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Chapter 0

Introduction

0.1 Statement of the problem, known results and applications

The goal of this thesis is to study different techniques to find an upper bound for the sup-norm of
holomorphic cuspidal eigenforms of weight k over Γ0(q), where q is a prime number that tends to
infinity. If f0 is such a cuspidal eigenform, it is shown that

‖yk/2f0‖∞ � q−
1
22

+ε‖f0‖2

This problem has been recently studied in a more general framework by V. Blomer and R. Holowin-
sky [BH10], and by N. Templier [Tem10]. Namely they studied upper bounds for the sup-norm
of Hecke-Maass eigenforms on arithmetic surfaces. Let f be an Hecke-Maass cuspidal newform of
squarefree-level N and bounded Laplace eigenvalue. Blomer and Holowinsky provided a non-trivial
bound when f is non-exceptional:

‖f‖∞ � q−
1
37 ‖f‖2

They proved also that this bound holds true for f = yk/2F , where F is a holomorphic cusp-form
of weight k.
In his article Templier improved this bound and extended this result also for a large class of f . He
used a different approach in that he relies on the geometric side of the trace formula, obtaining

‖f‖∞ � q−
1
23 ‖f‖2

In my work I have recovered the same bound as Templier in the case in which f = yk/2F , with F
a holomorphic cusp-form of weight k and prime level q.

Since f is cuspidal, then it is bounded on any neighborhood of any cusp, so it is uniformly
bounded on the whole hyperbolic plane H. So it is a natural question to try to quantify this
boundness in an effective way. Such bounds play an important role for instance in connection with
subconvexity of L-functions [HM06, Proposition 4], and in connection with the mass equidistribu-
tion conjecture [Rud05, Appendix].

The problem of bounding cusp forms is also related to bounding periods of automorphic forms
[MV06], and hence it is implicitly related to the subconvexity problem for automorphic L-functions.



2 Introduction

As one can see in [JK04] the best possible bound for N →∞ is

sup
z∈H

∑
F∈B(N,1)

y2|F (z)|2 = O(1)

Nothing beyond this average bound is known. For an individual Hecke cusp-form it recovers only
the trivial bound, that comes from the Fourier expansion. On the other hand, since V ol(F0(N)) is
about N , one might conjecture

‖f‖∞ � N−
1
2 ‖f‖2

There is no real evidence for the validity of such a bound, except that it is trivially true for old
forms of level 1. It is a very optimistic and a very strong conjecture, since it would imply the
most optimistic bound for the Lp norms, and the Lindelof Hypotesis for automorfhic L-functions
in the level aspect for L(1/2, f), since f(i/

√
N) ≈ L(1/2, f)N−1/2‖f‖2. This shows that in order

to derive some subconvex bound for L(1/2, f) in the level aspect by this method, one would need

already a relatively strong pointwise bound ‖f‖∞ � N−
1
4
−δ‖f‖2.

Note that as I have said above the conjecture holds true when f is an old form that comes from
a level 1 form, so if we consider the prime level q, all the oldforms comes from level 1, and so it is
reasonable to consider f a newform.

0.2 Structure of the thesis

This thesis is organized as follows:

The first chapter describes the theory of Modular Forms. In particular it focus on the algebraic
structure of the set of cusp forms for congruence subgroups Sk(Γ0(q)). It is shown that this set
is in fact a vector space which has an orthogonal basis made of simultaneous eigenforms for the
Hecke operators T (n), for all n coprime with q. This space can be decomposed as a direct sum of
two subspaces (newforms and oldforms) which are stable under the Hecke operators T (n), for n
coprime with q, namely Sk(Γ0(q)) = Soldk (Γ0(q))⊕Snewk (Γ0(q)). Moreover we will see that there exists
{f1, · · · , fn} orthogonal basis of Soldk (Γ0(q)) made of eigenforms for all T (m) such that (m, q) = 1,
and {fn+1, · · · , fJ} orthogonal basis of Snewk (Γ0(q)) made of arithmetically normalized eigenforms
for all T (m). It is denoted by SPk (Γ0(q)) and it is unique up to permutation. More about that can
be found in [Lan95], [Kob93] and [DS05].

In the second chapter we shall introduce the main theorem

Theorem 0.2.1 (The Main Theorem). Let q be a prime number and let k ≥ 4 be a fixed integer.
Let f0 ∈ SPk (Γ0(q)) be an arithmetically normalized newform of weight k. Denote g(z) = yk/2|f0(z)|,
where z = x+ iy ∈ H, then

‖g‖∞ � q
1
2 q−

1
22

+ε

and some preliminaries that will be used throughout the whole thesis, namely the theory of
the Atkin-Lehner operators [AL70], that together with the study of the Siegel sets will allow us to
restrict the domain of our cusp form f0 to Sq. Thus our problem becames easier since the area of
investigation is sensitively smaller, and we obtain some useful informations for z.
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The third chapter describes the two trivial methods to find an upper bound for the sup-norm
of our cusp form. Namely, the first method is based on the properties of the coefficients of the
Fourier expansion of f0, while the second one uses the pre-trace formula described in appendix 1.

With chapters four and five we introduce the amplification method. This technique will be no
sufficient in chapter four to improve the previous bounds, but it is so powerful that added to a
Diophantine argument it will allow us to improve the trivial bound, at most for those z which lie
in a certain reagion of our domain Sq: it will be splitted into two reagions, one ”away from the
cusps” and one ”closed to the cusps”. The amplification method fails for those z which are closed
to the cusps, but in this reagion the trivial bound found with the Fourier coefficients will be good
enough to improve the upper bound for f0(z) in the whole H.





Chapter 1

Modular Forms and Hecke Algebra

In this chapter I want to recall some definitions and basic facts about modular forms and the
Hecke algebra associated to them. In particular I am interested in the cusp forms over Γ0(q)
which will be studied in detail.

1.1 Modular Forms

Denote by SL2(Z) the group of all matrices of determinant 1 with coefficients in Z. It is called the
Modular Group, and it is generated by the two matrices

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
If we consider the hyperbolic plane H = z ∈ C : =z > 0, there is an action of the modular group
on this space given by (

a b
c d

)
(z) =

az + b

cz + d

Definition 1.1.1. Let k be an integer. A modular form of weight k is a holomorphic function
f : H→ C satisfing the relation

f(z) =
1

(cz + d)k
f(γz) for all γ =

(
a b
c d

)
∈ SL2(Z)

Moreover it has to be holomorphic at ∞.

To define this last notion, recall that the traslation matrix T ∈ SL2(Z), hence
f(Tz) = f(z+ 1) = f(z), so f is Z-periodic. Since f is also holomorphic it induces an holomorphic
function f∞ on the punctured disc defined by f∞(q) = f∞(e(z)) = f(z), where e(z) = e2πiz. Also
e : H→ D∗ = {q ∈ C : 0 < |q| < 1} is holomorphic and Z-periodic, so we can write f∞ as

f∞(q) =
∑
n∈Z

anq
n

The relation |q| = e−2π=z shows that q → 0 as =z → ∞. So thinking of ∞ as lying far in the
imaginary direction, we have the following
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Definition 1.1.2. f is said to be holomorphic at ∞ if f∞ extends holomorphically to the punc-
tured point q = 0.

Remark 1.1.3. With this property the Laurent series of f∞ sums over n ∈ N. This means that f
has a Fourier expansion

f(z) =
∞∑
n=0

an(f)e(nz)

Remark 1.1.4. For simplify the notation we call j(γ, z) = cz+ d where γ =

(
a b
c d

)
. Moreover

we define f [γ]k (z) = 1
j(γ,z)k

f(γz). With this notation f : H→ C is a modular form of weight k if

it is an holomorphic function on H, holomorphic at ∞ and f [γ]k (z) = f(z) ∀γ ∈ SL2(Z).
Moreover for all γ, γ′ ∈ SL2(Z) and z ∈ H we have the following:

• j(γγ′, z) = j(γ, γ′z)j(γ′, z);

• (γγ′)(z) = γ(γ′)(z);

• [γγ′]k = [γ]k [γ′]k as operators;

• =(γ(z)) = =z
|j(γ,z)|2 .

Remark 1.1.5. If k is an odd integer then considering γ =

(
−1 0
0 −1

)
we have f(z) =

(−1)kf(γz) = −f(z), thus the only modular form of weight k odd is the zero function. For this
reason we will consider k even.

The set of all modular forms of weight k is denoted by Mk(SL2(Z)). In fact it is a C-vector
space. Moreover the product of a modular form of weight k with a modular form of weight l is a
modular form of weight k + l. Thus the sum

M(SL2(Z)) =
⊕
k∈Z

Mk(SL2(Z))

is a graded ring.

Definition 1.1.6. A cusp form of weight k f is a modular form of weight k whose Fourier
expansion has leading coefficient a0(f) = 0,i.e.

f(z) =
∞∑
n=1

an(f)e(nz)

The set of all cusp forms is denoted by Sk(SL2(Z)) and it is a C-vector subspace of Mk(SL2(Z)).
Moreover the graded ring

S(SL2(Z)) =
⊕
k∈Z

Sk(SL2(Z))

is an ideal of M(SL2(Z)),

Remark 1.1.7. A cusp form is a modular form such that lim
=z→∞

f(z) = 0. The limit point ∞ of H
is called the cusp of SL2(Z).
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1.2 Modular Forms for Congruence Subgroups

Definition 1.2.1. Let N be a positive integer. The principal congruent subgroup of level N
is

Γ(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
(mod N)

}
In particular Γ(1) = SL2(Z). Being the kernel of the natural homomorphism

SL2(Z)→ SL2(Z/NZ) Γ(N) is normal in SL2(Z). In fact this map is a surjection, hence we have

[SL2(Z) : Γ(N)] = |SL2(Z/NZ)| = N3
∏
p|N

(
1− 1

p2

)

Definition 1.2.2. A subgroup Γ of SL2(Z) is a congruence subgroup if ∃N positive integer such
that Γ(N) ⊂ Γ, in which case Γ is a congruence subgroup of level N . In particular any congruence
subgroup has finite index in SL2(Z).

Besides the principal congruence subgroups, the most important congruence subgroups are

Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
and

Γ1(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod N)

}
Note that Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ Γ(1).

Remark 1.2.3. The map

Γ1(N)→ Z/NZ,

(
a b
c d

)
7→ b (mod N)

is a surjection with kernel Γ(N), hence [Γ1(N) : Γ(N)] = N .

Remark 1.2.4. Similarly the map

Γ0(N)→ (Z/NZ)∗,

(
a b
c d

)
7→ d (mod N)

is a surjection with kernel Γ1(N), hence [Γ0(N) : Γ1(N)] = ϕ(N).

Each congruence subgroup Γ contains a traslation matrix of th form(
1 h
0 1

)
for some minimal h ∈ Z>0. If an holomorphic function f : H→ C satisfies the condition
f [γ]k (z) = f(z) ∀γ ∈ Γ therefore is hZ-periodic and thus f(z) = f∞(e(z/h)) where f∞ : D∗ → C
(D∗ is the punctured disc) is holomorphic in D∗, so it has a Fourier expansion.
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Definition 1.2.5. We say that f is holomorphic at ∞ if f∞ extends holomorphically to 0.

Thus f has a Fourier expansion

f(z) =
∞∑
n=0

an(f)e(z/h)n

The idea for a congruence subgroup Γ is to consider Ĥ = H∪{∞}∪Q, and then to identify adjoined
points under Γ-equivalence. Each Γ-equivalence class of points in {∞} ∪Q is called a cusp of Γ.
Since each rational number s takes the form s = α(∞) for some α ∈ SL2(Z), then the number of
cusps is at most the number of cosets Γα in SL2(Z), a finite number since [SL2(Z) : Γ] is finite.

Definition 1.2.6. Let Γ be a congruence subgroup of SL2(Z), and let k be an integer. A function
f : H→ C is a modular form of weight k with respect to Γ if

1. f is holomorphic;

2. f [γ]k (z) = f(z) ∀γ ∈ Γ;

3. f [γ]k is holomorphic at ∞ for all γ ∈ SL2(Z).

The modular forms of weight k with respect to Γ are denoted by Mk(Γ).

Condition (3) means that f should be holomorphic at all cusps.

Definition 1.2.7. A cusp form of weight k with rispect to Γ is a modular form of weight
k with respect to Γ such that the Fourier expansion of f [α] has the first coefficient a0 = 0 for all
α ∈ SL2(Z).
The cusp forms of weight k with respect to Γ are denoted Sk(Γ).

1.2.8 The congruence subgroup Γ0(q)

I want to give some more results about the congruence subgroup Γ0(q), where q denotes a prime
number, being the group we are more interested in. These results will be useful later.

Lemma 1.2.9. The index of Γ0(q) in SL2(Z) is [SL2(Z) : Γ0(q)] = q + 1

Proof. In the previous section we have seen that

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)

[Γ1(N) : Γ(N)] = N

and
[Γ0(N) : Γ1(N)] = ϕ(N)

Since in this case q is prime, we obtain

[SL2(Z) : Γ(q)] = q(q2 − 1)
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[Γ1(q) : Γ(q)] = q

and

[Γ0(q) : Γ1(q)] = q − 1

The conclusion follows immediately.

In the next chapter, when we will introduce Hecke operators, we will have to work with the
group

Gn(q) =

{(
a b
c d

)
∈M2(Z) : ad− bc = n, q|c, (a, q) = 1

}
In particular Γ0(q) acts on Gn(q) by left multiplication, hence we are interested in Γ0(q) \Gn(q).

Proposition 1.2.9.1. The set ∆n(q) =

{(
a b
0 d

)
∈M2(Z) : ad = n, 0 ≤ b < d, (a, q) = 1

}
is a

system of representatives of Γ0(q) \Gn(q).

Proof. We prove first that for all A ∈ Gn(q) ∃B ∈ Γ0(q) such that BA ∈ ∆n(q): Let A =

(
a b
c d

)
,

then ad− bc = n, q|c and (a, q) = 1. Define γ = c
(a,c) and δ = −a

(a,c) , thus q|γ. Let α and β be such

that

(
α β
γ δ

)
∈ Γ0(q), call it B. So we have αδ − βγ = −αa−βc

(a,c) = 1, hence αa + βc = −(a, c).

We have

BA =

(
α β
γ δ

)(
a b
c d

)
=

(
−(a, c) αb+ βd

0 −n/(a, c)

)
Since (a, q) = 1 then (−(a, c), q) = 1. Moreover the determinant is exactly n, and multiplying BA

on the left by the matrix Tm =

(
1 m
0 1

)
we can obtain 0 ≤ αb + βd < −n/(a, c). Note that

TmB ∈ Γ0(q).
To prove that ∆n(q) is a system of representatives we have to check that two elements of ∆n(q)
can not represent the same left coset: suppose

AB =

(
α β
γ δ

)(
a b
0 d

)
=

(
x y
0 z

)
= C

with A ∈ Γ0(q) and B, C ∈ ∆n(q), then γa = 0, hence γ = 0. So αδ = 1 ⇒ α = δ = ±1. If
α = δ = 1 then d = z, a = x and 0 ≤ b + βd = y < z = d which implies β = 0 and A = id. If
α = δ = −1 similarly we obtain A = −id. This proves the proposition.

To conclude this section I want to describe a fundamental domain for Γ0(q) in H. In general
SL2(Z) acts on H as usual, so it is divided into equivalence classes; two points are said to be in
the same equivalence class if there exists γ ∈ SL2(Z) that sends one to the other. In particular if
Γ is a subgroup of SL2(Z), then we say that two points are Γ-equivalent if an element of Γ send
one to the other. A closed (and usually is also required simply connected) region in H, call it F , is
said to be a fundamental domain for Γ if every z ∈ H is Γ-equivalent to a point of F , but no
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two distinct points in the interior of F are Γ-equivalent. The most famous fundamental domain of
SL2(Z) is

F =

{
z ∈ H : −1

2
≤ <z ≤ 1

2
and |z| ≥ 1

}

F

1√
3/2

−1/2 1/2

Remark 1.2.10. If we consider H ∪∞ ∪ Q = Ĥ, one can easily see that ∞ could be send to any
rational number by an element of SL2(Z), so a fundamental domain for Ĥ is F̂ = F ∪∞.

Suppose now to have a subgroup Γ of SL2(Z) of finite index; we want to construct a fundamental
domain F ′ of Γ starting from a fundamental domain F of SL2(Z): since it is of finite index
(with respect to the left multiplication), say [SL2(Z) : Γ] = n, there exists α1, · · · , αn such that
SL2(Z) =

∐n
i=1 αiΓ.

