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Introduction

In this thesis we discuss some of the ideas related to Iwasawa theory of
Elliptic Curves. Starting in the late 1950’s Iwasawa proved a number of re-
sults and formulated some important conjectures concerning the behaviour
of ideal class groups in the tower of subfields of a Z,-extension (See [8] ,
[16]). Inspired by Iwasawa’s idea, Mazur formulated an analogous theory in
1960’s and 1970’s which is mostly contained in [12]. Around the same time
Manin wrote an article [11] in which he simplified some of Mazur’s ideas us-
ing Galois cohomology. All along one of the main motivation was to study a
new approach to study the behaviour of Mordeil-Weil group of Elliptic curves
(More generally Abelian Varieties) and the Birch-Swinnerton dyer conjecture.

One of the central theorems proven in Mazur’s article [12] is his control
theorem, which asserts that the Selmer group for an abelian variety behaves
well Galois theoretically in a Z,-extension for any prime p where the abelian
variety has good, ordinary reduction. This theorem has various corollar-
ies including the Conjecture 4.2. In this thesis we follow Greenberg’s idea
[6] which is different from Manin’s article [11] and Mazur [12]. Here we
use the explicit structure theoretic-classification of the Iwasawa modules i.e
A = Z,[[T]] modules. We restrict ourselves to the case of Elliptic Curves with
good, ordinary reduction at p. Although almost all the arguments will work
for Abelian varieties. But for the other type of reductions like multiplicative
and supersingular, we would have needed more arguments.

Section 1 and Section 2 recalls some basic results from Structure of Iwa-
sawa algebras and in the end of Section 2, the main classification theorem is
proved. In Section 3, we define Selmer group and Tate-Safarevich group and
we give a description of the p-primary part of the selmer group for E over
finite extensions of Q and (for some certain infinite extensions) in terms of
the galois cohomology for the group E[p™], the p-torsion points on FE.



In section 4, we mention some important A-modules and some important
conjectures about the structure of those modules. Then we prove some special
case of Corank lemma which was used in Section 3 using Iwasawa theory.
Finally in Section 5, we prove Mazur’s control theorem for Elliptic curves
with good, ordinary reduction at p, which we state now:

Mazur’s Control Theorem:
Let F be a finite extension of Q and E an elliptic curve over F. Assume p
s a prime and E has good, ordinary reduction over all primes lying over p.
Assume that Foo =, Fy, is a Zy-extension of F. Then the natural maps

Selg(F,), — SBZE(FOO)I?“Z(FOC/F")

have finite kernels and cokernels of bounded orders as n — oo

Here F}, denotes the unique subfield of Fi, containing F' such that ([, :
F] =p") and Selg(F),), denotes the set of F,-rational points of the p-Selmer
group defined in Section 3.

In Appendix 1, we list some important results from Galois Cohomology
which is extensively used in the text and give a full proof of Corank lemma.
In appendix 2, we recall some important properties from Elliptic curves in-
cluding Formal groups.



1 Group rings and power series

Let O be the ring of integral elements in Q,. Like for example for a Dirichlet
character x, O = O, = Z,[x(1),x(2),....]. Let p be the maximal ideal of
O, since O is a local ring. Let 7 be a generator of p, so (7) = p.

Let Z, be the p-adic group of integers and I' be a multiplicative topologi-
cal group isomorphic to Z,. Now Z is dense in Z, and 1 generates Z. So if
correponds to 1 under the isomorphism then the cyclic subgroup generated
by v is dense inside I'. Since the closed subgroups of Z, are of the form p"Z,,
the closed subgroups of I" are of the form I'"". Then I',, = I'/T?" is a cyclic
group of order p™ generated by the coset of ~.

Consider the group ring O [I',]. Clearly there is a surjection from

O[T] — O[]
Tr—v—1

Now clearly ((1 4 T)P" — 1) C kernel. We get the other way inclusion by
using the rank equality. So we get:

O, ~0[T)/(1+T)" —1)

If m > n > 0 there is a natural map ¢, : O[] — O[I',]induced by
the map I[',, — T, As ((1+T)P" —1) divides (14+T)?" —1)if m >n > 0 we
get a natural map of the polynomial rings corresponing to ¢, ,. In fact we
get one inverse system. So taking the inverse limit of the group rings O [['})]
with respect to ¢, we get the profinite group ring O [[I]].

As an element o € O[I'] gives a sequence «,, such that ¢, () = @, so
o[r) c o).

But O [[I']] contains more elements. So to get a better idea about the elemnets
insides O [[I']] we look at the polynomial rings.

Now since O[] ~ O[T] /(1 + T)P" — 1), we have

O[[I]] ~lim O [T] /(1 +T)"" - 1).

Our aim will be to prove the following theorem

Theorem 1.1 O[[I']] ~ O[[T]] the isomorphism induced by v+— 1+ T.



For proving this theorem we will prove that

O[[T)) ~limO[T]/((1+T)" —1)
So initially we will study some properties of the power series ring O [[T]]

Proposition 1.2 Let f, g € O[[T]] and assume f = ag + a;T + .....,with
a; € p for 0 <i<n—1, but a, € O*.Then we can uniquely write

g=qf +r
where ¢ € O|[T]] and where r € O [T] is a polynomial of degree atmost n-1.

Proof.Let « and 7 be the projections on the beginning and tail end of the
power series, given by

[e%¢) n—1
o E apTF — E apT*
k=0 k=0

o0 oo
T E aka — g aka_”
k=0 k=n

Now we have two very important properties of 7

i) T(KT™) = h for any h € O[[T]

i1) 7(h) = 0 <= h is a polynomial of degree <n — 1

So by property ii) our claim is equivalent to prove that 7(g) = 7(qf).
Now taking f with the assumptions we can write f as following:

f=a(f)+7(f/)T"
So
qf = qa(f) +qr(f)T"

Hence our problem reduces to solve the equation
7(9) = 7(qa(f)) + 7((g7(/)T")
Using property i) which reduces to
7(9) = m(qa(f)) + a7(f) (1)

Now 7(f) is invertible in O [[T]] as the constant term is a,, which is a unit in
O[[T1}.
Putting Z = q7(f), we get the equivalent to a)
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rlg)=7(25f)+2 = (147050 )2

(f) (f)
The only unknown in the equation is Z , so to find Z we have to invert
I+7020)
7(f)
Note that )
«
o :O|[T]] — pO||T
=y [T7] [T7]

as 2U) ¢ pOl[[T]]. So by taking suitable norm, we can prove that I +
% is a invertible operator. In fact explicitly it is easy to see that

Z =S (=D)krR(r(alf)/(x7(f))))(7(g)) is the inverse. So we get both
the existence and uniqueness, which finishes the proof.

Definition 1.3 P(T) € O[T is called distinguished
if P(T)=T"+ a1 T" '+ ..... + ap witha; €p for 0 <i<n-—1

Theorem 1.4 (p-adic Weierstrass Preparation Theorem)
Let

o0

F(T)=> T € O[T]

k=0

and assume for some n we have a; € p for 0 <i < n-—1, but a, € O Then f
may be uniquely written in the form f(T) = P(T)U(T), where U(T) € O [[T]]
is a unit and P(T) is a distinguished polynomial of degree n.

More genereally , if f(T) is nonzero then we may write uniquely
f(T) =" P(T)U(T)
with P and u as above and |1 € Z>q

Proof. If we just factor as large a power of 7 as possible from the coefficients
of f(T') then the second part follows easily from the first part.
Now for proving the first part let us take g(7') = T™ in propositinon 1.2, then

" = q(T)f(T) +r(T),

with degr <n —1
Since ¢(T) f(T) = q(T)(a,T"+higher terms )(mod 7), we must have r(T) =
0(modm)



Therefore P(T') = T™ — r(T') is a distinguished polynomial of degree n. Let
¢; be the coeflicients of the polynomial ¢(7") then comparing the coefficients
of T" in f(T)q(T) =T —r(T) we get

aoQn + a1qn—1 + ..... + ango = 1

So,we get a,qo = 1(modn). Therefore ¢y € O* so ¢(T') is a unit. LetU(T) =
1/q(T) then f(T) = P(T)U(T) as desired. Now every distinguised polyno-
mial of degree n can be written in the form P(T) = T™ — r(T) so we may
transform back the equaton f(7') = P(T)U(T) to

™ =U(T)" f(T) +r(T)

then the uniqueness statement of the proposition 1.2 implies the uniqueness
of P and U.

Corollary 1.5 Let f(T) € O[[T]] be nonzero. Then there are only finitely
many x € C,, |x| <1 with f(z) = 0

Proof. Let f(x) = 0. Then from Theorem 1.4, f(T) = #*P(T)U(T). Since
U(T) is invertible, U(x) # 0. So we get P(xz) = 0, but as a polynomial it can
only have finitely many roots. We get the deired result.

Corollary 1.6 Let P(T)e O[T] be a distinguished polynomial and let g(T') €
O[T] be arbitrary. Then if g(T)/P(T) € O][T]] then g(T)/P(T) € O[T].

Proof. Let ¢g(T) = f(T)P(T) for some f(T') € O[[T]]. Let x € C, be a zero
of P(T'). Then

0 = P(z) = 2"+ (multiple of 7)

So by p-adic valuation |z| < 1 hence f(z) will converge so g(z) = 0.
Now we can divide both ¢(T") and P(T) by (T — x) and working in a larger
ring if necessary, continuing this process we find that P(T") divides ¢g(7') as
polynomials .



Now we return to the proof of the main theorem. We have to prove that

O[[T]] = lim O [T] /(1 +T)*" — 1)

First of all, P,(T) = (1 +T)?" — 1 is a distinguished polynomial. The ideal
(m,T) 2 (p,T) is a maximal ideal of O[T] and also gives the maximal ideal
of O[[T]]. Now,

as clearly Py(T) C (p,T) by induction we have P,(T) C (p, T)" !
By proposition 1.2 we have a natural map from O[[T]] — O[T|modP,(T)
for each n given by f(T) — f,.(T) where f(T) = ¢,(T)pn(T) + fu(T') and

deg fn, < p"
Now if we have m > n > 0, then

fin(T) = fu(T) = (@0 = Prngm/ Pn) P

By corollary 1.6, we have f,, = f,,(modP,) as polynomials so
(fo frs o) € im O [T] /Po(T)

sowe get a map from the power series ring to the inverse limit. Now if f, =0
for every n then P, divides f for all n. So f € (7, (p, T)"** which is zero
so the map is injective.

Now for surjection let us pick any (fo, f1,....... ) is in the inverse limit, so for
m >n >0, frn = fu(modP,) therefore (mod(p, T)") then the coefficients
of the terms form Cauchy sequence with respect to the (p,T)-adic topology
for which O[[T] is compact. So lim f,, exists. Let lim f,, = f

But letting m — oo

Gmn = (fm — fa)/Po — (f = fo)/ P
AS ¢, € O[T] then the limit must be in O[[T]].Therefore

[ = (Pn)<h£1Qm,n) + fu

So we have f — (fo, f1, ..o ) and that gives the surjection of the map.



2 The structure of A-Modules

In this section we will classify all A modules using the tools developed in the
previous chapter.

Lemma 2.1 A =Z,[[T]] is a Unique Factorizaton Domain.

Proof. By the p-adic Weistrass theorem, if f(7') € A is nonzero, then we
may write uniquely

f(T) =p"P(T)U(T)
with p > 0, P(T) distinguished and U(T) € A*. Also if know f is a polyno-
mial then so is U. There is a divison algorithm for distinguished polynomials:
if f(T') € A and P(T) is distinguished then (uniquely)

f(T) = o(T)P(T) +r(T)

with r(T') € Z,[T], deg r(T") < deg P(T') (We take deg 0 = —o0 ). From the
above discussion it follows that the irreducible elements of A are p and the
irreducible distinguished polynomials. Therefore A is a unique factorization
domain.

