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Introduction

In this thesis we discuss some of the ideas related to Iwasawa theory of
Elliptic Curves. Starting in the late 1950's Iwasawa proved a number of re-
sults and formulated some important conjectures concerning the behaviour
of ideal class groups in the tower of sub�elds of a Zp-extension (See [8] ,
[16]). Inspired by Iwasawa's idea, Mazur formulated an analogous theory in
1960's and 1970's which is mostly contained in [12]. Around the same time
Manin wrote an article [11] in which he simpli�ed some of Mazur's ideas us-
ing Galois cohomology. All along one of the main motivation was to study a
new approach to study the behaviour of Mordeil-Weil group of Elliptic curves
(More generally Abelian Varieties) and the Birch-Swinnerton dyer conjecture.

One of the central theorems proven in Mazur's article [12] is his control
theorem, which asserts that the Selmer group for an abelian variety behaves
well Galois theoretically in a Zp-extension for any prime p where the abelian
variety has good, ordinary reduction. This theorem has various corollar-
ies including the Conjecture 4.2. In this thesis we follow Greenberg's idea
[6] which is di�erent from Manin's article [11] and Mazur [12]. Here we
use the explicit structure theoretic-classi�cation of the Iwasawa modules i.e
Λ = Zp[[T ]] modules. We restrict ourselves to the case of Elliptic Curves with
good, ordinary reduction at p. Although almost all the arguments will work
for Abelian varieties. But for the other type of reductions like multiplicative
and supersingular, we would have needed more arguments.

Section 1 and Section 2 recalls some basic results from Structure of Iwa-
sawa algebras and in the end of Section 2, the main classi�cation theorem is
proved. In Section 3, we de�ne Selmer group and Tate-Safarevich group and
we give a description of the p-primary part of the selmer group for E over
�nite extensions of Q and (for some certain in�nite extensions) in terms of
the galois cohomology for the group E[p∞], the p-torsion points on E.

1



In section 4, we mention some important Λ-modules and some important
conjectures about the structure of those modules. Then we prove some special
case of Corank lemma which was used in Section 3 using Iwasawa theory.
Finally in Section 5, we prove Mazur's control theorem for Elliptic curves
with good, ordinary reduction at p, which we state now:

Mazur's Control Theorem:
Let F be a �nite extension of Q and E an elliptic curve over F . Assume p
is a prime and E has good, ordinary reduction over all primes lying over p.
Assume that F∞ =

⋃
n Fn is a Zp-extension of F . Then the natural maps

SelE(Fn)p → SelE(F∞)Gal(F∞/Fn)
p

have �nite kernels and cokernels of bounded orders as n→∞

Here Fn denotes the unique sub�eld of F∞ containing F such that ([Fn :
F ] = pn) and SelE(Fn)p denotes the set of Fn-rational points of the p-Selmer
group de�ned in Section 3.

In Appendix 1, we list some important results from Galois Cohomology
which is extensively used in the text and give a full proof of Corank lemma.
In appendix 2, we recall some important properties from Elliptic curves in-
cluding Formal groups.
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1 Group rings and power series

Let O be the ring of integral elements in Qp. Like for example for a Dirichlet
character χ, O = Oχ = Zp [χ (1) , χ (2) , ....]. Let p be the maximal ideal of
O, since O is a local ring. Let π be a generator of p, so (π) = p.

Let Zp be the p-adic group of integers and Γ be a multiplicative topologi-
cal group isomorphic to Zp. Now Z is dense in Zp and 1 generates Z. So if γ
correponds to 1 under the isomorphism then the cyclic subgroup generated
by γ is dense inside Γ. Since the closed subgroups of Zp are of the form pnZp,
the closed subgroups of Γ are of the form Γp

n
. Then Γn = Γ/Γp

n
is a cyclic

group of order pn generated by the coset of γ.

Consider the group ring O [Γn]. Clearly there is a surjection from

O [T ]→ O [Γn].

T 7−→ γ − 1

Now clearly ((1 + T )p
n − 1) ⊆ kernel. We get the other way inclusion by

using the rank equality. So we get:

O [Γn] ' O [T ] /((1 + T )p
n − 1)

If m ≥ n ≥ 0 there is a natural map φm,n : O [Γm] → O [Γn]induced by
the map Γm → Γn. As ((1+T )p

n−1) divides ((1+T )p
m−1) if m ≥ n ≥ 0 we

get a natural map of the polynomial rings corresponing to φm,n. In fact we
get one inverse system. So taking the inverse limit of the group rings O [Γn]
with respect to φm,n we get the pro�nite group ring O [[Γ]].
As an element α ∈ O [Γ] gives a sequence αn such that φm,n(αm) = αn so
O [Γ] ⊆ O [[Γ]].
ButO [[Γ]] contains more elements. So to get a better idea about the elemnets
insides O [[Γ]] we look at the polynomial rings.
Now since O [Γn] ' O [T ] /((1 + T )p

n − 1), we have

O [[Γ]] ' lim
←
O [T ] /((1 + T )p

n − 1).

Our aim will be to prove the following theorem

Theorem 1.1 O [[Γ]] ' O [[T ]] the isomorphism induced by γ 7−→ 1 + T .

3



For proving this theorem we will prove that

O [[T ]] ' lim
←
O [T ] /((1 + T )p

n − 1)

So initially we will study some properties of the power series ring O [[T ]]

Proposition 1.2 Let f, g ∈ O [[T ]] and assume f = a0 + a1T + .....,with
ai ∈ p for 0 ≤ i ≤ n− 1, but an ∈ O∗.Then we can uniquely write

g = qf + r

where q ∈ O [[T ]] and where r ∈ O [T ] is a polynomial of degree atmost n-1.

Proof.Let α and τ be the projections on the beginning and tail end of the
power series, given by

α :
∞∑
k=0

akT
k →

n−1∑
k=0

akT
k

τ :
∞∑
k=0

akT
k →

∞∑
k=n

akT
k−n

Now we have two very important properties of τ
i) τ(hT n) = h for any h ∈ O [[T ]]
ii) τ(h) = 0⇐⇒ h is a polynomial of degree ≤ n− 1
So by property ii) our claim is equivalent to prove that τ(g) = τ(qf).
Now taking f with the assumptions we can write f as following:

f = α(f) + τ(f)T n

So
qf = qα(f) + qτ(f)T n

Hence our problem reduces to solve the equation

τ(g) = τ(qα(f)) + τ((qτ(f)T n)

Using property i) which reduces to

τ(g) = τ(qα(f)) + qτ(f) (1)

Now τ(f) is invertible in O [[T ]] as the constant term is an which is a unit in
O [[T ]].
Putting Z = qτ(f), we get the equivalent to a)
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τ(g) = τ(Z α(f)
τ(f)

)+Z = (I + τ ◦ α(f)
τ(f)

)Z

The only unknown in the equation is Z , so to �nd Z we have to invert
I + τ ◦ α(f)

τ(f)
.

Note that

τ ◦ α(f)

τ(f)
: O[[T ]]→ pO[[T ]]

as α(f)
τ(f)

∈ pO[[T ]]. So by taking suitable norm, we can prove that I +

τ ◦ α(f)
τ(f)

is a invertible operator. In fact explicitly it is easy to see that

Z =
∑∞

k=0(−1)kπk(τ(α(f)/(πτ(f))))(τ(g)) is the inverse. So we get both
the existence and uniqueness, which �nishes the proof.

�

De�nition 1.3 P (T ) ∈ O [T ] is called distinguished
if P (T ) = T n + an−1T

n−1 + .....+ a0 with ai ∈ p for 0 ≤ i ≤ n− 1

Theorem 1.4 (p-adic Weierstrass Preparation Theorem)
Let

f(T ) =
∞∑
k=0

akT
k ∈ O [T ]

and assume for some n we have ai ∈ p for 0 ≤ i ≤ n−1, but an ∈ O∗ Then f
may be uniquely written in the form f(T ) = P (T )U(T ), where U(T ) ∈ O [[T ]]
is a unit and P(T) is a distinguished polynomial of degree n.

More genereally , if f(T) is nonzero then we may write uniquely

f(T ) = πµP (T )U(T )

with P and u as above and µ ∈ Z≥0

Proof. If we just factor as large a power of π as possible from the coe�cients
of f(T ) then the second part follows easily from the �rst part.
Now for proving the �rst part let us take g(T ) = T n in propositinon 1.2, then

T n = q(T )f(T ) + r(T ),

with deg r ≤ n− 1
Since q(T )f(T ) ≡ q(T )(anT

n+higher terms )(mod π), we must have r(T ) ≡
0(modπ)
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Therefore P (T ) = T n − r(T ) is a distinguished polynomial of degree n. Let
qi be the coe�cients of the polynomial q(T ) then comparing the coe�cients
of T n in f(T )q(T ) = TN − r(T ) we get

a0qn + a1qn−1 + .....+ anqo = 1

So,we get anq0 ≡ 1(modπ). Therefore q0 ∈ O∗ so q(T ) is a unit. LetU(T ) =
1/q(T ) then f(T ) = P (T )U(T ) as desired. Now every distinguised polyno-
mial of degree n can be written in the form P (T ) = T n − r(T ) so we may
transform back the equaton f(T ) = P (T )U(T ) to

T n = U(T )−1f(T ) + r(T )

then the uniqueness statement of the proposition 1.2 implies the uniqueness
of P and U .

�

Corollary 1.5 Let f(T ) ∈ O[[T ]] be nonzero. Then there are only �nitely
many x ∈ Cp, |x| ≤ 1 with f(x) = 0

Proof. Let f(x) = 0. Then from Theorem 1.4, f(T ) = πµP (T )U(T ). Since
U(T ) is invertible, U(x) 6= 0. So we get P (x) = 0, but as a polynomial it can
only have �nitely many roots. We get the deired result.

�

Corollary 1.6 Let P(T)∈ O[T ] be a distinguished polynomial and let g(T ) ∈
O[T ] be arbitrary. Then if g(T )/P (T ) ∈ O[[T ]] then g(T )/P (T ) ∈ O[T ].

Proof. Let g(T ) = f(T )P (T ) for some f(T ) ∈ O[[T ]]. Let x ∈ Cp be a zero
of P (T ). Then

0 = P (x) = xn+(multiple of π)

So by p-adic valuation |x| ≤ 1 hence f(x) will converge so g(x) = 0.
Now we can divide both g(T ) and P (T ) by (T − x) and working in a larger
ring if necessary, continuing this process we �nd that P (T ) divides g(T ) as
polynomials .

�
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Now we return to the proof of the main theorem. We have to prove that

O [[T ]] ' lim
←
O [T ] /((1 + T )p

n − 1)

First of all, Pn(T ) = (1 + T )p
n − 1 is a distinguished polynomial. The ideal

(π, T ) ⊇ (p, T ) is a maximal ideal of O[T ] and also gives the maximal ideal
of O[[T ]]. Now,

Pn+1(T )/Pn(T ) = (1 + T )p
n(p−1) + (1 + T )p

n(p−2) + ..........+ 1 ⊆ (p, T )

as clearly P0(T ) ⊆ (p, T ) by induction we have Pn(T ) ⊆ (p, T )n+1

By proposition 1.2 we have a natural map from O[[T ]] → O[T ]modPn(T )
for each n given by f(T ) → fn(T ) where f(T ) = qn(T )pn(T ) + fn(T ) and
degfn ≤ pn

Now if we have m ≥ n ≥ 0, then

fm(T )− fn(T ) = (qn − Pmqm/Pn)Pn

By corollary 1.6, we have fm ≡ fn(modPn) as polynomials so

(f0, f1, .......) ∈ lim
←
O [T ] /Pn(T )

sowe get a map from the power series ring to the inverse limit. Now if fn = 0
for every n then Pn divides f for all n. So f ∈

⋂∞
n=o(p, T )n+1 which is zero

so the map is injective.
Now for surjection let us pick any (f0, f1, .......) is in the inverse limit, so for
m ≥ n ≥ 0, fm ≡ fn(modPn) therefore (mod(p, T )n+1) then the coe�cients
of the terms form Cauchy sequence with respect to the (p, T )-adic topology
for which O[[T ]] is compact. So lim fn exists. Let lim fn = f
But letting m→∞

qm,n = (fm − fn)/Pn → (f − fn)/Pn

As qm,n ∈ O[T ] then the limit must be in O[[T ]].Therefore

f = (Pn)(lim
m
qm,n) + fn

So we have f 7→ (f0, f1, .......) and that gives the surjection of the map.

�
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2 The structure of Λ-Modules

In this section we will classify all Λ modules using the tools developed in the
previous chapter.

Lemma 2.1 Λ = Zp[[T ]] is a Unique Factorizaton Domain.

Proof. By the p-adic Weistrass theorem, if f(T ) ∈ Λ is nonzero, then we
may write uniquely

f(T ) = pµP (T )U(T )

with µ ≥ 0, P (T ) distinguished and U(T ) ∈ Λ∗. Also if know f is a polyno-
mial then so is U . There is a divison algorithm for distinguished polynomials:
if f(T ) ∈ Λ and P (T ) is distinguished then (uniquely)

f(T ) = q(T )P (T ) + r(T )

with r(T ) ∈ Zp[T ], deg r(T ) < deg P (T ) (We take deg 0 = −∞ ). From the
above discussion it follows that the irreducible elements of Λ are p and the
irreducible distinguished polynomials. Therefore Λ is a unique factorization
domain.