Lemma 1.2.11. F ′ =
∐n
i=1 α

−1
i F .

Proof. First of all we verify that any z ∈ H is Γ-eqiuvalent to an element of F ′: since F is a
fundamental domain of SL2(Z), there exists γ ∈ SL2(Z) such that γz ∈ F . Then for some i we
have γ = αiγ

′ with γ′ ∈ Γ, hence γ′z ∈ α−1
i F ∈ F ′.
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Now, if two points z1 and z2 in the interior of F ′ are Γ-equivalent, then there exists γ ∈ Γ such
that γz1 = z2. Moreover there exists i and j such that z1 = α−1

i w1 and z2 = α−1
j w2 for some w1,

w2 ∈ F . So we have w2 = αjγα
−1
i w1, that is a contradiction because αjγα

−1
i ∈ SL2(Z) and w1,

w2 ∈ F .

In the case of Γ0(q) we have that its fundamental domain is the disjoint union of q + 1 trans-
formation of F . We want to describe the structure of these transformation:

Proposition 1.2.11.1. Let n be a positive integer. A set of inequivalent cusps for Γ0(n) is given
by the following fractions:

u

v
with q|v , (u, v) = 1 , u (mod (v, q/v))

Hence the number of inequivalent cusps is ∑
vw=q

ϕ((v, w))

Remark 1.2.12. A proof for the above proposition can be found in [Iwa97, p. 36].

So in the case of q prime we have two cusps that could be represented by ∞ and 0. Note that
∞ and 0 are not Γ0(q)-equivalent. So the fundamental domain F0(q) of Γ0(q) in Ĥ is the following

0

F0(7)
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1.3 Hecke operators and Petersson inner product

1.3.1 Hecke operators

In a general setting, the Hecke operators are averaging operators over a suitable finite collection of
double cosets with respect to a group, therefore a great deal of the Hecke theory belongs to linear
algebra.
In this section I want to present the theory of Hecke operators in the context of SL2(Z) and of
the congruence subgroup Γ0(q).

Assume k to be a fixed integer. For any α ∈ GL+
2 (R) the operator [α]k is defined on f : H→ C

by

f [α]k(z) = (detα)k/2
1

j(α, z)k
f(αz)

For a positive integer n define

Gn = {α ∈ GL2(Z) : detα = n}

The modular group SL2(Z) acts on Gn from both sides, so that Gn = SL2(Z)Gn = GnSL2(Z).

Lemma 1.3.2. The collection

∆n =

{(
a b
0 d

)
: ad = n, 0 ≤ b < d

}
is a complete set of right coset representatives of Gn modulo SL2(Z)

The proof is very similar to that we have done in the previuos section to find a system of
representatives of Gn(q) modulo Γ0(q).

Definition 1.3.3. Let f ∈Mk(SL2(Z)), n be a positive integer, then the operator T (n) defined by

T (n)f =
1√
n

∑
γ∈∆n

f [γ]k

is called Hecke operator for SL2(Z).

Remark 1.3.4. Usually the exponent of n in this definition is different from −1/2, and it depends
on k. The reason of this normalization will be explain later.

Remark 1.3.5. • Hecke operators maps modular forms to modular forms;

• Hecke operators maps cusps forms to cusps forms;

• T (n)T (m) = T (m)T (n).

Consider now the congruence subgroup Γ0(q);

Recall 1.3.6. ∆n(q) =

{(
a b
0 d

)
: ad = n, 0 ≤ b < d, (a, q) = 1

}
is system of representatives of

Gn(q) modulo Γ0(q).
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Definition 1.3.7. Let f ∈Mk(Γ0(q)), n be a positive integer, then the operator T (n) defined by

T (n)f =
1√
n

∑
γ∈∆n(q)

f [γ]k

is called Hecke operator for Γ0(q).

Remark 1.3.8. Hecke operators send modular forms (resp. cusp forms) with respect to Γ0(q) to
modular forms (resp. cusp forms) with respect to Γ0(q).

To analize more properties about these operators we need to define an inner product in the
space of cusps forms, namely the Petersson inner product.

1.3.9 Petersson inner product

To study the space of cusp forms Sk(Γ0(q)) further, we make it into an inner product space. The
inner product will be defined as an integral. Let f and g ∈ Sk(Γ0(q)); we define the Petersson
inner product

〈f, g〉 =

∫
F0(q)

f(z)g(z)yk
dxdy

y2

where z = x+ iy and F0(q) is a fundamental domain of Γ0(q) in H.
Clearly this product is linear in f and conjugate linear in g, Hermitian, symmetric and positive

definite.

Remark 1.3.10. dxdy
y2

is called hyperbolic measure and it is denoted by dµ(z). It is invariant

under GL+
2 (R) meaning for all α ∈ GL+

2 (R) dµ(αz) = dµ(z) for all z ∈ H. In particular it is
SL2(Z)-invariant.

Remark 1.3.11. Since Q ∪∞ is countable it has measure zero, hence it is enough for integrating
over Ĥ.

Remark 1.3.12. For any continuos bouded function ϕ : H→ C and any α ∈ SL2(Z), the integral∫
F ϕ(αz)dµ(z) converges. In particular it converges in Sk(Γ0(q)) but not necessary in Mk(Γ0(q)),

so it cannot be extended to it.

I recall that if T is an operator over a inner product space V , then its adjoint T ∗ is the unique
operator such that 〈Tv,w〉 = 〈v, T ∗w〉 for all v, w ∈ V . The following proposition describe the
adjoints of T (n) over Γ0(q).

Proposition 1.3.12.1. If (n, q) = 1 and f, g ∈ Sk(Γ0(q)) then

〈T (n)f, g〉 = 〈f, T (n)g〉

i.e. the Hecke operators T (n) with (n, q) = 1 are self adjoints.

An obvious consequence of this result is that T (n)’s are normal, and from the spectral theorem
of linear algebra, given a commutative family of normal operators of a finite dimensional inner
product space, the space has an orthogonal basis of simultaneous eigenvectors for the operators. In
our case the eigenvectors are called eigenforms, thus we have the following
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Theorem 1.3.13. Sk(Γ0(q)) has an orthogonal basis of simultaneous eigenforms for the Hecke
operators T (n) such that (n, q) = 1.

Let f ∈Mk(Γ0(q)) be an eigenform for T (n) with n and q coprime, then there exists λ(n) ∈ C
such that T (n)f = λ(n)f . Since the operator T (n) is self adjoint we obtain λ(n) = λ(n), so the
eigenvalues are all real.
For our task I want to normalize the Fourier coefficients of any cusp forms, to have a good relation
between these coefficients and the eigenvalues. As we have already seen any cusp form has a Fourier
expansion

f(z) =
∑
n≥1

an(f)e(nz)

We define the normalized Fourier coefficients as

ψf (n) =
an(f)

n
k−1
2

, for all n ≥ 1

In particular we obtain

f(z) =
∑
n≥1

ψf (n)n
k−1
2 e(nz)

From the definition we compute the action of T (m) on the Fourier expansion at infinity of a modular
form:

T (m)f(z) = m−1/2
∑

γ∈∆0(q)

f [γ]

= m−1/2
∑
ad=m

(a,q)=1

mk/2d−k
∑

0≤b<d
f

(
az + b

d

)

=
1

m
k+1
2

∑
ad=m

(a,q)=1

ak
∑

0≤b<d

∑
n≥0

ψf (n)n
k−1
2 e

(
n
az + b

d

)

=
∑
n≥0

ψf (n)
n
k−1
2

m
k+1
2

∑
ad=m

(a,q)=1

ake
(anz
d

) ∑
0≤b<d

e

(
nb

d

)

=
∑
n≥0

ψf (n)
n
k−1
2

m
k+1
2

∑
ad=m

(a,q)=1
dl=n

ake
(anz
d

)
d
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=
∑
n≥0

ψf (n)
n
k−1
2

m
k−1
2

∑
ad=m

(a,q)=1
dl=n

ak−1e
(anz
d

)

=
∑
n≥0

∑
ad=m

(a,q)=1
al=n

ψf

(
nd

a

)(
dn

am

) k−1
2

ak−1e(nz)

=
∑
n≥0

∑
ad=m

(a,q)=1
al=n

ψf

(nm
a2

)( n
a2

) k−1
2
ak−1e(nz)

=
∑
n≥0

 ∑
d|(n,m)
(d,q)=1

ψf

(nm
d2

)
n
k−1
2

 e(nz)

From this formula we obtain an important property of the eigenforms, namely

Proposition 1.3.13.1. Let m be a positive integer, f an eigenform for T (m) with eigenvalue
λf (m), then

λf (m)ψf (1) = ψf (m)

Proof. T (m)f = λf (m)f hence the coefficient of e(z) is λf (m)ψf (1); on the other hand by the
previous formula we obtain λf (m)ψf (1) =

∑
d|(1,m),(d,q)=1 ψf

(
m
d2

)
= ψf (m)

Remark 1.3.14. If f is an eigenform of T (m) for all m then we can conclude that ψf (1) 6= 0
otherwise f is the zero function.

Remark 1.3.15. The relation between Hecke operators and Fourier coefficients of a modular forms
is a proof of the commutativity property of the Hecke operators. We can obtain

T (m)T (n) =
∑

d|(n,m),(d,q)=1

T
(nm
d2

)
In particular if (n,m) = 1 then T (nm) = T (n)T (m). Therefore each T (n) is the product of Hecke
operators of the form T (pj) for some prime numbers p.

Remark 1.3.16. We have
T (pj+1) = T (p)T (pj)− T (pj−1)

Remark 1.3.17. Always from the above formula it follows that

ψf (m)ψf (n) = ψf (1)
∑

d|(n,m),(d,q)=1

ψf

(mn
d2

)
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1.4 The Structure of Sk(Γ0(q)): Oldforms and Newforms

As we have seen before there exists a basis of Sk(Γ0(q)) consisting of eigenforms for Hecke operators
T (m) with m coprime with q. It would be more interesting to have a basis of eigenforms for all
the Hecke operators without exceptions. In this case we are sure that the first coefficient of the
Fourier expansion is non zero. Unfortunately in general it is not possible to find such a basis, but
the problem in partially solved thanks to Atkin-Lehner theory, that we are going to explain.
The basic idea is that we can move from Sk(Γ0(M)) to Sk(Γ0(N)) where M |N with two natural
operators:

1. ι : Sk(Γ0(M)) ↪→ Sk(Γ0(N)) the natural inclusion;

2. For d|NM , [d] : Sk(Γ0(M))→ Sk(Γ0(N)) given by f [d](z) = f(dz).

Remark 1.4.1. Hecke operators T (m) with m coprime with q commute with [d], hence if f is an
eigenform also f [d] is an eigenform. However f [d](z) =

∑
n≥1 an(f)e(dnz), hence the first Fourier

coefficient of f [d] vanishes if d > 1.

The theory of newforms remedies to this defect by considering that cusp forms such as f [d] ∈
Sk(Γ0(N)) are not really of level N but come from lower level. We shall study the case N = q
prime, but this results are true for all integers N .

Definition 1.4.2. Let Soldk (Γ0(q)) be the subspace of Sk(Γ0(q)) spanned by all cusp forms of the
type ι(f) and f [q] where f ∈ Sk(Γ0(1)).
Let Snewk (Γ0(q)) its orthogonal with respect to the inner product. Thus we have the orthogonal
decomposition

Sk(Γ0(q)) = Soldk (Γ0(q))⊕ Snewk (Γ0(q))

Proposition 1.4.2.1. The subspaces Soldk (Γ0(q)) and Snewk (Γ0(q)) are stable under the Hecke op-
erators T (m) with (m, q) = 1.

As a consequence, we have that each of this two subspaces has an orthonormal bases consisting
of eigenforms of Hecke operators T (m) with (m, q) = 1.

Definition 1.4.3. f ∈ Snewk (Γ0(q)) that is an eigenform of T (m) for all positive integer m is called
newform.
Snewk (Γ0(q)) is called the space of newforms of level q and Soldk (Γ0(q)) is called the space of
oldforms of level q.

Theorem 1.4.4 (Main Lemma). Let f ∈ Sk(Γ0(q)) sucht that f(z) =
∑

n≥1 an(f)e(nz) with

an(f) = 0 for all n coprime with q, then f ∈ Soldk (Γ0(q))

Theorem 1.4.5. Snewk (Γ0(q)) has an orthogonal basis of normalized newforms.

Proof. We already know that Snewk (Γ0(q)) has an orthogonal basis consisting of eigenforms for T (m)
for all m coprime with q, in particular we know that for all such an m ψf (m) = λf (m)ψf (1), where
ψf (i) are the normalized coefficient. If ψf (1) = 0 then by the main lemma f ∈ Soldk (Γ0(q)) that
is in contradiction with the hypotesis, so ψf (1) 6= 0 and we may assume it to be 1. Now for all
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m ∈ Z>0 define gm = T (m)f − ψf (m)f ∈ Snewk (Γ0(q)). It is clearly an eigenform for all T (n) such
that (n, q) = 1 and ψgm(1) = ψT (m)f (1) − ψψf (m)f (1) = ψf (m) − ψf (m) = 0, hence by the main

lemma each gm ∈ Soldk (Γ0(q)) ∩ Snewk (Γ0(q)) = 0, thus

T (m)f = ψf (m)f for all m ∈ Z>0

Remark 1.4.6. Note that if f is a normalized newform, i.e. ψf (1) = 1 then the eigenvalues λf (m)
for T (m) are exactly the normalized Fourier coefficients ψf (m).

Theorem 1.4.7 (Multiplicity One Property). Let f ∈ Snewk (Γ0(q)) be a non zero eigenform of T (m)
for all m coprime with q. If g satisfies the same conditions as f and has the same T (m)-eigenvalues,
then g = cf for some constant c.

This theorem implies that for each eigenvalue there exists exactly one normalized newform
associated to it. The set of normalized newform in the space Snewk (Γ0(q)) is an orthogonal basis of
the space and it is unique.

Lemma 1.4.8. If f ∈ Sk(Γ0(q)) is an eigenform for all T (m), then it is either an oldform or a
newform.

Proof. If ψf (1) = 0 then f = 0 because it is an eigenform. Assume ψf (1) 6= 0 and assume f is
normalized, hence ψf (1) = 1. Then T (n)f = ψf (m)f for all m. f can be write as f = g + h with
g ∈ Soldk (Γ0(q)) and h ∈ Snewk (Γ0(q)). Thus we have ψf (m)f = ψf (m)g + ψf (m)h, so g and h are
eigenforms with the same eigenvalues of f . If h = 0 then f = g is an oldform, otherwise h 6= 0
implies ψh(1) because it is a newform, and T (m)h = ψh(m)

ψh(1) h. Hence ψf (m) = ψh(m)
ψh(1) thus by the

multiplicity one property f = 1
ψh(1)h is a newform.

Resuming, we have seen that

Sk(Γ0(q)) = Soldk (Γ0(q))⊕ Snewk (Γ0(q))

Moreover there exists {f1, · · · , fn} orthogonal basis of Soldk (Γ0(q)) made of eigenforms for all T (m)
such that (m, q) = 1, and {fn+1, · · · , fJ} orthogonal basis of Snewk (Γ0(q)) made of arithmetically
normalized eigenforms for all T (m). It is denoted by SPk (Γ0(q)) and it is unique up to permutation.





Chapter 2

The Main Theorem

In this chapter I want to introduce the problem, stating the main theorem, and I want to reduce
it using algebraic properties of the cusp forms, that allow us to reduce their domain to a specific
fundamentale domain.

2.1 The main theorem

Let q be a prime number, k ≥ 4 a positive integer, and f0 ∈ SPk (Γ0(q)) an arithmetically normalized
newform, which is an eigenform for all the Hecke operators.

Let ‖f0‖2 be the L2-norm of f0, namely

‖f0‖22 = 〈f0, f0〉 =

∫
F0(q)

|f0|2 ykdµ(z)

where z = x+ iy. We define g(z) = |f(z)|yk/2. It will be the main object of my studies, indeed

‖f0‖22 =

∫
F0(q)

g(z)2dµ(z) ≤ ‖g‖2∞V olµ(F0(q))

where V olµ(F0(q)) is the volume of the fondamental domain F0(q) with respect to the hyperbolic
measure dµ(z), so by definition V olµ(F0(q)) =

∫
F0(q) dµ(z).