Lemma 2.2 Suppose f,g € A are relatively prime then the ideal (f,g) has
finite index in A

Proof. Let h € (f,g) be a polynomial of minimal degree. By Lemma 2.1
we may assume that, h = p°H with H = 1 or H is distinguished. Suppose
H # 1. As f and g are relatively prime we may assume that H does not
divide f. Now using the divison algorithm

f=Hq+r,

with deg r < deg H = deg h

so, p°f = hq + p°r. But deg (p°r) < deg h and p°r € (f,g) we have a
contradiction by our assumption on minimality of h. So we have H = 1 and
h = p®. Now interchanging g and f or dividing by unit we may assume that
f is not divisible by p and distinguished. So we have,

(f.9) 2 @, f)

By divison algorithm any element of A is congruent mod f to a polynomial
of degree less than degf. Since there are only finitely many such polynomials
mod p*, (p°, f) has finite index.

Now there is a canonical surjection A/(p®, f) — A/(f, g), hence A/(f,g) is
finite. |



Lemma 2.3 Suppose f,g € A are relatively prime
1) the natural map

A (fg) =2~ A(f HEPA/(9)

s an injection with finite cokernel
2)there is an injection

NEPA/(9) — A/(f9)

with finite cokernel.

Proof. 1) The canonical map is a(mod fg)— (a mod f,a mod g). So if
flaand g|athen as Aisa UFD and f,g are relatively prime, we get fg | a.
So that this map is an injection.

Now our claim is im(¢) = {(a mod f,b mod g):a—be (f,g)}

Clearly if (¢ mod f,b mod g) € im(¢) then Jc such that ¢ = a mod
fye=0bmod g, and hence a — b € (f, g).

Conversely, consider (a mod f,b mod g). If a —b € (f,g) then a — b =

fA+gB for some A, B in A. Let
c=a— fA=0b+ gB.
then
c=amod f,c=bmod g,

So (a,b) is in the image and the claim is proved.

Hence any element of cokernel can be written as (0 mod f,r 4+ s mod g)
where r € A, s € (f,9).

From the previous lemma A/(f,g) is finite. Let ry,79,.....7, € A are the
representatives for A/(f, g), it follows that

[((0 mod f,r; mod g) | 1 <j <n]

is a set of representatives for the cokernel of this map. So the cokernel is finite.

2) from part 1) we have

A(fg) ~M S A EDA/(9)

with M of finite index in N. Let P be any distinguished polynomial in A
relatively prime to fg. Let (z,y) € N
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then (P%)(z,y) = (P?)(x,y) mod M

for some i less than j. Since 1 — P/~ € A*
we have

Pi(z,y) € M

so we get P¥ € N C Mfor some k. Hence there is a map
N—M=~A/(fg)

by multiplication by P* . Let P*(z,y) = 0 in M but M C N so we can
think P*(z,y) = 0in N then f | P*z, g | P*y. but we have ged (P, fg) = 1
so f|zand g|yso (x,y) =0in N therefore the map is injective.

The image contains the ideal (P*, fg) which has finite index by lemma
2. Now pFA/(fgA) € A/(fgA). Hence there is a surjection A/(fg,p*) —
cokernel which proves that the cokernel is finite.

Lemma 2.4 The prime ideals of A are 0,(p,T), (p) and the ideals (P(T))
where P(T) is irreducible and distinguished. The ideal (p,T) is the unique
maximum ideal of A.

Proof. Clearly the ideals listed above are prime ideals. Let o # 0 be
prime.Let h € p be a polynomial of minimal degree. We can choose h such
that h = p°H with H = 1 or H distinguished. Since g is prime p € @ or
H € p. Soif H# 1 € p then H must be irreducible by the minimality of its
choice. So we get (f) C p where f = p or f is irreducible and distinguished.
Let us assume that (f) # p otherwise it is already in the list. So there exists
g € p such that ftg. So f, g are relatively prime since f is irreducible. Now
we have (f,g) C p and from lemma 2.2 the ring A/(f, g) is finite . So p has
finite index in A. Now A/ is a finite Z, module so p™¥ € p for large N hence
p € g since p is prime (We will always get this. If f = p then clearly we have
this otherwise if f and ¢ are relatively prime then as in the proof of lemma
2.2 we get p* € (f,g) C p). Also T" = T7 mod p for some i less than j.But
1—T771 € A*s0 T € p therefore T € p so (p,T) C p but A/(p,T) ~Z/pZ
so (p,T) is maximal and p = (p,T), since all the prime ideals are contained
in (p,T) this is the only maximal ideal.

Lemma 2.5 Let f € A with f € A — A* Then A/(f) is infinite.
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Proof. Assuming f # 0 it suffices to prove it for f = p or f distinguished.
If f is distinguished then by Division algorithm all polynomials of degree
less than f (which is clearly infinite) provide a system of representatives of
A/(f). And if f = p then A/(f) = F,[[T]] which again is infinite.

Lemma 2.6 A is a noetherian ring.

Since the generators of an ideal can be be thought of polynomials then by
Hilbert Basis Theorem A is noetherian

Definition 2.7 Two A— modules M and M’ are said to be pseudo - isomor-
phic (M ~ M') if there is a homomorphism M — M’ with finite kernel and
co-kernel. In other words there is an exact sequence of A modules

0-A—-M-—M —B—0
with A and B finite A modules
Warning (M ~ M')does not necessarily imply (M ~ M)

Now we want to study the structure of finitely generated A modules.
Inspired by the classification of finitely generated modules over principal
ideal domain, we get the following classification upto pseudo-isomorphism .

Theorem 2.8 Let M be a finitely generated A module. Then
s t
M~ A & (@A) e @A/ (HT)™))
i=1 j=1

where r,s,t,n;,m; € N and f; is distinguished and irreducible.

We will follow the same line of proof as in the case of PID theorem
i.e. via admissible row and column operations. But here we have pseudo-
isomorphism. So we will increase our list of admissible operations.
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Suppose M has generators uy, us, us, ....., 4, with elementary relations
)\Liul + )\277;1[/2 —+ .. + )‘n,iun =0, )\m. cA

Now the relations are finitely generated since they form a submodule of A™
and A is noetherian. So we can represent the module M by a matrix whose
rows are of the form (A;,...., \,;) where Y} A\ju; = 0 is a relation of M. Let
us denote R this matrix.

In other words as M is finitely generated with the generators say uy, us,
U3, ....., U, then we have a canonical surjection ¢:A" — M just sending e¢; —
u;. So we have A" /kerp ~ M. Now keryp is the module of relations and it is
finitely generated, say the generators are ri,7ry,73,.....,7,,. Hence there is a
canonical surjection f:A™ — A" such that image f =kery and imagef is given
by a matrix R . So imagef = AA™. Therefore A"/RA™ = A" /kerp = M.
This matrix R is the presentation matrix of M and M is said to be repre-
sented by R.

Now we will review the basic admissible row and column operations.
Operation A. Rows or columns of R can be permuted
Operation B. A multiple of row or column) can be added to another row
or column
Operation C. Rows or columns can be multiplied by units in A

Now we will see three more operations which arise from pseudo-isomorphism.

Operation 1 If R contains a row (A1, pAa....,pA,) with p{ Ay then R can be
changed to matriz R whose first row is (A1, ooy A\n) and the remaining rows
are rows of R with the first element multiplied by p.

A1 pAy - Al Ao
Gy Qg - — | por Q2
B Ba - pBr Bo
As a special case if Ay = ...\, = 0 then we may multiply o, G, ..... by an

arbitrary power of p
Proof. By assumption on R we have the relation
Aug 4+ p(Agug + ... + Apty,) =0
Let M' = M @ vA with a new generator v modulo the additional relations

(—up,pv) =0, (Agug + Agug + ...... + Ay, M) =0
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now we have a natural map M — M by m — (m,0). Supose m — 0 then
m lies in the module generated by relations , so

(m,0) = a(—uy, pv) + b(Agua + Agug + ...... + Anlin, A10)

with a,b € A.
Equating both sides, we get ap = —bA; but by assumption p{ A\; so p | b and
A1 | a. In the other component, we get

m = —ﬁ()\lul) — gp()\QUQ + >\3U3 + . + )\nun)
A M ©
= 2(0)=0
A1

So the canonical map is an injection. Now in M, pv and \jv are in the
image of M. So the ideal (p,A;) will annihilate M'/M. So M'/M becomes
A/(p, A1) module . Now from lemma 2.2 as p and \; are relatively prime,
the ring A/(p, A1) is finite. M’ is also finitely generated so we get M /M is
finite. Hence

M~M

Tt remains to prove that M  has the required relation matrix. M has gen-
erators v, uo, .....u,, . Now any relation aju; + ...... + ayu, = 0 becomes
POV + ... + a,u, =0, as (—uq, pv) = 0. So we get that the first column is
multiplied by p. Now from the 2nd relation (Ayug+Agug+......+ Ay, Ayv) = 0
we have A\jv+Aaus+Asus+...... + A, = 0. So the new module has the desired
relation matrix (here we did not consider the redundant row (pAy, ......, pA2)).

Operation 2 If all elements in the first column of R are divisible by p* and

if there is a row (pFAq, ........ ,PFA\n) with p t A\ ,then we may change to the
matriz R which is the same as R except that (L T ,pF\,) is replaced
by (A, e , An). In pictures

PP PRy - R A1 A e

pra; oy - pray oy -
Proof. Let M = M @ vA with a new generator v modulo the additional
relations

(pFuy, —pFv) = 0, (Aaug + Agug + ... + Ay, Av) =0

13



As before p { A; implies that there is a canonical injection M — M and p*v
and v is in the image of M so the ideal (p*, \;) annihilates M /M so we
get by the same argument as before M’ /M is finite. So

M ~ M.

Here we dont have that M have the relation matrix R'. But from the relation
pf(uy —v) = 0 and using p* divides the first coefficient of all the relations
involving u; we get that M can be decomposed as

M =M @ Auy —v)

where M is generated by v,us, .....u, and the relations are generated by
CYT— ,An) and Rie R

Now there is a canonical surjection A — A(u; — v) which has the kernel
generated by p* (As p*(u; — v) = 0). So we have

A(ur —v) = A/(p")

Hence we get
M~ M @A/ (p").

In Theorem 2.8, we have the terms like A/(p*) upto pseudo-isomorphism. So
we have already proceeded towards the classification and can continue the
classification ignoring this term. Therefore after elementary operations we
can deal with M".

Operation 3 If R contains a row (pFAq, ........ ,P"A\n) and for some \ with
PN, (AN, AN, is also a relation (not necessarily contained in R i.e
not necessarily elementary relation), then R may be changed to R where R’
is the same as R with (p*A1, ........ ,p"\,) replaced by (A, ........ s An)-

Proof. We have a canonical surjection M — M’ where M = M/(A\u; +
...... Aty ). From our assumption the kernel is annihilated by the ideal (), p*).
Also kernel is finitely generated as M is finitely generated and the kernel is
a module over A/(\, p*) which is finite. So the kernel is finite and

M~ M

M is generated by vy, vs, .....v, Where v; = image of u; under the map for all
1 <i < n. So by definition M’ has the relation matrix R. Hence the proof
is done.
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With these admissible operations we return to the proof of the theorem.

