
Università degli studi di Padova
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Chapter 0

Introduction

In this thesis, I will talk about perverse sheaves as well as nearby and vanishing
cycles. In particular, at the end of the thesis, I will prove the perversity of
nearby cycles.

The name perverse sheaves is a bit misleading,because neither they are
sheaves, nor they are perverse. Perverse sheaves live on spaces with singularities.
A perverse sheaf on a topological space X is actually a bounded constructible
complex in the derived category that satisfies certain dimension conditions on
its cohomology sheaves. The justification of the term sheaf comes from the fact
that, they can be glued, form an abelian category, can be used to define coho-
mology. Actually the category of perverse sheaves is an abelian category of the
non-abelian derived category of sheaves (actually of the sheaves of vector spaces
with constructible cohomology), equal to the core of a suitable t-structure and
preserved by Verdier duality.

Usually, families come with singular fibres and so it is natural to investigate
what happens near such a fibre. The notion of nearby and vanishing cycles arise
when we consider 1-parameter degenerations. They are complexes defined on
the singular fibre. We will show that we have an interpretation of the nearby
cycle using the relative De Rham complex. Then we prove that the relative
De Rham complex is isomorphism to another complex which comes from the
absolute De Rham complex. Finally with the help of the above observation,
we can prove the perversity of the nearby cycles. The idea of such a proof of
the perversity of the nearby cycles functor comes from an observation given by
Illusie in his article [5].
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Chapter 1

Nearby and vanishing cycles

1 Constructible sheaves

LetX be a complex analytic space and let k be a field( or more general,Noetherian
ring). Denote Sh(X) := Sh(X, k), the category of sheaves of k-vector space over
X and D(X) = D(X, k) := D(Sh(X, k)), its derived category and D+(X) the
bounded-below derived category, D−(X) the bounded-above derived category,Db(X)
the bounded derived category.

Definition 1.1. A sheaf F on X is a local system (or locally constant), if for
all x ∈ X, there is a neighborhood U containing x such that F|U is a constant
sheaf.

Theorem 1.2. There is a bijection between set of local systems on X up to
isomorphism and set of representations of fundamental group π1(X,x0) up to
isomorphism. Even more is true: there is an equivalence of categories.

Proof. see [4]or[8]

Definition 1.3. A stratification of a complex analytic space X is a finite set S
(called strata) of X such that

1)X is a disjoint union of all the strata
2)Each stratum S ∈ S is a manifold
3) The closure of a stratum S is a union of some strata.
We call such X a stratified space.

Definition 1.4. 1)A sheaf F on a stratified space X is constructible with
respect to the stratification S if for all S ∈ S, the restriction F|S is a locally
constant sheaf of A-modules, where A is any ring.

2)A complex of sheaves C• is said to be constructible with respect to the
stratification S if all its cohomology sheaves Hi(C•) are constructible with re-
spect to the stratification S, and we write C• ∈ DS(X).

3)Define Db
c(X) is the full subcategory of Db(X) consisting of constructible

sheaves, i.e. C• ∈ Db
c(X) if C• is bounded and there exists stratification S such

that C• ∈ DS(X).

Remark. 1) In the case where X is an algebraic variety,denote the analytifica-
tion of X to be Xan. A CXan-module F is called an algebraically constructible
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8 CHAPTER 1. NEARBY AND VANISHING CYCLES

sheaf if there exists a stratification X =
⊔
Sα of X such that F|San

α
is a locally

constant sheaf on San
α for any α.

Remark. 2) For an algebraic variety X, we denote by Db
c(X) the full subcat-

egory of Db
c(X

an), consisting of bounded complexes of CXan-modules whose
cohomology groups are algebraically constructible. We apply the same to some
notations which we will introduce later, like dualizing complex of X.

From [1], p 83, the Db
c(X) is stable under the six operators. More precisely,

we have the following theorem.

Theorem 1.5. Let f : X → Y to be a morphism of analytic spaces or of
complex algebraic varieties. Then the following holds

1) If G• ∈ Db
c(Y ), then f−1G• ∈ Db

c(X) and f !G• ∈ Db
c(X).

2) If F• ∈ Db
c(X) and f is an algebraic map then Rf∗(F•) and Rf!(F•) are

constructible. If F• ∈ Db
c(X) and f is an analytic map such that the restriction

of f to supp(F•) is proper, then Rf∗(F•) and Rf!(F•) are constructible.

3) If F•,G• ∈ Db
c(X), then F• ⊗L G• ∈ Db

c(X) and RHom(F•,G•) ∈
Db

c(X).

Remark. See chapter 2 for the definition of f! and f
!.

2 Nearby and vanishing cycles

Let S be a unit disk in C, f : X → S a non-constant analytic function. Then
we have the following diagram

X̃∗

p
  B

BB
BB

BB
B

��
k

((PP
PPP

PPP
PPP

PPP
P

S̃∗

e

  B
BB

BB
BB

B X∗

f∗

��

j // X

f

��

Y
ioo

��
S∗ // S {0}oo

Here, Y = f−1(0), S∗ = S −{0} the punctured disk, X∗ = f−1(S∗), S̃∗ = {z ∈
C|Im(z) > 0},e is the universal covering

e : S̃∗ → S∗, e(u) = exp(2πiu)

and X̃∗ is the fibre product

X̃∗ = X∗ ×S∗ S̃∗

Moreover, we assume that f∗ : X∗ → S∗ to be smooth, the only possible
singularities lies in Y = f−1(0). We wish to investigate how the cohomology
of fibers of f with coefficients in F• ∈ Db

c(X) changes with respect to the only
singular fiber Y .

Remark. As we want to investigate the problems on Y , so we can care about
only the situations near Y . So we can actually replace the commutative diagram
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with the following

E

##G
GG

GG
GG

GG

��
k

))SSS
SSSS

SSSS
SSSS

SSSS
S

S̃∗
ϵ

e

##G
GG

GG
GG

GG
G T (Y )\Y

f∗

��

j // X Y
ioo

S∗
ϵ

Here T (Y ) = f−1(Sϵ) is the tube about the fiber Y and we replace S∗ by S∗
ϵ

which is the punctured disk of radius ϵ. (According to [1] p 102)when f is proper
on the tube T (Y ), ϵ can be chosen such that f : T (Y )\Y → S∗

ϵ is a topologically
locally trivial fibration. However, even f is not proper, such fibrations exist
locally on X, they are precisely the Milnor fibrations of corresponding function
germs f : (X,x) → (C, 0).E is regarded as the universal fiber of the fibration
f : T (Y )\Y → S∗

ϵ . Now even we have started with algebraic varieties, the new
objects T (Y ) and E are only analytic spaces. So we assume X to be complex
analytic space and moreover we assume that the radius 1 is small enough to be
a good ϵ.

Definition 2.1. Let F• ∈ Db(X) be a complex, We define the nearby cycles
of the complex F• with respect to the function f and the value t = 0 to be the
sheaf complex given by

ψfF• = i−1Rk∗k
−1F•.

As we have the fundamental group π1(S̃
∗) = ZT where T : z 7→ z + 1 in S̃∗,

then there is an associated monodromy deck transformation h : X̃∗ → X̃∗ and h
satisfies p◦h = p. This homeomorphism h induces an isomorphism of complexes

M : ψf (F•) → ψf (F•)

After [11], p.352, one can shows that ψf (F•) ∈ Db
c(X). In conclusion we get

the nearby cycle functor

ψf : Db
c(X) → Db

c(Y )

with respect to the function f and the value t = 0.

We will give a theorem which can be seen as a interpretation of the name
”nearby”.

Let Bδ(x) be an open ball of radius δ in X centered at x, defined by using
an embedding of the germ (X,x) in an affine space CN ,let Xt = f−1(t). Then
Vx = Bδ(x)

∩
Xt for 0 < |t| ≪ ϵ ≪ δ is exactly the local Milnor fiber of the

function f at the point x. A direct computation using the definition of the
complex ψfF• yields the following:

Theorem 2.2. For all the points x ∈ Y there is a natural isomorphism

Hi(ψfF•)x ≃ Hi(Vx,F•)
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such that the monodromy morphism Mx on the left hand side corresponds to the
morphism on the right hand side induced by the monodromy homeomorphism of
the local Milnor fibration induced by f : (X,x) → (C, 0).

Proof. Define Vr,η as in Chapter 3,1 Geometric Set-Up. then the Milnor fiber
Vx is the intersection of Xt with Vr,η for t small enough but non-zero. For t
real embeds in k−1Vr,η through z 7→ (z, logt) and it can be seen that this is a
homotopy equivalence. Hence the inclusion induces

Hi(Vx,F•) ≃ Limr,ηHi(k−1(Vr,η), k
−1(F•)) ≃ Hi(i−1Rk∗k

−1F•)x =
Hi(ψfF•)x

To show how this right hand side monodromy operator T is obtained, note that
we can work a proper Milnor fibration f : Bδ(x)

∩
f−1(S∗

ϵ ) → S∗
ϵ . It follows

that Rkf∗(F•) is a local system on S∗
ϵ for ϵ small enough. From theorem 1.2

this local system corresponds to a representation of π1(S
∗
ϵ ) which is actually

ρ : π1(S
∗
ϵ ) → Aut(S), where S = Rkf∗(F•)t = Hk(Vx,F•). With this notion,

the monodromy T is just ρ([γ]), where [γ] is the generator of π1(S
∗
ϵ ) = Z.

Now we consider the adjunction morphism

F• → Rk∗k
−1(F•)

and apply the functor i−1 to get the natural morphism

c : i−1F• → ψfF•

Definition 2.3. Let F• ∈ Db
c(X) be a constructible complex. We define the

vanishing cycles ϕf (F•) ∈ Db
c(Y ) and the canonical morphism can : ψf (F•) →

ϕf (F•) by inserting the natural map c above to a distinguished triangle

i−1F• c−→ ψf (F•)
can−→ ϕf (F•)

[+1]−→

in the triangulated category Db
c(Y ). Note here ϕf (F•) is defined up to isomor-

phism.

The isomorphism of complexes M defined in 2.1 satisfies the equality M ◦ c = c
implies that there is an induced monodromy isomorphism Mv : φf (F•) →
φf (F•) and an automorphism of the distinguished triangle

i−1F• c−→ ψf (F•)
can−→ φf (F•)

[+1]−→

given by (Id,M,Mv).

Remark. As the triangulated category does only guarantee the existence of
Mv, we need to note that the monodromy morphism Mv is not unique.



Chapter 2

Perverse sheaves

1 Verdier duality

Definition 1.1. Let F be a sheaf on X,let s ∈ F(U).The support of s is defined
to be

supp(s) = {x ∈ U |sx ̸= 0}

This is automatically a closed subset of U .

Definition 1.2. A continuous map f : X → Y is proper if for every compact
set K ⊂ Y , the preimage f−1(K) ⊂ X is compact.

Definition 1.3. Let f : X → Y be a continuous map, and let F be a sheaf on
X. The proper push-forward of F ,denoted f!F is the subsheaf of f∗F defined
by

f!F(U) = {s ∈ f−1(U)|f |supp(s) : supp(s) → U is proper}

Remark. The restriction of a proper map to a closed subset of its domain
is always proper. If f is a proper map then the functor f! and f∗ coincide
because f |supp(s) is always proper. In particular, if f is an inclusion of a closed
subset, proper push-forward is the same as the ordinary push-forward. If f is
an inclusion of an open subset, f! is extension by zero.

