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Introduction

This work focuses on a paper of Serre called ”Les propriétés ga-
loisiennes des points des torsions des courbes elliptiques”[1] where he
proves a theorem about the image of Galois representations attached to
elliptic curves defined over number fields without complex multiplica-
tion and poses a question which will be referred as “Serre’s uniformity
question”. The proof of the theorem is in the section 4 of his paper,
where he uses all the tools he has built in previous chapters and in his
book “Abelian l-adic representations”[2]. I want to put that proof in
an easy to follow format, by giving all the used results, emphasizing
the underlying ideas and omitting some proofs in the sake of making
the big picture more admissible.

Here is a vague idea of the proof. To study the images of the
representations ϕl, Serre first studies the subgroups of Aut(E[n]) =
GL2(Z/nZ). He also studies the structure of the inertia subgroup Iw of
G = Gal(K/K) related to a place w of K. Since we are dealing with fi-
nite groups here, by using cardinality arguments, Serre eliminates some
possiblites for the image of ϕl. Then, in chapter 3, he introduces an
algebraic group Sm with the help of local class field theory, which gives
rise to an infinite family of abelian l-adic representations. He begins
his proof by assuming existence of an infinite family L of primes such
that the for every l ∈ L, the representations ϕl are not surjective and
assuming futher that the elliptic curve has no complex multiplication.
He proves that for an infinite number of primes, the representaions ϕl
are isomorphic to representations coming from the algebraic group Sm,
hence their images are abelian. This suffices to conclude his proof since
existence of infinitely many such representations implies that the ellip-
tic curve has complex multiplication. All the constructions are made
in order to arrive to a contradiction with the hypothesis of E having
complex multiplication.

We have a nice theorem about the algebraic structure of n-torsion
points on an elliptic curve defined over an algebraically closed field of
characteristic 0. They form a free module over Z/nZ of rank two. In
order to study an elliptic curve over an arbitrary number field, we first
take an algebraic closure of that field, look at the elliptic curve over the
algebraic closure and take into account the action of the galois group
of the algebraic closure over our number field.

Serre’s theorem states the existence of a positive integer n(E,K),
depending on the elliptic curve E and the number field K, such that
for every prime l > n(E,K), the representation ϕl is surjective. Then
Serre asks the question if there exists an integer n(K) which depends
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only on the number field K and is independent of the elliptic curve E
such that for every prime l bigger then n(K), the representation ϕl is
surjective. This is the so called ”Serre’s uniformity question”.

A weaker version of this question is finding primes where the repre-
sentaions ϕl are reducible. We will study a paper of Nicolas Billerey
named “Critères d’irréductibilité pour les représentations des courbes
elliptiques”[3], where he deals with the question of finding explicitly
the primes l such that the representation ϕl is reducible. He calles
such primes “reducible primes” for an elliptic curve E defined over a
number field K. He denotes the set of such primes Red(E/K). An
important result is that the set Red(E/K) is finite if and only if E has
no complex multiplication. Then he gives an algorithm to calculate
this set explicitly and discusses its complexity.

We will investigate Serre’s work in the first 7 sections. In first 5
chapters, we focus on understanding the tools that will be used in the
proof of his main theorem. The steps of his proof is given in section
6. There are some examples in concrete cases in section 9. The rest
of the article is about Billerey’s work on reducible primes, again with
concrete examples in section 11.

1. Preliminaries

1.1. Elliptic curves. In this section, we will fix our notation, give
some basic definitions and remind some known properties of elliptic
curves defined over number fields. For more details about elliptic curves
and missing proofs, the reader may refer to [4],[5].

We will denote by Z the usual ring of integers, by Q its field of
fractions, by Q an algebraic closure of Q inside the complex numbers
C. We will let K be a number field or a local field in this section.

Definition 1. An elliptic curve defined over K is a non-singular pro-
jective curve E over K of genus one with a distinguished point O ∈
E(K).

We denote by E(K) the K-rational points of E. On an elliptic curve,
one can define a commutative group law where the distinguished point
O is the identity element. The Mordell-Weil theorem states that for an
elliptic curve E defined over a number field K, its K-rational points
form a finitely generated abelian group. We will be interested in the
torsion part of this group.

We denote by [n] : E → E the map of multiplication by n, where n
is a positive non-zero integer. This map sends a point A on the elliptic
curve E to the point n.A := A+A+ ...+A where the plus operation is
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the group law on the curve. We will be interested in the kernel of this
map, denoted E[n], which consists of n-torsion points on the curve.

On an algebraically closed field with characteristic zero, E[n] is a
free Z/nZ-module of rank 2.

Now let l be a prime number and consider the sets E[ln] of ln-torsion
points for n ≥ 1. We have morphisms

E[ln+1]→ E[ln]

and we can define their projective limit

Tl = lim←−E[ln]

which is called the Tate module of E. This is a free Zl-module of rank
2, where Zl is the ring of l-adic integers.

For an elliptic curve defined over K, the endomorphism group End(E)
is either Z or a 2 dimensional free Z-module. In the first case, we say
that the elliptic curve is without complex multiplication over K and if
this holds true for any extension of K, we say that the elliptic curve
E is without complex multiplication. We will be interested mostly in
this case.

Let E be an elliptic curve defined over K. Then E is isomorphic to
a curve defined by a Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

where the coefficients a1, a2, a3, a4, a6 are in K, and the distinguished
point is (0, 1, 0). Conversely, every non-singular cubic curve C given
by a Weierstrass equation is an elliptic curve defined over K with the
distinguished point (0, 1, 0). There is a quantity attached to every
Weiestrass equation called the discriminant, denoted as ∆, which serves
us to see if the curve is singular. If the discriminant is not zero, then
the Weierstrass equation defines an elliptic curve(i.e it is non-singular).
The discriminant of an elliptic curve is not an invariant of the curve,
since different Weierstrass equations can give rise to isomorphic elliptic
curves.

If our Weierstrass equation defines an elliptic curve, then we attach
to it another quantitiy, called the j-invariant. This is an invariant of
the curve. Moreover, two elliptic curves have the same j-invariant if
and only if they are isomorphic over an algebraic closure of K.

If char(K) 6= 2, 3, which is our case for number fields, we can write
the Weierstrass equation over the affine plane as

y2 = x3 + ax+ b,
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where a, b ∈ OK .
Then the discriminant is given by the formula ∆ = −16(4a3 + 27b2)

and the j-invariant is equal to 1728(4a3)/(4a3 + 27b2).

1.1.1. Reduction of elliptic curves. Let (K, v) be a local field, OK its
ring of integers and m its maximal ideal.

If E is an elliptic curve over K, it has a Weierstrass equation with
coefficients in OK . This equation is not unique, but we can take it
with minimal discriminant. By a minimal discriminant, we mean the
discriminant which has the smallest valuation among all possible dis-
criminants. Then we can look at the reduction of this elliptic curve
at the maximal ideal m, where we take the same Weierstrass equation
with coefficients in the field OK/m.

Now the question is whether this reduced formula gives us again
an elliptic curve. This may not be the case since the non-singularity
condition might not hold in this situation(i.e ∆ = 0 (mod m)). If we
get an elliptic curve, then the next question is the structure of the
group defined over the new reduced curve.

If the reduced curve is still an elliptic curve, we say that E has good
reduction at m. If this is not the case, we say that E has bad reduction
at m. The important fact is that an elliptic curve E has bad reduction
at m if and only if m divides the discriminant of E.

If a curve E has bad reduction, we have two cases to consider. Either
it has a cusp, and we have a cuspidal (or additive) reduction, or it has
a node, and we have a nodal (or multiplicative) reduction.