�

Lemma 2.2 Suppose f, g ∈ Λ are relatively prime then the ideal (f, g) has
�nite index in Λ

Proof. Let h ∈ (f, g) be a polynomial of minimal degree. By Lemma 2.1
we may assume that, h = psH with H = 1 or H is distinguished. Suppose
H 6= 1. As f and g are relatively prime we may assume that H does not
divide f . Now using the divison algorithm

f = Hq + r,

with deg r < deg H = deg h
so, psf = hq + psr. But deg (psr) < deg h and psr ∈ (f, g) we have a

contradiction by our assumption on minimality of h. So we have H = 1 and
h = ps. Now interchanging g and f or dividing by unit we may assume that
f is not divisible by p and distinguished. So we have,

(f, g) ⊇ (ps, f)

By divison algorithm any element of Λ is congruent mod f to a polynomial
of degree less than degf . Since there are only �nitely many such polynomials
mod ps, (ps, f) has �nite index.
Now there is a canonical surjection Λ/(ps, f) → Λ/(f, g), hence Λ/(f, g) is
�nite. �
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Lemma 2.3 Suppose f ,g ∈ Λ are relatively prime
1) the natural map

Λ/(fg)
φ- Λ/(f)

⊕
Λ/(g)

is an injection with �nite cokernel
2)there is an injection

Λ/(f)
⊕

Λ/(g) - Λ/(fg)

with �nite cokernel.

Proof. 1) The canonical map is a(mod fg)→ (a mod f, a mod g). So if
f | a and g | a then as Λ is a UFD and f ,g are relatively prime, we get fg | a.
So that this map is an injection.

Now our claim is im(φ) = {(a mod f, b mod g) : a− b ∈ (f, g)}

Clearly if (a mod f, b mod g) ∈ im(φ) then ∃c such that c ≡ a mod
f, c ≡ b mod g, and hence a− b ∈ (f, g).

Conversely, consider (a mod f, b mod g). If a − b ∈ (f, g) then a − b =
fA+ gB for some A, B in Λ. Let

c = a− fA = b+ gB.

then

c ≡ a mod f, c ≡ b mod g,

So (a, b) is in the image and the claim is proved.

Hence any element of cokernel can be written as (0 mod f, r + s mod g)
where r ∈ Λ, s ∈ (f, g).
From the previous lemma Λ/(f, g) is �nite. Let r1, r2, .....rn ∈ Λ are the
representatives for Λ/(f, g), it follows that

[(0 mod f, rj mod g) | 1 ≤ j ≤ n]

is a set of representatives for the cokernel of this map. So the cokernel is �nite.

2) from part 1) we have

Λ/(fg) 'M ⊆ Λ/(f)
⊕

Λ/(g) := N

with M of �nite index in N . Let P be any distinguished polynomial in Λ
relatively prime to fg. Let (x, y) ∈ N
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then (P i)(x, y) ≡ (P j)(x, y) mod M

for some i less than j. Since 1− P j−i ∈ Λ∗

we have
P i(x, y) ∈M

so we get P k ∈ N ⊆M for some k. Hence there is a map

N →M ' Λ/(fg)

by multiplication by P k . Let P k(x, y) = 0 in M but M ⊆ N so we can
think P k(x, y) = 0 in N then f | P kx, g | P ky. but we have gcd (P, fg) = 1
so f | x and g | y so (x, y) = 0 in N therefore the map is injective.

The image contains the ideal (P k, fg) which has �nite index by lemma
2. Now pkΛ/(fgΛ) ⊆ Λ/(fgΛ). Hence there is a surjection Λ/(fg, pk) �
cokernel which proves that the cokernel is �nite.

�

Lemma 2.4 The prime ideals of Λ are 0,(p, T ), (p) and the ideals (P (T ))
where P (T ) is irreducible and distinguished. The ideal (p, T ) is the unique
maximum ideal of Λ.

Proof. Clearly the ideals listed above are prime ideals. Let ℘ 6= 0 be
prime.Let h ∈ ℘ be a polynomial of minimal degree. We can choose h such
that h = psH with H = 1 or H distinguished. Since ℘ is prime p ∈ ℘ or
H ∈ ℘. So if H 6= 1 ∈ ℘ then H must be irreducible by the minimality of its
choice. So we get (f) ⊆ ℘ where f = p or f is irreducible and distinguished.
Let us assume that (f) 6= ℘ otherwise it is already in the list. So there exists
g ∈ ℘ such that f - g. So f, g are relatively prime since f is irreducible. Now
we have (f, g) ⊆ ℘ and from lemma 2.2 the ring Λ/(f, g) is �nite . So ℘ has
�nite index in Λ. Now Λ/℘ is a �nite Zp module so pN ∈ ℘ for large N hence
p ∈ ℘ since ℘ is prime (We will always get this. If f = p then clearly we have
this otherwise if f and g are relatively prime then as in the proof of lemma
2.2 we get ps ∈ (f, g) ⊆ ℘). Also T i ≡ T j mod ℘ for some i less than j.But
1− T j−1 ∈ Λ∗ so T i ∈ ℘ therefore T ∈ ℘ so (p, T ) ⊆ ℘ but Λ/(p, T ) ' Z/pZ
so (p, T ) is maximal and ℘ = (p, T ), since all the prime ideals are contained
in (p, T ) this is the only maximal ideal.

�

Lemma 2.5 Let f ∈ Λ with f ∈ Λ− Λ∗ Then Λ/(f) is in�nite.
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Proof. Assuming f 6= 0 it su�ces to prove it for f = p or f distinguished.
If f is distinguished then by Division algorithm all polynomials of degree
less than f (which is clearly in�nite) provide a system of representatives of
Λ/(f). And if f = p then Λ/(f) = Fp[[T ]] which again is in�nite.

�

Lemma 2.6 Λ is a noetherian ring.

Since the generators of an ideal can be be thought of polynomials then by
Hilbert Basis Theorem Λ is noetherian

�

De�nition 2.7 Two Λ− modules M and M
′
are said to be pseudo - isomor-

phic (M ∼M
′
) if there is a homomorphism M →M

′
with �nite kernel and

co-kernel. In other words there is an exact sequence of Λ modules

0→ A→M →M
′ → B → 0

with A and B �nite Λ modules

Warning (M ∼M
′
)does not necessarily imply (M

′ ∼M)

Now we want to study the structure of �nitely generated Λ modules.
Inspired by the classi�cation of �nitely generated modules over principal
ideal domain, we get the following classi�cation upto pseudo-isomorphism .

Theorem 2.8 Let M be a �nitely generated Λ module. Then

M ∼ Λr ⊕ (
s⊕
i=1

Λ/(pni))⊕ (
t⊕

j=1

Λ/(fj(T )mj))

where r, s, t, ni,mj ∈ N and fj is distinguished and irreducible.

We will follow the same line of proof as in the case of PID theorem
i.e. via admissible row and column operations. But here we have pseudo-
isomorphism. So we will increase our list of admissible operations.
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Suppose M has generators u1, u2, u3, ....., un with elementary relations

λ1,iu1 + λ2,iu2 + ......+ λn,iun = 0, λi,j ∈ Λ

Now the relations are �nitely generated since they form a submodule of Λn

and Λ is noetherian. So we can represent the module M by a matrix whose
rows are of the form (λ1,i, ...., λn,i) where

∑n
1 λiui = 0 is a relation of M . Let

us denote R this matrix.

In other words as M is �nitely generated with the generators say u1, u2,
u3, ....., un then we have a canonical surjection ϕ:Λn →M just sending ei →
ui. So we have Λn/kerϕ 'M . Now kerϕ is the module of relations and it is
�nitely generated, say the generators are r1, r2, r3, ....., rm. Hence there is a
canonical surjection f :Λm → Λn such that imagef =kerϕ and imagef is given
by a matrix R . So imagef = AΛm. Therefore Λn/RΛm = Λn/kerϕ = M .
This matrix R is the presentation matrix of M and M is said to be repre-
sented by R.

Now we will review the basic admissible row and column operations.
Operation A. Rows or columns of R can be permuted
Operation B. A multiple of row or column) can be added to another row
or column
Operation C. Rows or columns can be multiplied by units in Λ

Now we will see three more operations which arise from pseudo-isomorphism.

Operation 1 If R contains a row (λ1, pλ2...., pλn) with p - λ1 then R can be
changed to matrix R

′
whose �rst row is (λ1, ...., λn) and the remaining rows

are rows of R with the �rst element multiplied by p. λ1 pλ2 · · ·
α1 α2 · · ·
β1 β2 · · ·

→
 λ1 λ2 · · ·

pα1 α2 · · ·
pβ1 β2 · · ·


As a special case if λ2 = .....λn = 0 then we may multiply α1, β1, ..... by an
arbitrary power of p

Proof. By assumption on R we have the relation

λ1u1 + p(λ2u2 + ......+ λnun) = 0

Let M
′
= M ⊕ vΛ with a new generator v modulo the additional relations

(−u1, pv) = 0, (λ2u2 + λ3u3 + ......+ λnun, λ1v) = 0
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now we have a natural map M → M
′
by m → (m, 0). Supose m → 0 then

m lies in the module generated by relations , so

(m, 0) = a(−u1, pv) + b(λ2u2 + λ3u3 + ......+ λnun, λ1v)

with a, b ∈ Λ.
Equating both sides, we get ap = −bλ1 but by assumption p - λ1 so p | b and
λ1 | a. In the other component, we get

m = − a

λ1

(λ1u1)− a

λ1

p(λ2u2 + λ3u3 + ......+ λnun)

=
a

λ1

(0) = 0
(2)

So the canonical map is an injection. Now in M
′
, pv and λ1v are in the

image of M . So the ideal (p, λ1) will annihilate M
′
/M . So M

′
/M becomes

Λ/(p, λ1) module . Now from lemma 2.2 as p and λ1 are relatively prime,
the ring Λ/(p, λ1) is �nite. M

′
is also �nitely generated so we get M

′
/M is

�nite. Hence
M ∼M

′

It remains to prove that M
′
has the required relation matrix. M

′
has gen-

erators v, u2, .....un . Now any relation α1u1 + ...... + αnun = 0 becomes
pα1v + ......+ αnun = 0, as (−u1, pv) = 0. So we get that the �rst column is
multiplied by p. Now from the 2nd relation (λ2u2+λ3u3+......+λnun, λ1v) = 0
we have λ1v+λ2u2+λ3u3+......+λnun = 0. So the new module has the desired
relation matrix (here we did not consider the redundant row (pλ1, ......, pλ2)).

�

Operation 2 If all elements in the �rst column of R are divisible by pk and
if there is a row (pkλ1, ........, p

kλn) with p - λ1 ,then we may change to the
matrix R

′
which is the same as R except that (pkλ1, ........, p

kλn) is replaced
by (λ1, ........, λn). In pictures(

pkλ1 pkλ2 · · ·
pkα1 α2 · · ·

)
→
(

λ1 λ2 · · ·
pkα1 α2 · · ·

)
Proof. Let M

′
= M ⊕ vΛ with a new generator v modulo the additional

relations

(pku1,−pkv) = 0, (λ2u2 + λ3u3 + ......+ λnun, λ1v) = 0
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As before p - λ1 implies that there is a canonical injection M →M
′
and pkv

and λ1v is in the image of M so the ideal (pk, λ1) annihilates M
′
/M so we

get by the same argument as before M
′
/M is �nite. So

M ∼M
′
.

Here we dont have thatM
′
have the relation matrix R

′
. But from the relation

pk(u1 − v) = 0 and using pk divides the �rst coe�cient of all the relations
involving u1 we get that M

′
can be decomposed as

M
′
= M

′′ ⊕ Λ(u1 − v)

where M
′′
is generated by v, u2, .....un and the relations are generated by

(λ1, ........, λn) and R i.e R
′
.

Now there is a canonical surjection Λ → Λ(u1 − v) which has the kernel
generated by pk (As pk(u1 − v) = 0). So we have

Λ(u1 − v) = Λ/(pk)

Hence we get
M ∼M

′′ ⊕ Λ/(pk).

In Theorem 2.8, we have the terms like Λ/(pk) upto pseudo-isomorphism. So
we have already proceeded towards the classi�cation and can continue the
classi�cation ignoring this term. Therefore after elementary operations we
can deal with M

′′
.

�

Operation 3 If R contains a row (pkλ1, ........, p
kλn) and for some λ with

p - λ, (λλ1, ........, λλn) is also a relation (not necessarily contained in R i.e
not necessarily elementary relation), then R may be changed to R

′
where R

′

is the same as R with (pkλ1, ........, p
kλn) replaced by (λ1, ........, λn).

Proof. We have a canonical surjection M → M
′
where M

′
= M/(λ1u1 +

......λnun). From our assumption the kernel is annihilated by the ideal (λ, pk).
Also kernel is �nitely generated as M is �nitely generated and the kernel is
a module over Λ/(λ, pk) which is �nite. So the kernel is �nite and

M ∼M
′

M
′
is generated by v1, v2, .....vn where vi = image of ui under the map for all

1 ≤ i ≤ n. So by de�nition M
′
has the relation matrix R

′
. Hence the proof

is done.
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�

With these admissible operations we return to the proof of the theorem.