Definition 1.4. Given a sheaf F ∈ Sh(X),define the group of sections with
compact support by

Γc(X,F) := {s ∈ Γ(X,F)| supp (s) is compact } = aX!F

where aX!F : X → {point} is the projection to a single point.

The functor f! : Sh(X) → Sh(Y ) does not have a right adjoint in general,
otherwise it would be right exact and therefore exact. But an interesting fact
is that the functor Rf! has a right adjoint.

Theorem 1.5. (Verdier duality) Let f : X → Y be a continuous map of locally
compact spaces of finite dimension. Then Rf! : D+(X) → D+(Y ) admits a right
adjoint f !. In fact, we have an isomorphism in D+(k):

11



12 CHAPTER 2. PERVERSE SHEAVES

RHom(Rf!F•,G•) ≃ RHom(F•, f !G•).

where F• ∈ D+(X),G• ∈ D+(X).

Remark. Here RHom is defined as follows. Recall that given chain complexes
A•, B• of sheaves, one may define a chain complex Hom•(A•, B•), the elements
in degree in are given the product

∏
mHom(Am, Bm+n) and the differential

sends a collection of maps {fm : Am → Bm+n} to dfm+(−1)n+1fm+1d : Am →
Bm+n+1. Then RHom is the derived functor of Hom•.Since the cohomology
in degree zero is given by HomD+(X)(A

•, B•), we see that the last statement of
Verdier duality implies the adjointness relation.

We are going to prove the theorem in a few steps following [2].
First, the existence of a functor F : C → D is equivalent to the repre-

sentability of the functor C 7→ HomD(FC,D) for each D ∈ D.And about the
representability, we have the following lemma:

Lemma 1.6. An additive functor F : Sh(X) → k −modop is representable if
and only if it sends colimits to limits.

Proof. If F is representable, then it is clearly it sends colimits to limits. Suppose
conversely that F sends colimits to limits, for each open set U ⊂ X, take kU =
j!(k) where j : U → X is the inclusion. We can define a sheaf F ∈ Sh(X) via
F(U) = F (kU ). Since the kU have canonical embedding maps(if U ⊂ U ′,there
is a map kU → kU ′ , it is clear that F is a presheaf, actually, F is a sheaf. To
see this, let {Uα} be an open covering of U , then there is an exact sequence of
sheaves ∏

α,β kUα

∩
Uβ

→
∏

α kUα → kU → 0

which means that there is an exact sequence

0 → F (kU ) →
∏

α F (kUα) →
∏

α,β F (kUα

∩
Uβ

)

This means that F is a sheaf. F is a promising candidate for a representing
object, because we know that

Hom(kU ,F) ≃ F(U) = F (kU ).

Now, we need to define a distinguished element of F (F) to show that it is
universal. More generally, we can define a natural transformationHom(−,F) →
F (−). We can do this because any G ∈ Sh(X) is canonically a colimit of sheaves
kU . Namely,form the category whose objects are pairs (U, s) where U ⊂ X is
open and s ∈ G(U) and whose morphisms come from inclusions (V, s′) → (U, s)
where V ⊂ U and s′ = s|V . For each such pair define a map kU → G by the
section s. It is easy to see that this gives a representation of G functorially as
a colimit of sheaves of the form kU . The natural isomorphism Hom(ku,F) ≃
F (kU ) now extends to a natural transformation Hom(G,F) = F (F), which is
an isomorphism. Indeed, it is an isomorphism when G = kU , and both functors
commute with colimits.

The functor F 7→ HomSh(Y )(f!F ,G) is not in general representable,as f! is
not exact and need not preserve colimits. However a slight variant of the above
functor is representable.
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Definition 1.7. A soft sheaf F over X is one such that any section over any
closed subset of X can be extended to a global section.

Lemma 1.8. A sheaf F ∈ Sh(X) is soft if and only if H1
c (U,F) = 0 whenever

U ⊂ X is open.

Proof. See [12].

Lemma 1.9. If M is a soft,flat sheaf in Sh(X), then the functor F → f!(F ⊗k

M) commutes with colimits. In particular, the functor F 7→ HomSh(Y )(f!F ⊗k

M,G) is representable for any G ∈ Sh(Y ).

Proof. We know that f! commutes with filtered colimits and in particular arbi-
trary sums. As a result we need only to show that F 7→ f!(F ⊗k M) is an exact
functor. If 0 → F ′ → F → F ′′ → 0 is a short exact sequence in Sh(X), then so
is 0 → F ′ ⊗k M → F ⊗k M → F ′′ ⊗k M → 0 by flatness. As M is soft, then
it follows from [12],the first term F ′ ⊗k M is soft. Then after lemma 1.8, the
push-forward sequence 0 → f!(F ′ ⊗k M) → f!(F ⊗k M) → f!(F ′′ ⊗k M) → 0
is exact too. The representability criterion now completes the proof

Remark. It follows that given M and G as above, there is a sheaf f̂(M,G) ∈
Sh(X) such that

HomSh(X)(F , f̂(M,G)) ≃ HomSh(Y )(f!(F ⊗k M),G)

This is clearly functorial in G and contravariantly in M. We shall use f̂ to
construct f !.

Lemma 1.10. f̂(M,G) is injective whenever M ∈ Sh(X) is a soft, flat sheaf
and G ∈ Sh(X) is injective.

Proof. f̂(M,G) is the object representing the functor

F 7→ HomSh(Y )(f!(F ⊗k M),G)

To say that it is injective is to say that mapping into it is an exact functor,Let
0 → F ′ → F be an exact sequence. Then the sequence 0 → f!(F ′ ⊗ M) →
f!(F ⊗M) is exact too. So injectivity of G gives that

HomSh(Y )(f!(F ⊗k M),G) → HomSh(Y )(f!(F ′ ⊗k M),G) → 0

is also exact.

Lemma 1.11. Let X be a locally compact space, and n = dimX, then in any
sequence

0 → F0 → F1 → · · · → Fn+1 → 0

if F1, · · ·,Fn are all soft, so is Fn+1.

Proof. We know that Fi, i = 1, · · ·, n has no compacted supported cohomology
above dimension one. Using the standard dimension shifting method, we get
H1

c (U,Fn+1) = Hn+1
c (U,F0) = 0 for all U ⊂ X open. By lemma 1.8, we get the

softness of Fn+1.
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Proof. We now prove the theorem, we choose a soft, flat and bounded resolution
L• of the constant sheaf k, so a quasi-isomorphism k → L•. To see this is
possible,we need to check that we can choose L• to be bounded. If L• is not
bounded, we truncate it after the nth stage, where n = dimX. e.g. we consider
the complex

0 → L0 → · · · → Ln → Im(Ln → Ln+1).

This complex will remain soft after lemma 1.11. The final term will also be flat
because of the stalkwise split natural of the resolution L•. Then F• and F⊗kL•

will be isomorphic functors on the level of derived categories, but the latter will
be much better behaved. for instance, it will have soft terms.Fix a complex
G• ∈ D+(Y ),we need to show the functor F• → HomD+(Y )(Rf!(F•),G•) is
representable. As we have a canonical isomorphism in the derived category:

F• ≃ F• ⊗k L•.

So alternatively, we may show the functor F• → HomD+(Y )(Rf!(F•⊗kL•),G•)
is representable.

We shall show that there is a complex K• ∈ D+(X) such that there is a
functorial isomorphism

RHom(Rf!(F•),G•) ≃ RHom(Rf!(F• ⊗k L•),G•) ≃ RHom(F•,K•)

Notice that F• ⊗k L• is already f!-acyclic. In particular Rf!(F• ⊗k L•) ≃
f!(F• ⊗k L•) . Moreover we can assume that G• is a complex of injectives and
we will try to choose K• to consists of injectives. In this case, we are just looking
for a quasi-isomorphism

Hom•(f!(F• ⊗k L•),G•) ≃ Hom•(F•,K•)

However, we know that

Homn(f!(F• ⊗k L•),G•) =
∏

m

∏
i+j=mHom(f!(F i ⊗k Lj),Gm+n) =∏

m

∏
i+j=mHom(F i, f̂(Lj ,Gm+n)) =

∏
i,j Hom(F i, f̂(Lj ,Gm+n))

If we consider the double complex by Crs = f̂(L−r,Gs) with the differential
maps being those induced by L,G. Let K• be the associated simple complex.
then it follows that there is an isomorphism

Homn(f!(F• ⊗k L•),G•) ≃ Homn(F•,K•)

In fact, there is an isomorphism of complexes

Hom•(f!(F• ⊗k L•),G•) ≃ Hom•(F•,K•)

This follows from checking through the signs of the differential. This will prove

RHom(Rf!(F•),G•) ≃ RHom(Rf!(F• ⊗k L•),G•) ≃ RHom(F•,K•)

If we check that K• is bounded below complex of injectives. It is bounded below
from the definition,as L• is bounded in both directions.It is injective because
lemma 1.9.

It is now clear we may define the functor f ! : D+(Y ) → D+(X). Given a
bounded-below complex G• ∈ D+(Y ), we start by replacing it with a complex
of injectives, and so just assume that it consists of injectives without loss of
generality. We then form the complex K• of sheaves on X such that Kt =
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⊕
r+s=t f̂(L−r,Gs), where L• is a fixed soft resolution of the constant sheaf.

Then setting f !G• = K• finishes the proof.

Now consider Y to be a one point space and the field k to be the complex
field. We have the dualizing complex as following:

Definition 1.12. Let a : X → {point} be the constant map from X to a
one-point space. The dualizing complex on X is defined as

ωX := a!CX .

Definition 1.13. Let F• ∈ D−(X), the Verdier dual of F• is the complex
DF• = RHom(F , ωX).

It follows from [9],p 112, we have the following theorem:

Theorem 1.14. 1) Let X be an algebraic variety or an analytic space, Then
we have ωX ∈ Db

c(X). Moreover, the functor DX preserves the category Db
c(X)

and DX ◦ DX ≃ Id on Db
c(X).

2) Let f : X → Y be a morphism of algebraic varieties or analytic spaces.
Then the functor f−1 and f ! induce

f−1, f ! : Db
c(Y ) → Db

c(X)

and we have

f ! = DX ◦ f−1 ◦ DY

on Db
c(Y ).

3) Let f : X → Y be a morphism of algebraic varieties or analytic spaces.
We assume that f is proper in the case where f is a morphism of analytic spaces.
Then the functors Rf∗, Rf! induces

Rf∗, Rf! : Db
c(X) → Db

c(Y )

and we have

Rf! = Db
c(Y ) ◦Rf∗ ◦ Db

c(X)

on Db
c(X).

Now we want to recover Poincare duality when X is a manifold from Verdier
duality. First we have the theorem:

Theorem 1.15. (Verdier Duality) H−i
c (X,F•)∨ ≃ Hi(X,DF•).

Proof. This is just a special case of Verdier duality in which Y is a one point
space and f is the constant map a : X → {point}.

Then we have the proposition as follows:

Proposition 1.16. Let X be a smooth, oriented n-dimensional manifold. Then
ωX ≃ CX [n].

