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Introduction

In this work we are interested in recurrence of vector fields on surfaces. From
the Poincaré-Bendixson theorem the dynamics of vector fields on the sphere
is clear: the ω-limit of every point is equal to a point or to a closed orbit.
On the torus T 2 this situation is more interesting. If a vector field on T 2 has
periodic not contractible orbits then there are again no non-trivial recurrent
orbits, because then the situation reduces to a planar one.
We are interested in a particular vectorial field X on the torus with the
following properties:

1. X has exactly two singularities, a sink P and a saddle S, both hyper-
bolic;

2. X has not periodic orbits.

Such a vector field on T 2 is called Cherry vector field, Cherry gave in 1938
an example of an analytic vector field on T 2 satisfying these properties.
In particular according to the eigenvalues λ1 > 0 > λ2 of the saddle point S,
we can distinguish three cases:

• the non-dissipative case if |λ2| < λ1;

• the conservative case if |λ2| = λ1;

• the dissipative case if |λ2| > λ1.

In [11] is treated the non-dissipative case and is proved that if X has positive
divergence at the saddle-point then the union U of the bidimensional invari-
ant manifolds of X is dense on the torus and has total Lebesgue measure.
This result is generalized in [12] for a vector field X on the torus without
closed orbits and that has a finite number of hyperbolic singularities, sinks
and saddles, and positive divergence on the saddle-type singularities. Here is
proved that the union U of the stable manifolds of the sinks of X has total
Lebesgue measure and that the Hausdorff dimension of S1 \ U is zero.
The conservative is treated in [16] where is proved that the union U of the
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bidimensional invariant manifolds of a Cherry field X is dense on the torus
and that the Lebesgue measure and the Hausdorff dimension of S1\U is zero.
We are interested instead in the dissipative case.
It is not difficult to obtain for a Cherry vector field a C∞ curve Σ ∼= S1 on T 2

which does not bound a disk and is everywhere transversal to X. We define
a continuous map f : Σ→ Σ putting f(x) as the first return of x to Σ by the
flow of X if it exists and is constant on the interval where it is not defined.
In [4] is proved that the non-wandering set K of f (that using the notation
above is exactly K = S1 \ U) has zero Lebesgue mesure and if the rotation
number is of bounded type (i.e.qn/qn−1 are uniformely bounded) then the
Hausdorff dimension of K is strictly less than 1.
Theorem 3.0.3 is the central theorem of this paper. In the case when f has
the golden mean rotation number, we prove that the Hausdorff dimension of
K is strictly greater than zero.
An application of this result is Theorem 4.4.3 which states that the quasi-
minimal set of X has Hausdorff dimension strictly grater than 1 and conse-
quently the vector field X has an infinite number of quasi-periodic orbits.
Follows the main idea of the proof of Theorem 3.0.3 which is shown for a
larger class of monotone maps f : S1 → S1, to which the return map con-
structed above belongs and whose properties are listed in Section 1.5.
The properties of f are studied by analysing the geometry of the partitions
of the circle generated, for every n, by a certain number of preimages of the
interval where f is constant, together with all holes (gaps) between two suc-
cessive preimages.
We have proved that, for every n, the adjacent gaps of the nth dynamic par-
tition are comparable and this allowed us to construct a probability measure
ν on the non-wandering set K with the property that, for whatever interval
I, ν (I) ≤ C |I|α, where C > 0 and 0 < α < 1 are constant.
This establishes the theorem.
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Chapter 1

Preliminaries

1.1 Basic Notations

We consider the circle S1 as the quotient of the real line by the group of
translations by integers: R/Z and we consider the circular ordering on S1.
Let π̃ : R → S1 be the quotient map. In S1 we consider the metric and the
orientation induced from the metric and orientation of the real line via π̃.
If k = (k1, . . . , kn) ∈ Zn we put |k| = supi |ki| and for x ∈ R we put ‖x‖ =
infp∈Z |x+ p| that defines a distance on S1.
We will introduce a simplified notation for backward and forward images of U .
Instead of f i (U) we will simply write i. For example, 0 = U . This convention
will also apply to more complex expressions. For example f−3qn−20 (U), will
be abbrevieted to −3qn − 20.

1.2 Distance between Points-Conventions of

Notation

Denoted by (a, b) = (b, a) the open shortest interval between a and b re-
gardless of the order of these two points. The lenght of that interval in the
natural metric on the circle will be denoted by |a− b|. Let us adopt now the
following conventions of notation:

• |−i| stands for the length of the interval −i.

• Consider a point x and an interval −i not containing it. Then the
distance from x to the closer endpoint of −i will be denoted by |(x,−i)|,
and the distance to the more distant endpoint by |(x,−i]|.
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• We define the distance between the endpoints of two intervals −i and
−j analogously. For example,

∣∣(−i,−j)∣∣ denotes the distance between

the closest endpoints of these two intervals while
∣∣[−i,−j)∣∣ stands for

|−i|+
∣∣(−i,−j)∣∣.

1.3 Uniform Constants

The letter K with subscripts will be reserved for ‘uniform constants’. If we
claim a statement which involves such constants we mean precisely that for
each occurrence of such a constant a positive value can be inserted which will
make the statement true. The choice is uniform in the sense that once f has
been fixed, there is a choice of values which makes the statement true in all
cases covered. The use of the symbol K will be local, in that the same symbol
may signify different uniform constants in different parts of the paper.

1.4 Rotation Number

Proposition 1. Let F,G : R → R be monotonic continuous functions such
that F (x+ 1) = F (x) + 1 and G(x+ 1) = G(x) + 1 for all x ∈ R. Then

1. ρ(F ) = limn→∞
Fn(0)
n

exists and
∣∣∣Fn(0)

n
− ρ(F )

∣∣∣ < 1
n

;

2. limn→∞
Fn(x)−x

n
exists for all x ∈ R and is equal to ρ(F );

3. ρ(F ) = m
n

with m,n ∈ Z, n > 0 if and only if there exists x ∈ R such
that F n(x) = x+m;

4. given ε > 0 there exists δ > 0 such that if ‖F −G‖0 =
= supx∈R |F (x)−G(x)| < δ then |ρ(F )− ρ(G)| < ε;

5. ρ(F + n) = ρ(F ) + n for any integer n.