Proof of Theorem 2.8 Let f 6= 0 and f ∈ Λ then

f(T ) = pµP (T )U(T )

with P distinguished and U ∈ Λ∗ . Let

degwf =deg P (T ), if µ = 0 otherwise =∞.

This is called Weierstrass degree of f . Now suppose that a matrix R is given
then

deg(k)(R) = mindegw(a
′
ij) for i, j ≥ k

where a
′
ij ranges over all the relation matrices obtained from R via admissible

operations. If the matrix R has the form
λ11 · · · 0 · · · 0

. . .

0 · · ·λr−1,r−1 · · · 0
∗ · · · ∗ · · · ∗
∗ · · · ∗ · · · ∗

 =

(
Dr−1 0
A B

)

with λkk distinguished polynomials and

deg λkk = degwλkk = deg(k)(R), for 1 ≤ k ≤ r − 1

then we say that R is in (r − 1) normal form.

We will �rst assume the following claim to be proven later.

Claim. If the submatrix B 6= 0 then R may be transformed via admis-
sible operations into R

′
which is in r normal form and has the same �rst

(r − 1) diagonal elements.

So if we start with a relation matrix R and r = 1 by the claim we may
successively change R to obtain the following form of the matrix

λ11 0
. . .

λrr
A 0
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where each λjj is distinguished and degλjj =deg(j)(R) for j ≤ r. So if we can
prove that A is zero matrix then we are done. Now by the divison algorithm
and operation B we can assume

λij = 0 or degλij < deg λjj for i 6= j.

Suppose λij 6= 0 for some i 6= j. Now since deg wλjj is minimal, we get p | λij
so we have a nonzero realtion (λi1, .....λir, 0, 0, ...0) which is divisible by p.
Let λ = λ11......λrr then p - λ since λjjs are distinguished and

(λλi1/p, .....λλir/p, 0, 0, ...0)

is also a relation since λjjuj = 0. Now operation 3 gives us that we may
assume p does not divide λij for some j as we can successively change the
row (λi1, .....λir, 0, 0, ...0) by removing the p. so,

deg wλjj ≤ deg λij < deg λjj = deg (j)(R).

This is impossible. So we have λij = 0 for all i 6= j which implies A = 0.
This in terms of Λ modules imply that we have

M ∼ Λ/(λ11)⊕ .....⊕ Λ/(λrr)⊕ Λn−r.

We recall that in Operation 2, we ignored elements of the type Λ/(pk).
Now we can put back the factors Λ/(pk) and we get

M ∼ Λ/(λ11 ⊕ .....⊕ Λ/(λrr)⊕ Λn−r ⊕ (
s⊕
i=1

Λ/(pni)).

We can think of λii to be irreducible (we get this just decomposing λii
into irreducibles and then using the lemma 3) which �nishes the proof of
Theorem 1.

�

Proof of Claim. By the special case of operation 1 we can say that a
large power of p divides each λij with i ≥ r and j ≤ r − 1 i.e pN | A with N
large enough such that pN - B . Now using operation 2 we can assume that
p - B We may also assume that B contains an entry λij such that

degwλij = deg(r)(R) <∞.
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We may assume that λij is distinguised ( if λij = P (T )U(T ) then by we
can multiply λij by U

−1). Now the �rst (r − 1) rows have zero in the jth
column so they do not change. Again using the zeros and operation A we
get λij = λrr.
Now by divison algorithm and operation B we can assume that λrj is such
that

deg λrj < deg λrr, j 6= r,

and

degλrj < deg λjj, j < r.

No from de�nition of (r−1) normal form λrr has minimal Weierstrass degree
in B so we must have p | λrj for j > r. Again by operation 1 we can assume
that pN | λrj for j < r.
Let λrj 6= 0 for some j > r . By operation 1 we can assume there is some j
with p - λrj then

degwλrj = deg λrj < deg λrr = deg wλrr

which is impossible. So λrj = 0 for j > r.
Let λrj 6= 0 for some j < r.By operation 1 we can assume that there is some
j with p - λrj then

degwλrj ≤ deg λrj < deg λjj = deg wλjj

But deg λjj = deg(j)(R), which contradicts de�nition of deg(j)(R). Therefore
λrj = 0 for j < r. Hence we get λrj = 0 for all j 6= r and our claim is proven.

�
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3 Selmer groups

Let K be any algebraic extension over Q and E be an elliptic curve over
K. One of the most interesting object associated with E is the Mordell-Weil
group of E(K). Mordell-Weil group of E(K) is studied in di�erent ways. We
have chosen here the approach via Galois cohomology.
Fix n ≥ 2. We have a canonical exact sequence

0→ E[n]→ E(K)
n- E(K)→ 0.

Where K denotes the algebraic closure of K and E[n] denotes the n torsion
points. So from this we get an exact cohomological sequence

E[n]GK ↪→ E(K)GK → E(K)GK → H1(GK , E[n])→ H1(GK , E(K))→ . . .

where GK is the absolute galois group Gal(K/K).
Now E(K)GK = E(K), so we get a canonical injection (which is called Kum-
mer map)

E(K)/nE(K) ↪→ H1(GK , E[n]) (3)

Now If K is a �nite extension of Q then H1(GK , E[n]) becomes in�nite but
under Kummer map it can be shown E(K)/nE(K) is contained in a �nite
subgroup of H1(GK , E[n])(called n-Selmer group) . So then using theory of
heights one can prove the Mordell-Weil theorem

E(K) ∼= Zr × T, (4)

for some r ≥ 0 and some �nite group T . Hence

E(K)/nE(K) ∼= (Z/nZ)r × T/nT

and clearly if one knows n-Selmer group then one can give upper bound to
r.
From (4) we get

E(K)⊗Z (Q/Z) ∼= (Q/Z)r

Now E(K)/nE(K) = E(K) ⊗Z (Z/nZ), so passing to direct limits we get
E(K)⊗Z (Q/Z) and an injection E(K)⊗Z (Q/Z) ↪→ H1(GK , E(Q)tors). One
can show that E(K)⊗Z (Q/Z) is a subgroup of SelE(K) and we will get an
exact sequence

0→ E(K)⊗Z (Q/Z)→ SelE(K)→XE(K)→ 0

Therefore knowing the structure of SelE(K) will give an upper bound on r.
We will give two equivalent de�nitions of SelE(K) and describe an alternative
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de�nition for the p-primary subgroup of SelE(K) which involves only Galois
module E[p∞] under the assumption that E has good ordinary reduction at
all primes of K lying over p. (for any prime p, E[p∞] = ∪mE[pm] is the p
primary subgroup of E(Q)tors)).

We adopt two more usual notations for Galois cohomological groups, writ-
ing H i(L, .) in place of H i(GL, .) and H

i(K/L, .) in place of H i(Gal(K/L), .)
if K/L is a galois extension.

De�nition 3.1 (First de�nition)

Let v runs over all primes of K, archimedean and non-archimedean. If K
is a �nite extension of Q then Kv is the completion of K at v. If K is an
in�nite algebraic extension then Kv denotes the union of the completions at
v of all �nite extensions of Q contained in K. Thus Kv is always either R or
C or an algebraic extension of Ql (for some prime l).
Now we have the natural map K ↪→ Kv. So we can choose an embedding
K ↪→ Kv (The choice does not matter) and by identifying GKv with the
decomposition group we get GKv identi�ed with a subgroup of GK . Now
GKv ↪→ GK inducesH1(K,E(K))→ H1(Kv, E(K)) and noting that E(K) ⊂
E(Kv) induces H

1(Kv, E(K))→ H1(Kv, E(Kv)) and then composing we get

H1(K,E(K))→ H1(Kv, E(Kv)).

Now we de�ne the Tate- Safarevich group XE(K) by

XE(K) = ker ( H1(K,E(K))→
∏

vH
1(Kv, E(Kv)))

Now we have the canonical inclusion E(K)tors ↪→ E(K) which induces

λ : H1(K,E(K)tors)→ H1(K,E(K))

Lemma 3.2 λ is surjective .

Proof: coker(λ) is isomorphic to a subgroup ofH1(K,E(K)/E(K)tors). Now
E(K)/E(K)tors is a uniquely divisible group, so H1(K,E(K)/E(K)tors) is
also uniquely divisible group. But we know H1(G,E(K)/E(K)tors) is torsion
group for every �nite group G and passing to the direct limits we get that
H1(K,E(K)/E(K)tors) is torsion group. (See Appendix 1, Theorem 6.4) So
we get H1(K,E(K)/E(K)tors) is zero. So coker(λ) is zero proving that λ is
surjective.
Now we de�ne Selmer group by

SelE(K) = λ−1(XE(K))
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De�nition 3.3 (Second de�nition)

Let E be an elliptic curve over L then E(L) is also a divisible group. Then
imitating Kummer theory for the multiplicative group L×, we de�ne Kummer
homomorphism:

κ : E(L)⊗Z (Q/Z)→ H1(L,E(L)tors)

in the following way:
Let α = P ⊗ r ∈ E(L)⊗Z (Q/Z) where P ∈ E(L) and r = m

n
+ Z .

Now since E(L) is divisible we can choose Q ∈ E(L) such that nQ = mP .
Then de�ne a 1-cocycle ϕα : GL → E(L)tors by ϕα = g(Q) − Q for all
g ∈ GL. First of all ϕα is de�ned as g(Q)−Q ∈ E(K)tors since n(g(Q)−Q) =
g(nQ) − nQ = g(mP ) − mP = mg(P ) − mP = mP − mP = 0, since GL

�xes L.
So [ϕα] is well-de�ned and one de�nes κ(α) = [ϕα]. Now we get the following
sequence:

0 - E(L)⊗Z (Q/Z)
κ- H1(L,E(L)tors)

λ- H1(L,E(L)) - 0

Lemma 3.4 The above sequence is exact.

Proof : We already know λ is surjective, so we only have to prove that κ is
injective and im(κ) = ker(λ).

Injectivity of κ : If κ(α) = [ϕα] = 0, which gives ϕα is a 1-coboundary

in Z1(L,E(L)tors), the 1-cocycle elements and Q ∈ E(L)tors. Then ∃n1 such
that n1Q = 0 which gives n1mP = n1nQ = 0. So we get P ∈ E(L)tors and
n1mP = 0, but P ⊗ r = P ⊗ n1mr = n1mp⊗ r = 0⊗ r = 0 since r ∈ Q/Z.
So α = 0 proving that κ is injective.

Exactnes at H1(L,E(L)tors : We have de�ned λ by composing GL →
E(L)tors ↪→ E(L). Now clearly λ ◦ κ = 0 since ϕα becomes 1-coboundary in
Z1(L,E(L)) since Q ∈ E(L). So the image κ is included in ker λ.
For the converse, let [ϕ] ∈ H1(L,E(L)tors). We have λ([ϕ]) = 0 which

means there exists Q ∈ E(L) such that GL
ϕ- E(L)tors is de�ned by

ϕ(g) = g(Q) − Q. As g(Q) − Q ∈ E(L)tors, there exists n such that
n(g(Q) − Q) = 0. Since E(L) is divisible we can choose m and P ∈ E(L)
such that mnQ = P . Now gP −P = g(mnQ)−mnQ = m[n(g(Q)−Q)] = 0
for all g ∈ GL. Then if we take r = 1

mn
+Z and α = P ⊗ r we get κ(α) = [ϕ].

So image κ ⊇ ker λ. �
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Remark: From (3) so we get a canonical injection (which is called Kum-
mer map)

E(K)/nE(K) ↪→ H1(GK , E[n])

and then passing to direct limit we obtain an injection E(K) ⊗Z (Q/Z) ↪→
H1(GK , E(Q)tors). This can be shown easily this map is the map κ described
above. So in this way also we can obtain κ is injective.

Now following the same procedure for the completetions L = Kv where
v is any prime of K , we get the following commutative diagram where the
vertical rows are de�ned in obvious ways and the rows are exact.