Proof. We need the compare the cohomology, so let compute the cohomology
H•(ωX), The i-th cohomology can be obtained as the sheaf associated to the
presheaf
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U 7→ Hom(CU , ωX [i])

Here, as CU = j!(C) is the extension by zero of the constant sheaf k from U
to X. Indeed, to check this relation, we recall that we assume ωX a complex
of injectives, so the map CU → ωX [i] are just homotopy classes of maps CU →
ωX [i], and the sheaf associated to the presheaf is clearly the homology Hi(ωX).

So we need to compute Hom(CU , ωX [i]) = Hom(CU [−i], ωX), by taking
U small, we may assume that U is a ball in Rn. From the adjoint property,
such maps are in natural bijection with maps RΓc(CU [−i]) → C in the de-
rived category, so we need to compute Hom(RΓc(CU [−i]),C). So we have the
cohomology of dualizing complex Hi(D) is the sheaf associate to the presheaf
U 7→ Hi

c(U,C)∨. Then the following lemma will complete the proof of this
proposition.

Lemma 1.17. Let k be any ring, then we have Hi
c(Rn, k) ≃ k if i = n, and

Hi
c(Rn, k) = 0, otherwise.

Proof. See [6].

It follows immediately from the above proposition 1.14 that on a smooth,
oriented n-dimensional manifold, we have DCX ≃ CX [n]. Then the Verdier
duality theorem becomes the following

Theorem 1.18. (Poincaré Duality). Let X be a smooth, oriented n-dimensional

manifold, then Hn−i
c (X,C)∨ ≃ Hi(X,C).

So the Verdier duality can be seen as a generalization of Poincaré duality.
For most spaces and most complexes of sheaves, the complex F and DF that
appears in Verdier duality are different. What makes Poincaré duality work for
manifolds is that the constant sheaf is close to self-dual. e.g. a shifting of it
will be self-dual, as we will show in the following section Perverse Sheaves that
CX [dimX] is self-dual. If we could find self-dual complexes of sheaves on some
space, then we could achieve a sort of intermediate generalization of Poincaré
duality: the duality theorem that is close in the spirit to the original Poincaré
duality,now we will have duality not only on manifolds. The search of such self-
dual complexes of sheaves is one of the principal motivation for the development
of the theory of perverse sheaves. See [8].

2 t-structure and Perverse Sheaves

t-Structure

Definition 2.1. Let C be a triangulated category. A t-structure on C is a
pair of full subcategories C≤0, C≥0 satisfying the axioms below. For any n ∈ Z,
C≤n = C≤0[−n], C≥n = C≥0[−n]

1) C≤0 ⊂ C≤1 and C≥1 ⊂ C≥0

2)
∩

n∈Z C≤n =
∩

n∈Z C≥n = 0

3) If A ∈ C≤0 and

4) For any object X in X in C, there is a distinguished triangle A → X →
B → A[1] with A ∈ C≤0 and B ∈ C≥1.
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Although the last axiom does not say anything about the uniqueness of the
distinguished triangle, it turns out to be the unique as a consequence of the
other axioms. Specifically, we have

Proposition 2.2. The distinguished triangle in axiom (4) above is unique up
to isomorphism. Indeed, there are functors

tτ≤0 : C → C≤0, tτ≥1 : C → C≥1

such that for any object X of C,

tτ≤0X → X → tτ≥1X → (tτ≤0X)[1]

is a distinguished triangle.

Proof. let A
u−→ X

v−→ B, A′ u−→ X
v−→ B′ be two distinguished triangles

as in axiom (4), Then A′ ∈ C≤0, we have Hom(A′, B) = Hom(A′, B[−1]) =
0,Then the exact sequence Hom(A′, B[−1]) → Hom(A′, A) → Hom(A′, X) →
Hom(A′, B) implies that there is an isomorphism uA′A : Hom(A′, A) → Hom(A′, X).
Let A′ = A, then we have an isomorphism uA : Hom(A,A) → Hom(A,X).
Suppose uA(IdA) = fA ∈ Hom(A,X). Then we have u−1

A′A(fA′) ◦ u−1
AA′(fA) =

IdA. Thus A
′ ≃ A. This property determines the object A ∈ C≤0 with u : A→

X uniquely. In the same way the object B ∈ C≥1 with v : X → B is uniquely
determined. This implies that the triangle (A,X,B) is uniquely determined.
Define tτ≤0X := A, tτ≥1X := B, The functoriality follows from the corollary be-
low: for X → Y , compose it with tτ≤0X → X, then we get Hom(tτ≤0X,

tτ≤0Y )
via the isomorphism: Hom(tτ≤0X,

tτ≤0Y ) ≃ Hom(tτ≤0X,Y ) this complete the
proof.

Corollary 2.3. Let ι≤0 : C≤0 → C ,ι≥1 : C≥1 → C be the inclusion functors,
Then

(ι≤0,
tτ≤0), (

tτ≥0, ι≥0)

are adjoint pairs.

Proof. For any A′ ∈ C≤0, we have

Hom(ι≤0A
′, X) ≃ Hom(A′, A) = Hom(A′, tτ≤0X)

In the same way, one shows the other pair.

Remark. When doing calculations in a triangulated category with a t-structure,
the above proposition typically comes up in the following way: if A ∈ C≤0 and
f : A→ X is any morphism in C, then f factors through tτ≤0X. That is, there
is a unique morphism f ′ making the following diagram commute:

A

f ′

��

f

""E
EE

EE
EE

EE

tτ≤0X // X

Similarly, if B ∈ C≥1 and g : X → B is any morphism, then g factors through
tτ≥1X:
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X

g
""E

EE
EE

EE
EE

// tτ≥1X

g′

��
B

Of course, there are corresponding statements with ≤ n and ≥ n for any n ∈ Z,
obtained by shifting. In particular, there are truncation functor tτ≤n and tτ≥n,
and there are distinguished triangles

tτ≤nX → X → tτ≥n+1X → (tτ≤nX)[1] for all n.

The relation between truncation and shifting is given by

tτ≤nX = (tτ≤0X[n])[−n]

Proposition 2.4. The following conditions on X ∈ C are equivalent
1) We have X ∈ C≤n (resp. X ∈ C≥n ).
2) The canonical morphism tτ≤nX → X (resp. X → tτ≥nX) is an isomor-

phism.
3) We have tτ>nX = 0 (resp. tτ<nX = 0)

Proof. Only prove 1) ⇒ 2). We may assume n = 0, As X ∈ C≤0 so the
distinguished triangle

X → X → 0
+1−→

satisfies the condition that X ∈ C≤0 and 0 ∈ C≥0. Then from the uniqueness in
proposition 2.2. We get that tτ≤0X ≃ X

Definition 2.5. Let C be a triangulated category with a t-structure (C≤0, C≥0).
The category T = C≤0

∩
C≥0 is called the heart (or core) of the t-structure.

Proposition 2.6. Let

X ′ → X → X ′′ +1−→.

be a distinguished triangle in C. If X ′, X ′′ ∈ C≤0 (resp. C≥0), then X ∈ C≤0

(resp. C≥0). In particular, if X ′, X ′′ ∈ T , then X ∈ T .

Proof. Suppose X ′, X ′′ ∈ C≤0, by proposition 2.4, we need to show tτ>0X = 0.
For the triangle, we have the exact sequence,

Hom(X ′′, tτ>0X) → Hom(X, tτ>0X) → Hom(X ′, tτ>0X)

From definition of t-structure, we have 0 = Hom(X ′′, tτ>0X) = Hom(X ′, tτ>0X).
Then by corollary 2.3, we have Hom(X, tτ>0X) = Hom(tτ>0X,

tτ>0X) = 0,
which implies the desired result.

Proposition 2.7. Suppose n ≤ m, then we have

tτ≤n
tτ≤m = tτ≤m

tτ≤n = tτ≤n,
tτ≥n

tτ≤m = tτ≤m
tτ≥n

tτ≥n
tτ≥m = tτ≥m

tτ≥n = tτ≥m,tτ≤n
tτ≥m = tτ≥m

tτ≤n = 0

In particular, all truncation functors commute with each other.
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Proof. We only prove tτ≥n
tτ≤m = tτ≤m

tτ≥n. The other equalities will follow
from proposition 2.4 and definition.

Assume the others equalities, Let X ∈ C, then we have a distinguished
triangle

tτ≤m
tτ≥nX → tτ≥nX → tτ>mX

+1−→

from which we conclude that tτ≤m
tτ≥nX ∈ C≥n by proposition 2.6. Then we

get the isomorphisms
Hom(tτ≤mX,

tτ≥n) = Hom(tτ≤mX,
tτ≤m

tτ≥n) = Hom(tτ≥n
tτ≤mX,

tτ≤m
tτ≥n).

So we can define a morphism c ∈ Hom(tτ≥n
tτ≤mX,

tτ≤m
tτ≥n) by the image of

the composition tτ≤mX → X → tτ≥n through the above isomorphism. We need
to show c is an isomorphism. The distinguished triangle

tτ<nX → tτ≤mX → tτ≥n
tτ≤mX

+1−→

shows that tτ≥n
tτ≤mX ∈ C≤m by proposition 2.6. On the other hand, applying

the octahedral axiom to the three distinguished triangles

tτ<nX → tτ≤mX → tτ≥n
tτ≤mX

+1−→

tτ<nX → X → tτ≥nX
+1−→

tτ≤mX → X → tτ≥mX
+1−→

We get a distinguished triangle

tτ≥n
ttτ≤mX → tτ≥nX → tτ≥mX

+1−→

Now from the uniqueness, we get the desired isomorphism.

Theorem 2.8. 1) The heart T is an abelian category
2) An exact sequence

0 → X
f−→ Y

g−→ Z → 0

in T gives rise to a distinguished triangle

X
f−→ Y

g−→ Z
+1−→

in C

Proof. Apply proposition 2.6 to the distinguished triangle

X → X
⊕
Y → Y

+1−→

with X,Y ∈ T , then by proposition 2.6, we get X
⊕
Y ∈ T . For any morphism

F : X → Y , embed it into a distinguished triangle

X → Y → Z
+1−→

Then it follows from proposition 2.6 that Z ∈ C≤0
∩
C≥−1. We will show the

kernel and cokernel are given by

Ker ≃ H−1(Z) = tτ≤0(Z[−1]),Coker ≃ H0(Z) = tτ≥0Z.

Consider the exact sequence



20 CHAPTER 2. PERVERSE SHEAVES

Hom(X[1],W ) → Hom(Z,W ) → Hom(Y,W ) → Hom(X,W )

Hom(W,Y [−1]) → Hom(W,Z[−1]) → Hom(W,X) → Hom(W,Y )

for W ∈ T . By the corollary 2.3 and definition, the above sequence turn out to
be

0 → Hom(tτ≥0Z,W ) → Hom(Y,W ) → Hom(X,W )

0 → Hom(W, tτ≤0Z[−1]) → Hom(W,X) → Hom(W,Y )

This implies that Ker ≃ H−1(Z) = tτ≤0(Z[−1]),Coker ≃ H0(Z) = tτ≥0Z.
We need to show the morphism Coimf → Imf is an isomorphism. Embed
Y → Cokerf into a distinguished triangle

I → Y → Cokerf
+1−→, then by proposition 2.6, I ∈ C≥0.