Proof of Theorem 2.8 Let f # 0 and f € A then
A(T) =p'P(T)U(T)
with P distinguished and U € A* . Let
deg, f =deg P(T), if 1 = 0 otherwise = co.

This is called Weierstrass degree of f. Now suppose that a matrix R is given
then

deg(k)(R) = mindegw(a;j) for Z)j >k

where a;j ranges over all the relation matrices obtained from R via admissible
operations. If the matrix R has the form

A1 0 o0

' ([ D,y 0
0 : )\rfl,rfl — A B
* . *
* *

with A\ distinguished polynomials and
deg A\pp = degu e = deg®(R), for 1 <k <r—1

then we say that R is in (r — 1) normal form.
We will first assume the following claim to be proven later.
Claim. If the submatrix B # 0 then R may be transformed via admis-

sible operations into R which is in r normal form and has the same first
(r — 1) diagonal elements.

So if we start with a relation matrix R and r = 1 by the claim we may
successively change R to obtain the following form of the matrix

/\11 0
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where each );; is distinguished and deg);; =deg")(R) for j < r. So if we can
prove that A is zero matrix then we are done. Now by the divison algorithm
and operation B we can assume

Aij =0or deg/\ij < deg /\jj for ¢ 7é j

Suppose \;; # 0 for some ¢ # j. Now since deg ,,\;; is minimal, we get p | \;;
so we have a nonzero realtion (\;,.....\;, 0,0,...0) which is divisible by p.
Let A = Aq1...... A, then p 1 A since A;;s are distinguished and

()\/\zl/py ..... /\A”‘/p, O, O, 0)

is also a relation since Aju; = 0. Now operation 3 gives us that we may
assume p does not divide );; for some j as we can successively change the
row (A1, -.---Air, 0,0, ...0) by removing the p. so,

deg ,)\j; < deg \j; < deg \;; = deg YW(R).

This is impossible. So we have \;; = 0 for all 7 # j which implies A = 0.
This in terms of A modules imply that we have

M~A M) @ oo @A/ (Nr) A

We recall that in Operation 2, we ignored elements of the type A/(p").
Now we can put back the factors A/(p*) and we get

We can think of \; to be irreducible (we get this just decomposing \;
into irreducibles and then using the lemma 3) which finishes the proof of
Theorem 1.

Proof of Claim. By the special case of operation 1 we can say that a
large power of p divides each \;; with ¢ > r and j <r—11iep" | A with N
large enough such that p” { B . Now using operation 2 we can assume that
p1 B We may also assume that B contains an entry \;; such that

deg,\ij = deg™(R) < oo.
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We may assume that \;; is distinguised ( if A\;; = P(T)U(T") then by we
can multiply A;; by U™'). Now the first (r — 1) rows have zero in the jth
column so they do not change. Again using the zeros and operation A we
get \ij = Ay

Now by divison algorithm and operation B we can assume that \,; is such
that

deg \,; < deg A\, j #,
and
deg\,; < deg \j;, j <.

No from definition of (r — 1) normal form A, has minimal Weierstrass degree
in B so we must have p | A,; for j > r. Again by operation 1 we can assume
that p™v | A\, for j < r.

Let A,; # 0 for some j > r . By operation 1 we can assume there is some j
with p 1 A,; then

deg,\; = deg \,; < deg A\, = deg , Ay

which is impossible. So A,; = 0 for j > 7.
Let \,; # 0 for some j < r.By operation 1 we can assume that there is some
J with pt A, then

deg,A\; < deg A, < deg A\j; = deg ,\j;

But deg )\;; = deg"(R), which contradicts definition of deg”)(R). Therefore
Arj = 0 for j < r. Hence we get \,; = 0 for all j # r and our claim is proven.
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3 Selmer groups

Let K be any algebraic extension over Q and E be an elliptic curve over
K. One of the most interesting object associated with E is the Mordell-Weil
group of E(K). Mordell-Weil group of E(K) is studied in different ways. We
have chosen here the approach via Galois cohomology.

Fix n > 2. We have a canonical exact sequence

Where K denotes the algebraic closure of K and F[n] denotes the n torsion
points. So from this we get an exact cohomological sequence

En|S% — B(R)%< — B(K)%* — HY(Gx, E[n]) — H'(Gx, E(K)) — ...

where G 1s the absolute galois group Gal (K/K).
Now E(K)“x = E(K), so we get a canonical injection (which is called Kum-
mer map)

E(K)/nE(K) — H'(Gx, Eln]) (3)

Now If K is a finite extension of Q then H'(G, E[n]) becomes infinite but
under Kummer map it can be shown E(K)/nE(K) is contained in a finite
subgroup of H'(G, E[n])(called n-Selmer group) . So then using theory of
heights one can prove the Mordell-Weil theorem

E(K)=7Z"xT, (4)
for some r > 0 and some finite group 7". Hence
E(K)/nE(K) =2 (Z/nZ)" x T/nT

and clearly if one knows n-Selmer group then one can give upper bound to
T
From (4) we get

E(K) @z (Q/Z) = (Q/Z)"
Now E(K)/nE(K) = E(K) ®z (Z/nZ), so passing to direct limits we get
E(K)®z(Q/Z) and an injection E(K)®z(Q/Z) — HY(Gr, E(Q)tors)- One
can show that E(K) ®z (Q/Z) is a subgroup of Selp(K) and we will get an
exact sequence

0— E(K)®gz (Q/Z) — Selp(K) — Ig(K) — 0

Therefore knowing the structure of Selg(K') will give an upper bound on r.
We will give two equivalent definitions of Selg(K') and describe an alternative
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definition for the p-primary subgroup of Selg(K) which involves only Galois
module E[p>] under the assumption that E has good ordinary reduction at
all primes of K lying over p. (for any prime p, E[p>*] = U, E[p™] is the p
primary subgroup of E(Q)rs)).

We adopt two more usual notations for Galois cohomological groups, writ-
ing H'(L,.) in place of H(Gp,.) and H'(K/L,.) in place of H'(Gal(K/L),.)
if K/L is a galois extension.

Definition 3.1 (First definition)

Let v runs over all primes of K, archimedean and non-archimedean. If K
is a finite extension of Q then K, is the completion of K at v. If K is an
infinite algebraic extension then K, denotes the union of the completions at
v of all finite extensions of Q contained in K. Thus K, is always either R or
C or an algebraic extension of Q; (for some prime [).

Now we have the natural map K — K,. So we can choose an embedding
K — K, (The choice does not matter) and by identifying G, with the
decomposition group we get G, identified with a subgroup of Gx. Now
Gg, — G induces H'(K, E(K)) — H'(K,, E(K)) and noting that E(K) C
E(K,) induces HY(K,, E(K)) — H*(K,, E(K,)) and then composing we get

(K, E(R)) — H'(K., E(,).
Now we define the Tate- Safarevich group Il g(K) by

() = ker ( (K, B(RY) — 1, H' (K. B(K))
Now we have the canonical inclusion E(K )0 < F(K) which induces
A HY(K,E(K)ors) — H'(K, E(K))
Lemma 3.2 )\ is surjective .

Proof: coker()) is isomorphic to a subgroup of H' (K, E(K)/E(K )irs). Now
E(K)/E(K)ios is a uniquely divisible group, so H'(K, E(K)/E(K)rs) is
also uniquely divisible group. But we know H'(G, E(K)/E(K )1ors) is torsion
group for every finite group GG and passing to the direct limits we get that
HYK,E(K)/E(K )tom) is torsion group. (See Appendix 1, Theorem 6.4) So
we get HY(K, E(K)/E(K )yrs) is zero. So coker()) is zero proving that \ is
surjective.

Now we define Selmer group by

Selp(K) = \"YIg(K))
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Definition 3.3 (Second definition)

Let E be an elliptic curve over L then E(L) is also a divisible group. Then
imitating Kummer theory for the multiplicative group L, we define Kummer
homomorphism:

k:E(L)®z (Q/Z) — Hl(L, E<z)to7"s)

in the following way:
Let a = P®r € E(L) ®z (Q/Z) where P € E(L) and r = +7Z .

Now since E'(L) is divisible we can choose () € E(L) such that nQ) = mP.
Then define a 1-cocycle ¢, : G — E(L)iors by 9o = 9(Q) — Q for all
g € Gp. First of all ¢, is defined as g(Q) —Q € E(K )rs since n(g(Q)—Q) =
g(n@) —n@ = g(mP) — mP = mg(P) — mP = mP — mP = 0, since G,
fixes L.

So [pa] is well-defined and one defines k() = [p,]. Now we get the following
sequence:

0 — E(L) @z (Q/Z) —~ H'(L, BE(L)iors) ——= H'(L, E(L)) — 0

Lemma 3.4 The above sequence is exact.

Proof : We already know A is surjective, so we only have to prove that k is
injective and im(k) = ker(\).

Injectivity of k : If k() = [pa] = 0, which gives ¢, is a 1-coboundary
in ZY(L, E(L)ors), the 1-cocycle elements and Q € E(L);ors- Then 3n; such
that n1Q) = 0 which gives nymP = n;n@ = 0. So we get P € E(L);rs and
nimP =0,but PQr=Pnmr=nmp®r=0®r =0 since r € Q/Z.
So a = 0 proving that « is injective.

Ezactnes at H'(L, E(L)yrs : We have defined A\ by composing G —

E(L)jors — E(L). Now clearly Ao x = 0 since ¢, becomes 1-coboundary in
ZY(L,E(L)) since Q € E(L). So the image & is included in ker \.

For the converse, let [¢] € HY(L, E(L)ors). We have A([¢]) = 0 which
means there exists Q € E(L) such that G, —2— E(L)yys is defined by

o(g) = g(Q) — Q. As g(Q) — Q € E(L)irs, there exists n such that

n(g(Q) — Q) = 0. Since E(L) is divisible we can choose m and P € E(L)
such that mn@ = P. Now gP — P = g(mnQ) —mnQ = m[n(g(Q) — Q)] =0
for all g € Gr. Then if we take r = - +Z and a = P @7 we get r(a) = [¢].
So image x O ker A ]
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Remark: From (3) so we get a canonical injection (which is called Kum-
mer map)

E(K)/nE(K) — H'(Gg, E[n])

and then passing to direct limit we obtain an injection E(K) ®z (Q/Z) —
H'(Gk, E(Q)iors). This can be shown easily this map is the map « described
above. So in this way also we can obtain k is injective.

Now following the same procedure for the completetions L = K, where
v is any prime of K |, we get the following commutative diagram where the
vertical rows are defined in obvious ways and the rows are exact.

0 E(K) ®z (Q/Z) —~ HY(K, E(K )iors) —— H'(K, E(K)) — 0
0 E(K,) @7 (Q/Z) = HY(K,, B(K,)wns) ~> HYK,, E(K,)) — 0

Let [¢] € HY(K, E(K)rs). Now from the first definition of Selg(K),
[¢] € Selg(K) if and only if ¢, o A([¢]) = 0 for every prime v of K. But
from the commutavity of the diagram ¢, o A([¢]) = A, 0b,([¢]) and im(k,) =
ker(\,). So we get ¢, o A([¢]) = 0 <= by([¢]) € im(k,) for all v. So we get
the second definition of Selmer group:

Selp(K) = k:er(Hl(K E(ER)tors) — TI, H- (Ko, E(K,)tors) /im(/-cv)>

That is if [¢] € H'(K, E(K)iors) then [¢] € Selp(K) <= [pla,,] € im(ky)
for every prime v of K.