0 - E(K)⊗Z (Q/Z)
κ- H1(K,E(K)tors)

λ- H1(K,E(K)) - 0

0 - E(Kv)⊗Z (Q/Z)

av

?
κv- H1(Kv, E(Kv)tors)

bv

?
λv- H1(Kv, E(Kv))

cv

?
- 0

Let [ϕ] ∈ H1(K,E(K)tors). Now from the �rst de�nition of SelE(K),
[ϕ] ∈ SelE(K) if and only if cv ◦ λ([ϕ]) = 0 for every prime v of K. But
from the commutavity of the diagram cv ◦λ([ϕ]) = λv ◦ bv([ϕ]) and im(κv) =
ker(λv). So we get cv ◦ λ([ϕ]) = 0 ⇐⇒ bv([ϕ]) ∈ im(κv) for all v. So we get
the second de�nition of Selmer group:

SelE(K) = ker(H1(K,E(K)tors)→
∏

vH
1(Kv, E(Kv)tors)/im(κv))

That is if [ϕ] ∈ H1(K,E(K)tors) then [ϕ] ∈ SelE(K)⇐⇒ [ϕ|GKv ] ∈ im(κv)
for every prime v of K.
Let p be a prime. Now we will follow the same line of argument to obtain
the p-primary subgroup of SelE(K). The p-primary subgroup of Q/Z is
isomorphic to Qp/Zp. So for any �eld L, the p-primary subgroup of E(L)⊗
(Q/Z) can be identi�ed with E(L)⊗ (Qp/Zp). Suppose κ and κv denotes the
global and local Kummer maps restricted to the p-primary subgroups. So if
K is any algebraic extension of Q then we get:

κ : E(K)⊗ (Qp/Zp)→ H1(K,E[p∞])

κv : E(Kv)⊗ (Qp/Zp)→ H1(Kv, E[p∞])

So proceeding with this κ and κv and imitating the previous argument we
get the p-primary subgroup of SelE(K) is:
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SelE(K)p = ker( H1(K,E[p∞])→
∏

vH
1(Kv, E[p∞])/im(κv))

where v runs over all the primes of K. Now in this de�nition of SelE(K)p
everything except possibly im(κv) depends on GKv -module E[p∞]. We will
try to describe im(κv) involving only the galois module E[p∞].

Remark: Since E(Kv)⊗(Qp/Zp) is divisible im(κv) is also divisible. Now
we will show that if v - p then E(Kv)⊗(Qp/Zp) = 0 and so im(κv) is also zero.

Theorem 3.5 i) Suppose that E is an elliptic curve de�ned over Kv = C or
Kv = R. Then E(Kv)⊗ (Qp/Zp) = 0.

ii) Suppose E is an ellitic curve de�ned over an algebraic extension Kv

of Ql where l is a prime , l 6= p, then E(Kv)⊗ (Qp/Zp) = 0.
Thus , whenever v - p , we have im(κv) = 0.

Proof:i) If Kv = R then E(Kv) ∼= R/Z or R/Z × Z/2Z . Now R/Z ⊗
(Qp/Zp) = 0. Also if T is any �nite group then clearly T ⊗ (Qp/Zp) = 0. So
we get E(Kv)⊗ (Qp/Zp) = 0. If Kv = C then E(Kv) ∼= R/Z× R/Z and by
similar argument we get E(Kv)⊗ (Qp/Zp) = 0.

ii) If Kv is a �nite extension of Ql where l is a prime and l 6= p. Then
from (Appendix 2, Theorem 7.4) we get the structure of E(Kv):

E(Kv) ∼= Z[Kv :Ql]
l × T

where T is a �nite group. Now Zl is p-divisible since l 6= p. So Zl⊗(Qp/Zp) =
0 and we have T ⊗ (Qp/Zp) = 0 for any �nite group T . It follows that
E(Kv)⊗ (Qp/Zp) = 0.
Now if Kv is an in�nite algebraic extension of Ql then Kv =

⋃
Lv where Lv

runs over all �nite extensions of Ql which is contained in Kv. But we have
E(Lv)⊗ (Qp/Zp) = 0 for each Lv. So we have E(Kv)⊗ (Qp/Zp) = 0 and we
are done.

�

Now when v | p then Kv is an algebraic extension of Qp and the situation
becomes more subtle.
Let us assume �rst that Kv is a �nite extension then again from the theorem
(Appendix 2, Theorem 7.4) , we get

E(Kv) ∼= Z[Kv :Qp]
p × T
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where T is a �nite group. Since Zp ⊗ (Qp/Zp) = Qp/Zp we have

im(κv) ∼= E(Kv)⊗ (Qp/Zp) ∼= (Qp/Zp)
[Kv :Qp]

Assume that E has good, ordinary reduction at v. Thus the reduction of
E at v is an elliptic curve Ẽ de�ned over the residue �eld kv for v. Now as E
has good, ordinary reduction at v we get Ẽ(kv)[p

r] ∼= Z/prZ for every r ≥ 0.
So more precisely, we get

Ẽ[p∞] ∼= lim
→

(Z/prZ) ∼= Qp/Zp.

Now the canonical reduction map E(Kv)→ Ẽ(kv) is GKv equivariant in the
following sense:
GKv acts naturally on E(Kv). There is a natural homomorphism GKv → Gkv

whose kernel is the inertia subgroup IKv and GKv acts on Ẽ(kv) by the above
homomorphism with the canonical action of Gkv on Ẽ(kv).
So restricting we get a natural GKv -equivariant homomorphism :

π : E[p∞]→ Ẽ[p∞]

Now from (Appendix 2,Lemma 7.5) we get that π is surjective and ker(π) ∼=
Qp/Zp.
The action of Gkv on Ẽ[p∞] is given by a character ψ : Gkv → Z×p since
Aut(Qp/Zp) ∼= Z×p . But we can extend ψ as a character of GKv whose
kernel contains IKv . The action of GKv on ker(π) is given by a character
ϕ : GKv → Z×p again for same reason. So we get the action ρE of GKv on

E[p∞]is triangular, that is ρE =

(
ϕ ?
0 ψ

)
. Now the action of GKv on µp∞

is also given by a character χ : GKv → Z×p and from Weil Pairing (See [19],
page 95, Section 8) we get that det(ρE) = χ. Hence ϕψ = χ.

Let us denote ker(π) by F [p∞]. The motivation for this notation is clear
since this the p-primary part of the formal group F(mv) which is explained
in more details in (Appendix 2, lemma 7.5). Now we have a natural inclusion
: F [p∞] ↪→ E[p∞] which induces

εv : H1(Kv,F [p∞])→ H1(Kv, E[p∞])

Now we get the description of im(κv) from the following theorem.

Theorem 3.6 Let Kv be a �nite extension of Qp and assume that E has
good, ordinary reduction at v, then im(κv) = im(εv)div.
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Proof: Now we know im(κv) ∼= (Qp/Zp)
[Kv :Qp]. So to prove the theorem it

is su�cient to show that im(κv) ⊆ im(εv) and im(εv) ∼= (Qp/Zp)
[Kv :Qp] × T ,

where T is a �nite group.

Let us prove the �rst condition im(κv) ⊆ im(εv) :
Consider the exact sequence

0→ F [p∞]→ E[p∞]→ Ẽ[p∞]→ 0.

which induces an exact sequence of cohomology groups :

H0(Kv, E[p∞]) - H0(Kv, Ẽ[p∞]) - H1(Kv,F [p∞])

H2(Kv,F [p∞]) � H1(Kv, Ẽ[p∞]) �
πv

H1(Kv, E[p∞])

εv

?

Now from the diagram we get im(εv) = ker(πv). So if we can show that
πv ◦ κv = 0 as a map then im(κv) ⊆ im(εv) will follow.
Let [ϕ] ∈ im(κv). Now we have the exact sequence

0 - E(L)⊗Z (Q/Z)
κv- H1(L,E(L)tors)

λv- H1(L,E(L)) - 0

So im(κv) = ker(λv) and then we get ∃Q ∈ E(Kv) such that ϕ(g) = g(Q)−Q
for all g ∈ GKv . Let Q̃ is the image of Q under the reduction map E(Kv)→
Ẽ(kv). Now, πv([ϕ]) = [ϕ̃] ∈ H1(Kv, Ẽ[p∞] where ϕ̃(g) = g(Q̃) − Q̃ for all
g ∈ GKv . So ϕ̃ is a 1-coboundary for Ẽ(kv) and then [ϕ̃] = 0 inH1(Kv, Ẽ(kv).
But Ẽ(kv) is a torsion group and so its p-primary subgroup Ẽ[p∞] is a direct
summand. So we get Ẽ(kv) ∼= Ẽ[p∞] ⊕ E1 where E1 is a subgroup. So we
can write Q̃ = Q̃1 + Q̃2 where Q̃1 ∈ Ẽ[p∞] and Q̃2 ∈ E1. This direct sum is
GKv equivariant so we get ϕ̃(g) = g(Q̃)− Q̃ = (g(Q̃1)− Q̃1) + (g(Q̃2)− Q̃2).
So we get ϕ̃(g) : GKv → Ẽ[p∞] such that ϕ̃(g) = g(Q̃1) − Q̃1. So ϕ̃ is a
1-coboundary for E[p∞] and [ϕ̃] = 0 in H1(Kv, E[p∞]). This proves that
im(κv) ⊆ im(εv).

�

We know already that im(κv) is divisible so to �nish the proof of theorem 2,
it is enough to show [im(εv) : im(κv)] is �nite. Now some terminologies will
be helpful.
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Terminologies:
Let A be any p-primary group. Then we can regard A as Zp module. Now
if we put discrete topology on A then it can be shown easily that its Pon-
tryagin dual Â = Homcont(A,Qp/Zp) is a compact Zp module. We say A is

a co�nitely generated Zp module if Â is �nitely generated as a Zp module.

We then de�ne corankZp(A) = rankZp(Â).

So if A is co�nitely generated as a Zp module then we get Â ∼= Zr
p×T for some

r ≥ 0 and some �nite group T . So A ∼= ̂̂
A ∼= (Qp/Zp)

r× T̂ and has Zp-corank
r. Then Adiv = (Qp/Zp)

r(we say that Adiv is Zp-cofree) and [A : Adiv] <∞ .

We obtain im(κv) is Zp-cofree and has Zp-corank [Kv : Qp]. So for prov-
ing [im(εv) : im(κv)] is �nite, it is enough to show that im(εv) is Zp-co�nitely
generated and has the same Zp-corank.

Now |ker(εv)| is bounded above by the order of the �nite group
H0(Kv, Ẽ[p∞]) = Ẽ(kv)p. So it is su�cient to show that H1(Kv,F [p∞])
is Zp-co�nitely generated and has Zp-corank [Kv : Qp].

Proof of this can be done in two di�erent ways. We will prove here using
some theorems of Tate concerning Galois cohomology over local �elds and
the second proof can be done using standard techniques in Iwasawa theory
which will be the topic of whole next chapter.
Suppose A is a discrete GKv module and A ∼= (Qp/Zp)

r as a Zp module. Let

us denote Tate twist by Â(1) where Â(1) = Hom(A, µp∞) . Then Â(1) is a
free Zp module of rank r.

Corank Lemma : 1) Let Kv be a �nite extension of Qp .Then
H1(Kv, A) is Zp-co�nitely generated and we have

corankZp(A) = r[Kv : Qp] + corankZp(H
0(Kv, A)) + rankZp(H

0(Kv, Â(1)))

2) Let Kv be a �nite extension of Ql where l 6= p . Then H1(Kv, A) is
Zp-co�nitely generated and we have

corankZp(A) = corankZp(H
0(Kv, A)) + rankZp(H

0(Kv, Â(1)))

Now we will apply the Corank lemma toA = F [p∞] ∼= Qp/Zp which will �nish
the proof of Theorem 3.6. We have r = 1 and H0(Kv,F [p∞]) is a subgroup
of H0(Kv, Ẽ[p∞]) = Ẽ(kv)p which is �nite. So corankZp(H

0(Kv,F [p∞]) = 0.
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Now we want to prove that rankZp(H
0(Kv, Â(1))) is also zero for A = F [p∞].

Our claim is H0(Kv, Â(1)) = 0 which is equivalent to prove that the action
of GKv on Â(1) is non-trivial.
Using the notations introduced earlier we have ,
GKv acts on A = F [p∞] by a character ϕ : GKv → Z×p . GKv acts on E[p∞]
by a character ψ = χϕ−1 : GKv → Z×p . GKv acts on µp∞ by a character
χ : GKv → Z×p
The character ψ which gives the action of GKv on E[p∞] is clearly nontrivial.
Since the inertia group IKv acts trivially but a Frobenius automorphism acts
nontrivially. Now Â(1) = Hom(A, µp∞) has a natural GKv action induced
by the actions on A and µp∞ . We have to show that this action is nontrivial.

Now the action of GKv on Â(1) is given in the following way:

Let h ∈ Â(1) then

g.h(a) = g.h(g−1.a) = χ(g).(h((ϕ(g))−1.a) = χ(g).(ϕ(g))−1(h(a))

= χϕ−1(g).(h(a)) = ψ(g).(h(a))

but as ψ acts non-trivially so we get action of GKv on Â(1) is non-trivial

which gives H0(Kv, Â(1)) = 0. So from �rst part of the corank lemma we
get that im(εv) has Zp-corank [Kv : Qp]. So Theorem 3.6 is proved.

�

Now the Corank Lemma can be proved by using results of Tate concern-
ing Galois Cohomology over local �elds. This is done in details in Appendix
1. But we need some results of Tate to have some important information
about [im(εv) : im(κv)] , which are listed below:

Proposition 3.7 Let A be as above then we have. H2(Kv, A) is the Pon-
tryagin Dual of H0(Kv, Â(1)) and then

corankZp(H
2(Kv, A) = rankZp(H

0(Kv, Â(1)))

.

