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Introduction

Let p be a prime number, and let q = pr with r ∈ N≥1. We consider algebraic
representations of the affine group schemes SL2 and GL2 of 2×2 matrices of
determinant 1 (resp. invertible), defined over Fp. We compare them to the
linear representations over Fp of the finite groups SL2(Fq) and GL2(Fq).

Let Std be the standard representation of SL2 and GL2 acting on F2
p,

and let Vj = Symj Std for j ∈ N. For n ∈ Z, let Dn be the 1-dimensional
representation of GL2 given by the n-th power of the determinant. Let F
be the Frobenius endomorphism of Fp. This can be extended to an endo-
morphism F of SL2 and GL2 that raises all matrix entries to the p. For
a representation V of SL2 or GL2, define the representation V [i] to be the
same vector space where a matrix M acts as F i(M) would act on V . An
algebraic representation of SL2 (resp. GL2) induces a representation of the
finite group SL2(Fq) (resp. GL2(Fq)) over Fp.

We use without proving it the following theorem:

Theorem ([5], §2.8). The irreducible algebraic representations of the affine
group scheme SL2 over Fp are the following (up to isomorphism):

s⊗
i=0

V
[i]
ji

for s ∈ N and 0 ≤ ji < p for every i.

In this thesis we give proofs of the following results:

Theorem. The irreducible representations of the finite group SL2(Fq) over
Fp are the following (up to isomorphism):

r−1⊗
i=0

V
[i]
ji

for 0 ≤ ji < p for every i.

Theorem. The irreducible algebraic representations of the affine group scheme
GL2 over Fp are the following (up to isomorphism):

Dn ⊗
s⊗
i=0

V
[i]
ji

for n ∈ Z, s ∈ N and 0 ≤ ji < p for every i. The irreducible representations
of the finite group GL2(Fq) over Fp are the following (up to isomorphism):

Dn ⊗
r−1⊗
i=0

V
[i]
ji

for 0 ≤ n < q − 1 and 0 ≤ ji < p for every i.
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The description of the irreducible representations of SL2(Fq) can be found
in [1], §30. We give a more detailed proof in a more modern language.
The analogous result for GL2(Fq) is also stated there, without proof. The
description of the irreducible representations of the affine group scheme GL2

can be deduced from the general theory in [6], but we give a direct proof
instead.

It should be noted that representations over Fp of both the affine group
schemes SLn and GLn and the finite groups SLn(Fq) and GLn(Fq) are not
semisimple for n > 1. Hence describing the irreducible representations is not
enough to describe all the representations.

Notice that the above results imply that every irreducible representation
of the finite groups SL2 and GL2 over Fp is induced by an irreducible algebraic
representation of the corresponding group scheme. There is in fact a general
theorem, proved by Steinberg, that states:

Theorem (Steinberg, [9]). Let G be a reductive algebraic group defined over
Fp. Denote by Gk its base change to k = Fp. Then an algebraic representa-
tion of Gk induces a representation of G over k. If Gk is simply connected,
then every irreducible representation of G over k is the restriction of an
irreducible algebraic representation of Gk.

We refer to [9] and [6] for the general theory leading to this theorem.
The proof relies on the classification by dominant weights of the irreducuble
representations of Gk. The affine group scheme SLn is simply connected for
all n, while GLn is not. We showed that the conclusion still holds for GL2,
but we were not able to find a proof or a counterexample for any GLn with
n ≥ 3.

We also prove the following result:

Theorem. Let ρ : SLn → GL(V ) be an irreducible algebraic representation
of the affine group scheme SLn over an algebraically closed field. Let i :
SLn → GLn be the canonical map. Then there is an irreducible algebraic
representation ρ̃ : GLn → GL(V ) such that the diagram

SLn
ρ
//

i
��

GL(V )

GLn

ρ̃

::

commutes.

This gives a tool to pass from representations of SLn to representations
of GLn for any n. However, it does not seem to be enough to deduce an
analog of Steinberg’s theorem for GLn.
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1 Background

1.1 Notation and conventions

The set N consists of the non-negative integers. The category of sets is
denoted by Sets. Algebras over a field are assumed to be commutative.
Given a field k, the category of k-algebras is denoted by k − Alg. The
category of (abstract) groups is denoted by Grp, the category of (abstract)
abelian groups is denoted by Ab, and the category of (abstract) finite groups
is denoted by FGrp. Given a field k and a group G, we denote by k[G] the
group algebra of G. The category of affine schemes over k is denoted by
AffSch/k. The symmetric group acting on the set {1, . . . , n} is denoted by
Sn. If ϕ : G → AutS is an action of a group G on a set S, we denote
the element ϕ(g)(s) ∈ S by g.s, for any g ∈ G and s ∈ S. Given two
topological spaces X and Y , we denote by Cont(X,Y ) the set of continuous
maps X → Y . Given a ring R, we denote by Matm(R) the ring of m ×m
matrices with entries in R. Given a ring R and two elements a, b ∈ R, we
denote by [a, b] the element ab− ba ∈ R. Throughout this thesis, p denotes
a prime number.

1.2 Affine group schemes

For sections 1.2 to 1.8 we refer to [6], [10] and [7].

Definition 1.1. Let k be a field. An affine group scheme over k G is a
representable functor G : k −Alg→ Grp, i.e. G is naturally isomorphic to
Hom(A,−) for some k-algebra A. A morphism of affine group schemes is a
natural transformation. The category of affine group schemes over k will be
denoted by AffGrSch/k.

Equivalently, an affine group scheme can be defined as a representable
functor G : (AffSch/k)op → Grp. Notice that if G is represented by A,
then A is unique up to unique isomorphism by Yoneda’s lemma. Giving a
group scheme structure on a scheme is giving compatible group structures
on its R-points for every k-algebra R.

Example 1.1. 1. The additive group Ga,k is the functor assigning to a
k-algebra R its additive group (R,+). It is represented by k[X], since
giving a morphism k[X]→ R is the same as giving an element x ∈ R.

2. The multiplicative group Gm,k is the functor assigning to a k-algebra
R its group of units, i.e. Gm,k(R) = (R×, ·). It is represented by
k[X,X−1] (which is just alternative notation for what should more
precisely be written k[X,Y ]/(XY −1)). Indeed, if we have a morphism
ϕ : k[X,X−1] → R, this identifies an element x = ϕ(X) ∈ R, and we
have that x ∈ R× because X is invertible in k[X,X−1]. Conversely,
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such a ϕ is determined by x = ϕ(X). This group scheme will be
denoted Gm if no confusion is likely.

3. The general linear group GLn,k is the functor assigning to a k-algebra
R the multiplicative group of invertible n× n matrices with entries in
R. To give such a matrix is the same as to give n2 elements of R, with
the condition that the determinant must be invertible. It is then easy
to check that the representing algebra is

k[Xij , Y ]i,j=1,...,n/(Y det(Xij)− 1)

where det(Xij) is the determinant formula in the variablesXij . We will
denote this algebra by k[Xij ,det−1], and the group scheme by GLn.
Notice that GL1 = Gm (they really have the same definition).

4. The special linear group SLn,k is the functor assigning to a k-algebra
R the group of n×n matrices with entries in R and determinant equal
to 1. It should now be clear that it is represented by the algebra

k[Xij ]i,j=1,...,n/(det(Xij)− 1).

This group scheme will usually be denoted SLn.

5. The group of n-th roots of unity lµ.. n,k is the functor assigning to a
k-algebra R the multiplicative group ({x ∈ R | xn = 1} , ·). It is rep-
resented by the algebra k[X]/(Xn − 1), and we will denote it by lµ.. n.

1.3 Morphisms and constructions

Recall that a morphism of affine group schemes is a natural transformation
of functors k −Alg→ Grp.

Definition 1.2. A closed immersion H → G is an affine group scheme
morphism such that the corresponding algebra map is surjective. In this
case H is a closed subgroup of G. We will denote closed immersions by
H � G.

Notice that in this case H is represented by a quotient of A. Notice also
that the composition of two closed immersions is again a closed immersion.

Example 1.2. 1. For every n ∈ N, there is a closed immersion z : lµ.. n �
Gm, which is defined as follows. Let R be a k-algebra, we can define
on R-points the map

z(R) : lµ.. n(R)→ Gm(R)

ζ 7→ ζ
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If α : R→ S is a k-algebra map, then the diagram

lµ.. n(R)
z(R)

//

lµ.. n(α)

��

Gm(R)

Gm(α)

��

lµ.. n(S)
z(S)

// Gm(S)

is clearly commutative, hence z is a morphism of affine group schemes.
The corresponding algebra map is

k[X,X−1]→ k[X]/(Xn − 1)

X 7→ X

which is a surjection.