Now suppose that K = Qp. We say that E has bad reduction of
additive type if the reduced curve has a double point with exactly one
tangent. For p 6= 2, 3, we have the additive reduction when p|4a3 +27b2

and p| − 2ab. In this case, if we denote the non-singular points of the
reduced curve by E

ns
, we have E

ns
= Ga, where Ga is the additive

algebraic group.
We say that E has bad reduction of multiplicative type if the reduced

curve has a double point with two distinct tangents. For p 6= 2, 3, we
have the multiplicative reduction if and only if p|4a3 + 27b2 and p does
not divide −2ab. Here we have either E

ns
= Gm or E

ns
= Gm[−2ab],

where Gm is the multiplicative algebraic group and ab is the reduction
of ab modulo p.

Now suppose that E has good reduction. Then we have two cases:
(1) Good reduction of height 1(ordinary reduction):
This is the case where the j-invariant of the reduced curve E is not

zero. We have an exact sequence
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0→ Xp → Ep → Ep → 0

where Ep → Ep is the reduction morphism. Its kernel Xp is cyclic of
order p. The group G fixes Xp.

(2) Good reduction of height 2(supersingular reduction):
This is the case where the j-invariant of the reduced curve E is zero.

The curve E does not have any points of order p, and each element of
Ep is sent to the identity element of E.

1.1.2. Galois representations attached to elliptic curves.
Let E be an elliptic curve defined over a number field K. Take an

algebraic closure K of the field K inside the complex numbers C. Then
the Galois group of K/K acts on the group E[n] of n-torsion points of
the curve over the algebraic closure K. This gives us a representation
of Gal(K/K):

ϕn : Gal(K/K)→ Aut(E[n]) ' GL2(Z/nZ)

The group ϕn(G) is the Galois group of the extension of K obtained
by adding the coordinates of the points of E[n].

Let E∞ be the torsion part of E(K). The group Aut(E∞) is the pro-
jective limit of groups Aut(E[n]), which is a profinite group isomorphic
to

lim←−GL2(Z/nZ) = GL2(Ẑ)

where Ẑ = lim←−Z/nZ.
Now let l be a prime number and let El∞ be the union of Eln for

n ≥ 1. This is the l-primary part of E∞. Its automorphism group is
isomorphic to GL2(Zl) where Zl is the ring of l-adic integers.

We have

E∞ =
⊕
l∈P

El∞

and
Aut(E∞) =

∏
l prime

Aut(El∞) '
∏

l prime

GL2(Zl).

1.2. Class field theory. This theory plays a very important role in
understanding the abelian l-adic representations, which are themselves
important in understanding the representations attached to elliptic
curves. For more details and proofs, the reader may refer to [6].

Let K be a number field. If we have two absolute values | · |1 and
| · |2, they are said to be equivalent if there exists a fixed c > 0 in K
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such that |x|1 = |x|c2 for all x ∈ K. A place of K is an equivalence
class of absolute values over K. Let ΣK be the set of finite places of
K. There are two types of places: finite places that can be identified
with prime ideals of OK and infinite places that can be identified with
embedings of K into R and C. For every finite place v ∈ ΣK , we have
a completion Kv called the completion of K with respect to v. We
define its ring of integers Ov = {x ∈ Kv|v(x) ≥ 0} and its maximal
ideal mv = {x ∈ Kv|v(x) > 0} . Then the quotient kv := Ov/mv is
called the residue field, and it is a finite field with characteristic pv.

We also denote by Σ∞K the set of infinite places of K and ΣK the set
of all places of K. For v ∈ ΣK , the group of units of Kv is denoted by
Uv.

Definition 2. The idele group I of K is the subgroup of Πv∈ΣK
K∗v

consisting of families (av) with av ∈ Uv for almost all v.

The idele group is endowed with a topology such that the subgroup
(with respect to the product topology) Πv∈Σ∞K

K∗v × Πv∈ΣK
Uv will be

open.
Then K∗ is embedded into I by sending every element a ∈ K∗ onto

the idele (av), where av = a for all v. The topology induced on K∗

is the discrete topology. The quotient group CK = I/K∗ is called the
idele class group of K.

Definition 3. A modulus m of K is a function

m : ΣK → Z
such that
a)m(v) ≥ 0 for all places and m(v) = 0 for all but finitely many

v ∈ ΣK,
b)m(v) = 0 or 1 for real places v,
c)m(v) = 0 for complex places of v.

We will use the modulus to control ramification at certain primes.
We will be interested only in the ramification at finite places, hence we
can suppose that m(v) = 0 at infinite places.

Definition 4. The support of a modulus m is the set S = {v ∈
ΣK |m(v) > 0}.

If v ∈ ΣK and m is a modulus of support S, we let Uv,m denote :
- the connected component of unity of K∗v if v ∈ Σ∞K ,
- the subgroup of Uv consisting of those u ∈ Uv for which v(1− u) ≥

m(v) if v ∈ S,
- Uv if v ∈ ΣK − S.
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For v ∈ S, the condition v(1−u) ≥ m(v) is equivalent to πm(v)|(1−uv)
where π is a prime in Kv and uv is the image of u in Kv. If we let p
be the prime ideal of OK related to v, then our condition is equivalent
to saying u→ 1 ∈ (Ov/p

m(v))×. In other words, for v ∈ S, we can also
define Uv,m to be 1 + pm(v).

Then we define the group Um = ΠvUv,m which is an open subgroup of
I. Let us still denote by Um its image under the map I → CK := I/K∗.
Um is a finite index open subgroup of CK and we define Cm := CK/Um

the ray class group of modulus m.
We let E = O∗K be the units of K, Em = E ∩ Um.
Then we get an exact sequence

0→ K∗/Em → I/Um → Cm → 0.

Let K be an algebraic closure of K. We denote by Kab the maximal
abelian extension of K inside K. The main theorem of global class
theory is the following one:

Theorem 5. (Global Artin homomorphism) We have a global Artin
homomorphism

θ : CK → Gal(Kab/K)

which is surjective. Its kernel is the connected component DK of the
identity in CK.

This gives us an isomorphism

Θ : CK/DK
∼−→ Gal(Kab/K).

2. Inertia groups

Let K be a valued field, v a valuation on K corresponding to a finite
place and L a Galois extension of K. Let Sv be the set of equivalence
classes of extensions of v to L. We denote by G the Galois group of the
extension of L over K. Then G acts transitively on the set Sv. If we
think in terms of prime ideals of OK , then the valuation v corresponds
to a prime ideal p and the set Sv corresponds to the set of prime
ideals of OL appearing in the factorisation of p into prime ideals. Then
G acts on this set of prime ideals above p transitively. For a Galois
extension, the exponents of prime ideals appearing in the factorisation
of a prime ideal p ∈ OK over OL are all equal. We call this number the
ramification index of p over L.

Let w be an extension of v to L. Then the decomposition group of
w, denoted as Dw, is the subgroup of G consisting of all elements that
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fix the equivalence class [w] ∈ Sw(i.e Dw = {σ ∈ G|σ.[w] = [w]}). If we
interpret this in terms of prime ideals again, we see that for a prime
ideal p ofOK , and a prime ideal β ofOL containing p, the decomposition
group of β, denoted as Dβ/p, is the set {σ ∈ G|σ(β) = β}.

Now we denote by l the residue field OL/β and by k the residue field
OK/p. We suppose that l/k is separable. As any element σ ∈ D(β/p)
fixes β, it gives rise to an automorphism of the residue field l = OL/β.
Since σ is in the group Gal(L/K), it fixes OK . Hence σ induces an
automorphism of the residue field l fixing k. This gives us a group
homomorphism

Dβ/p → Gal(l/k)

and the kernel of this homomorphism is called the inertia group of β,
denoted by Iβ. We know that Gal(l/k) is a cyclic group since it is the
Galois group of a finite extension of a finite field. Hence, we obtain an
isomorphism

Dβ/p/Iβ ' Gal(l/k)

and any generator of this group is called a Frobenius element, denoted
by Fβ.