Remark 2.1.1. Note that giving a bound for g(z) is equivalent of giving a bound for f0(z), since
y depends directly from z.

Lemma 2.1.2. With the above notations we have

V olµ(F0(q)) � q

Proof. By lemma 1.2.11 we have that

F0(q) =

n∐
i=1

α−1
i F
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where F is a fundamental domain for SL2(Z), n = [SL2(Z) : Γ0(q)], and {αi}i left representatives
of Γ0(q) \ SL2(Z). Moreover by lemma 1.2.9 n = q + 1. Therefore we have∫

F0(q)
dµ(z) = (q + 1)

∫
F
dµ(z)

Now, ∫
F
dµ(z) ≤

∫ 1

x=−1

∫ ∞
y=
√
3
2

1

y2
dydx =

4
√

3

3

So V olµ(F0(q)) =
∫
F0(q) dµ(z) � q.

Remark 2.1.3. As a consequence of this result we obtain that

‖f0‖22 ≤ ‖g‖2∞V olµ(F0(q)) � ‖g‖2∞q

Therefore the most optimistic upper bound for ‖g‖∞ that we could obtain is

‖g‖∞ �ε q
ε−1/2‖f‖2

Our purpose is to find an upper bound for ‖g‖∞ using different techniques, namely

• Special properties of the coefficients of the Fourier expansion of f0;

• Relations between f0 and the automorphic kernel hm(z, w);

• The amplification method;

• A geometric approach.

Theorem 2.1.4 (The Main Theorem). Let q be a prime number and let k ≥ 4 be a fixed integer.
Let f0 ∈ SPk (Γ0(q)) be an arithmetically normalized newform of weight k. Denote g(z) = yk/2f0(z),
where z = x+ iy ∈ H, then

‖g‖∞ � q
1
2 q−

1
22

+ε

The first step consists to reduce the domain of f0 to a subregion of H, called Siegel set, coming
from the invariance of g(z) for a special subgroup A0(q) of SL2(Z).

2.2 Atkin-Lehner operators and A0(q)

I recall that in our context q is a fixed prime number, and Γ0(q) is the congruence subgroup of
SL2(Z) of all the matrices with the third entry divisible by q.

Definition 2.2.1. For M |q, pick a matrix wM ∈M2(Z) such that

det(wM ) = M

wM ≡

(
∗ ∗
0 ∗

)
(mod q)

wM ≡

(
0 ∗
0 0

)
(mod M)

We call it an Atkin-Lehner matrix.
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Definition 2.2.2. Let wM be an Atkin-Lehner matrix, for M |q, then scaling by 1/
√
M we obtain

a matrix WM = 1√
M
wM ∈ SL2(R) that is called an Atkin-Lehner operator.

In our context since q is prime, we have that the Atkin-Lehenr matrices are w1 that is the

identity, and wq =

(
0 −1
q 0

)
. Therefore the Atkin-Lehner operators are

W1 = id and Wq =

(
0 −√q/q√
q 0

)
Definition 2.2.3. A0(q) is the subgroup of SL2(R) generated by Γ0(q) and all the Atkin-Lehner
operators.

Proposition 2.2.3.1. Γ0(q) is a normal subgroup of A0(q) and A0(q)/Γ0(q) is an abelian group
of order 2.

Proof. It is enough to prove that Wq normalizes Γ0(q). First note that W 2
q = −id, hence we have

to prove that for V ∈ Γ0(q), WqVWq ∈ Γ0(q): if V =

(
a b
c d

)
, then one has

WqVWq = V =

(
−d c/q
qb −a

)
Note that V ∈ Γ0(q), so q|c, hence the above matrix belongs to Γ0(q).

Remark 2.2.4. A0(q) has a central role in our discussion; indeed as we have seen the congruence
subgroup Γ0(q) is normal in A0(q), so it is contained in the normalizer of Γ0(q) in SL2(R), call
it N0(q). Therefore for any ρ ∈ N0(q) and f ∈ Mk(Γ0(q)), f [ρ]k ∈ Mk(ρ

−1Γ0(q)ρ) = Mk(Γ0(q)).
In particular if f is invariant under the action of a subgroup of N0(q), then one could restrict
the fundamental domain on which f take values. Suppose the subgroup for which f is invariant is
A0(q), then this restriction of the fundamental domain will be good enough, since [N0(q) : A0(q)] is
finite.

To complete this section we shall see some important properties of the Atkin-Lehner operators
which will be useful later. Atkin-Lehner operators act as usual on Snewk (Γ0(q)). in particular

f0[Wq]k(z) =
1

(q1/2z)k
f(Wq.z)

Moreover, for each f ∈ Snewk (Γ0(q)), f [Wq]k is still in Snewk (Γ0(q)). In fact we can know more about
this action, specially in the case of newform, indeed

Lemma 2.2.5. Let f ∈ Sk(Γ0(q)), and let p be a prime different from q, then

(T (p)f)[Wq]k = T (p)(f [Wq]k)

Proposition 2.2.5.1. Newforms are eigenvectors for the Atkin-Lehner operators, with eigenvalues
±1.
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Proof. To prove this proposition we need the following fact:

1. If two newforms have the same eigenvalues for all T (p) with p prime different from q then
they are equal;

2. If f ∈ Snewk (Γ0(q)) is an eigenform of T (p) for all p prime different from q, then f is a constant
multiple of a newform fi;

3. If f ∈ Sk(Γ0(q)) is an eigenform for all T (m) for all m such that (m, q) = 1 then it is either
an oldform or a newform. (Lemma 1.4.8)

Now, form the previous lemma T (p)(f [Wq]k) = (T (p)f)[Wq]k = λf (p)f [Wq]k; hence by fact (3)
f [Wq]k is either an oldform or a newform. If f [Wq]k ∈ Soldk (Γ0(q)) then f = (f [Wq]k)[Wq]k is
both a newform and an oldform, hence it is 0. So f [Wq]k ∈ Snewk (Γ0(q)) by fact (1) and (2) we
have f [Wq]k = cqf for some non zero constant cq. Therefore f = (f [Wq]k)[Wq]k = c2

qf , hence
cq = ±1.

In particular we obtain the following

Corollary 2.2.6. Let f as above, f [Wq]k = cqf , cq = ±1, then

cq = 1⇔ f ∈ Sk(A0(q))

Lemma 2.2.7. The operator [Wq]k is hermitian with respect to the Petersson scalar product, i.e.

〈f [Wq]k, g〉 = 〈f, g[Wq]k〉

where f and g ∈ Sk(Γ0(q))

Proof. It is immediate sice [Wq]k[Wq]k = [id]k and for an operator L 〈f [L], g[L]〉 = 〈f, g〉.

2.3 The Siegel sets

Now we have all the ingredients to define a new fundamental domain for f0,namely

Definition 2.3.1. Let N be a positive integer. A Siegel set SN is a rectangle of the form

SN :=

{
x+ iy ∈ C : x ∈ [0, 1) , y ∈ [

√
3

2N
,∞)

}

Note that for N = 1, S1 is more or less the fundamental domain F of SL2; in particular
F ⊆ S1, as we can see in the following picture:
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−1/2 1/20

1√
3/2

√
3/(2q)

F

Sq

Definition 2.3.2. Let N be a positive integer. A generalized Siegel set is SN = SN ∪ {∞}.

Proposition 2.3.2.1. Let q be our fixed prime number, then

1. For any couple of coprime integers a and c, there exist b, d ∈ Z, M ∈ 1, q and γ ∈ Γ0(q) such
that (

a c
b d

)
= γwM

(
1/M 0

0 1

)
2. H =

⋃
δ∈A0(q) δ.Sq

Proof. 1) If q divides c just take M = 1. Since a and c are coprime then certenly there exist integers

b and d such that ad− bc = 1. Take γ =

(
a b
c d

)
∈ Γ0(q).

If q does not divides c then take M = q. We have wq

(
1/q 0
0 1

)
=

(
0 1
−1 0

)
. I claim that

there exist b, d ∈ Z such that(
a b
c d

)(
0 −1
1 0

)
=

(
b −a
d −c

)
∈ Γ0(q)

i.e. there exist b, d such that ad − bc = 1 and q|d. Indeed, certainly there exist ξ, η ∈ Z such that
aη − cξ = 1.
Since (q, c) = 1 then there exist u, v ∈ Z such that uq + vc = 1. So

1 = (aη − cξ)(uq + vc) = a(quη) + c(−ξvc+ vaη − ξuq)
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Just call d = quη and b = −ξvc+ vaη − ξuq.
2) As I have said above, S1 contains the fundamental domain F for SL2(Z) in H. So

H =
⋃

ρ∈SL2(Z)

ρ.S1

Now,form the first part of the proposition we have that any element ρ of SL2(Z) can be written as

ρ = δ

(
1/M 0

0 1

)
, where δ ∈ A0(q). Note also that if z ∈ S1, then

(
1/M 0

0 1

)
z = z

M ∈ SM ⊂

Sq.
Hence

H =
⋃

δ∈A0(q)

δ

(
1/M 0

0 1

)
.S1 ⊂

⋃
δ∈A0(q)

δSq

Thanks to this proposition one can concludes that if a function f defined on H is invariant
under some action of A0(q), then to study the values taken from f in the whole H it is enough to
study the values that it takes on Sq. This is exaclty the case of our function g(z) = yk/2|f0(z)|,
namely

Lemma 2.3.3. g(z) is A0(q)-invariant.

Proof. It is enough to prove that g(z) is invariant under γ ∈ Γ0(q) and under Wq.
Let first γ ∈ Γ0(q). So

g(γ.z) = (=(γ.z))k/2|f0(γ.z)|

It is a general fact that =(γ.z) = =(z)
|j(γ,z)|2 and by definition of modular form we have f0(γ.z) =

f0(z)j(γ, z)k. Therefore we obtain

g(γ.z) =

(
=(z)

|j(γ, z)|2

)k/2
|f0(z)j(γ, z)k| = yk/2|f0(z)| = g(z)

Consider now the Atkin-Lehner operator Wq:

g(Wq.z) = (=(Wq.z))
k/2|f0(Wq.z)| =

(
=
(
− 1

qz

))k/2
|f0(− 1

qz
)|

=

(
=(z)

q|z|2

)k/2
|f0(− 1

qz
)| = yk/2

|j(Wq, z)|k
|f0(− 1

qz
)|

= yk/2|f0[Wq]k(z)| = yk/2|f0(z)| = g(z)

where the second-last equality comes from tha fact that newforms are eigenvectors for Atkin-Lehner
operators, of eigenvalues ±1, as I stated in the proposition 2.2.5.1.

This important Lemma and the proposition above, allow us to restrict the domain of g(z)
to Sq. Indeed if z ∈ H then there exist w ∈ Sq and δ ∈ A0(q) such that z = δ.w. Hence
g(z) = g(δw) = g(w). In particular ‖g‖∞ =

∥∥g �Sq
∥∥
∞.



Chapter 3

Bound via Fourier Expansion and
Pre-Trace Formula

In the previous chapter we have seen how to reduce the domain of our function g(z) to Sq. In
this chapter we are ready to apply two techniques to establish a bound for g(z). The first one uses
the Fourier expansion of f0(z) and the behaviour on average of its Hecke eigenvalues; the second
one is a little more sofisticated and uses a particular relation between th functions g(z) and an
automorphic kernel; this relation is called pre-trace formula. I recall

g(z) = |yk/2f0(z)| and Sq =

{
x+ iy ∈ H : x ∈ [0, 1), y ∈ [

√
3

2q
,∞)

}

where z = x+ iy.

3.1 Bound via Fourier expansion

Since f0 is a cusp form, it decays rapidly at infinity. This allows us to split the Fourier expansion
of f0 into a finite sum and a negligible tail. To do this we need the following result which is derived
from the analytic properties of the Rankin-Selberg L-function,

Theorem 3.1.1 (Rankin and Selberg). Let f ∈ SPk (Γ0(q)) be a primitive cusp form, and denote
by λf (n) its Hecke eigenvalues, then ∑

1≤n≤X
|λf (n)|2 �ε X(qX)ε

Proposition 3.1.1.1. Let 0 < η ≤ 1 be a real number, then uniformly on z ∈ Sηq

g(z) = yk/2|f0(z)| �ε q
ε(ηq)1/2

for all ε > 0.
In particular for z ∈ Sq, g(z)�ε q

1/2+ε.
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Proof. I recall that f0(z) =
∑

n≥1 n
k−1
2 ψf0(n)e(nz), where ψf0(n) are the normalized Fourier coef-

ficients. Moreover, since f0 is primitive then ψf0(n) = λf0(n), if λf0(n) are the Hecke eigenvalues.
So we have

g(z) = yk/2

∣∣∣∣∣∣
∑
n≥1

n
k−1
2 ψf0(n)e(nz)

∣∣∣∣∣∣ = y1/2

∣∣∣∣∣∣
∑
n≥1

(ny)
k−1
2 ψf0(n)e(nz)

∣∣∣∣∣∣ ≤ y1/2
∑
n≥1

(ny)
k−1
2

e2πny
|ψf0(n)|

Focus on the argument in the last formula: the tail of the sum, when ny > qε, is negligible because
of the rapidly decay of the argument. Indeed we have the following

Lemma 3.1.2.
ψf0(N)� N1/2

Proof. As we know

f0(z) =
∑
n≥1

n
k−1
2 ψf0(n)e(nz) =

∑
n≥1

n
k−1
2 ψf0(n)e(nx)e−2πny

Moreover, since f0 is cuspidal, then uniformly on z we have |yk/2f0(z)| � 1. So consider for a fixed
N ∫ 1

x=0
f(x+ iy)e(−Nx)dx =

∑
n≥1

n
k−1
2 ψf0(n)e−2πny

∫ 1

x=0
e(x(n−N))dx

The integral is clearly different from 0 only when n = N , where it assumes the value 1. Hence we
obtain

= N
k−1
2 ψf0(N)e−2πNy

Therefore it follows that

ψf0(N)� N
1−k
2 e2πNy

∫ 1

x=0
f(z)e−Nxdx

� N
1−k
2 e2πNy 1

yk/2

We can take y = 1
N obtaining

ψf0(N)� N
1−k
2 Nk/2 = N1/2

So we have

g(z)� y1/2
∑

1≤n≤qε/y

(ny)
k−1
2

e2πny
|ψf0(n)|

We apply the Cauchy-Schwarz inequality to this sum, obtaining

g(z)2 � y

 ∑
1≤n≤qε/y

|ψf0(n)|2
 ∑

1≤n≤qε/y

(ny)k−1

e4πny
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fronm Rankin-Selberg’s theorem∑
1≤m≤n

|ψf0(m)|2 =
∑

1≤m≤n
|λf (m)|2 �ε n(qn)ε

hence we can bound the sum in the first parenthesis as

∑
1≤n≤qε/y

|ψf0(n)|2 �
qε

y

(
qε+1

y

)ε
For the sum in the second parenthesis we have trivially

∑
1≤n≤qε/y

(ny)k−1

e4πny
≤ qε

y
(qε)k−1

This implies

g(z)2 � y
qε

y

(
qε+1

y

)ε
qε

y
(qε)k−1 � qε

y

Therefore

g(z)�ε
qε

y1/2

Now, if z = x+ iy ∈ Sηq then y � 1
ηq , so we conclude

g(z)�ε q
ε(ηq)1/2

Remark 3.1.3. This result tells us that if one fixes a real number 0 < η < 1, then he find a
subreagion Sηq of our domain Sq in which the bound for the supnorm of g(z) is in some sense
’non-trivial’, namely strictly less then q1/2. The problem is that in the remaining part of our domain
with this method we can only find the ’trivial result’. So our aim is to find a method to improve the
result of the above proposition in the reagion Sq −Sηq, and then to find a suitable value η which
makes the bound as good as possible.
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3.2 Bound via Pre-Trace formula

The technique that we use in this section is essentially to compare our function f0(z) with the
automorphic kernel

h(z, w) =
∑

ρ∈Γ0(q)

1

j(ρ, z)k(w + ρ.z)k

and to find a bound working on this last function.
From appendix 1 we obtain the pre-trace formula

h(z, w) = Ck

J∑
j=1

1

〈fj , fj〉
fj(−w̄)fj(z)

where {f1, · · · , fJ} is the orthogonal basis described at the end of chapter 1. Ck is a constant
depending only on k, which is the fixed degree. In particular, choosing w = −z̄ ∈ H one obtains

h(z,−z̄) = Ck

J∑
j=1

|fj(z)|2

〈fj , fj〉

Now, since f0 is by definition an element of this orthogonal basis, then

|f0(z)|2

〈f0, f0〉
= Ckh(z,−z̄)� h(z,−z̄)

i.e.

|f0(z)|2 � 〈f0, f0〉h(z,−z̄)

This alows us to study the function h(z,−z̄), to give an upper bound for |f0(z)|. For what is
concerning the factor 〈f0, f0〉 we have the following

Lemma 3.2.1. Let f be a primitive cusp form with respect to Γ0(q), then 〈f, f〉 �ε q
1+ε

Remark 3.2.2. A proof for this result can be found in [Iwa90].