2. For every n ∈ N, there is a closed immersion Gm � GLn, given on
R-points by

Gm(R)→ GLn(R)

g 7→

g . . .
g


This corresponds to the algebra map

k[Xij , det−1]→ k[X,X−1]

Xij 7→ δijX

which is surjective.

3. For every n ∈ N, there is a closed immersion SLn � GLn, given on
R-points by

SLn(R)→ GLn(R)

M 7→M

which corresponds to the surjective algebra map

k[Xij ,det−1]→ k[Xij ]/(det(Xij)− 1)

Xij 7→ Xij .

4. For every n ∈ N, there is a closed immersion lµ.. n � SLn, given on
R-points by

lµ.. n(R)→ SLn(R)
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ζ 7→

ζ . . .
ζ

 .

It corresponds to the algebra map

k[Xij ]/(det(Xij)− 1)→ k[X]/(Xn − 1)

Xij 7→ δijX

which is surjective.

Definition 1.3. An affine group scheme represented by A is called of finite
type if A is a finitely generated k-algebra. A linear algebraic group over k is
an affine group scheme G such that its representing algebra is reduced and
there exists a closed immersion G� GLn,k for some n ∈ N.

Affine group schemes of finite type always admit a closed immersion into
some GLn, so they are linear algebraic groups under our definition (see [10],
§3.4). Conversely, it is obvious that if G admits a closed immersion in GLn
then it is of finite type.

Consider now a morphism Φ : G → H of affine group schemes. We can
define an affine group scheme ker Φ in the natural way

(ker Φ)(R) = ker(Φ(R))

for every k-algebra R. This turns out to be a representable functor hence an
affine group scheme, and it is true that monomorphisms in AffGrSch/k are
the morphisms that have trivial kernel. Epimorphisms and surjective maps
are more complicated, and we refer to [7], §VII.

Let k′ be a k-algebra. Then every k′-algebra is in a natural way a k-
algebra, which allows us to define base changes.

Definition 1.4. Let G be an affine group scheme over k. We define its base
change to k′ to be the affine group scheme

Gk′ : k′ −Alg→ Grp

R 7→ G(R).

If G is represented by the k-algebra A, then Gk′ is represented by the
k′-algebra A⊗k k′.

1.4 Diagonalisable group schemes

Let M be an abelian group, and let R be a k-algebra. There is a canonical
bijection

Homk−Alg(k[M ], R) ∼= HomGrp(M,R×)

hence the functor k − Alg → Grp sending R to Hom(M,R×) is an affine
group scheme represented by k[M ].
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Definition 1.5. A group scheme G represented by k[M ] for an abelian group
M is called diagonalisable. Diagonalisable group schemes form a full subcat-
egory of affine group schemes, which will be denoted by DiagGrSch/k.

Example 1.3. Suppose M = Z. Then k[M ] has basis {en | n ∈ Z}, with
en · em = en+m. So k[M ] is isomorphic as a k-algebra to k[X,X−1] by
e1 7→ X, hence this algebra represents the affine group scheme Gm. The
group scheme Gm is then diagonalisable, corresponding to the abelian group
Z.

Suppose now M = Z/nZ. Then k[M ] has basis {e0, . . . , en−1} with ei =
ei1 for i = 0, . . . , n−1. So k[M ] is isomorphic as a k-algebra to k[X]/(Xn−1).
Hence the group scheme lµ.. n is also diagonalisable for all n ∈ N, and it
corresponds to the abelian group Z/nZ.

Theorem 1.1. Let k be a field. The functors Hom(−,Gm) : DiagGrSch/k →
Ab and F : Ab→ DiagGrSch/k defined by

Hom(−,Gm) : G 7→ Hom(G,Gm)

and
F : M 7→ Hom(k[M ],−)

are quasi-inverses of one another, so they define an equivalence of categories.

Proof. Omitted, see [10], §2.2.

Corollary 1.2. The maps defined by N 7→ (x 7→ xN ) give isomorphisms
Hom(Gm,Gm) ∼= Z and Hom(lµ.. n,Gm) ∼= Z/nZ.

Proof. We have seen in Example 1.3 that Gm and lµ.. n are diagonalisable
corresponding to Z and Z/nZ respectively. Using Theorem 1.1 it follows that
Hom(Gm,Gm) ∼= Z and Hom(lµ.. n,Gm) ∼= Z/nZ, and the fact that the maps
giving the isomorphisms are N 7→ (x 7→ xN ) can be checked by the explicit
constructions of the examples and of the equivalence of categories.

1.5 Constant group schemes

Let Γ be a finite group. Define a functor k −Alg→ Grp by

R 7→ Cont(SpecR,Γ)

where we put on Γ the discrete topology. This is an affine group scheme
represented by the algebra kΓ, because as a topological space Γ is the same
as
∐

Γ Spec k = Spec kΓ.

Definition 1.6. Let Γ be a finite group. We will call the affine group scheme
Hom(kΓ,−) the constant group scheme Γk, and we will denote it by Γ if no
confusion is likely.
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Notice that the constant group scheme construction defines in fact a
functor (−)k : FGrp → AffGrSch/k. We have two basic properties of
constant group schemes:

Lemma 1.3. Let Γ be a finite group, and let X be a connected affine scheme
over k. Then HomAffSch/k(X,Γk) = Γ.

Proof. Notice that

HomAffSch/k(X,Γk) = HomAffSch/k(X,
∐
Γ

Spec k).

Then the conclusion follows from the fact that X is connected.

Lemma 1.4. Let Γ be a finite group, and let H be an affine group scheme
over k. Then the map given by taking k-points

α : HomAffGrSch/k(Γk, H)→ HomGrp(Γ, H(k))

is a bijection.

Proof. Let us define the inverse map β : Hom(Γ, H(k)) → Hom(Γk, H) of
α. Take ϕ ∈ Hom(Γ, H(k)). For a k-algebra R, we have that Γk(R) is
isomorphic to a sum of copies of Γ indexed by the connected components of
SpecR (this is just a slight generalisation of Lemma 1.4, the proof is similar).
Recall that affine schemes, being quasi-compact, have a finite number of
connected components. If H ∼= Hom(A,−), then write R =

⊕
eiR as an

R-module, where the ei’s are orthogonal idempotents corresponding to the
n connected components of SpecR, and define the map β(ϕ)(R) : Γk(R)→
H(R) by

β(ϕ)(R) : (g1, . . . , gn) 7→
n∑
i=1

ϕ(gi)ei.

Every ϕ(gi) is a map from A to k, so this defines a map from A to R, i.e. an
element of H(R). This defines a map of affines group schemes β(ϕ), and it
is easy to check that β is the inverse of α.

Example 1.4. Consider the affine group scheme lµ.. n over an algebraically
closed field k, with n 6= 0 in k. Then we have a (non canonical) isomorphism
lµ.. n ∼= (Z/nZ)k. To prove it, let us first fix an isomorphism lµ.. n(k) ∼= Z/nZ.
Let us define a map

ϕ(R) : lµ.. n(R)→ (Z/nZ)k (R) = Cont(SpecR,Z/nZ)

for every k-algebra R. To do so, fix an x ∈ R such that xn = 1. For a prime
ideal p ∈ SpecR, consider the image of x in k′ = Frac(R/p). Notice that
since Rx = R, we have that x 6∈ p hence x 6= 0 in k′. Then xn = 1 in k′. The
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field k′ being an algebraic extension of k, it follows that x ∈ lµ.. n(k), and we
define ϕ(R)(x)(p) to be the corresponding element in Z/nZ ∼= lµ.. n(k). The
map SpecR → Z/nZ sending p to ϕ(R)(x)(p) is continuous (write SpecR
as the disjoint union of its connected components, then this map is easily
locally constant). This defines an affine group scheme morphism

ϕ : lµ.. n → (Z/nZ)k

so now to conclude it is enough to prove that the algebras k[X]/(Xn − 1)
and kZ/nZ are isomorphic. Indeed, since n is invertible in k, the equation
Xn = 1 has n distinct solutions in k, so that if we choose a primitive n-th
root of unity ζ, we have Xn − 1 =

∏n−1
m=0(X − ζm). Now define the map

k[X]/(Xn − 1)→
∏n−1
m=0 k

∼= kZ/nZ by X 7→ (ζm)m=0,...,n−1. By the Chinese
Remainder Theorem this is an isomorphism and we are done.