Let p be a prime. Now we will follow the same line of argument to obtain
the p-primary subgroup of Selg(K). The p-primary subgroup of Q/Z is
isomorphic to Q,/Z,. So for any field L, the p-primary subgroup of E(L) ®
(Q/Z) can be identified with E(L)® (Q,/Z,). Suppose k and k, denotes the
global and local Kummer maps restricted to the p-primary subgroups. So if
K is any algebraic extension of QQ then we get:

k: B(K)® (Q,/Z,) — H' (K, E[p™))

ko : B(K,) ® (Q,/Z,) — H'(K,, E[p™])

So proceeding with this x and x, and imitating the previous argument we
get the p-primary subgroup of Selg(K) is:
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Sel(i), = ker( (K, Bp*) — T1, B(K,, Bp=))/im(s.) )

where v runs over all the primes of K. Now in this definition of Selg(K),
everything except possibly im(k,) depends on G, -module E[p>]. We will
try to describe im(x,) involving only the galois module E[p™].

Remark: Since E(K,)®(Q,/Z,) is divisible im(k,) is also divisible. Now
we will show that if v { p then E(K,)®(Q,/Z,) = 0 and so im(x,) is also zero.

Theorem 3.5 i) Suppose that E is an elliptic curve defined over K, = C or
K, =R. Then E(K,) ® (Q,/Z,) =

i) Suppose E is an ellitic curve defined over an algebmz'c extension K,
of Q; where | is a prime , | # p, then E(K,) ® (Q,/Z,) =
Thus , whenever v{p , we have im(k,) = 0.

Proof:i) If K, = R then E(K,) 2 R/Z or R/Z x Z/27Z . Now R/Z ®
(Qp/Zy) = 0. Also if T' is any finite group then clearly T'® (Q,/Z,) = 0. So
we get E(K,) ® (Q,/Z,) = 0. If K, = C then E(Kv) ~ R/Z x R/Z and by
similar argument we get E(K,) ® (Q,/Z,) =

ii) If K, is a finite extension of Q; where [ is a prime and [ # p. Then
from (Appendix 2, Theorem 7.4) we get the structure of F(K,):

E(K,) 2zl 1

where T is a finite group. Now Z, is p-divisible since | # p. So Z,®(Q,/Z,) =
0 and we have T ® (Q,/Z,) = 0 for any finite group 7. It follows that
E(K,) ® (Qp/Zy) =0

Now if K, is an infinite algebraic extension of Q; then K, = |J L, where L,
runs over all finite extensions of Q; which is contained in K,. But we have
E(L,)®(Q,/Z,) = 0 for each L,. So we have F(K,) ® (Q,/Z,) = 0 and we

are done.
[ |

Now when v | p then K, is an algebraic extension of Q, and the situation
becomes more subtle.
Let us assume first that K, is a finite extension then again from the theorem
(Appendix 2, Theorem 7.4) , we get

E(K,) 2 Z®l T
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where 7' is a finite group. Since Z, ® (Q,/Z,) = Q,/Z, we have

(i) = B(K,) @ (Qy/Z,) = (Qy/Z,) <%

Assume that F has good, ordinary reduction at v. Thus the reduction of
F at v is an elliptic curve E defined over the residue field k, for v. Now as E
has good, ordinary reduction at v we get E(k,) [p"] = Z/p"Z for every r > 0.
So more precisely, we get

E[p™] = im(Z/p'Z) = Qy/Zy.

Now the canonical reduction map F(K,) — E(k,) is G, equivariant in the
following sense: o
Gk, acts naturally on F(K,). There is a natural homomorphism Gg, — Gy,

whose kernel is the inertia subgroup Ik, and G, acts on E(k,) by the above

homomorphism with the canonical action of Gy, on E(k,).
So restricting we get a natural Gk, -equivariant homomorphism :

m: E[p™] — E[p™]

~

Now from (Appendix 2,Lemma 7.5) we get that 7 is surjective and ker(m)
Qp/Zy. .

The action of Gy, on E[p™] is given by a character ¢ : Gy, — Z) since
Aut(Q,/Z,) = Z;. But we can extend ¢ as a character of G, whose
kernel contains Ix,. The action of G, on ker(m) is given by a character
¢ : Gk, — Z, again for same reason. So we get the action pg of Gk, on

E[p*lis triangular, that is pp = ( g :/; ) Now the action of Gk, on fiy=

is also given by a character x : Gk, — Z, and from Weil Pairing (See [19],
page 95, Section 8) we get that det(pg) = x. Hence pp = .

Let us denote ker(m) by F[p™]. The motivation for this notation is clear
since this the p-primary part of the formal group F(m,) which is explained

in more details in (Appendix 2, lemma 7.5). Now we have a natural inclusion
: F[p>®] — E[p>] which induces

ev t H'(Ky, F[p™]) — H'(K,, E[p™))

Now we get the description of im(k,) from the following theorem.

Theorem 3.6 Let K, be a finite extension of Q, and assume that E has
good, ordinary reduction at v, then im(k,) = im(e,) -
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Proof: Now we know im(k,) = (Q,/Z,) %l So to prove the theorem it
is sufficient to show that im(k,) C im(e,) and im(e,) = (Q,/Z,) K%l x T,
where T is a finite group.

Let us prove the first condition im(k,) C im(e,) :
Consider the exact sequence

0 — F[p®] — E[p™] — E[p™] — 0.
which induces an exact sequence of cohomology groups :

HO(K,, E[p™]) HO(Ky, E[p™]) — H' (I, F[p™])

Ev

H*(K,, Flp™]) HY(K,, E[p™]) = HY(K,, E[p™])

Now from the diagram we get im(e,) = ker(m,). So if we can show that
Ty © Ky = 0 as a map then im(k,) C im(e,) will follow.
Let [p] € im(k,). Now we have the exact sequence

0 — E(L) @z (Q/Z) —=~ H'(L, E(L)iors) — H'(L, E(L)) — 0

So im(k,) = ker()\,) and then we get 3 Q € E(K,) such that p(g) = ¢(Q)—Q
for all g € Gg,. Let Q is the image of @ under the reduction map E(KU) —
E(k,). Now, m,([¢]) = [¢] € Hl(Kv,E[ ] where ¢(g) = g(Q) — Q for all

g € Gg,. So @ is a 1-coboundary for E(k,) and then [¢] = 0in H(K,, E(k,).

But E(k: ) is a torsion group and so its p-primary subgroup E[ ] is a direct
summand. So we get E(k,) = E[p>] ® E, where Ej is a subgroup. So we
can write Q = Q; + Qy where Q; € lf?[p ] and Q2 € F;. This direct sum is
G, equivariant so we get 4(g) =9(Q) - Q= (9 (Ql) Ql) (g (Q2) Q2)
So we get ¢(g) : Gk, — E[p™®] such that ¢(g) = g(Q1) — Q1. b is a
1-coboundary for E[p>] and [p] = 0 in H'(K,, E[p>]). This proves that
im(k,) Cim(ey).

We know already that im(k,) is divisible so to finish the proof of theorem 2,
it is enough to show [im(e,) : im(k,)| is finite. Now some terminologies will
be helpful.
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Terminologies:
Let A be any p-primary group. Then we can regard A as Z, module. Now
if we put discrete topology on A then it can be shown easily that its Pon-
tryagin dual A = Homeont(A, Q,/Z,) is a compact Z, module. We say A is

~

a cofinitely generated Z, module if A is finitely generated as a Z, module.
We then define corankz,(A) = rankz,(A).
So if A is cofinitely generated as a Z, module then we get A = Z7 xT" for some

r > 0 and some finite group T. So A =~ A = (Qp/Zy)" x T and has Z,-corank
r. Then Ay, = (Q,/Z,)" (we say that Ay, is Z,-cofree) and [A : Ag,] < 00 .

We obtain im(k,) is Z,-cofree and has Z,-corank [K, : Q,]. So for prov-
ing [im(e,) : im(k,)] is finite, it is enough to show that im(e,) is Z,-cofinitely
generated and has the same Z,-corank.

Now |ker(e,)| is bounded above by the order of the finite group
HY(K,, E[p>®]) = E(k,),. So it is sufficient to show that H'(K,, F[p>])
is Z,-cofinitely generated and has Z,-corank [K, : Q).

Proof of this can be done in two different ways. We will prove here using
some theorems of Tate concerning Galois cohomology over local fields and
the second proof can be done using standard techniques in Iwasawa theory
which will be the topic of whole next chapter.

Suppose A is a discrete G, module and A = (Q,/Z,)" as a Z, module. Let
us denote Tate twist by A(1) where ;1(1) = Hom(A, pp) . Then ﬁ(l) is a
free Z, module of rank 7.

Corank Lemma : 1) Let K, be a finite extension of Q, .Then
HY(K,, A) is Z,-cofinitely generated and we have

corankz,(A) = r[K, : Q)] + corankz,(H°(K,, A)) + rankz, (H (K., 121\(1)))

2) Let K, be a finite extension of Q; where | # p . Then HY(K,, A) is
ZLy,-cofinitely generated and we have

corankz, (A) = corankz, (H°(K,, A)) + rankz, (H°(K,, 121\(1)))

Now we will apply the Corank lemma to A = F[p*>°| = Q,/Z, which will finish
the proof of Theorem 3.6. We have r = 1 and H°(K,, F[p*]) is a subgroup
of HY(K,, E[p*]) = E(k,), which is finite. So corankz,(H°(K,, F[p>]) = 0.
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Now we want to prove that rankz, (H°(K,, A(1))) is also zero for A = F[p>].
Our claim is HO(K,, A(1)) = 0 which is equivalent, to prove that the action
of G, on A(1) is non-trivial.

Using the notations introduced earlier we have |

Gk, acts on A = F[p>| by a character ¢ : Gk, — Z). Gk, acts on E[p™]
by a character ¢ = yp~ ! : Gk, — Z,. G, acts on pp~ by a character
X:Gr, = Z,;

The character ¢ which gives the action of G, on E[p*] is clearly nontrivial.
Since the inertia group I, acts trivially but a Frobenius automorphism acts
nontrivially. Now A(1) = Hom(A, pp~) has a natural Gk, action induced
by the actions on A and ji,-. We have to show that this action is nontrivial.
Now the action of G, on A(1) is given in the following way:

Let h € g(l) then

= x¢ ' (9)-(h(a)) = ¥(g).(h(a))
but as v acts non-trivially so we get action of G, on A(1) is non-trivial

which gives HO(KU,E(l)) = 0. So from first part of the corank lemma we
get that im(e,) has Z,-corank [K, : Q,]. So Theorem 3.6 is proved.

Now the Corank Lemma can be proved by using results of Tate concern-
ing Galois Cohomology over local fields. This is done in details in Appendix
1. But we need some results of Tate to have some important information
about [im(e,) : im(k,)] , which are listed below:

Proposition 3.7 Let A be as above then we have. H*(K,,A) is the Pon-
tryagin Dual of H°(K,, A(1)) and then

corankg, (H*(K,, A) = rankz, (H°(K,, A(1)))

Theorem 3.8 If K, is a finite extension of Q, and if E is an elliptic curve
over K, with good, ordinary reduction at v then im(k,) has finite indez in
im(g,) and the quotient im(e,)/im(k,) is a cyclic group whose order divides
\E(k,),|, where k, is the residue field of v. So in particular, if p t |E(k,)|
then im(e,) = im(ky).
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Proof. Clearly [im(s,) : im(k,)] is bounded above by
|HY (K, F[p>=])/H"(K,, F[p™])aiv|. Now for m > 0 , we have

H (Ko, F[p™])aio = p™ H' (K., Fp™])
Choosing such m and considering the exact sequence
0— A]p™| AT A0
where A = F[p>°|. This induces an exact sequence of cohomology groups
HY(K,, A) 2~ H'(K,, A) — H*(K,, A[p™))

So we get im(g,)/im(k,) — H?*(K,, A[p™]) and so [im(e,) : im(k,)] is
bounded by |H?(K,, A[p™])| for any sufficiently large m . Now from the

—

above result of Tate, |H?(K,, A[p™])| = |H°(K,, A[p™](1))|.
The Weil pairing E[p™] x E[p™] — p,m induces another non-degenrate Galois
equivariant pairing (See [19], page 95, Section 8)

hS]

Alp™) x Elp™] — Hpm
So we get, Hom(A[p™], uym) = E[p™] as Gk, - modules. Then using this we
get,

HO(K,, Ap)(1)) = Hom(Alp™], )% = E(k),

Now E(k,), is a cyclic group so as im(e,)/im(r,) is a subgroup of E(k,),
we get all the statements of our theorem.