Definition 3.2.3. For any matrix ρ ∈M2(Z) we define the following function on H

uρ(z) =
j(ρ, z)(z̄ − ρ.z)

y

where z = x+ iy.

Remark 3.2.4. This new function uρ is strongly related to the hyperbolic distance between an
element z ∈ H and its image under ρ,

u(z, ρ.z) =
|z − ρ.z|2

4y=(ρ.z)
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Coming back to our problem, we define the function K(x) = 1
xk

for real x. Hence we obtain

ykh(z,−z̄) =
∑

ρ∈Γ0(q)

1

j(ρ, z)k(−z̄ + ρ.z)k
=

∑
ρ∈Γ0(q)

K(uρ(z))

therefore

g(z)2 = yk|f0(z)|2 � q1+εyk|h(z,−z̄)|

� q1+ε

∣∣∣∣∣∣
∑

ρ∈Γ0(q)

K(uρ(z))

∣∣∣∣∣∣
� q1+ε

∑
ρ∈Γ0(q)

K(|uρ(z)|)

At this point our aim is to study this last object∑
ρ∈Γ0(q)

K(|uρ(z)|)

The idea is to study carefully this sum using the Stiltjes integral, and noting that there is a strictly
positive lower bound for |uρ(z)|, for any matrix ρ ∈ Γ0(q) and any z in our domain. This fact
makes our sum finite. First of all we have to define the following function:

Definition 3.2.5. Let z ∈ H and δ a positive real number, then

M(z, δ) = ]{ρ ∈ Γ0(q) : |uρ(z)| < δ}

This function is the heart of our bound, indeed a careful bound of it permits us to give a bound
for the function

∑
ρ∈Γ0(q)K(|uρ(z)|) (and so for g(z)), simply using Stieltjes integral.

3.2.6 A Bound for M(z, δ)

I recall that M(z, δ) is the cardinality of {ρ ∈ Γ0(q) : |uρ(z)| < δ}; to bound it we have to split
this set into two subsets, distinguishing the case in which the matrices have the third entry equal
0, and the case in which the third entry is not 0, namely we define

Definition 3.2.7.

M0(z, δ) = ]{ρ =

(
a b
0 d

)
∈ Γ0(q) : |uρ(z)| < δ}

Definition 3.2.8.

M?(z, δ) = ]{ρ =

(
a b
c d

)
∈ Γ0(q) : c 6= 0 , |uρ(z)| < δ}

So M(z, δ) = M0(z, δ) +M?(z, δ), and we bound separately these two terms.
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Lemma 3.2.9. Let z = x+ iy ∈ H and δ a positive real number, then

M0(z, δ)� δy

Proof. Let γ ∈ {ρ =

(
a b
0 d

)
∈ Γ0(q) : |uρ(z)| < δ}, then a = d = ±1. Without lost of generality

we may assume a = d = 1, so γ =

(
1 b
0 1

)
. In particular M0(z, δ) is the double of the possible

choiches for b. We have

|uγ(z)| = |γ.z − z̄||j(γ, z)|
y

=
|b+ 2iy|

y
< δ

and considering the real part of this last inequality we obtain

|b| < δy

Therefore M0(z, δ)� δy.

Lemma 3.2.10. Let z = x+ iy ∈ H and δ a positive real number, then

M?(z, δ)�
δ3

yq

Proof. Let γ =

(
a b
c d

)
∈ Γ0(q) be such that |uγ(z)| < δ and c 6= 0, then a direct computation

gives

|uγ(z)| = |b− c|z|2 + x(a− d) + iy(a+ d)|1
y
< δ

Considering the imaginary part one obtains

|a+ d| < δ

Considering the real part one has

|b− c|z|2 + x(a− d)|1
y
< δ

Now substitute b = ad−1
c and note that |cz + d|2 = c2|z|2 + d2 + 2cx, so we obtain

δ|c|y > |c2|z|2 − cx(a− d)− ad+ 1|
= |(c2|z|2 + d2 + 2cdx)− d2 − cx(a+ d)− ad+ 1|
= ||cz + d|2 + 1− (a+ d)(cx+ d)|

We have seen above that |a+ d| < δ, so

||cz + d|2 + 1| < δ|c|y + |a+ d||cx+ d| � δ|cz + d|
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which implies
|cz + d| � δ

As a consequence we obtain
|cx+ d| � δ and |c|y � δ

In particular |c| � δ
y .

On the other hand c ≡ 0 (mod q), so we can say that the number of possible choiches for c is

]{c} � δ

yq

Let now I be an interval of lenght � δ, containing a+ d and cx+ d. Then

a− d− 2cx = a+ d− 2(cx+ d) ∈ I

So, once c is fixed we have to find the triple (a, b, d) such that

(
a b

c d

)
∈ Γ0(q)

a+ d ∈ I
a− d− 2cx ∈ I

Let A := a+d and D := a−d− [2cx]. Since b depends on the other coefficients of the matrix, then
the number of triples (a, b, d) is equal to the possible choices for the pairs (a, d), which is equivalent
to count the number of pairs (A,D) such that{

A,D ∈ I
2A[2cx] + 4bc = D2 − 4− [2cx]2 −A2

In particular weaking again our conditions the number of possible pairs (A,D) is

]{(A,D)} � |I|2 � δ2

Recalling that the number of possible choiches for c is � δ
yq we can conclude that

M?(z, δ)�
δ3

yq

Remark 3.2.11. Note that the bound for M0(z, δ) does not depend on the level q. This is reasonable
since the only parameter connacted with q is c, which is 0.

Remark 3.2.12. It is important to note that the buond for M0(z, δ) is directly proportional to the
imaginary part of z, while the bound for M?(z, δ) is inversely proportional to it. So, if we want
to give a simultaneous bound for both, independent on y = =z, then we have to restrict y to an
interval upper and lower bounded.
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Proposition 3.2.12.1. Let z = x+ iy ∈ H and δ a positive real number, then

M(z, δ)� δy +
δ3

yq

Proof. It is an immediate consequence of the above two lemmas, indeed

M(z, δ) = M0(z, δ) +M?(z, δ)� δy +
δ3

yq

Corollary 3.2.13. Let z ∈ Sq −
⋃
α∈A0(q) α.Sηq, η > q−1, δ a positive real number, then

M(z, δ)� δ3

3.2.14 A Lower Bound for uρ(z)

In the appendix 2 we have seen that it is possible to classify the motions γ =

(
a b
c d

)
∈ PSL2(R)

depending on the value of the trace, namely
|a+ d| = 2⇔ γ is parabolic (i.e. it fixes exactly one point in R̄)

|a+ d| > 2⇔ γ is hyperbolic (i.e. it fixes exactly two points in R̄)

|a+ d| < 2⇔ γ is elliptic (i.e. it fixes exactly one point in H̄, and the complex conjugate )

Taking now γ ∈ Γ0(q) and z ∈ Sq, I want to give a lower bound for uγ(z) (i.e. an upper bound for
K(uγ(z))) with respect to the classification of γ, using the following inequality:

|uγ(z)| = |γ.z − z̄||j(γ, z)|
y

=
|az + b− z̄(cz + d)|

y

=
|b− c|z|2 + az − dz̄|

y

=
|b− c|z|2 + x(a− d) + iy(a+ d)|

y

Now, considering the imaginary part of uγ(z), one has

|uγ(z)| ≥ =(uγ(z)) = |a+ d|

This implies that |uγ(z)| in strongly related to the classification of motions. In fact we have:

1. If γ is parabolic or hyperbolic then |uγ(z)| ≥ |a+ d| ≥ 2, then

1

|uγ(z)|
≤ 1

2
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2. If γ is elliptict then either |a+ d| = 1 or |a+ d| = 0:

• If |a+ d| = 1 then |uγ(z)| ≥ |a+ d| = 1 and so

1

|uγ(z)|
≤ 1

• If |a + d| = 0 then a = −d and b = −d2+1
c ; hence bubstituting this values into our

formula for uγ(z) we obtain

|uγ(z)| = |d
2 + 1 + c2|z|2 + 2cdx|

|c|y

=
|1 + (cx+ d)2 + c2y2|

|c|y
≥ |c|y

Now, if c = 0 then γ is parabolic. So we may assume c 6= 0. Moreover since γ ∈ Γ0(q)

then |c| ≥ q and since z ∈ Sq then y ≥
√

3
2q ; therefore

|uγ(z)| ≥ |c|y ≥
√

3

2

and in particular

1

|uγ(z)|
≤ 2
√

3

3

3.2.15 The Total Bound

In the discussion above we have seen that K(|uγ(z)|) = 1
|uγ(z)|k is bounded for each γ ∈ Γ0(q), so

our hope is that also
∑

ρ∈Γ0(q)K(|uρ(z)|) can be bounded.

K(x) = 1
xk

is continous and bounded in [
√

3
2 ,∞), and M(z, δ) is obviously a monotonically

increasing function (with respect to δ). So we are in the hypotesis to apply the Stieltjes integral:

∑
ρ∈Γ0(q)

K(|uρ(z)|) =

∫ ∞
√
3

2

K(δ)dM(z, δ)

Remark 3.2.16. Since |uγ | ≥
√

3
2 then M(z, δ) = 0 for all δ <

√
3

2 , and so the integration starts

from
√

3
2 instead of 0.

Applying the integration by parts we obtain∫ ∞
√

3
2

K(δ)dM(z, δ) =

[
M(z, δ)

δk

]∞
δ=
√
3
2

+ k

∫ ∞
√
3

2

M(z, δ)

δk+1
dδ
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Now, we have seen in the subsection 3.2.6 that M(z, δ)� δ3, hence[
M(z, δ)

δk

]∞
δ=
√
3

2

+ k

∫ ∞
√
3

2

M(z, δ)

δk+1
dδ �

[
1

δk−3

]∞
δ=
√
3

2

+ k

∫ ∞
√
3
2

1

δk−2
dδ

=

[
1

δk−3

]∞
δ=
√
3

2

− k

k − 3

[
1

δk−3

]∞
√
3
2

= − 3

k − 3

[
1

δk−3

]∞
√
3

2

=
3

k − 3

(
2
√

3

3

)k
� 1

Proposition 3.2.16.1. Let 1
q < η ≤ 1 be a real number, then uniformly on z ∈ Sq−

⋃
α∈A0(q) α.Sηq

g(z)�ε q
1/2+ε

for all ε > 0.

Proof. So far we have seen that

g(z)2 � q1+ε
∑

ρ∈Γ0(q)

K(|uρ(z)|)

and in the last proposition we have proved that in fact∑
ρ∈Γ0(q)

K(|uρ(z)|)� 1

Therefore
g(z)� q1/2+ε

Remark 3.2.17. This method is completely different from the previous one, since it uses algebraic
properties (holomorphic kernel) instead of analytic properties (Fourier expansion), but it gives the
same bound in the reagion Sq −Sηq.



Chapter 4

The Amplification Method

The aim of this chapter is to try to improve the bound previously found, especially in the reagion
Sq −Sηq, using another method, the so called amplification method.

In general this method takes an established estimate involving an arbitrary object, as a function,
and obtains a stronger (amplified) estimate by trasforming the object in a well chosen manner into
a new object, applying the estimate to that new object and seeing what the estimate says about the
original object. In our specific case the idea is the following: suppose to have a family of functions
{uj(z)}j∈I , and suppose that our goal is to find an estimate for a function u0 belonging to this
family. Suppose to know an esimate involving this family of functions of the form∑

j∈I
λj(m)λj(n)|uj(z)|2 � F1(n,m)

for some formula F (n,m) depending on integers n,m, and some complex numbers λj(m) and λj(n).
Let an’s be complex numbers, and N be a positive integer, then one can obtain∑

j∈I
|
∑
n≤N

anλj(n)|2|uj(z)|2 � F2(a1, · · · , aN )

The trick consists in finding a good estimate for the right hand-side, and then since the terms in
the left hand-side are non negative then one can define the linear form Lj =

∑
n≤N anλj(n) which

gives

|L0|2|u0|2 � F2(a1, · · · , aN )

The linear form L0 is used to amplify the contribution of the selected function u0, so the goal is to
choose the an’s that makes L0 big and F2(a1, · · · , aN ) small.

In our case the family of functions will be the orthogonal basis of eigenforms for Sk(Γ0(q))
described in chapter 1, and we will give the bound for the right hand-side of the inequality using
another time the pre-trace formula, and then applying two times some Hecke operators.

For our purposes I recall three important fact: let f be an element of our basis and ` a positive
integer, then

1. T (`)f = `−1/2
∑

ρ∈G`(q)/Γ0(q) f [ρ];
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2. T (`1) ◦ T (`2) =
∑

d|(`1,`2) T ( `1`2
d2

);

3. h(z, w) :=
∑

γ∈Γ0(q)
1

j(γ,z)k(w+γ.z)k
= Ck

∑J
j=1

1
<fj ,fj>

fj(z)fj(−w̄).

Considering this last equation and applying the Hecke operator T (`) to the left hand-side, with `
coprime with q, we obtain

T (`)(h(., w))(z) = `−1/2
∑

ρ∈G`(q)/Γ0(q)

∑
γ∈Γ0(q)

1

j(γ, ρ.z)k(w + γρ.z)k
`k/2

j(ρ, z)k

= `
k−1
2

∑
ρ∈G`(q)

1

j(ρ, z)k(w + ρ.z)k

and to the right hand-side we obtain

T (`)(h(., w))(z) = Ck

J∑
j=1

1

< fj , fj >
λj(l)fj(z)fj(−w̄)

Now, let `1 and `2 be two positive integers coprime with q. The idea is to apply both the Hecke
operators T (`1) and T (`2) to the equation. In fact we apply T (`1) ◦ T (`2) to the right hand-side,
and

∑
d|(`1,`2) T ( `1`2

d2
) to the left hand-side, we obtain

∑
d|(`1,`2)

(
`1`2
d2

) k−1
2 ∑

ρ∈G `1`2
d2

(q)

1

j(ρ, z)k(−z̄ + ρ.z)k
= Ck

J∑
j=1

1

< fj , fj >
λj(`1)λj(`2)|fj(z)|2

Consider a positive integer L, and complex variables x1, · · · , xL to which we will assign a value
later, and look at the following sum:

Ck
∑
j

|
∑

1≤`≤L
x`λfj (`)|

2

∣∣∣∣∣ yk/2fj(z)√
< fj , fj >

∣∣∣∣∣
2

= Ck
∑
j

∑
1≤`1,`2≤L

x`1 x̄`2λfj (`1)λfj (`2)

∣∣∣∣∣ yk/2fj(z)√
< fj , fj >

∣∣∣∣∣
2

= Ck
∑

1≤`1,`2≤L
x`1 x̄`2

∑
j

λfj (`1)λfj (`2)

∣∣∣∣∣ yk/2fj(z)√
< fj , fj >

∣∣∣∣∣
2

=
∑

1≤`1,`2≤L
x`1 x̄`2

∑
d|(`1,`2)

(
`1`2
d2

) k−1
2 ∑

ρ∈G `1`2
d2

(q)

yk

j(ρ, z)k(−z̄ + ρ.z)k

=
∑

1≤`1,`2≤L
x`1 x̄`2

∑
d|(`1,`2)

(
`1`2
d2

) k−1
2 ∑

ρ∈G `1`2
d2

(q)

K(|uρ(z)|)
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This equality will allow us to give an upper bound for the right hand-side of the equation given by
the amplification, and choosing in a proper way the variables xi’s we can also find a lower bound
for the left hand-side, as it is required.

Looking to the last formula above, we see that first of all our goal to give an upper bound for∑
ρ∈G` K(|uρ(z)|). This situation is similar to that of the previous chapter, but now we have to

sum over all matrices in G`(q) instead of all matrices in Γ0(q).