Notice that lµ.. n 6∼= (Z/nZ)k if n = 0 in k. For instance, if char k = p > 0,
then the affine group scheme lµ.. p is connected, so if it were constant it would
be the group with one element. Notice also that in this case lµ.. p is not reduced
(it consists of a single point “of multiplicity p”).

1.6 Representations

We assume that the reader knows the basic definitions and results about
linear representations of finite groups, at the level of [3], §1. Throughout this
thesis, all representations of groups are understood to be finite-dimensional.

Consider a finite-dimensional vector space V over a field k. The functor
mapping a k-algebra R to the group AutR(R⊗k V ) is representable. We will
call GL(V ) the corresponding affine group scheme. The choice of a basis of
V induces an isomorphism GL(V ) ∼= GLn,k, where n = dimV . The maps
R× → AutR(R⊗ V ) given by

r 7→ (v 7→ r · v)

for any k-algebra R, for any r ∈ R and v ∈ V define a closed immersion
Gm � GL(V ).

Definition 1.7. A (algebraic) representation of an affine group scheme G
defined over a field k is a pair (V, ρ), where V is a finite dimensional k-vector
space and ρ is a group scheme morphism ρ : G→ GL(V ).

By abuse of notation, we will also refer to a representation (V, ρ) simply
by V or ρ. A subrepresentation of V is a vector subspace U ⊂ V such
that R ⊗ U is closed under the action of G(R) for every k-algebra R. A
representation is called irreducible if it has exactly two subrepresentations,
namely itself and the zero representation.

If (V, ρ), (U, π) are representations of an affine group scheme G over a
field k, we define their tensor product (over k) to be the representation
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(V ⊗k U, ρ⊗k π), where the map ρ⊗k π is defined by

(ρ⊗k π)(R) : g 7→ (v ⊗ u 7→ ρ(R)(g)(v)⊗ π(R)(g)(u))

for all pure tensors v ⊗ u of V ⊗k U , for every k-algebra R. Tensoring is
exact in both arguments. We will write V ⊗j for the tensor product of j
copies of a representation V . Given a representation V of an affine group
scheme and a natural number j ∈ N, we define its j-th symmetric power to
be the representation

Symj V = V ⊗j/ 〈{v1 ⊗ · · · ⊗ vj − vσ1 ⊗ · · · ⊗ vσj | v1, . . . , vj ∈ V, σ ∈ Sj}〉 .

If V has basis {e1, . . . , en}, then the map

Symj V → k[X1, . . . , Xn]j

given by
ei1 ⊗ · · · ⊗ eij 7→ Xi1 · · ·Xij

is an isomorphism.

Example 1.5. Let G = GLn,k for some field k, and fix an integer j ∈ Z. Let
Dj = k as a k-vector space. We can define a 1-dimensional representation
ηj : G→ GL(Dj) by setting, for every k-algebra R, and for every g ∈ G(R),

ηj(R)(g) = (det g)j .

This is a representation for every j ∈ Z (it is the trivial one for j = 0).
Notice that if h : SLn,k → GLn,k is the canonical immersion, we have that
ηjh is the trivial representation of SLn,k for every j ∈ Z. Notice also that
for every j, l ∈ Z we have

Dj ⊗Dl ∼= Dj+l.

1.7 Jordan-Hölder decomposition

In the following sections we will need some tools to handle representations
that are not irreducible but cannot be written as a direct sum of irreducibles.
One such tool is Jordan-Hölder theory, of which we will state the essential
results only for the case in which we are interested.

Definition 1.8. Let G be a finite group, k a field, and V be a representation
of G. A composition series of V is a finite descending chain of subrepresen-
tations

V = V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ Vn+1 = 0

12



such that all the quotients Vi/Vi+1 are irreducible, for i = 1, . . . , n. The
irreducible representations Vi/Vi+1 are called the factors of the series. If V
and W are k-representations of a group G, (Vi)i is a composition series for
V and (Wj)j is a composition series for W , then (Vi)i and (Wj)j are called
equivalent if they have the same factors, counted with multiplicities, up to
isomorphism.

The main result is the following:

Theorem 1.5. Let G be a finite group, k a field, and V a representation
of G. Then a composition series of V exists, and any two such series are
equivalent.

Proof. Omitted, see [2], §13.

In particular, the factors of a composition series of V are well defined up
to isomorphism, and they are called the composition factors of V .

Definition 1.9. Let V be a representation of a finite group G. A subquotient
of V is a representation of G that is isomorphic to the quotient of two
subrepresentations of V .

Every irreducible subquotient of a representation V is isomorphic to a
composition factor of V as it follows from this lemma:

Lemma 1.6. Let G be a finite group, k a field, and let V,W,U be represen-
tations of G over k. If there is an exact sequence

0 −→ U −→ V −→W −→ 0

then V and U ⊕W have equivalent composition series.

Proof. Omitted.
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2 Motivating result

In this section we start focusing our attention to the case in which our affine
group schemes are defined over a field k of positive characteristic p. In this
case we can relate the representation theory of an affine group scheme to
the representation theory over k of a class of finite groups. In the case we
are considering we can use the relationship with the affine group scheme to
deduce information about the finite groups. Let us start by recalling a basic
result in representation theory:

Theorem 2.1 (Maschke). Let G be a finite group and let k be a field. Let
ρ : G→ AutV be a representation of G, with V a k-vector space. Let U ⊂ V
be a subrepresentation. If

char k - |G|

then there exists a subrepresentation W ⊂ V such that V = U ⊕W .

Proof. Omitted, see [3], Proposition 1.5.

Notice that this immediately implies that every representation of G can
be written as a direct sum of irreducible representations. The proof of
Maschke’s Theorem heavily relies on being able to divide by the order of
G, and in fact the conclusion does not hold if |G| = 0 in k.

Example 2.1. Let G = Z/pZ, and let k = Fp. Let V = k2 as a vector space
over k, and define ρ by

ρ : 1 7→
(

1 1
0 1

)
.

It is easy to check that (V, ρ) is a representation of G. The vector space
V has the invariant subspace U ⊂ V generated by the first basis vector in
the basis we have chosen. However, suppose that U has a complement W
that is a subrepresentation. Then dimW = 1, and there is a basis for which
all the elements in the image of ρ are diagonal matrices. But ρ(1) is not
diagonalisable, since its Jordan normal form is not diagonal, contradiction.

2.1 The Frobenius endomorphism

Let k = Fp, and let q = pr for r ∈ N≥1. Let us call F the Frobenius
endomorphism of k, given by F : x 7→ xp for every x ∈ k. We define the
finite field Fq as a subfield of k by

Fq = {x ∈ k | F r(x) = x} .

Let G ∼= Hom(A,−) be an affine group scheme of finite type defined over Fp.
Then G(Fq) ∼= Hom(A,Fq) is finite since A is finitely generated. Consider
now the base change Gk of G to k. Notice that the inclusion Fq → k
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induces an inclusion G(Fq) → Gk(k). Let V be a k-vector space, and let
ρ : Gk → GL(V ) be a representation of Gk. Then ρ induces a representation
ρq : G(Fq)→ AutV of the finite group G(Fq) over k, by means of

ρq = ρ(k)|G(Fq).

We will abuse the notation, and sometimes write ρ instead of ρq.
If G is an affine group scheme of finite type defined over Fp, then F

defines an endomorphism G → G (seeing G as a closed subgroup of GLn,
this is raising matrix entries to the p).

Definition 2.1. Let G be an affine group scheme of finite type over Fp.
Let Gk be the base change of G to k. Let V be a k-vector space, and let
ρ : Gk → GL(V ) be a representation of Gk. For every r ∈ N, let V [r] = V
as a vector space, and we define the r-th twisted representation

ρ[r] : Gk → GL(V [r])

of ρ by

ρ[r] = ρ ◦ F r.

If Gk � GLn,k, this means that for a k-algebra R, if

g =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 ∈ Gk(R)

then

F r(R)(g) =

a
pr

11 . . . ap
r

1n
...

. . .
...

ap
r

n1 . . . ap
r

nn


and

ρ[r](R)(g) = ρ(R)(F r(R)(g)).

We will apply these constructions to the group schemes SLn and GLn, which
can be defined over Fp. We will usually write SLn(Fq) (resp. GLn(Fq))
instead of SLn,Fp(Fq) (resp. GLn,Fp(Fq)), and SLn (resp. GLn) instead of
SLn,k (resp. GLn,k).

Notice that |SLn(Fq)| and |GLn(Fq)| are both divisible by p for every n >
1. In particular, Maschke’s Theorem does not apply to their representations
in characteristic p.
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2.2 Steinberg’s Theorem

The classification of the irreducible algebraic representations of SLn and GLn
in characteristic p is known in terms of highest weights thanks to Chevalley,
for more on this see for instance [6], §II.2. For the group scheme SL2, highest
weights are in bijection with natural numbers, and the description of the
irreducible representations can be made very explicit.

