ∆ are respectively the input and output alphabets, q0 is the initial
state, δ is the transition function, and τ is the output function.

Observe that, given a k-automaton A, we can extend δ to Q×Σ∗k . Indeed, consider
a state q ∈ Q and a finite word W = w1w2 . . .wn on Σk. Then we can define δ (q,W )
recursively as δ (δ (q,w1 . . .wn−1),wn).

Definition 7.0.23. A sequence a = (an)n≥0 is said to be k-automatic if there is a k-
automaton A such that an = τ(δ (q0,Wn)) for every n≥ 0, where Wn is the sequence of
digits of the k-ary expansion of n.

Furthermore, a real number α is said to be k-automatic if there is an integer b ≥ 2
such that the sequence of digits of the b-ary expansion of α is k-automatic. In this case
we also say that α is generated by a finite automaton.

Informally, this means that a sequence (an) is k-automatic if we can compute an as a
finite state function of the digits of n in base k.

Example 7.0.24. The Thue-Morse sequence counts the number of occurrences of 1 in
the binary expansion of n, modulo 2. In other words, it is the sequence (an)n≥0 where an
is 0 if the sum of the digits in the binary expansion of n is even, and 0 otherwise. This
sequence can be generated by the 2-automaton

({q0,q1},{0,1},δ ,q0,{0,1},τ)

where

δ (q0,0) = δ (q1,1) = q0 and δ (q0,1) = δ (q1,0) = q1

τ(q0) = 0 and τ(q1) = 1.
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The first few terms of the sequence are

011010011001011010010 . . . .

Moreover, note that in 1929 Mahler showed that the real number whose binary expansion
is the Thue-Morse sequence is transcendental [25].

Example 7.0.25. The Rudin-Shapiro sequence is a sequence (an)n≥0 such that an = 1 if
the number of (possibly overlapping) occurrences of 11 in the binary expansion of n is
even, and an =−1 otherwise. This sequence can be generated by the finite automaton

({q0,q1,q2,q3},{0,1},δ ,q0,{1,−1},τ)

where

δ (q0,0) = δ (q1,0) = q0 δ (q2,0) = δ (q3,0) = q3

δ (q0,1) = δ (q2,1) = q1 δ (q1,1) = δ (q3,1) = q2

τ(q0) = τ(q1) = 1 τ(q2) = τ(q3) =−1.

Informally, the states q0 and q1 represent a current even number of occurrences of 11,
with the last digit 0 or 1, respectively, while the states q2 and q3 represent a current odd
number of occurrences of 11, with last digit 1 or 0, respectively. The first few terms of
the sequence are

111 −111 −11111 −1 −1 −11 −1 . . . .

Consider two finite alphabets A and B. A morphism from A ∗ to B∗ is just a
monoid homomorphism σ : A ∗→B∗, i.e. a map such that σ(xy) = σ(x)σ(y) for every
x,y ∈A ∗. Note that every morphism from A ∗ to B∗ is uniquely defined by its action
on the letters of A and that every morphism can be uniquely extended to the infinite
sequences with terms from A .

Definition 7.0.26. Let k ≥ 1 be an integer. A morphism σ from A ∗ to B∗ is said to be
k-uniform if |σ(a)|= k for every letter a ∈A . A 1-uniform morphism is called a coding.

Now consider a finite alphabet A . A morphism σ from A ∗ to itself is said to be
prolongable (on a) if there is a letter a ∈A such that σ(a) = aW , where W is a word
such that σ k(W ) is non-empty for every k ≥ 1; in particular W itself must be non-empty
because σ(ε) = ε . In this case the infinite word

σ
ω(a) := aW σ(W )σ

2(W )σ
3(W ) · · ·

is a fixed point of σ , in the sense that σ(σω(a)) = σω(a), and we say that the word
σω(a) is generated by the morphism σ . Moreover, note that σω(a) is the unique fixed
point of σ that starts with a.
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Example 7.0.27. If σ : {0,1}∗→{0,1}∗ is the 2-uniform morphism defined by

0 7→ 01 1 7→ 10

then it can be showed that σω(0) is the Thue-Morse sequence.

Theorem 7.0.28 (Cobham). Fix an integer k ≥ 2. A sequence (an) is k-automatic if and
only if it is the image, under a coding, of a fixed point of a k-uniform morphism.

Corollary 7.0.29. Let k be a positive integer. Then every k-automatic number is either
rational or transcendental.

Proof. Consider an automatic number α . If it is rational we are done, otherwise let b,k
be integers such that the sequence of digits of the b-ary expansion a of α is k-automatic.
Also fix A = {0, . . . ,b−1}. Then by Cobham’s theorem there are a finite alphabet B,
a coding ϕ from B∗ to A ∗, and a k-uniform morphism σ from B∗ to itself such that
a = ϕ(u), where u is a fixed point of σ . Furthermore, since ϕ is a coding it follows that
if u satisfies condition (∗)w, then a does, too.

Now, if B has r elements, then by the Pigeonhole Principle there is a letter u ∈B that
appears at least twice in the prefix of u of length r+1, which can thus be written as

AuBuC

where A,B,C are (possibly empty) finite words on B. Then consider the two sequences
(Un)n≥1 and (Vn)n≥1 defined by Un = σn(A) and Vn = σn(uB).

Note that, since σ is k-uniform, |σn(W )|= kn|W | for every finite word W on B. In
particular, σn(u) is a prefix of Vn of length at least |Vn|/r because by hypothesis |uB| ≤ r,
which gives

|σn(u)|= kn =
|Vn|
|uB|
≥ |Vn|

r
.