Remark 4.0.18. I recall that

G`(q) =

{(
a b
c d

)
∈M2(Z) : ad− bc = `, q|c, (a, q) = 1

}
Note that for ` = 1 we obtain G`(q) = Γ0(q).

Before starting with this bound, we need some more preliminaries, namely

Definition 4.0.19. Let z ∈ H, ` a positive integer, and δ a positive real number, then

M(z, `, δ) := ]{ρ ∈ G`(q) : |uρ(z)| < δ}

It is just the generalization of the previous counting function M(z, δ).

We have now to find a good estimate of it; this is a very important step of this chapter.

4.1 A Bound for M(z, `, δ)

First of all we need a very useful lemma, that we shall use several time in this section:

Lemma 4.1.1. Let r and s two positive integers,(r, s) = c2
1c2 and c2 squarefree, then

card{ξ (mod s) : ξ2 ≡ r (mod s)} � sεc1

Proof. Let ξ be a solution of x2 ≡ r (mod s), then c2
1c2 divides ξ2 since it divides both r and s. c2

is squarefree hence c2
1c

2
2 divides ξ2 thus c1c2 divides ξ. So ξ = kc1c2 for k < s

c1c2
.

Moreover if
(
c2,

s
c21c2

)
6= 1 then also

(
c2,

r
c21c2

)
6= 1 since c2 divides ξ2

c21c2
and it is not possible

because
(

r
c21c2

, s
c21c2

)
= 1. So we have that c2 is invertible (mod s

c21c2
).

This means that finding a solution ξ (mod s) of x2 ≡ r (mod s) is equivalent of finding a solution
k of x2 ≡ r

c21c2
c−1

2 (mod s
c21c2

).

Now
(

r
c21c2

c−1
2 , s

c21c2

)
= 1, so we can apply the Chinese Remainder theorem to reduce the problem

of solving the sistem of congruences

x2 ≡ r

c2
1c2

c−1
2 (mod ph)

for all ph|| s
c21c2

powers of prime. There are at most two solutions for each equation, so the number

of total solutions is� 2
ω( s

c21c2
)
≤ 2ω(s) ≤ τ(s)� sε where ω is the function that counts the number

of prime divisors of s, hence counts the number of congruences of the above system.
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Suppose now that k is a fixed solution, then kc1c2 = ξ0 is a fixed solution of x2 ≡ r (mod s).
We want to count the number of ξ (mod b) which are congruent to ξ0 (mod s

c21c2
) and that are

solutions of x2 ≡ r (mod s). In this way we can find all the solutions of this congruence.
We have ξ = ξ0 + h s

c21c2
for some h ∈ Z, and we impose(

ξ0 + h
s

c2
1c2

)2

≡ ξ2
0 (mod s)

that means

s|s
(
h2b

c4
1c

2
2

+
2ξ0h

c2
1c2

)
i.e. (

h2

c2
1c2

s

c2
1c2

+
2ξ0h

c2
1c2

)
∈ Z

c2 must divides h2 since it does not divides s
c21c2

. In particular c2 must divides h.

Moreover if c1 divides
(

s
c21c2

, ξ0
c1c2

)
then it divides also r

c21c2
and it is not possible because

(
r

c21c2
, s
c21c2

)
=

1. So c2
1c2 must divides h2, thus c1c2 must divides h.

We conclude that
ξ = ξ0 + (c1c2h1)

s

c2
1c2

= ξ0 + h1
s

c1

hence there are at most c1 possibilities for ξ once ξ0 is fixed.
Therefore the total number of possibilities for a general solution (mod s) is � sεc1.

We shall study the bound for M(z, `, δ) giving at first a bound with no restriction on `, and
then we will study separately the case in which ` is a perfect square.

4.1.2 The general case

We split the problem in two separate bounds: set

M(z, `, δ) = M0(z, `, δ) +M?(z, `, δ)

where M0(z, `, δ) is the cardinality of the matrices with the third entry c = 0 and M?(z, `, δ) is the
cardinality of the matrices with the third entry non zero.

First we shall find an estimate for M?(z, `, δ), which require more details:

|uρ(z)| = |az + b− z̄(cz + d)|1
y

= |`+ |cz + d|2 − (cz + d)(a+ d)| 1

cy
≤ δ

Considering the imaginary part we obtain

|a+ d| ≤ δ

and considering the real part we obtain

|`+ |cz + d|2 − (cx+ d)(a+ d)| ≤ δ|cy|
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then
|`+ |cz + d|2| ≤ δ(|cy|+ |cx+ d|)� δ|cz + d|

therefore
|cz + d| ≤ δ

In particular one has |cx + d| � δ , cy � δ and |a − d − 2cx| � δ. Let I be an interval of length
� δ. Define A = a − d and D = a + d. So the problem is equivalent of counting the number of
triple (A,D, c) such that 

D ∈ I
A ∈ 2cx+ I

A2 ≡ D2 − 4` (mod c)

q ≤ c� δ
y

c ≡ 0 (mod q)

Suppose c and D to be fixed, we want to count the number of possibilities for A: Applying
lemma 4.1.1 to our equation A2 ≡ D2 − 4` (mod c) and writing (D2 − 4`, c) = c0 = c2

1c2 we have
that the number of solutions for A (mod c) are � cεc1.

Let A0 one fixed solution (mod c), the number of A ∈ I such that A ≡ A0 (mod c) is � |I|
c + 1.

Hence the total number of possibilities for A when c and D are fixed is

]{A} � cεc1(
|I|
c

+ 1)� cεc1(
δ

c
+ 1)

Once A, D and c are found, then of course b is determined.
I recall that q|c then c = qm� δ

y , so

m� δ

yq
=: W � δ

Remark 4.1.3. Above we have defined (D2 − 4`, c) = (D2 − 4`,mq) = c0 = c2
1c2; note that q can

not divides D2− 4`: If it is not true then D2 = 4`+ hq for some integer h. In my case I have that
D � δ � qε

√
`. So we have

`+ q � D2 � q2ε`

In our case ` ≤ L and L will be a small power of q, in particular ` ≤ q1/2. So we obtain q1/2 + q �
q2ε+1/2, that gives a contradiction. Therefore we have that

(D2 − 4`,m) = c0

We are ready to count the number of possible choices for the quadruples (A,D, c, b), indeed

M?(z, `, δ)�
∑

1≤m≤W
(mq)ε

∑
c0|m

c1(1 +
δ

mq
)

∑
D�δ, D2−4`≡0 (mod c0)

1

Using lemma 4.1.1 another time, in the last sum we obtain∑
D�δ, D2−4`≡0 (mod c0)

1� cε0b1

(
1 +

δ

c0

)
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where b0 = b21b2 = (4`, c0). So the total sum becomes

�
∑

1≤m≤W
(mq)ε

∑
c0|m

c1

(
1 +

δ

mq

)
cε0b1

(
1 +

δ

c0

)

Since c0 ≤ m I obtain

�
∑

1≤m≤W
(m2q)ε

(
1 +

δ

mq

)∑
c0|m

c1b1

(
1 +

δ

c0

)

If we set

S1(m) =
∑
c0|m

c1b1

and

S2(m) =
∑
c0|m

c1b1
c0

we can write the sum above as

M?(z, `, δ)�
∑

1≤m≤W
(m2q)ε

(
1 +

δ

mq

)
(S1(m) + δS2(m))

� (W 2q)ε

 ∑
1≤m≤W

S1(m) + δ
∑

1≤m≤W
S2(m) +

δ

q

∑
1≤m≤W

S1(m)

m
+
δ2

q

∑
1≤m≤W

S2(m)

m


So the problem is reduced to bound

∑
1≤m≤W Sj(m) and

∑
1≤m≤W

Sj(m)
m for j = 1, 2.

Lemma 4.1.4.

S1(m) ≤ L[j/2]√mτ(m)

Proof.

S1(m) =
∑
c0|m

c1b1

The key point is to give a good approximation for b1. What we know is that ` will be of the form
rasb, where r and s are two primes in [L, 2L] (maybe not distinct) different from q. a and b are non
negative integers ≤ 2. I prefer working with (`,m) instead of (4`,m) for semplicity of notation; in
terms of estimate it doesn’t change the result.
So (`,m) = rξsη with ξ and η smaller then a and b respectively. To give an estimate of b1 I need
to define the parameter j = ξ + η. In this way

(4`,m) � Lj

and

b1 � L[j/2]
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where [ ] indicates the floor function.
Moreover I define

P (j) := {m ≤W : (m, `) = rξsη, j = ξ + η}
The idea is to split the sum over m in five sums with respect to j (j runs from 0 to 4). Note that
j depends only on m, since ` is fixed.
c1 ≤

√
m hence

S1(m) =
∑
c0|m

c1b1 � L[j/2]
∑
c0|m

c1 ≤ L[j/2]√mτ(m)

Lemma 4.1.5. ∑
1≤m≤W

S1(m)�W 3/2+ε

Proof. From the bound above we obtain∑
1≤m≤W

S1 ≤
∑

1≤m≤W
L[j/2]√mτ(m)

I recall the notation: (`,m) = rξsη, j = ξ + η, so (4`,m) � Lj . Moreover I have defined P (j) :=
{m ≤W : (m, `) = rξsη, j = ξ + η}. The key point is that Lj � (4`,m)|m, so

]P (j) ≤ W

Lj

Note that for m ∈ P (j) I can write m � Ljh where m = (4`,m)h. I obtain∑
1≤m≤W

S1(m) ≤
∑

1≤m≤W
L[j/2]√mτ(m)

=
∑

0≤j≤4

∑
m∈P (j)

L[j/2]√mτ(m)

≤W ε
∑

0≤j≤4

∑
m∈P (j)

L[j/2]√m

≤W ε
∑

0≤j≤4

L[j/2]
∑

m∈P (j)

√
m

�W ε
∑

0≤j≤4

L[j/2]
∑

1≤h≤W/Lj

√
Ljh

= W ε
∑

0≤j≤4

L[j/2]Lj/2
∑

1≤h≤W/Lj

√
h

= W ε
∑

0≤j≤4

L[j/2]Lj/2
(
W

Lj

)3/2

= W 3/2+ε
∑

0≤j≤4

L[j/2]

Lj

�W 3/2+ε
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Lemma 4.1.6. ∑
1≤m≤W

S1(m)

m
�W 1/2+ε

Proof. It follows immediatly from the previous lemma, using the Abel summation formula:

∑
1≤m≤W

S1(m)

m
= (

∑
1≤m≤W

S1(m))
1

W
+

∫ W

1
(
∑

1≤m≤t
S1(m))

1

t2
dt

By the previous lemma we have

∑
1≤m≤W

S1(m)

m
� W 3/2+ε

W
+W ε

∫ W

1

t3/2

t2
dt

= W 1/2+ε +W ε
[
2t1/2

]W
1

�W 1/2+ε

Lemma 4.1.7. ∑
1≤m≤W

S2(m)�W 1+ε

Proof. By definition c1 and b1 are smaller then
√
c0 hence

c1b1
c0
≤ 1

Therefore

S2 =
∑
c0|m

c1b1
c0
≤ τ(m)

So we can conclude ∑
1≤m≤W

S2 ≤
∑

1≤m≤W
τ(m) �W ln(W )�W 1+ε

Remark 4.1.8. Even if for this bound we have used a trivial argument, a better result is not
expected, indeed ∑

1≤m≤W
S2 ≥

∑
1≤m≤W

σ−1(m) �W

Lemma 4.1.9. ∑
1≤m≤W

S2(m)

m
�W ε
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Proof. We use another time the Abel summation formula:∑
1≤m≤W

S2(m)

m
= (

∑
1≤m≤W

S2(m))
1

W
+

∫ W

1
(
∑

1≤m≤t
S2(m))

1

t2
dt

By the previous lemma we have∑
1≤m≤W

S2(m)

m
� W 1+ε

W
+W ε

∫ W

1

t

t2
dt

= W ε +W ε [log(t)]W1
�W ε

Proposition 4.1.9.1. Let z ∈ Sq, ` a positive integer coprime with q, and δ a positive real number,
then

M(z, `, δ)� (qδ3)εδ2 + τ(`)δ(1 + y)

Proof. So far: we have set
M(z, `, δ) = M0(z, `, δ) +M?(z, `, δ)

and we have proved that

M?(z, `, δ)�
∑

1≤m≤W
(mq)ε

∑
c0|m

c1(1 +
δ

mq
)

∑
D�δ, D2−4`≡0 (mod c0)

1

In the general case (no restriction on `) we have seen that

M?(z, `, δ)� (W 2q)ε

 ∑
1≤m≤W

S1(m) + δ
∑

1≤m≤W
S2(m) +

δ

q

∑
1≤m≤W

S1(m)

m
+
δ2

q

∑
1≤m≤W

S2(m)

m


Reminding that W � δ and from lemmas 4.1.5 , 4.1.6 ,4.1.7 and 4.1.9 it follows that

M?(z, `, δ)� (W 2q)ε
(
W 3/2+ε + δW 1+ε +

δ

q
W 1/2+ε +

δ2

q
W ε

)
� (δ2q)ε

(
δ3/2+ε + δ2+ε +

δ3/2+ε

q
+
δ2+ε

q

)
� (δ3q)εδ2

For what in concerning M0(z, `, δ) we note that if a matrix γ =

(
a b
0 d

)
is in G`(q), then d is

determined from a, since ad = `. Therefore the number of choices for (a, d) is � τ(`). It remains
to count the number of possibilities for b:

|uγ(z)| = |az + b− z̄d|
y

< δ
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If we consider the imaginary part we obtain

|a+ d| < δ

Moreover a and d have the same sign, since ad = `, then

|a− d| ≤ |a+ d| < δ

On the other hand, considering the real part we have

|(a− d)x+ b| < yδ

which implies
|b| < δ(|x|+ y)� δ(1 + y)

So
M0(z, `, δ)� τ(`)δ(1 + y)

The conclusion follows immediatly summing the two results just found.

4.1.10 A special case

In the previous section we have established a bound for M(z, `, δ) that depends on δ. To do that
we have not put any restriction on the size of δ, obtaining

M(z, `, δ)� (qδ3)εδ2 + τ(`)δ(1 + ε)

In this section I want to do something a little bit different: suppose we know something more about
δ, namely that it can not be too big, and assume that ` is perfect square. Then we can find a
better bound for M(z, `, δ). The reason of this technique is the following: thanks to the first rude
but general bound we are able to add an assumption on δ, namely that it could be small enough
to allows us to use the second better bound for M(z, `, δ) in the next step.

Proposition 4.1.10.1. For δ < qε
√
` and ` a perfect square

M(z, `, δ)� τ(`)δ(1 + ε)

Proof. As in the general case we can reduce the counting lemma to count the number of possible
choices for the parameters D, A, b, c, such that

D ∈ I
A ∈ 2cx+ I

A2 = D2 − 4`− 4bc

q|c
q ≤ c ≤ δ

y

where I is an interval centred in 0 of length � δ, and ` is a perfect square less then L < q1/2. The
added assumption that distinguishes the general case from that is

δ � qε
√
` ≤ q1/2
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From the above conditions,in particular from the third one, we obtain the weaker condition

(D −A)(D +A) ≡ 4` (mod q)

Since 4` is a square then we have two possibilities: either D + A and D − A are both squares or
they are both non-squares.

1) If they are both squares then{
D −A ≡ α2 (mod q)

D +A ≡ β2 (mod q)
(4.1.1)

for some 0 ≤ α, β ≤ q1/2. Moreover if α or β are equal to 0 or q1/2 then 4` ≡ 0 (mod q), but this
is in contraddiction with the size of `. So 0 < α, β < q1/2.
Therefore

4` ≡ (D −A)(D +A) ≡ α2β2 (mod q) (4.1.2)

from which it follows that

(αβ + 2
√
`)(αβ − 2

√
`) ≡ 0 (mod q)

This means that either αβ + 2
√
` ≡ 0 (mod q) or αβ − 2

√
` ≡ 0 (mod q).

Since αβ ≤ (q1/2 − 1)2 and ` < q1/2 then αβ ± 2
√
` < q therefore αβ = ±2

√
`. I recall that

√
` is a

product of almost two primes, then the possibilities for α and β are at most 16.
Let now α and β be fixed, then the above sistem (4.1.1) gives a unique solution for D an A
(mod q). For each such a solution (mod q) we want now to count the number of integral solutions.
But since both D and A belong to an interval of length δ < q then there are at most one integral
solution.