Proof. Let Mk = maxx∈R(F k(x) − x) and mk = minx∈R(F k(x) − x). We
claim that Mk − mk < 1. In fact, as F (x + 1) = F (x) + 1 we have that
F k(x + 1) = F k(x) + 1. Therefore, ϕ = F k − id is periodic with period
1. Consequently there exist xk, Xk ∈ R with 0 ≤ xk − Xk < 1 such that
ϕ(xk) = mk and ϕ(Xk) = Mk. Since F k is also monotonic nondecresing we
have F k(Xk) ≤ F k(xk). Hence Mk + Xk ≤ mk + xk and so Mk − mk ≤
xk −Xk < 1 which proves our claim.
We are now going to prove that

F k(y)− y − 1 ≤ F k(x)− x ≤ F k(y)− y + 1,∀x, y ∈ R. (1.4.1)
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In fact, F k(y) − y − 1 ≤ Mk − 1 ≤ mk ≤ F k(x) − x ≤ Mk ≤ mk + 1 ≤
F k(y)− y + 1. We next put y = 0 and x = F k(j−1)(0) in (1.4.1) and obtain

F k(0)− 1 ≤ F kj(0)− F k(j−1)(0) ≤ F k(0) + 1.

Thus

n
(
F k(0)− 1

)
=

n∑
j=1

(
F k(0)− 1

)
≤

n∑
j=1

(
F kj(0)− F k(j−1)(0)

)
≤

≤ n
(
F k(0) + 1

)
.

From this we deduce that

nF k(0)− n ≤ F kn(0) ≤ nF k(0) + n.

We now divide by kn to obtain

F k(0)

k
− 1

k
≤ F kn(0)

kn
≤ F k(0)

k
+

1

k

or ∣∣∣∣F kn(0)

kn
− F k(0)

k

∣∣∣∣ ≤ 1

k
. (1.4.2)

Similarly ∣∣∣∣F kn(0)

kn
− F n(0)

n

∣∣∣∣ ≤ 1

n
.

The sequence Fk(0)
k

is a Cauchy sequence because
∣∣∣Fk(0)

k
− Fn(0)

n

∣∣∣ ≤ 1
k

+ 1
n

and

so it converges to some limit ρ(F ). By letting n tend to ∞ in (1.4.2) we see

that
∣∣∣ρ(f)− Fk(0)

k

∣∣∣ ≤ 1
k

which proves (1).

By putting y = 0 in (1.4.1) we obtain F k(0)− 1 ≤ F k(0) + 1.
Thus

F k(0)

k
− 1

k
≤ F k(x)− x

k
≤ F k(0)

k
+

1

k
.

This shows that Fk(x)−x
k

converges to ρ(f) and proves (2).
To prove (3) suppose that there exists x, a real number, such that F n(x) =
x+m with m,n ∈ Z, n grater than zero. It follows easily by induction that

F kn(x) = x+ km. Then ρ(f) = limk→∞
Fkn(x)−x

kn
= m

n
.

Now, for the other implication, let ρ(f) = m
n

and suppose that the thesis
is false; thus F n(x) − x > m or F n(x) − x < m for every x in R. For
the first inequality, as F n − id is periodic, there exists a > 0 such that
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F n(x) − x ≥ m + a, thus F kn(x) − x ≥ km + ka and so ρ(f) is greater
than m+a

n
which is a contradiction. The same argument proves the falsity of

inequality in the other direction.
To prove (4) we remark that

|ρ(F )− ρ(G)| ≤
∣∣∣∣ρ(G)− Gk(0)

k

∣∣∣∣+

∣∣∣∣Gk(0)

k
− F k(0)

k

∣∣∣∣+

∣∣∣∣F k(0)

k
− ρ(F )

∣∣∣∣ ≤
≤ 1

k
+

1

k

∣∣Gk(0)− F k(0)
∣∣+

1

k
.

Fix an integer k such that 2
k

is less than ε
2

and choose δ > 0 such that∣∣Gk(0)− F k(0)
∣∣ < kε

2
if ‖G− F‖0 < δ. In conclusion, |ρ(F )− ρ(G)| is less

than ε if ‖G− F‖0 is less than δ.

It remains to prove the last point. By induction we have that (F + n)k (x) =
F k(x) + kn; thus

ρ(F + n) = lim
k→∞

(F + n)k (0)

k
= lim

k→∞

F k(0) + kn

k
= ρ(F ) + n.

The previous proposition allows us to introduce the rotation number for
degree 1 monotonic endomorphisms of the circle. An endomorphism f : S1 →
S1 is monotonic and has degree 1 if and only if it has a lift F : R→ R which
is a continuous monotonic function satisfying F (x + 1) = F (x) + 1. We the
define the rotation number of f as ρ(f) = π̃ρ(F ) where π̃ is the quotient
map. This definition does not depend on the choice of the lift F because of
Proposition 1(5).
In the discussion that follows in this work, it will often be convenient to
identify f and F and subsets of S1 with corresponding subsets of R. The
dynamics of f is most interesting when the rotation number is irrational.

1.5 Almost Smooth Maps with a Flat Inter-

val

We consider the class of continuous circle endomorphisms f of degree one for
which an arc U exists so that the following properties hold:

1. The image of U is one point.
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2. The restriction of f to S1 \ U is a C3-diffeomorphism onto its image.

3. Let (a, b) be a preimage of U under the projection of the real line of
S1. On same right-side neighdorhood of b, f can be represented as

hr

(
(x− b)lr

)
for lr ≥ 1, where hr is a C3-diffeomorphism on a two-side neighdorhood
of b. Analogously, on a left-sided neighdorhood of a, f is

hl

(
(a− x)ll

)
.

The ordered pair (ll, lr) will be called the critical exponent of the map. If
ll = lr the map will be referred to as symmetric.
In the future, we will deal exclusively with symmetric maps with critical
exponent l strictly greater than 1, and we will assume that hr(x) = hl(x) = x.
Also, we permanently assume that the rotation number is irrational and of
bounded type (i.e. if qn \ qn−1 are uniformly bounded). As in [2] is easy to
see that the non-wandering set of f is S1 \

⋃∞
i=0 f

−i(U).

1.6 The Croos-Ratio Inequality

If a < b < c < d, then define their croos− ratio Cr by

Cr(a, b, c, d) :=
|b− a| |d− c|
|c− a| |d− b|

.

Consider a chain of quadruples

{ai, bi, ci, di} i = 0, . . . , n

such that each is mapped onto the next by the map f . If the following
conditions hold:

1. Each point of the circle belongs to at most k of the intervals (ai, di).

2. Intervals (bi, ci) do not intersect 0.

Then

log
Cr(an, bn, cn, dn)

Cr(a0, b0, c0, d0)
≤ K[k],
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where the constant K[k] does not depend on the set of quadruples. In order
to avoid both ambiguities in notation and long and unreadable formulas
while discussing croos-ratio, we adopt the following notation to describe the
quadruples used:

{(a, b) , (c, d)} := {a, b, c, d} .

For example, if −i = (a, b) and −j = (c, d) we will write Cr(−i,−j) in place
of Cr(a, b, c, d).

1.7 The Koebe principle

Definition 1.7.1. Suppose that I is a compact interval and J is an open
interval such that J ⊂ I. We define ν (J, I) := |J |

dist(J,∂I)
.