Let K be a local field. We say that an extension L of K is unramified
if [L : K] = [l : k], where l = OL/mL and k = OK/mK are residue fields
of OL and OK respectively. This condition means that the ramification
index of a uniformiser πK is 1.

In other cases, we say that the extension L/K is ramified. If the
ramification index is coprime to the characteristic of the residue field,
we say that the ramification is tame. Otherwise we say that the rami-
fication is wild.

For a finite Galois extension L′/K, we have a morphismGal(L′/K)→
Gal(l′/k) whose kernel is the inertia group I = Gal(Ks/Knr), where
Ks is a separable closure of K and Knr is the maximum non-ramified
extension of K inside Ks. We also denote by Kt the maximum tamely
ramified extension of K inside Ks. Then we have Ip = Gal(Ks/Kt) the
inertia p-group. It is the biggest pro-p group contained in I and we
define It = I/Ip = Gal(Kt/Knr) the tame inertia group of G.

We are interested in the tame inertia group because the action of Ip
on a vector space over o field of characteristic p is trivial, hence we can
take look at the action of It instead of the action of the inertia group.
This facilitates our work.
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Proposition 6. [1, Section 1.6, proposition 4]
Let V be a finite dimensional vector space over a field of characteristic
p. Let

ρ : G→ GL(V )

be a continuous linear representation of G. If ρ is semisimple, then we
have ρ(Ip) = 1.

2.1. The structure of the tame inertia group.
Let d be a positive integer copime to p. Note µd the group of d-th

roots of unity in Knr. Let x be a uniformiser of Knr, and let Kd =
Knr(x

1/d). The extension Kd/Knr is totally ramified, tamely ramified
and of degre d, its Galois group is isomorphic to µd. More precisely, if
s ∈ Gal(Kd/Knr), there exists a unique d-th root of unity ζd(s) such
that

s(x1/d) = ζd(s)x
1/d

and the map ζd : Gal(Kd/Knr)→ µd is an isomorphism.
The field Kt is the union of the fields Kd for (d, p) = 1. Hence

It = Gal(Kt/Knr) = lim←−Gal(Kd/Knr) ∼= lim←−µd.
Now let q be a power of p and Fq the finite field with q elements.

We have F∗q = µq−1 and the numbers of the form q − 1 are cofinite
in the set of integers copime to p. Therefore the projective system
(µd) is equivalent to the projective system µq−1. Hence we have an
isomorphism

θ : It → lim←−F∗q
where q runs through powers of p.

2.2. Characters of the tame inertia group. We will look at the
group X = Hom(It, ks∗) of continuous characters of It with values in
k∗s(the union of groups F ∗q ).

We already have our morphisms θd : It → Gal(Kd/Knr) ' µd which
belong to X. Let us denote by (Q/Z)′ the set of elements of Q/Z whose
order are coprime to p. Then every element α ∈ (Q/Z)′ can be written
as α = a/d with a, d ∈ Z and (d, p) = 1. We will note by χα the a-th
power of θd.

Proposition 7. The map α → χα is an isomorphism between the
groups (Q/Z)′ and X = Hom(It, k

∗
s).
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Therefore we get a parametrisation of the character group of It via
our morphisms θd. Now let n be an integer ≥ 1 and q = pn. We define
a “fundamental character of level n” to be any character obtained as
the composition of the character

θq−1 : It → µq−1 = F∗q
and an automorphism of the field Fq. Since all automorphisms of Fq
are of the form x → xp

i
for i = 0, 1..., n − 1, we have n fundamental

characters of level n:

θp
i

d for i = 0, 1, ..., n− 1.

More generally, if k′ is a field of characteristic p, a character of It
with values in (k′)∗ is called a fundamental character of level n if it is
obtained by composing θd with an embedding of the field Fq into k′.

2.3. Images of the tame inertia group. In this section, let K be
a complete field for a discrete valuation v of characteristic zero, k its
residue field, E an elliptic curve defined over K, E its reduction modulo
the maximal ideal, Ep the kernel of multiplication by p of E(K), and

Ep the kernel of multiplication by p of E(k). We denote by e = v(p)
the absolute ramification index of K.

Good reduction of height 1
Recall that this is the case where the j-invariant of the reduced

curve is not zero. Ep is of order p. The kernel Xp of the reduction map
Ep → Ep is cyclic of order p. The group G = Gal(K/K) fixes Xp. For
a basis (e1, e2) of Ep such that Xp = Fpe1, the image of G in Aut(Ep)
is contained in a Borel subgroup

( ∗ ∗
0 ∗
)
.The image of Ip is contained

in the unipotent subgroup
(

1 ∗
0 1

)
. Therefore, the group It acts on the

group Xp via a character χx and acts on the group Ep via a character
χy with values in F∗p.

Proposition 8. We have χx = θep−1 and χy = 1.

Corollary 1. Suppose that e = 1. Then:
a) The two characters χx and χy are the trivial character and the

fundamental character θp−1.
b) If Ip acts trivially on Ep, image of I in GL(Ep) is a cyclic group

of order p− 1, represented by matrices of the form
(
∗ 0
0 1

)
.

c)If Ip does not act trivially on Ep, then image of I in GL(Ep) is of
order p(p− 1), represented by matrices of the form

( ∗ ∗
0 1

)
.

Proof. The assertion a) follows directly from the previous proposition.
It implies that χx : It → F∗p is surjective, and the image of I is a
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multiple of p− 1. Since the image is contained in a subgroup of
( ∗ ∗

0 1

)
,

its order is either p− 1 or p(p− 1). �

Good reduction of height 2
Recall that this is the case where the j-invariant of the reduced curve

is zero. The curve E has no points of order p, hence the cardinality of
Xp is p2.

Proposition 9. Suppose that e = 1. Then:
a) The action of Ip on Ep is trivial.
b) On Ep, there exists a structure of Fp2-vector space of dimension 1

such that the action of It is given by a fundemantal character of level
2 θp2−1.

c) The image of I in GL(Ep) is a cyclic group C of order p2 − 1
d) The image of G in GL(Ep) is equal to C or to its normaliser N .

Bad reduction of multiplicative type
Recall that this is the case where the reduced curve has one singular

point with two distinct tangents.

Proposition 10. The image of I in Aut(Ep) is contained in a subgroup
of type

( ∗ ∗
0 1

)
. The two characters that appear in this representaion are

the trivial character and the character θep−1.

Corollary 2. Suppose that e = 1. Then:
a) The two characters that gives the action of It on the semi-simplification

of Ep are the trivial character and θp−1

b) If Ip acts trivially on Ep, image of I in GL(Ep) is a cyclic group
of order p− 1, represented by matrices of the type

(
∗ 0
0 1

)
.

c)If Ip does not act trivially on Ep, then image of I in GL(Ep) is of
order p(p− 1), represented by matrices of the type

( ∗ ∗
0 1

)
.

3. Subgroups of GL2(Fp)

As we mentioned above, for an elliptic curve E, the kernel of multpil-
ication by p, denoted E[p] is a dimension 2 vector space over the finite
field Fp. Therefore, in order to study the image of the absolute Galois
group in Aut(E[p]) = GL2(Fp), it is a good idea to study the subgroups
of GL2(Fp) which is a finite group. Also, since E[p] is a 2 dimensional
vector space, we can approach the situation from a geometric point of
view.

