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Abstract

The goal of this thesis is to look at properties of the local height functions. We prove
their order of growth is given by λ([m]P ) = O(logm) as m → ∞, which allows us
to improve a result of Everest and Ward concerning estimating values of the global
canonical height. Then, we look at identities of the local height function which can
be used to give slick alternative proofs of results concerning valuations of division
polynomials as presented in a paper of Cheon and Hahn. Lastly, we introduce an
axiomatic definition of local height functions through a discussion of Green functions
at the origin.
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4 Order of growth of the Néron local height functions 15
4.1 Order of growth in the archimedean case . . . . . . . . . . . . . . . . 15
4.2 Order of growth in the non-archimedean case . . . . . . . . . . . . . . 17

5 Identities of the local height functions and applications 21
5.1 The quasi-parallelogram law and a functional equation for λ̃ . . . . . 21
5.2 Applications of the functional equation for λ̃ . . . . . . . . . . . . . . 24
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Chapter 1

Introduction

The global canonical height function plays an important role in the arithmetic of
elliptic curves. The height is related to important mathematical statements such as
the Birch-Swinnerton-Dyer conjecture, thus one hopes to be able to compute the value
of heights of rational points on the elliptic curve. The canonical height is introduced
as a limit of ordinary heights of points P ∈ E(K)\{O}, where E is an elliptic curve
over a number field K. Denoted by ĥ : E(K̄)→ [0,∞), the global height function is
a quadratic form on E. Moreover, it can be decomposed into sums of local functions
that are “almost quadratic”, one for each place of K:

ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvλv(P ) for all P ∈ E(K)\{O}.

The goal of the current thesis is to look at these Néron local height functions and
analyze their properties. We prove that the order of growth of these local height
functions is given by λv([m]P ) = O(logm) as m → ∞. This order of growth allows
for an improvement of a result of Everest and Ward [6] related to a computational
method for estimating the global canonical height of an algebraic point on an elliptic
curve. We then look at certain identities involving the local height functions and use
them to reprove the results of Cheon and Hahn [4] involving valuations of evaluations
of division polynomials at rational points on an elliptic curve. Lastly, we introduce an
axiomatic description of the Néron local height function through introducing currents
on the “analytification” of E.

This thesis is structured by starting with introducing the necessary preliminaries
and then defining the Néron local height functions by giving explicit formulas for both
the archimedean and non-archimedean case. Chapter 4 uses these explicit descriptions
of the local height function to prove its order of growth is given by λv([m]P ) =
O(logm) when m → ∞. Moreover, we prove that in the case of split multiplicative
reduction, the values λ([m]P ) takes for m ∈ Z>0 are closely dependent of the order r
of P in E(K)/E0(K).

In Chapter 5 we focus on obtaining identities for the normalized local height
function λ̃, in particular we prove λ̃([m]P ) = m2λ̃(P )+v(ψm(P )) for P ∈ E(K) non-
torsion, m ∈ Z>0. These identities can be used to obtain results about valuations
of division polynomials on the elliptic curve. In particular, we reprove the results of

1



Cheon and Hahn in [4] in a slick, direct way that avoids lengthy computations and
extensive use of properties of division polynomials. At the end of the chapter we
go back to look at the global height function and show how the order of growth of
λ([m]P ) allows us to improve a result of Everest and Ward [6] used in computing
values of global heights.

While most of the earlier analysis of the local height functions was made explicit
by the use of Weierstrass equations and formulas for computing local heights, the goal
of the last chapter is to introduce an axiomatic description of these local heights and
give a different proof of the identity λ̃([m]P ) = m2λ̃(P ) + v(ψm(P )). We start with
introducing Green functions for a geometrically connected smooth projective curve
X over a local field. Looking at the particular case of elliptic curves, we then define
local height functions that can be extended in a natural way to currents related to
our elliptic curve. These local height functions actually coincide with the normalized
Néron local height functions λ̃ defined in the earlier chapters. An alternative proof
of the aforementioned identity for λ̃ can be given using the new description.
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Chapter 2

Preliminaries

Elliptic curves are smooth curves of genus one having a specified base point. The
goal of this chapter is to introduce basic definitions and notions about the theory of
elliptic curves. The following is meant to be a survey of the main results used in the
following chapters, for more details see [11], [10].

2.1 Basic notions

Let E be an elliptic curve defined over a perfect field K. Then E can be written as
the locus in P2 of a cubic equation with the base point at ∞, denoted by O. Thus,
E can be given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ K, i = 1, 6. The discriminant of the Weierstrass equation is denoted by
∆. Another quantity of interest is the j-invariant of the elliptic curve, defined as
j = c3

4/∆ where c4 = (a2
1 + 4a2)2 − 24(2a4 + a1a3).

Definition 1. Let E1, E2 be two elliptic curves. An isogeny from E1 to E2 is a
non-constant morphism φ : E1 → E2 satisfying φ(O) = O.

Example. For each m ∈ Z, m 6= 0, the multiplication-by-m map [m] : E → E is
an isogeny. Let E[m](K̄) denote the m-torsion points on E. To simplify notation,
we will write E[m] from now on. If either charK = 0 or charK = p, p - m we have
E[m] = Z/mZ × Z/mZ. In this case, [m] is a separable isogeny. Also, deg[m] = m2

for all m ∈ Z.

2.2 Division polynomials

Let E/K be an elliptic curve given by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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We define division polynomials ψm ∈ Z[a1, ..., a6, x, y] for m ∈ Z>0 by the initial
values

ψ1 = 1,

ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2(2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ (b4b8 − b2
6)),

where the bi’s are as defined in [11, p. 42], and the recurrence relations

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ

3
m+1 for m ≥ 3,

We then define φm, ωm by

φm = xψ2
m − ψm+1ψm−1,

4yωm = ψ2
m−1ψm+2 + ψm−2ψ

2
m+1.

Since ∆ 6= 0, ψm(x)2 and φm(x) are relatively prime polynomials in K[x], where
Z[a1, ..., a6, y] is seen as a subring of K. In addition, as polynomials in x, we have

φm(x) = xm
2

+ (lower order terms)

ψm(x)2 = m2xm
2−1 + (lower order terms).

Proposition 2. Let P ∈ E(K̄), P 6= O be a point on the elliptic curve E/K. Then

[m]P =

(
φm(P )

ψm(P )2
,
ωm(P )

ψm(P )3

)
.

Lemma 3. Let E/K be an elliptic curve, char K = 0. For every m ∈ Z>0, define

Fm(x) = m2
∏

P∈E[m],
P 6=O

(x− x(P )) ∈ K(E).

By convention we set F1(x) = 1. Then Fm = ψ2
m.

Proof. We compute

div(Fm) =
∑
P∈E

ordP (Fm)(P ) = 2

 ∑
P∈E[m]

(P )

− 2m2(O).

That is because the map [x : 1] : E → P1 has a double pole at O and no other
poles [11, p.60] and thus x−x(P ) has a double pole at O and zeroes at P,−P ∈ E[m].
The identity follows, keeping in mind that deg[m] = m2.

On the other hand, ψm ∈ Z[a1, ..., a6, x, y] and ψ2
m must have a pole at O which

has to be of order m2 − 1 since ψm(x)2 = m2xm
2−1 + (lower order terms). Also,

[m]P =

(
φm(P )

ψm(P )2
,
ωm(P )

ψm(P )3

)
, so ψm has a simple zero at P ∈ E[m], P 6= O.

As a result, div(Fm) =div(ψ2
m) and since both have the same coefficient for the

xm
2−1 term, they must be equal.
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2.3 Reduction modulo π

Let K be a local field complete with respect to a discrete valuation v and let E/K be
an elliptic curve. Let π a uniformizer for the ring of integers of K, which we denote
by R. Let M be the maximal ideal of R and k = R/πR the residue field.

We can now talk about the reduction of E modulo π. We first choose a minimal
Weierstrass equation for E (that is v(∆) is minimal subject to the condition that
the coefficients are v-integral; such a minimal Weierstrass equation exists by [11,
Proposition 1.3, p. 186]). We can now reduce the coefficients modulo π to obtain a
curve over the residue field k, namely

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

The curve Ẽ/k is called the reduction of E modulo π.
The curve Ẽ may be singular, but the set of nonsingular points Ẽns(k) forms a

group. Moreover, E(K) admits the following filtration of abelian groups [11, p. 188]:

E1(K) ⊂ E0(K) ⊂ E(K),

where

E0(K) = {P ∈ E(K)|P̃ ∈ Ẽns(k)},
E1(K) = {P ∈ E(K)|P̃ = Õ}.

Here P̃ is the image of P ∈ E(K) through the reduction map E(K)→ Ẽ(k) that sends
P = [x0 : y0 : z0] with x0, y0, z0 ∈ R and at least one in R∗, to P̃ = [x̃0 : ỹ0 : z̃0] [11,
p.187].

The following result gives information about the structure of the groupE(K)/E0(K)
depending on the type of reduction [11, Theorem 6.1, p.200]:

Theorem 4 (Kodaira, Néron). Let E/K be an elliptic curve. If E has split multiplica-
tive reduction over K, then E(K)/E0(K) is a cyclic group of order v(∆) = −v(j).
In all other cases, the group E(K)/E0(K) is finite and has order at most 4.