Applying the octahedral axiom to the following distinguished triangles.

Y → Z → X[1]
+1−→

Y → Cokerf → I[1]
+1−→

Z → Cokerf → Kerf [2]
+1−→

we get the distinguished triangle

X[1] → I[1] → Kerf [2]
+1−→

which is equivalent to say we have the distinguished triangle

Kerf → X → I
+1−→

and this implies that I ∈ C≤0. Hence I ∈ T . Then by the argument used in the
proof of the existence of kernel and cokernel we get

Imf = Ker(Y → Cokerf) ≃ I ≃ Coker(Kerf → X) = Coimf

2) Embed X
f−→ Y →W

+1−→. Then Kerf = 0 and Cokerf = Z we obtain
W ≃ Z by the proof for 1).

Definition 2.9. the functor tH0 : C → T defined by tH0 = tτ≥0
tτ≤0 =

tτ≤0
tτ≥0 is called the zeroth t-cohomology. Moreover, for any i ∈ Z, the functor

tHi defined by tHi(X) = tH0(X[i]) or equivalently tHi = tτ≤i
tτ≥i =

tτ≥i
tτ≤i

is called the i-th t-cohomology.

Proposition 2.10. The functor tH0 : C → T is a cohomological functor

Proof. We need to show for a distinguished triangle X → Y → Z
+1−→ in C ,the

sequence

H0(X) → H0(Y ) → H0(Z)

is exact.
1) suppose X,Y, Z ∈ C≥0, for W ∈ T , we have the exact sequence

Hom(W,Z[−1]) → Hom(W,X) → Hom(W,Y ) → Hom(W,Z)
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from definition, 0 = Hom(W,Z[−1]), moreover, for V ∈ C≥0, we have tτ≤0V ≃
tτ≥0tτ≤0V = H0(V ). so Hom(W,V ) = Hom(W, tτ≤0V ) = Hom(W,H0(V )).
So we get exact sequence in T :

0 → Hom(W,H0(X)) → Hom(W,H0(Y )) → Hom(W,H0(Z))

2) suppose only Z ∈ C≥0. Let W ∈ C<0, Then we have Hom(W,Z) =
Hom(W,Z[−1]) = 0,hence Hom(W,X) = Hom(W,Y ),By proposition, this im-
plies that the canonical morphism tτ<0X → tτ<0Y is an isomorphism.Then
apply the octahedral axiom to the following distinguished triangles.

tτ<0X → X → tτ≥0X
+1−→

tτ<0X → Y → tτ≥0Y
+1−→

X → Y → Z
+1−→

We get a new one tτ≥0X → tτ≥0Y → Z
+1−→ Then we get the situation of 1),

so the assertion holds.

3) By the same argument of 2), we can prove the exactness of the sequence

H0(X) → H0(Y ) → H0(Z) → 0

under the assumption that X ∈ C≤0

4) Now let’s consider the general case, embed the composition of morphisms
tτ≤0X → X → Y into a distinguished triangle

tτ≤0X → Y →W
+1−→

by 3) we have the exact sequence

H0(X) → H0(Y ) → H0(W )

Now applying the octahedral axiom to the distinguished triangles

tτ≤0X → X → tτ>0X
+1−→

tτ≤0X → Y →W
+1−→

X → Y → Z
+1−→

we get a distinguished triangle

W → Z → tτ>0X[1]

hence by 2), we get an exact sequence 0 → H(W ) → H0(Z), and this completes
the proof.

The following theorem is the reason we want to introduce the notion of
t-structure. For the details, see [8],[9].
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Theorem 2.11. Let C be a triangulated category with a t-structure (C≤0, C≥0),
and let T be its heart. then T is an abelian category. Moreover, the functor
tH0 : C → T enjoys the following properties:

1)For any object A ∈ T , tH0(A) ≃ A
2) tH0 takes distinguished triangles in C to long exact sequence in T .
3) A morphism f : X → Y in C is an isomorphism if and only if the

morphism tHi(f) are isomorphisms in T for all i ∈ Z.
4) We have

C≤0 = {X ∈ C|tHi(X) = 0 for all i > 0},

C≥0 = {X ∈ C|tHi(X) = 0 for all i < 0}

Perverse t-structure

Definition 2.12. We define full subcategories pD≤0
c (X) and pD≥0

c (X) of Db
c(X)

as follows. For F• ∈ Db
c(X), define that F• ∈ pD≤0

c (X) if and only if
1) dim(suppHj(F•)) ≤ −j, for any j ∈ Z.
and F• ∈ pD≥0

c (X) if and only if
2) dim(suppHj(DF•)) ≤ −j, for any j ∈ Z.
we difine the subcategory Perv(X) = pD≤0

c (X)
∩

pD≥0
c (X)

We will show that the pair (pD≤0
c (X), pD≥0

c (X)) defines a t-structure on
Db

c(X) , and hence Perv(X) turns out to be an abelian category. Since we have
DDF• ≃ F• for F• ∈ Db

c(X), the Verdier functor D exchanges pD≤0
c (X) with

pD≥0
c (X)

Remark. To be more precise, this is called perverse sheaves with respect to
middle perversity. We will explain the term ”middle perversity” as following:
Let p : 2N → N be a decreasing function such that 0 ≤ p(n) − p(m) ≤ m − n
for all n ≤ m. Such a function is called a perversity function. Denote by
p∗ : 2N → N the dual perversity function given by p∗(n) = −n − p(n) for all
n ∈ 2N. Let X be a complex analytic space and let S be a stratification of X,
For a stratum S ∈ S we set p(S) = p(2dimS), where dimS is the dimension of
S. Actually we have a generalization of the definition of (pD≤0

c (X), pD≥0
c (X))

as following. After [1], we have the following result: Let p : 2N → N a perversity
function and F• ∈ Db

c(X), then the following conditions are equivalent.
1) There exists a stratification S as above such that F• is S constructible

and for any stratum S ∈ S, one has Hj(i−1
S F•) = 0 for all j > p(S) (resp.

Hj(i!SF•) = 0 for all j < p(S)), where iS : S → X is the inclusion.
2) For any stratification S as above such that F• is S constructible and for

any stratum S ∈ S, one hasHj(i−1
S F•) = 0 for all j > p(S) (resp. Hj(i!SF•) = 0

for all j < p(S)), where iS : S → X is the inclusion.

We can define that F• ∈ pD̃≤0
c (X) (resp. F• ∈ pD̃≥0

c (X)) if it satisfies 1) or
2).

Then after [1], we have the following result: The pair (pD̃≤0
c (X), pD̃≥0

c (X))
is a t-structure on the triangulated category Db

c(X) for any perversity function
p.

The above t-structure is called the t-structure of perversity p on Db
c(X).

Define the category of p-perverse sheaves the heart of this t-structure, namely
Perv(X, p) = pD̃≤0

c (X)
∩

pD̃≥0
c (X)
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Now we can see the previous definition of perverse sheaves with respect to
the middle perversity as a special case of perverse sheaves Perv(X, p), where
p = p1/2 and given by p1/2(2k) = −k, for all 2k ∈ 2N. We will prove that
definition 2.12 coincide with the definition in this remark if we let p to be 1/2.

To see why the perversity is called the middle one, notice that the definition
of the perversity function p implies that p(m) ≥ −m + p(0), for all integer
m ∈ 2N. If we normalize the perversity functions by setting p(0) = 0. then
we have −m ≤ p(m) ≤ 0. Hence there is a minimal perversity function pmin

given by pmin(m) = −m and a maximal perversity pmax given by pmax(m) = 0
and half way between these two, the middle perversity pmid = p1/2 given by
p1/2(m) = −m/2 for all m ∈ 2N. Note also that p∗min = pmax, pmin = p∗max

and p∗1/2 = p1/2. the last equality shows the self dual of the middle perversity
function p1/2.

Now I will work only on the middle perversity. By setting p = pmid = p1/2,
we get Perv(X) = Perv(X, p1/2). And we will prove the statements in this
remark for the case when p = p1/2 in the following context.

Lemma 2.13. We work on the middle perversity, let F• ∈ Db
c(X), then we

have

supp(Hj(DF•)) = {x ∈ X|H−j(i!{x}F
•) ̸= 0}.

for all j ∈ Z, where i{x} : x ↪→ X are inclusion maps.

Proof. From theorem 1.12, chapter 2, for any x ∈ X, the following isomorphism
holds

i!{x}F
• ≃ i!{x}DXDXF• ≃ D{x}i

−1
{x}(DXF•)

So we obtain an isomorphism

H−j(i!{x}F
•) ≃ H−j(D{x}i

−1
{x}(DXF•)) = H−j(Hom(i−1

{x}DXF•,C)) =
Hj(i−1

{x}DXF•)∨ = Hj(DXF•)∨x

Follow [9], we have the following propositions and corollaries.

Proposition 2.14. Let F• ∈ Db
c(X) and X =

⊔
Xα be a complex stratification

of X consisting of connected strata such that i−1
Xα

F• and i!Xα
F• have locally

constant cohomology sheaves for any α, then
1) F• ∈ pD≤0

c (X) if and only if Hj(i−1
Xα

F•) = 0 for all α and j > −dXα ,
where dXα denotes the dimension of Sα.

2) F• ∈ pD≥0
c (X) if and only if Hj(i!Xα

F•) = 0 for all α and j < −dXα .

Proof. 1) F• ∈ pD≤0
c (X) if and only if dim(suppHj(F•)) ≤ −j, for any j ∈

Z. As dim(suppHj(F•)) = sup{dimXα; |Hj(F•)|Xα ̸= 0} and suppHj(F•) =

{x ∈ X|Hj(i−1
x (F•)) = Hj(F•)x ̸= 0}. So 1) holds.

For 2),by the above lemma 2.13 F• ∈ pD≥0
c (X) if and only if

dim{x ∈ X|H−j(i!{x}F
• ̸= 0)} ≤ −j

for any j ∈ Z. For x ∈ Xα we can factor the inclusion i{x} : {x} → X through

{x}
j{x}−→ Xα

iXα−→ X, with the assumption that i!Xα
F• have locally constant

cohomology sheaf, we get the isomorphism
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i!{x}F
• ≃ j!{x}i

!
Xα

F• ≃ j−1
{x}i

!
Xα

F•[−2dXα ].

Hence for any j ∈ Z, by the connectedness of Xα, Xα

∩
suppHj(DXF•) is Xα

or ∅. Then the following conditions are equivalent
1) Hj(i!Xα

F•) = 0 for any j < −dXα .

2) H−j(i!{x}F
•) = 0 for any x ∈ Xα and j > −dXα .

3) Xα

∩
suppHj(DXF•) = ∅ for any j > −dXα .

Then condition 3) is saying that for any Xα with Xα ∈ suppHj(DXF•), we
must have dXα ≤ −j.

Corollary 2.15. Assume that X is a connected complex manifold and all the
cohomology sheaves of F• ∈ Cb

c(X) are locally constant on X, Then
1) F• ∈ pD≤0

c (X) if and only if Hj(F•) = 0 for all α and j > −dX ,
2) F• ∈ pD≥0

c (X) if and only if Hj(F•) = 0 for all α and j < −dX .