3.1. Cartan subgroups.
Let V = E[p] be a vector space. Let D1 and D2 be two distinct

lines of V. We have V = D1

⊕
D2. Let C be the subgroup of GL(V )
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consisting of elements s stabilising D1 and D2. If we choose a suitable
basis, then the group C can be represented by matrices as

(
∗ 0
0 ∗
)
. This

is the split Cartan subgroup defined by {D1, D2}. The group C is
abelian of type (p− 1, p− 1).

Now let C1 be the subgroup of C acting trivially on D1. This is a
cyclic group of order p− 1, and can be represented by matrices of the
type

(
1 0
0 ∗
)
. This subgroup is called the split half Cartan subgroup.

Now, if we have C ′ a split half Cartan subgroup, we let C = C ′×F∗p
be the group generated by C ′ and by homotheties. This group C is the
unique split Cartan subgroup containing C ′. The image of C in the
projective group PGL(V ) = GL(V )/F∗p is the same as the image of C ′,
which is cyclic of order p− 1.

Now let k be a sub-algebra of End(V ), which is a field with p2

elements. The subgroup k∗ of GL(V ) is cyclic of order p2 − 1. Its
image in the projective group PGL(V ) = GL(V )/F∗p is cyclic of order
p+1. Such a subgroup of GL(V ) is called a non-split Cartan subgroup.

The intersection of Cartan subgroups is F∗p. Their union is the set
of elements of GL(V ) with order coprime to p. Let s ∈ GL(V ). Then
the caracteristic polynomial of s is fs(X) = X2−Tr(s)X+det(s), and
its discriminant is ∆s = Tr(s)2 − 4det(s). If p 6= 2 and ∆s 6= 0, then
s belongs to a unique Cartan subgroup. This subgroup is split if and
only if ∆s is a square in Fp

3.2. Normaliser of Cartan subgroups.
Let C be a Cartan subgroup of GL(V ) and N its normaliser. Let

k = Fp[C] be the subalgebra of End(V ) generated by C. This is a
commutative algebra. If s ∈ N , then the map x → sxs−1 is an auto-
morphism of k. If this automorphism is identity, then s commutes to
k, so belongs to k, which implies that it belongs to C. We conclude
that (N : C) = 2.

Proposition 11. [1, Section 2.2, Proposition 14] Let C be a Cartan
subgroup of GL(V ) and let N be its normaliser. Let C ′ be another
Cartan subgroup of GL(V ) inside N. Suppose that p ≥ 5 if C ′ is split,
and p ≥ 3 if not. Then we have C = C ′.

3.3. Borel subgroups.
Let D be a line of V . The Borel subgroup B is the group consisting

of elements s such that sD = D which is of order p(p− 1)2. It can be
represented by matrices as

( ∗ ∗
0 ∗
)
. The line D is the only line fixed by

B. If a Cartan subgroup is contained in B, then this subgroup should
be a split Cartan subgroup where D is one of the two lines associated
to that split Cartan subgroup.
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3.4. Subgroups of GL2(Fp) containing a Cartan subgroup.

Proposition 12. [1, Section 2.7, Proposition 17] Let G be a subgroup
of GL(V ) containing Cartan subgroup C. We suppose that p 6= 5 if C
is split. Then one of the following is true:

either G = GL(V ),
or G is contained in a Borel subgroup,
or G is contained in the normaliser of a Cartan subgroup.

4. l-adic representations

For all details in this section, the reader should refer to [2].
Let K be a number field, and K be an algebraic closure of K. Let

G = Gal(K/K) be the Galois group of the extension Ks/K. It is
endowed with the Krull topology. Let l be a prime number and V be
a finite dimensional vector space over the field Ql of l-adic numbers.
The topology of Aut(V ) is the one induced by the natural topology of
End(V ).

Definition 13. An l-adic representation of G(or of K) is a continuous
homomorphism ρ : G→ Aut(V ).

Definition 14. Let ρ : Gal(K/K) → Aut(V ) be an l-adic represen-
tation of K and let v ∈ ΣK. We say that ρ is unramified at v if
ρ(Iw) = {1} for any valuation w of K extending v.

If v ∈ ΣK is unramified with respect to ρ, since we have ρ(Iw) = {1}
for any extension w of v, the restriction of ρ to Dw ⊂ G factors through
Dw/Iw. Dw/Iw is a finite cyclic group generated by the Frobenius
element Fw. Therefore ρ(Fw) ∈ Aut(V ) is defined and we denote it by
Fw,ρ. The conjugacy class of Fw,ρ in Aut(V ) depends only on v, and
we denote it by Fv,ρ.

Now we let v be an unramified place with respect to ρ and let Pv,ρ(T )
denote the polynomial det(1− Fv,ρT ).

Definition 15. An l-adic representation ρ of K is said to be rational
if there exists a finite subset S of ΣK such that

(a) Any element of ΣK − S is unramified with respect to ρ
(b) If v 6∈ S, the coefficients of Pv,ρ(T ) belong to Q.

Definition 16. Let l, l′ be primes, ρ be an l-adic representation of K,ρ′

be an l′-adic representation of K and assume that ρ, ρ′ are rational.
Then ρ and ρ′ are said to be compatible if there exists a finite subset
S of ΣK such that ρ and ρ′ are unramified outside of S and Pv,ρ(T ) =
Pv,ρ′(T ) for any v ∈ ΣK − S.
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Definition 17. For each prime l, let ρl be a rational l-adic repre-
sentation of K. The system (ρl) is said to be compatible if ρl, ρl′ are
compatible for any two primes l, l′.

The system (ρl) is said to be strictly compatible if there exists a finite
subset S of ΣK satisfying:

a) Let Sl = {v|pv = l}. Then, for every v 6∈ S ∪ Sl, ρl is unramified
at v and Pv,ρl(T ) has rational coefficients.

b) Pv,ρl(T ) = Pv,ρl′ (T ) if v 6∈ S ∪ Sl ∪ Sl′.

If ρ : Gal(K/K)→ Aut(V ) is a rational l-adic representation of K,
then V has a composition series

V = V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vq = 0

of ρ-invariant subspaces with Vi/Vi+1 simple(irreducible) for 0 ≤ i ≤
q − 1. Then the representation ρ′ of K defined by V ′ = Σq−1

i=0Vi/Vi+1

is semi-simple, rational and compatible with ρ. It is called “the semi-
simplification of V ”.

5. The algebraic group Sm

Lets start by recalling the definition of an algebraic group, and giving
some well-known examples. Let K be a field.

Definition 18. An algebraic group A over K is an algebraic variety
over K which has a group structure defined on it where the group op-
eration is a morphism of algebraic varieties A× A→ A.

Elliptic curves are examples of algebraic groups. First of all, they are
algebraic varieties. Furthermore we can define a commutative group
law on them by taking the point at infinity (0 : 1 : 0) as the identity
element. The idea is that if three points on the curve are aligned, they
sum up to the identity element.

Returning to algebraic groups, we have the so called “multiplicative
(algebraic) group”, denoted by Gm , which is the same as GL1(K) or
K∗, the invertible elements of the field K. They form an open subset
of K or P1(K), defined by xy = 1. It is also called “the algebraic torus
of dimension 1”.

Another example is the additive group denoted by Ga, which is
formed by seeing the field K as a set, and forming an additive group
with it’s usual addition operation.

Now let G be a finite group. We will try to endow it with an algebraic
group structure. Taking as many points from a field K as the order
of G, we can see it as an algebraic variety over K. The group law on
this variety is defined by the group law on G. Therefore we obatined
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an algebraic group. This is called the constant algebraic group related
to G. Over any field with characteristic zero K, we have G(K) = G,
hence the word constant.