We will now present a particular case of the results in [9], which relates
the representations of the group scheme G to those of the finite groups G(Fq).
We will only state it for G = SLn,Fp , but it holds for any simply connected
reductive group G defined over Fp. For the definitions of these terms, and
the proof of the theorem, see [9] or [6].

Theorem 2.2 (Steinberg, [9]). Let ρ : SLn → GL(V ) be an irreducible
representation over Fp of the affine group scheme SLn. Let q = pr for some
r ∈ N≥1. Then the representation ρq of the finite group SLn(Fq) over Fp is
irreducible. Moreover, every irreducible representation of SLn(Fq) over Fp
is isomorphic to ρq for some irreducible representation ρ of the affine group
scheme SLn.

Proof. See [9] or [6].

The motivation of this thesis was to investigate whether this theorem
holds in more generality, or to find examples where it fails if we make weaker
assumptions. We have first restricted our attention to the groups SLn and
GLn, and we were able to find an answer in the case n = 2 (the case n =
1 is trivial). The main reason behind this choice is that while SLn and
GLn are very closely related, the affine group scheme GLn does not satisfy
the hypotheses of the general statement of Theorem 2.2 (it is not simply
connected). So the main question is: does a similar result hold for G = GLn?
In other words, does every irreducible representation of GLn(Fq) over Fp arise
as the restriction of an irreducible representation of the affine group scheme
GLn? We were not able to find an answer nor a counterexample for any
n ≥ 3. However, there is some that can be said.

2.3 Extension of representations from SLn to GLn

A first important result that shows how the group schemes SLn and GLn are
related is the following:

Theorem 2.3. Let SLn = SLn,k and GLn = GLn,k, with k an algebraically
closed field, and let i : SLn � GLn be the canonical map. Let ρ : SLn →
GL(V ) be an irreducible algebraic representation over k. Then there exists an
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irreducible algebraic representation ρ̃ : GLn → GL(V ) such that the diagram

SLn��

i
��

ρ
// GL(V )

GLn

ρ̃

::

commutes.

In other words, given an irreducible representation of SLn, we can extend
it to an irreducible representation of GLn. Notice that Theorem 2.3 is true
in any characteristic.

To prove this theorem, we will need a lemma.

Lemma 2.4. Let n′ ∈ N be a divisor of n, and let k be an algebraically
closed field. Denote by j the natural map j : lµ.. n′ � SLn, and by h the
natural map h : Gm � GL(V ). Let ρ : SLn → GL(V ) be an irreducible
algebraic representation over k. Then there exists a map τ : lµ.. n′ → Gm such
that the diagram

lµ.. n′ //
j
//

τ

��

SLn

ρ

��

Gm
//

h
// GL(V )

commutes.

Proof. This is the key lemma in the proof of Theorem 2.3, and it requires
different approaches for different values of n′.

Step 1. Suppose n′ 6= 0 in k. In this case, by Example 1.4 there is a (non
canonical) isomorphism of group schemes Z/n′Z ∼= lµ.. n′ .

Consider now k-points. We know that lµ.. n′(k) =< ζn′ > is a cyclic group
of order n′. Hence the endomorphism ρj(k)(ζn′) of V is diagonalisable since
n 6= 0. Fix a basis such that V ∼= km and

ρj(k)(ζn′) =

λ1

. . .
λn′


with respect to that basis, where λn′i = 1 for all i’s. Consider the eigenspace
Vλ1 relative to λ1. Then we claim that Vλ1 is stable under the action of SLn.
Indeed, let R be a k-algebra. We have that lµ.. n′(R) ⊂ lµ.. n(R) ⊂ SLn(R) is in
the center of the group, hence R⊗ Vλ1 is closed under the action of SLn(R).
Then Vλ1 gives a nonzero subrepresentation of ρ, and since ρ is irreducible
we conclude that Vλ1 = V , hence λi = λ1 for all i’s and ρj(k)(ζn′) is scalar.
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So we have a commutative diagram

lµ.. n′(k)
j(k)

//

τ(k)

��

SLn(k)

ρ(k)

��

Gm(k)
h(k)
// GLm(k).

By Lemma 1.4, since lµ.. n′ is a constant group scheme, we have for any affine
group scheme H the equality

HomGrSch/k(lµ.. n′ , H) = HomGrp(lµ.. n′(k), H(k))

and by applying this to the whole diagram the conclusion follows.
Step 2. Suppose now char k = p > 0, and n′ = pr. In this case lµ.. n′ =

SpecS as a scheme, with S ∼= k[X]/(Xpr − 1) ∼= k[δ]/δp
r (the isomorphism

is X 7→ 1 + δ) (see also Example 1.1). The group lµ.. n′(S) = Homk(S, S) has
a canonical element, the identity. Under the identification Homk(S, S) =

lµ.. n′(S) =
{
x ∈ S | xpr = 1

}
given by ψ 7→ ψ(X), the identity corresponds

to 1 + δ. Notice that in the diagram

SpecS
id //

##

lµ.. n′ //
j
//

��

SLn

ρ

��

Gm
//

h
// GL(V )

the existences of the two dotted arrows are equivalent, hence it is enough to
verify the property for the S-point 1+δ, i.e. we need to prove that ρj(S)(1+δ)
is a scalar in GLm(S). We have that ρj(S)(1+δ) = 1+A1δ+· · ·+An′−1δ

n′−1

for some Ai ∈ Matm(k), so we need to show that Ai is scalar for all i.
We will use an argument by induction to prove that indeed the Ai’s

are scalar. Consider the rings St = k[δ]/δt for t = 0, 1, . . . , n′. We have
canonical projections S = Sn′ → Sn′−1 → · · · → S0 = k. We can consider
1 + δ ∈ lµ.. n′(St) for all t, and we have that ρ(St)(1 + δ) = 1 + · · ·+At−1δ

t−1.
What we want to prove is then equivalent to saying that ρj(St)(1 + δ) is
scalar in GLm(St) for all t.

This is clearly true for t = 1. Let us suppose it is true for t ≤ t0, and let
us prove it for t = t0 + 1.

We know that ρj(St0+1)(1 + δ) = M + At0δ
t0 for some M a scalar ma-

trix. Suppose that for all k-algebra R, for all g ∈ SLn(R), we have that
At0ρ(R)(g) = ρ(R)(g)At0 (notice that ρ(R)(g) ∈ GLm(R), while At0 ∈
Matm(k) ⊂ Matm(R)). Let Vλ 6= 0 be a generalized eigenspace for At0 with
eigenvalue λ.

Then R⊗ Vλ is closed under the action of SLn(R) for all R because At0
commutes with all SLn(R), i.e. Vλ gives a subrepresentation of ρ, so Vλ = V
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since ρ is irreducible. Then if At0 is not scalar we have that ker(At0 −λ) is a
proper subrepresentation, which is a contradiction because ρ is irreducible,
and we conclude that At0 is scalar.

We are left with proving that At0 commutes indeed with all possible
ρ(R)(g) for g ∈ SLn(R). We know that 1 + δ ∈ lµ.. m(St0+1) commutes with
all h ∈ SLn(St0+1), so ρj(R⊗ St0+1)(1 + δ) commutes with ρ(R⊗ St0+1)(g)
inside GLm(R⊗ St0+1) for all g ∈ SLn(R). That means

0 = [M +At0δ
t0 , ρ(R⊗ St0+1)(g)] = δt0 [At0 , ρ(R)(g)]

inside Matm(R ⊗ St0+1), hence [At0 , ρ(R)(g)] = 0 inside Matm(R) and we
are done.

Step 3. Suppose now char k = p > 0, and n′ = epr, with p - e. In this case
we have that lµ.. n′ = lµ.. e × lµ.. pr as group schemes, by using Z/n′Z = Z/eZ ×
Z/prZ and Example 1.3. We have the canonical morphisms je : lµ.. e � SLn
and jpr : lµ.. pr � SLn, and by the previous two steps we have commutative
diagrams

lµ.. e //
je
//

τe

��

SLn

ρ

��

Gm
//

h
// GL(V )

and

lµ.. pr //
jpr

//

τpr

��

SLn

ρ

��

Gm
//

h
// GL(V ).

From these we obtain a commutative diagram

lµ.. pr × lµ.. e //
j

//

τ

��

SLn

ρ

��

Gm
//

h
// GL(V )

and we are done.