Proposition 2. (the Koebe principle) Let I be a compact interval and f :
I → I be a C2 map with all critical points C2 nonflat. Then there exists a
gauge function σ with the following property. If J ⊂ T are open intervals
and n ∈ N is such that fn is a diffeomorphism on T then, for every x, y ∈ J ,
we have

(fn)′ (x)

(fn)′ (y)
≥ exp−σ(maxn−1

i=0 |f i(T )|)∑n−1
i=0 |f i(J)|

(1 + ν (fn(J), fn(T )))2 .

The proof of the Koebe principle can be found in [5].

1.8 Carathéodory’s extension theorem

Definition 1.8.1. For a given set Ω we define a ring R as a subset of the
power set of Ω which has the following properties:

• ∅ ∈ R.

• For all A,B ∈ R, we have A ∪B ∈ R (closed under pairwise unions).

• For all A,B ∈ R, we have A \ B ∈ R (closed under relative comple-
ments).

Theorem 1.8.2. (Carathéodory’s extension theorem) Let R be a ring on Ω
and µ : R → [0,+∞] be a measure; then there exists a measure ν : σ(R) →
[0,+∞] such that ν is an extension of µ. (That is ν|R = µ ). Here σ(R) is
the σ-algebra generated by R.

If µ is σ-finite then the extension ν is unique (and also σ-finite).
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1.9 Golden ratio

Definition 1.9.1. Two quantities are in the golden ratio if the ratio of the
sum of the quantities to the larger quantity is equal to the ratio of the larger
quantity to the smaller one.

The golden ratio is often denoted by the Greek letter ϕ. Other names
frequently used for the golden ratio are the golden section and golden mean.

Proposition 3. The golden ratio is an irrational mathematical constant,
approximately 1.6180339887.

Proof. By the definition we have that

a+ b

a
=
a

b
= ϕ.

The right equation shows that a = bϕ, which can be substituted in the left
part, giving

bϕ+ b

bϕ
=
bϕ

b
.

Dividing out b yields
ϕ+ 1

ϕ
= ϕ.

Multiplying both sides by ϕ and rearranging terms leads to:

ϕ2 − ϕ− 1 = 0.

The only positive solution to this quadratic equation is

ϕ =
1 +
√

5

2
≈ 1.6180339887 . . .

Remark 1.9.2. The formula ϕ = 1 + 1
ϕ

, deduced from the previous demon-
stration, can be expanded recursively to obtain a continued fraction for the
golden ratio:

ϕ =
1

1 + 1
1+ 1
···

.
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Chapter 2

Geometric Bounds

2.1 Continued fractions and dynamics

2.1.1 Continued fraction

The rotation number ρ(f), that we let ρ, can be written as an infinite con-
tinued fraction as follow.
Let G : [0, 1]→ [0, 1] be a function defined by

G(x) =
1

x
−
[

1

x

]
=

1

x
mod1if x 6= 0,

G(0) = 0.

Since ρ ∈ [0, 1], the continued fraction expansion back to consider the se-
quence (Gn(ρ)) of iterates n-th of G.
We set:

a (x) =

{ [
1
x

]
if x 6= 0

∞ if x = 0

If ρ ∈ [0, 1] \Q we have that, for all n, Gn (ρ) is different to 0; then we set

a0 = [ρ] = 0

an = a
(
Gn−1 (ρ)

)
if n ≥ 1.

Finally we have that

ρ = [a0, a1, a2, . . .] =
1

a1 + 1
a2+ 1

···

where the ai are positive integers greater than 1 and are called the partial
quotients of ρ.
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2.1.2 The reduced

If ρ = [a0, a1, a2, . . .], the reduced of ρ are the rationals

pn
qn

= [a0, a1, . . . , an] =
1

a1 + 1
a2+ 1

...+ 1
an

.

For example:
p0

q0

=
a0

1
and

p1

q1

=
a0a1 + 1

a1

.

The qn are called the denominators of reduced (qn ≥ 1, qn ∈ N) and they
verify, together with the pn, the following relations:{

pn = anpn−1 + pn−2 for n ≥ 2,p0 = a0,p1 = a0a1 + 1
qn = anqn−1 + qn−2 for n ≥ 2,q0 = 1,q1 = a1

So, we have by induction the Lagrange’s relation : qnpn−1 − pnqn−1 = (−1)n

that tells us that pn and qn are relatively prime.

Lemma 2.1.1. If n ≥ 1 then qn+1 > qn (q1 ≥ q0 = 1) and if n ≥ 2 then
qn ≥ 2

n
2 .

Proof. The first inequality is clear. For the second it suffices to note that
qn ≥ 2qn−2 and that q3 ≥ 3 ≥ 2

3
2 ; the lemma follows easily by induction.

2.1.3 The reduced and estimates by the rationals

If n ≥ 1 and t ≥ 0, by induction we have that

[a0, a1, . . . , an + t] =
pn + tpn−1

qn + tqn−1

.

Now, since
ρ = [a0, a1, . . . , an +Gn(ρ)]

then

ρ =
pn +Gn(ρ)pn−1

qn +Gn(ρ)qn−1

.

By the previous equality and by the Lagrange’s relation we have that

ρ− pn
qn

=
(−1)n

qn

(
1

Gn(ρ)
qn + qn−1

) .
14



Observing that

an+1 ≤
1

Gn(ρ)
≤ an+1 + 1

we have finally the following inequalities:

(−1)n
(
ρ− pn

qn

)
> 0,

1

qn (qn + qn+1)
≤
∣∣∣∣ρ− pn

qn

∣∣∣∣ ≤ 1

qnqn+1

<
1

qn2
.

Then, we can determine a family of solutions p
q
∈ Q (q ≥ 1, (p, q) = 1) of

the inequality
∣∣∣ρ− pn

qn

∣∣∣ < 1
qn2 ; each element of this family is called rational

approximation of ρ. Recalling that qn+1 = an+1qn + qn−1 we can write the
previous inequality as

1

(an+1 + 2) qn2
<

∣∣∣∣ρ− pn
qn

∣∣∣∣ < 1

an+1qn2
.

Proposition 4. Let ρ be an irrational number and let (qn)n∈N be the series
of the denominators of its reduced; if q is an integer such that |q| > 0 and
|q| < qn+1, then ‖qρ‖ ≥ ‖qnρ‖. Vice versa the qn are defined as: q0 = 1,
q1 = a1 and if n ≥ 1, qn+1 is the smallest strictly positive integer such that
‖qn+1ρ‖ ≤ ‖qnρ‖ (attention if a1 = 1, ‖q0ρ‖ = ‖q1ρ‖).

For the demonstration, see [8].