2.4 Formal groups

Let E/K be an elliptic curve defined by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We make a change of variables z = −x
y
, w = −1

y
, so that z is a local uniformizer

at O, that is, it has a zero of order 1 at O. O is now the point (z, w) = (0, 0). Let
f(z, w) = z3 +a1zw+a2z

2w+a3w
2 +a4zw

2 +a6w
3 so the Weierstrass equation for E

becomes f(z, w) = w. There exists a unique power series w(z) = z3(1 +A1z+A2z
2 +

...) ∈ Z[a1, ..., a6][[z]] such that w(z) = f(z, w(z)) [11, p. 116].
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Using the power series w(z), we can derive Laurent series for x and y

x(z) =
z

w(z)
=

1

z2
− a1

z
− a2 − a3z − (a4 + a1a3)z2 − ...

y(z) = − 1

w(z)
= − 1

z3
+
a1

z2
+
a2

z
+ a3 + (a4 + a1a3)z − ...

such that (x(z), y(z)) provides a formal solution to the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let K be a local field complete with respect to a discrete valuation with ring of
integers R and maximal ideal M. If a1, ..., a6 ∈ R then the series x(z), y(z) will
converge for any z ∈ M and (x(z), y(z)) will be a point in E(K). Thus we get an
injective map

M→ E(K), z 7→ (x(z), y(z)).

Definition 5. Let R be a ring. A (one-parameter commutative) formal group F over
R is a power series F (X, Y ) ∈ R[[X, Y ]] with the following properties:

1. F (X, Y ) = X + Y + (terms of degree ≥ 2)

2. F (X,F (Y, Z)) = F (F (X, Y ), Z) (associativity)

3. F (X, Y ) = F (Y,X) (commutativity)

4. There is a unique power series i(T ) ∈ R[[T ]] such that F (T, i(T )) = 0 (inverse)

5. F (X, 0) = X and F (Y, 0) = Y .

We call F (X, Y ) the formal group law of F .

Example. The formal additive group Ĝa is defined by F (X, Y ) = X + Y .

One can define a formal group Ê associated to an elliptic curve E given by a
Weierstrass equation with coefficients in R. Here R is the ring of integers of a local
field complete with respect to a discrete valuation. Let z1, z2 ∈ M and w1 = w(z1),
w2 = w(z2). Denote the corresponding points on E(K) by P1, P2 respectively. The
group law is given by [11, p.119-120]

F (z1, z2) = i(z3(z1, z2)) = z1 + z2−a1z1z2−a2(z2
1z2 + z1z

2
2) + .... ∈ Z[a1, ..., a6][[z1, z2]],

where i(z) =
x(z)

y(z) + a1x(z) + a3

∈ Z[a1, ...., a6][[z]] and z3 ∈ M corresponds to the

inverse of P1 + P2 on E(K). The power series expansion of z3 is given by

z3 = z3(z1, z2) = −z1−z2 +
a1λ+ a3λ

2 − a2y − 2a4λν − 3a6λ
2ν

1 + a2λ+ a4λ2 + a6λ3
∈ Z[a1, ..., a6][[z1, z2]],

where λ = λ(z1, z2) =
w2 − w1

z2 − z1

, ν = ν(z1, z2) = w1 − λz1 ∈ Z[a1, ..., a6][[z1, z2]].
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Definition 6. Let (F , F ) be a formal group. We define a multiplication-by-m ho-
momorphism [m] : F → F for m ∈ Z by

[0](T ) = 0, [m+ 1](T ) = F ([m](T ), T ), [m− 1](T ) = F ([m]T, i(T )).

The power series expansion for the multiplication-by-m map is given by [m](T ) =
mT + (higher-order terms).

One can associate a group to every formal group. For the rest of the section we
consider K to be a local field complete with respect to some discrete valuation, R its
ring of integers,M the maximal ideal of R and F a formal group defined over R with
group law F (X, Y ).

Definition 7. The group associated to F/R, denoted by F(M), is the set M en-
dowed with the group operations

x⊕F y = F (x, y) (addition) for x, y ∈M,

	Fx = i(x) (inversion) for x ∈M.

For n ≥ 1 we define F(Mn) to be the subgroup of F(M) consisting of the set
Mn with the above group operations.

Example. Let Ê be the formal group associated to an elliptic curve E/K. Then the
group associated to Ê is Ê(M). Similarly, the additive group Ĝa is justM with the
usual addition law.

The reason for introducing the formal group for an elliptic curve is to be able
to use the properties of formal groups in the setting of elliptic curves. The following
result shows that E1(K) is in fact a group associated to Ê [11, Proposition 2.2, p.191]:

Proposition 8. Let E/K be given by a minimal Weierstrass equation, let Ê/R be
the formal group associated to E. Then the map

Ê(M)→ E1(K), z 7→
(

z

w(z)
,− 1

w(z)

)
,

is an isomorphism of groups.

To understand E1(K), it is thus enough to understand Ê(M). Introducing the
notion of a formal logarithm allows for a homomorphism of Ê(M) to the additive
group [11, Theorem 6.4, p.132].

Let K be a field of characteristic 0 and F/R be a formal group. The formal
logarithm of F/R is a power series in K[[T ]] as defined in [11, p. 127]. What is of
interest to us is the following description of the logarithm:

Proposition 9. Let K be of characteristic 0, and F/R be a formal group. Then

logF(T ) =
∞∑
n=1

cn
n
T n

with cn ∈ R and c1 = 1.
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Theorem 10. Let K a field of characteristic 0 that is complete with respect to a
normalized discrete valuation v, let R be the valuation ring of K, M the maximal
ideal of R, p a prime with v(p) > 0 and F/R a formal group. Let r > v(p)/(p − 1)
be an integer. Then the formal logarithm induces an isomorphism

logF : F(Mr)
∼−→ Ĝa(Mr).

2.5 Elliptic curves over C
A lattice in C is a discrete subgroup that contains an R-basis. That is Λ = ω1Z+ω2Z
with {ω1, ω2} a basis for C over R.

Being over C, we can take a Weierstrass equation of the form

E : y2 = x3 + Ax+B

where the discriminant is given by ∆ = −16(4A3 + 27B2). Since E is non-singular,
∆ 6= 0 and the following uniformization result [10, Corollary 4.3, p.35] holds:

Theorem 11. Let A,B ∈ C with 4A3 + 27B2 6= 0. Then there exists a unique lattice
Λ ⊂ C such that g2(Λ) = 60G4(Λ) = −4A and g3(Λ) = 140G6(Λ) = −4B. The map

C/Λ→ E : y2 = x3 + Ax+B

z 7→
(
℘(z,Λ),

1

2
℘′(z,Λ)

)
is a complex analytic isomorphism.

G4(Λ), G6(Λ) are the Eisenstein series of weights 4 and 6 where G2k(Λ), the Eisen-

stein series of weight 2k, is defined as G2k(Λ) =
∑
ω∈Λ,
ω 6=0

ω−2k. Also, ℘ is the Weierstrass

℘-function for Λ defined by the series

℘(z,Λ) =
1

z2
+
∑
ω∈Λ,
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

Thus any elliptic curve over the complex numbers is isomorphic to a complex torus
C/Λ for some lattice Λ ⊂ C.

Definition 12. The Weierstrass σ-function is the holomorphic function on C defined
by

σ(z) = σ(z,Λ) = z
∏
ω∈Λ,
ω 6=0

(1− z

ω
)ez/ω+ 1

2
(z/ω)2 .

The σ-function has simple zeroes at z ∈ Λ and no other zeroes. Another function
of interest is the quasi-periodic map associated to Λ:
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Definition 13. The quasi-periodic map η : Λ→ C is defined as the difference

η(ω) = ζ(z + ω,Λ)− ζ(z,Λ)

where the Weierstrass ζ-function is defined by the series

ζ(z,Λ) =
1

z
+
∑
ω∈Λ,
ω 6=0

(
1

z − ω
+

1

ω
+

z

ω2

)
.

2.6 The Tate curve

In the case of elliptic curves over C, we saw that every elliptic curve has a parametriza-
tion C/Λ for some lattice Λ ⊂ C. The goal is to obtain an analogous parametrization
when C is replaced by a p-adic field, that is, a finite extension of Qp. For this, we
introduce the Tate curve [10, Theorem 3.1, p.423]:

Theorem 14 (Tate). Let K be a p-adic field with absolute value | · |, let q ∈ K∗

satisfy |q| < 1, and let

sk(q) =
∑
n≥1

nkqn

1− qn
, a4(q) = −s3(q), a6(q) = −5s3(q) + 7s5(q)

12
.

1. The series a4(q) and a6(q) converge in K and thus one can define the Tate curve
Eq by the equation

Eq : y2 + xy = x3 + a4(q)x+ a6(q).

2. The Tate curve is defined over K and has discriminant ∆ = q
∏
n≥1

(1− qn)24 and

j-invariant j(Eq) = 1
q

+
∑
n≥0

c(n)qn for some integer coefficients c(n).

3. The series

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2s1(q),

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+ s1(q),

converge for all u ∈ K̄∗, u /∈ qZ. They define a surjective homomorphism

φ :K̄∗ → Eq(K̄)

u 7→

{
(X(u, q), Y (u, q)) ifu /∈ qZ,
O ifu ∈ qZ.

The kernel of the map φ is qZ.
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4. For any algebraic extension L/K, φ induces an isomorphism

φ : L∗/qZ
∼−→ Eq(L).

The group Eq(K) admits the usual filtration

Eq,1(K) ⊂ Eq,0(K) ⊂ Eq(K),

with Eq,0(K), Eq,1(K) defined as before. Consider the parametrization of the Tate
curve Eq

φ : K∗/qZ
∼−→ Eq(K).

The map φ induces [10, p. 432] the following isomorphism

φ : K∗/R∗qZ −→ Eq(K)/Eq,0(K).