Proof. (of Theorem 2.3) We refer to [7], §VII for a treatment of exact se-
quences of affine group schemes and quotients. What we will use (see [8], §I,
Theorem 1.29) is that there is an exact sequence

1 −→ lµ.. n
ϕ−→ Gm×SLn −→ GLn −→ 1

and that giving a representation GLn → GL(V ) is the same as giving rep-
resentations ξ : SLn → GL(V ), χ : Gm → GL(V ) such that ξϕ = χϕ and
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ξ(R)(a)χ(R)(b) = χ(R)(b)ξ(R)(a) in GLn(R) for any k-algebra R and any
a, b ∈ R. Moreover, such a construction gives an extension of ξ in the sense
of the statement of Theorem 2.3.

Denoting by j the natural map j : lµ.. n � SLn, we can consider the
representation ρj : lµ.. n → GL(V ). By Lemma 2.4 this factors through τ :

lµ.. n → Gm, and by Corollary 1.2 the map τ extends to τ̃ : Gm → Gm. That
is, we have a commutative diagram

lµ.. n //
j
//

τ

��

}}

z

}}

SLn

ρ

��

Gm τ̃
// Gm

//

h
// GL(V ).

Define now ξ = ρ, and χ = hτ̃ . Then we have the required properties for ξ
and χ (notice that ϕ = (z, j)), so this defines a representation ρ̃ of GLn that
extends ρ.

It remains to check that the representation we have defined is irreducible.
Suppose that there is an invariant subspace V ′ ⊂ V , with dimV ′ < dimV .
Then the action of SLn on V ′ must be trivial, because ρ is irreducible. Then
it follows that the action of the whole GLn is trivial, and we are done.

Notice that this construction is the only one possible, up to the choice of
an extension τ̃ of τ , which corresponds to choosing an integer with prescribed
congruence modulo n.

Unfortunately, we were not able to use this result to prove that all the ir-
reducible representations of the finite group GLn(Fq) over Fp are restrictions
of representations of the affine group scheme GLn. Let us explain where the
difficulty lies. Let ρ be an irreducible representation of GLn(Fq) over Fp. We
can consider the restriction ρ|SLn(Fq), and suppose that this is irreducible.
By Theorem 2.2, there is an irreducible algebraic representation ρ̃ of SLn
such that ρ̃q = ρ|SLn(Fq), and by Theorem 2.3 this extends to an irreducible
algebraic representation of GLn. The point is that if we now take its re-
striction to GLn(Fq), there does not seem to be a reason why this should
coincide with ρ. We were however not able to find any example of a repre-
sentation of the finite group GLn(Fq) that does not come from an algebraic
representation of the algebraic group.

In the following section we will restrict our attention to the case n = 2.
Before we get to that, let us treat another useful result, namely:

Lemma 2.5. Let k be an algebraically closed field. Let ρ : GLn → GL(V )
be an irreducible representation of GLn = GLn,k. Let i : Gm � GLn and
h : Gm � GL(V ) be the canonical maps. Then there is a map α : Gm → Gm
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such that the diagram
Gm
// i //

α

��

GLn

ρ

��

Gm
//

h
// GL(V )

commutes.

Proof. Suppose that such a diagram does not exist, i.e. that Gm does not
act as scalars on V . We claim that then there exists a λ ∈ Gm(k) = k×

such that ρ(k)(λ) is not a scalar in AutV . To prove the claim, notice that
Gm(k) is a dense set in the scheme Gm (see for instance [4], §I.6, Corollaire
6.5.3), so if every element of Gm(k) acted as a scalar then we would have a
commutative diagram

Gm(k) //

��

GLn

ρ

��

Gm
h
// GL(V )

and by density the map Gm(k) → Gm would extend to a map Gm → Gm,
contradiction.

So we have proved the claim, and fix now a λ ∈ k× that does not act
as a scalar on V . If the endomorphism ρ(k)(λ) of V has more than one
eigenvalue, then the corresponding eigenspaces are closed under the action
of all GLn, which is absurd because ρ is irreducible. Then ρ(k)(λ) has only
one eigenvalue µ. If ρ(k)(λ) is not diagonalisable, then ker(ρ(k)(λ) − µ) is
an invariant subspace, which is absurd because ρ is irreducible. We conclude
that ρ(k)(λ) is diagonalisable, so it is a scalar, contradiction.

It follows from this result, together with Corollary 1.2, that the map
Gm → Gm induced by an irreducible representation of GLn is of the form
x 7→ xN for some N ∈ Z.
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3 The groups SL2 and GL2

As it was anticipated, we were not able to find an answer to the main question
for the groups GLn in the literature, nor to come up with one based on the
knowledge that we have for SLn. However, in the case n = 2, there is a lot
that can be said, and the irreducible representations of both SL2 and GL2

can be explicitly described. The representation theory of the finite groups
SL2(Fq) and GL2(Fq) is known as well, and it turns out that even for GL2(Fq)
all the irreducible representations come from irreducible representations of
the affine group scheme.

We will only consider the field k = Fp, even though most of what follows
applies as well to any algebraically closed field of characteristic p > 0. For
brevity, we will write SL2 and GL2 instead of SL2,Fp

and GL2,Fp
.

3.1 Representations of the group scheme SL2

We begin by introducing a class of representations of SL2. There is a natural
representation ρ of SL2 on the 2-dimensional vector space V = k2 =< X,Y >
over k. It is defined as follows: the choice of the basis we have made for V
induces an isomorphism ϕ : GL2 → GL(V ), and if we call j : SL2 � GL2

the canonical map, we define ρ to be ρ = j ◦ ϕ. A more explicit description
is the following: for any k-algebra R, for every element

g =

(
a b
c d

)
of SL2(R), the action of ρ(R)(g) is given by

ρ(R)(g) : X 7→ aX + cY

and
ρ(R)(g) : Y 7→ bX + dY.

We will call this representation the standard representation and denote it by
Std.

For j ∈ N, we will call Vj = Symj Std (the j-th symmetric power of Std).
Thus Vj is a (j+ 1)-dimensional representation of SL2, corresponding to the
extension of the action given by ρ to the space of homogeneous polynomials
of degree j in the variables X,Y . Notice that in particular V0 is the trivial
1-dimensional representation, and that V1 = Std.

From the general theory exposed in [6], we can deduce the full classifi-
cation of irreducible representations of the affine group scheme SL2. Recall
the definition we have given, for a representation V of SL2, of its i-twisted
representation V [i], given by composing the action with the iterate Frobenius
endomorphism of SL2. We have:
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Theorem 3.1. For every j ∈ N, write j =
∑s

i=0 jip
i, with 0 ≤ ji < p for

every i, and define a representation L(j) of the affine group scheme SL2 as
follows:

L(j) =

s⊗
i=0

V
[i]
ji
.

Then L(j) is irreducible, and L(j) ∼= L(h) implies j = h. Moreover, every
irreducible representation of SL2 is isomorphic to L(j) for some j ∈ N.

Proof. See [5], §2.2 to §2.8 for the general statement and the particular case
of SL2, and [6], §II.2 or [9] for the proof of the general theorem.

Notice that in general, a representation of SL2 is not a direct sum of
irreducibles, so describing the irreducibles is not enough to describe all the
representations.

Let us move to the analysis of the finite groups SL2(Fq).

3.2 Representations of the finite group SL2(Fq)

The classification of irreducible representations of SL2(Fq) over k = Fp is well
known, and it was found by Brauer and Nesbitt in [1] (predating Steinberg’s
more general theory). It is as follows:

Theorem 3.2 (Brauer-Nesbitt, [1], §30). Let q = pr for r ∈ N≥1. For
every r-uple (j0, . . . , jr−1) with ji ∈ N and 0 ≤ ji < p for every i, define the
representation H(j0, j1, . . . , jr−1) of SL2(Fq) over Fp by

H(j0, j1, . . . , jr−1) =
r−1⊗
i=0

V
[i]
ji
.

Then these representations are irreducible, they are pairwise non-isomorphic,
and every irreducible representation of SL2(Fq) over Fp is isomorphic to one
of these.

Notice that by Theorem 2.2, we know that all these representations are ir-
reducible, being clearly restriction of irreducible representations of the group
scheme SL2. However, in this case it is not so hard to prove the whole the-
orem by hand. The proof we give is essentially the one given in [1], §30,
rewritten in a more modern language and in greater detail.

Definition 3.1. Let G be a finite group, and let g ∈ G. If p - ord(g), then
we say that g is a p-regular element. If p | ord(g), then we say that g is a
p-singular element.