2) If they are both non squares (mod q) then there exists a positive integer

x0 ≤ q
1

4
√
e

+ε ≤ q
1
4 (4.1.3)

such that x0 is a quadratic nonresidue (mod q). So from (4.1.2) it follows that

x0(D −A)x0(D +A) ≡ 4`x2
0 (mod q)

Now, x0(D±A) are quadratic residues (mod q), so as above there exists 0 ≤ α, β ≤ q1/2 such that{
x0(D −A) ≡ α2 (mod q)

x0(D +A) ≡ β2 (mod q)
(4.1.4)

As above, if α or β are equal to 0 or q1/2 then 4`x2
0 ≡ 0 (mod q). Another time, because of the

size of x2
0 < q1/2 and ` < q1/2, this gives a contraddiction. So 0 < α, β < q1/2.

We obtain that
(αβ + 2

√
`x0)(αβ − 2

√
`x0) ≡ 0 (mod q)

But αβ ± 2
√
`x0 ≤ (q1/2 − 1)2 + 2q1/4q1/4 < q, so αβ = ±2

√
`x0. Now, since α and β are divisors

of 2
√
`x0 the number of possible choices for them is � τ(x0) � qε. Fix α and β, then as in the
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previous case there exists a unique solution (mod q) for D and A in (4.1.4), and so a unique
solution for D and A in Z.

So far, we have proved that the contribution of D and A in the counting lemma is at most qε.
Now, suppose c to be fixed, then there are � qε solutions for D and A and b is given from this
solutions. This allows us to say that the counting lemma can be reduce to count the number of
possible choices for c, that is � δ. So we can conclude that

M?(z, `, δ)� qεδ

for δ � qε
√
`.

As in the general case
M0(z, `, δ)� τ(`)δ(1 + y)

and so
M(z, `, δ)� τ(`)δ(1 + y)

Remark 4.1.11. The problem of finding the best bound for the first quadratic nonresidue in the
interval [1, q − 1] for a large q is very famous, and one can find references in [LW08]. Anyway, I
want to justify without details the above formula (4.1.3): probabilistic heuristics suggests that this
number, call it nq, should have size O(log q), and indeed Vinogradov conjectured that nq = Oε(q

ε)
for any ε > 0. Using Polya-Vinogradov inequality one can get bound nq �

√
q log q and can improve

it to
√
q using smoothed sums. Combining this with a sieve theory argument one can boost this to

nq � q
1

2
√
e log2 q. Finally, inserting Burgess’s amplification trick one can boost this to nq � q

1
4
√
e

+ε
.

4.2 A bound for
∑

ρ∈G`(q)
K(|uρ(z)|)

So far we have found a general bound for M(z, `, δ), namely

M(z, `, δ)� (qδ3)εδ2 + τ(`)δ(1 + y)

and if δ is small enough and ` a perfect square we have that

M(z, `, δ)� τ(`)δ(1 + y)

In fact for our purposes we can simplify this bound. Indeed, as I remarked several times, we are
interested in an upper bound for g(z), where z ∈ Sq−Sηq, for same 0 < η < 1. This is the reagion
in which we have not found a non-trivial bound for our function. So we may assume y � 1

ηq .
Moreover we will see later that ` will be smaller then a small positive power of q, in particular
τ(`)� qε. With these two reductions the second term τ(`)δ(1 + y) is negligible with respect to the
first one in both the general and the special case. So we may assume for the general case

M(z, `, δ)� (qδ3)εδ2 � qεδ2

and if δ ≤ qε
√
` and ` a perfect square then

M(z, `, δ)� qεδ

Now we have all the ingredients to bound
∑

ρ∈G`(q)K(|uρ(z)|).
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Proposition 4.2.0.1. ∑
ρ∈G`(q)

K(|uρ(z)|)�
qε

`
k
2
−1

Moreover, if ` is a perfect square we have

∑
ρ∈G`(q)

K(|uρ(z)|)�
qε

`
k−1
2

Proof. The idea is to split the sum into two sums in which one of the two will be negligible. For
this reason define

σ1 =
∑

ρ∈G`(q),|uρ(z)|≤U

K(|uρ(z)|)

and

σ2 =
∑

ρ∈G`(q),|uρ(z)|>U

K(|uρ(z)|)

where U will be choosen such that S2 will be negligible: using the Stieltjes integral we have

σ2 =

∫ ∞
U

1

δk
dM(z, `, δ) =

[
M(z, `, δ)

δk

]∞
U

+ k

∫ ∞
U

M(z, `, δ)

δk+1
dδ

�
[
qεδε

δk−2

]∞
U

+ k

∫ ∞
U

qεδε

δk−1
dδ

Note that in the above computation we have used the general bound for M(z, `, δ). From the
appendix 2 we have that for all ρ ∈ G`(q),

|uρ(z)| �
√
`

So the parameter U has to be �
√
`. To make σ2 negligible we need to make qε disappear from

the numerator. Since k ≥ 4 by our initial hypotesis, then it is enough to take U = qε
√
`. So we

may restrict to study

σ1 =
∑

ρ∈G`(q),|uρ(z)|≤qε
√
`

K(|uρ(z)|)

Since |uρ(z)| �
√
` for all ρ ∈ G`(q) then

K(|uρ(z)|)� `−k/2

for all ρ ∈ G`(q). So we can conclude that∑
ρ∈G`(q),|uρ(z)|≤qε

√
`

K(|uρ(z)|)� `−k/2M(z, `,
√
`qε)
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Since δ = qε
√
` < q, if ` is a perfect square then we can use the better bound for M(z, `, δ) and we

obtain ∑
ρ∈G`(q),|uρ(z)|≤qε

√
`

K(|uρ(z)|)� `−k/2M(z, `,
√
`qε)

� `−k/2qε
√
`

� qε

`(k−1)/2

If ` is not a perfect square we have to use the general bound for M(z, `, δ) obtaining∑
ρ∈G`(q),|uρ(z)|≤qε

√
`

K(|uρ(z)|)� `−k/2M(z, `,
√
`qε)

� `−k/2qε
(√

`qε
)2

� qε

`
k
2
−1

4.3 The Amplifier

So far we have found the following equality

Ck
∑
j

|
∑

1≤l≤L2

x`λfj (`)|
2

∣∣∣∣∣ yk/2fj(z)√
< fj , fj >

∣∣∣∣∣
2

=
∑

1≤`1,`2≤L2

x`1 x̄`2
∑

d|(`1,`2)

(
`1`2
d2

) k−1
2 ∑

ρ∈G `1`2
d2

(q)

K(|uρ(z)|)

and we have established an upper bound for
∑

ρ∈G `1`2
d2

(q)K(|uρ(z)|), which is qε

`k/2−1 .

Let’s define the amplifier: Let f be a cuspform of level q, and L a positive real number. Let

Λ := {p prime : (p, q) = 1, p ∈ [L, 2L]}

be a large set of primes. Define

x` =

{
sgn(λf (`)), if ` ∈ Λ ∪ Λ2

0, otherwise

where λf (`) is the eigenvalue of f with respect to T (`).
The main property of this amplifier is that

Lemma 4.3.1.
|
∑

1≤`≤L2

x`λf0(`)| � L1−ε
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Proof. Let ` ∈ Λ, then by the remark 1.3.17 we have that

λf0(`)2 − λf0(`2) = 1

In particular

max{|λf0(`)|, |λf0(`2)|} ≥ 1

2
Therefore

|
∑

1≤`≤L2

x`λf0(`)| �
∑
`∈Λ

1� π(L)� L1−ε

Before proving the bound for g(z) we need to introduce another variable, that will be useful
during the proof: for all ` positive integers we set

y` :=
∑

d|(`1,`2), `= `1`2
d2

x`1 x̄`2

Lemma 4.3.2. y` = 0 for `� L4 and |y`| ≤ 2 for all ` 6= 1. Moreover y1 � L
logL

Proof. Since ` = `1`2
d2

, where d|(`1, `2), then it follows from the definition of x` that y` = 0 for
`� L4.
Now, |y`| ≤ ]{`1, `2 ∈ Λ ∪ Λ2 : ` = `1`2

d2
}.

Note that `1 and `2 are either primes or square of primes. So ` 6= 1 could only be either of the form
pi, with 1 ≤ i ≤ 4, or piqj , with 1 ≤ i, j ≤ 2. We now study each case:

• ` = p then the only possibilities are `1 = p2, `2 = p, d = p, and the symmetric case;

• ` = p2 then the only possibilities are `1 = `2 = p2,d = p, and `1 = `2 = p, d = 1;

• ` = p3 then the only possibilities are `1 = p2, `2 = p, d = 1, and the symmetric case;

• ` = p4 then the only possibility is `1 = `2 = p2,d = 1;

• if ` is divisible by two different primes, then d = 1 and `1 and `2 are uniquely determined up
to symmetry.

For what is concerning y1, it occurs whenever `1 = `2 = d = pi, for each prime p ∈ Λ and i = 1, 2.
So there are � ]Λ � L

logL possibilities for `1 and `2 so that ` = 1.

Lemma 4.3.3. The number of ` such that y` 6= 0 is � L2

logL .

Proof. ` = `1`2
d2

, so a direct computation gives that y` is not zero only if ` is of the kind

{p, p2, p3, p4, pq, p2q, p2q2}

where p and q are primes in [L, 2L]. So for each prime in this interval we have 4 possibilities(
p, p2, p3, p4

)
and for each pair of primes we have other 4 possibilities

(
pq, p2q, p2q2

)
. Let π(L) be

the function that counts the number of primes less then L, then the number of ` such that y` 6= 0
is at most 4(π(2L)− π(L) + (π(2L)− π(L))2)� π(2L)2 � L2

logL .
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Proposition 4.3.3.1. Let 0 < η ≤ 1 be a real number, then uniformly on z ∈ Sq−
⋃
α∈A0(q) α.Sηq

g(z)�ε q
1/2+ε

Proof. As a consequence of the equation at the begining of this section, one has

|
∑

1≤`≤L2

x`λf0(`)|2
∣∣∣yk/2f0(z)

∣∣∣2 � 〈f0, f0〉
∑

1≤`1,`2≤L2

x`1 x̄`2
∑

d|(`1,`2)

(
`1`2
d2

) k−1
2 ∑

ρ∈G `1`2
d2

(q)

K(|uρ(z)|)

� q1+ε
∑

1≤`1,`2≤L2

∑
d|(`1,`2)

x`1 x̄`2

(
`1`2
d2

) k−1
2 ∑

ρ∈G `1`2
d2

(q)

K(|uρ(z)|)

� q1+ε
∑

1≤`�L4

y``
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|)

At this point, we split the sum dividing the case in which ` is a perfect square from the other:

� q1+ε

 ∑
1≤`�L3

y``
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|) +
∑

1≤`�L4

` square

y``
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|)


From previous section we obtain

� q1+ε

 ∑
1≤`�L3

y``
k−1
2 qε

1

`
k
2
−1

+
∑

1≤`�L4

` square

y``
k−1
2 qε

1

`
k−1
2



� q1+ε

 ∑
1≤`�L3

y``
1/2 +

∑
1≤`�L4

` square

y`


Since |y`| is bounded for ` 6= 1, and y1 � L

logL from lemmas 4.3.2 and 4.3.3, it follows that

� q1+ε
(
y1 + L3/2]{y` 6= 0}

)
� q1+ε

(
L

logL
+ L3/2 L2

logL

)
� q1+ε L

7/2

logL

By lemma 4.3.1 we conclude that

L2−εg(z)2 �

∣∣∣∣∣∣
∑

1≤`≤L2

x`λf0(`)

∣∣∣∣∣∣
2

g(z)2 � q1+ε L2

logL
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Hence

g(z)� q1/2+ε L
3/2

logL

Since L has to be bigger then 1 the proposition is proved.





Chapter 5

The Diophantine Argument

In this chapter we shall use essentially the same ideas of the previous one, adding a Diophantine
argument to improve the bound for M(z, l, qε

√
L). More precisely, for all z in a certain reagion

of our fundamental domain we shall use Dirichlet approximation on <z to introduce two new
parameters (H and Q) that will allows us to improve the upper bound for

∑L
l=1M(z, l, qε

√
L).

First of all we recall the Dirichlet theorem and we use it to find an important property for all
z ∈ Sq −

⋃
δ∈A0(q) δSηq:

Let H and Q be fixed positive integers, Q ≤ H.

Theorem 5.0.4 (Dirichlet’s approximation theorem). For all x ∈ R there exists s and t ∈ Z
coprime, 1 ≤ t ≤ H such that ∣∣∣x− s

t

∣∣∣ ≤ 1

tH

Proof. The proof uses the pigeonhole principle: consider for all t = 1, · · · , H the integers tα− [tα].
All this integers are smaller then 1. Divide the interval [0, 1] into H intervals of length 1/H, and
call them G1, · · · , GH . So if at least one of the tα − [tα]’s belongs to G1, then call s = [tα] and
we have done. Otherwise by the pigeonhole principle there exist t1 6= t2 such that t1α− [t1α] and
t2α− [t2α] belong to the seme subinterval Gi. In particular |t1α− [t1α]− t2α− [t2α]| < 1

H , and the
conclusion follows immediatly.

We want to establish if a real number x in well approximated or not, with respect to the size
of t, indeed

Definition 5.0.5. Let x ∈ R, and let s
t be an approximation as in the Dirichlet theorem. We say

that x is well approximated if 1 ≤ t ≤ Q. We say that x is not well approximated if t ≥ Q.

Lemma 5.0.6. Assume H2 ≥ 2q
η , z = x + iy ∈ Sq −

⋃
δ∈A0(q)

δ.Sηq. Then any approximation s
t of

x in the sense of Dirichlet theorem satisfies

√
2t > η3/2q1/2

Proof. Let z ∈ Sq −Sηq.
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Assume that there exists s
t such that

√
2t ≤ η3/2q1/2. Then by proposition 2.3.2.1 there exists

b, d ∈ Z such that (
s b
t d

)
= γWm

(
1/m 0

0 1

)
for some γ ∈ Γ0(q) and m ∈ {1, q}.
I claim that

z ∈ γWm

(
1 Z
0 1

)
Sηq

If the claim is true then we have that z ∈
⋃
δ∈A0(q) δSηq because these three matrices belongs to

A0(q); this clearly conclude the proof of the lemma. It only remains to prove our claim:
It is clearly equivalent of proving that

z ∈
(
s b
t d

)(
m 0
0 1

)(
1 Z
0 1

)
Sηq

Since m ∈ {1, q} it suffices to prove that

z ∈
(
s b
t d

)(
1 Z
0 1

)
Sη

because the matrix

(
1 Z
0 1

)
is just a horizontal translation, and the matrix

(
m 0
0 1

)
is the

multiplication by m. So if an element w ∈ Sηq, then mw ∈ Sη because m ≤ q. For these reasons

it suffices to prove that =

((
s b
t d

)−1

z

)
≥
√

3
2η .

It follows immediatly with a direct computation, namely:

=

((
s b
t d

)−1

z

)
=

=z
| − tz + s|2

(5.0.1)

≥

√
3

2q

|s− tx|2 + t2

q2η2

(5.0.2)

≥

√
3

2q
1

H2+ t2

q2η2

(5.0.3)

≥
√

3

4
min

{
H2

q
,
η2q

t2

}
(5.0.4)

≥
√

3

2η
(5.0.5)

The first inequality comes from z ∈ Sq −Sηq; the second by Dirichlet theorem; the third follows

from the general fact 1
1
i
+ 1
j

≥ min{i,j}
2 ; the last one follows directly from the hypotesis and from the

assumption
√

2t ≤ η3/2q1/2.
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From now on we assume

2Q2 ≤ η3q (5.0.6)

2q

η
≤ H2 (5.0.7)

Remark 5.0.7. The first inequality allows us to apply the Lemma above, and the second one with
the Lemma itself allow us to say that <z is not well approximable in the sense of Dirichlet, for any

z = x+ iy ∈ Sq −
⋃

δ∈A0(q)

δ.Sηq.