Proposition 5. If n ≥ 1, |qnρ− pn| = ‖qnρ‖ and if n ≥ 3 ‖qn−2ρ‖ =
an ‖qn−1ρ‖+ ‖qnρ‖.
Proof. If n ≥ 2, from the relations that pn and qn occur, it follows that

|qn−2ρ− pn−2| = an |qn−1ρ− pn−1|+ |qnρ− pn| .

Now, since (−1)n (qnρ− pn) > 0 and since |qnρ− pn| < 1
qn+1

then |qnρ− pn| <
|qn−1ρ− pn−1| and if n ≥ 1 |qnρ− pn| = ‖qnρ‖ ≤ 1

2
. So, if n ≥ 3 the last two

inequalities allow us to write the first relation as,

‖qn−2ρ‖ = an ‖qn−1ρ‖+ ‖qnρ‖ .

We observe that, by the results |qn−2ρ− pn−2| = an |qn−1ρ− pn−1| +
|qnρ− pn| and |qnρ− pn| < |qn−1ρ− pn−1| found in the previous demonstra-
tion, if n ≥ 2 we have that

2 <
|qn−2ρ− pn−2|
|qnρ− pn|

< (an + 1) (an+1 + 1) . (2.1.2)
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2.1.4 The order of points nρ on S1

Proposition 6. qnρ approach the origin from the right for n even, and from
the left for n odd.

Proof. Let n even ; we can write

ρ =
1

a1 + 1
a2+ 1

...+ 1

an+ 1
x

and clearly

an +
1

x
> an.

Since, if we take the inverses of both sides an even number of times, the
inequality still holds, we have that

ρ >
1

a1 + 1
a2+ 1

...+ 1
an

=
pn
qn
≥ 1

qn
.

By the same arguments we calculate the position of qnρ for n odd.

Proposition 7. If n ≥ 2, then the intervals (0, qnρ) and Rqnρ (0, qnρ) =
(qnρ, 2qnρ) are disjoint and we have that (0, qnρ] ⊂ (0, qn−2ρ) and [qnρ, 2qnρ] ⊂
(0, qn−2ρ). The points are in the same order as in the figure

|

R

  | | |

0 qnρ 2qnρ qn−2ρ n even

| | | |

qn−2ρ 2qnρ qnρ 0 n odd

16



Proof. By the Proposition 5 and by the inequality 2.1.2 we have that

|qn−2ρ− pn−2| = an |qn−1ρ− pn−1|+ |qn−2ρ− pn| > 2 |qn−2ρ− pn|

and also
|qn−2ρ− pn−2| > 2 |qn−2ρ− pn| .

Follows the proposition.

Proposition 8. Let j be an integer between 0 and qn+1−1, then the intervals
{Rjρ (0, qnρ)}≤j<qn+1

are mutually disjoint.

Proof. We suppose that qn+1 > 1, otherwise there is nothing to demonstrate
and we suppose, by contradiction that the intervals aren’t mutually disjoint;
then there exists an integer k ∈ [0, qn+1[ such that:

kρ ∈]jρ, jρ+ qnρ[ (mod1).

| | | |

jρ kρ jρ+ qnρ kρ+ qnρ n even

Since Rρ is an isometry, it preserves the order on S1, (k − j) ρ ∈ (0, qnρ)
(mod 1) then 0 < ‖(k − j) ρ‖ < ‖qnρ‖; and yet ‖(k − j) ρ‖ = ‖|k − j| ρ‖
and 0 < |k − j| < qn+1 and this is contrary to 4. The proposition follows by
contradiction.

For more details we send back the reader to [14].

Remark 2.1.3. We suppose qn+1 > 1 then the intervals modulo 1:

{Rjρ (0, qnρ)}0≤j≤qn+1−1 and {Rjρ (0, qn+1ρ)}0≤j<qn−1

cover S1 and more they are mutually disjoint.

2.2 Scaling near Critical point

We define a sequence of scalings

τn :=

∣∣0, qn∣∣∣∣∣0, qn−2

∣∣∣ .
17



This quantities measure ‘the geometry’ in the proximity of the critical point.
When τn → ∞ we say that the geometry of the mapping is ‘degenerate’.
When tn is bounded away from zero we say that the geometry is ‘bounded’.
‘Universal geometry’ is said to occur when the sequence τn converges.
All results that follow are valid in the case of the geometry ‘bounded’.

2.3 Continued fraction and partitions

By the Poincaré Theorem, because f is order-preserving and has no periodic
points, there exists an order-preserving and continuous map h : S1 → S1 such
that h ◦ f = Rρ ◦ h, where ρ is the rotation number of f and Rρ is the rigid
rotation over ρ. In particular, the order of points in an orbit of f is the same
as the order of points in an orbit of Rρ; therefore, results about Rρ, can be
translated into results about f , via the semiconjugacy h.
Then, using the results obtained in the previous subsection we can create the
following two partitions of S1 so that to study the properties of f analyzing
the geometry of them.
For the first one, we use the orbit of 0 for 0 ≤ i ≤ qn+1 + qn−1 together with
open arcs lying between successive points of the orbit. We have so servant
a partition of the circle referred to as the nthr dynamic partition Pn whose
intervalli consist of two types:

• The set of ‘long’ intervals consists, for n even, of the interval between
0 and qn along with its forward images

An :=
{

(i, qn + i) : 1 ≤ i ≤ qn+1 − 1
}

;

or, for n odd, it consists of the interval between qn and 0 along with its
forward images

An :=
{

(qn + i, i) : 1 ≤ i ≤ qn+1 − 1
}

;

• The set of ‘short’ intervals, for n even, consists of the interval between
qn+1 and 0 along with its forward images

Bn :=
{

(qn+1 + i, i) : 1 ≤ i ≤ qn − 1
}

or, for n odd, consists of the interval between 0 and qn+1 along with its
forward images

Bn :=
{

(i, qn+1 + i) : 1 ≤ i ≤ qn − 1
}

18



The second ones is generated by the first qn + qn+1 preimages of U end is
denoted P−n It consists of

In := {−i : 0 ≤ i ≤ qn+1 + qn − 1} ,

together with the gaps between these sets.
Also in this case, there are two kinds of gaps:

• The ‘long’ gaps are the interval In0 , which is the interval between −qn
and 0 for n even or the interval between 0 and −qn for n odd, with its
preimages,

Ini := f−i(In0 ), i = 0, 1, . . . qn+1 − 1.

• The ‘short’ gaps are the interval In+1
0 , which is the interval between 0

and −qn+1 for n even or the interval between −qn+1 and 0for n odd,
with its preimages,

In+1
i := f−i(In+1

0 ), i = 0, 1, . . . , qn − 1.