Lemma 3.3. Let G be a finite group, and let g ∈ G. Then there exist two
elements a, b ∈ G such that the following hold:
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• g = ab = ba

• p - ord(a)

• ord(b) = ps for some s ≥ 0.

Moreover, the elements a and b satisfying these conditions are uniquely de-
termined and they are both powers of g.

Proof. Let n = ord(g). If (n, p) = 1 then a = g, b = 1 is clearly the only
possible such decomposition. If n = prq, with r ≥ 1 and (p, q) = 1, then find
integers x, y ∈ Z such that 1 = xpr + yq. Set a = gxp

r
, b = gyq. It is easy

to see that ord(a) = q, ord(b) = pr, and that these elements are uniquely
determined.

Definition 3.2. Let G be a finite group, and let g ∈ G. Let g = ab as in
Lemma 3.3. Then we say that a is the p-regular factor of g and that b is the
p-singular factor of g.

Notice that the conjugate elements of a p-regular element are p-regular.
A p-regular conjugacy class is the conjugacy class of a p-regular element.

Theorem 3.4. Let G be a finite group. Then the number of non-isomorphic
irreducible representations of G over Fp is equal to the number of p-regular
conjugacy classes of G.

Proof. Omitted, see [11], §7, Theorem 1.9.

Lemma 3.5. Let G be a finite group. Let ρ : G→ AutV be a representation
of G over Fp. Let g ∈ G, and write g = ab as in Lemma 3.3. Then the
elements ρ(a) and ρ(g) of AutV have the same eigenvalues with the same
multiplicities.

Proof. We can write ρ(g) in Jordan normal form. Then ρ(a) and ρ(b) are
powers of ρ(g) by Lemma 3.3, so they are upper triangular matrices. Since
ord(ρ(b)) is a power of p, it follows that its diagonal entries must be equal
to 1. Then the result follows easily.

Notice that in particular we do not lose any information about eigenvalues
if we only consider the p-regular factor of a given element of the group.

Lemma 3.6. Let G be a finite group. Let ρ be a representation of G over
Fp. Let a, b ∈ G be p-regular elements. Then ρ(a) and ρ(b) have the same
characteristic polynomial if and only if they are conjugate.

Proof. The “if” part is trivial (two conjugate matrices have the same charac-
teristic polynomial). Suppose now that ρ(a) and ρ(b) have the same charac-
teristic polynomial. Since a and b are p-regular, the corresponding matrices
ρ(a) and ρ(b) are diagonalisable. But diagonal matrices are determined by
their characteristic polynomial, and we are done.
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We will also need a result about the structure of the representations
V

[l]
j = (Symj Std)[l].

Lemma 3.7. Let j, l ∈ N with j ≥ 1. There are exact sequences of repre-
sentations of SL2(Fq) over Fp

0 −→ V
[l]
j−1

ϕ−→ V
[l]
j ⊗ V

[l]
1

ψ−→ V
[l]
j+1 −→ 0 (1)

and

0 −→ V
[l+1]

1
γ−→ V [l]

p
χ−→ V

[l]
p−2 −→ 0. (2)

Proof. The maps in (1) are given by:

ϕ(h) = hY ⊗X − hX ⊗ Y
ψ(s⊗ t) = st.

The map ψ is obviously a surjective map of representations. Moreover, we
have that clearly

ψ ◦ ϕ = 0.

Since
dim(V

[l]
j ⊗ V

[l]
1 ) = 2j + 2 = dimV

[l]
j−1 + dimV

[l]
j+1

we conclude that (1) is an exact sequence of vector spaces. Let us check that
ϕ is a map of representations, i.e. that given

E =

(
a b
c d

)
∈ SL2(Fq)

we have
ϕ(E.h) = E.ϕ(h).

We have

E.ϕ(h) = (E.h)(bp
l
X + dp

l
Y )⊗ (ap

l
X + cp

l
Y ) +

−(E.h)(ap
l
X + cp

l
Y )⊗ (bp

l
X + dp

l
Y ) =

= (E.h)(detE)p
l
(Y ⊗X −X ⊗ Y ) =

= ϕ(E.h)

since detE = 1. We have proved that the sequence (1) is indeed an exact
sequence of representations of SL2(Fq).

The maps in (2) are given by:

γ(X) = Xp

γ(Y ) = Y p

χ(f) =
∂f

X∂Y
.
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Let us first check that γ is a map of representations. We have, for the same
matrix E ∈ SL2(Fq),

E.γ(X) = E.Xp = (ap
l
X + cp

l
Y )p =

= ap
l+1
Xp + cp

l+1
Y p = ap

l+1
γ(X) + cp

l+1
γ(Y ) =

= γ(E.X)

and similarly
E.γ(Y ) = γ(E.Y )

so γ is indeed a map of representations. Moreover, there is clearly an equality
of vector spaces

kerχ = γ(V1).

What remains to be done is to show that χ is a map of representations. It
is enough to show that χ commutes with the matrices

E1 =

(
1 0
1 1

)

E2 =

(
1 1
0 1

)
Eα =

(
α 0
0 α−1

)
with α ∈ F×q

since they generate SL2(Fq). Indeed, we have for 0 ≤ i ≤ p, that

E1.χ(Xp−iY i) =

p−i−1∑
h=0

i

(
p− i− 1

h

)
Xp−i−h−1Y i+h−1

while

χ(E1.X
p−iY i) =

p−i−1∑
h=0

(i+ h)

(
p− i
h

)
Xp−i−h−1Y i+h−1

so we are left with comparing the coefficients

i

(
p− i− 1

h

)
and (i+ h)

(
p− i
h

)
inside Fp. We will prove the stronger assertion that

(p− i)
(
p− i− 1

h

)
= (p− i− h)

(
p− i
h

)
inside Z. Indeed, the left-hand side is the number of choices of an object
from a set of p− i, followed by h objects chosen from the p− i−1 remaining.
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The right-hand side is the number of ways one can choose h objects from
the same set of p − i, and then choose one among the remaining p − i − h.
So the two numbers are the same, since the order in which the two choices
are made does not matter. So we have proved that

E1.χ(Xp−iY i) = χ(E1.X
p−iY i)

for all 0 ≤ i ≤ p. Let us proceed to compute, still for 0 ≤ i ≤ p, the
quantities

E2.χ(Xp−iY i) =
i∑

k=1

i

(
i− 1

k − 1

)
Xp−k−1Y k−1

and

χ(E2.X
p−iY i) =

i∑
k=1

k

(
i

k

)
Xp−k−1Y k−1.

We are left again with comparing the coefficients

i

(
i− 1

k − 1

)
and k

(
i

k

)
inside Fp. They are actually equal inside Z. This can be seen with an-
other combinatorical argument, but for the sake of diversity we present the
computation

k

(
i

k

)
=

i!k

k!(i− k)!
=

(i− 1)!i

(k − 1)!(i− k)!
= i

(
i− 1

k − 1

)
.

We are done proving that

E2.χ(Xp−iY i) = χ(E2.X
p−iY i)

for all 0 ≤ i ≤ p. It remains to prove that χ commutes with the matrices of
type Eα. We have, for 0 ≤ i ≤ p,

Eα.χ(Xp−iY i) = Eα.iX
p−i−1Y i−1 =

= iαp
l(p−2i)Xp−i−1Y i = χ(αp

l(p−2i)Xp−iY i) =

= χ(Eα.X
p−iY i)

and this concludes the proof of the Lemma.

Now we are ready to prove Theorem 3.2.
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Proof. (of Theorem 3.2) We have to prove three facts: that the representa-
tions we have given are irreducible, that they are pairwise non-isomorphic,
and that there are no other irreducible representations.

Let us start by proving that H = H(j0, j1, . . . , jr−1) is irreducible. The
vector space H has a basis consisting of the elements

g(a0, . . . , ar−1) = Xj0−a0
0 Y a0

0 ⊗ · · · ⊗X
jr−1−ar−1

r−1 Y
ar−1

r−1

where V [i]
ji

= k[Xi, Yi]ji as a vector space and 0 ≤ ai ≤ ji for every i. Let us
take a nonzero element

f =
∑

α(a0, . . . , ar−1)g(a0, . . . , ar−1) ∈ H

with every α(a0, . . . , ar−1) inside Fq, and let us consider the subrepresenta-
tion V (f) ⊂ H generated by f . It is enough to show that V (f) = H. We
will first reduce to the case

f = Y j0
0 ⊗ Y

j1
1 ⊗ · · · ⊗ Y

jr−1

r−1 .

For t ∈ Fq, let us consider the map ϕt : H → H representing the matrix(
1 0
t 1

)
∈ SL2(Fq).