We will now compare im(e,)and im(k,) for infinite extensions of Q, un-
der some restrictions. Let us first define the profinite degree of an infinite
extension K/F. This is defined as the least common multiple of the de-
grees [L : F| where L varies over all finite extensions of F' contained in K.
So we can interpret this as a formal product [[{* over all primes [ where
0 < a < oo. If [ divides this product that means the power of [ dividing
[L : F] is unbounded as [ varies.

Theorem 3.9 Assume that K, is an extension of Q, with finite residue field
k,. Assume also that the profinite degree of K,/Q, is divisible by p>. Then
im(e,) = im(ky). In particular, if K, is a ramified Z,, extension of F, where
F, is a finite extenion of Q,, this condition is satisfied.
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Proof: By the same argument as in theorem 3.6, we still have im(e,) C
im(k,). Now to prove im(e,) = im(k,), it is sufficient to show that im(e,)
is divisible group and im(e,)/im(k,) is finite.

Now to prove that im(e,) is divisible we will use that G, has p-cohomological
dimension 1 (which follows from the next lemma). Now if H'(K,, F[p™]) is
divisible then im(e,) is divisible. So it is sufficient to prove that H'(K,, A)
is divisible whenever A is a divisible p-primary G, -module. Now if M is
any finite p—primary G, module, then H"(K,, M) = 0 for all n > 2 since
Gk, has p-cohomological dimension 1. Now consider the exact sequence:

0 — Afp] AL+ A 0.

which induces an exact sequence of cohomology groups
HY(K,,A) X~ HY(K,,A) — H*(K,, Alp)).

Now H*(K,,Alp]) = 0 so H'(K,, A) is p—divisible. But it is a p-primary
group so it is divisible.

Let us write K, = U, F\" where F\™ are the finite extensions of Q,. we
denote ki, " the two maps to H'(F\", E[p>]) that we are considering

over F™ . We have

HY (K, Ep™]) = lim_ H'(F™, E[p))

n

where the direct limit is defined by the natural restriction maps We then
have,

im(e,) = lim im(e™), im(ky) = lim im(x{™)

So im(e,)/im(k,) is finite as it is a direct limit of the finite groups

im(e$™)/im(k") whose orders are uniformly bounded by |E(k,),| (From

Theorem 3.8).
|
Lemma 3.10 Gy, has p-cohomological dimension 1.

Proof: Here we only need K, is an extension of Q; such that [K, : Q]
is divisible by p> and [ is any prime. From this assumption we get that p-
primary part of the Brauer group of K, is zero. Therefore HQ(KU,EX)Z] =0.
By applying the same argument on any algebraic extension of K, we get
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H2(H,K,”) = 0 for every closed subgroup H of Gg,. Now consider the
exact sequence

1 Hp EX b EX — 1
which induces an exact sequence of cohomology groups
Hl(H7EX) - HQ(Hv :up) - HQ(H’EX)

for any closed subgroup H of Gg,. Now the first term is zero by Hilbert’s
theorem 90 and the third term is zero by the above remark. So, H*(H, ) =
0. Now let H be a Sylow p-subgroup P of Gg,. Then H*(P,Z/pZ) =
0 = H?(P, M) = 0 for any finite P module of p-power order.(Since then M
decomposes as a P module in isomorphic copies of Z/pZ).

Now we have the restriction map H?*(K,, M) — H?(P, M) is injective, we
have H*(K,, M) = 0 for any Gg,-module M of p-power order. That sufices
to show that G, has p-cohomological dimension 1.

Remarks: 1) Suppose that £ has multiplicative reduction at v and K,
is any algebraic extension of Q, . Then im(e,) = im(k,), where

ep - HY(K,, F[p™]) — HY(K,, E[p™])

which is induced by the inclusion F[p>] — E[p™].
This can be proved either adapting the earlier arguments to this case or by
using classical Kummer theory for K, together with Tate parametrization.

2) Suppose E has good, supersingular reduction at v, then it is still
possible to describe im(k,) in a way which depends only on the G, -module
E[p*]. This description involves Fontaine’s ring B..;s, and we have chosen
in the present text to avoid this theory.
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4 Some important A-modules

Our main aim in this section is to prove the corank lemma for A = Q,/Z,.
But before that we will see some important A-modules which arise in the
related context.

1) Let Fi/F be a Z, extension so that I' = Gal(F/F) = Z,. Let v, be
a fixed generator of I'. Suppose A is a p-primary, abelian discrete group and
I" acts continuously on A. Let A = Hom(A, Q,/Z,). We know that A and A
are Z,-modules. Now defining T'a = yy(a) —a for alla € A, A and A become
Zy|T]-module. T is an endomorphism in A. Then it can be shown that 7" is
topologically nilpotent and so both A and A can be thought of as A-modules.

2) Let E be an elliptic curve over F. Then A = H'(F,,, E[p™]) is a p-
primary abelian group and has a natural action of I'. We can then consider
A as a A-module ( with discrete topology). If F'is a finite extension of Q
for any prime [ then Aisa finitely generated A-module.

3)Let ' be a number field and let ¥ be a finite set of primes of F
containing all archimedean primes, all primes dividing p and all primes
where E has bad reduction. Then E[p™] is a Gal(Fy/F)-module and A =
H'(Fs/F4, E[p™]) also has a natural action of I and can be thought of as a

~

A-module. Again A becomes a finitely generated A-module. Now Selp(FL),
is a A-submodule of H'(Fy/F,., E[p™]) .

Now we will state some conjectures concerning the structure of these A-
modules. We will need some terminologies which is defined below.

Terminologies: If A is a discrete A-module as above then we say that
Ais A-cotorsion if A is A-torsion. A is A-cofinitely generated if A is A-finitely
generated and we define coranky(A) = ranka(A).

Conjecture 4.1 Suppose F' is a finite extension of Q and that E is an el-
liptic curve over F. Let ¥ is chosen as above. Then

coranky(H'(Fs/Fy, E[p™])) = [F : Q]
See [6], Chapter 3. In general all that is known in this context is that

coranky(H'(Fx/Fs, E[p™])) > [F : Q]
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and the equality is equivalent to show that H?(Fy/F,,, E[p™]) which is a
A-module is A-cotorsion.

Conjecture 4.2 (Mazur) Suppose F is a finite extension of Q and E is an
elliptic curve defined over F which has good, ordinary reduction at all primes
of F' lying over p. Suppose that F/F is the cyclotomic Z,-extension. Then
Selg(Fx), is A-cotorsion.

This was conjectured by Mazur [12]. We have one more conjecture (Due to
P. Schneider) (See [3|)which gives the A-corank of Selg(Fy),.

Conjecture 4.3 (P. Schneider) Let Fo/F be the cyclotomic Z,-extension
of a number field F'. Assume that E is an elliptic curve defined over F. Then

coranky (Selp(Fx),) = Z[F“ :Qyl.

VPSS

where the sum is over all the primes of F' lying over p where E has potentially
supersingular reduction.

Now we will prove the final goal of this chapter.

Theorem 4.4 Let K, be a finite extension of Q, . Suppose that A is a
Gr,-module and that A = Q,/7Z, as a group. Then H*(K,, A) is a cofinitely
generated Zy-module and corankz, (H(K,, A)) = [K, : Q] + 04(K,) where
Oa(Ky) = 14if A= Q,/2Z, or A = pyee as Gg,-module and 64(K,) = 0

otherwise.

Note: H(K,, A) (or H(K,, A(1)) is either trivial or all of A (or A(1)).
The latter occurs only when A = Q,/Z, (or A = - ) as a Gk, -module.
We know that A(1) = Z, as a group so we get

04(K,) = corankz,(H°(K,, A)) + coranksz, (H°(K,, A(1)))

So the above theorem is the corank lemma for r =1 and v | p .

The two cases when d4(K,) = 1 can be proved by using standard Local class
field theory. So now here we will assume H(K,, A) and H(K,, A(1)) is
finite and d4(K,) =0

Proof: The action of Gk, on A is given by a homomorphism ¢ : G, —

Zy . If ¢ has finite order then again this can be done by local clas field
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theory. So let us assume that im(v) is infinite. Let F,, = Ekerw). So

G = Gal(Fy/K,) acts faithfully on A and G = im(v) , which is a subgroup
of Z. Hence G = A x T where I' = ¢~'(1 + pZ,) = Z, and A is a finite
group of order dividing p — 1 if p is odd and of order 1 or 2 if p is 2 . Now as
Fy = FL we have A = Gal(Fy/K,) and T = Gal(F./Fy). So Foo/F is a Z,
extension . If we define F,, = Fg’n for n > 0 then F,, = U, F, and F,/F, is
cyclic of order p".

So we have the following field extension diagram:

K,

AN
Fy
AN
)
K,
|

Q@
Consider the following exact sequence from the five term exact sequence
theorem (Appendix 1 , Theorem 6.3)

0 — HYG,A) ——~ HK,, A) —~ H'(Fy, A)° —2+ H%(G, A)

Our aim is to study H'(K,, A) by studying H*(F,., A)¢ . For that we need
to prove that coker(r) and ker(r) is finite .

Proof of coker(r) is finite :

I' is a free pro-p group so has p-cohomological dimension 1. If p is odd
then |A] is not divisible by p. So we get that H*(G, A) = 0. So r is surjective
and coker(r) = 0. If p =2 and A = 1 then also by same reasoning r is surjec-
tive. If |A| = 2, then it can be shown that H*(G, A) = H*(T, A) x H*(A, A).
So H*(G,A) = Z/2Z (As H*(T', A) = 0 and |A| = 2). Thus coker(r) is finite
of order < 2.

Proof of ker(r) is finite :

First of all from the exact sequence ker(r) = im(i). So for proving
finiteness of ker(r) it is enough to prove finiteness for H'(G, A).
If |]A] = 1, then G =T and since we are assuming H°(K,, A) is finite from
the lemma 6.11 Appendix 1, we get that H'(G, A) = 0. Now if p is odd and
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|A] > 0, then A2 = 0, then by the following inflation-restriction sequence
0 — HYI', A®) — HY(G, A) — H'(A, A"

we get that H1(G, A) = 0 (also HY(I', A®) = 0as A* = 0and HY(A, A)F' =0
as |A] is coprime to p). But if p =2 and |A| = 2, then A® has order 2 and
again from the above exact sequence one finds that |H*(G, A)| < 4 (As both
HYT, A®) and HY(A, A)' has cardinality less than or equal to 2).

therefore we get the finiteness of ker(r).