10



Chapter 3

Local height functions

Let K be a number field and E/K an elliptic curve. For each point P ∈ E(K)\{O},
one can define a height function given by

h(P ) =
1

2[K : Q]

∑
v∈MK

nv max {−v(x(P )), 0}

where MK is the set of places of K, v(·) = − log | · |v and nv = [Kv : Qv] is the local
degree for v ∈MK .

The canonical Néron-Tate height ĥ : E(K̄) → R is obtained by taking the limit
of the ordinary height functions,

ĥ(P ) = lim
m→∞

1

m2
h([m]P ).

The canonical height function is a quadratic form, i.e., ĥ is an even function and the
pairing 〈·, ·〉 : E(K̄)× E(K̄)→ R given by

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q)

is bilinear [11, Theorem 9.3, p.248]. It is natural to ask whether ĥ can be decomposed
into sums of quadratic forms, one for each place v of K. While this cannot be done,
there exists a decomposition into local height functions that are almost quadratic, in
the sense that they satisfy the quasi-parallelogram law.

More exactly, for each place v ∈ MK , there exists a natural local height function
λv : E(Kv)\{O} → R such that

ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvλv(P )

for all P ∈ E(K)\{O} [10, Theorem 2.1., p.461]. The goal of the following sections is
to introduce these Néron local height functions and write explicit formulas for both
the archimedean and non-archimedean cases.
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3.1 Local Néron height function

LetK be a field complete with respect to an absolute value |·|v and let v(·) = − log |·|v.
In the non-archimedean case, v is the corresponding valuation. Given E/K an elliptic
curve, we will define the local height functions to be certain continuous functions on
E(K)\{O} with values in R. Here E(K)\{O} inherits the topology from E(K), while
R is given its usual topology. The following formulation is due to Tate.

Definition 15. Let K be a complete field and v(·) = − log | · |v . Let E/K be an
elliptic curve with discriminant ∆ given by the following Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

1. There is a unique function

λ : E(K)\{O} → R

satisfying the following properties:

i) λ is continuous on E(K)\{O} and is bounded on the complement of any
v-adic neighbourhood of O.

ii) The limit

lim
P→O
{λ(P ) +

1

2
v(x(P ))}

exists.

iii) For all P ∈ E(K)\E[2] we have

λ([2]P ) = 4λ(P ) + v((2y + a1x+ a3)(P ))− 1

4
v(∆).

2. λ is independent of the choice of Weierstrass equation for E/K.

3. Let L/K be a finite extension and let w be the extension of v to L. Then

λw(P ) = λv(P ) for all P ∈ E(K)\{O}.

The function defined above is called the local Néron height function on E asso-
ciated to v. For a proof of the existence of such a function see [10, Theorem 1.1, p.
455]. One way to renormalize λ, as seen in [9, Second normalisation, p. 90], is by
letting

λ̃(P ) = λ(P )− 1

12
v(∆).

This renormalization allows for neat functional equations, as we shall see later.
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3.2 Archimedean absolute values

Let K be the completion of a number field with respect to an archimedean absolute
value and E/K an elliptic curve. Since K embeds into C, questions about points in
E(K) can be answered if we look at points in E(C). Thus, we are going to look at
the local height function λ over the complex numbers.

Let E/C be an elliptic curve with corresponding lattice Λ and analytic parametriza-
tion given by

φ : C/Λ→ E(C), z 7→ (℘(z), ℘′(z))

where ℘ is the Weierstrass ℘-function associated to Λ.
The local height function has an explicit description given by the following [10,

Theorem 3.2, p. 466] :

Theorem 16. Let E/C be an elliptic curve with period lattice Λ. Then the local
Néron height function λ : E(C)\{O} → R is given by

λ(z) = − log
∣∣e− 1

2
zη(z)σ(z)∆(Λ)

1
12

∣∣,
where η : C→ C is the R-linear extension of the quasi-period map η : Λ→ C.

3.3 Non-archimedean absolute values

Let K be a p-adic field (finite extension of Qp) for some prime p and let E/K be an
elliptic curve. Let v be the corresponding normalized valuation and π a uniformizer
for the ring of integers of K, which we will denote by R. Let Ẽ/k be the reduction
of E modulo π, where k = R/πR is the residue field.

In order to be able to work with specific formulas for the local height function,
one has to consider the type of reduction of the elliptic curve. The curve E/K has
different types of reduction depending on the structure of Ẽ. Thus, we say that E has
good reduction if Ẽ is nonsingular (that is, E(K) = E0(K)), multiplicative reduction
if Ẽ has a node and additive reduction if Ẽ has a cusp. In the case of multiplicative
reduction, the reduction is said to be split if the slopes of the tangent lines at the
node are in k and nonsplit otherwise [11, Definition, p.196].

The Semistable reduction theorem [11, Proposition 5.4, p.197] tells us that there
exists some finite extension L/K such that E has either good reduction or split
multiplicative reduction over L. As the λ function is invariant under finite extensions
of K, it is enough to only consider these two cases from now on.

Case 1. If E has good reduction over K, we have E(K) = E0(K) so we use the
following result [10, Theorem 4.1, p.470]:

Theorem 17. Let K be a field complete with respect to a non-archimedean absolute
value. Let v be the corresponding valuation and E/K an elliptic curve described by
the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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where the coefficients are chosen to be v-integral. Let ∆ be the discriminant of this
equation. Then, the Néron local height function λ : E(K)\{O} → R is given by the
formula

λ(P ) =
1

2
max{v(x(P )−1), 0}+

1

12
v(∆)

for all P ∈ E0(K)\{O}.

Notice that if P ∈ E1(K) we have λ(P ) = −1
2
v(x(P ))+ 1

12
v(∆), otherwise λ(P ) =

1
12
v(∆) for P ∈ E0(K)\E1(K).

Case 2. In the case where E/K has split multiplicative reduction, E will have multi-
plicative reduction over any finite extension L/K [11, Proposition 5.4, p.197]. Thus,
E does not have potential good reduction, so the j-invariant cannot be integral [11,
Proposition 5.5, p.197]. As a result, |j(E)| > 1 and by Tate’s uniformization theo-
rem [10, Theorem 5.3, p.441], we know there exists a unique q ∈ K∗ with |q| < 1 such
that E is isomorphic over K to the Tate curve Eq.

The Néron local height function is now given by the following result [10, Theorem
4.2, p.473]:

Theorem 18. Let K be a p-adic field with valuation v = − log | · |, let q ∈ K∗ satisfy
|q| < 1, and let Eq/K be the Tate curve with its parametrization

φ : K∗/qZ→̃Eq(K).

i) The Néron local height function λ◦φ : (K∗/qZ)\{1} → R is given by the formula

λ(φ(u)) =
1

2
B2

(
v(u)

v(q)

)
v(q) + v(1− u) +

∑
n≥1

v((1− qnu)(1− qnu−1)),

where B2(T ) = T 2 − T + 1
6

is the second Bernoulli polynomial.

ii) If we choose u ∈ K∗ to satisfy 0 ≤ v(u) < v(q), then

λ(φ(u)) =

{
1
2
B2

(
v(u)
v(q)

)
v(q), if 0 < v(u) < v(q)

v(1− u) + 1
12
v(q), if v(u) = 0.

14



Chapter 4

Order of growth of the Néron local
height functions

Let K be the completion of a number field with respect to some absolute value | · |v,
E an elliptic curve over K and λ : E(K)\{O} → R the local height function with
respect to v. Let P be a non-torsion point in E(K). In the following sections we
want to analyze the order of growth of λ([m]P ). We prove the order of growth is
logarithmic, that is λ([m]P ) = O(logm) as m→∞.

4.1 Order of growth in the archimedean case

We are interested in the order of growth of the λ function, more precisely, we are
going to show λ([m]P ) = O(logm) as m→∞ for P ∈ E(K) non-torsion.

Lemma 19. Let K be the completion of a number field with respect to an archimedean
absolute value, E/K an elliptic curve with the corresponding parametrization given
by φ : C/Λ→ E(C) for some lattice Λ = ω1Z + ω2Z. Let P be non-torsion in E(K)
and z ∈ C such that φ(z mod Λ) = P . Then λ([m]P ) = O(log |am|) as m → ∞,
where am ∈ C is the representative of mz in the fundamental parallelogram for Λ.

Proof. We are going to use the result of Theorem 16. Let FΛ be the fundamental
parallelogram for the lattice, that is FΛ = {z ∈ C|z = aω1 + bω2 with a, b ∈ [0, 1)}.
Pick am ∈ FΛ such that am = mz mod Λ. Keeping in mind that the σ function
is holomorphic on the whole of C with simple zeroes at z ∈ Λ and ∆(Λ) is non-
zero [11, Proposition 3.6, p. 170], we then have

λ([m]P ) =
1

2
Re(amη(am))− log |σ(am)| − 1

12
log |∆(Λ)|.

Since am = aω1 + bω2 for some a, b ∈ [0, 1),

|Re(amη(am))| ≤ |am||η(am)| ≤ (|ω1|+ |ω2|)(|η(ω1)|+ |η(ω2)|).

From the definition and properties of σ [11, Definition, Lemma 3.3, p. 167], there
exists U a neighborhood of 0 such that

log |σ(z)| = log |z|+ log |f(z)| for all z ∈ U\{0},
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where f is a holomorphic function on U non-vanishing at 0. Thus, f must be bounded
on U , so there exists a constant C1 > 0 such that |f(z)| < C1 for all z ∈ U . More
than that, for sufficiently small U , we can assume f is non-vanishing on the closure of
U . Thus, there exists some C2 > 0 such that |f(z)| > C2 for all z ∈ U . So log |f(z)|
is bounded on U , which implies log |σ(z)| = O(log |z|) as z → 0.