For a basis element g = g(a0, . . . , ar−1) we have then

ϕt(g) = (X0 + tY0)j0−a0Y a0
0 ⊗ · · · ⊗ (Xr−1 + tp

r−1
Yr−1)jr−1−ar−1Y

ar−1

r−1 .

In the above expression for g(a0, . . . , ar−1), consider now t as a formal vari-
able, and write

ft = ϕt(f) =
∑

α(a0, . . . , ar−1)ϕt(g(a0, . . . , ar−1))

as a polynomial in t

ft =

q−1∑
ν=0

tνNν

where the Nν ’s do not depend on t. The indices ν range from 0 to(
r−1∑
i=0

pi

)
(p− 1) = q − 1.

Notice that ft ∈ V (f) if we evaluate it at any t ∈ Fq. We claim that every
Nν is a linear combination of the elements {ft | t ∈ Fq}. To prove the claim,
notice that we have 

f0

f1
...

fαq−1

 = M


N0

N1
...

Nq−1
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where

M =


1 0 0 · · · 0
1 1 12 · · · 1q−1

1 α2 α2
2 · · · αq−1

2
...

...
...

. . .
...

1 αq−1 α2
q−1 · · · αq−1

q−1


with Fq = {0, 1, α2, . . . , αq−1}. The claim is equivalent to the matrix M ∈
Matq(Fq) being invertible. Its determinant detM is the Vandermonde deter-
minant in {0, 1, α2, . . . , αq−1}, which is nonzero since these elements are all
distinct. We have then proved the claim that the Nν ’s are linear combina-
tions of the {ft | t ∈ Fq}. Let us now order the basis elements g(a0, . . . , ar−1)
by inverse lexicographical order, that is

g(a0, . . . , ar−1) ≤ g(a′0, . . . , a
′
r−1)

if and only if the last difference a′i − ai that is nonzero is positive. Let
g(b0, . . . , br−1) be the unique minimal basis element such that in the expres-
sion

ft =
∑

α(a0, . . . , ar−1)ϕt(g(a0, . . . , ar−1))

the coefficient α(b0, . . . , br−1) is nonzero. Then the highest exponent νmax
of t appearing in the expression

ft =

q−1∑
ν=0

tνNν

such that Nνmax 6= 0 is

νmax =
r−1∑
i=0

pi(ji − bi)

and the corresponding Nνmax is

Nνmax = α(b0, . . . , br−1) · Y j0
0 ⊗ Y

j1
1 ⊗ · · · ⊗ Y

jr−1

r−1 .

So we conclude that f ′ = Y j0
0 ⊗Y

j1
1 ⊗· · ·⊗Y

jr−1

r−1 ∈ V (f), and in particular
V (f ′) = H implies V (f) = H. So we are reduced to showing that V (f ′) = H.

Let us then consider another map ψt : H → H representing the matrix(
1 t
0 1

)
∈ SL2(Fq).

Define f ′t = ψt(f
′) and compute it:

f ′t = (tX0 + Y0)j0 ⊗ (tpX1 + Y1)j1 ⊗ · · · ⊗ (tp
r−1
Xr−1 + Yr−1).
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We can express f ′t as a polynomial in t, and in this case the coefficients
include all the basis elements g(a0, . . . , ar−1). Now by the same argument
we used for the Nν ’s, we deduce that all the elements g(a0, . . . , ar−1) lie
inside V (f ′) and so we are done.

We now proceed to showing that the representations we have listed are
pairwise non-isomorphic. Let us order the representations H(j0, . . . , jr−1)
by

H(j0, . . . , jr−1) ≤ H(h0, . . . , hr−1)

if and only if the first difference hi − ji that is nonzero is positive. Suppose
then that we have

H(j0, . . . , jr−1) ∼= H(j′0, . . . , j
′
r−1) (3)

with (j0, . . . , jr−1) 6= (j′0, . . . , j
′
r−1). We may assume that H(j0, . . . , jr−1)

is (the unique) minimal element in the set of representations that we have
given that is isomorphic to another one of them. Without loss of generality,
assume that j0 = · · · = ji−1 = 0 and ji 6= 0. Then clearly (ji, . . . , jr−1) 6=
(p − 1, . . . , p − 1) because of minimality. Moreover, if (j′i, . . . , j

′
r−1) = (p −

1, . . . , p − 1) then by dimensional reasons (ji, . . . , jr−1) = (p − 1, . . . , p − 1)
which is also a contradiction, so we deduce that (j′i, . . . , j

′
r−1) 6= (p−1, . . . , p−

1).
Tensor both sides of (3) by V [i]

1 . Suppose now that ji 6= p − 1. In this
case, by Lemma 3.7, we know that

V
[i]

1 ⊗H(j0, . . . , jr−1) = V
[i]

1 ⊗ V
[i]
ji
⊗ · · · ⊗ V [r−1]

jr−1

has the representations

H(0, . . . , 0, ji − 1, ji+1, . . . , jr−1)

and
H(0, . . . , 0, ji + 1, ji+1, . . . , jr−1)

as its two composition factors. The right-hand side of (3) tensored with V [i]
1

has the same composition factors, hence for dimensional reasons we have

H(0, . . . , 0, ji − 1, ji+1, . . . , jr−1) ∼= H(0, . . . , 0, j′i − 1, j′i+1, . . . , j
′
r−1)

but since ji − 1 6= j′i − 1 we have found an example of distinct isomorphic
representations with lower indices, which is a contradiction.

Suppose now that ji = p− 1. Then by Lemma 3.7 we have that

V
[i]

1 ⊗H(j0, . . . , jr−1) = V
[i]

1 ⊗ V
[i]
p−1 ⊗ · · · ⊗ V

[r−1]
jr−1

has the representations

H(0, . . . , 0, p− 2, ji+1, . . . , jr−1)
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and
K = V [i]

p ⊗H(0, . . . , 0, ji+1, . . . , jr−1)

as subquotients. While the first of these is irreducible, the second is not. We
can use the second part of Lemma 3.7 to deduce that K has the representa-
tions

K ′ = V
[i+1]

1 ⊗H(0, . . . , 0, ji+1, . . . , jr−1)

and

V
[i]
p−2 ⊗H(0, . . . , 0, ji+1, . . . , jr−1) = H(0, . . . , 0, p− 2, ji+1, . . . , jr−1)

as subquotients. Notice that the latter of the two is irreducible. Suppose
that ji+1 6= p− 1. Then K ′ has the representations

H(0, . . . , 0, ji+1 − 1, . . . , jr−1)

and
H(0, . . . , 0, ji+1 + 1, . . . , jr−1)

as its two composition factors, and we have again found the composition
factors of both sides of (3). We find once more a contradiction because there
are isomorphic irreducible representations that have lower indices. Suppose
instead that ji+1 = p − 1. We can iterate this whole process, and it will
eventually stop because, as we have said, (ji, . . . , jr−1) 6= (p−1, . . . , p−1). So
when we reach the first i such that ji 6= p−1 we can conclude by contradiction
in the same way. This shows that the representations that we have listed are
pairwise non-isomorphic.

Let us conclude by showing that the list of irreducible representations
that we have given is in fact the full list. It is enough to show that there are
exactly q non-isomorphic irreducible representations of SL2(Fq). By The-
orem 3.4, it is enough to show that there are exactly q different p-regular
conjugacy classes. We will apply Lemma 3.5 and Lemma 3.6 to the stan-
dard representation Std = V1 of SL2(Fq). Notice that, given a polynomial
pγ(T ) = T 2− γT + 1 with γ ∈ Fq, there is an element gγ ∈ SL2(Fq) that has
it as its characteristic polynomial, for instance the matrix(

0 −1
1 γ

)
.

By Lemma 3.5 we deduce that there is a p-regular element g′γ ∈ SL2(Fq)
that has pγ(T ) as its characteristic polynomial. By Lemma 3.6 we have that
the number of different characteristic polynomials of elements of SL2(Fq) is
exactly the same as the number of p-regular conjugacy classes. Since the
characteristic polynomials in this case are in Fq[T ], are monic of degree 2,
have constant term equal to 1, and all such polynomials occur, we conclude
that this sought-after number is indeed |Fq| = q.
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This concludes the discussion of representations of the various incarna-
tions of the group SL2. We will now move to the analogous discussion for
GL2. It turns out that the situation is not very different, as it was easy to
expect given how much the two groups are related.