By the above results we get that
corankz,(H'(K,, A)) = corankz,(H"' (Fx, A))

Since G, acts trivially on A we get H'(F,,, A) = Hom(GF,,, A)(Here
in every case it is understood that we take the continuous maps) . Now
let M., denote the maximal , abelian pro-p extension of F,, ie. M, is

the compositum of all finite , abelian p-extensions of F,, . If we denote
X = Gal(My/F) then we get

HY(Fy,A) = Hom(Gp,, A) = Hom(X, A)

There is a natural group action of G on X by inner automorphisms as
Gal(M«/K,) can be regarded as a group extension of the quotient group
Gal(Fx/K,) = G by the closed normal subgroup X = Gal(M/F) ( Note
that M, is a galois extension of K,,). We have, H(F,,, A)¥ = Homg(X, A).
X is a Z,-module on which G acts Z,-linearly and continuously. Let X, de-
note the maximum quotient of X on which G acts by ). Then we have

corankyz, (H'(K,, A)) = corankz, (Hom(Xy, A)) = rankz, (Xy)

Since A = Q,/Z, as a group. We will finish the proof by carefully studying
the properties of X as a G-module.
All of the characters of A have values in Z. If p is odd, then p { |A| , and
one has a decomposition of X by the characters of A

X=X,
YEA

where X, = {z € X|d(z) = x(d)x for all § € A)} = e, X , where e, is the
idempotent for x in Z,[A] .
If p =2 and |A| = 2 which is the only case when p divides |A| , then we
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define X, by the maximal quotient of X on which A acts by x .
A acts on A by the charater x = ¢|a (denoted by ¥A) . Then

Homa (X, A) = Hom(Xy,, A)

Furthermore if Y is any Z,-module and if x : I' — 1+ pZ, is a continuous
homomorphism, then the maximal quotient of Y on which I' acts by the
character x (denoted by Y ) is equal to Y/(7 — £(7))Y . Here 7 is a fixed
topological generator of I'. By definition I' acts on A by the character ¢r :
I' = 14 Z,, where ¢r = ¢|p. In fact as G = A x I' we have Xy = (Xy, )yr-
So we get that

corankzp(Hl(Kv, A)) = rankz,(Xp, /(0 — ¥r(70)) Xy,)

Let A be a discrete p-primary abelian group on which I' acts continuously.
Then using the fact that, if a € A then T"a = 0 for n > 0, we can consider
A as a A-module. X is an abelian, pro-p group. Then applying the above
fact to the discrete, p-primary I-module Hom(X,Q,/Z,), we can consider
X as a A-module.

We will use the classification of A modules( chapter 2 ) and the following
results of Iwasawa( See [9])

i) X is a finitely generated A-module .

ii) X has A-rank equal to [K, : Qy]|Al. More precisely , for each character
x of A, X, has A-rank equal to [K, : Q,)].

iii) If Foo contains the group e of p-power roots of unity, then the A-torsion
submodule Xa_tors 18 isomorphic to T,(jye), the Tate module of piyee. Oth-
erwise Xp_iors = 0 .

Now we will finish the proof of the theorem. We have already proved that
corankyz, (H'(K,, A)) = rankg, (Xy, / f(T)Xy,)

where f(T') =T — b with b = ¢Yr(y) — 1 € pZ,. So f(T) is a distinguished
polynomial of degree 1. From the satements i), ii) ,iii) using the classification
of A-modules (Chapter 2, Theorem 2.8), we obtain that X,, is pseudo-
isomorphic to AE @l or Y x Al where Y = T,(yy) (According as
Foo 2 ipee OF Fog D fipee).

As f(T) has degree 1, by the factorization theorem (Chapter 1, Proposition
1.2) we get that A/f(T)A has Z,rank 1. So if Foy 2 py then H'Y(K,, A)
has Z,-corank equal to [K, : Q,].

If ppee C Fi, then G = Gal(F/K,) acts on T,,(j~) by a character y. We
are assuming 1 # y. Now if 1o # xa ,then considering action of both the
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characters on any element y in Y we get that, % = €%, a # b, where € is
a root of unity. This gives y = 0 as (£** — 1) € Z7 ( See [20], Proposition
2.2.8). Soweget Y =0.

If Yr # xr, we have Y/f(T)Y = A/(T — p,T — b) where p # b as ¢r(vo) #
xr(7). As (T'— p) and (T — b) are co-prime we get Y/f(T)Y is finite by
Lemma 2.2( Chapter 2). In both cases we again find that X, /f(T)Xy, has
Zy-corank [K, : Q,].
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5 Mazur’s Control Theorem
Let F be a finite extension of Q and E an elliptic curve over F'.

Theorem 5.1 Assume p is a prime and E has good, ordinary reduction over
all primes lying over p. Assume that Foo = |, Fy is a Z,-extension of F.
Then the natural maps

Selg(F,), — SBZE(FOO)I();@Z(FOQ/F”)
have finite kernels and cokernels of bounded orders as n — oo

Here as before, F}, denotes the unique subfield of F,, containing F' such that
[F, : F] = p". We will prove the theorem with the explicit description of the
local Kummer homomorphism of chapter 3. But before proving the theorem,
we will introduce some notations.

Notations:
Let E be any elliptic curve defined over F'. Let K be an algebraic exten-
sion of F. For every prime of 1 of K, we let

Hg(K,) = H'(K,, E[p™])/im(k,)
where k,, is the local kummer map
fin + B(K,) ® (Qy/Zy) — H'(K,, E[p™])
Let P =[], He(K,), where n runs over all primes of K. Thus
Selp(K), = ker(H' (K, E[p™]) — Pr(K))

where the map is induced from Gk, — G .
Also we define

Gp(K) = im(H' (K, E[p*]) — Pp(K))

Proof of the Theorem : From the definition of Selg(F,), we get
the exact sequence

0 — Selg(Fy)p, — HY(F,,E[p™]) — Gu(F,) — 0

Now taking the inductive limit over the natural restriction maps, we get
another exact sequence

0 — Selp(Fu)p = H' (Foo, E[p™]) — Gp(Fu) — 0
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Let I, = Gal(Fy/F,) = I'"™. Then taking the T, invariants we get the
following exact sequence

0 Selp(F)r — H'(Fuo, E[p™))™ — Gu(Foo)™

p

Considering the above two exact sequences we get the following commutative
diagram

Sn hn gn
0 Selp(Fu)y" — H' (Foo, Elp™])'" — Gp(Fu)'

where the maps s,, h,, g, are the natural restriction maps. So by the
snake lemma we get the following exact sequence :

0 — ker(s,) — ker(hy,) — ker(gn) — coker(s,) — coker(h,).

Therefore to finish the proof of the theorem, we have to prove finiteness and
boundedness of ker(h,,), ker(g,), coker(h,), which are proved in the following
lemmas.

Lemma 5.2 coker(h,) = 0.

Proof: By the inflation-restriction sequence (from five term exact se-
quence) we get the following exact sequnce

hn

HY(Fy, E[p™]) —~ H'(Fx, E[p™])"* — H*(T;, B)

where B = E[p>*]%~. Now I, & Z,, , which is a free pro-p group . So I',, has
p-cohomological dimension 1 . Hence H*(T',, B) = 0 ( as B is a p-primary
group ) and so h, is surjective.

|
Lemma 5.3 ker(hy) is finite and has bounded order as n — oo
Proof: Again by the same inflation -restriction exact sequence

hn

0 — H' (T, B) — H'(Fy, E[p™]) = H'(Fu, E[p*))"" — H*(T's, B)
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where B = E[p®]“"~. So we obtain ker(h,) = HY(T',, B). If v denotes
the topological generator of I' then, by the Lemma 6.11 (in Appendix 1) we
get that H'(T',,, B) = B/(7?" — 1)B. Now By, has finite Z,-corank ( Since
E[p™] has finite Z,-corank). H°(T,, By,) = BL" which is equal to the di-
visible part of p-primary subgroup of E(F,). But by Mordeil-weil theorem
E(F,) is finitely generated , so H°(T',,, By;,) is finite. Again by the Lemma
6.11 (in Appendix 1), we get that H'(T',, Baiy) = Bai/(7?" — 1)Baiw = 0 .
Hence (77" — 1) Bgiy = Buaip,. We get that

Baiw = (" —1)Baiw C (7" —1)BC B

As B is a cofinitely genrated Z,-module, [B : By, is finite. Clearly
H(T',, B) is bounded by [B : Bg;,] which is finite and independent of n,
which finishes our proof.

Lemma 5.4 The order of ker(g,) is bounded as n varies.

Proof: We will prove this lemma by carefully considering some cases. Let v
be any prime of F'. Let v, be any prime of F, lying over v. We will study
ker(g,) by considering each factor of Pg(F),) with the maps

o, * HE((F)v,) — HE((FOO)U)

where 7 is any prime of F lying over v,,. This map r,, is induced from the
canonical reduction

H'((Fp)u,, E™]) — H'((Fx)y, Ep™))

where res is the reduction map and r,, is well-defined as res(im(k,,)) C
im(ky).

Now if v is archimedean then v splits completely in Fi,/F so F,, = (Fix),
for all n | v. Then clearly ker(r,,) = 0. Now for non-archimedean v we
consider two cases separately, v { p and v | p.

Case 1
v s a nonarchimedean prime and v 1 p. Then ker(r,,) is finite and has
bounded order as n varies. Moreover if E has good reduction at v or v splits
completely in F/F then ker(r,,) = 0.
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Proof: Let I', denote the decomposition group of I' for any non-

archimedean prime v. If T, = 0 then v splits completely in F,/F and
then as above F, = (F), for all | v and ker(r,,) = 0.
Otherwise I, has a finite index in I" and so v is finitely decomposed in I". Now
we are assuming v { p, so by Theorem 3.5(Chapter 3)we get that im(k,) =0
and Hg(M,) = H*(M,, E[p™]) for every algebraic extension M, of F, . Now
as v { p , v is unramified and by assumption it is finitely decomposed in
Fo/F. So (Fu)y is the Z,-unramified extension of F, (the only Z,-extension
of F,). So Ty, = Gal((Fx)y/(Fp)v,) = Zy. Let us assume that I',, is gen-
erated by a topological generator 7, . Then the inflation-restriction exact
sequence gives

0 —— H'(Ty,, B,) —= H'((Fo),. Elp™]) = H'((Fwo)y, E[pP™)),

where B, = E[p®]|“F=n. We get ker(r,,) = H'(T,,,B,). Now B, =
(Qp/Zy)° % (finite group ) where 0 < e < 2. Again by the Lemma 6.11(Ap-
pendix 1) we get that H'(T,, , B,) = B,/(Vv, — 1)B,. By following the same
lines of arguements as in Lemma 5.3, we get that (,, —1)B, contains (B,) .-

So we obtain
|ker(rvn)| < |Bv/(Bv)div|

This bound is independent of n and of v,.
Now assume that E has good reduction at v. Then since v { p, F,(E[p>])/F,
is unramified. Let F,, := F,(1/p"E(F,)) then F, o = U,F,, = F,(E[p™]).
Then from (Silverman , proposition VIIL.1.5 ) F,, are abelian, p extension.
S0

Gal(Fyoo/F,) 2 lim Gal(F,,/F,)
and Gal(F,~/F,) is a infinite pro-p group. Since F, . /F, is unramified,
Gal(F, «/F,) is a quotient of G, = Z, where f, denote the residue field
of F,. Now as Gal(F, /F,) is pro-p, it is a quotient of the maximal pro-p
quotient of Z = Z, , which is either finite or whole. As Gal(F,/F,) is
infinite, we get Gal(Fy o0/ F,) = Z,. Since (F), is the only Z,-extension of
F, , we get, (Fuo)n = F,(E[p™]).
So we get B, = E[p™] and then ker(r,,) = H'(T,,, E[p>]) = 0 again by the
same kind of reasoning using Lemma 6.11( Appendix 1).