Lemma 2.16. Let X be a complex manifold and F• ∈ Db
c(X). Assume that

all the cohomology sheaves of F• are locally constant on X and for an integer
d ∈ Z we have Hj(F•) = 0, for j < d. then for any locally closed analytic subset
Z of X we have

Hj
Z(F•) = 0 for any j < d+ 2codimY Z

Proof. By induction on the cohomological length of F•, we may assume that
F• is a local system L on Y . Since the question is local on Y , we may assume
that L is the constant sheaf CY . Hence we are reduced to prove

Hj
Z(CY ) = 0 for any j < 2codimY Z.

This can be proved by induction on the dimension of Z with the aid of the
distinguished triangle.

RΓZ−Zs(CY ) → RΓZ(CY ) → RΓZs(CY )
+1−→.

Because the dimension of Zs and Z − Zs are strictly smaller than Z. Here we
denote Zs the smooth part of Z.

Proposition 2.17. Let F• ∈ Db
c(X), then the following are equivalent

1) F• ∈ pD≥0
c (X)

2) For any locally closed analytic subset S of X we have

Hj(i!S(F•)) = 0, for any j < −dS.

3) For any locally closed analytic subset S of X we have

Hj
S(F•) := HjRΓS(F•) = 0, for any j < −dS.

4) For any locally closed smooth analytic subset S of X we have

Hj(i!S(F•)) = 0, for any j < −dS.

Proof. 2) ⇔ 3) This is because we have the equality thatHi
S(−) = HiRiS∗i

!
S(−).

4) ⇒ 2) Now assume 4) is satisfied, for F• ∈ Db
c(X). We will show that

Hj(i!Z(F•)) = 0 for any j < −dZ .
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for any locally closed analytic subset Z of X by induction on dimZ. Denote the
smooth part of Z as Zs and set Z ′ = Z/Zs. Then dimZ

′ < dimZ, by hypothesis
we get

Hj
Z′(F•) = 0 for any j < −dZ′ .

In particular, we have

Hj
Z′(F•) = 0 for any j < −dZ .

So the claim follows from 4) and the distinguished triangle.

RΓZ′(F•) → RΓZ(F•) → RΓZs(F•)
+1−→.

4) ⇒ 1) Take a complex stratification X =
⊔

α∈AXα of X consisting of

connected strata such that i−1
Xα

F• and i!Xα
F• have locally constant cohomology

sheaves for all α ∈ A. Then by proposition 2.15, 1) is equivalent to the condition
Hj(i!Sα

F•) = 0 for all α and j < −dSα . Take S = Xα in 4), we see that 4)
implies 1).

1) ⇒ 4) Suppose that Hj(i!Xα
F•) = 0 for all α and j < −dXα , we need to

show that for any locally closed smooth analytic subset S in X, we have

Hj(i!S(F•)) = 0, for any j < −dS .

Let Xk =
⊔

dimXα≤kXα in X, then we have

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ XdX
= X.

Hence it is enough to show that

Hj
S
∩

Xk
(F•) = 0 for all j < −dS

Moreover, by the distinguished triangles,

RΓS
∩

Xk−1
(F•) → RΓS

∩
Xk

(F•) → RΓS
∩
(Xk−Xk−1)(F•)

+1−→

for k = 0, · · ·, dX , by induction, we are reduced to proof that

Hj
S
∩
(Xk−Xk−1)

(F•) = 0 for all j < −dS

As Xk −Xk−1 is the union of k-dimensional strata, we obtain a isomorphism:

Hj
S
∩
(Xk−Xk−1)

(F•) ≃
⊕

dimXα=kH
j
S
∩

Xα
(F•)

So we are reduced to show that Hj(i!S
∩

Xα
F•) ≃ 0 for all α ∈ A and j < −dS .

Now factor the inclusion iS
∩

Xα
: S

∩
Xα → X through S

∩
Xα

jXα−→ Xα
iXα−→ X,

we obtain an isomorphism i!S
∩

Xα
F• ≃ j!Xα

i!Xα
F• , which means

Hj(i!S
∩

Xα
F•) ≃ Hj(j!Xα

(i!Xα
F•))

Now apply lemma 2.16 to Y = Xα and G• = i!Xα
F• ∈ Db

c(X), we get the
desired result.

Proposition 2.18. Let F• ∈ pD≤0
c (X) and G• ∈ pD≥0

c (X)
1) we have Hi(RHom(F•,G•)) = 0, for all j < 0.
2) for U open subset of X,the correspondence U 7→ HomDb(U)(F•|U.G•|U)

defines a sheaf on X.
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Proof. 1) Let S =
∪

j<0 supp(H
j(RHomCX

(F•,G•))) ⊂ X. Assume that S ̸=
∅, let iS : S → X be the embedding, for j < 0, we have

supp(Hj(RHomCX
(F•,G•))) ⊂ S

and hence

Hj(RHomCX
(F•,G•)) ≃ Hj(RΓSRHomCX

(F•,G•)) ≃
Hj(iS∗i

!
SRHomCX

(F•,G•)) ≃ iS∗H
j(RHomCS

(i−1
S F•, i−1

S G•))

The assumption F• ∈ pD≤0
c (X) implies that

dimsupp{Hk(i−1
S F•)} ≤ −k, for any k ∈ Z

and the dimension of

Z :=
∪

k>−dS
supp{Hk(i−1

S F•)} ⊂ S

is less than dS . Therefore we obtain S′ = S −Z ̸= ∅ and Hji−1
S′ F• = 0 for any

j > −dS . On the other hand, we have Hji!SG• = 0 for any j < −dS . Hence we
obtain HjRHomCS

(i−1F•, i!SG•)|S′ = 0 for any j < 0. But this contradicts our
definition of S.

2) By 1) we have

HomDb(U)(F•|U ,G•|U ) = H0(U,RHomCX
(F•,G•)) =

Γ(U,H0(RHomCX
(F•,G•)))

Hence the correspondence U 7→ HomDb(U)(F•|U ,G•|U ) gives a sheaf isomorphic
to H0(RHomCX

(F•,G•)).

Now we prove the main theorem:

Theorem 2.19. The pair (pD≤0
c (X)), pD≥0

c (X) defines a t-structure on Db
c(X).

Proof. To prove this is a t-structure, we need to verify the following conditions.
(T1) C≤0 ⊂ C≤1 and C≥1 ⊂ C≥0

(T2) If A ∈ C≤0andB ∈ C≥1, then Hom(A,B) = 0.
(T3) For any object X in X in C, there is a distinguished triangle A→ X →

B → A[1] with A ∈ C≤0 and B ∈ C≥1.
(T1) is obvious from the definition of (pD≤0

c (X)), pD≥0
c (X). (T2) is proved

in proposition 2.18. We only need to show (T3). For F• ∈ Db
c(X), take a

stratification X =
⊔

α∈AXα of X such that i−1
Xα

F• and i!Xα
F• have locally

constant sheaves for any α ∈ A. Let Xk =
⊔

dimXα≤kXα ⊂ X for k = −1, 0, 1, ··
·. Now consider the claim which we denote it as Ck,

Ck: There exists F•
0 ∈ pD≤0

c (X − Xk), F•
0 ∈ pD≥1

c (X − Xk), and a

distinguished triangle F•
0 → F•|X−Xk

→ F•
1

+1−→ in Db
c(X−Xk) such that

F•
0 |Xα and F•

1 |Xα have locally constant cohomology sheaves for any
α ∈ A satisfying Xα ⊂ X −Xk.

Note that what we need is actually C−1. Now we will prove it by descending
induction on k ∈ Z. It is trivial for k ≫ 0, now assume that Ck holds, we

need to prove Ck−1. Take a distinguished triangle F•
0 → F•|X−Xk

→ F•
1

+1−→
in Db

c(X − Xk) as described in Ck, let j : X − Xk → X − Xk−1 be the open
embedding and i : Xk −Xk−1 → X −Xk−1 be the closed embedding. As j! is
left adjoint to j!, then the morphism F•

0 → F•|X−Xk
≃ j!(F•|X−Xk−1

) give rise
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to a morphism j!F•
0 → F•|X−Xk−1

. Complete this into a distinguished triangle
as following:

j!F•
0 → F•|X−Xk−1

→ G• +1−→

We also embed the morphism pτ≤−ki!i
!G• → i!i

!G• → G• into a distinguished
triangle

pτ≤−ki!i
!G• → G• → F̃•

1
+1−→

Then embed the morphism F•|X−Xk−1
→ G• → F̃•

1 into a distinguished triangle

F̃•
0 → F•|X−Xk−1

→ F̃•
1

+1−→

By construction, F̃•
0 |Xα and F̃•

1 |Xα have locally constant cohomology sheaves

for any α ∈ A satisfying Xα ⊂ X − Xk−1. It remains to show that F̃•
0 ∈

pD≤0
c (X −Xk−1) and F̃•

1 ∈ pD≥1
c (X −Xk−1). Applying the functor j! to

j!F•
0 → F•|X−Xk−1

→ G• +1−→

pτ≤−ki!i
!G• → G• → F̃•

1
+1−→

we get an isomorphism j−1F̃• ≃ j−1G• and the distinguished triangle

F•
0 → F•|X−Xk

→ j−1F̃•
1

+1−→

compare this distinguished triangle withe the following two

F̃•
0 → F•|X−Xk−1

→ F̃•
1

+1−→

F•
0 → F•|X−Xk

→ F•
1

+1−→

by the uniqueness, we get the isomorphisms j−1F̃•
1 ≃ F•

1 and j−1F̃•
0 ≃ F•

0 . By
proposition we need to prove

(i): H l(i−1F̃•
0 ) = 0 for any l > −k

(ii): H l(i!F̃•
1 ) = 0 for any l < −k + 1

Now we apply the octahedral axiom to the following three distinguished triangles

j!F•
0 → F•|X−Xk−1

→ G• +1−→

F̃•
0 → F•|X−Xk−1

→ F̃•
1

+1−→

pτ≤−ki!i
!G• → G• → F̃•

1
+1−→

We obtain a distinguished triangle

j!F•
0 → F̃•

0 → pτ≤−ki!i
!G• +1−→

So we have i−1F̃•
0 ≃ i−1pτ≤−ki!i

!G• ≃ i−1i!
pτ≤−ki!G• ≃ pτ≤−ki!G•. So we

proved (i). Now apply the functor i! to

pτ≤−ki!i
!G• → G• → F̃•

1
+1−→

we get a distinguished triangle
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i!pτ≤−ki!i
!G• → i!G• → i!F̃•

1
+1−→

Then we get the isomorphism i!pτ≤−ki!i
!G• ≃ i!i!

pτ≤−ki!G• ≃ pτ≤−ki!G•, and
hence i!F̃•

1 ≃ pτ≥−k+1(i!G•). So (ii) is proved.