We will briefly explain the structure of the partitions. Take two subsequent
dynamical partitions of order n and n+ 1. The latter is clearly a refinement
of the former. All ‘short’ gaps of P−n become ‘long’ gaps of P−(n+1) while
all ‘long’ gaps of In split into an+2 preimages of U and an+2 ‘long’ gaps and
one ‘short’ gap of the next partition In+1:

Ini =

an+2⋃
j=1

f−i−qn−jqn+1(U) ∪
an+2−1⋃
j=0

In+1
i+qn+jqn+1

∪ In+2
i .

Several of the proofs in the following will depend strongly on the relative
positions of the points and intervals of Pn and P−n. In reading the proofs
the reader is advised to keep the following pictures in mind, which show some
of these objects near the flat interval 0.

−qn−2

��

−qn + (an−1 − 1)qn−1

��
− • − ... •

an−1qn−1

OO

2qn−1

OO

19



−qn + qn−1

��

−qn

��

0

��

−qn−1

��
− • − − • −

qn−1

OO

qn

OO

In the next picture we have enlarged the right-hand part of this picture to
show the location of the points qn, 2qn and 3qn for the case n even and an = 1.

0

��

−qn−1

��
− • − • •

qn

OO

2qn

OO

3qn

OO

Fact 2.3.1. Let three points with y between x and z be arranged so that, of the
three, the point x is the closest to the flat interval. If f is a diffeomorphism
on (x, z), the following inequality holds:

|f(z)− f(y)|
|f(z)− f(x)|

≤ K
|y − z|
|z − x|

,

where K is a uniform constant.

Lemma 2.3.2. The ratio ∣∣(qn, 3qn)
∣∣∣∣(0, qn)
∣∣

is uniformly bounded away from zero.

Proof. Let J be the shortest arc belonging to the set An. If J coincides with
the interval between qn and 0, then∣∣(0, qn)

∣∣ ≤ ∣∣(qn, 2qn)
∣∣+
∣∣(2qn, 3qn)

∣∣ ≤ 2
∣∣(qn, 3qn)

∣∣
end the ratio is larger than 1

2
; so we assume that one of the other elements

of An is shorter.
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Let J be the ith iterate of (qn + 1, 1). We observe that the ith image of
each of the intervals (qn + 1, 3qn + 1) and (qn+1 − qn + 1, 1) covers an interval
belonging to An and this images lie on different sides of J . Therefore, by the
choice of J , we conclude that the croos-ratio

Cr(qn+1 − qn + 1 + i, 1 + i, qn + 1 + i, 3qn + 1 + i) ≥ 1

4
.

Since all intermediate images of (qn+1 − qn + 1, 3qn + 1) cover the circle at
most three times, we can use the croos-ratio inequality and we have that the
croos-ratio Cr of the initial quadruple is greater than a uniform constant K.
Thus, by this argument and by the Fact 2.3.1 we can conclude that

K ≤ Cr(qn+1 − qn + 1, 1, qn + 1, 3qn + 1) ≤
∣∣(qn + 1, 3qn + 1)

∣∣∣∣(1, 3qn + 1)
∣∣ ≤

≤ K1

∣∣(qn, 3qn)
∣∣∣∣(0, 3qn)
∣∣ ≤

∣∣(qn, 3qn)
∣∣∣∣(0, qn)
∣∣ .

Proposition 9. The sequence
∣∣(0, qn)

∣∣ tends to zero at least exponentially
fast.

Proof. Lemma 2.3.2 implies that there is a constant K < 1 so that∣∣(0, qn)
∣∣ ≤ K

∣∣(0, 3qn)
∣∣ .

But 3qn lies between 0 and qn−4. Thus∣∣(0, qn)
∣∣ ≤ K

∣∣∣(0, qn−4)
∣∣∣ .

Proposition 10. Let A ∈ In be a preimage of U and B one of the gaps
adjacent to A, then there exists a constant C such that, for every n ∈ N,
|A|
|B| ≥ C.

Proof. Let −i and −j be successive members of Ini . In order to apply the
croos-ratio inequality we consider the endpoints of these two intervals and
their iterate by f until one of the intervals −i and −j is mapped to 0. By
the cross-ratio inequality and by Fact 2.3.1 we have that

Cr(−i,−j) ≥ K1
|−ε|
|[−ε, 0)|

≥ K2
|−ε+ 1|
|[−ε+ 1, 1)|

,
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where ε is equal to either qn or qn+1 and K1 and K2 are uniform constants.
We now take the quadruple consisting of the endpoints of −ε+ 1 along with
1 and 2ε+ 1 and we iterate this quadruple ε − 1 times. If we drop one of
the factors in the initial croos-ration Cr we obtain that the last term of the
previous inequality is larger than

K3
|(ε, 3ε)|
|(0, 3ε)|

,

which is, by Lemma 2.3.2 greater than a uniform constant. Combining all the
above inequalities we finally get that the croos-ratio Cr(−i,−j) is greater
than a uniform constant which means in particular that the same holds for
each of the two factors

|−i|∣∣[−i,−j)∣∣ ,
∣∣−j∣∣∣∣(−i,−j]∣∣ .

This establishes the proposition.

Corollary 2.3.3. Let τn =
|(0,qn)|
|(0,qn−2)| , then the sequence {τ}∞n=1 is bounded

away from 1.

Proof. To derive the corollary, it is enough to notice that 0, −qn−1 and
−qn−1 + qn−2 are adjacent elements of In−2 and that qn and qn−2 each lie
in one of the gaps between them.

Corollary 2.3.4. The lengths of the gaps of the dynamic partition P−n tend
to zero at least exponentially fast with n.

Theorem 2.3.5. For any f with the critical exponent (l, l), l > 1, the set
S1 \

⋃∞
i=0 f

−1 (U) has zero Lebesgue measure. Moreover, if the rotation num-
ber is of bounded type (i.e. qn/qn−1 are uniformly bounded), the Hausdorff
dimension of the non-wandering set is strictly than 1.