Theorem 3.8 If Kv is a �nite extension of Qp and if E is an elliptic curve
over Kv with good, ordinary reduction at v then im(κv) has �nite index in
im(εv) and the quotient im(εv)/im(κv) is a cyclic group whose order divides
|Ẽ(kv)p|, where kv is the residue �eld of v. So in particular, if p - |Ẽ(kv)|
then im(εv) = im(κv).
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Proof. Clearly [im(εv) : im(κv)] is bounded above by
|H1(Kv,F [p∞])/H1(Kv,F [p∞])div|. Now for m� 0 , we have

H1(Kv,F [p∞])div = pmH1(Kv,F [p∞])

Choosing such m and considering the exact sequence

0→ A[pm]→ A
pm- A→ 0

where A = F [p∞]. This induces an exact sequence of cohomology groups

H1(Kv, A)
pm- H1(Kv, A) - H2(Kv, A[pm])

So we get im(εv)/im(κv) ↪→ H2(Kv, A[pm]) and so [im(εv) : im(κv)] is
bounded by |H2(Kv, A[pm])| for any su�ciently large m . Now from the

above result of Tate, |H2(Kv, A[pm])| = |H0(Kv, Â[pm](1))|.
The Weil pairing E[pm]×E[pm]→ µpm induces another non-degenrate Galois
equivariant pairing (See [19], page 95, Section 8)

A[pm]× Ẽ[pm]→ µpm

So we get, Hom(A[pm], µpm) ∼= Ẽ[pm] as GKv - modules. Then using this we
get,

H0(Kv, Â[pm](1)) = Hom(A[pm], µp∞)GKv ∼= Ẽ(kv)p

Now Ẽ(kv)p is a cyclic group so as im(εv)/im(κv) is a subgroup of Ẽ(kv)p
we get all the statements of our theorem.

�

We will now compare im(εv)and im(κv) for in�nite extensions of Qp un-
der some restrictions. Let us �rst de�ne the pro�nite degree of an in�nite
extension K/F . This is de�ned as the least common multiple of the de-
grees [L : F ] where L varies over all �nite extensions of F contained in K.
So we can interpret this as a formal product

∏
lal over all primes l where

0 ≤ al ≤ ∞. If l∞ divides this product that means the power of l dividing
[L : F ] is unbounded as l varies.

Theorem 3.9 Assume that Kv is an extension of Qp with �nite residue �eld
kv. Assume also that the pro�nite degree of Kv/Qp is divisible by p∞. Then
im(εv) = im(κv). In particular, if Kv is a rami�ed Zp extension of Fv where
Fv is a �nite extenion of Qp, this condition is satis�ed.
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Proof: By the same argument as in theorem 3.6, we still have im(εv) ⊆
im(κv). Now to prove im(εv) = im(κv), it is su�cient to show that im(εv)
is divisible group and im(εv)/im(κv) is �nite.
Now to prove that im(εv) is divisible we will use thatGKv has p-cohomological
dimension 1 (which follows from the next lemma). Now if H1(Kv,F [p∞]) is
divisible then im(εv) is divisible. So it is su�cient to prove that H1(Kv, A)
is divisible whenever A is a divisible p-primary GKv -module. Now if M is
any �nite p−primary GKv module, then Hn(Kv,M) = 0 for all n ≥ 2 since
GKv has p-cohomological dimension 1. Now consider the exact sequence:

0 - A[p] - A
p- A - 0.

which induces an exact sequence of cohomology groups

H1(Kv, A)
p- H1(Kv, A) - H2(Kv, A[p]).

Now H2(Kv, A[p]) = 0 so H1(Kv, A) is p−divisible. But it is a p-primary
group so it is divisible.

Let us write Kv = ∪nF (n)
v where F

(n)
v are the �nite extensions of Qp. we

denote κ
(n)
v , ε

(n)
v the two maps to H1(F

(n)
v , E[p∞]) that we are considering

over F
(n)
v . We have

H1(Kv, E[p∞]) = lim
n
- H1(F (n)

v , E[p∞])

where the direct limit is de�ned by the natural restriction maps We then
have,

im(εv) = lim
n
- im(ε(n)

v ), im(κv) = lim
n
- im(κ(n)

v )

So im(εv)/im(κv) is �nite as it is a direct limit of the �nite groups

im(ε
(n)
v )/im(κ

(n)
v ) whose orders are uniformly bounded by |Ẽ(kv)p| (From

Theorem 3.8).

�

Lemma 3.10 GKv has p-cohomological dimension 1.

Proof: Here we only need Kv is an extension of Ql such that [Kv : Ql]
is divisible by p∞ and l is any prime. From this assumption we get that p-

primary part of the Brauer group of Kv is zero. Therefore H
2(Kv, Kv

×
)p = 0.

By applying the same argument on any algebraic extension of Kv we get
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H2(H,Kv
×

) = 0 for every closed subgroup H of GKv . Now consider the
exact sequence

1 - µp - Kv
× p- Kv

× - 1

which induces an exact sequence of cohomology groups

H1(H,Kv
×

) - H2(H,µp) - H2(H,Kv
×

)

for any closed subgroup H of GKv . Now the �rst term is zero by Hilbert's
theorem 90 and the third term is zero by the above remark. So, H2(H,µp) =
0. Now let H be a Sylow p-subgroup P of GKv . Then H2(P,Z/pZ) =
0 =⇒ H2(P,M) = 0 for any �nite P module of p-power order.(Since then M
decomposes as a P module in isomorphic copies of Z/pZ).
Now we have the restriction map H2(Kv,M) → H2(P,M) is injective, we
have H2(Kv,M) = 0 for any GKv -module M of p-power order. That su�ces
to show that GKv has p-cohomological dimension 1.

�

Remarks: 1) Suppose that E has multiplicative reduction at v and Kv

is any algebraic extension of Qp . Then im(εv) = im(κv), where

εv : H1(Kv,F [p∞])→ H1(Kv, E[p∞])

which is induced by the inclusion F [p∞] ↪→ E[p∞].
This can be proved either adapting the earlier arguments to this case or by

using classical Kummer theory for Kv
×
together with Tate parametrization.

2) Suppose E has good, supersingular reduction at v, then it is still
possible to describe im(κv) in a way which depends only on the GKv -module
E[p∞]. This description involves Fontaine's ring Bcris, and we have chosen
in the present text to avoid this theory.
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4 Some important Λ-modules

Our main aim in this section is to prove the corank lemma for A = Qp/Zp.
But before that we will see some important Λ-modules which arise in the
related context.

1) Let F∞/F be a Zp extension so that Γ = Gal(F∞/F ) ∼= Zp. Let γ0 be
a �xed generator of Γ. Suppose A is a p-primary, abelian discrete group and
Γ acts continuously on A. Let Â = Hom(A,Qp/Zp). We know that A and Â

are Zp-modules. Now de�ning Ta = γ0(a)−a for all a ∈ A , A and Â become
Zp[T ]-module. T is an endomorphism in A. Then it can be shown that T is

topologically nilpotent and so both A and Â can be thought of as Λ-modules.

2) Let E be an elliptic curve over F . Then A = H1(F∞, E[p∞]) is a p-
primary abelian group and has a natural action of Γ. We can then consider
A as a Λ-module ( with discrete topology). If F is a �nite extension of Ql

for any prime l then Â is a �nitely generated Λ-module.

3)Let F be a number �eld and let Σ be a �nite set of primes of F
containing all archimedean primes, all primes dividing p and all primes
where E has bad reduction. Then E[p∞] is a Gal(FΣ/F )-module and A =
H1(FΣ/F∞, E[p∞]) also has a natural action of Γ and can be thought of as a
Λ-module. Again Â becomes a �nitely generated Λ-module. Now SelE(F∞)p
is a Λ-submodule of H1(FΣ/F∞, E[p∞]) .

Now we will state some conjectures concerning the structure of these Λ-
modules. We will need some terminologies which is de�ned below.

Terminologies: If A is a discrete Λ-module as above then we say that
A is Λ-cotorsion if Â is Λ-torsion. A is Λ-co�nitely generated if Â is Λ-�nitely
generated and we de�ne corankΛ(A) = rankΛ(Â).

Conjecture 4.1 Suppose F is a �nite extension of Q and that E is an el-
liptic curve over F . Let Σ is chosen as above. Then

corankΛ(H1(FΣ/F∞, E[p∞])) = [F : Q]

See [6], Chapter 3. In general all that is known in this context is that

corankΛ(H1(FΣ/F∞, E[p∞])) ≥ [F : Q]
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and the equality is equivalent to show that H2(FΣ/F∞, E[p∞]) which is a
Λ-module is Λ-cotorsion.

Conjecture 4.2 (Mazur) Suppose F is a �nite extension of Q and E is an
elliptic curve de�ned over F which has good, ordinary reduction at all primes
of F lying over p. Suppose that F∞/F is the cyclotomic Zp-extension. Then
SelE(F∞)p is Λ-cotorsion.

This was conjectured by Mazur [12]. We have one more conjecture (Due to
P. Schneider) (See [3])which gives the Λ-corank of SelE(F∞)p.

Conjecture 4.3 (P. Schneider) Let F∞/F be the cyclotomic Zp-extension
of a number �eld F . Assume that E is an elliptic curve de�ned over F . Then

corankΛ(SelE(F∞)p) =
∑
v pss

[Fv : Qp].

where the sum is over all the primes of F lying over p where E has potentially
supersingular reduction.

Now we will prove the �nal goal of this chapter.

Theorem 4.4 Let Kv be a �nite extension of Qp . Suppose that A is a
GKv-module and that A ∼= Qp/Zp as a group. Then H1(Kv, A) is a co�nitely
generated Zp-module and corankZp(H

1(Kv, A)) = [Kv : Qp] + δA(Kv) where
δA(Kv) = 1 if A ∼= Qp/Zp or A ∼= µp∞ as GKv-module and δA(Kv) = 0
otherwise.

Note: H0(Kv, A) (or H0(Kv, Â(1)) is either trivial or all of A (or Â(1)).
The latter occurs only when A ∼= Qp/Zp (or A ∼= µp∞ ) as a GKv -module.

We know that Â(1) ∼= Zp as a group so we get

δA(Kv) = corankZp(H
0(Kv, A)) + corankZp(H

0(Kv, Â(1)))

So the above theorem is the corank lemma for r = 1 and v | p .
The two cases when δA(Kv) = 1 can be proved by using standard Local class

�eld theory. So now here we will assume H0(Kv, A) and H0(Kv, Â(1)) is
�nite and δA(Kv) = 0

Proof: The action of GKv on A is given by a homomorphism ψ : GKv →
Z×p . If ψ has �nite order then again this can be done by local clas �eld
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theory. So let us assume that im(ψ) is in�nite. Let F∞ = Kv
ker(ψ)

. So
G = Gal(F∞/Kv) acts faithfully on A and G ∼= im(ψ) , which is a subgroup
of Z×p . Hence G ∼= ∆ × Γ where Γ = ψ−1(1 + pZp) ∼= Zp and ∆ is a �nite
group of order dividing p− 1 if p is odd and of order 1 or 2 if p is 2 . Now as
F0 = F Γ

∞ we have ∆ = Gal(F0/Kv) and Γ = Gal(F∞/F0). So F∞/F is a Zp

extension . If we de�ne Fn = F Γp
n

∞ for n ≥ 0 then F∞ = ∪nFn and Fn/Fo is
cyclic of order pn.
So we have the following �eld extension diagram:

Kv
??

F∞

�������� ???

F0

Kv

ooooooo
ooooooo

Qp

Consider the following exact sequence from the �ve term exact sequence
theorem (Appendix 1 , Theorem 6.3)

0 - H1(G,A)
i- H1(Kv, A)

r- H1(F∞, A)G
tg- H2(G,A)

Our aim is to study H1(Kv, A) by studying H1(F∞, A)G . For that we need
to prove that coker(r) and ker(r) is �nite .

Proof of coker(r) is �nite :

Γ is a free pro-p group so has p-cohomological dimension 1. If p is odd
then |∆| is not divisible by p. So we get that H2(G,A) = 0. So r is surjective
and coker(r) = 0. If p = 2 and ∆ = 1 then also by same reasoning r is surjec-
tive. If |∆| = 2, then it can be shown that H2(G,A) ∼= H2(Γ, A)×H2(∆, A).
So H2(G,A) = Z/2Z (As H2(Γ, A) = 0 and |∆| = 2). Thus coker(r) is �nite
of order ≤ 2.

Proof of ker(r) is �nite :

First of all from the exact sequence ker(r) = im(i). So for proving
�niteness of ker(r) it is enough to prove �niteness for H1(G,A).
If |∆| = 1, then G = Γ and since we are assuming H0(Kv, A) is �nite from
the lemma 6.11 Appendix 1 , we get that H1(G,A) = 0. Now if p is odd and
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|∆| > 0, then A∆ = 0, then by the following in�ation-restriction sequence

0 - H1(Γ, A∆) - H1(G,A) - H1(∆, A)Γ

we get that H1(G,A) = 0 (also H1(Γ, A∆) = 0 as A∆ = 0 and H1(∆, A)Γ = 0
as |∆| is coprime to p). But if p = 2 and |∆| = 2 , then A∆ has order 2 and
again from the above exact sequence one �nds that |H1(G,A)| ≤ 4 (As both
H1(Γ, A∆) and H1(∆, A)Γ has cardinality less than or equal to 2).

therefore we get the �niteness of ker(r).