Definition 2.20. The t-structure (pD≤0
c (X)), pD≥0

c (X) of the triangulated cate-
groy Db

c(X) is called the perverse t-structure. An object of its heart Perv(X)
is called a perverse sheaf on X. We denote by

pτ≤0 : Db
c(X) → pD≤0

c (X), pτ≥0 : Db
c(X) → pD≥0

c (X)

the truncation functor with respect to the perverse t-structure. For n ∈ Z we
define a functor

pHn : Db
c(X) → Perv(X)

by pHn(F•) = pτ≤0pτ≥0(F•[n]), For F• ∈ Db
c(X) its image pHn(F•) in

Perv(X) is called the n-th perverse cohomology of F•.

Proposition 2.21. Assume that X is a smooth algebraic variety or a complex
manifold. Then for any local system L on Xan we have L[dX ] ∈ Perv(X)

Proof. Assume that X is a complex manifold, By ωX ≃ CX [2dX ], we have
D(L[dX ]) = RHom(L[dX ],CX [2dX ]) = L∨[dX ], here L∨ denotes the dual

local system Hom(L,CX). Hence the assertion is clear. And the same for the
proof of the case when X is an algebraic variety.

The following proposition is obvious in the view of the definition of pDb
c(X)

and pDb
c(X).

Proposition 2.22. The Verdier duality functor DX : Db
c(X) → Db

c(X)op in-
duces an exact functor

DX : Perv(CX) → Perv(CX)op

In particular, perverse sheaves are stable under Verdier duality.

3 Riemann-Hilbert Correspondence

Follow [1], we are going to show how perverse sheaves arise from Riemann-
Hilbert correspondence. To do this, we need the notation of D-modules.

Let X be a connected n-dimensional complex manifold and OX be the sheaf
of holomorphic functions on X. We denote by DX the sheaf of rings of finite-
order holomorphic linear differential operators. This is the non-commutative
subalgebra in the algebra HomC(OX ,OX) generated by OX (acting via mul-
tiplication) and by the holomorphic vector fields on open sets in X (acting as
derivatives). The sheaf of rings DX is right and left Noetherian. After [9]
the category mod(DX) of all the DX -modules is an abelian category having
enough injective objects. Denote by Db

h(DX) the full triangulated subcategory
in Db(mod(DX)) consisting of complexes with holomorphic cohomology sheaves.

Let x ∈ X be any point and denote by ÔX,x the completion of the local
ring OX,x at x with respect to the m-adic topology, where m is the unique
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maximal ideal. Then ÔX,x is in a natural way a DX,x-module containing OX,x

as a submodule and hence the quotient ÔX,x/OX,x has a natural structure of
DX,x-module.

Definition 3.1. A complexM• ∈ Db
c(DX) of analytic holomorphicDX -modules

is called regular if for every point x ∈ X one has

RHomDX,x
(M•

x, ÔX,x/OX,x) = 0.

LetDb
rh(DX) denote the full triangulated subcategory of regular holomorphic

complex in Db
h(DX). This category Db

rh(DX) is endowed with Grothendieck’s
six operations, exactly as the category Db

c(X). The Riemmann-Hilbert corre-
spondence says that these two categories are equivalent.

Definition 3.2. For a complex M• ∈ Db(DX), we define the de Rham complex
of M• as following:

DR(M•) = Ω•
X ⊗M•[n].

Theorem 3.3. Let X be a connected n-dimensional complex manifold. Con-
sider the triangulated category Db

rh(DX) endowed with the natural t-structure
and the triangulated category Db

c(X) endowed with the middle perversity t-
structure. Then the de Rham functor

Db
rh(DX)

DR−→ Db
c(X).

is t-exact and establishes an equivalence of categories which commutes with direct
images, inverse images and duality. In particular

1) DR induces an equivalence of categories between the abelian category
RH(DX) of regular holonomic DX-modules on X and the abelian category of
middle perversity perverse sheaves Perv(X).

2) For any complex M• ∈ Db
rh(DX), one has an isomorphism

DR(Hm(M•)) = Hm(DR(M•)).

Proof. See [15],[16].

Remark. Recall that we say an abelian subcategory A′ of A is a thick sub-
category if for any exact sequence X1 → X2 → X3 → X4 → X5 in A with
Xi ∈ A′, i = 1, 2, 4, 5, then X3 ∈ A′. Let A be an abelian category and A′ a
thick abelian subcategory of A, then the full subcategory Db

A′(A) of Db(A) con-
sisting of objects F• ∈ Db(A) satisfying Hj(F•) ∈ A′ for any j is a triangulated
category. The natural t-structure on D = Db

A′(A) is given by

D≤0 = {F• ∈ D|Hj(F•) = 0,∀j > 0}; D≥0 = {F• ∈ D|Hj(F•) = 0, ∀j < 0}

So the theorem shows that the standard t-structure on Db
rh(DX) correspondence

to the middle perverse t-structure on Db
c(X).

4 Derived category of perverse sheaves

From [14] we see that there exists an isomorphism between the derived cate-
gory Db(Perv(X)) of the abelian category Perv(X) (the middle perversity) and
Db

c(X). The result is stated as following:
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Theorem 4.1. For a complex manifold X, we have Db
c(X) and Perv(X) (with

respect to the middle perversity) as defined earlier, then there exists a canonical
t-exact functor realX : Db(Perv(X)) → Db

c(X) that induces the identity functor
between hearts Perv(X). Moreover realX is an equivalence of categories

Proof. For details, see [14].



Chapter 3

Log complex and the
perversity of the nearby
cycles functor

1 Geometric Set-Up

Let X be a complex manifold, S ⊂ C be the unit disk and f : X → S a
holomorphic map smooth over the punctured disk S∗ = S − {0}.We say that f
is one-parameter degeneration. In general Y := X0 = f−1(0) can be arbitrarily
bad singularities, but after suitable blowing up, Y can be assumed to have only
strict normal crossing divisors on X. Let µ be the least common multiple of
the multiplicities of the components of the divisor Y and consider the map
m : t 7→ tµ sending S to itself. Denote S′ the source of the map m and let W be
the normalization of the fibre product X ×S S

′.Blowing up the singularities we
obtain a manifold X ′ and a morphism f ′ : X ′ → S′. We call f ′ the µ-th root
fibration of f .The semistable reduction theorem [13] says the following:

Theorem 1.1. Let f : X → S be as above.Then there exists m ∈ N such that
for the m-th root f ′ : X ′ → S′ of f , the special fibre Y = f−1(0)has strictly
normal crossings and such that all its components are reduced.

We shall henceforth assume that f : X → S is smooth over S∗ and that
Y = f−1(0) is a strictly normal crossing divisor all of whose components are
reduced.

With the above assumption, for any given point x ∈ Y , we can choose a
system (z0, · · ·, zn) of local coordinates on a neighborhood U of x in X centered
at x, such that f(z0, · · ·, zn) = z0 · · · zk. Define

Vr,η = {z ∈ U |∥z∥ < r, |f(z)| < η}

for 0 < η ≪ r ≪ 1. These form a fundamental system of neighborhood of x in
X.

31
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2 Residue Maps

Let Y = Y1
∪
· · ·

∪
Yk is a strict normal crossing divisor inside a complex

manifold X. We introduce

YI = Yi1
∩

· · ·
∩
Yim , I = {i1, · · ·, im};

Y (I) :=
∑

j ̸∈I YI ∩ Yj ;

aI : YI ↪→ X;

Y (0) = X;

Y (m) =
⨿

|I|=m YI ,m = 1, · · ·, k;

am =
⨿

|I|=m aI : Y (m) → X.

The goal is to define residues along YI . So let p ∈ YI , then all the m components
Yi, i ∈ I = {i1, · · ·, im} pass through p. Now choose a local coordinate (U, z1, · ·
·, zn) centered at p in such a way that Yij = {zj = 0} for j = 1, · · ·,m, and the
remaining k−m components of Y are given by {zj = 0}, j = m+1, · · ·, k. Any
local section ω can be written as

ω = dz1
z1

∧ · · · ∧ dzm
zm

∧ η + η′

where η has at most poles along components Yj , j ̸∈ I, and η′ is not divisible
by the form dz1

z1
∧ · · · ∧ dzm

zm
. The restriction of η is independent of the chosen

local coordinates so we get a well-defined map ω 7→ η|YI
. And the fact

dω = dz1
z1

∧ · · · ∧ dzm
zm

∧ (−1)mdη + dη′

implies that this map is compatible with derivatives.

Definition 2.1. The residue map

resI : Ω•
X(logY ) → Ω•

YI
(logY (I))[−m]

is locally defined by sending ω = dz1
z1

∧ · · · ∧ dzm
zm

∧ η + η′ to η|YI as described
above.The residue map restricts to filtration W is also denoted as resI

resI :WmΩ•
X(logY ) → Ω•

YI
[−m]

here,the filtration W is defined by

WmΩp
X(logY ) =


0 m < 0;

Ωp
X(logY ) m ≥ p;

Ωm
X(logY ) ∧ Ωp−m

X 0 ≤ m ≤ p

Lemma 2.2. The residue map

resI :WmΩ•
X(logY ) → Ω•

YI
[−m]

is surjective and induces an isomorphism of complexes

resm =
⊕

|I|=m resI : GrWm Ω•
X(logY )

≈−→ am∗Ω
•
Y (m)[−m]
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Proof. We will follow the proof in [10]. One can construct an inverse as fol-
lows.Fix I = {i1, · · ·, im}, 1 ≤ i1 < i2 < · · · < im ≤ k.One defines

ρI : Ωp
X → GrWm Ωp+m

X (logY )

ρI(β) =
dz1
z1

∧ · · · ∧ dzm
zm

∧ β

This map is well-defined,since if w1, · · ·, wn is another local coordinate with
Y = {w1 · · · wk = 0},the quotients zi/wi are holomorphic (because Dij =
{zj = 0} = {wj = 0}) and also the form dzi/zi − dwi/wi = (wi/zi)d(zi/wi) are
holomorphic, so ρI(β) in the w-coordinates differs from the the expression in
the z-coordinates by a form inWm−1Ω

p+m
X (logY ) and so is zero in the quotient.

Also the elements of the form β = zijβ
′,β′ a local section of Ωp

X ,and dzij ∧
β′′,β′′ a local section of Ωp−1

X ,map to zero.So the map ρI factor through aI∗Ω
•
YI
[−m]

and induces a map of complexes denoted as ρ̃I ,

ρ̃I : aI∗Ω
•
YI
[−m] → GrWm Ω•

X(logY )

So we get a commutative diagram

Ωp
X

θ

��

ρI

((PP
PPP

PPP
PPP

PPP

aI∗Ω
•
YI
[−m]

ρ̃I

// GrWm Ω•
X(logY )

Here θ is defined as following,for β = f(z1, · · ·, zm, zm+1, · · ·, zn)dzv1 ∧ · · · ∧ dzvl

θ(β) =

{
0 ∃j ∈ {1, · · ·,m}, dzj |dzv1 ∧ · · · ∧ dzvl ;
f(0, · · ·, 0, zm+1, · · ·, zn)dzv1 ∧ · · · ∧ dzvl oterwise

The sum of morphisms ρ̃I for |I| = m gives a morphism of complexes

ρm : am∗Ω
•
Y (m)[−m] → GrWm Ω•

X(logY )

i.e. for an open set U in X,we have

am∗Ω
•
Y (m)[−m](U) = am(

⨿
|I|=m YI ∩ U) =

⨿
|I|=m am(YI ∩ U)

⊕|I|=mρ̃I(U)
−→

GrWm Ω•
X(logY )(U)

This is the desired inverse for the residue map. As it does not depends on the
coordinate, this completes the proof.