Proof. By Proposition 10 the complement of all preimages of U does not
contain any density point with respect to the Lebesgue measure. Hence,
by the Lebesgue Density Lemma the set of non-wandering points is of zero
Lebesgue measure.
The claim concerning the Hausdorff dimension requires a longer argument.
Suppose that the rotation number is of bounded type. Take the nth partition
P−n. The elements of P−(n+1) subdivide the gaps of P−n in the following
way:

Ini ⊂
an+2−1⋃
j=0

In+1
i+qn+jqn+1

∪ In+2
i .
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We pick α so that 0 < α < 1 and estimate∑(
|Ini |

α +
∣∣In+1
i

∣∣α) , (2.3.6)

where
∑

denotes the sum over all gaps of the nth partition P−n. By Propo-
sition 10 it follows that there is a constant β < 1 so that

an+2−1∑
j=0

∣∣∣In+1
i+qn+jqn+1

∣∣∣ ≤ β |Ini |

holds for all ‘long’ gaps In+1
i+qn+jqn+1

of the nth partition. In particular it means
that the gaps of P−n decrease uniformly and exponentially fast to zero while
n tends to infinity. We use concavity of the function xα to obtain that

an+2−1∑
j=0

∣∣∣In+1
i+qn+jqn+1

∣∣∣α ≤ |an+2|1−α βα |Ini |
α ≤ |Ini |

α

if α is close to 1. Hence 2.3.6 is a decreasing function of n. Consequently,
the sum is bounded above. The only remaining point is to prove that for a
given ε the gaps of P−n constitute an ε-cover of the non-wandering set if n
is large enough. But this is so by Corollary 2.3.3. This completes the proof
of the theorem.
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Chapter 3

New Results

Proposition 11. Let f be a map from our class with the golden mean rota-
tion number. Let A ∈ In be a preimage of U and B1 and B2 the two gaps
adjacent to A. If B1 and B2 are contained in a gap of a preceding partition,
then there exists a constant C such that, for every n, |B1|

|A| ≥ C. Similarly,
for B2.

Proof. Let A = −qn + 1 and let B the interval between A and −qn−2 + 1.
We apply the Koebe principle,
for T = [−qn−1 + 1,−qn−2 + 1], J = (−qn−1 + 1,−qn−2 + 1) and the number

the iterates qn−2 − 1. We observe that f qn−2−1 is a diffeomorphism on T.
Then there exists a gauge function σ such that

(f qn−2−1)
′
(x)

(f qn−2−1)′ (y)
≥ e−σ(max

qn−2−2

i=0 |f i(T )|)∑qn−2−2

i=0 |f i(J)|

(1 + ν (f qn−2−1(J), f qn−2−1(T )))2

for every x, y ∈ J .
The intervals f i(T ) i = 0, . . . , qn−2 − 1, are mutually disjoint. Therefore
max

qn−2−2
i=0 |f i(T )| < 1 and

∑qn−2−2
i=0 |f i(J)| < 1; so, the numerator in the

above fraction is greater than a constant. For the denominator we have that

ν
(
f qn−2−1(J), f qn−2−1(T )

)
=

|f qn−2−1(J)|
dist (f qn−2−1(J), ∂f qn−2−1(T ))

=

=

∣∣∣(−qn−3, 0
)∣∣∣

dist
((
−qn−3, 1

)
, ∂
[
−qn−3, 0

]) ≤
∣∣∣(−qn−3, 0

)∣∣∣∣∣∣−qn−3

∣∣∣
which is smaller than a constant by Proposition 10. Combining all the above
results we get that, there exists a constant K such that, for every x, y ∈ J
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and n ∈ N,
(f qn−2−1)

′
(x)

(f qn−2−1)′ (y)
≥ K.

Let A′ = −qn−1 and let B′ be the interval between A′ and 0. By fundamental
theorem of calculus and by Koebe lemma

|B′|
|A′|

=

∫
B

(f qn−2)′ (y) dy∫
A

(f qn−2)′ (x) dx
≤ 1

K

|B|
|A|

.

By the same argument,

|B′|
|A′|

=

∫
B

(f qn−2)′ (y) dy∫
A

(f qn−2)′ (x) dx
≥ K

|B|
|A|

In conclusion, |B||A| is greater than a constant and, since f is of the form xl, we
can say the same thing for the interval −qn and for the gap to it adjacent.
By the similar arguments we can prove the same result for an arbitrary
preimage of U and for a gap adjacent to it, with the same assumptions of
proposition.

Corollary 3.0.1. Two adjacent gaps of the dynamic partition P−n which
are in the same gap of a previous generation are comparable.

Proof. Derived from the previous proposition and from Proposition 10.

Lemma 3.0.2. For every n the two gaps adjacent to interval flat U are
comparable

Proof. We prove the theorem with the help of some graph.
The initial situation is

− − − − −

−qn−1

OO

−qn+1

OO

0

OO

−qn

OO

−qn−2

OO
.

We apply f and we have

− − • − −

−qn−1 + 1

OO

−qn+1 + 1

OO

1

OO

−qn + 1

OO

−qn−2 + 1

OO
.
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After qn − 1 iterate and recalling the position of −qn+1

−qn+1

��
− • − −

−qn−1

OO

qn

OO

0

OO

.

By the Koebe principle, apply for
T = [−qn−1,−qn+1] and J = (−qn−1,−qn+1), there exists a constant K such

that
∣∣∣(−qn−1, qn

)∣∣∣ ≥ K
∣∣∣(qn,−qn+1

)∣∣∣. Since f near to the flat interval is

of the form xl, we obtain that the intervals
(
−qn+1, 0

)
and

(
0,−qn

)
are

comparable.

Proposition 12. Two adjacent gaps of the dynamic partition P−n are com-
parable.

Proof. If the two gaps satisfy the hypotheses of Corollary 3.0.1 or of Lemma
3.0.2 the proposition is proved. Otherwise, if the preimage −i is great, the
situation is as follows:

− − −

−i− qn+1

OO

−i

OO

−i− qn

OO
.

Then we apply the principle of Koebe for

T =
[
−i− qn+1,−i− qn

]
, J =

(
−i− qn+1,−i− qn

)
and n = i and we re-

turn in the case of Lemma 3.0.2.
If −i is small, the situation is as follows:

− − −

−i+ qn

OO

−i

OO

−i+ qn+1

OO
.

Then we apply the principle of Koebe for

T =
[
−i+ qn,−i+ qn+1

]
, J =

(
−i+ qn,−i+ qn+1

)
and n = i − qn+1 and

we return in the case of Corollary 3.0.1.
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Theorem 3.0.3. For a map f from our class with the golden mean rotation
number, the Hausdorff dimension of the set K = S1 \

⋃∞
i=0 f

−i(U) is strictly
greater than 0.

Proof. We define a probability measure ν on K as follows.
We suppose to have built a probability measure µ on An, the algebra gener-
ated by the set of all gaps belonging to the nth partition P−n and from this,
we define µ on An+1.
We recall that the short gaps of the nth partition are the long gaps of P−(n+1);
then for this gaps µ has already been defined.
For the long gap, since Ini = f−i−qn−qn+1(U)∪ In+1

i+qn
∪ In+2

i , we set µ(In+1
i+qn

) =
µ(Ini )

2
and µ(In+2

i ) =
µ(Ini )

2
. In this way we have constructed a probability

measure µ on the ring generated by
⋃∞
n=1An.