By the above results we get that

corankZp(H
1(Kv, A)) = corankZp(H

1(F∞, A)G)

Since GF∞ acts trivially on A we get H1(F∞, A) = Hom(GF∞ , A)(Here
in every case it is understood that we take the continuous maps) . Now
let M∞ denote the maximal , abelian pro-p extension of F∞ i.e. M∞ is
the compositum of all �nite , abelian p-extensions of F∞ . If we denote
X = Gal(M∞/F∞) then we get

H1(F∞, A) = Hom(GF∞ , A) = Hom(X,A)

There is a natural group action of G on X by inner automorphisms as
Gal(M∞/Kv) can be regarded as a group extension of the quotient group
Gal(F∞/Kv) = G by the closed normal subgroup X = Gal(M∞/F∞) ( Note
thatM∞ is a galois extension of Kv). We have, H1(F∞, A)G = HomG(X,A).
X is a Zp-module on which G acts Zp-linearly and continuously. Let Xψ de-
note the maximum quotient of X on which G acts by ψ. Then we have

corankZp(H
1(Kv, A)) = corankZp(Hom(Xψ, A)) = rankZp(Xψ)

SinceA ∼= Qp/Zp as a group. We will �nish the proof by carefully studying
the properties of X as a G-module.
All of the characters of ∆ have values in Z×p . If p is odd, then p - |∆| , and
one has a decomposition of X by the characters of ∆

X =
⊕
χ∈∆̂

Xχ

where Xχ = {x ∈ X|δ(x) = χ(δ)x for all δ ∈ ∆)} = eχX , where eχ is the
idempotent for χ in Zp[∆] .
If p = 2 and |∆| = 2 which is the only case when p divides |∆| , then we
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de�ne Xχ by the maximal quotient of X on which ∆ acts by χ .
∆ acts on A by the charater χ = ψ|∆ (denoted by ψ∆) . Then

Hom∆(X,A) = Hom(Xψ∆
, A)

Furthermore if Y is any Zp-module and if κ : Γ→ 1+pZp is a continuous
homomorphism, then the maximal quotient of Y on which Γ acts by the
character κ (denoted by Yκ ) is equal to Y/(γ0 − κ(γ0))Y . Here γ0 is a �xed
topological generator of Γ. By de�nition Γ acts on A by the character ψΓ :
Γ→ 1 + Zp, where ψΓ = ψ|Γ. In fact as G ∼= ∆× Γ we have Xψ = (Xψ∆

)ψΓ
.

So we get that

corankZp(H
1(Kv, A)) = rankZp(Xψ∆

/(γ0 − ψΓ(γ0))Xψ∆
)

Let A be a discrete p-primary abelian group on which Γ acts continuously.
Then using the fact that, if a ∈ A then T na = 0 for n� 0, we can consider
A as a Λ-module. X is an abelian, pro-p group. Then applying the above
fact to the discrete, p-primary Γ-module Hom(X,Qp/Zp), we can consider
X as a Λ-module.
We will use the classi�cation of Λ modules( chapter 2 ) and the following
results of Iwasawa( See [9])
i) X is a �nitely generated Λ-module .
ii) X has Λ-rank equal to [Kv : Qp]|∆|. More precisely , for each character
χ of ∆, Xχ has Λ-rank equal to [Kv : Qp].
iii) If F∞ contains the group µp∞ of p-power roots of unity, then the Λ-torsion
submodule XΛ−tors is isomorphic to Tp(µp∞), the Tate module of µp∞. Oth-
erwise XΛ−tors = 0 .

Now we will �nish the proof of the theorem. We have already proved that

corankZp(H
1(Kv, A)) = rankZp(Xψ∆

/f(T )Xψ∆
)

where f(T ) = T − b with b = ψΓ(γ0) − 1 ∈ pZp. So f(T ) is a distinguished
polynomial of degree 1 . From the satements i), ii) ,iii) using the classi�cation
of Λ-modules (Chapter 2, Theorem 2.8), we obtain that Xψ∆

is pseudo-
isomorphic to Λ[Kv :Qp] or Y × Λ[Kv :Qp], where Y = Tp(µp∞) (According as
F∞ + µp∞ or F∞ ⊃ µp∞).
As f(T ) has degree 1, by the factorization theorem (Chapter 1, Proposition
1.2) we get that Λ/f(T )Λ has Zp-rank 1. So if F∞ + µp∞ then H1(Kv, A)
has Zp-corank equal to [Kv : Qp].
If µp∞ ⊂ F∞, then G = Gal(F∞/Kv) acts on Tp(µp∞) by a character χ. We
are assuming ψ 6= χ. Now if ψ∆ 6= χ∆ ,then considering action of both the
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characters on any element y in Y we get that, ξay = ξby, a 6= b, where ξ is
a root of unity. This gives y = 0 as (ξa−b − 1) ∈ Z×p ( See [20], Proposition
2.2.8 ). So we get Y = 0 .
If ψΓ 6= χΓ, we have Y/f(T )Y ∼= Λ/(T − p, T − b) where p 6= b as ψΓ(γ0) 6=
χΓ(γ0). As (T − p) and (T − b) are co-prime we get Y/f(T )Y is �nite by
Lemma 2.2( Chapter 2). In both cases we again �nd that Xψ∆

/f(T )Xψ∆
has

Zp-corank [Kv : Qp].

�
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5 Mazur's Control Theorem

Let F be a �nite extension of Q and E an elliptic curve over F .

Theorem 5.1 Assume p is a prime and E has good, ordinary reduction over
all primes lying over p. Assume that F∞ =

⋃
n Fn is a Zp-extension of F .

Then the natural maps

SelE(Fn)p → SelE(F∞)Gal(F∞/Fn)
p

have �nite kernels and cokernels of bounded orders as n→∞

Here as before, Fn denotes the unique sub�eld of F∞ containing F such that
[Fn : F ] = pn. We will prove the theorem with the explicit description of the
local Kummer homomorphism of chapter 3. But before proving the theorem,
we will introduce some notations.

Notations:
Let E be any elliptic curve de�ned over F . Let K be an algebraic exten-

sion of F . For every prime of η of K, we let

HE(Kη) = H1(Kη, E[p∞])/im(κη)

where κη is the local kummer map

κη : E(Kη)⊗ (Qp/Zp)→ H1(Kη, E[p∞])

Let P =
∏

nHE(Kη), where η runs over all primes of K. Thus

SelE(K)p = ker(H1(K,E[p∞])→ PE(K))

where the map is induced from GKη ↪→ GK .
Also we de�ne

GE(K) = im(H1(K,E[p∞])→ PE(K))

Proof of the Theorem : From the de�nition of SelE(Fn)p we get
the exact sequence

0→ SelE(Fn)p → H1(Fn, E[p∞])→ GE(Fn)→ 0

Now taking the inductive limit over the natural restriction maps, we get
another exact sequence

0→ SelE(F∞)p → H1(F∞, E[p∞])→ GE(F∞)→ 0
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Let Γn = Gal(F∞/Fn) = Γp
n
. Then taking the Γn invariants we get the

following exact sequence

0→ SelE(F∞)Γn
p → H1(F∞, E[p∞])Γn → GE(F∞)Γn

Considering the above two exact sequences we get the following commutative
diagram

0 - SelE(Fn)p - H1(Fn, E[p∞]) - GE(Fn) - 0

0 - SelE(F∞)Γn
p

sn

?
- H1(F∞, E[p∞])Γn

hn

?
- GE(F∞)Γn

gn

?

where the maps sn, hn, gn are the natural restriction maps. So by the
snake lemma we get the following exact sequence :

0→ ker(sn)→ ker(hn)→ ker(gn)→ coker(sn)→ coker(hn).

Therefore to �nish the proof of the theorem, we have to prove �niteness and
boundedness of ker(hn), ker(gn), coker(hn), which are proved in the following
lemmas.

Lemma 5.2 coker(hn) = 0.

Proof: By the in�ation-restriction sequence (from �ve term exact se-
quence) we get the following exact sequnce

H1(Fn, E[p∞])
hn- H1(F∞, E[p∞])Γn - H2(Γn, B)

where B = E[p∞]GF∞ . Now Γn ∼= Zp , which is a free pro-p group . So Γn has
p-cohomological dimension 1 . Hence H2(Γn, B) = 0 ( as B is a p-primary
group ) and so hn is surjective.

�

Lemma 5.3 ker(hn) is �nite and has bounded order as n→∞

Proof: Again by the same in�ation -restriction exact sequence

0 - H1(Γn, B) - H1(Fn, E[p∞])
hn- H1(F∞, E[p∞])Γn - H2(Γn, B)

37



where B = E[p∞]GF∞ . So we obtain ker(hn) = H1(Γn, B). If γ denotes
the topological generator of Γ then, by the Lemma 6.11 (in Appendix 1) we
get that H1(Γn, B) = B/(γp

n − 1)B. Now Bdiv has �nite Zp-corank ( Since
E[p∞] has �nite Zp-corank). H

0(Γn, Bdiv) = BΓn
div which is equal to the di-

visible part of p-primary subgroup of E(Fn). But by Mordeil-weil theorem
E(Fn) is �nitely generated , so H0(Γn, Bdiv) is �nite. Again by the Lemma
6.11 (in Appendix 1), we get that H1(Γn, Bdiv) = Bdiv/(γ

pn − 1)Bdiv = 0 .
Hence (γp

n − 1)Bdiv = Bdiv. We get that

Bdiv = (γp
n − 1)Bdiv ⊆ (γp

n − 1)B ⊆ B

As B is a co�nitely genrated Zp-module, [B : Bdiv] is �nite. Clearly
H1(Γn, B) is bounded by [B : Bdiv] which is �nite and independent of n,
which �nishes our proof.

�

Lemma 5.4 The order of ker(gn) is bounded as n varies.

Proof: We will prove this lemma by carefully considering some cases. Let v
be any prime of F . Let vn be any prime of Fn lying over v. We will study
ker(gn) by considering each factor of PE(Fn) with the maps

rvn : HE((Fn)vn)→ HE((F∞)η)

where η is any prime of F∞ lying over vn. This map rvn is induced from the
canonical reduction

H1((Fn)vn , E[p∞])
res- H1((F∞)η, E[p∞])

where res is the reduction map and rvn is well-de�ned as res(im(κvn)) ⊆
im(κη).

Now if v is archimedean then v splits completely in F∞/F so Fv = (F∞)η
for all η | v. Then clearly ker(rvn) = 0. Now for non-archimedean v we
consider two cases separately, v - p and v | p.

Case I
v is a nonarchimedean prime and v - p. Then ker(rvn) is �nite and has
bounded order as n varies. Moreover if E has good reduction at v or v splits
completely in F∞/F then ker(rvn) = 0.
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Proof: Let Γv denote the decomposition group of Γ for any non-
archimedean prime v. If Γv = 0 then v splits completely in F∞/F and
then as above Fv = (F∞)η for all η | v and ker(rvn) = 0.
Otherwise Γv has a �nite index in Γ and so v is �nitely decomposed in Γ. Now
we are assuming v - p, so by Theorem 3.5(Chapter 3)we get that im(κη) = 0
and HE(Mη) = H1(Mη, E[p∞]) for every algebraic extension Mη of Fv . Now
as v - p , v is unrami�ed and by assumption it is �nitely decomposed in
F∞/F . So (F∞)η is the Zp-unrami�ed extension of Fv (the only Zp-extension
of Fv). So Γvn := Gal((F∞)η/(Fn)vn) ∼= Zp. Let us assume that Γvn is gen-
erated by a topological generator γvn . Then the in�ation-restriction exact
sequence gives

0 - H1(Γvn , Bv) - H1((Fn)vn , E[p∞])
rvn- H1((F∞)η, E[p∞]),

where Bv = E[p∞]G(F∞)η . We get ker(rvn) = H1(Γvn , Bv). Now Bv
∼=

(Qp/Zp)
e×(�nite group ) where 0 ≤ e ≤ 2. Again by the Lemma 6.11(Ap-

pendix 1) we get that H1(Γvn , Bv) ∼= Bv/(γvn − 1)Bv. By following the same
lines of arguements as in Lemma 5.3, we get that (γvn−1)Bv contains (Bv)div.
So we obtain

|ker(rvn)| ≤ |Bv/(Bv)div|
This bound is independent of n and of vn.
Now assume that E has good reduction at v. Then since v - p, Fv(E[p∞])/Fv
is unrami�ed. Let Fv,n := Fv(1/p

nE(Fv)) then Fv,∞ = ∪nFv,n = Fv(E[p∞]).
Then from (Silverman , proposition VIII.1.5 ) Fv,n are abelian, p extension.
So

Gal(Fv,∞/Fv) ∼= lim
n
- Gal(Fv,n/Fv)

and Gal(Fv,∞/Fv) is a in�nite pro-p group. Since Fv,∞/Fv is unrami�ed,

Gal(Fv,∞/Fv) is a quotient of Gfv
∼= Ẑ, where fv denote the residue �eld

of Fv. Now as Gal(Fv,∞/Fv) is pro-p, it is a quotient of the maximal pro-p

quotient of Ẑ = Zp , which is either �nite or whole. As Gal(Fv,∞/Fv) is
in�nite, we get Gal(Fv,∞/Fv) = Zp. Since (F∞)η is the only Zp-extension of
Fv , we get, (F∞)η ∼= Fv(E[p∞]).
So we get Bv = E[p∞] and then ker(rvn) = H1(Γvn , E[p∞]) = 0 again by the
same kind of reasoning using Lemma 6.11( Appendix 1).