On the other hand, σ is entire, so it is bounded on FΛ. Thus, there exists C3 > 0
such that |σ(z)| < C3 for all z ∈ FΛ. Now let F ′Λ = FΛ\(U∪Uω1∪Uω2∪Uω1+ω2), where
Uω1 , Uω2 , Uω1+ω2 are translates of U around the other three vertices of the fundamental
parallelogram. Thus, σ is going to be non-vanishing on the closure of F ′Λ, so there
exists C4 > 0 such that |σ(z)| > C4 for all z ∈ F ′Λ. Thus, log |σ(z)| is bounded on F ′Λ.

Since P is non-torsion, all points of the form am will be distinct asm→∞. If there
is no subsequence of (am)m that tends to either 0 or the other vertices ω1, ω2, ω1 +
ω2 of the fundamental parallelogram, then log |σ(am)| is bounded as m → ∞, so
log |σ(am)| = O(1). If there exist subsequences (am′)m′ of (am)m that tend to 0 as
m′ → ∞, then log |σ(am′)| = O(log |am′ |) as m → ∞. Similarly, the same reasoning
applies if there exist subsequences that tend to the other three vertices of FΛ.

As a result, since 1
2

Re(amη(am)) and − 1
12

log |∆(Λ)| are bounded on FΛ, the order
of growth of λ is given by

λ([m]P ) = O(log |am|) as m→∞

which ends the proof of the lemma.

In order to conclude that λ([m]P ) = O(logm), we need the following fact on linear
forms in elliptic logarithms [1, Proposition 3.3, p.14]:

Theorem 20. Let E/K be an elliptic curve defined over a number field K ⊂ C. Fix
an isomorphism φ : C/Λ → E(C) for an appropriate lattice Λ generated by ω1, ω2.
Let P ∈ E(K) be a non-torsion point and z ∈ C such that φ(z mod Λ) = P . Then
there is a constant C = C(P ) > 0 such that for all rational numbers l1/m, l2/m with
l1, l2,m ∈ Z , ∣∣z − ( l1

m
ω1 +

l2
m
ω2

)∣∣ ≥ e−C max{1,log |m|}.

In the setting of Lemma 19, let ω1, ω2 be generators for Λ. Keeping in mind that
mz = am + l1ω1 + l2ω2 for some l1, l2 ∈ Z, we can apply the above result to get
|am| ≥ m−1−C for m ∈ Z>0 such that logm > 1. On the other hand log |am| is also
bounded from above, so

(−1− C) logm ≤ log |am| < C ′

for some constant C ′ > 0 and m large enough. As a result, we get log |am| = O(logm)
and thus we can conclude that:

Theorem 21. Let E/K be an elliptic curve over a number field K ⊂ C and P a
non-torsion point in E(K). The order of growth of the local height function λ with
respect to the corresponding archimedean absolute value is given by

λ([m]P ) = O(logm),

as m→∞.
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4.2 Order of growth in the non-archimedean case

We are interested in the order of growth of the λ function. More specifically, we
want to show that if P ∈ E(K) non-torsion, where K is a number field and v is the
valuation corresponding to a non-archimedean place of K, then the order of growth
of the associated local height function λ is given by λ([m]P ) = O(logm) as m→∞.

As we have seen in the previous chapter, it is enough to consider the cases when
E has either good reduction or split multiplicative reduction. For the case of good
reduction, we need the following lemmas:

Lemma 22. Let K be a p-adic field with valuation v and E/K an elliptic curve. If
P ∈ E1(K) non-torsion, then v(x([m]P )) ≤ v(x(P )) for m ∈ Z>0, with equality if
and only if v(m) = 0.

Proof. LetM be the maximal ideal of R, the ring of integers of K. Choose a minimal
Weierstrass equation for E and let Ê/R be the associated formal group. Recall the
power series w(T ) = T 3(1 + ...) ∈ R[[T ]]. As seen in Proposition 8, we have the
following isomorphism of groups

Ê(M)→ E1(K), z 7→
(

z

w(z)
,− 1

w(z)

)
.

The inverse of this map is given by P 7→ −x(P )

y(P )
and since v(x(P )) < 0, it is enough

to look at the Weierstrass equation to see that v(x(P )) = −2v(z(P )), where z(P ) ∈
Ê(M) corresponds to P ∈ E1(K).

The multiplication by m map, [m] : Ê → Ê induces a homomorphism of groups

[m] : Ê(M)→ Ê(M),

where [m] ∈ R[[T ] is given by [m](T ) = mT + (higher order terms). For a general
term of [m](z), we have v(anz

n) ≥ nv(z) for n ≥ 2, z ∈ M. Thus v([m](z)) ≥ v(z)
and notice that we have equality only when v(m) = 0.

On the other hand, it is easy to see from the definition of [m] as a formal group
homomorphism [11, p.121], that [m]z(P ) = z([m]P ) for P ∈ E1(K),m ∈ Z>0, where
[m]P is the image of P through the multiplication by m map on E(K). As a result,
v(z([m]P )) = v([m]z(P )) ≥ v(z(P )), so v(x([m]P )) ≤ v(x(P )) for P ∈ E1(K),
m ∈ Z>0, with equality if and only if v(m) = 0.

Lemma 23. Let K be a p-adic field with normalized discrete valuation v and E/K
an elliptic curve. Let P a non-torsion point in E1(K). Then v(x([m]P )) = −2v(m)+
O(1) as m→∞.

Proof. As in the proof of Lemma 22, let M be the maximal ideal of the ring of
integers of K, Ê the formal group associated to the elliptic curve and Ĝa(M) the
additive group M with its usual addition. Let r be the smallest integer such that
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r > v(p)/(p − 1) and by the result of Theorem 6.4 from [11, p. 132] we know the
formal logarithm induces an isomorphism

logÊ : Ê(Mr)→̃Ĝa(Mr).

Moreover, looking at the power series expansion of the formal logarithm [11, Propo-
sition 5.5, p. 129], one can see that v(z) = v(logÊ z) for z ∈ Mr. Also remark that
since v is normalized, the condition z ∈Mr is equivalent to v(z) ≥ r.

Now, let m = pkm0, with k,m0 ∈ Z>0, (m0, p) = 1. By Lemma 22, v(x([m]P )) =
v(x([pk]P )) for P ∈ E1(K). More than that, since v(z(P )) > 0 and v normalized,
Lemma 22 also tells us that v(z([pr]P )) > r. Thus z([pk]P ) ∈Mr for all k ≥ r−1, k ∈
Z.

As a result, if k ≥ r − 1 we have

v(z([pk]P )) = v(logÊ z([pk]P )) = v(pk−r logÊ z([pr]P )) = v(pk−r+1)+v(logÊ z([pr−1]P )),

so v(z([pk]P )) = v(pk−r+1) +O(1) = v(m) +O(1). Since there are only finitely many
values that k can take if k < r − 1, the asymptotic result holds for all k ∈ Z≥0.

On the other hand, as we have already seen in the proof of Lemma 22, v(x(P )) =
−2v(z(P )) for P ∈ E1(K). So v(x([m]P )) = −2v(m) + O(1), which ends the proof.

Remark. Notice that in the case when r = 1, or equivalently, v(p) < p− 1, the proof
of Lemma 23 gives the following equality for all P ∈ E1(K),m ∈ Z>0:

v(x([m]P )) = v(x(P ))− 2v(m).

Theorem 24. Let K be a p-adic field with normalized valuation v and E/K an
elliptic curve. The associated Néron local height function has an order of growth
given by λ([m]P ) = O(logm) as m→∞, where P non-torsion in E0(K).

Proof. If P ∈ E1(K) the local height function is given by λ(P ) = −1
2
v(x(P ))+ 1

12
v(∆).

Applying the result of Lemma 23, we get

λ([m]P ) = v(m) +O(1) for all m ∈ Z>0, P ∈ E1(K).

So the order of growth of the local height function when P ∈ E1(K) is given by
O(v(m)). But it is easy to see that v(m) = O(logm).

On the other hand, Theorem 17 tells us that for points in E0(K)\E1(K) the local
height function is a constant given by 1

12
v(∆). We know E0(K)/E1(K) ∼= Ẽns(k) [11,

Proposition 2.1, p.188], so let r be the order of P in the finite group E0(K)/E1(K).
Then, the points [m]P with m ∈ Z>0, r - m are in E0(K) and λ([m]P ) = 1

12
v(∆) in

this case. We need to see what happens to λ([m]P ) when m is a multiple of r, but
this case has already been treated since these points are in E1(K), so by the above
λ([m]P ) = O(logm) when m is a multiple of r, which ends the proof.
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In order to deal with the case of split multiplicative reduction, we need to work
with the formulas found in the case of Tate curves. Keeping in mind the filtration
of E(K), there are three different cases to analyze for a non-torsion point P . For
P ∈ E0(K)\E1(K) or P ∈ E1(K), the result of Theorem 24 holds, so the λ function
has an order of growth of logm in those cases. We are left with the case when
P ∈ E(K)\E0(K), where the order of growth is again logarithmic. The arguments
we are going to use are based on the fact that the group E(K)/E0(K) is finite, in
particular it is cyclic of order v(∆) = −v(j) in the case of split multiplicative reduction
[11, Theorem 6.1, p.200]. In fact, λ([m]P ) actually takes values in a finite set when
m ∈ Z>0 is not among multiples of r, where r is the order of P in Eq(K)/Eq,0(K).