5.1. Weil Restriction.
In this section, we will see a way of obtaining an algebraic variety

defined over Q from an algebraic variety defined over K, where K is
a number field. In doing so, we will obtain an algebraic variety over
Q whose Q-rational points are the K-rational points of the original
variety defined over K. The motivation behind this construction is
that, while studying algebraic varieties over number fields for example,
we can obtain new algebraic varieties defined over Q for each one of
them, which makes our study easier since then all our varieties are
defined over the same field.

This construction is called “Weil restriction”, where we restrict the
scalars from K to Q.

Definition 19. Let K be a number field and let X be an algebraic
variety defined over K. Weil restriction is a functor from Q−schemesop

to sets defined by

ResK/QX(A) = X(A
⊗
Q

K).

If our variety X is affine of projective, Weil restriction gives us a
variety over Q. Now we take X = Gm(K) as our algebraic variety and
put T = ResK/Q(Gm(K)). This is an algebraic group over Q obtained
from the multiplicative group Gm(K) by restriction of the scalars from
K to Q.

If we have [K : Q] = d, then the group T is a torus of dimension
d, meaning that if we extend the scalars of T from Q to Q by setting
TQ = T

⊗
Q Q, then TQ is isomorphic to Gm × ...×Gm (d times) over

Q.

5.2. Extension of groups.
Here we will see a homological construction. We will be working

only with commutative groups and commutative algebraic groups.We
will start with a short exact sequence of groups, and a morphism from
one of these groups to an algebraic group. Using the exact sequence of
groups, we will obtain an exact sequence of algebraic groups. Then we
will apply this construction to the exact sequence

1→ K∗/Em → Im → Cm → 1,
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which is coming from idele class theory.
Here is the explicit construction of the algebraic group B. Let

0→ Y1 → Y2 → Y3 → 0

be an exact sequence of groups with Y3 finite.
Let A be an algebraic group over Q and let

ε : Y1 → A(Q)

be a homomorphism of Y1 into the Q-rational points of A. Now we
want to construct an algebraic group B with a morphism of algebraic
groups A→ B and a morphsim of Y2 into B(Q) such that

a) the diagram

Y1 −−−→ Y2y y
A(Q) −−−→ B(Q)

is commutative,
b) B is universal with respect to a).
Here by the universality of B, we mean that for any algebraic group

B′ over Q and morphisms A → B′, Y2 → B′(Q) such that a) is true,
there exists a unique algebraic group homomorphism f : B → B′ such
that the given maps A → B′ and Y2 → B(Q) can be obtained by
composing those of B with f .

At the end, we obtain an exact sequence

0→ A(Q)→ B(Q)→ Y3 → 0

where we see Y3 as a constant algebraic group and obtain a commmu-
tative diagram

0 −−−→ Y1 −−−→ Y2 −−−→ Y3 −−−→ 0y y y
0 −−−→ A(Q) −−−→ B(Q) −−−→ Y3 −−−→ 0.

We call the algebraic group B an extension of the constant algebraic
group Y3 by A.

Let y be a representative of y ∈ Y3 in Y2. For y, y′ ∈ Y3, we get

y + y′ = y + y′ + c(y, y′)

where c(y, y′) is an element of Y1.
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Now let B be the disjoint union of copies Ay of A indexed by y ∈
Y3.We define a group law on B by using the maps

πy,y′ : Ay × Ay′ → Ay+y′

(a, a′)→ a+ a′ + εc(y, y′)

Then we define the maps A→ B and Y2 → B(Q) as follows:
For the map A → B, we have a natural injection of A into B via

A → A0. We define our map as the composition of this injection and
translation by −c(0, 0),

For the map Y2 → B(Q), we map an element y + z, y ∈ Y3, z ∈ Y1

onto the image of z in Ay.

5.3. Obtaining Sm.
Now we apply our construction to the sequence

1→ K∗/Em → Im → Cm → 1

as promised, where we take our algebraic group A = Tm := T/Em. Here
Em = E

⋂
Um as before, and Em is the Zariski closure of Em in T .

This allows us to construct an algebraic group that we will denote by
Sm, which satisfies the properties defined in the above section, that is
we have an algebraic group morphism Tm → Sm and a group morphism
Im → Sm(Q).

This gives us an exact sequence of algebraic groups

1→ Tm → Sm → Cm → 1

and a commutative diagram

1 −−−→ K∗/Em −−−→ I/Um −−−→ Cm −−−→ 1y y y
1 −−−→ Tm(Q) −−−→ Sm(Q) −−−→ Cm −−−→ 1.

Then we say that the group Sm is an extension of the finite group
Cm (considered as the constant algebraic group) by Tm.

5.4. What were we doing exactly?
Throughout this section, we tried to obtain an algebraic group Sm

which is related to the idele group via a commutative diagram. The
reason we wanted to obtain such an algebraic group is, it gives rise to
abelian l-adic representations which are isomorphic to representations
coming from elliptic curves. This in turn implies that the elliptic curve
has complex multiplication.



19

We want to obtain representations of Gal(Kab/K) over Q∗l . To do
so, we will first obtain a morphism Gal(Kab/K)→ Sm(Ql) and then a

morphism from Sm(Ql) to Q∗l .
We have a morphism ε′ : Im → Sm(Q) by the diagram above. We

will also denote ε : I → Im → Sm(Q). Let m be a modulus and let l be
a prime number. We have another morphism π : T → Tm → Sm and
by taking values in Ql, we get a morphism

πl : T (Ql)→ Sm(Ql).

We know that T (Ql) is the invertible elements of K
⊗

Q Ql, and
K
⊗

Q Ql = Πv|lKv. Therefore T (Ql) is a direct factor of the idele
group I. If we denote by prl the projection from the idele group I to
this direct factor, then we get:

αl = πl ◦ prl : I → T (Ql)→ Sm(Ql)

which is a continuous morphism.
This means that we have two maps ε : I → Sm(Q) and αl : I →

Sm(Ql).
Now we let εl : I → Sm(Ql) be defined by

εl(a) = ε(a)αl(a
−1),

that is εl = ε.α−1
l .

Since εl is trivial on K∗, it defines a map from CK = I/K∗ to Sm(Ql).
Since Sm(Ql) is totally disconnected, the map CK = I/K∗ → Sm(Ql)
factorises through the connected component Dk of CK , and CK/DK

can be identified with Gal(Kab/K).
At the end, we obtain a moprhism

εl : Gal(Kab/K)→ Sm(Ql).

Now it remains to see the other half of our desired map, from Sm(Ql)

to Q∗l . The map we are looking for looks like a character of Sm, and
indeed we will see that it is.

If G is an algebraic group over Q, the character group of G denoted
by X(G) = Hom(Gm,Q

∗
) is the group of Q-homomorphisms of G(Q)

to the multiplicatif group Gm(Q). This applies to the algebraic groups
T, Tm and Sm.

The exact sequence 0→ Tm → Sm → Cm → 0 gives us another exact
sequence:

0→ X(Cm)→ X(Sm)→ X(Tm)→ 0.

In particular, each character φ of Tm can be extended to a character
(φ, f) of Sm, and the cardinality of different extensions is equal to the
cardinality of Cm.
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Let ψ = (φ, f) be a character of Sm. It gives us a morphism from

Sm(Ql) to Q∗l .
Finally, by gluing this morphism with εl, we obtain a continious

homomorphism ψl : Gal(Kab/K)→ Q∗l .

6. The proof(briefly)

Here is the statement of the theorem accompanied by the results
used in its proof.

Theorem 20. Let E be an elliptic curve defined over K without com-
plex multiplication over K. Then for almost all prime number l, the
morphism ϕl : Gal(K/K)→ Aut(El) is surjective.