Case II
Suppose v is a non-archimedean prime dividing p .Assume that E has good,
ordinary reduction at at v. Then ker(rvn) is �nite and has bounded order as
n→∞ .
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Proof: We will divide the case in three subcases. Either v splits com-
pletely in F∞/F or v is rami�ed in F∞/F or v is unrami�ed but �nitely
decomposed in F∞/F .
Now if v splits completely then again we have ker(rvn) = 0 .
If v is rami�ed in F∞/F then fη is �nite, where fη is the residue �eld of
(F∞)η and η is any prime of F∞ lying over v. In this case we can ap-
ply Theorem 3.9(Chapter 3). So we have im(κη) = im(εη). We also have
im(κvn) ⊆ im(εvn). Therefore we can think of rvn as composition of the
following two maps

avn : H1((Fn)vn , E[p∞])/im(κvn) - H1((F∞)η, E[p∞])/im(εvn)

bvn : H1((Fn)vn , E[p∞])/im(εvn) - H1((F∞)η, E[p∞])/im(εη)

Where the notations are as de�ned in Chapter 3. Clearly avn is surjective.
So we have

|ker(rvn)| = |ker(avn)||ker(bvn)|

But ker(avn) = im(εvn)/im(κvn) and by Theorem 3.8(Chapter 3) we get the
order of this group is bounded by |Ẽ(fη)p| which is �nite.
On the other hand, from the exact sequence of galois modules

0→ F [p∞]→ E[p∞]→ Ẽ[p∞]→ 0

We get the following commutative diagram

0 - H1((Fn)vn , E[p∞])/im(εvn)
πvn- H1((Fn)vn , Ẽ[p∞])

0 - H1((F∞)η, E[p∞])/im(εη)

bvn

?
πη- H1((F∞)η, Ẽ[p∞])

cvn

?

So from the diagram we get that | ker(bvn)| ≤ | ker(cvn)|. Now again by
the in�ation - restriction sequence we get

ker(cvn) ∼= H1((F∞)η/(Fn)vn , Ẽ(fη)p) ∼= Ẽ(fη)p/(γvn − 1)Ẽ(fη)p

again by the Lemma 6.11 (Appendix 1) where γvn is any topological generator
of Gal((F∞)η/(Fn)vn) ∼= Zp. Therefore | ker(cvn)| is bounded by |Ẽ(fη)p|. So
we obtain, if v is rami�ed in F∞/F ,

|ker(rvn)| ≤ |Ẽ(fη)p|2
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which is �nite and independent of n.

Finally in the last case we assume that v is unrami�ed but �nitely de-
composed in F∞/F . Then (F∞)η is the unrami�ed Zp-extension of Fv. In
this case our aim is to prove ker(rvn) = 0. for all n. Firstly we will prove
that it is enough to prove the following claim.

Claim: H1(L/M,E(L)) = 0 whenever M is a �nite extension of Fv and
L/M is a �nite, unrami�ed p-extension.

Assuming the claim we get ker(res) = 0 by the in�ation-restriction se-
quence where res is the following map

H1((Fn)vn , E[p∞])
res- H1((F∞)η, E[p∞])

ker(rvn) = 0 is equivalent to proving

im(κη) ∩ res(H1((Fn)vn , Ẽ[p∞])) = res(im(κvn))

from the following diagram, where every map is injective

E((Fn)vn)⊗Qp/Zp
κvn- H1((Fn)vn , Ẽ[p∞])

E((F∞)η)⊗Qp/Zp

bvn

?
κη- H1((F∞)η, Ẽ[p∞])

res

?

Clearly res(im(κvn)) ⊆ im(κη) ∩ res(H1((Fn)vn , Ẽ[p∞])).
For the other way inclusion, �rstly we note that from the in�ation-restriction
sequence image of res lies in H1((F∞)η, Ẽ[p∞])Gvn = H1((F∞)η, Ẽ[p∞])Γvn

where Γvn = Gal((F∞)η/(Fn)vn) ∼= Zp.
So enough to show res(im(κvn)) ⊇ im(κη)

γvn ∩ res(H1((Fn)vn , Ẽ[p∞])). As
res is injective, using the explicit description of Kummer map from Chap-
ter 3 we get that it is enough to prove that (E((F∞)η) ⊗ Qp/Zp)

Γvn ⊆
E((Fn)vn)⊗Qp/Zp.

Let P ⊗ 1
pk
∈ (E((F∞)η)⊗Qp/Zp)

Γvn . Then from the de�nition of Qp/Zp

we can think P ⊗ 1
pk
∈ (E((F∞)η/p

kE((F∞)η)
Γvn .

Consider the following exact sequence

0 - pkE((F∞))η - E((F∞)η - (E((F∞)η/p
kE((F∞)η) - 0
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which gives the cohomological exact sequence

0 - (pkE((F∞))η)
Γvn - E((Fn)vn

α- (E((F∞)η/p
kE((F∞)η)

Γvn

H1(Γvn , p
kE((F∞))η)
?

where α is the canonical map obtained from the previous exact sequence. We
have P ⊗ Im(α) ∈ coker(α). Since

H1(Γvn , p
kE((F∞))η) = lim

m
- (Γvn/Γvn,m, p

kE(Fn))

Hence, H1(Γvn , p
kE((F∞))η) is a torsion subgroup and so is coker(α). So

there exists s such that
ps(P ⊗ 1

pk
) ∈ Im(α)

=⇒ ∃Q ∈ E((Fn)vn), such that ps(P ⊗ 1
pk

) = α(Q)

=⇒ P ⊗ 1
pk

= Q⊗ 1
ps

So we get, (E((F∞)η)⊗Qp/Zp)
Γvn ⊆ E((Fn)vn)⊗Qp/Zp.

Now we will prove the claim. Let l and m be the residue �elds of L and
M respectively. Then we have the following exact sequence

0→ F(mL)→ E(L)→ Ẽ(l)→ 0

where mL denotes the maximal ideal of L and F(mL) denotes the group of
points on the formal group F . For proving the claim it is enough to verify
H1(L/M,F(mL)) = 0 and H1(L/M, Ẽ(l)) = 0.

Now H1(L/M,F(mL)) = H1(L/M,OL) as F(mL) and OL have same
Galois group �ltration ( F(mn

L)/F(mn+1
L ) ∼= mn

L/m
n+1
L
∼= πnOL/πn+1OL ∼=

OL/πOL where π ∈ OM is the uniformizer) (See Appendix 2 , Proposition
7.1). Since L/M is unrami�ed extension we have OL ∼= OM [Gal(L/M)] ∼=
OL⊗Zp[Gal(L/M)] ∼= Zp[Gal(L/M)]s which is clearly cohomologically triv-
ial. So H1(L/M,F(mL)) = 0.

H1(L/M, Ẽ(l)) = H1(l/m, Ẽ(l)). H1(l/m, Ẽ(l)) = H1(l/m, Ẽ(l)[p∞]) as
l/m is a p-extension. Let m̃ be a Zp-extension of m containing l ( we can
�nd one as l/m is a p-extension ) then from the in�ation-restriction sequence
we get

H1(l/m, Ẽ(l)[p∞]) ↪→ H1(Γm, Ẽ(m̃)[p∞])
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where Γm ∼= Gal(m̃/m) ∼= Zp. But (Ẽ(m̃[p∞]))Γm = E(m)[p∞] is �nite which

gives H1(Γm, Ẽ(m̃)[p∞]) = 0. Thus H1(l/m, Ẽ(l)[p∞]) = 0.

Now we will �nish the proof of the Lemma. We have to prove �niteness
and boundedness of the following map

gn : GE(Fn)→ GE(F∞)Γn

Now we have
ker(gn) ⊆

∏
vn

ker(rvn) =
∏
v

∏
vn|v

ker(rvn)

where vn and v run over all primes of Fn and F correspondingly. If v is
archimedean then ker(rvn) = 0, and they dont contribute to the kernel. So
we will consider only the non-archimedean primes. We will assume that v
does not split completely in F∞/F as for those primes also ker(rvn) = 0. We
have two cases v - p and v | p.

There are only �nitely many primes dividing p and for every such v by
case II, we have ker(rvn) is �nite and independent of n (We have assumed
that E has good , ordinar reductions at all v | p). Hence

|
∏
v|p

∏
vn|v

ker(rvn)| <∞

and it is independent of n.

If v - p, then if E has good reduction over v we have ker(rvn) = 0 otherwise
ker(rvn) is �nite and independent of n. But E can have bad reduction at
only �nitely many points. So

|
∏
v-p

∏
vn|v

ker(rvn)| <∞

and it is independent of n.
Thus we get that ker(gn) is �nite and bounded as n varies.

�

Now we will �nish the proof of Theorem 5.1. ker(sn) is �nite and has
bounded order as n varies, follows from Lemma 5.3. coker(sn) is �nite and
bounded as n varies follows from Lemma 5.2 and Lemma 5.4, under the
assumption that E has good, ordinary reduction at all v | p. So Theorem 5.1
is proved.

�
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6 Appendix 1

Some important results from Galois cohomology

Cup Product:
If A and B are two G-modules then A⊗ZB is also a G-module( by σ(a⊗b) =
σa⊗ σb) and we obtain for every pair p, q ≥ 0 a bilinear map

Cp(G,A)× Cq(G,B)
∪- Cp+q(G,A⊗B) (5)

by
(a ∪ b)(σ0, . . . , σp+q) = a(σ0, . . . , σp)⊗ b(σp, . . . σp+q)

where Cn(G,A) consists of the continuous functions x : Gn+1 → A such that

x(σσ0, . . . , σσn) = σx(σ0, . . . , σn)

Proposition 6.1 ∂(a ∪ b) = (∂a) ∪ b+ (−1)p(a ∪ ∂b) , where ∂ = ∂n is the
usual alternating sum.

Proof: Reference:-(See [13], Chapter 1.4, page 35)

From this proposition it follows that a∪ b is a cocycle if both a and b are
cocycles and a coboundary if one of the cochains a and b is a coboundary
and the other a cocycle. Therefore the pairing (5) induces a bilinear map

Hp(G,A)×Hq(G,B)
∪- Hp+q(G,A⊗B), (α, β) 7−→ α ∪ β

This map is called the Cup-Product.

Some basic results: At �rst we will de�ne some very canonical and im-
portant homomorphisms between cohomology groups then we will state some
results.

In�ation: Let H be a normal closed subgroup of G and A be a G-
module. Then AH is a G/H-module . The projection and the injection

G→ G/H, AH ↪→ A

induces a homomorphism

inf
G/H
G : Hn(G/H,AH)→ Hn(G,A)

called in�ation .
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Restriction: Let H be any closed subgroup of G then the following two
homomorphisms

H ↪→ G, A
id- A

induces homomorphism between cohomology groups

resGH : Hn(G,A)→ Hn(H,A)

Theorem 6.2 Let H be a normal subgroup of G and let A be a G-module .
Then the sequence

0 - H1(G/H,AH)
Inf- H1(G,A)

res- H1(H,A)

is exact.

Proof: See ( [1], Chapter 4.5, page - 100)

Transgression:Let H be a normal subgroup of G and A a G-module.
Then there is a canonical homomorphism

tg : H1(H,A)G/H → H2(G/H,AH)

called transgression, which is given as follows:
If x : H → A is an inhomogeneous 1-cocycle in a class [x] ∈ H1(H,A)G/H ,
then there exists a 1-cochain y : G → A such that y|H = x and that
(∂y)(σ1, σ2) is contained in AH and depends only on the cosets σ1H, σ2H, i.e
may be regarded as a cocycle of G/H. And for each cochain y,

tg[x] = [∂y]

Reference:(See [13], Theorem 1.6.5, page 62)

Theorem 6.3 (Five term exact sequence) Let H be a closed normal sub-
group of G and let A be a G module . We then have an exact sequence

0 - H1(G/H,AH)
inf - H1(G,A)

H2(G,A) �
inf

H2(G/H,AH) �
tg

H1(H,A)G/H

res

?
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Moreover , if Hn(H,A) = 0 for i = 1, . . . n− 1 , we have an exact sequence

0 - Hn(G/H,AH)
inf - Hn(G,A)

Hn+1(G,A) �
inf

Hn+1(G/H,AH) �
tg

Hn(H,A)G/H

res

?

Proof:
(See [13], Theorem 1.6.6, page 64)

Remark: Proof of this theorem is very long but it follows trivially from
Spectral Sequence, which will come later in the chapter.

Theorem 6.4 Let G be a pro�nite group and U an open subgroup.Then for
every G-module A such that Ĥn(U,A) = 0 we have

(G : U)Ĥn(G,A) = 0

In particular, if G is �nite then Ĥn(G,A) is annihilated by the order |G|. If
moreover, A is �nitely generated as a Z module, then Ĥn(G,A) is �nite.