3 The Relative Logarithmic de Rham Complex

Definition 3.1. The relative de Rham complex on X with logarithmic poles
along Y is defined as following

Ω•
X/S(logY ) := Ω•

X(logY )/(f∗Ω1
S(log0) ∧ Ω•−1

X (logY ))

The cohomology sheaves are given by the following theorem.
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Theorem 3.2. Let X = Cn+1 with coordinates (z0, · · ·, zn),and let f : X → S
be given by t = f(z0, · · ·, zn) = z0 · · · zk for some k ∈ N with 0 ≤ k ≤ n. Let Y
be the zero set of t.Put ξi = dzi/zi for i = 0, · · ·, k.Then

1)H0(Ω•
X/S(logY ))0 = C{t};

2)H1(Ω•
X/S(logY ))0 is the C{t}-module with generators ξ0, · · ·, ξk and the

relation
∑k

i=0 ξi = 0;
3)Hq(Ω•

X/S(logY ))0 =
∧q

C{t} H1(Ω•
X/S(logY ))0 for q > 1.

Proof. The complex Ω•
X/S(logY )0 can be considered as a double complex where

the differential d is written as d1 + d2 where d1 is the differential with respect
to the first k + 1 variables and d2 the other variables.The relative Poincaré
Lemma implies that the complex (Ω•

X/S(logY )0, d2) is acyclic. So the complex

is quasi-isomorphism to (Ker(d2), d1). So we may assume n = k.
From definition we have 0 = df/f = dt/t, so ξ0 = −Σk

j=1ξj , we see that for
i = 1, · · ·, n we have

d(fξi) = Σk
j=1Dj(f)ξj ∧ ξi, Dj = zj∂/∂zj − z0∂/∂z0

So the complex is isomorphic to the Koszul complex on R = C{z0, · · ·, zn} with
operators Dj

0 −→ R
d0−→ R⊗ V −→ · · · −→ R⊗ ∧nV

dn−→ 0

where V = Cξ1 ⊕ · · · ⊕ Cξn and

dp(fξi1 ∧ · · · ∧ ξip) = Σk
j=1Dj(f)ξj ∧ ξi1 ∧ · · · ∧ ξip

The cohomology of this complex can be computed monomial by monomial be-
cause the operators are homogenous.AsKer(d0) =

∩k
j=1Ker(Dj).One only gets

a non-zero contribution from those monomial on which the Dj are all zero be-
causeDj(z

a0
0 ···zak

k ) = (aj−a0)za0
0 ···zak

k . This is amount to saying that za0
0 ···zak

k

is a power of t. For H1, suppose m = Σn
i=1mi ⊗ ξi ∈ ker(d1), that is to say

Di(mi) = Di(mj),∀i, j = 1, ···, n.As Dj(z
a0
0 ···zak

k ) = (aj−a0)za0
0 ···zak

k ,so with-
out loss of generality, we may assume mi = λiz

a0
0 · · · zan

n ,mj = λjz
a0
0 · · · zan

n ,i.e.
λj(ai − a0) = λi(aj − a0), ∀i, j = 1, · · ·, n,So we get 2) and in a similar way 3).

Corollary 3.3. 1)H0(Ω•
X/S(logY )⊗OX

OY ) ≃ CY

2) H1(Ω•
X/S(logY )⊗OX

OY )0 is the C-vector space with generators ξ0, · · ·, ξk
and the single relation

∑k
i=0 ξi = 0.

3)Hq(Ω•
X/S(logY )⊗OX OY ) =

∧q
CY

H1(Ω•
X/S(logY )⊗OX OY ) for q > 1.

We are going to relate the complex Ω•
X/S(logY )⊗OY to ψf (CX).

Definition 3.4. (The Godement Resolution) Let F be a sheaf on the topologi-
cal space X. We define a new complex of sheaves C•

Gdm on X as following. First
we have the natural imbedding F → C0F , defined as below:

for U open subset of X, Γ(U, C0F) =
∏

x∈U Fx

here Fx is the stalk of F at point X, and the restriction map being the natural
one. Let F1 denote the cokernel of F → C0F and put C1 = C0F1.Iterate this
process to get a flasque resolution F → C•

GdmF , where C•
GdmF is given by
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0 → C0F → C1F → C2F → · · · → CnF → · · ·

For a complex of sheaves F• on X which is bounded,For every F i,take its
Godement resolution C•

GdmF i so that we have a double complex C•
GdmF•. Since

the Godement sheaves are flasque, the associated simple complex s(C•
GdmF•)

gives a flasque resolution of F•. Its complex of global sections is called the
derived complex

RΓ(X,F•) := Γ(X, s(C•
GdmF•)). This complex computes the

hypercohomology.

Then we have the hypercohomology Hi(X,F•) = RiΓ(F•) = Hi(RΓ(F•)) =
Hi(Γ(X, s(C•

GdmF•))).

Theorem 3.5. (The Abstract De Rham Theorem) Let X be a topological space
and let F be a sheaf with a Γ-acyclic resolution F• = {F0 → F1 → · · ·}, i.e.
Hi(X,F j) = 0 for i ≥ 1, j ≥ 1. We have canonical identifications

Hi(X,F) = Hi(X,F•) = Hi(Γ(X,F•)).

Proof. We have Hi(X,F) = Hi(X,F•), As any resolution of F by Γ-acyclic
sheaves computes hypercohomology, we getHi(X,F) = Hi(X,F•) = Hi(Γ(X,F•)).

Lemma 3.6. If X is a Stein manifold,then Hi(U,Ωj
X) = 0, ∀i > 0, j ≥ 0.

Proof. This is Cartan’s theorem B.

Proposition 3.7. The inclusion of complexes

Ω•
X(logY ) → j∗Ω

•
X∗

is a quasi-isomorphism and induces a natural identification

Hp(X∗;C) = Hp(X,Ω•
X(logY ))

In other words, cohomology of X∗ can be calculated using the log-complex.

Proof. The assertion is a local calculation. We take for X is a polydisc ∆n with
coordinates (z1, · · ·, zn) and that Yk is given by {z1 · · · zk = 0}. Then X and
X∗ are Stein manifolds and hence Hi(U,Ωj

X∗) = 0,∀i > 0, j ≥ 0. From the
abstract de Rham theorem it follows that the cohomology can be computed as
the de Rham cohomology of the complex Ω•

X∗ .

Hp(X∗;C) = Hp
DR(Ω

•
X∗) = Hp(Γ(X∗,Ω•

X∗)).

It suffices therefore to show that

Hp(K•
n,k)

∼= Hp(X∗;C)

K•
n,k = Γ(∆n,Ω•

∆n(logYk)).

If we put

R1
n,k = Cdz1/z1 ⊕ · · ·Cdzk/zk, R1

n,0 = C, R0
n,k = C

Rp
n,k =

∧p
R1

n,k
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then we can form a complex R•
n,k, where the differentials are the zero maps. We

have the natural inclusion

in,k : R•
n,k → K•

n,k

Consider the following commutative diagram of complexes with exact rows

0 // R•
n,k−1

in,k−1

��

// R•
n,k

in,k

��

// R•
n−1,k−1[−1]

in−1,k−1

��

// 0

0 // K•
n,k−1

// K•
n,k

res// K•
n−1,k−1[−1] // 0

The first row is exact because we have an obvious isomorphism R•
n−1,k−1[−1] ≃

R•
n,k/R

•
n,k−1 , while the second row is exact comes from the definition of residue

map.Now if in,k−1, in−1,k−1 are quasi-isomorphisms, then in,k is a quasi-isomorphism
by the five lemma. By the holomorphic Poincare lemma, in,0 is a quasi-isomorphism
for all n, so by induction, in,k is a quasi-isomorphism for all n, k. As X∗ has
the homotopy type of a product of k circles, the p-th cohomology of X∗ is ex-
actly Rp

n,kand the p-th cohomology of the complex R•
n,k is also Rp

n,k. We are
done.

Lemma 3.8. Let M• and L• be bounded complexes of C-vector space with in-
creasing filtrations F resp. G such thatM• =

∪
n≥0 FnM

• and L• =
∪

n≥0GnL
•.

If φ : (M•, F ) → (L•, G) is a morphism of filtered complexes and Grn(φ) :
GrFn (M

•) → GrGn (L
•) is a quasi-isomorphism for all n, then φ is a quasi-

isomorphism.

Proof. Grn(φ) is a quasi-isomorphism for any n ≥ 0, so we have isomorphisms
Hi(Gr0(φ)) : H

i(F0M
•) → Hi(G0L

•) and Hi(Gr1(φ)) : H
i(F1M

•/F0M
•) →

Hi(G1L
•/G0L

•) which implies the isomorphism Hi(Gr1(φ)) : Hi(F1M
•) →

Hi(G1L
•).By induction we have isomorphisms Hi(Grj(φ)) : Hi(FjM

•) →
Hi(GjL

•) for all i, j ≥ 0. So φ is a quasi-isomorphism.

The stalk at x of Hp(Ω•
X(logY )) has already been known from proposi-

tion 3.7: the stalk of H0 at x is C, the stalk of H1 at x is the vector space
spanned by ξ0, · · ·, ξk, and the stalk of Hp =

∧p
H1. Now let H1 be the sub-

space of Ω1
X(logY )x spanned by ξ0, · · ·, ξk and Hp =

∧p
H1 ⊆ Ωp

X(logY )x.Let
Hp[logt] be the subspace of Ωp

X(logY )[logt]x consisting of elements of the form∑s
i=0 ωi(logt)

i with ωi ∈ Hp. ThenH•[logt] is a subcomplex of Ω•
X(logY )[logt]x.Then

we have the following results:

Lemma 3.9. The inclusion H•[logt] ↪→ Ω•
X(logY )[logt]x is a quasi-isomorphism.

Proof. Denote F the filtration on H•[logt] and Ω•
X(logY )[logt]x by the degree

of logt. Then the map

GrFnH
•[logt] → GrFnΩ

•
X(logY )[logt]x

is just the inclusion H• → i−1Ω•
X(logY ) which is a quasi-isomorphism as we

have already shown.

Lemma 3.10. The injection H• → H•[logt] induces surjective maps

Hp → Hp[logt]
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with kernels formed by the elements η = dt/t ∧ ω for ω ∈ Hp−1.

Proof. Let ω =
∑s

i=0 ωi(logt)
i with ωi ∈ Hp, i = 0, · · ·, s.Then dω = 0 if and

only if dt/t ∧ ωi = 0, fori = 1, · · ·, s.By a lemma of De Rham[2], this implies
that ωi = dt/t ∧ ηi for some ηi ∈ Hp−1. Put η =

∑s
q=1(q + 1)−1ηq(logt)

q+1,
then ω − ω0 = dη. This shows that the injection induces a surjective map.
Moreover, if ω0 ∈ Hp is mapped to be zero if and only if there exists ξ ∈ Hp−1

with ω0 = d(ξlogt) = dt/t ∧ ξ.