First of all, Serre remarks that we can suppose E to be semistable
over a finite extension of our field K, which is still a number field[4,
Proposition 5.4, p.181]. We will suppose from now on that E is semistable.

Then we suppose the existence of an infinite subset L of prime num-
bers such that for all l ∈ L the representations ϕl are not surjective. In
order to the use the results states in previous sections, we also suppose
that every element of L is ≥ 7 and is not ramified at K. We can make
this assumption since by doing so, we are just removing a finite number
of primes from the set L. Now it remains to prove that E has com-
plex multiplication. The idea is to show that these representations are
abelian, which will imply that E has complex multiplication according
to a result in Serre’s book “Abelian l-adic representations”[2].

Here are the steps of the proof:
1) We use our information about the inertia subgroups of G and

subgroups of GL(V ) to show that we have 2 cases to consider:
(i) ϕl(G) is contained in a Borel subgroup or in a Cartan subgroup;
(ii)ϕl(G) is contained in the normaliser Nl of a Cartan subgroup Cl,

and not contained in Cl.
2) We show that the second case cannot occur with the help of some

lemmas
3) Assuming the first case, we show that our representations are

isomorphic to a system of representations arising from the algebraic
group Sm, hence they are abelian.

Step 1:
Take l ∈ L , let v be a place of K dividing l and take a place w of

K extending v. Let Iw be the inertia subgroup of G related to w. The
local study of inertia subgroups applied to Kv gives us the structure of
ϕl(Iw).

If at v, E has good reduction of height 1 or bad reduction of mul-
tiplicative type, the order of ϕl(Iw) is either l − 1 or l(l − 1). It can
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be represented by matrices of the type
(
∗ 0
0 1

)
or
( ∗ ∗

0 1

)
with respect to

some well-chosen basis.
If at v, E has good reduction of height 2, ϕl(Iw) is cyclic of order

l2 − 1.
In the first case, ϕl(G) contains a split half Cartan subgroup and in

the second case, it contains a non-split Cartan subgroup. Also, by the
hypothesis, we know that ϕl(G) 6= Aut(El). Therefore, proposition(?)
leaves us with two possibilities:

(i) ϕl(G) is contained in a Borel subgroup or in a Cartan subgroup;
(ii) ϕl(G) is contained in the normaliser Nl of a Cartan subgroup Cl,

and not contained in Cl.
Step 2:
Suppose that we are in the case (ii), that is we assume l ∈ L satisfies

ϕl(G) ⊂ Nl and ϕl(G) ( Cl. If we identify Nl/Cl with the group ±1,
we get a map

G→ Nl → Nl/Cl ' ±1

which can be seen as a character of G of order 2. It corresponds to a
quadratic extension Kl of K.

Lemma 21. [1, Section 4.2, Lemma 2] The extension Kl/K is unram-
ified.

Now suppose the existence of an infinite family L′ ⊂ L such that
every l ∈ L′ is of type (ii). We know that there exists a finite number
of quadratic non-ramified extensions of K. Therefore, there exists an
extension K ′ of K which is equal to Kl for an infinity of primes l ∈ L′.

Lemma 22. [1, Section 4.2, Lemma 3] If v ∈ Σ is inert in K ′ and E
has good reduction at v, then we have Tr(Fv) = 0 and the curve Ev is
of height 2.

Here by Fw we denote the Frobenius endomorphism of Ev into the
field kv.

Let Σ′ be the set of places v which satisfy the hypotheses of the
above lemma. Then the density theorem of Cebotarev says that the
density of Σ′ is 1/2 in Σ. On the other hand, if E is without complex
multiplication, the set of places for which Ev is of height 2 is of density
0. We get a contradiction, hence if we are in the case (ii), E has
complex multiplication.

Now it remains to deal with the case (i) and to prove that in that
case, E has again complex multiplication.

Step 3: Suppose we are in case (i). We let

ϕl : G→ GL2(Fl)
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be a representation of G obtained from the semi-simplification of ϕl.
Since ϕl(G) is contained in a Borel subgroup or a Cartan subgroup, we
have a composition series E[l] = V ⊃ D ⊃ 0 of ϕl invariant subspaces,
where D is a line fixed by the action of the Borel or Cartan subgroup.
We know that this semi-simplified representation is abelian since Borel
and Cartan subgroups fix at least one line, which implies that the
matrix representation of ϕl is diagonal over an algebraic closure.

Over an algebraic closure kl of Fl, the representation ϕl is diagonal-
isable and is given by two characters

θ
(i)
l : Gal(Kab/K)→ k∗l ,

i = 1, 2; and again by the class field theory, we can identify the char-
acters θil to homomorphisms of I, the idele group of K, to k∗l .

Lemma 23. [1, Section 4.2,Lemma 4] Let m be the modulus of K
of support S = ∅. There exists a family of integers n(σ, l, i) (i ∈
{1, 2}, σ ∈ Γ, where Γ is the set of embeddings of K into Q), equal
to 0 or 1 such that

θ
(i)
l (a) = Πσ∈Γσl(a

−1
l )n(σ,l,i)

(mod pl) for all i ∈ {1, 2} and a ∈ Um.

Once the lemma is proved, we have a situation similar to the one
in the following proposition, which is very useful at proving that some
representations are abelian:

Proposition 24. [1, Section 3.6, Theorem 1] Let (ρl) be a system of
l-adic semi-simple representations of K with the following properties:

(i) If v ∈ Σ− Sρ and if l 6= pv , the representation ρl is not ramified
at v,

(ii) For all v ∈ Σ − Sρ, there exists a polynomial Pv(t) with coeffi-
cients in Q such that Pv(t) = Pv,ρl = det(1− tFw,ρ) for all l 6= pv

Suppose that there exists a positive integer N and an infinite family
L of prime numbers satisfying:

(∗) For all l ∈ L, the reduction ρ̃l of ρl(mod l) is abelian, and if θ
(i)
l :

I → k∗l is a caracter appearing in ρ̃l, there exists integers n(σ, l, i)σ∈Σ

smaller than N in absolute value, such that

θ
(i)
l (a) = Πσ∈Σσl(a

−1
l )n(σ,l,i) (mod pl) for all a ∈ Um

Then, the system (ρl) is isomorphic to the system (Φl) associated to a
representation Φ0 : Sn → GLd defined over Q.

In particular, ρl is abelian.

In fact, the situation in lemma 23 is a particular case of proposition
24. We already have the information that the ϕl is rational, semi-simple
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and forms a strictly compatible system. Then it is enough to take N =
1 in the proposition 24, and this implies that the representations ϕl
is isomoprhic to a system of representations arising from the algebraic
group Sm, and in particular that they are abelian.

Now the result of Serre from his previous paper “Abelian l-adic rep-
resentations and Elliptic Curves”[2] is the following one:

Proposition 25. [2, p. IV-11] Let ϕl be an l-adic representation of
G. If the elliptic curve E has no complex multiplication, then ϕl(G) is
open in Aut(Tl), where Tl = lim←−E[ln].

Therefore, in order to complete the proof, we have to show that the
image of ϕl is not open in Aut(Tl), which is a direct passage in Serre’s
paper. We know that Aut(Tl) ' GL2(Zl) is a profinite group and the
image of ϕl is abelian. The open subgruops of Aut(Tl) are of finite
index and abelian subgroups of Aut(Tl) cannot be of finite index.