Recall for n = 0, Ĥn(G,A) = AG/NGA and for n ≥ 1 , Ĥn(G,A) =
Hn(G,A).
So we get that for arbitrary pro�nite groups G the cohomology groups
Hn(G,A), n ≥ 1 are torsion groups since

Hn(G,A) = lim
U
- Hn(G/U,AU)

where U through the open normal subgroups of G and applying the previous
theorem we get our conclusion.

Now we will mention some very important spectral sequences which are
widely used in cohomology of number �elds.

Hochschild - Serre spectral sequence:

Let G be a pro�nite group, H a closed normal subgroup of G and A a G-
module. Then there is a canonical spectral sequence

Epq
2 = Hp(G/H,Hq(H,A))⇒ Hp+q(G,A)
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It is called Hochschild - Serre spectral sequence.
Reference: ([13] , Theorem 2.1.5, page 82)

Corollary 6.5 As a corollary using the property of spectral sequence we get
the Five term exact sequence theorem .

First we will state two important de�nitions.

De�nition 6.6 Hn(G,A)∗ = Hom(Hn(G,A),Q/Z)

De�nition 6.7 Let G be a pro�nite group, H a closed subgroup and A a
G-module, then we de�ne

Dn(H,A) = lim
U⊇H
- Hn(U,A)∗

where U runs throught the open subgroups of G containing H.

De�nition 6.8

Dn(A) = Dn({1}, A) = lim
U⊇H
- Hn(U,A)∗

Tate spectral sequence:

If cd(G,A) ≤ n (where cd stands for cohomological dimension) then for every
normal subgroup H , there is a cohomological spectral sequence

Epq
2 = Hp(G/H,Dn−q(H,A))⇒ Hn−(p+q)(G,A)∗

This is called Tate spectral sequence.

Reference: ([13] , Theorem 2.1.11 , page 89)

Tate spectral sequence is used to prove the Tate duality theorems. For
local �elds we have the following central theorem of Tate:
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Theorem 6.9 (Tate Duality) Let K be a p-adic local �eld. Let A be a �nite
GK module and let Â(1) = Hom(A, µp∞) .Then the cup-product

H i(K, Â(1))×H2−i(K,A)
∪- H2(K,µp∞) ∼= Q/Z

induces for 0 ≤ i ≤ 2 an isomorphism of �nite abelian groups

H i(K, Â(1))
∼- H2−i(K,A)∗

Reference: ([13], Theorem 7.2.6, page 327)

Now there is one more very important invariant which is associated with
the cohomology of local �elds. This is Euler-Poincare Characteristic.
Let K be a local �eld and p be its residue characteristic. If A is a �nite
GK-module of order prime to char(K) (in the case char(K) > 0). Then we
de�ne Euler-Poincare characteristic of A

χ(K,A) =
2∏
j=0

|Hj(K,A)|(−1)j

Now we have the following theorem of Tate

Theorem 6.10 (Tate)
For every �nite GK-module A of order a prime to char(K) , we have

χ(K,A) =‖ a ‖K

where ‖ ‖K is the normalized absolute value of K.

Proof: The theorem's statement is very simple but very hard to proof.
reference:([13], Theorem 7.3.1, page 339)

Now we will prove Corank lemma which was used in chapter 3.

Corank Lemma :
1) Let Kv be a �nite extension of Qp . Then H1(Kv, A) is Zp-co�nitely
generated and we have

corankZp(A) = r[Kv : Qp] + corankZp(H
0(Kv, A)) + rankZp(H

0(Kv, Â(1)))

2) Let Kv be a �nite extension of Ql where l 6= p. Then H1(Kv, A) is Zp-
co�nitely generated and we have

corankZp(A) = corankZp(H
0(Kv, A)) + rankZp(H

0(Kv, Â(1)))
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Proof: Let M be a �nite GKv -module. Assume that |M | = pa. Let

M̂(1) = Hom(M,µp∞). Now M̂(1) is also a GKv -module order pa. Now from
Theorem 6.10, taking A = M and taking the canonical absolute value in Kv

we get
if v|p

2∏
j=0

|Hj(K,A)|(−1)j = p−a[Kv :Qp]

otherwise when v - p
2∏
j=0

|Hj(K,A)|(−1)j = 1

And applying Theorem 6.9 to M and Kv we get that ,

H2(Kv,M) is the Pontryagin dual of H0(Kv, M̂(1)).

Now we can extend these results to in�nite GKv -modules. Let A =
⋃
nA[pn]

and then applying the above results to M = A[pn] for all n ≥ 0 which are
�nite, we get
when v|p

2∑
j=0

(−1)jcorankZp(H
j(Kv, A)) = −[Kv : Qp]corankZp(A) (6)

and when v - p
2∑
j=0

(−1)jcorankZp(H
j(Kv, A)) = 0 (7)

and

H2(Kv, A) is the Pontryagin dual of H0(Kv, Â(1)) and hence we have

corankZp(H
2(Kv, A) = rankZp(H

0(Kv, Â(1))) (8)

So using (6), (7) and (8) we get the corank lemma in both cases.

�

Here we will mention one more lemma which is very useful.
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Lemma 6.11 Suppose that G =< σ > is a �nite, cyclic group of order m
and that A is an abelian group (writen with additive notion) on which G acts.
Then H1(G,A) = ker(N)/im(σ − 1), where N : A - A is the norm map
de�ned by

N(a) =
m−1∑
i=0

σi(a)

and σ−1 : A - A is de�ned by (σ−1)(a) = σ(a)−a (both for all a ∈ A).
a) Suppose Γ ∼= Zp and let γ ∈ Γ be chosen so that < γ > is a dense subgroup
of Γ. Suppose that A is a �nite, abelian p-group on which Γ acts continuously.
(We put the discrete topology on A and require that the map Γ × A - A
de�ned by (γ, a) - γ(a) be continuous.) Let Γn = Γp

n
so that Γ/Γn

is cyclic of order pn. Then H1(Γ, A) can be de�ned as lim−→H1(Γ/Γn, A
Γn).

Show that
H1(Γ, A) = A/(γ − 1)A.

b) Suppose that A is a discrete, p-primary abelian group on which Γ acts
continuously. Prove that A = ∪nAΓn. De�ning H1(Γ, A) as above, show that
H1(Γ, A) = A/(γ − 1)A.

c) Suppose that A ∼= (Qp/Zp)
r as a group and that Γ acts continuously

on A. Prove that H0(Γ, A) and H1(Γ, A) have the same Zp-corank and that
if H0(Γ, A) is �nite, then H1(Γ, A) = 0.

Proof: Part a) and b) follows just by simple calculation using the struc-
ture of H1(G,A) described initially in the lemma.

c) Suppose A ∼= (Qp/Zp)
r. We have H0(Γ, A) = AΓ and H1(Γ, A) =

A/(γ − 1)A. Now we have the following excat sequence

H0(Γ, A) ↪→ A
γ−1- A - H1(Γ, A) - 0.

By dualizing we get corank(H0(Γ, A)) = corank(H1(Γ, A)). So if H0(Γ, A)
is �nite, then H1(Γ, A) is �nite also. But as (Zp)

r has no non-trivial �nite
subgroup, (Qp/Zp)

r has no �nite non-trivial quotient which gives H1(Γ, A) =
0.

�
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7 Appendix 2

Some Important Results from Elliptic Curves

Firstly we will recall some results concerning Formal Groups.

Let R be a ring.

De�nition. A (one-parameter commutative) formal group F de�ned
over R is a power series F (X, Y ) ∈ R[[X, Y ]] satisfying:
(a) F (X, Y ) = X + Y + (terms of degree ≥ 2).
(b) F (X,F (Y, Z)) = F (F (X, Y ), Z) (associativity).
(c) F (X, Y ) = F (Y,X) (commutativity).
(d) There is a unique power series i(T ) ∈ R[[T ]] such that F (T, i(T )) = 0
(inverse).
(e) F (X, 0) = X and F (0, Y ) = Y .

We call F (X, Y ) the formal group law of F .

Formal group of Elliptic Curve:
Let E be an elliptic curve given by a Weierstrass equation with coe�cients
in R.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

always remembering that there is the extra point at in�nity O = [0, 1, 0].
Now we make a change of variables, so let

z = −x
y

w = −1

y

the origin at O on E is now the point (z, w) = (0, 0) and z is a local uni-
formizer at O (i.e z has a zero of order 1 at O ). The usual Weierstrass
equation becomes

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3(= f(z, w)).

Now if we substitute this equation into itself recursively then we get w as a
power series in z.
Since x = z

w
and y = − 1

w
we can obtain Laurent series for x and y by substi-

tuiting the power series for w(z). Then we can form a power series F (z1, z2)
(z1 and z2 are two points on E) which gives the addition law of z1 and z2.
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Reference: [19], Chapter IV.1

The formal group associated to E , denoted by Ê is given by the power
series F (z1, z2).

Let R be a complete local ring,M be the maximal ideal of R, k be the
residue �eld, and F a formal group over R, with formal group law F (X, Y ).

De�nition: The group associated to F/R, denoted F(M), is the setM
with the group operations

x⊕F y = F (x, y) (addition) for x, y ∈M,
	Fx = i(x) (inverse) for x ∈M.

Proposition 7.1 (a) For each n ≥ 1, the map

F(Mn)/F(Mn+1)→Mn/Mn+1

induced by the identity map on sets is an isomorphism of groups.

(b)Let p be the characteristc of k (p = 0 is allowed). Then every torsion
element of F(M) has order a power of p.

Reference: See [19], Chapter 4, Proposition 3.2 Now let K be a local �eld,
complete with respect to a discrete valuation v, R be the ring of integers of
K, M the maximal ideal of R, π a uniformizer for R (i.e M = πR) and k
be the residue �eld of R i.e k = R/M.

Let Ẽ(k) be the elliptic curve de�ned over k obtained by reducing mod-

ulo π. Now the curve Ẽ/k may or may not be singular. But in any case the

set of non-singular points, denoted by Ẽns(k) forms a group. We de�ne two
subgroups of E(K) as follows:

E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)}

E1(K) = {P ∈ E(K) : P̃ = 0}
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Then we get the following exact sequence of abelian groups:

0→ E1(K)→ E0(K)→ Ẽns(k)→ 0

Reference: [19] , Proposition 6.2.1.

Now from the following proposition we get more explicit description of
E1(K).

Proposition 7.2 Let E/K be given by a minimal Weierstrass equation, let

Ê/R be the formal group associated to E and let w(z) ∈ R[[z]] be the power
series described above. Then the map

Ê(M)→ E1(K)

z → (
z

w(z)
,− 1

w(z)
)

is an isomorphism.

Reference: See [19], Chapter 6, Proposition 2.2

Then the above exact sequence becomes

0→ Ê(M)→ E0(K)→ Ẽns(k)→ 0 (9)

Moreover if E has good reduction i.e Ẽ/k is non-singular then E0(K) =

E(K) and Ẽns(k) = Ẽ(k). Then (9) becomes

0→ Ê(M)→ E(K)→ Ẽ(k)→ 0 (10)

We will mention one more important proposition which will imply Lutz's
Theorem.

Proposition 7.3 Let K be a �nite extension of Qp (so char(K) = 0 and
k is a �nite �eld). Then E(K) contains a subgroup of �nite index which is
isomorphic to R+ (taken additively).

Reference: See [19], Chapter 6, Proposition 6.3
Now we will have the Lutz's theorem

Theorem 7.4 E(K) ∼= Z[K:Qp]
p × (�nite group)
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Proof: (Clear from the above proposition and structure of R+)

In the end we will prove one more very important lemma on p-primary
part of Formal groups. We will continue with the notations described in
Section 3.

Lemma 7.5 The natural map

π : E[p∞]→ Ẽ[p∞]

is surjective and ker(π) ∼= Qp/Zp.

Proof:We will use the exact sequence obtained in (9).

0→ Ê(M)→ E(K)→ Ẽ(k)→ 0

which induces the following commutative diagram

0 - Ê(M) - E(K) - Ẽ(k) - 0

0 - Ê(M)

[p]

?

- E(K)

[p]

?
- Ẽ(k)

[p]

?

- 0

where [p]denotes the canonical multiplication map by p. So by snake lemma
we get

Ê[p∞] ↪→ E[p∞]→ Ẽ[p∞]→ Ê(M)/[p]Ê(M)→ 0

So if we can prove Ê(M)/[p]Ê(M) = 0 then the �rst part of the lemma will
be proved.
Now [p] : Ê(M) - Ê(M) is de�ned by sending y 7→ f(y) where y ∈ Ê(M)
and f(T ) ∈ OK [[T ]], f = p.g(T ) + T p

h
(h(T )), h(T ) is invertible and h is

the height of Ê(M) (See Reference: See [19], Chapter 4, Corollary 4.4 and

Section 7). So proving Ê(M)/[p]Ê(M) = 0 is equivalent to �nd a x such that
f(x)− y = 0. But f(T )− y is of weierstrass degree ph therefore f(T )− y =
P (T )U(T ) where P (T ) is distinguished of degree ph. Therefore f(T )− y has
non-zero solution which proves the frist part of the lemma.
Now E[p∞] ∼= (Qp/Zp)

2 since E(C) ∼= (Q/Z)2. This gives ker(π) ∼= Qp/Zp.

�
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