This means that UnV 1+1/r
n is a prefix of u. Moreover, observe that

|Un|
|Vn|

=
kn|A|

kn|uB|
≤ |A| ≤ r−1.

Since |Vn|= kn|uB| ≥ kn, it follows that u satisfies condition (∗)w with w = 1+1/r, so
a does, too.

Finally, note that b ∈ Z implies h(b) = log|b|, thus the hypotheses of theorem 5.0.14
are satisfied and α must be transcendental, as required.
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7.1 Proof of Cobham’s theorem

We shall now give a short proof of Cobham’s theorem, following [4, section 6.3]. To
lighten the notation, in this section we will write 〈n〉k for the k-ary expansion of an
integer n and [w]k for the integer n with k-ary expansion w, where w is a finite word on
Σk = {0, . . . ,k−1}.

Lemma 7.1.1. Consider a k-automatic morphism σ and an infinite word a = (an)n≥0
such that σ(a) = a. Then σ(an) = aknakn+1 · · ·akn+k−1.

Proof. Since σ is k-automatic and a is a fixed point of σ we have

σ(a0a1 · · ·an) = a0a1 · · ·akn+k−1.

We proceed by induction. For n = 0 we have σ(a0) = a0a1 · · ·ak−1, which we know to
be true. Now by induction hypothesis for n > 0 we have

σ(a0a1 · · ·an−1)σ(an) = (a0a1 · · ·akn−1)(aknakn+1 · · ·akn+k−1)

and σ(a0a1 · · ·an) = σ(a0a1 · · ·an−1)σ(an) implies the desired result.

Proof of Cobham’s theorem. First consider a finite alphabet B, a k-uniform morphism
σ from B∗ to itself, and a coding ϕ from B∗ to A ∗. Further, let a = ϕ(u) where
u = (un)n≥0 is a fixed point of σ . Then let q0 = u0 and define a k-automaton
(B,Σk,δ ,q0,A ,ϕ) where δ (q,s) is the s-th letter of σ(q).

Now we prove by induction that δ (q0,〈n〉k) = un for all n≥ 0. For n = 0 this is clear,
because we defined q0 = u0 and u is a fixed point of σ . Then assume the claim true for
all 0≤ r < n and write 〈n〉k = n1n2 · · ·nt and n = kn′+nt . We have

δ (q0,〈n〉k) = δ (q0,n1n2 · · ·nt)

= δ (δ (q0,n1n2 · · ·nt−1),nt)

= δ (δ (q0,〈n′〉k),nt)

= δ (un′,nt) (by induction)
= the nt-th letter of σ(un′)

= ukn′+nt (by lemma 7.1.1)
= un.

Conversely, consider a k-automatic sequence a which is generated by a k-automaton
(Q,Σk,δ ,q0,A ,ϕ) and note that up to a permutation of Σk we may assume without loss
of generality that δ (q0,0) = q0. Then define a k-uniform morphism σ from Q∗ to itself
by

σ(q) := δ (q,0)δ (q,1) · · ·δ (q,k−1)
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for each q ∈ Q and let u = (un)n≥0 be a fixed point of σ , starting at q0 (which exists
because δ (q0,0) = q0). We will now prove that δ (q0,y) = u[y]k for every y ∈ Σk by
induction on |y|.

For |y|= 0 this is clear because δ (q0,ε) = q0 = u0. Then assume the claim is true if
|y|< r and consider y with |y|= r. After writing y = xa with a ∈ Σk we have

δ (q0,y) = δ (q0,xa)
= δ (δ (q0,x),a)
= δ (u[x]k ,a) (by induction)

= a-th letter of σ(u[x]k) (by definition of σ )

= uk[x]k+a (by lemma 7.1.1)

= u[xa]k = u[y]k .

Therefore an = ϕ(δ (q0,〈n〉k)) = ϕ(un), so a is the image under the coding ϕ of a fixed
point of σ , as required.

37



Bibliography

[1] B. Adamczewski and Y. Bugeaud. Dynamics for β -shifts and Diophantine approxi-
mation. Ergodic Theory Dynam. Systems, 27(6):1695–1711, 2007.

[2] B. Adamczewski and Y. Bugeaud. On the complexity of algebraic numbers. I.
Expansions in integer bases. Ann. of Math. (2), 165(2):547–565, 2007.

[3] B. Adamczewski, Y. Bugeaud, and F. Luca. On the values of a class of analytic
functions at algebraic points. Acta Arith., 135(1):1–18, 2008.

[4] J.-P. Allouche and J. Shallit. Automatic sequences. Theory, applications, general-
izations. Cambridge: Cambridge University Press, 2003.

[5] V. Becher and S. Figueira. An example of a computable absolutely normal number.
Theor. Comput. Sci., 270(1-2):947–958, 2002.

[6] P.-G. Becker. k-regular power series and Mahler-type functional equations. J.
Number Theory, 49(3):269–286, 1994.

[7] Y. F. Bilu. The many faces of the subspace theorem [after Adamczewski, Bugeaud,
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Bourbaki. Vol. 2006/2007.

[8] E. Bombieri and W. Gubler. Heights in Diophantine geometry, volume 4 of New
Mathematical Monographs. Cambridge University Press, Cambridge, 2006.

[9] E. Borel. Les probabilités denombrables et leurs applications arithmétiques. Rend.
Circ. Mat. Palermo, 27:247–271, 1909.

[10] E. Borel. Sur les chiffres decimaux de
√
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