6.1. Serre’s uniformity problem.
The theorem above proves the existence of a natural number n(E,K)

depending on the elliptic curve E and the number field K such that for
all prime numbers l ≥ n(E,K), the representation ϕl is surjective (i.e
ϕl(G) = Aut(El)). Then Serre poses the question whether is it possible
to find such an integer which only depends on K, and does not depend
on the elliptic curve E. This is called the “Serre’s uniformity problem”.
Mazur showed that for K = Q, we can take n(K) = 168. For the other
number fields, some upper bounds are obtained in some special cases,
but we do not have a general solution.

6.2. The case of complex multiplication. In his paper, Serre re-
minds the readers the previous results describing the well known case
where the elliptic curve E has complex multiplication.

Let E be an elliptic curve with complex multiplication defined over
a number field K and let R = EndK(E). Recall that E has complex
multiplication means that R 6= Z. In this case, R is an order in an
imaginary quadratic field F = Q

⊗
R.

Let l ∈ P , define Rl = Zl
⊗

R and define Fl = Ql

⊗
F . The Tate

module Tl is a free Rl-module of rank 1 and Vl is a Fl vector space of
dimension 1. The image of G = Gal(K/K) under

ρl : G→ GL(Tl)

commutes to elements of Rl, hence they are contained in R∗l . The
important fact is that this image is abelian. Being abelian implies that
the representations are never surjective, which will not be the case for
the curves with no complex multiplication.
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We can identify this representation to a homomorphism

ρl : I → R∗l
where I is the idele group of K.

Theorem 26. There exists exactly one continuous homomorphism ε :
I → F ∗ such that ε(x) = NK/F (x) if x ∈ K∗, and that ρl(a) =
ε(a)NKl/Fl

(a−1) for all l ∈ P and all a ∈ I.

Corollary 3. The image of G under ρ is an open subgroup of the
product Πl∈PR

∗
l .

We can also show that to every homomorphism ε : I → F ∗ verifying
the conditions of the above theorem corresponds an elliptic curve E
defined over K such that EndK(E) is an order of F . Moreover, E is
unique up to K-isogeny.

7. Serre’s calculations

In his paper, Serre makes some calculations for elliptic curves defined
over Q. He has two cases to consider, one where the elliptic curve is
semi-stable, meaning that if it has a bad reduction at any prime, it is of
multiplicative type, and the other is where the curve is not semi-stable,
meaning that the curve has a bad reduction of additive type.

We will denote by SE the set of primes where E has bad reduction.
If p 6∈ SE, there exists a Frobenius endomorphism of the reduced curve
at p and we denote by tp its trace. We have

tp = 1 + p− Ap
where Ap is the number of points of the reduced curve over Fp.

The semi-stable case
The first case is the easiest one, and for a semi-stable elliptic curve,

Serre obtains good upper bounds for the size of the primes for which
the representations ϕl are not surjective. His most useful result is the
following one:

Proposition 27. [1, Section 5.4, Corollary 1] Let p be the smallest
prime number where the semi-stable elliptic curve E has good reduction.

Then we have ϕl(G) = Aut(El) for all l > (p1/2 + 1)
2
.

Here is another proposition which is very useful in deciding whether
for a given curve E over Q, a representation is surjective or not.

Proposition 28. [1, Section 5.4, Proposition 21] Let E be a semi-stable
elliptic curve defined over Q and let l be a prime number. Suppose that

a)ϕl(G) 6= Aut(El)
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b) l 6= 2, 3, or l does not divide one of vp(j) for p ∈ SE.
Then:
i) ϕl(G) is contained in a Borel subgroup of Aut(El);
ii) We have tp = 1 + p (mod l) for all p ∈ P − SE.

Once we have a semi-stable elliptic curve E over Q, we first check
if the condition b) is satisfied, and then it is enough to calculate tp in
(mod l) to see if we get a contradiction. If the equivalence (mod l) is
not satisfied, then it means that our representation ϕl is surjective.

Example 1. Let E be the semi-stable curve y2 + y = x3 − x2 defined
over Q.

We have ∆E = −11 and j = −212/11, which gives us v11(j) = −1,
so the condition b) is satisfied for all l.

This curve has a bad reduction at 11, but it is of multiplicative type.
So it is stable.

Let us check if 1 + p− tp = Ap is divisible by l for p 6∈ SE, that is for
p 6= 11.

We have A2 = 5. Therefore for all l 6= 5, we have that ϕl(G) =
Aut(El). Now it remains to study the case l = 5.

Notice that in the above example there is very little calculation to
make in order to see which representations are surjective. In fact, it
suffices to calculate the number of points of the reduced curve at only
one prime that we choose to be as small as possible. This information
is enough to eliminate almost all cases. Here is another example:

Example 2. Let E be the curve defined by the equation y2 + xy + y =
x3 − x over Q.

Here we have ∆E = −227 and j = −56/227.
The only primes where E has bad reduction are 2 and 7, and at these

primes, the reduction is of multiplicative type.
So our curve is semi-stable. The smallest prime where E has good

reduction is 3. We have A3 = 6, so for all l 6= 2, 3, we have ϕl(G) =
Aut(El). The only cases left to study are where l = 2 and l = 3.

In the above cases, we just calculated A2 and A3, which are very
small numbers. Here is another example where our curve has good
reduction at 2 and 3. Moreover, we have that A2 and A3 are coprime,
which shows us directly that for all prime l, ϕl is surjective.

Example 3. Let E be the curve defined by the equation y2 +y = x3−x2

over Q.
We have ∆E = −43 and j = −212/43
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We also have A2 = 5. Now only the case where l = 5 remains, but
this is easy to study since A3 = 7 implies that in the case where l = 5,
the representation ϕl is surjective.

The non semi-stable case
For the non semi-stable curves, the study is more difficult. If a non-

stable elliptic curve E has additive reduction at a prime p, the action
of the inertia group Iq for a prime above q on E[p] is defined by a finite
quotient of Iq, denoted Φq[7]. The definition of Φq depends whether
the j-invariant j is an integer at p or not.

If the j-invariant of the curve is an integer, we have 3 cases (see [1,
p.312]):
a1) p 6= 2, 3. Then the group Φp is cyclic of order 2, 3, 4, or 6. More

precisely:
|Φp| = 2 ⇔ vp(∆) ≡ 6 (mod 12)
|Φp| = 3 ⇔ vp(∆) ≡ 4 or 8 (mod 12)
|Φp| = 4 ⇔ vp(∆) ≡ 3 or 9 (mod 12)
|Φp| = 6 ⇔ vp(∆) ≡ 2 or 10 (mod 12)
a2) p = 3. Then the group Φp is either cyclic of order 2, 3, 4, 6, or

is non-abelian semi-direct product of a cyclic group of order 4 by a
normal subgroup of order 3.
a3) p = 2. Then the group Φp is isomorphic to a subgroup of SL2(F3).

Its order is 2, 3, 4, 6, 8 or 24.
If the j-invariant of the curve is not an integer at p, we have Φp '
{±1}(see [1, p.312]).

Proposition 29. [1, Section 5.6, Proposition 24] Suppose that j is not
an integer. Let p0 be a prime such that vp0(j) < 0 and let p the smallest
prime at which E has good reduction. If l 6∈ SE, l does not divide vp0(j)
and l > (p1/2 + 1)8, we have ϕl(G) = Aut(El).

Here is another proposition that Serre uses in his calculations. This
is a criterion for a subgroup G of GL(V ) to be equal to GL(V ), where
V is a 2-dimensional vector space over Fp.

Proposition 30. [1, Section 2.8, Proposition 19] Let G be a subgroup
of GL(V ). Suppose that p ≥ 5 and make the following assumptions:

(i) G contains an element s such that Tr(s)2 − 4det(s) is a square
6= 0 in Fp and Tr(s) 6= 0.