Before going on I want to recall the situation and our goal:
as in the previous chapter we shall use the amplification method; we have found the following
equality that allows us to find an upper bound for g(z) = |yk/2f0(z)| studying the right hand-side:

Ck
∑
j

|
∑

1≤`≤L
x`λfj (`)|

2

∣∣∣∣∣ yk/2fj(z)√
< fj , fj >

∣∣∣∣∣
2

=
∑

1≤`1,`2≤L
x`1 x̄`2

∑
d|(`1,`2)

(
`1`2
d2

) k−1
2 ∑

ρ∈G `1`2
d2

(q)

K(|uρ(z)|)

The central point of our computation in to give an upper bound for

M(z, `, qε
√
`) = ]{γ ∈ G`(q) : |uγ(z)| ≤ qε

√
`}

Indeed I remind that by section 4.1 we have obtain that∑
ρ∈G`(q)

K(|uρ(z)|)�
∑

ρ∈G`(q),|uρ(z)|≤qε
√
`

K(|uρ(z)|)�
1

`k/2
M(z, `, qε

√
`)

because |uρ(z)| �
√
` from the appendix, and so

K(|uρ(z)|)�
1

`k/2

While in the previous chapter I have studied directly M(z, `, qε
√
L), now the approach is a little

bit different: we want to find an upper bound for∑
1≤`≤L

M(z, `, qε
√
`)

Now we can go on: first of all we need to lemmas used to count the number of matrices involved
in our sum with the third entry equal 0.

Lemma 5.0.8. Let 1 ≤ L ≤ η2q2−ε. For all z ∈ H −
⋃
δ∈A0(q) δSηq the only parabolic matrix

γ ∈ G`(q) such that |uγ(z)| ≤
√
Lqε is ±

( √
` 0

0
√
`

)
.
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Proof. Let γ =

(
a b
c d

)
be a parabolic matrix, i.e. |a+ d| = 2

√
`. Then γ fixes a cusp, call it a.

Moreover by lemma 2.3.2.1 there exists σ ∈ A0(q) such that σ(∞) = a.
Consider σ−1γσ = γ′, then γ′(∞) =∞ and it is a conjugate of γ, hence it is parabolic; so we have

that γ′ =

( √
` r

0
√
`

)
for some r ∈ Z. In particular l is a square. So to conclude it is enough to

prove that r = 0.
Define w = σ−1(z). Then as I have already proved

|uγ′(w)| = |uγ(z)| ≤
√
Lqε

In particular w /∈
⋃
δ∈A0(q) δSηq because z is not in it, and σ ∈ A0(q). As a consequence if w = x′+y′

then y′ ≤
√

3
2ηq .

So we have

|uγ′(w)| = |
√
`w + r −

√
`w̄|

y′
=
|
√
`2iy′ + r|
y′

≥ |r|
y′
≥ |r|ηq

In particular |r|ηq <
√
Lqε hence |r| <

√
Lη−1qε−1 ≤ 1 by the hypotesis. So r = 0 and the lemma

is proved.

Lemma 5.0.9. Assume
√
Lqε < min

{
Q, ηqH

}
. For all z = x+ iy ∈ Sq −

⋃
δ∈A0(q) δ.Sηq, the only

matrix γ =

(
a b
0 d

)
∈ G`(q) such that |uγ(z)| ≤

√
Lqε is

( √
` 0

0
√
`

)
.

Proof.

|uγ(z)| = |(a− d)x+ b+ iy(a+ d)|
y

≤
√
Lqε

In particular considering the imaginary part we have that |a+ d| ≤
√
Lqε. Now, detγ = ad = ` > 0

hence a and d have the same sign and so

|a− d| < |a+ d| ≤
√
Lqε < Q

Claim: |a− d| = 0
Since 1 ≤ |a − d| < Q, then it follows that |(a − d)x + b| ≥ 1

H because as we have seen, with
our assumptions on L any approximation (in the sense of Dirichlet) of <z = x is a not well
approximation, indeed: suppose |(a − d)x + b| < 1

H then |x − b
d−a | <

1
|d−a|H . By our initial

assumpitions |a− d| ≤ qε
√
L < Q and by lemma 5.0.6 we have

2|d− a| > η3q ≥ 2Q

then |d− a| > Q, which gives a contraddiction.
On the other hand, considering the above inequality for |uγ(z)|, and considering the real part we
obtain

|(a− d)x+ b| ≤
√
Lqεy ≤

√
Lqε

1

ηq
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Therefore we have
1

H
≤ |(a− d)x+ b| ≤

√
Lqε

ηq

and so
√
Lqε ≥ ηq

H , in contraddiction with our hypotesis. Hence a−d = 0, then γ is parabolic and the

conclusion follows immediatly from the previous lemma, that can be applied since
√
Lqε < ηq.

We have now all the ingredients to prove the following

Proposition 5.0.9.1. Let z ∈ H−
⋃
δ∈A0(q) δSηq, then

i)
L∑
`=1

M(z, `, qε
√
`)� q5εL

(
L1/2

Q
+ 1

)(
HL1/2

q
+
L1/2

H
+ 1

)
ii)

L∑
`=1,` is a square

M(z, `, qε
√
`)� q4εL1/2

(
L1/2

Q
+ 1

)(
HL1/2

q
+
L1/2

H
+ 1

)

Proof. i) The counting problem is invariant by conjugation by A0(q), so we may assume z ∈ Sq.
Moreover z = x+ iy and by lemma 5.0.6 we may assume

∣∣x− s
t

∣∣ ≤ 1
tH with Q < t ≤ H.

If c = 0, by lemma 5.0.9 γ =

( √
` 0

0
√
`

)
, and it is possible only if ` is a square,then the

contribution of such matrices is at most L1/2.
If c ≥ 1 we have for some 1 ≤ ` ≤ L

|uγ(z)| = |`+ |cz + d|2 − (cz + d)(a+ d)|
cy

≤
√
`qε

Considering the imaginary part we obtain

|a+ d| ≤
√
`qε

and considering the real part we have

|`+ |cz + d|2 − (cx+ d)(a+ d)| ≤
√
`qεcy

and so
|`+ |cz + d|2| ≤

√
`qε(|cx+ d|+ cy)�

√
`qε|cz + d|

which gives
|cz + d| �

√
`qε

As a consequence we have

|cx+ d| �
√
`qε

c�
√
`qε

y
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and

|a− d− 2cx| = |a+ d− 2(cx+ d)| �
√
`qε

Let I be an interval of length �
√
Lqε centered in 0 and sucht that a− d ∈ 2cx+ I.

For each such integer c we are reduced to counting the number of quadruples of integers (a, b, d, `)
such that 

a− d ∈ 2cx+ I

a+ d ∈ I
1 ≤ ` ≤ L
ad = `+ bc

Note that there are at most L1/2qε

qy possible choices for c, since it is divisible by q.

Set u := [2cx]; A = a− d−u and D := a+ d. Thus we need to count the number of quadruples
(A,D, b, `) such that 

A ∈ I
D ∈ I
1 ≤ ` ≤ L
2Au+ 4bc = D2 − 4`− u2 −A2

First we look for the equation satisfied by (A, b). All the possible integers D2−4`−u2−A2 belong
to an interval K of length � Lq2ε, because of the size of each summand. So we want to count the
number of pairs (A, b) such that 

A ∈ I
b ∈ Z
2Au+ 4bc ∈ K

Let J =
[
− 1
tH ,

1
tH

]
, so x ∈ s

t + J .
Consider {

Au+ 2bc ∈ K
x ∈ s

t + J

Multiplying the second equation by 2Ac we obtain{
Au+ 2bc ∈ K
Au ∈ 2Acs

t + c.I.J

which gives
Acs

t
+ bc ∈ c.I.J +K

Multiplying this condition by t
c we obtain the weak condition that (A, b) has to satisfy

As+ bt ∈ t

c
K + t.I.J
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This last interval has length

� t

c
Lq2ε + tL1/2qε

1

tH
= qε

(
t

c
Lqε +

L1/2

H

)

� q2ε

(
t

c
L+

L1/2

H

)
Let ξ be an element of this interval. Since s and t are coprime, s is invertible mod t and so there
is a unique solution of As + bt ≡ ξ (mod t). Therefore the number of solutions of A is at most

� |I|
t + 1� L1/2qε

t + 1.
We can conclude that the total number of pairs (A, b) satisfying our conditions is at most

]{(A, b)} � q2ε

(
t

c
L+

L1/2

H
+ 1

)
qε

(
L1/2

t
+ 1

)
Once A and b have been given, we choose D ∈ I arbitrarily, and thus ` is given. I recall that
Q < t < H.

To conclude the proof consider

∑
1≤`≤L

M(z, `, qε
√
L)�

∑
c

∑
D

q2ε

(
t

c
L+

L1/2

H
+ 1

)
qε

(
L1/2

t
+ 1

)

= q3ε

(
L1/2

t
+ 1

)(L1/2

H
+ 1

)∑
c,D

1 + tL
∑
c

1

c

∑
D

1


Since D ∈ I then ]{D} ≤ L1/2qε. Moreover c � L1/2qε

y and it is divisible by q. So writing
c = mq and noting that

L1/2qε∑
m=1

1

m
� qε

we obtain

� q3ε

(
L1/2

t
+ 1

)(L1/2

H
+ 1

)
Lq2ε + tL

L1/2qε∑
m=1

1

mq
L1/2qε


� q5ε

(
L1/2

t
+ 1

)[(
L1/2

H
+ 1

)
L+

tL

q
L1/2

]

� Lq5ε

(
L1/2

t
+ 1

)(
L1/2

H
+ 1 +

t

q
L1/2

)

� Lq5ε

(
L1/2

Q
+ 1

)(
L1/2

H
+
H

q
L1/2 + 1

)
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ii) For this inequality the steps until the bound for the number of choices for the pair (A, b) is
the same. Then instead of choosing D ∈ I arbitrarily, we observe that

2Au+ 4bc+ u2 +A2 = D2 − 4` = (D − 2
√
`)(D + 2

√
`)

If the left hand-side is 6= 0 then the number of possibilities for the pair (D, `) is � qε because
D2 − 4` � qεL � q and the number of possible pairs (D, `) depends linearly from the number of
possible divisors of D2 − 4` that is � (D2 − 4`)ε � qε.
If the left hand-side is 0 then |a + d| = 2

√
`, then γ is parabolic and from lemma 5.0.8 γ =( √

` 0

0
√
`

)
so we have that the number of pairs (D, `) is at most � L1/2. Moreover A =

a− d− u = −u so if A is fixed then also c is fixed.
Therefore can conclude that

L∑
`=1,` is a square

M(z, `, qε
√
L)� q4εL1/2

(
L1/2

Q
+ 1

)(
HL1/2

q
+
L1/2

H
+ 1

)

Proposition 5.0.9.2. Let z ∈ Sq −
⋃
δ∈A0(q) δSηq. Assume

2Q2 ≤ η3q ≤ 2q

η
≤ H2

and

L1/2qε < min
{
Q,

ηq

H

}
for some ε arbitrary small. Then, uniformly

∑
1≤`≤L

`
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|)� L1/2q5ε

(
L1/2

Q
+ 1

)(
HL1/2

q
+
L1/2

H
+ 1

)
and the same summation with ` restricted to be a perfect square

∑
1≤`≤L, ` square

`
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|)� q4ε

(
L1/2

Q
+ 1

)(
HL1/2

q
+
L1/2

H
+ 1

)

Proof. This result follows from the previous proposition, applying Abel summation formula:
at the bigginig of this chapter I have recall that∑

ρ∈G`(q)

K(|uρ(z)|)�
∑

ρ∈G`(q),|uρ(z)|≤qε
√
`

K(|uρ(z)|)�
1

`k/2
M(z, `, qε

√
`)

hence ∑
1≤`≤L

`
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|)�
∑

1≤`≤L

1

`1/2
M(z, `, qε

√
`)
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Applying Abel summation formula we obtain

∑
1≤`≤L

1

`1/2
M(z, `, qε

√
`)�

 ∑
1≤`≤L

M(z, `, qε
√
`)

 1

L1/2
+

1

2

∫ L

1

 ∑
1≤`≤s

M(z, `, qε
√
`)

 1

s3/2
ds

� L1/2q5ε

(
L1/2

Q
+ 1

)(
L1/2

H
+
H

q
L1/2 + 1

)
+

1

2
q5ε

∫ L

1

1

s1/2

(
s1/2

Q
+ 1

)(
s1/2

H
+
H

q
s1/2 + 1

)
ds

To conclude the proof it is enough to show that the second term is bounded by the first one, indeed:

q5ε

∫ L

1

1

s1/2

(
s1/2

Q
+ 1

)(
s1/2

H
+
H

q
s1/2 + 1

)
ds =

q5ε 1

Q

∫ L

1
s1/2

(
1

H
+
H

q

)
+ 1ds+ q5ε

∫ L

1

(
1

H
+
H

q

)
+

1

s1/2
ds

� q5ε

[
1

Q
L3/2

(
1

H
+
H

q

)
+
L

Q
+

(
1

H
+
H

q

)
L+ L1/2

]
= L1/2q5ε

(
L1/2

Q
+ 1

)(
L1/2

H
+
H

q
L1/2 + 1

)

So the first part of the theorem is proved.

For the second part the coputation is exactly the same, so the theorem is proved.

To conclude this chapter finding a bound for g(z) we need other two steps: the first one consists
on finding a formula that describe an upper bound for g(z) depending on the variables Q, H and L
for all z ∈ Sq −

⋃
δ∈A0(q) δSηq. Note that this variables depend all from η. Then, considering the

bound via Fourier coefficients studied in the second chapter, for z ∈
⋃
δ∈A0(q) δSηq we shall give to

each parameter a value that allows us to improve the trivial bound for the sup-norm of g(z).

For the first goal we shall use the amplification method, with the same amplifier used in the
previous chapter. Let’s recall the definition of the amplifier: Let f be a cuspform of level q, and L
a positive real number. Let

Λ := {p prime : (p, q) = 1, p ∈ [L, 2L]}

be a large set of primes. Define

x` =

{
sgn(λf (`)), if ` ∈ Λ ∪ Λ2

0, otherwise

where λf (`) is the eigenvalue of f with respect to T (`).

Proposition 5.0.9.3. Let z ∈ Sq −
⋃
δ∈A0(q) δSηq. Assume

2Q2 ≤ η3q ≤ 2q

η
≤ H2
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and
L2qε < min

{
Q,

ηq

H

}
for some ε arbitrary small. Then

g(z)2 � L−1/2q1+ε

(
L3/2

Q
+ 1

)(
HL3/2

q
+
L3/2

H
+ 1

)
Proof. As we have seen in the proof of the proposition 4.3.3.1 we have

|
∑

1≤`≤L2

x`λf0(`)|2
∣∣∣yk/2f0(z)

∣∣∣2 � q1+ε
∑

1≤`�L4

y``
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|)

Since |y`| is bounded and it vanishes for ` ≥ L3 if ` is not a square, it becomes

� q1+ε
∑

1≤`�L3

`
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|) + q1+ε
∑

1≤`�L4, ` square

`
k−1
2

∑
ρ∈G`(q)

K(|uρ(z)|)

Note that now the sum is over all ` � L3, while in the previous proposition it is over ` � L. So
both in the hypotesis and the formulas we have to substitute L with L4 in the case of ` square,
and L3 in the case of ` not square. Using the previous proposition we obtain

� q1+ε

(
L3/2

(
L3/2

Q
+ 1

)(
HL1/2

q
+
L3/2

H
+ 1

)
+

(
L2

Q
+ 1

)(
HL2

q
+
L2

H
+ 1

))

� q1+ε

(
L3/2

(
L3/2

Q
+ 1

)(
HL1/2

q
+
L3/2

H
+ 1

)
+ L

(
L3/2

Q
+ 1

)(
HL2

q
+
L3/2

H
+ 1

))

� q1+εL3/2

(
L3/2

Q
+ 1

)(
HL1/2

q
+
L3/2

H
+ 1

)
We have also seen that

|
∑

1≤`≤L2

x`λf0(`)|2 � L2−ε

Therefore

g(z)2 � q1+εL−1/2

(
L3/2

Q
+ 1

)(
HL1/2

q
+
L3/2

H
+ 1

)

At this point we are ready to prove the main theorem: I recall that from proposition 3.1.1.1 we
have

g(z)2 � q1+εη

for z ∈
⋃
δ∈A0(q) δSηq, 0 < η < 1 real number. So our aim is to find η, Q, H, L satisfying all the

conditions used in our computation, and that make smaller as possible

max{η, L−1/2

(
L3/2

Q
+ 1

)(
HL1/2

q
+
L3/2

H
+ 1

)
}
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Theorem 5.0.10 (The Main Theorem). Let q be a prime number, k ≥ 4 an integer, both fixed.
Let f0 ∈ SPk (Γ0(q)) be an arithmetically normalized newform of weight k. Denote g(z) = yk/2f0(z),
where z = x+ iy ∈ H, then

‖g‖∞ � q
1
2 q−

1
22

+ε

Proof. As I said above, our aim is to find η, Q, H, L satisfying all the conditions used in our
computation, and that make smaller as possible

max{η, L−1/2

(
L3/2

Q
+ 1

)(
HL1/2

q
+
L3/2

H
+ 1

)
}

First of all I want to study the situation for z ∈ Sq −
⋃
δ∈A0(q) δSηq: the bound for g(z)2 in this

reagion is

L−1/2

(
L3/2

Q
+ 1

)(
HL1/2

q
+
L3/2

H
+ 1

)
where the parameters have to satisfy: {

2Q2 ≤ η3q
2q
η ≤ H

2

and
L2qε < min

{
Q,

ηq

H

}
Moreover 0 < η < 1.