Then by Carathéodory’s extension theorem, there exists a measure ν on
σ(A1, A2, ..) that is an extension of µ and which is clearly the measure sought.
Now, by definition of µ it is easy to deduce that µ (Ini ) ≤ 1

2
n
2

. By the previous

Proposition and by Corollary 2.3.4 all gaps satisfy λn1 ≤ |Ini | ≤ λn2 , where λ1

and λ2 are constants. Then, assuming that λ1 is less then 1√
2

(this is not
restrictive because, if λ1 is not less then this quantity, then we can replace it
by a smaller λ1) we can pick α = logλ1

1√
2

and we have that

ν (Ini ) ≤ |Ini |
α

Let I be an arbitrary interval and let In+1
i be the gap with the smallest

n that is contained in I; then I is covered by at most two gaps of the nth

partition Inj and Inj′ and by preimages of U (which are of µ-measure zero).
So, we can deduce that

ν (I) ≤ ν
(
Inj
)

+ ν
(
Inj′
)
≤ Cν

(
Inj
)
≤ C ′ν

(
In+1
i

)
≤ C ′

∣∣In+1
i

∣∣α ≤ C ′ |I|α

where both the second and the third inequalities follows by the fact that all
the gaps have comparable measures.
Finally, let K an ε-cover of K and let 0 < α < 1 as above, then combining
all the than previous results we have that∑

I∈K

|I|α ≥ 1

C ′

∑
I∈K

ν (I) ≥ 1

C ′
ν (K) > 0.

This establishes the theorem.
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Chapter 4

Applications: Cherry Flows

4.1 Limit set

Denote the flow of a vector field X through x by t → Xt(x). The α and ω
limit set of x are defined as

α(x) = {y;∃tn →∞ with X−tn → y} ,

respectively
ω(x) = {y;∃tn →∞ with Xtn → y} .

We say that x is recurrent if x ∈ α(x) ∪ ω(x).

4.2 Cherry Flows

Let π : R2 → T 2 be the covering map; thus π is a C∞ local diffeomorphism,
π(x, y) = π(x′, y′) if and only if x−x′ ∈ Z and y−y′ ∈ Z and π([0, 1]×[0, 1]) =
T 2.
If X is a C∞ vector field on the torus, we can define a C∞ field Y = π∗X
on R2 by the expression Y (z) = (dπz)

−1X(π(z)). Clearly the field Y defined
like this satisfies the condition

Y (x+ n, y +m) = Y (x, y),∀(x, y) ∈ R2,∀(n,m) ∈ Z2.

Conversely, if Y is a C∞ vector field on the plane satisfying the previous
condition, then there exists a unique C∞ field X on the torus such that
Y = π∗X.
We can thus identify the vector fields on the torus with the vector fields on
R2 satisfying the previous condition.
Let C be the set of vector fields Y ∈ Y∞(R2) satisfying the following condi-
tion:
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1. Y (x+ n, y +m) = Y (x, y),∀(x, y) ∈ R2,∀(n,m) ∈ Z2;

2. Y is transversal to the straight line 0×R and has only two singularities
p, s in the rectangle [0, 1]× [0, 1] where p is a sink and s a saddle, both
hyperbolic;

3. there exist a, b ∈ R with a < b < a+ 1 such that, if y ∈ (b, a+ 1) then
the positive orbit of Y through the point (0, y) intersects the line 1×R
in the point (1, c) while, if y ∈ (a, b) the positive orbit through (0, y)
goes directly to the sink without cutting 1× R;

Proposition 13. C is nonempty.

Proof. Consider the vector field Y (x, y) =
(
2x
(
x+ 2

3

)
,−y

)
. The nonwan-

dering set of Y consists of two singularities, a saddle (0, 0) and a sink
(
−2

3
, 0
)
.

It is easy to check that Y is transversal to the unit circle at all points of the
arc C =

{
(x, y) ;x2 + y2 = 1, x ≤ 1

2

}
. Let

Z (x, y) =

(
ϕ(x, y)

(
2x2 +

4

3
x

)
+ (1− ϕ (x, y))

(
x2 + 1

)
,−y

)
where ϕ is a C∞ function such that ϕ (R2) ⊂ [0, 1], ϕ (x, y) = 1 if x > 1

2
or if

(x, y) ∈ U , ϕ (x, y) = 0 if x < 1
4

and (x, y) ∈ R2 \V . Here U and V are small

neighbourhoods of C with U ⊂ V . If V is sufficiently small, the nonwandering
set of Z is empty. Take T > 0 such that Zt(C) ⊂ {(x, y) ;x > 1} for all t ≥ T .
Using the flow of Z we can define a diffeomorphism H : (0, 1)×(0, 1)→ W ⊂
R2 by H (x, y) = ZxT (h (y)) where h : [0, 1] → C is a diffeomorphism. If
z ∈ (0, 1)× (0, 1) we define X (z) = dH−1 (H (z) · Y (H (z))). As Z = Y in a
neighbourhood of C and in

{
(x, y) ;x > 1

2

}
we have X (z) = (1, 0) if z belongs

to a small neighbourhood of the boundary of the rectangle [0, 1] × [0, 1].
We can now extend X to R2 by defining X (z) = (1, 0) if z belongs to
the boundary of [0, 1] × [0, 1] and X (x+ n, y +m) = X (x, y) if (x, y) ∈
[0, 1] × [0, 1] and (n,m) ∈ Z2. One checks immediately that X satisfies
conditions (1)-(3).

Let us denote by X the vector field on the torus induced by Y ∈ C, that is
Y = π∗X. Then X has the following properties:

1. X has exactly two singularities, a sink P and a saddle S, both hyper-
bolic;

2. X has not periodic orbits.

We shall call a vector field which satisfies proprieties (1)−(2) a Cherry vector
field.
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4.3 Properties of Cherry flows

Let B be the class of Cherry vector fields X on T 2. We will denote the flow
through a point x by t → Xt(x) and by Sing(X) the set of singularities of
X.
We denote by W s(S) the set of points in T 2 that have S as ω-limit (it is
called the stable manifold of S) and by W u(S) the set of points that have S
as α-limit (it is called the unstable manifold of S).

4.3.1 Poincaré Section

Proposition 14. Let X ∈ B. Then there exists a closed C∞ curve Σ on
T 2 \ Sing(X) without self-intersections and with the following properties
(a) Σ is everywhere transversal to X;
(b) Σ is not retractable to a point.

Proof. It is enough to show that there exists a recurrent orbit γ which is
non-trivial (i.e. not equal to a point or a closed curve), see for example page
144 of [13]. Let us call a stable separatrix a component of W s(S)\S where S
is the saddle-point. Let γ be a stable separatrix of S; because of the Denjoy-
Schwartz theorem the α-limit set of γ, α(γ), must contain S then it must
contain also γ. Hence γ is a non-trivial recurrent orbit and as we remarked
above this implies the existence of a transversal circle.

The closed curve Σ built above defines a section on the torus called
Poincaré section.