Case I1
Suppose v is a non-archimedean prime dividing p .Assume that E has good,
ordinary reduction at at v. Then ker(r,,) is finite and has bounded order as
n — oo .
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Proof: We will divide the case in three subcases. Either v splits com-
pletely in F../F or v is ramified in F, /F or v is unramified but finitely
decomposed in F./F.

Now if v splits completely then again we have ker(r, ) =0 .

If v is ramified in F./F then f, is finite, where f, is the residue field of
(Fw)n and n is any prime of F, lying over v. In this case we can ap-
ply Theorem 3.9(Chapter 3). So we have im(k,) = im(s,). We also have
im(ky,) C im(e,,). Therefore we can think of r,, as composition of the
following two maps

ay, : H'((Fa)u,, Elp™))/im(k,) — H'((Fx)y, E[p™]) /im(e.,)

b, + H' ((Fa)o, B[p*])/im(e,,) — H'((Fwo)y. E[p™])/im(e,)

Where the notations are as defined in Chapter 3. Clearly a,, is surjective.
So we have
|ker(ry, )| = |ker(ay,)|[ker(by,)

But ker(a,,) = im(ey,)/im(k,,) and by Theorem 3.8(Chapter 3) we get the
order of this group is bounded by |E(f,),| which is finite.
On the other hand, from the exact sequence of galois modules

0 — F[p™] — E[p™] — E[p*] — 0
We get the following commutative diagram

0 ——— HY((F,)u,, Ep™))/im(e,,) =% H'((F,),,, E[p™))

by

n Cup

0 ———= H((Fuo)y, Elp])/im(e;) = H'((Fc)y, E[p™])

So from the diagram we get that |ker(b,,)| < |ker(c,,)|. Now again by
the inflation - restriction sequence we get

ker(c,, ) = HI«FOO)W/(Fn)vm E(fn)p) = E(fn)p/(%zn - 1)E<f77)17

again by the Lemma 6.11 (Appendix 1) where ,, is any topological generator
of Gal((Fx)y/(Fp)ov,) = Z,. Therefore |ker(c,,)| is bounded by |E(f,),|- So
we obtain, if v is ramified in F,/F,

[ker(ro, )| < [E(fy)l®
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which is finite and independent of n.

Finally in the last case we assume that v is unramified but finitely de-
composed in F/F. Then (F), is the unramified Z,-extension of F,. In
this case our aim is to prove ker(r,, ) = 0. for all n. Firstly we will prove
that it is enough to prove the following claim.

Claim: H'(L/M, E(L)) = 0 whenever M is a finite extension of F, and
L/M is a finite, unramified p-extension.

Assuming the claim we get ker(res) = 0 by the inflation-restriction se-
quence where res is the following map

Tes

H'((Fa),, B[p™]) — H'((Fx)y, E[p™])

ker(r,,) = 0 is equivalent to proving
im(ry) N res(H'((Fy)u,, Ep™])) = res(im(k,,))
from the following diagram, where every map is injective

E((Fa)u,) ® Qp/Zy =% H'((Fn)o,: E[p™])
boy, res

E((Feo)y) ® Qp/Zy = H'((Fx)y, Elp™))

Clearly res(im(k,,)) C im(k,) N res(HY((F,).,, E[p™])).
For the other way inclusion, firstly we note that from the inflation-restriction
sequence image of res lies in H'((Fy )y, E[p™®])% = H'((Fao)y, E[p™]) o
where Iy, = Gal((Fx)y/(Fn)v,) = Zy.
So enough to show res(im(r,,)) 2 im(k,) " N res(H' ((Fy)w,, E[p™])). As
res is injective, using the explicit description of Kummer map from Chap-
ter 3 we get that it is enough to prove that (F((Fx),;) ® Q,/Z,)' C

E((Fn)v,) ® @p/Zp'

Let P® # € (E((Fx)y) ® Qy/Z,)" . Then from the definition of Q,/Z,
we can think P ® -5 € (E((Fu)y/P"E((F)y) .
Consider the following exact sequence

0— pkE((FOO))n - E((FOO)W - (E((Fm)n/pkE<(F00)n) —0
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which gives the cohomological exact sequence

«

0 (P"E((Foo))a) ™ — E((Fo)v, — (E((Fo)n/P"E((Foc)y)

H'(Ty,, p" E((Fs))y)

where « is the canonical map obtained from the previous exact sequence. We
have P ® Im(«a) € coker(a). Since

HY(Ty,,p"E((Fx))y) = lim (Ty, /T, m, p"E(F,))

m

Hence, H'(T,,,p* E((F)),) is a torsion subgroup and so is coker(a). So
there exists s such that

p(P® #) € Im(a)

= 3Q € E((F},).,), such that p*(P ® I%) = a(Q)

= PR ;=00

So we get, (E((Fu)y) ® Qu/Zp)' " C E((Fp)v,) ® Qp/Zy.

Now we will prove the claim. Let [ and m be the residue fields of L and
M respectively. Then we have the following exact sequence

0— F(my) — E(L) — E(l) — 0

where my, denotes the maximal ideal of L and F(my) denotes the group of

points on the formal group F. For proving the claim it is enough to verify
HYL/M,F(mg)) =0 and H*(L/M, E(])) = 0.

Now HY(L/M,F(mz)) = H(L/M,0p) as F(mz) and O, have same
Galois group filtration ( F(m7)/F(m}t!) = m? /mitt = 72Op /7" O, =
O /7O, where m € Oy is the uniformizer) (See Appendix 2 , Proposition
7.1). Since L/M is unramified extension we have Op = Oy [Gal(L/M)] =
O ®Zy|Gal(L/M)] = Z,|Gal(L/M)]* which is clearly cohomologically triv-
ial. So HY(L/M,F(mz)) = 0.

H'(L/M,E(1)) = H'(I/m, EQ1)). H'(/m, E(1)) = H'(/m, E()[p™]) as
[/m is a p-extension. Let m be a Z,-extension of m containing [ ( we can
find one as [/m is a p-extension ) then from the inflation-restriction sequence
we get _ _

H (1 fm, EQ)p™]) = H (T, EG)[p))
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where T, = Gal(m/m) = Z,. But (E(m[p™]))"™ = E(m)[p>] is finite which
gives H'(T,,, E(m)[p™]) = 0. Thus H'(I/m, E(l)[p>]) = 0.

Now we will finish the proof of the Lemma. We have to prove finiteness
and boundedness of the following map

On - gE(Fn> - gE(Foo)Fn

ker(g,) C H ker(r,,) = H H ker(ry,)

Un v plv

Now we have

where v, and v run over all primes of F),, and F' correspondingly. If v is
archimedean then ker(r,,) = 0, and they dont contribute to the kernel. So
we will consider only the non-archimedean primes. We will assume that v
does not split completely in F,/F as for those primes also ker(r,,) = 0. We
have two cases v {p and v | p.

There are only finitely many primes dividing p and for every such v by
case I, we have ker(r,,) is finite and independent of n (We have assumed
that E has good , ordinar reductions at all v | p). Hence

| H H ker(r,, )| < oo
v|p vplv

and it is independent of n.

If v 1 p, then if E has good reduction over v we have ker(r,, ) = 0 otherwise
ker(r,,) is finite and independent of n. But E can have bad reduction at
only finitely many points. So

| H H ker(r,,)| < oo

vip vplv

and it is independent of n.
Thus we get that ker(g,) is finite and bounded as n varies.

Now we will finish the proof of Theorem 5.1. ker(s,) is finite and has
bounded order as n varies, follows from Lemma 5.3. coker(s,) is finite and
bounded as n varies follows from Lemma 5.2 and Lemma 5.4, under the
assumption that F has good, ordinary reduction at all v | p. So Theorem 5.1
is proved.
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6 Appendix 1
Some important results from Galois cohomology

Cup Product:
If A and B are two G-modules then A®yz B is also a G-module( by o(a®b) =
oa ® ob) and we obtain for every pair p,q > 0 a bilinear map

C’(G, A) x CU(G, B) —— C""(G, A® B) (5)
by

(@Ub)(00,...,0p+q) = al0o,...,0p) @ b(0p, ... 0psq)
where C"(G, A) consists of the continuous functions x : G"' — A such that

x(oog,...,00,) =ocx(0g,...,0)

Proposition 6.1 9(aUb) = (Ja) Ub+ (—1)?(a U Ib) , where 0 = 0" is the
usual alternating sum.

Proof: Reference:-(See [13|, Chapter 1.4, page 35)

From this proposition it follows that a Ub is a cocycle if both a and b are
cocycles and a coboundary if one of the cochains a and b is a coboundary
and the other a cocycle. Therefore the pairing (5) induces a bilinear map

HP(G,A) x HY(G, B) ——~ H"(G, A® B), (a, B) — a U B
This map is called the Cup-Product.
Some basic results: At first we will define some very canonical and im-

portant homomorphisms between cohomology groups then we will state some
results.

Inflation: Let H be a normal closed subgroup of G and A be a G-
module. Then A is a G/H-module . The projection and the injection

G — G/H, A A
induces a homomorphism
infS'M . HY(G/H, A") — H(G, A)

called inflation .
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Restriction: Let H be any closed subgroup of G then the following two
homomorphisms

H— G, A4
induces homomorphism between cohomology groups
res$ : H"(G,A) — H"(H, A)

Theorem 6.2 Let H be a normal subgroup of G and let A be a G-module .
Then the sequence

0 — HYNG/H, A"y 0 gY(G, A) 2= HY(H, A)
18 exact.

Proof: See ( [1], Chapter 4.5, page - 100)

Transgression:Let H be a normal subgroup of G and A a G-module.
Then there is a canonical homomorphism

tg: HY(H, A" — H*(G/H, A")

called transgression, which is given as follows:

If v : H— A is an inhomogeneous 1-cocycle in a class [x] € H'(H, A)
then there exists a l-cochain y : G — A such that y|y = x and that
(Oy)(oy, 03) is contained in A¥ and depends only on the cosets o1 H, 0o H, i.e
may be regarded as a cocycle of G/H. And for each cochain y,

G/H
?

tglz] = [0y]

Reference:(See [13], Theorem 1.6.5, page 62)

Theorem 6.3 (Five term exact sequence) Let H be a closed normal sub-
group of G and let A be a G module . We then have an exact sequence

0 HY(G/H, A") o HY(G, A)

Tes

H2(G, A) ™ HAG/H, AT) 9 H'(H, A)C/H
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Moreover , if H*(H,A) =0 fori=1,...n— 1, we have an exact sequence

0 H™(G/H, A7) inf H™(G, A)
H™(G, A) inf H™V(G/H, AY) tg H™(H, A)C/H
Proof:

(See [13], Theorem 1.6.6, page 64)

Remark: Proof of this theorem is very long but it follows trivially from
Spectral Sequence, which will come later in the chapter.

Theorem 6.4 Let G be a profinite group and U an open subgroup. Then for
every G-module A such that H"(U, A) = 0 we have

(G:U)H"(G,A) =0

In particular, if G is finite then H*(G, A) is annihilated by the order |G|. If
moreover, A is finitely generated as a Z module, then H"(G, A) is finite.

Recall for n = 0, H"(G, A) = AS/NgA and for n > 1, H*(G,A) =
H"(G,A).
So we get that for arbitrary profinite groups G the cohomology groups
H™"(G,A), n > 1 are torsion groups since

H"(G,A) = lim H"(G/U,AY)
U

where U through the open normal subgroups of G and applying the previous

theorem we get our conclusion.

Now we will mention some very important spectral sequences which are
widely used in cohomology of number fields.