Theorem 3.11. If X is a complex manifold and f : X → S is holomorphic
such that Y = f−1(0) is a reduced divisor with normal crossings on X, then we
have

ψf (CX) ≃ Ω•
X/S(logY )⊗OX

OY

in the derived category D+(sheaves of C-vector spaces on Y ).

Proof. Recall ψf (CX) ≃ i−1k∗Ω
•
X̃∗ . Then we have two morphisms α, β. Where

α is the inclusion.

α : i−1Ω•
X(logY )[logt] ↪→ i−1k∗Ω

•
X̃∗

Here local sections of i−1Ω•
X(logY )[logt] is of the form

∑s
i=0 ωs(logt)

i with
ωi ∈ i−1Ω•

X(logY ) and d(logt) = dt/t.

β : i−1Ω•
X(logY )[logt] → Ω•

X/S(logY )⊗OX
OY

given by
∑s

i=0 ωs(logt)
i → ω0.

We need to show the map α, β are quasi-isomorphisms.This can be checked
locally on Y .

From proposition 3.7,lemma 3.9 and lemma 3.10, we know β is a quasi-
isomorphism and i−1Ω•

X(logY )[logt] has stalk as described in corollary 3.3.
For the morphism α, fix a point x ∈ Y , we have

Hq(i−1k∗Ω
•
X̃∗)x = limr,ηH

q(Γ(k−1(Vr,η),Ω
•
X̃∗))

Denote Br = {z ∈ U |∥z∥ < r},Sη = {t ∈ S||t| < η}.Then Vr,η = Br ∩ f−1(Sη).
and we have

k−1(Vr,η) = {(z, u) ∈ Br × S̃∗
η |Πk

i=0zi = exp(2πiu)}

Denote V = {(z, u) ∈ Cn+1 × C|Πk
i=0zi = exp(2πiu)}, the natural inclusion i

i : k−1(Vr,η) ↪→ V

can be seen to be a homotopy equivalence. Actually, we can define a map

φ : Br → Cn+1

(z0, · · ·, zn) 7→ (z0/(r − |z0|), · · ·, zn/(r − |zn|))

This is a one-to-one bijection. So under the map φ,k−1(Vr,η) and V can be seen
topologically the same.

Now the restriction map

Hq((C∗)k+1 × Cn−k × C;C) → Hq(k−1(Vr,η);C)
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is surjective. The former is the q-th exterior power of the C-vector space with
basis ξ0, · · ·, ξk and the latter is obtained by dividing out the relation dt/t = 0.
This computes the stalks of the cohomology sheaf of i−1k∗Ω

•
X̃∗ at x .And it is

the same as i−1Ω•
X(logY )[logt]. This prove the theorem.

4 The Filtrations

This section arises from an observation made by Illusie in his article [5].
We have seen the isomorphism ψf (CX) ≃ Ω•

X/S(logY ) ⊗OX
OY , so we can

have an interpretation of the nearby cycle using the relative De Rham complex.
Now we are going to show Ω•

X/S(logY ) ⊗OX
OY is isomorphism to another

complex which comes from the absolute De Rham complex. With the help of
the filtration W defined in chapter 3,2 residue maps, we will show that we can
define two filtrations on ψf (CX) and Ω•

X/S(logY )⊗OX
OY . In this way we give

a new interpretation of the nearby cycle ψf (CX).
The desired complex comes from the following double complex:

Definition 4.1. Define a bi-filtered double complex of sheaves

(A•,•, d1, d2,W (M),W )

on Y by

Ap,q = Ωp+q+1
X (logY )/WpΩ

p+q+1
X (logY ),for p, q ≥ 0

with differentials

d1 : Ap,q → Ap+1,q, d2 : Ap,q → Ap,q+1

defined by

d1(ω) = (dt/t) ∧ ω, d2(ω) = dω

and the two filtrations, the weight filtration and the monodromy weight filtration

WmA
p,q = image of Wm+p+1Ω

p+q+1
X (logY ) in Ap,q

W (M)mA
p,q = image of Wm+2p+1Ω

p+q+1
X (logY ) in Ap,q

Definition 4.2. We have maps

µ : Ωq
X/S(logY )⊗OX OY → A0,q

ω 7→ (−1)q(dt/t) ∧ ω (mod W0)

defining a morphism of complexes

Ω•
X/S(logY )⊗OX OY → s(A•,•)

Here s(A•,•) is the associated single complex.

Definition 4.3. Define the filtration W on Ω•
X/S(logY )⊗OX

OY by

WmΩ•
X/S(logY )⊗OX

OY = Image of WmΩ•
X(logY ) in Ω•

X/S(logY )⊗OX
OY
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This is a filtration by subcomplexes. By definition the sheaf Ω•
X/S(logY )⊗OX

OY is the cokernel of the map

θ : Ω•−1
X (logY ) → Ω•

X(logY ); θ(ω) = dt/t ∧ ω.

Note that dt/t induces a global section of Ω1
X/S(logY ) ⊗OX

OY and hence

mapsWmΩp
X(logY )⊗OXOY toWm+1Ω

p+1
X (logY )⊗OXOY ,Wm−1Ω

p
X(logY )⊗OX

OY to WmΩp+1
X (logY )⊗OX

OY . So it induces maps

θ : GrWm Ωp+m
X (logY )⊗OX

OY → GrWm+1Ω
p+m+1
X (logY )⊗OX

OY

So we have the sequence

0 → GrW0 Ωp
X(logY )⊗OX

OY → GrW1 Ωp+1
X (logY )⊗OX

OY →
GrW2 Ωp+2

X (logY )⊗OX OY → · · ·

Applying the residue maps to the sequence above we get the sequence

0 → Ωp
Y → a1∗Ω

p
Y (1) → a2∗Ω

p
Y (2) → · · ·

In which the maps are nothing but the alternating sum of the restriction maps.
Hence the sequences are exact. We find GrWm (Ω•

X/S(logY ) ⊗OX
OY ) as the

cokernel of the map

θ : GrWm−1(Ω
•−1
X (logY )⊗OX OY ) → GrWm (Ω•

X(logY )⊗OX OY )

The exactness just proved implies the exactness of the sequence

0 → GrWm (Ω•
X/S(logY )⊗OX OY ) → GrWm+1(Ω

•+1
X (logY )⊗OX OY ) →

GrWm+2(Ω
•+2
X (logY )⊗OX

OY )

Applying the residue map:

0 → GrWm (Ω•
X/S(logY )⊗OX OY ) → (am+1)∗Ω

p
Y (m+1) → (am+2)∗Ω

p
Y (m+2)

is exact.

Lemma 4.4. The sequence of coherent sheaves on Y

0 → Ωq
X/S(logY )⊗OX OY

dt/t−→ A0,q dt/t−→ A1,q → · · ·

is exact.

Proof. We need to check that dt/t is compatible with the filtration W on
Ω•

X(logY ), which means the exactness of the sequence

GrWm (Ωq−1
X/S(logY )⊗OX OY ) → GrWm+1(Ω

q
X(logY )⊗OX OY ) →

GrWm+2(Ω
q+1
X (logY )⊗OX

OY )

which we have already shown above.

Theorem 4.5. The map µ : Ω•
X/S(logY )⊗OX OY → s(A•,•) defined by µ(ω) =

(−1)q(dt/t) ∧ ω for ω section of Ωq
X/S(logY )⊗OX OY is a quasi-isomorphism.

Proof. Follow from the lemma above, we need only to check that µ is a homo-
morphism of complex: µ(dω) = (−1)q+1(dt/t)∧dω = (−1)qd(dt/t∧ω) = dµ(ω)
for ω a section of Ωq

X/S(logY )⊗OX
OY .
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We can check that d1, d2 are compatible with the filtrations W and F if we
equip s(A•,•) with the filtration F given by

Fms(A•,•) =
⊕

p

⊕
q≥mAp,q

So µ : (Ω•
X/S(logY ) ⊗OX

OY ,W, F ) → (s(A•,•),W, F ) is a bi-filtered quasi-
isomorphism,

So we have:

s(A•,•) ≃ ψfCX .

Moreover, because d1W (M)m ⊂W (M)m−1 we find that

Gr
W (M)
m s(A•,•) ≃

⊕
q≥0,−mGrWm+2q+1Ω

•
X(logY )[1] ≃⊕

q≥0,−m(am+2q+1)∗Ω
•
Y (m+2q+1)[−m− 2q] =⊕

q≥0,−m(am+2q+1)∗CY (m+2q+1)(−m− q)[−m− 2q] =⊕
q≥0,−mRm+2q+1j∗C[−m− 2q]

Here Rlj∗C =
⊕

CYi1

∩
···

∩
Yil

.

In other words,we have

Gr
W (M)
m ψf (C) ≃

⊕
q≥0,−m(am+2q+1)∗CY (m+2q+1)(−m− q)[−m− 2q]

So the term Gr
W (M)
• ψf (C) is the simple complex associated to the following

double complex

(an+1)∗C

(an)∗C

d2

OO

d1 // (an+1)∗C(−1)

· · ·

d2

OO

· · ·

d2

OO

(a2)∗C

d2

OO

d1 // (a3)∗C(−1)
d1 //

d2

OO

· · · d1// (an+1)∗C(−n+ 1)

(a1)∗C

d2

OO

d1 // (a2)∗C(−1)
d1 //

d2

OO

· · · d1// (an)∗C(−n+ 1)

d2

OO

d1 // (an+1)∗C(−n)
Here the differentials d1, d2 are all nulls.
We can show that under certain shifting, the nearby cycle is perverse.

Theorem 4.6. The shifted nearby cycle ψfCX [n] is perverse. Here note that
we have dimX = n+ 1 as denoted as before.

Proof. First we show that Gr
W (M)
m ψf (C)[n] is perverse. With the fact that

Gr
W (M)
m ψf (C)[n] ≃

⊕
q≥0,−m(am+2q+1)∗CY (m+2q+1)[n−m− 2q], we need only

to show that very term (am+2q+1)∗CY (m+2q+1)[n−m− 2q] satisfy the perverse
condition, note that codimYi = 1,so dimY (m+2q+1) = n+1− (m+2q+1) =
n−m−2q. So we need actually to show that CY (m+2q+1)[dimY (m+2q+1)]
is perverse, which is already shown in proposition 2.21. Now the perversity of
ψfCX [n] follows from the following lemma
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Lemma 4.7. For a filtration of A : 0 ⊂ A0 ⊂ A1 ⊂ A2 · ·· ⊂ A with A =
∪

iAi,
if GriAi are perverse, for any i then A is perverse.

Proof. We have the short exact sequence 0 → A0 → A1 → A1/A0 → 0. By the
same argument as in proposition 2.7, we show that for a t-structure (C≤0, C≥0),
if A0, A1/A0 ∈ C≤0 (resp.A0, A1/A0 ∈ C≥0),then A1 ∈ C≤0 (resp.A1 ∈ C≥0).
Then it follows theorem 2.19 that the pair (pD≤0

c (X), pD≥0
c (X) defines a t-

structure on Db
c(X) and Perv(X) is defined to be its intersection. So we get A1

is perverse. Applying the same argument to short exact sequence 0 → A1 →
A2 → A2/A1 → 0, we show A2 is perverse, so for all i ∈ N, Ai is perverse. As
A is the union of all Ai and perversity is a local property, we show that A is
perverse.
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