3.3 Representations of the group scheme GL2

Most constructions that we have made for SL2 are still valid, in particular
the vector space Std is in a natural way a representation of GL2, and we can
still form its symmetric powers. We will still write Vj for the representation
Symj Std of GL2. All the irreducible representations of SL2 can be seen as
representations of GL2 (since they are tensor products of twists of symmetric
powers of Std). Recall from Example 1.5 that GL2 also has infinitely many 1-
dimensional representations Dn given by powers of the determinant. Notice
that these are all trivial when restricted to SL2.

Given that the main difference between invertible matrices and matrices
of determinant 1 is the determinant, it is natural to expect that it is also the
main difference between the representation theory of GL2 and of SL2. This
is indeed the case: given an irreducible representation V of SL2, we can form
the representation V ⊗Dn of GL2 for any value of n ∈ Z. This turns out to
give the complete description of the irreducible representations of GL2:

Theorem 3.8. Let L(j) be an irreducible algebraic representation of SL2,
and let n ∈ Z. Then the representation L(j, n) = L(j) ⊗ Dn of GL2 is
irreducible. Moreover, L(j, n) ∼= L(h,m) implies (j, n) = (h,m), and every
irreducible algebraic representation of GL2 is isomorphic to L(h,m) for some
h ∈ N, m ∈ Z. In other words, the irreducible algebraic representations of
GL2 are the following (up to isomorphism):

L(j, n) = Dn ⊗
s⊗
i=0

V
[i]
ji

for n ∈ Z and j =
∑s

i=0 jip
i, with 0 ≤ ji < p for every i.

Proof. To prove the first claim, suppose that L′ is a proper subrepresenta-
tion of L(j, n). Then L′|SL2 is a subrepresentation of L(j), it is proper by
dimension, so it is 0. But for a k-algebra R, if the action of SL2(R) on R⊗L′
is trivial, then so is the action of GL2(R), and we are done.

Suppose now that L(j, n) ∼= L(h,m). Then a matrix(
α 0
0 α

)
∈ GL2(k)

with α ∈ k× acts as α2n on L(j, n) and as α2m on L(h,m). Since k is infinite
it follows that n = m. Then it suffices to apply Theorem 3.1 to L(j, n)|SL2

and L(h, n)|SL2 in order to conclude that (j, n) = (h,m).
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Suppose now that V is an irreducible algebraic representation of GL2, and
we want to prove that it is of this kind. We claim that V |SL2 is irreducible.
Indeed, let N ⊂ V |SL2 be a nonzero irreducible subrepresentation of V |SL2 .
Then N ∼= L(h) for some h by Theorem 3.1, and by Theorem 2.3 it can
be extended to an irreducible representation of GL2. The construction in
the proof of Theorem 2.3 shows that the only possible ways of extending N
are by tensoring with a power of the determinant, so the only irreducible
representations of GL2 that are isomorphic to N when restricted to SL2 are
the L(h)⊗Dl for l ∈ Z. Now, by Lemma 2.5 we know that V |Gm = Dm|Gm for
some m ∈ Z. Then, for that particular value of m we have that N⊗Dm ⊂ V
is a nonzero subrepresentation of V , so we get V ∼= L(h) ⊗ Dm since V is
irreducible, and we are done.

It should be noted that this result follows from the general theory ex-
posed in [6]. However, the explicit description we have given follows much
more easily from the knowledge about SL2 than from actually computing
the highest weights of GL2. On the other hand, the analysis of the represen-
tations of GL2(Fq) does not follow from (the general statement of) Theorem
2.2 (recall that SL2 is simply connected, while GL2 is not). In this case,
however, the relationship with SL2(Fq) produces an explicit description of
the irreducible representations of the groups GL2(Fq) over Fp.

3.4 Representations of the finite groups GL2(Fq)

Let us proceed to the main result of this thesis, namely the description of
the irreducible representations of GL2(Fq) over Fp. As a corollary, we obtain
that Theorem 2.2 also applies to the affine group scheme GL2.

Theorem 3.9. Let q = pr for r ∈ N≥1. For every 0 ≤ n < q − 1, for
every r-uple (j0, . . . , jr−1) with ji ∈ N and 0 ≤ ji < p for every i, define the
representation H(j0, j1, . . . , jr−1, n) of GL2(Fq) over Fp by

H(j0, j1, . . . , jr−1, n) = Dn ⊗
r−1⊗
i=0

V
[i]
ji
.

Then these representations are irreducible, they are pairwise non-isomorphic,
and every irreducible representation of GL2(Fq) over Fp is isomorphic to one
of these.

Corollary 3.10. For every q = pr, with r ∈ N≥1, the restriction of ir-
reducible representations from GL2,Fp

to GL2(Fq) yields all the irreducible
representations of GL2(Fq) over Fp.

To prove Theorem 3.9 it is enough to adapt the proof of Theorem 3.2.
We need a new version of Lemma 3.7, namely
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Lemma 3.11. Let j, l ∈ N with j ≥ 1. There are exact sequences of repre-
sentations of GL2(Fq) over Fp

0 −→ Dpl ⊗ V [l]
j−1

ϕ−→ V
[l]
j ⊗ V

[l]
1

ψ−→ V
[l]
j+1 −→ 0

and
0 −→ V

[l+1]
1

γ−→ V [l]
p

χ−→ Dpl ⊗ V [l]
p−2 −→ 0.

Proof. The proof is essentially the same of Lemma 3.7. We need to redefine
the maps as follows:

ϕ(1⊗ h) = hY ⊗X − hX ⊗ Y
ψ(s⊗ t) = st

γ(X) = Xp

γ(Y ) = Y p

χ(f) = 1⊗ ∂f

X∂Y
.

We only need to add to the computations that we carried out to prove Lemma
3.7 some details concerning determinants. Specifically, let us verify that the
newly defined map ϕ is a map of representations, showing that it commutes
with the action of a generic matrix

E =

(
a b
c d

)
∈ GL2(Fq).

We have

E.ϕ(1⊗ h) = (E.h)(detE)p
l
(Y ⊗X −X ⊗ Y ) =

= ϕ((detE)p
l ⊗ E.h) =

= ϕ(E.1⊗ h).

Now we have to show that the map χ in its new version is a map of repre-
sentations. The computations to show that it commutes with the matrices

E1 =

(
1 0
1 1

)
and

E2 =

(
1 1
0 1

)
have already been carried out in the proof of Lemma 3.7. It remains to show
that it commutes with matrices of the form

Eα,X =

(
α 0
0 1

)
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and

Eα,Y =

(
1 0
0 α

)
for α ∈ F×q . Notice that these, together with E1 and E2, actually generate
all of GL2(Fq). We have, for 0 < i < p,

Eα,X .χ(Xp−iY i) = i(detEα,X)p
l ⊗ αpl(p−i−1)Xp−i−1Y i−1 =

= χ(Eα,X .X
p−iY i)

and similarly

Eα,Y .χ(Xp−iY i) = χ(Eα,Y .X
p−iY i)

and the proof is complete.

Now the proof of our main result follows quite easily:

Proof. (of Theorem 3.9) Let us first show that the representations we have
given are irreducible. We have that H = H(j0, . . . , jr−1, n) restricts to
H(j0, . . . , jr−1) as a representation of SL2(Fq). Suppose that H ′ ⊂ H is
a subrepresentation, such that dimH ′ < dimH = dimH|SL2(Fq). Then
H ′|SL2(Fq) is a proper subrepresentation of H(j0, . . . , jr−1), hence it is 0.
Then the action of the whole GL2(Fq) on H is trivial, and we are done.

Let us prove that the representations we have listed are pairwise non-
isomorphic. The proof of this fact is essentially the same that we used in
Theorem 3.2, and here we use the updated exact sequences of Lemma 3.11.
One needs to notice that for 0 ≤ i ≤ r − 1, we have that

Dpi ⊗ V [i]
p−2

is an irreducible representation of GL2(Fq). Moreover, notice that if

H(j0, . . . , jr−1, n) ∼= H(j′0, . . . , j
′
r−1, n

′)

then n = n′ because for α ∈ Fq, αn = αn
′ implies n = n′ mod (q − 1).

Then we can proceed exactly as in the proof of Theorem 3.2, starting from
an isomorphism that is minimal with respect to lexicographic index ordering
(excluding the last index), and then deriving a contradiction by showing that
some of the composition factors must be isomorphic and have lower indices.

As for showing that the list is a complete list, the argument that we
have used for Theorem 3.2 still applies, but we have to consider polynomials
of the form Pγ,δ(T ) = T 2 − γT + δ, with γ ∈ Fq and δ ∈ F×q . Then the
number of non-isomorphic irreducible representations of GL2(Fq) turns out
to be |Fq||F×q | = q(q − 1), and we are done.
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