Hochschild - Serre spectral sequence:
Let GG be a profinite group, H a closed normal subgroup of G and A a G-
module. Then there is a canonical spectral sequence

E}" = H'(G/H, H'(H, A)) = H""(G, A)
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It is called Hochschild - Serre spectral sequence.
Reference: ([13] , Theorem 2.1.5, page 82)

Corollary 6.5 As a corollary using the property of spectral sequence we get
the Five term exacl sequence theorem .

First we will state two important definitions.
Definition 6.6 H"(G,A)* = Hom(H"(G, A),Q/Z)
Definition 6.7 Let G be a profinite group, H a closed subgroup and A a

G-module, then we define

D.(H,A) = lim H"(U,A)

UDH
where U runs throught the open subgroups of G containing H.
Definition 6.8

D,(A) = D,({1},A) = lim H"(U, A)*
UDH

Tate spectral sequence:
If cd(G, A) < n (where cd stands for cohomological dimension) then for every
normal subgroup H , there is a cohomological spectral sequence

EY = HP(G/H, D, _,(H,A)) = H"®9(G, A)*
This is called Tate spectral sequence.

Reference: ([13| , Theorem 2.1.11 , page 89)

Tate spectral sequence is used to prove the Tate duality theorems. For
local fields we have the following central theorem of Tate:
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Theorem 6.9 (Tate Duality) Let K be a p-adic local field. Let A be a finite
Gk module and let A(1) = Hom(A, pp=) .Then the cup-product

HY(K, A1) x H*/(K, A) —— H*(K, ) = Q/Z
induces for 0 < i <2 an isomorphism of finite abelian groups
H'(K, A(1)) — H*7/(K, A)*
Reference: (|13|, Theorem 7.2.6, page 327)
Now there is one more very important invariant which is associated with
the cohomology of local fields. This is Euler-Poincare Characteristic.
Let K be a local field and p be its residue characteristic. If A is a finite

G -module of order prime to char(K) (in the case char(K) > 0). Then we
define Euler-Poincare characteristic of A

2
XK, A) = [ [ 1 (), 4))
=0

Now we have the following theorem of Tate

Theorem 6.10 (Tate)
For every finite G -module A of order a prime to char(K ) , we have

XK, A) =] a [k
where || ||k is the normalized absolute value of K.
Proof: The theorem’s statement is very simple but very hard to proof.
reference:(|13], Theorem 7.3.1, page 339)

Now we will prove Corank lemma which was used in chapter 3.

Corank Lemma :
1) Let K, be a finite extension of Q, . Then H'(K,, A) is Z,-cofinitely

generated and we have

corankz, (A) = r[K, : Qy] + corankz, (H°(K,, A)) + rankz, (H° (K., A(1)))

2) Let K, be a finite extension of Q; where | # p. Then H'(K,, A) is Z,-
cofinitely generated and we have

corankz, (A) = corankz, (H*(K,, A)) + rankz, (H°(K,, A(1)))
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Proof: Let M be a finite Gg,-module. Assume that |[M| = p®. Let
M (1) = Hom(M, piye ). Now M (1) is also a Gk, -module order p®. Now from
Theorem 6.10, taking A = M and taking the canonical absolute value in K,
we get
if v|p
2
[T 17 e, )] = pretress
=0
otherwise when v { p
2
[T 117 (5, ) =1
=0

And applying Theorem 6.9 to M and K, we get that ,
H*(K,, M) is the Pontryagin dual of HO(K,, M(1)).

Now we can extend these results to infinite Gk, -modules. Let A =, A[p"]
and then applying the above results to M = A[p"| for all n > 0 which are
finite, we get

when v|p

> (1Y coranky,(H' (K,, A)) = —[K, : Q,Jcorankz,(A) (6)

Jj=0

and when v { p
2

Z(—l)jcorankzp(ﬂj(Kv,A)) =0 (7)

j=0

and

H*(K,, A) is the Pontryagin dual of H°(K,, A(1)) and hence we have

coranky, (H*(K,, A) = rank, (H°(K,, A(1))) (8)

So using (6), (7) and (8) we get the corank lemma in both cases.

Here we will mention one more lemma which is very useful.

49



Lemma 6.11 Suppose that G =< o > is a finite, cyclic group of order m
and that A is an abelian group (writen with additive notion) on which G acts.
Then H'(G, A) = ker(N)/im(c — 1), where N : A —— A is the norm map
defined by

m—1
N(a) = o'(a)

i=0
and o —1: A —— Ais defined by (6 —1)(a) = o(a) —a (both for alla € A).
a) Suppose I' = Z,, and let v € I' be chosen so that < vy > is a dense subgroup
of I'. Suppose that A is a finite, abelian p-group on which I' acts continuously.
(We put the discrete topology on A and require that the map ' x A —— A
defined by (v,a) — ~v(a) be continuous.) Let I',, = I'"" so that T'/T,
is cyclic of order p™. Then HY(T',A) can be defined as @Hl(F/Fn,AF").
Show that

HYT,A)=A/(y—1)A.

b) Suppose that A is a discrete, p-primary abelian group on which I' acts
continuously. Prove that A = U, A" Defining H*(T', A) as above, show that
HYT,A) = A/(y—1)A.

c¢) Suppose that A = (Q,/Z,)" as a group and that I' acts continuously
on A. Prove that H*(T, A) and H' (T, A) have the same Z,-corank and that
if H(T', A) is finite, then H'(T', A) = 0.

Proof: Part a) and b) follows just by simple calculation using the struc-
ture of H'(G, A) described initially in the lemma.

¢) Suppose A =~ (Q,/Z,)". We have H°(I'; A) = A" and H'(T',A) =
A/(y — 1)A. Now we have the following excat sequence

HOT, A) — A% A—— HYT, A) — 0.

By dualizing we get corank(H°(T", A)) = corank(H" (T, A)). So if H)(T', A)
is finite, then H'(T', A) is finite also. But as (Z,)" has no non-trivial finite
subgroup, (Q,/Z,)" has no finite non-trivial quotient which gives H(T", A) =
0.
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7 Appendix 2

Some Important Results from Elliptic Curves
Firstly we will recall some results concerning Formal Groups.
Let R be a ring.

Definition. A (one-parameter commutative) formal group F defined
over R is a power series F'(X,Y) € R[[X, Y]] satisfying:

a) F(X,Y) =X +Y + (terms of degree > 2).
b) (X F(Y,2))=F(F(X,Y),Z) (associativity).
c) F(X,Y)=F(Y,X) (commutativity).

d) There is a unique power series (1) € R[[T]] such that F(T,i(T)) = 0
inverse).

e) F(X,0)=X and F(0,Y) =Y.
We call F(X,Y) the formal group law of F.

Formal group of Elliptic Curve:
Let E be an elliptic curve given by a Weierstrass equation with coefficients
in R.
E vy +ayxy + asy = ° + a2 + agr + ag

always remembering that there is the extra point at infinity O = [0, 1,0].
Now we make a change of variables, so let

the origin at O on E is now the point (z,w) = (0,0) and z is a local uni-
formizer at O (i.e z has a zero of order 1 at O ). The usual Weierstrass
equation becomes

w = 2%+ a12w + aPw + asw? + agzw® + agw (= f(z,w)).

Now if we substitute this equation into itself recursively then we get w as a
power series in z.

Since z = £ and y = —i we can obtain Laurent series for x and y by substi-
tuiting the power series for w(z). Then we can form a power series F(z1, z2)
(21 and 25 are two points on E) which gives the addition law of z; and z,.
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Reference: [19], Chapter V.1

The formal group associated to F , denoted by Eis given by the power
series F'(z1, 22).

Let R be a complete local ring, M be the maximal ideal of R, k£ be the
residue field, and F a formal group over R, with formal group law F(X,Y).

Definition: The group associated to F/R, denoted F (M), is the set M
with the group operations

r@ry = F(z,y) (addition) for x,y € M,
OFr = i(x) (inverse) for x € M.

Proposition 7.1 (a) For each n > 1, the map
F(Mn)/F(M’rL-‘rl) N M'n,/Mn—‘,—l
induced by the identity map on sets is an isomorphism of groups.

(b)Let p be the characteristc of k (p = 0 is allowed). Then every torsion
element of F(M) has order a power of p.

Reference: See [19], Chapter 4, Proposition 3.2 Now let K be a local field,
complete with respect to a discrete valuation v, R be the ring of integers of
K, M the maximal ideal of R, 7 a uniformizer for R (i.e M = 7R) and k
be the residue field of R i.e k = R/ M.

Let E(/{:) be the elliptic curve defined over k obtained by reducing mod-
ulo 7. Now the curve E//k may or may not be singular. But in any case the

set of non-singular points, denoted by E,s(k) forms a group. We define two
subgroups of E(K) as follows:

Eo(K)={P € E(K): P € E,(k)}

E\(K)={PeE(K): P=0}
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Then we get the following exact sequence of abelian groups:

0 — Ey(K) — Ey(K) — Eps(k) — 0
Reference: [19] , Proposition 6.2.1.

Now from the following proposition we get more explicit description of
Ey(K).

Proposition 7.2 Let E/K be given by a minimal Weierstrass equation, let

E/R be the formal group associated to E and let w(z) € R[[z]] be the power
series described above. Then the map

E(M) — Ei(K)

s an isomorphism.

Reference: See [19], Chapter 6, Proposition 2.2

Then the above exact sequence becomes
0 — E(M) — Eo(K) — Ens(k) — 0 (9)

Moreover if E has good reduction i.e E/k is non-singular then Eo(K) =
E(K) and E,s(k) = E(k). Then (9) becomes
0—>E(M)—>E(K)—>E(k‘)—>0 (10)

We will mention one more important proposition which will imply Lutz’s
Theorem.

Proposition 7.3 Let K be a finite extension of Q, (so char(K) = 0 and
k is a finite field). Then E(K) contains a subgroup of finite index which is
isomorphic to R™ (taken additively).

Reference: See [19], Chapter 6, Proposition 6.3
Now we will have the Lutz’s theorem

Theorem 7.4 E(K) = ZIE)K:Q’“]X (finite group)
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Proof: (Clear from the above proposition and structure of R™)

In the end we will prove one more very important lemma on p-primary
part of Formal groups. We will continue with the notations described in
Section 3.

Lemma 7.5 The natural map
™2 E[p™] = E[p*]
is surjective and ker(m) = Q,/Z,.
Proof:We will use the exact sequence obtained in (9).
0— E(M) — E(K) — E(k) — 0

which induces the following commutative diagram

0 E(M) —— E(K) E(k) — 0
[p] [p] [p]
0 E(M) —— E(K) E(k) — 0

where [p]denotes the canonical multiplication map by p. So by snake lemma
we get N _ N N

E[p™*] — E[p>*] — E[p™] — E(M)/[p|E(M) — 0

So if we can prove E(M)/[p|E(M) = 0 then the first part of the lemma will
be proved. R R
Now [p] : E(M) — E(M) is defined by sending y — f(y) where y € E(M)
and f(T) € Ok[[T]], f = p.g(T) + T*"(h(T)), h(T) is invertible and h is
the height of E(M) (See Reference: See [19], Chapter 4, Corollary 4.4 and
Section 7). So proving E(M)/[p|E(M) = 0 is equivalent to find a z such that
f(x) —y =0. But f(T) — y is of weierstrass degree p" therefore f(T) —y =
P(T)U(T) where P(T) is distinguished of degree p". Therefore f(T) —y has
non-zero solution which proves the frist part of the lemma.

Now E[p>] = (Q,/Z,)? since E(C) = (Q/Z)?. This gives ker(m) = Q,/Z,.
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