For the rest of the section we are going to work over K a p-adic field with val-
uation v = − log | · |, q ∈ K∗ such that |q| < 1 and Eq/K the Tate curve with its
parametrization φ : K∗/qZ→̃Eq(K).

Lemma 25. Let P be a non-torsion point in Eq(K)\Eq,0(K) with order r in the finite
group Eq(K)/Eq,0(K). Then, for any integer 1 ≤ k < r we have

λ([k]P ) = λ([r − k]P ).

Proof. First, by the result of Theorem 18, the value of λ only depends on the class
of u in K∗/qZ. Thus, we can choose u ∈ K∗ satisfying 0 ≤ v(u) < v(q) such that
φ(u) = P .

Since P has order r in Eq(K)/Eq,0(K), the isomorphismK∗/R∗qZ→̃Eq(K)/Eq,0(K)
tells us there exists some u0 ∈ R∗ and N ∈ Z such that ur = u0q

N . On the other
hand, for each k we have

v(uk) = v(q)mk + rk where mk, rk ∈ Z with 0 ≤ rk < v(q).

Moreover, rk = v

(
uk

qmk

)
and since r is the order of P in Eq(K)/Eq,0(K), rk > 0. At

the same time
v(ur−k) = (N −mk − 1)v(q) + v(q)− rk.

Knowing the classes of the corresponding elements for [k]P and [r−k]P in K∗/qZ,
we can now compare their values of λ. We get

λ([r − k]P ) =
1

2
B2

(
v(qmk+1)− v(uk)

v(q)

)
v(q)

=
1

2
B2

(
v(qmk)− v(uk)

v(q)
+ 1

)
v(q)

=
1

2
B2

(
−v(qmk)− v(uk)

v(q)

)
v(q)

= λ([k]P ).
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Proposition 26. Let P be a non-torsion point in Eq(K)\Eq,0(K) with order r in the
finite group Eq(K)/Eq,0(K). Then, for any integers a and k with 1 ≤ k < r we have

λ([k]P ) = λ([ar ± k]P ).

Proof. Let u ∈ K∗ such that φ(u) = P . We then have λ([k]P ) = λ(φ(uk)) and we
can choose u by periodicity such that 0 ≤ v(uk) < v(q). In fact, since the order of P
in Eq(K)/Eq,0(K) is r, we have 0 < v(uk) < v(q).

On the other hand, by the same argument as in the above lemma, there exists u0 ∈
R∗, N ∈ Z such that ur = u0q

N . So the value of λ([ar+k]P ) only depends on ukua0q
Na.

But v(ukua0) = v(uk), so λ(φ(uar+k)) = λ(φ(uk)) which implies λ([ar+k]P ) = λ([k]P ).
We also have 0 < r− k ≤ r− 1, so applying the above result we get λ([r− k]P ) =

λ([ar− k]P ) for any integer a and by the result of the above lemma we are done.

Theorem 27. Let K a p-adic field with valuation v, let q ∈ K∗ with |q| < 1
and let Eq/K be the corresponding Tate curve. Let P be a non-torsion point in
Eq(K)\Eq,0(K). Then λ([m]P ) = O(logm) as m→∞.

Proof. Let r be the order of P in Eq(K)/Eq,0(K). Since the group is cyclic of order
v(∆), r is bounded. Then, we can write m = ar + k for a, k ∈ Z>0, 0 ≤ k < r.

If k > 0, the above proposition tells us that λ([m]P ) = λ([k]P ). If m = ar, then
the point [r]P belongs to Eq,0(K) and we have already seen in the proof of Theorem
24 , λ([ar]P ) = O(log a), which ends the proof of the theorem.

Remark. In fact, carefully following the above proofs one can see that we actually get
the order of growth to be given by λ([m]P ) = O(− log |m|v) as m → ∞, where | · |v
is the absolute value with respect to which K is complete.
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Chapter 5

Identities of the local height
functions and applications

The goal of this chapter is to prove some identities of the Néron local height function.
In fact, we are going to look at identities of the normalized λ̃ function. The next
part of the chapter is dedicated to using these identities in reproving the results
obtained by J. Cheon and S. Hahn in their paper on ”Explicit valuations of division
polynomials of an elliptic curve” [4]. Lastly, we look at the global height and use the
order of growth of the local heights to improve a result of Everest and Ward [6] on
computing the global canonical height of an algebraic point on an elliptic curve.

5.1 The quasi-parallelogram law and a functional

equation for λ̃

In the following we prove the quasi-parallelogram law and then use it to get a func-
tional equation for the local Néron height function. Recall the normalized Néron local
height function for an elliptic curve E over a complete field K with valuation v, was
defined in Section 3.1 by λ̃(P ) = λ(P )− 1

12
v(∆).

Lemma 28. Let K be a completion of a number field with respect to some absolute
value and E/K an elliptic curve. Then, for all points P , Q on the elliptic curve with
P , Q, P ±Q 6= O, the normalized Néron local height satisfies the quasi-parallelogram
law

λ̃(P +Q) + λ̃(P −Q) = 2λ̃(P ) + 2λ̃(Q) + v(x(P )− x(Q)).

Proof. First, if the absolute value is archimedean, the result is well known [10, Corol-
lary 3.3, p.467]. For the non-archimedean case when K is a p-adic field, it is enough
to prove the result for E having good or split multiplicative reduction over K.

If E has good reduction, we can use the fact that the local Néron height is given
by

λ̃(P ) =
1

2
max{v(x(P )−1), 0}.
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Thus, λ̃(P ) = −1
2
v(x(P )) if P ∈ E1(K) and λ̃(P ) = 0 otherwise. We now have to

look at all the possible cases:

1. If both P and Q are in E1(K), then we need to check that

v(x(P +Q)) + v(x(P −Q)) = 2v(x(P )) + 2v(x(Q))− 2v(x(P )− x(Q)).

We are in characteristic 0, so let E have the Weierstrass equation given by

y2 = x3 + Ax+B, with A,B ∈ R.

The addition formula [10, Group Law Algorithm 2.3, p.53] gives us the following

x(P +Q) =

(
y(Q)− y(P )

x(Q)− x(P )

)2

− x(P )− x(Q)

=
(x(P ) + x(Q))(A+ x(P )x(Q)) + 2B − 2y(P )y(Q)

(x(P )− x(Q))2

x(P −Q) =
(x(P ) + x(Q))(A+ x(P )x(Q)) + 2B + 2y(P )y(Q)

(x(P )− x(Q))2

so after a bit of algebra we get

x(P +Q)x(P −Q) =
(x(P )x(Q)− A)2 − 4B(x(P ) + x(Q))

(x(P )− x(Q))2
.

Looking at the valuations and keeping in mind the x-coordinates of both P,Q
have negative valuations, we notice that if say v(x(P )) < v(x(Q)) then

v((x(P )x(Q)−A)2) = 2v(x(P )) + 2v(x(Q)) < v(x(P )) < v(4B(x(P ) + x(Q))).

In the case when v(x(P )) = v(x(Q)), we get again

v((x(P )x(Q)− A)2) <
v(x(P )) + v(x(Q))

2
≤ v(4B(x(P ) + x(Q))).

Thus,

v((x(P )x(Q)− A)2 − 4B(x(P ) + x(Q))) = 2v(x(P )) + 2v(x(Q))

which ends the proof.

2. If P ∈ E1(K), Q ∈ E0(K)\E1(K), then we only need to check that

v(x(P )) = v(x(P )− x(Q))

which is obvious since we have v(x(P )) < 0 and v(x(Q)) ≥ 0.
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3. If both P,Q ∈ E0(K)\E1(K), we need to see that v(x(P )− x(Q)) = 0. First of
all, it is clear the valuation must be non-negative. If we had v(x(P )−x(Q)) ≥ 1,
P,Q would have to reduce to points with the same x-coordinate while the y-
coordinates would have to satisfy the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ R.

So we’ll have either P̃ = Q̃ or P̃ = −Q̃ and thus either P +Q or P −Q will be
in E1(K), which contradicts our hyphothesis.

If E has split multiplicative reduction, then there exists a unique q ∈ K∗ with
|q| < 1 such that E is isomorphic over K to the Tate curve Eq with the known
parametrization

φ : K∗/qZ−̃→Eq(K), φ(u) = (X(u), Y (u)).

Choose uP , uQ ∈ K∗/qZ to satisfy 0 ≤ v(uP ), v(uQ) < v(q) such that they are sent to
points P,Q under the map φ. Since P,Q 6= O, we have v(uP ), v(uQ) > 0. We then
have

λ̃(P +Q) =
1

2
B

(
v(uPuQ)

v(q)

)
v(q) + v(1− uPuQ) +

∑
n≥1

v((1− qn(uPuQ)−1)(1− qnuPuQ)

λ̃(P −Q) =
1

2
B

(
v(uPu

−1
Q )

v(q)

)
v(q) + v(1− uPu−1

Q ) +
∑
n≥1

v((1− qnu−1
P uQ)(1− qnuPu−1

Q )

where B(T ) = B2(T )− 1
6
.

It is easy to check that

1

2
B

(
v(uPuQ)

v(q)

)
v(q) +

1

2
B

(
v(uPu

−1
Q )

v(q)

)
v(q) = 2λ̃(P ) + 2λ̃(Q) + v(uQ).

To finish the proof, we need to use the p-adic θ-function that is defined by the
formula

θ(u) = (1− u)
∏
n≥1

(1− qnu)(1− qnu−1)

(1− qn)2
.

We also know [10, Proposition 3.2, p.429] that

X(uP )−X(uQ) = −
uQθ(uPuQ)θ(uPu

−1
Q )

θ(uP )2θ(uQ)2
.