4.3.2 Transition map

Let X ∈ B and let Σ be the closed transversal to X on T 2 from the propo-
sition of the previous subsection. Notice that T 2 \Σ is an annulus Σ× (0, 1)
and we can write T 2 ∼= Σ× [0, 1] / ∼, where (s, 0) ∼ (s, 1). Consider X as a
flow on T 2 ∼= Σ× [0, 1] where we identify Σ× {0} and Σ× {1}.
Since X has no sources it follows that
(c) for every x ∈ Σ × {0} which is not contained in the stable manifold of
the saddle or of the sink, there exists a t > 0 such that Xt(x) ∈ Σ× {1};
(d) there exists at least one x ∈ Σ×{0} such that Xt(x) ∈ Σ×{1} for some
t > 0.
Now let Σ and Σ′ be two closed curves transversal to X. We denote the
points x ∈ Σ such that there exists t > 0 with Xt(x) ∈ Σ′ for some t > 0
by Σ0. For x ∈ Σ0, let t(x) be the minimal t > 0 such that Xt(x) ∈ Σ′ and
we define the map f : Σ0 → Σ′ by f(x) = Xt(x)(x). This map is called the
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transition map between Σ and Σ′.
Now let Σ′ = Σ be the section from Proposition 14 and take the transition
f from Σ to Σ. This map is called the return-map to Σ.
By Tubular Flow Theorem f is a C∞ diffeomorphism and since orbits of
X cannot intersect, f is order preserving. Let U be (Σ \ Σ0) × {0}. Take
x ∈ ∂U . Since the basin of the sink is open, x must be contained in the stable
manifold of the saddle-point S; then W u(S) intersects Σ×{1} in some point
v and for every point u ∈ (Σ \ I) × {0}, near ∂U there exists t > 0 such
that Xt(u) intersects Σ × {1} near v. (This can be seen by considering the
backward orbits of X| (Σ× [0, 1]) of points in Σ × {1} near v intersecting
Σ × {0}. This set consists of a neighbourhood of ∂U in Σ.) In particular
limx→∂U,x/∈U f(x) consists of one single point and we can define f on Σ \ Σ0

to be constant. From the smooth dependence on initial condition, f is then
everywhere continuous, and as smooth as the vector field outside boundary
points of Σ \ Σ0.

4.3.3 The transition map near singularities

Let X ∈ C which has a hyperbolic singularity at 0 of saddle-type with eigeval-
ues λ1 > 0 > λ2 and |λ2| > 2λ1 (dissipative case). Let p1 and p2 be points in
W s(0) respectively W u(0). Furthemore let Σi be a C2 curve through pi which
is transversal to X. If we choose Σ1 sufficiently small, then for every x in
one of the components of Σ1 \ {p1} there exists t ≥ 0 such that Xt(x) ∈ Σ2.
Call this component Σ′1 and let t(x) ∈ R be the smallest number so that
Xt(x)(x) ∈ Σ2 and define T : Σ′1 → Σ2 by

T (x) = Xt(x)(x).

We call this map the transition map.
In this section we want to show that T : Σ1 → Σ2 is equal to a map φα, up
to diffeomorphisms C2. Here α = |λ2|

λ1
> 2, and φα is defined by φα = ± |z|α.

Theorem 4.3.1. Let X ∈ C which has a hyperbolic singularity at 0 of saddle-
type with eigevalues λ1 > 0 > λ2 and |λ2| > 2λ1. Let α = |λ2|

λ1
. There exist

maps ϕ, ψ : R+ → R+ which are C2, such that the map T from above is of
the form

T (x) = ϕ ◦ φα ◦ ψ(x).

Proof. We observe that, according to the Linearisation Theorem of Sternberg
(see [1], [15]) there exists a C2 coordinate system φ near 0 such that φ∗X is
linear; then we can suppose that the vector field X is linear near 0.
If Σi are the straight lines {x = 1}, {y = 1} and T{x=1},{y=1} the transition
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map from {x = 1} and {y = 1}, then the theorem follows from explicit inte-
gration; it is sufficient to solve the differential equations ẋ = λ2x and ẋ = λ1x.
If Σi are different C2 curves we consider the transition map T1 from Σ1 to
{x = 1}, resp. T3 : {y = 1} → Σ2. Then TΣ1,Σ2 = T2 ◦T{x=1},{y=1} ◦T1. Since
X is linear (and in particular the flow map is C2) it follows from the implicit
function theorem that the maps Ti are C2. This last argument also shows
that if this theorem is true for one choice of C2 curves Σi, then it is also true
for any other choice of C2 curves Σ̃i as above.

4.4 Applications

Let X be a vector field in B, with the point of saddle that has eigenvalues
λ1 > 0 > λ2, |λ2| > 2 |λ1|, let Σ be a Poicaré section and let f be the return-
map to Σ.
Then from the results gotten in the previous section is easily deduced that f
has the following properties:

1. f is order preserving.

2. It is constant on an interval U .

3. The restriction of f to S1 \ U is a C∞-diffeomorphism onto its image.

4. Let (a, b) be a preimage of U under the projection of the real line of
S1. On same right-side neighdorhood of b, f can be represented as

h ((x− b)α)

for α = λ2
λ1

, where h is a C∞-diffeomorphism on a two-side neighdorhood
of b. Analogously, on a left-sided neighdorhood of a, f is

h ((a− x)α) .

5. Since X has no periodic orbits, the rotation number of f , ρ(f) is irra-
tional.

Now, we can suppose that ρ(f) is the golden mean. In fact, if this is false, for
every ε > 0, we can add ε to the orbits of the field X without modifying its
proprieties; then for ε that tends to infinity, we have an increasing sequence
of functions fε such that ρ(fε)→∞.
In conclusion by the properties of the retour-map f , listed above, it is easy
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to see that f is a map of our class with the golden mean rotation number.
We also observe that, by Theorem 2 in [4], we are still in the case of the
geometry bounded, then all the results obtained in previous sections can be
applied to this example.

Definition 4.4.1. A quasi-minimal set is a set containing finitely many fixed
points and such that every positive semiorbit that is not attracted to a fixed
point is dense in the set.

Remark 4.4.2. By the previous proposition it is easy to see that the non-
wandering set of Cherry flow consists of the attractive fixed point and a quasi-
minimal set containing the hyperbolic saddle.

Now we can easily deduce the following theorem.

Theorem 4.4.3. If X is a vector field on the torus as above, then the quasi-
minimal set has the Hausdorff dimension strictly greater than 1.

Proof. Let Q be the quasi-minimal set of X. In a small neighborhood of the
Poincaré section Σ, Q is equivalent, by a C2 diffeomorphism, to I ×K. In
conclusion the theorem follows by Theorem 3.0.3 and by the fact that the
Hausdorff dimension of the product of two sets is greater than the sum of
their Hausdorff dimension.
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