To simplify our computation I write all the parameters as a rational power of q. It is always
possible since they are all bigger then 0. Moreover to choose a rational exponent is not reductive
since Q is dense in R. Moreover I define a common denominator for the rational exponent, say α,
to make our new system of conditions just a system of inequalities in Z. So we put
H = qa/α, Q = qb/α, L = qc/α, η = qd/α .
With this choice the conditions becomes

2b < 3d+ α

α− d < 2a

2c < b

2c < d+ α− a
d < 0

that is equivalent to 

2b ≤ 3d+ α− 1

α− d+ 1 ≤ 2a

2c+ 1 ≤ b
a ≤ d+ α− 1− 2c

d < 0
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My choice is to make L as big as possible, so that L−1/2 becomes small. For this reason from the
above conditions (the first and the third) I choose the limit case

c =
α+ 3d− 3

4

This implies

b =
α+ 3d− 1

2

The second and the fourth conditions gives possible the choice

a =
α− d+ 1

2

At this point i want to study

L−1/2

(
L3/2

Q
+ 1

)(
HL1/2

q
+
L3/2

H
+ 1

)

More precisely I want to find the term with higher weigth between

{L−1/2,
L

H
,
L

Q
,
LH

q
,
L5/2

HQ
,
L5/2H

Qq
}

Note that the last term is negligible because it is bounded by the third one. So writing this term
in terms of exponentials we obtain

{−c
2α
,
c− b
α

,
c+ a− α

α
,
c− a
α

,
5c

2α
− a+ b

α
}

and between these terms I want to find the bigger; it is clearly equivalent of finding the smaller
between

{ c
2
, b− c, α− c− a, a− c, a+ b− 5

2
c}

Substituting a, b, c with the values above depending only on d and α it turns out that the smaller
term is

c

2α
=
α+ 3d− 3

8α

and so
g(z)2 � q1+εq

−α−3d+3
8α

for z ∈ Sq −
⋃
δ∈A0(q) δSηq.

For z ∈
⋃
δ∈A0(q) δSηq we have

g(z)2 � q1+εη = q1+εq
d
α

So we want to find d and α so that

max{ d
α
,
−α− 3d+ 3

8α
}
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is smallest as possible.
d

α
≥ −α− 3d+ 3

8α
⇔ α ≥ −11d+ 3

So once d is fixed, if we choose α ≥ −11d+ 3 then we have to make smaller as possible

d

α
=

d

−11d+ 3

This is an increasing function of d < 0, so as d is smaller the functions is smaller. For this reason
we can say that

g(z)2 � q1+εqd/α � q1+ε lim
d→−∞

q
d

−11d+3 = q1+εq−
1
11

If we choose α ≤ −11d+ 3 then we have to make smaller as possible

−α− 3d+ 3

8α

Once d is fixed this happens for α = −11d + 3 and so the result becomes the same. Therefore we
can conclude that

g(z)� q1/2+εq−
1
22





Appendix A

Pre-Trace Formula on Γ0(q)

The relation between the basis of eigenform of Sk(Γ0(q)) and an automorphic kernel plays a central
role in this thesis. In the following appendix we shall describe it, inspired by a similar relation that
one can find in [Lan95, Appendix Zagier].

Let F0(q) be a fundamental domain for Γ0(q) in H. We fix an even weight k ≥ 4, and let Tk(m)
be the Hecke operator on Sk(Γ0(q)). Let h(z, w) be a function of two variables z and w in H,and
assume that h is a cusp form of weight k as a function of each variable.If f ∈ Sk(Γ0(q)) we define
f ∗ h as a function of w by

(f ∗ h)(w) =

∫
F0(q)

f(z)h(z,−w)(=z)kdµ(z) (A.0.1)

where dµ(z) = dx dy
y2

denote the hyperbolic measure. This operation is merely the Petersson inner
product of f and h, viewed as function of the first variable z.

We know from the first chapter that there exists an orthogonal basis B = {f1, · · · , fJ} of
Sk(Γ0(q)) made of eigenforms for the Hecke operators {T (m) : (q,m) = 1}, i.e

fi(z) =
+∞∑
n=1

an(fi)e(nz) =⇒ T (m)fi = λi(m)fi

where λi(m) are the eigenvalues of fi with respect to Tk(m). Define

h(z, w) =
∑

γ∈Γ0(q)

1

(j(γ, z))k
1

(w + γz)k
(A.0.2)

Proposition A.0.10.1. h(z, w) is a holomorphic cusp form in each variable separately.

Proof. I divide the proof in four steps:

• h is holomorphic;

• h[ρ]k = h for all ρ ∈ Γ0(q);

• h[α] is holomorphic at infinity for all α ∈ SL2(Z);
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• h vanishes at each cusp, i.e. the Fourier expansion of h[α]k has the first coefficient equal 0
for all α ∈ SL2(Z).

I shall prove this for z and w separately.

h(z, w) =
∑

γ∈Γ0(q)

1

j(γ, z)k
1

(w + γ.z)k

i) As a function of z: both =(j(γ, z)) and =((w+γ.z)) are strictly bigger then 0. So 1
j(γ,z)k

1
(w+γ.z)k

which is a rational polynomial is holomorphic on H. For k ≥ 4
∑

γ∈Γ0(q)
1

j(γ,z)k
1

(w+γ.z)k
converges,

and so h is holomorphic.
As a function of w the argument is exactly the same.

ii)As a function of z: let ρ ∈ Γ0(q), then for all γ ∈ Γ0(q)

1

j(γ, ρ.z)j(ρ, z)
=
j(γρ, z)

Hence

h[ρ](z, w) =
∑

γ∈Γ0(q)

1

j(ρ, z)k
1

j(γ, ρ.z)k
1

(w + γρ.z)k

=
∑

γ∈Γ0(q)

1

j(γρ, z)k
1

(w + γρ.z)k

As a function of w: Let ρ =

(
u v
r s

)
∈ Γ0(q), and γ =

(
a b
c d

)
running through Γ0(q), then

we have

h[ρ](z, w) =
∑

γ∈Γ0(q)

1

j(γ, z)k
1

j(ρ, w)k
1

(ρ.w + γ.z)k

=
∑

γ∈Γ0(q)

1

(cz + d)k
1

(rz + s)k
1(

uw+v
rw+s + az+b

cz+d

)k
=

∑
γ∈Γ0(q)

1

[(cz + d)(uw + v) + (az + b)(rw + s)]k

=
∑

γ∈Γ0(q)

1

[j(ρ′γ, z)(w + ρ′γ.z)]k

= h(z, w)

where ρ′ =

(
s v
r u

)
.

iii) As function of z: for all α ∈ SL2(Z) the trasformed function h[m]k(z, w) is holomorphic and
weight-k invariant under α−1Γ0(q)α, and therefore it has a Laurent expansion

h[α]k(z, w) =
∑
n∈Z

ane(
nz

q
)



69

So it is enough to show that

lim∣∣∣e( zq )
∣∣∣→0

h[α]k(z, w) = 0

for all α ∈ SL2(Z).

This proves also (iv):
∣∣∣e( zq )

∣∣∣→ 0 is equivalent of y → +∞, where z = x+ iy as usual. Now,

h[α]k(z, w) =
∑

γ∈Γ0(q)

1

j(α, z)k
1

j(γ, α.z)k
1

(w + γα.z)k
=

∑
γ∈Γ0(q)

1

j(γα, z)k
1

(w + γα.z)k

Concentrate for a moment on j(γα, z): it tends to ∞ as y tends to +∞, so if the third entry of γα
is not 0, then

lim∣∣∣e( zq )
∣∣∣→0

∑
γ∈Γ0(q)

1

j(γα, z)k
1

(w + γα.z)k
= 0

since w+ γα.z does not tend to 0, because γα.z ∈ H. If the third entry of γα is 0 then γα ∈ Γ0(q)
and so α ∈ Γ0(q). So h[α]k = h which tends to 0 as y tends to +∞.

As a function of w: as in the case of z it is enough to prove that

lim
η→+∞

h[α]k(z, w) = 0

for all α ∈ SL2(Z), where w = ξ + iη:

if α =

(
s v
r u

)
, consider α′ =

(
u v
r s

)
∈ SL2(Z).

As in (ii) one has

h[α]k(z, w) =
∑

γ∈Γ0(q)

1

j(α′γ, z)k
1

(w + α′γ.z)k

and it tends to 0 as η tends to +∞. This proves also (iv).

Theorem A.0.11. Let Ck = (−1)k/2π

2(k−3)(k−1)
, then

(i) ∀f ∈ Sk(Γ0(q)) we have

(f ∗ h)(w) = Ckf(w)

(ii) We have the identity

C−1
k h(z, w) =

J∑
i=1

fi(z)fi(−w̄)

〈fi, fi〉

Proof. Note first that if γ =

(
a b
0 d

)
∈ Γ0(q) then

(cz̄ + d)−kf(z)yk = f(γz)=(γz)k
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where z = x+ iy: =(γz) = =(z)

|cz+d|2 and since f ∈ Sk(Γ0(q) then

f(z) = f [γ]k (z) =
1

(cz + d)k
f(γz)

so

1

(cz̄ + d)k
f(z)yk =

1

|cz + d|k
f(γz)=(z)k

= f(γz)=(γz)k

Therefore from ( A.0.2 ) we have

f(z)h(z, w)yk =
∑

γ∈Γo(q)

1

j(γ, z̄)k
1

(w̄ + γz̄)k
f(z)yk

=
∑

γ∈Γo(q)

f(γz)=(γz)k
1

(w̄ + γz̄)k

Hence

(f ∗ h)(w) =

∫
F0(q)

∑
γ∈Γo(q)

f(γz)=(γz)k
1

(−w + γz̄)k
dxdy

y2

=
∑

γ∈Γo(q)

∫
γF0(q)

f(z)=(z)k
1

(−w + z̄)k
dxdy

y2

= 2

∫ ∞
y=0

∫ ∞
x=−∞

f(x+ iy)yk−2 1

(−w + x− iy)k
dxdy

The first equality comes from the Γ0(q)-invariance of dxdy/y2, and the second one comes from the
fact that the upper half plane H is equal to the union of transforms of the fundamental domain under
Γ0(q), disjoint exept for boundary points of measure zero, and exept for the fact that ±γ ∈ Γ0(q)
give the same transform, whence the factor of 2. Cauchy formula and the fact that f is a cusp
form, hence holomorphic and sufficiently small at infinity, imply that∫ ∞

−∞
f(x+ iy)

1

(−w + x− iy)k
dx =

2πi

(k − 1)!
f (k−1)(2iy + w)

where f (k−1) denotes the (k − 1)-derivative of f . Therefore

(f ∗ h)(w) =
4πi

(k − 1)!

∫ ∞
0

yk−2f (k−1)(2iy + w)dy

=
4πi

(k − 1)!

∫ ∞
0

1

(2i)k−2

(
d

dt

)k−2

f ′(2ity + w) |t=1 dy

=
4πi

(k − 1)!

1

(2i)k−2

(
d

dt

)k−2 ∫ ∞
0

f ′(2ity + w)dy |t=1

=
4πi

(k − 1)!

1

(2i)k−2

(
d

dt

)k−2(−f(w)

2it

)
|t=1

= Ckf(w)
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This proves the first part. Part (ii) follows essentially from linear algebra. The function h, being
a cusp form with respect to z and w, can be written as

hm(z, w) =
J∑
j=1

cjfj(z)

where cj depends on w. So, applying the Petersson scalar product one obtains

〈h( , w), fj〉 = cj 〈fj , fj〉

On the other hand

〈h( , w), fj〉 =

∫
z∈F0(q)

h(z, w)fj(z)y
kdµ(z)

=

∫
z∈F0(q)

h(z, w)fj(z)ykdµ(z)

= (fj ∗ h)(−w̄)

= Ckfj(−w̄)

So we obtain

cj =
〈h( , w), fj〉
〈fj , fj〉

=
Ckfj(−w̄)

〈fj , fj〉
and we can conclude that

h(z, w) = Ck

J∑
j=1

fj(z)fj(−w̄)

〈fj , fj〉





Appendix B

Classification of motions in M2(R, `)
and a Lower Bound for |uρ(z)|

In this appendix we want to classify the elements of M2(R, `), the 2x2 matrices with entries in R
and determinant `, and then to deduce from that a lower bound for |uρ(z)|, where ρ ∈ G`(q). This
is a generalization of the classification of motion for SL2(R) that one can find in [Iwa97].

B.1 Classification of motions

Let ρ =

(
a b
c d

)
∈M2(R, `), and consider the conjugacy class

ρ̄ := {g−1ρg : g ∈ SL2(R)}

Remark B.1.1. Two elements of the same conjugacy class have the same trace

Remark B.1.2. The number of fixed points in H under the action of two elements of the same
conjugacy class is invariant, indeed: suppose that ρ.z = z, then g−1ρg.(g−1.z) = g−1.z.

So this are two equivalent criterium for our classification.

Let ρ =

(
a b
c d

)
, and let z be a fixed point for ρ. If c = 0 then az+b

d = z. Therefore ρ fixes just

one point in R̄.
If c 6= 0 then az+b

cz+d = z, which gives the equation

cz2 + z(d− a)− b = 0

Looking at the discriminant (a+ d)2 − 4` we can classify:

• |a+ d| = 2
√
` then ρ fixes one point in R̄, and we say that ρ is parabolic;

• |a+ d| > 2
√
` then ρ fixes two distinct points in R̄, and we say that ρ is hyperbolic;

• |a+ d| < 2
√
` then ρ fixes one point in H̄, and we say that ρ is elliptic;



74 Classification of motions in M2(R, `) and a Lower Bound for |uρ(z)|

B.2 A Lower Bound

In this section I want to prove the following

Proposition B.2.0.1. Let ρ ∈ G`(q), z ∈ H̄, then |uρ(z)| �
√
`.

Proof. Let ρ =

(
a b
c d

)
∈ G`(q) and consider

|uρ(z)| =
|b− c|z|2 + az − dz̄|

y

Considering the imaginary part we have

|=uρ(z)| = |a+ d|

If rho is parabolic or hyperbolic, then

|uρ(z)| ≥ |=uρ(z)| = |a+ d| >
√
`

It remains to study the case in which ρ is elliptic: first of all note that if ρ is elliptic, then c 6= 0,
otherwise it would be parabolic. In particular c ≥ q, since ρ ∈ G0(q).

Remark B.2.1. ρ ∈M2(R, `), and g ∈ SL2(Z), then |ug−1ρg(z)| = |uρ(g.z)|

Proof. Set w := g.z;

|ug−1ρg(z)| =
|g−1ρg.z − z̄||j(g−1ρg, z)|

=z

=
|g−1ρ.w − g−1.w̄||j(g−1ρ, g.z)j(g, z)|

=z

=
|ρ.w − w̄||j(ρ, w)j(g, z)|

=z|j(g−1, w̄)|

=
|ρ.w − w̄||j(ρ, w)|

=w
= |uρ(w)| = |uρ(g(z))|

This allows us to study |uρ(z)| taking for ρ any elliptic motion. So take

ρ =

( √
` cosϑ

√
` sinϑ

−
√
` sinϑ

√
` cosϑ

)
for some ϑ 6= 0 Hence we find

|uρ(z)| =
|
√
`(cosϑ.z + sinϑ)− z̄

√
`(− sinϑ.z + cosϑ)|

y

=

√
`| sinϑ(1 + |z|2) + cosϑ(z − z̄)|

y
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So considering the imaginary part

|=uρ(z)| =
√
`|2y cosϑ|

y
= 2| cosϑ|

√
`�
√
`

So we conclude
|uρ(z)| ≥ |=uρ(z)| �

√
`
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