By applying v to this equation and doing a little algebra we find that

v(x(P )− x(Q)) = λ̃(P +Q) + λ̃(P −Q)− 2λ̃(P )− 2λ̃(Q).

which is exactly what we need.
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Theorem 29. Let K be a completion of a number field with respect to some absolute
value and let E be an elliptic curve over K. The normalized Néron local height
function satisfies

λ̃([m]P ) = m2λ̃(P ) + v(ψm(P ))

for all P ∈ E(K) non-torsion, m ∈ Z>0.

Proof. We want to give a proof by induction. The trivial cases m = 1, 2 are clear from
the definitions of the λ̃ function and the division polynomials. For m > 1, notice that
[m ± 1]P 6= O. To finish the proof, we apply the quasi-parallelogram law to points
[m]P and P and use the inductive step to get

λ̃([m+ 1]P ) = 2λ̃([m]P ) + 2λ̃(P )− λ̃([m− 1]P ) + v(x([m]P )− x(P ))

= (m+ 1)2λ̃(P ) + 2v(ψm(P ))− v(ψm−1(P )) + v(x([m]P )− x(P )).

But we know that the x-coordinate of [m]P is given by the following ratio of
division polynomials

x([m]P ) =
φm(P )

ψm(P )2

where the φm polynomial can be defined by the recurrence relationship

φm = xψ2
m − ψm+1ψm−1.

So v(x([m]P )− x(P )) = v

(
ψm+1ψm−1

ψ2
m

)
, which is exactly what we need.

5.2 Applications of the functional equation for λ̃

In [4], J. Cheon and S. Hahn estimate valuations of division polynomials and com-
pute them explicitly at singular primes. The approach to prove the results is rather
computational and uses properties of division polynomials. On the other hand, we
can use the functional equation λ̃([m]P ) = m2λ̃(P ) + v(ψm(P )) to give slick proofs
of the results in [4].

The setting we work in is the following: let K be a number field, R the ring of
integers, v the discrete valuation related to a prime ideal p of R with v(π) = 1 for some
uniformizer π. Let E be an elliptic curve over K defined by a general Weierstrass
equation E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 with ai ∈ R for i = 1, 6.
For the next results, we assume P is a non-torsion point in E(K)\E0(K) of order

r in the finite group E(K)/E0(K). First, we prove the following proposition showing
the value of the normalized height function λ̃ at the point P is mostly dependent on
the order of P in E(K)/E0(K).

Proposition 30. Let E/K be an elliptic curve and P ∈ E(K)\E0(K) non-torsion
of order r in E(K)/E0(K). Then the normalized Néron local height function is given
by

λ̃(P ) = − µP
2r2

,

where µP = min(2v(ψr(P )), v(φr(P ))).
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Proof. Notice that

−µP =

{
−2v(ψr(P )) if [r]P ∈ E0(K)\E1(K)

−v(φr(P )) if [r]P ∈ E1(K).

On the other hand, 2r2λ̃(P ) = 2λ̃([r]P ) − 2v(ψr(P )). If [r]P ∈ E1(K), then
λ̃([r]P ) = −1

2
v(x([r]P )), so 2r2λ̃(P ) = −v(φr(P )). If [r]P ∈ E0(K)\E1(K), then

2r2λ̃(P ) = −2v(ψr(P )), which ends the proof.

Remark. In fact, the above result works over the completion Kv. Notice that E(K),
E0(K) are just restrictions of E(Kv), E0(Kv). Also, we saw in the last chapter that
for fixed non-torsion P ∈ E(Kv)\E0(Kv) of order r in E(Kv)/E0(Kv), λ([m]P ) takes
values in a finite set for m ∈ Z>0, r - m. In particular, λ([k]P ) = λ([ar ± k]P ) for
any integers a and k with 1 ≤ k < r. Notice that since [k]P and [ar ± k]P have the
same order in E(Kv)/E0(Kv) we get the equality µ[k]P = µ[ar±k]P , which tells us that
µ[m]P also takes values in a finite set for m ∈ Z>0, r - m.

We can now reprove some of the results in [4].

Lemma 31 (Lemma 2, [4]). For any positive integers m and k with r - k, we have

1. v(ψk−1(P )ψk+1(P )) > 2v(ψk(P ))

2. v(ψmr−1(P )ψmr+1(P )) = m2µP

where µP = min(2v(ψr(P )), v(φr(P ))).

Proof. We use the functional equation v(ψm(P )) = λ̃([m]P )−m2λ̃(P ) and the quasi-
parallelogram law to get

v(ψk−1(P )ψk+1(P )) = λ̃([k − 1]P ) + λ̃([k + 1]P )− 2(k2 + 1)λ̃(P )

= 2λ̃([k]P )− 2k2λ̃(P ) + v(x([k]P )− x(P )) > 2v(ψk(P ))

since v(x([k]P )−x(P )) > 0. The last inequality is true because P , [k]P ∈ E(K)\E0(K)
and since there is only one non-singular point on the reduction mod π, we must have

P̃ = [̃k]P so then x([k]P ) and x(P ) are equal modulo π.
For the second part of the lemma, we use the result of Proposition 26 and Propo-

sition 30 to note that

v(ψmr−1(P )ψmr+1(P )) = λ̃([mr − 1]P ) + λ̃([mr + 1]P )− 2(m2r2 + 1)λ̃(P )

= −2m2r2λ̃(P ) = m2µP .

Lemma 32 (Lemma 3, [4]). For any positive integers m and k with 1 ≤ k < r we
have

v(ψmr+k(P )) + v(ψmr−k(P )) = m2µP + 2v(ψk(P )).
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Proof. We have

v(ψmr+k(P )) + v(ψmr−k(P )) = λ̃([mr + k]P ) + λ̃([mr − k]P )− 2(m2r2 + k2)λ̃(P )

= 2λ̃([k]P )− 2k2λ̃(P )− 2m2r2λ̃(P )

= m2µP + 2v(ψk(P )).

Theorem 33 (Theorem 2, [4]). Let P be a non-torsion point in E(K)\E0(K) of
order r in the finite group E(K)/E0(K). For any positive integers m and k with
1 ≤ k < r, we have

v(ψ2mr+k(P )) = 2µPm
2 + (2v(ψk(P )/ψr−k(P )) + µP )m+ v(ψk(P ))

v(ψ2mr−k(P )) = 2µPm
2 − (2v(ψk(P )/ψr−k(P )) + µP )m+ v(ψk(P )).

Proof. Notice that

v(ψ2mr+k(P )) = λ̃([2mr + k]P )− (2mr + k)2λ̃(P )

= λ̃([k]P )− 4m2r2λ̃(P )− 4mrkλ̃(P )− k2λ̃(P )

= 2µPm
2 − 4mrkλ̃(P ) + v(ψk(P )).

But

2v(ψk(P )/ψr−k(P )) = 2(r − k)2λ̃(P )− 2k2λ̃(P )

= −µP − 4rkλ̃(P ),

which proves the first identity. The second identity follows trivially by the same
argument.

Remark. Notice that the above proof of Theorem 2 in [4] only uses the identities in
Theorem 29 and Propositions 26 and 30, while [4] makes use of both Lemma 2 and 3
in order to complete the proof. As a result, using the identities of λ̃, one can directly
obtain the results of Cheon and Hahn, without referring to properties of division
polynomials. On the other hand, the proofs we gave for these identities are rather
computational as well; a more geometric proof of the result in Theorem 29 will be
presented in the next chapter.

5.3 The canonical Néron-Tate height

As seen in a previous chapter, the canonical global height function is a quadratic form
ĥ(P ) : E(K̄)→ R that can be decomposed into sums of local heights corresponding to

the places of the number field K, ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvλv(P ) for P ∈ E(K)\{O}.

Thus, computing the value of the global height can be reduced to computing the
values of the local heights. The goal of this section is to discuss improvements to a
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result of Everest and Ward [6] in estimating the global canonical height of an algebraic
point on an elliptic curve.

Let K be a number field and E/K an elliptic curve. First, since ĥ(P ) = 0 if and
only if P is a torsion point in E(K̄) [11, Theorem 9.3., p.249], we are only interested in
looking at local heights for points that are non-torsion. Everest and Ward’s method
of computing the canonical global height is based on the following result [6, Theorem
3]:

Theorem 34. Let P ∈ E(K) be a non-torsion point. Let v | ∞ or v a place cor-
responding to a prime of singular reduction, where in the case of singular reduction
we assume E is given by a Weierstrass equation in minimal form. There are positive
constants A and B, B < 2 such that

1

m2
log |ψm(P )|v = λ̃v(P ) +

{
O((logm)A/m2) if v | ∞,
O(1/mB) otherwise.

for all m ∈ Z>0.

First, notice that the result of Theorem 29 gives us the following:

Proposition 35. Let K be the completion of a number field with respect to some
absolute value | · |v, E/K an elliptic curve and λ̃v the normalized Néron local height
function. Then

lim
m→∞

log |ψm(P )|v
m2

= λ̃v(P )

for all P ∈ E(K) non-torsion.

By the product formula we know that
∏
v∈MK

|x|nv
v = 1 for all x ∈ K∗ [11, Product

Formula 5.3, p.225], so we get ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvλ̃v(P ). The idea behind Everest

and Ward’s method lies in estimating the rate of convergence of
1

m2
log |ψm(P )|v as

m→∞ for the infinite places and the ones at which there is bad reduction.
Since

log |ψm(P )|v
m2

= λ̃v(P )− λ̃v([m]P )

m2
,

the order of growth of λv([m]P ) given in the previous chapter improves the result of
Theorem 34 above:

Theorem 36. Let E/K an elliptic curve over a number field and P ∈ E(K) non-
torsion. Then

log |ψm(P )|v
m2

= λ̃v(P ) +O(logm/m2),

as m→∞.

In particular, the value of A that depends on the point P can be taken to be 1 for
all P non-torsion in E(K), while the rate of convergence for the places corresponding
to primes of bad reduction is also given independently of the point P . In fact, for the
second case we actually proved the rate of convergence is given by O(− log |m|v/m2).
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Chapter 6

A geometric interpretation of the
local height functions through
Green functions

The purpose of this section is to give an alternative geometric proof to the identity
λ̃([m]P ) = m2λ̃(P ) + v(ψm(x(P ))). In particular, we will prove the identity for all
P ∈ E(K)\E[m](K), which is a more general result than the one given in Theorem
29.

6.1 An introduction to Green functions

The goal of this section is to introduce the definition of Green functions at the origin
for elliptic curves. We start with a survey of facts and properties that work in general
for any geometrically connected smooth projective curve X over a local field (K, | · |)
and then we restrict to looking at the case of elliptic curves. The following presen-
tation of the theory closely follows Section 2 on the Potential theory on Berkovich
analytic curves in [5].

Let X be a geometrically connected smooth projective curve over a local field
(K, | · |). We can associate a locally ringed space X = (|X|,OX) to X such that the
topological space |X| is compact, metrizable, path connected. Moreover, X(K̄) is a
dense subset of |X| and the restriction of the topology from |X| to X(K̄) coincides
with the topology induced from |·|. In the case where K is archimedean, X = X(K̄) as
a complex analytic space, while for K non-archimedean, X is the so called associated
Berkovich space.

Let A0 be the sheaf of smooth functions on X and A1 the sheaf of smooth forms
on X. In fact, A0 is a sheaf of R - algebras, while A1 is a sheaf of modules over A0.
There exists a Laplace operator ddc : A0 → A1, which is known to be the complex
Laplacian operator ddc = ∂∂̄/iπ in the archimedean case.

Let A0(X), A1(X) be the spaces of global sections of A0 and A1 and D1(X) =
A0(X)∗, D0(X) = A1(X)∗ their R-linear duals as R-vector spaces. So the ddc induces
a map from D0(X) to D1(X) such that the diagram commutes
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D0(X) // D1(X)

A0(X) ddc //

OO

A1(X).

OO

We call this dual map ddc as well. The upward arrows are injections given by the R-
linear pairing A0(X)×A1(X)→ R defined by (ϕ, ω)→

∫
X
ϕω, where

∫
X

: A1(X)→ R
is the R -linear integration map known to exist. Thus, for any fixed ϕ ∈ A0(X), the
pairing gives us an R-linear map from A1(X) to R, so A0(X) can be embedded in
D0(X), and the same reasoning works for A1(X) ↪→ D1(X).

Elements of Dα(X) are called (α, α)-currents and (1, 1)-currents can be viewed
as measures on |X|. The goal is to define the Green function as a (0, 0)-current in
D0(X). For that, we need to extend the integration map

∫
X

on D1(X). Consider
the unit element u of A0(X). Under the natural map A0(X) → D1(X)∗, u is sent to
ω 7→ ω(u). Thus, we define

∫
X

: D1(X)→ R to be given by
∫
X
ω = ω(u). Notice that

this integration map on D1(X) extends
∫
X

on A1(X) such that the following diagram
commutes:

D1(X) // R.

A1(X)

<<OO

Let P ∈ X(K̄). Given the ddc : D0(X) → D1(X), we can now define the Green
function at P as a (0, 0)-current in the following way:

Definition 37. Let µ ∈ A1(X) be a normalized smooth measure with
∫
X
µ = 1.

Then, there exists a unique current gµ,P ∈ D0(X) that satisfies

1. ddcgµ,P = µ− δP

2.
∫
X
gµ,Pµ = 0,

where δP ∈ D1(X) is the Dirac measure at the point P ∈ X(K).

We want to be able to evaluate currents gµ,P at points in X(K̄). First, the R-
linear pairing A0(X) × A1(X) → R extends to a pairing D0(X) × D1(X) → R given
by (ϕ, ω)→

∫
X
ϕω. Thus, one can define gµ,P (Q) =

∫
X
gµ,P δQ.

Another fact we need is that given a non-zero rational function f on X⊗K̄, log |f |
can be extended in a natural way as a (0, 0)-current. Lastly, one needs mentioning
that we can define a canonical probability measure on |X| that we shall denote by
µX ∈ A1(X).

6.2 The case of elliptic curves

Let K be a number field and consider the completions Kv at all places of K. Let
E/Kv be an elliptic curve and denote the associated ringed space by Ev. In the
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following we give another definition of the local height function on E(K)\{O}. We
see this function can be uniquely extended to an (0, 0)-current on Ev.

6.2.1 The topology and measure on E(K)

First, we consider the non-archimedean case. Let K be a p-adic field with normalized
discrete valuation v. Let R be the ring of integers, π a uniformizer andM = πR the
maximal ideal. Since the residue field k is finite, we know that K must be locally
compact with respect to the p-adic topology [3, Corollary, p.50]. Moreover, let U be
a compact neighborhood of O. Then, for c large enough, πcR ⊂ U and since πcR is
closed, it is also compact. As a result, R must be compact as well.

Let E/K be an elliptic curve. The goal is to give E(K) a topology with respect to
which it is compact. For that, endow K×K×K with the product topology inherited
from the p-adic topology on K, and K3\(0, 0, 0) with the subspace topology. Then
P2(K) will have a quotient topology via K2\(0, 0, 0)→ P2(K). More than that, P2(K)
is the union of the images of the open sets R××R×R, R×R××R and R×R×R×,
which are compact. Thus, P2(K) will also be compact for the topology just defined.
As a subset of P2(K) via the Weierstrass equation, E(K) can be endowed with the
subspace topology. Since P2(K) is compact, E(K) will also be compact since it is
closed, so we proved the following:

Lemma 38. Let K be a p-adic field and E/K an elliptic curve. Then E(K) has a
natural topology induced by the topology on K with respect to which it is compact.

Notice that the above topology on E(K) is the same as the v-adic topology men-
tioned in Section 3.1, where the valuation v is p-adic in this case. In this topology, two
points are ”close” if and only if their coordinates are ”close” in the p-adic topology
of K. Moreover, one can check summing two points on E(K) and taking inverses are
continuous operations, so E(K) is in fact a topological group. Thus, there exists a
left Haar measure on E(K) which we denote by µE. Since E(K) is compact, we have
0 < µE(E(K)) <∞, so we can normalize the measure so that µE(E(K)) = 1. Notice
that since E(K) is abelian, it is unimodular, so the left Haar measure is also a right
Haar measure [7, p.312-321].

For the archimedean case, let K be the completion of a number field with respect
to an archimedean absolute value. In this setting, we know E(C) is isomorphic to a
torus C/Λ for some lattice Λ. Therefore, E(K) inherits the complex topology on C
with respect to which it is compact. Being a topological group, there exists a Haar
measure that can be normalized, just like in the non-archimedean situation.

6.2.2 Restrictions of Green functions at the origin

Taking our smooth projective curve to be an elliptic curve over the completion of a
number field K with respect to some place v, denote the associated ringed space by
Ev. Let µv be the canonical probability measure on the topological space of Ev. We
then have a Green function at the origin defined as seen in the previous section:
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Definition 39. There exists a unique current gµv ,O ∈ D0(Ev) that satisfies

1. ddcgµv ,O = µv − δO

2.
∫
Ev gµv ,O = 0,

where δOD1(Ev) is the Dirac measure at the origin. We call this current the Green
function at the origin.

Definition 40. Let gµv ,O be the Green function at the origin. Let λ̂ : E(K)\{O} → R
be the restriction

λ̂ = gµv ,O|E(K)\{O} .

Notice that since the Haar measure is the unique translation invariant measure
up to a constant, when we restrict the canonical measure µv on Ev to E(K), we must
get the Haar measure on E(K). Thus, being the restriction of gµv ,O to E(K)\{O},
the λ̂ function is the unique smooth function on E(K)\{O} that satisfies

1. ddcλ̂ = µE − δO

2.
∫
E(K)

λ̂µE,

where µE is the normalized Haar measure on E(K). We will see later that in fact the
restriction λ̂ defined above coincides with the Néron local height function as given in
Definition 15.

6.2.3 Identities of the restriction λ̂ = gµv,O|E(K)\{O}

The goal of this section is to use the functoriality of Green functions on Ev to obtain
certain identities involving their restrictions to points on E(K)\{O}.

Proposition 41. Let φ : E1 → E2 be an isogeny between elliptic curves over the
completion K of a number field with respect to one of its places. Let λ̂E1 , λ̂E2 be
the corresponding restrictions of the Green functions of the origin for E1, E2. Then

φ∗λ̂E1 = λ̂E2, that is
∑

φ(Q)=P

λ̂E1(Q) = λ̂E2(P ) for all P ∈ E2(K)\{O}.

Proof. First, since µE1 , µE2 are the normalized Haar measures on E1(K), E2(K), we
have φ∗µE1 = µE2 . That is because φ : E1(K) → E2(K) is a continuous surjective
homomorphism between compact groups, so φ∗µE1 must be a Haar measure on E2(K)
and then we are done because of the unicity of Haar measures and the fact that both
φ∗µE1 and µE2 are normalized [8, Lemma 1.3.1, p.25].

We have φ∗λ̂E1 a smooth function on E2(K)\{O}, so because of the way the
restriction λ̂ function is defined above, it is enough to prove φ∗λ̂E1 satisfies

1. ddcφ∗λ̂E1 = µE2 − δO

2.
∫
E2(K)

φ∗λ̂E1µE2 = 0.
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For the first identity, we have

ddcφ∗λ̂E1 = φ∗dd
cλ̂E1

= φ∗(µE1 − δO)

= φ∗µE1 − φ∗δO
= µE2 − δφ(O) = µE2 − δO.

We are left to check
∫
E2(K)

φ∗λ̂E1µE2 = 0. By the result of Theorem 3.6.1 in [2,

p.190], we have ∫
E2(K)

φ∗λ̂E1µE2 =

∫
E2(K)

φ∗λ̂E1(φ∗µE1)

=

∫
E1(K)

φ∗(φ∗λ̂E1)µE1 .

But φ∗φ∗λ̂E1(P ) = φ∗λ̂E1(K)(φ(P )) =
∑

P−Q∈kerφ

λ̂E1(Q) for all P ∈ E1(K), so

∫
E2(K)

φ∗λ̂E1µE2 =

∫
E1(K)

φ∗φ∗λ̂E1(K)(P )µE1(P )

=

∫
E1(K)

∑
P−Q∈kerφ

λ̂E1(K)(Q)µE1(P )

=
∑

R∈kerφ

∫
E1(K)

λ̂E1(K)(P −R)µE1(P )

=
∑

R∈kerφ

∫
E1(K)

λ̂E1(K)µE1 = 0

since µE1 is translation invariant.

Corollary. Let E be an elliptic curve over the completion K of a number field and
λ̂ the corresponding restriction of the Green function at the origin. Then∑

[m]Q=O

λ̂(P +Q) = λ̂([m]P )

for all P ∈ E(K)\E[m](K), m ∈ Z>0.

Proof. The solution follows trivially from the above Proposition by considering the
multiplication-by-m map as an isogeny on E.

Lemma 42. Let K be the completion of number field with absolute value |·|v, E/K an
elliptic curve and λ̂ the corresponding restriction of the Green function at the origin.
Then ∑

[m]Q=O,
Q 6=O

λ̂(Q) = − log |m|v.
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Proof. From the above Corollary, we have that
∑

[m]Q=O,
Q 6=O

λ̂(P + Q) = λ̂([m]P )− λ̂(P ).

As λ̂ is continuous on E(K)\{O}, it is enough to find the limit as P → O of λ̂([m]P )−
λ̂(P ).

It is a fact that limP→O{λ̂(P )− 1
2

log |x(P )|v} exists. As a result, we have

lim
P→O
{λ̂([m]P )− λ̂(P )− 1

2
log |x([m]P )|v +

1

2
log |x(P )|v} = 0.

In the non-archimedean case, K is a p-adic field with valuation v(·) = − log | · |v.
Let r be the smallest integer such that r > v(p)/(p − 1), M the maximal ideal of
the ring of integers of K, Ê the formal group associated to the elliptic curve and
z(P ) ∈ Ê(M) corresponding to some P ∈ E1(K)\E[m](K) such that z(P ) ∈Mr.

By the same reasoning as in the proof of Lemma 23, we get that v(z([m]P )) =
v(m) + v(z(P )). So

v(x([m]P )) = −2v(m) + v(x(P )).

Consequently, −1
2

log |x(P )|v + 1
2

log |x([m]P )|v = − log |m|v which ends the proof
in this case.

In the case of an archimedean absolute value |· |, let E/C be our elliptic curve with
period lattice Λ. Let z ∈ C/Λ corresponding to P on E(C). Then, the x-coordinate
of P is given by the Weierstrass ℘-function. Since ℘ has a double pole at the lattice
points, there exists a neighborhood U around the origin such that

log |℘(z)| = log |f(z)| − 2 log |z| for all z ∈ U\{O},

where f is a holomorphic function non-vanishing on U . We can assume both z,mz ∈
U , so for all such z distinct from 0 we have

1

2
log |℘(mz)| − 1

2
log |℘(z)| = 1

2
log |f(mz)| − 1

2
log |f(z)| − log |m|.

Taking the limit as z goes to 0, we get 1
2

log |℘(mz)| − 1
2

log |℘(z)| → − log |m|, which
ends the proof.

6.2.4 Local height functions

It was mentioned in an earlier section that the restriction of the Green function at
the origin to points on E(K)\{O} coincides with the Néron local height function
introduced in Chapter 2. In the following, we give a proof of this fact.

Theorem 43. Let E/K an elliptic curve defined over the completion of a number
field with respect to an absolute value | · |v, let gµv ,O be Green function at the origin

and λ̂ : E(K)\{O} → R its restriction to the space E(K)\{O}. Then the restricted
λ̂ function coincides to the Néron local height function λ as given by Definition 15.
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Proof. We know the normalized local height function λ̃ satisfied the quasi-parallelogram
law as seen in Section 5.1:

λ̃(P +Q) + λ̃(P −Q) = 2λ̃(P ) + 2λ̃(Q) + v(x(P )− x(Q))

for all P,Q ∈ E(K)\{O} such that P ±Q 6= O. One can give an equivalent definition
of the λ̃ function in the following way. First, since x − x(P ) is a non-zero rational
function on E ⊗ K̄, log |x − x(P )|v extends as a (0, 0)-current on Ev, so by fixing
P ∈ E(K)\{O}, we can integrate the quasi-parallelogram law against µv(Q). Keeping
in mind that the canonical probability measure µv on Ev is translation invariant, we
get

λ̃(P ) =
1

2

∫
Ev

log |x− x(P )|vµv for all P ∈ E(K)\{O}.

But λ̃(P ) = λ(P ) + 1
12

log |∆|v. As a result, the Néron local height function described
in Chapter 3 is given by

λ(P ) =
1

2

∫
Ev

log |x− x(P )|vµv −
1

12
log |∆|v

for all P ∈ E(K)\{O}.
On the other hand, 1

2

∫
Ev log |x− x(P )|vµv, and thus λ̃, can be uniquely extended

in a natural way as a (0, 0)-current on Ev, as seen in [5, Theorem 4.3]. Moreover, it
satisfies the ddc equation

ddcλ̃ = µv − δO.
Since λ = λ̃− 1

12
log |∆|v, λ can also naturally and uniquely extend to a (0, 0)-current

ĝµv ,O on Ev. Thus, the current ĝµv ,O also satisfies the ddc equation

ddcĝµv ,O = µv − δO.
Notice that gµv ,O and ĝµv ,O satisfy the same ddc equation, so we have [5, Theorem

4.3]

ĝµv ,O(P ) = gµv ,O(P ) +

∫
Ev
ĝµv ,Oµv,

for all P ∈ E(K)\{O}. Restricting this identity to E(K)\{O}, we get λ(P ) =
λ̂(P ) +

∫
Ev ĝµv ,Oµv. Thus, we are done once we prove

∫
Ev ĝµv ,Oµv = 0.

First, by a similar argument as the one given in Proposition 5.1 of [5] we get the
following:

λ̃(Pi) =
1

2

∫
Ev

log |x− x(Pi)|vµv =
1

4
log |f ′(αi)|v,

where E is given by y2 = f(x) = (x − α1)(x − α2)(x − α3) with αi = x(Pi)
the x-coordinates of the non-zero 2-torsion points of E over K̄. We know ∆ =
16
∏3

i=1 f
′(αi), so then

3∑
i=1

λ(Pi) =
1

4
log
∣∣∆/16

∣∣
v
− 1

4
log |∆|v = − log |2|v.

On the other hand, Lemma 42 tells us that
∑3

i=1 λ̂(Pi) = − log |2|v and thus we have

3
∫
Ev ĝµv ,Oµv = 0, which forces λ̂ = λ and ends the proof.
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6.3 Alternative proof of the identity

λ̃([m]P ) = m2λ̃(P ) + v(ψm(x(P )))

In the above section, we gave an alternative definition of Néron local height functions
as restrictions of Green functions at the origin. The goal of this section is to use the
properties of these restrictions to give a more geometric proof of the main result of
Theorem 29.

Theorem 44. Let K be the completion of a number field with respect to an absolute
value | · |v, v(·) = − log | · |v and let E/K be an elliptic curve over K. The normalized
local height function satisfies

λ̃([m]P ) = m2λ̃(P ) + v(ψm(P )),

for all P ∈ E(K)\E[m](K), m ∈ Z>0.

Proof. We know the normalized local height function satisfies the quasi-parallelogram
law

λ̃(P +Q) + λ̃(P −Q) = 2λ̃(P ) + 2λ̃(Q) + v(x(P )− x(Q))

for P,Q, P ±Q 6= O. Summing over Q ∈ ker[m], Q 6= O we get

2
∑

Q∈ker[m],
Q 6=O

λ̃(P +Q) = 2(m2 − 1)λ̃(P ) + 2
∑

Q∈ker[m],
Q 6=O

λ̃(Q) +
∑

Q∈ker[m],
Q6=O

v(x(P )− x(Q))

Notice that since local height functions are invariant under finite extensions of the
base field, we can assume K such that all m-torsion points are in E(K). Thus,
λ̃(P +Q) makes sense for all Q ∈ ker[m].

Using Lemma 42, the Corollary to Proposition 41 and the fact that the restriction
λ̂ coincides with the Néron local height λ we have

λ([m]P ) = m2λ(P ) + v(m) +
1

2

∑
Q∈ker[m],
Q6=O

v(x(P )− x(Q)).

Notice that the proof is complete since we know ψm(x)2 = m2
∏

Q∈E[m],
Q 6=O

(x− x(Q)).
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