(ii) G contains an element s′ such that Tr(s′)2 − 4det(s′) is not a
square in Fp and Tr(s′) 6= 0.

(iii) G contains an element s′′ such that u = Tr(s′′)2/det(s′′) is
different from 0, 1, 2 and 4 and u2 − 3u+ u 6= 0.
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Then G contains SL(V ) = Ker(det : G → F∗p). In particular, if
det : G→ F∗p is surjective, then we have G = GL(V ).

The hypothesis in this proposition may look strange at first glance,
but do not forget that Tr(s)2− 4det(s) is the discriminant of the char-
acteristic polynomial of the element s ∈ GL(V ). If this discriminant
is not zero, then s belongs to a unique Cartan subgroup, and this sub-
group is split if and only if the discriminant is a square in Fp.

8. Reducible representations

A weaker version of Serre’s surjectivity question is to determine for
which primes l, the representations ϕl are reducible. Remark that if
for a prime number l the representation ϕl is reducible, then there is a
subspace of E[l] fixed by the action ofG, therefore ϕl(G) cannot contain
all the elements of Aut(E[l]), which implies that the representation ϕl
is not surjective. However, since not all non-surjective representations
should leave a subspace fixed, the solution of this particular case does
not provides us the general solution.

We will study a paper of Nicolas Billerey called “Critères d’irreductibilité
pour les repriésentations des courbes elliptiques”[3]. He denotesRed(E/K)
the set of such primes for an elliptic curve E defined over a number
field K. He proves that this set is finite if and only if the elliptic curve
E has no complex multiplication, and gives an algorithm to determine
the members of the set Red(E/K). To do so, he defines a structure of
a monoid over the unitary polynomials with non-zero constant terms,
defines some unitary polynomials Pq for some prime ideal q above l
with the help of this monoid law, and obtains another polynomail Bl

with the monoid law using the polynomials Pq. He proves that the ele-
ments of Red(E/K) divide certain values of these polynomial functions
Bl for every prime l.

9. Monoid Structure

Let A be an integral ring with the field of fractions L, and let L be an
algebraic closure of L. We denote by MA the subset of A[X] consisting
of unitary polynomials with constant terms 6= 0.

Lemma 31. [3, Lemma 2.1] The map

MA ×MA → A[X]

(P,Q)→ (P ∗Q)(X) = ResZ(P (Z), Q(X/Z)Zdeg(Q))
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has its image in MA. It defines a commutative monoid law on MA with
identity element Ψ1(X) = X − 1. Moreover, if P,Q ∈ MA are written
as

P (X) = Πn
i=1(X − αi)

and
Q(X) = Πm

j=1(X − βi)
over L[X], then we have

(P ∗Q)(X) = Π1≥j≥m
1≥i≥n (X − αiβj).

In other words, over the algebraic closure, this monoid law gives us a
new polynomial (P ∗Q)(X) whose roots are the product of the roots of
P (X) and Q(X). Since the constant term of a polnomial is the product
of it’s roots up to sign, it becomes clear that the constant term of the
new polynomial is not zero, hence the image of the map is in MA.

Lemma 32. [3, Lemma 2.2] Let r be an integer ≥ 1 and P ∈ MA.
There exists a unique polynomial P (r) ∈MA such that

P (r)(Xr) = (P ∗Ψr)(X)

where Ψr(X) = Xr− 1. The map P → P (r) is a morphism of monoids
for the ∗ law. Moreover, if P ∈ MA factorizes over L as P (X) =
Πn
i=1(X − αi), we have

P (r)(X) = Πn
i=1(X − αir).

Here is a result which helps us compare the monoid law defined over
different integral rings.

Lemma 33. [3, Lemma 2.3] Let A and B be two integral rings and
Φ : A→ B a morphism of rings. The set
MΦ

A = {P ∈ MA|Φ(P (0)) 6= 0} is stable under the ∗ law. The map
Φ induces a morphism of monoids(still denoted by Φ)

Φ : MΦ
A →MB.

Let P ∈ MΦ
A and r ≥ 1. Then, P (r) ∈ MΦ

A and we have (Φ(P ))(r) =
Φ(P (r)).

This lemma will be used especially in the case of the reduction mor-
phism Z → Z/pZ which is a homomorphism of rings. It will help us
carry the monoid structure defined over the Z[X] for the elliptic curve
E defined over K to the reduction of the elliptic curve.

Given a polynomial P ∈ MA and an integer k ≥ 1, we will use the
notations P ∗k = P ∗ ... ∗ P (k times) and P ∗0 = X − 1.
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9.1. Definition of the polynomials Pq.
Let K be a number field, E an elliptic curve defined over K. If the

representation Φp is reducible, we will say that p is a reducible prime
for the couple (E,K).

If p is a reducible prime for (E,K), since the representation Φp is
reducible and E[p] is a 2-dimensional vector space over Fp, there exists
a line D stable under the action of GK = Gal(K/K). Let λ be the
character giving the action of GK on the line D. In a suitiable basis, the
representation Φp can be represented by martices of the type

(
λ ∗
0 λ′

)
.

Now let p be a reducible prime for (E,K) and q be a prime ideal of
OK . If E has good reduction at q and q does not divide p, the extension
K(E[p])/K is not ramified at q by the Neron-Ogg-Shafarevich criterion.
We denote by σq a Frobenius morphism at q of Gal(K(E[p])/K).

Now suppose that E has good reduction at q. Then we put
Pq(X) = X2 − tqX +N(q) ∈ Z[X]
where N(q) is the cardinal of the residue field OK/q and
tq = N(q) + 1− Aq

where Aq is the number of points of the reduced curve at q over the
residue field OK/q.

In other words, the polynomial Pq is the characteristic polynomial of
the Frobenius endomorphism σq.

Proposition 34. (Hasse-Weil) The complex roots of Pq are of modulus
N(q)1/2. In particular, we have:

|tq| ≤ 2N(q)1/2.

If additionally q does not divide p, the caracteristic polynomial of
Φp(σq) is Pq = Pq(mod p) ∈ Fp[X]. In particular, we have Pq(λ(σq)) =
0.

10. Results of Billerey

Let l be a prime number such that E has good reduction at all prime
ideals of OK above l and let lOK = Πq|lq

vq(l) be its decomposition into
prime ideals in OK . Though it is a slight abuse of language, we say that
E has good reduction at l. If this is the case, we associate a polynomial
P ∗l with integer coefficients to l:

P ∗l = ∗q|l(P (12vq(l))
q ) ∈ Z[X].

In other words, for every prime ideal above l, we have our polynomial
Pq(X) = X2 − tqX + N(q), whose roots are the eigenvalues of the
Frobenius element σq over K. Let’s denote these roots by α1q and
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α2q. Then we obtain another polynomial P
(12vq(l))
q , whose roots are the

(12vq(l))-th powers of α1q and α2q, that is

P (12vq(l))
q (X) = (X − α12vq(l)

1q )(X − α12vq(l)
2q )

over K.
And finally, for every prime ideal q above l, we take the product of

all these polynomials P
(12vq(l))
q using the monoid law ∗. This means

that we will obtain a polynomial P ∗l whose roots are the multiplication

of all the roots of P
(12vq(l))
q over the algebraic closure. To sum up, this

polynomial P ∗l carries all the information concerning the Frobenius
elements σq for every prime ideal of q of OK above l.

Using this Pl we define the integer:

Bl = Π
[d/2]
k=0 P

∗
l (l12k)

where d is the degree of K over Q and [d/2] is the integer part of d/2.
Here is the first main result:

Theorem 35. [3, Theorem 2.4] Let p be a reducible prime for (E,K).
Then, we are in one of the following situations:

1.p divides 6DK;
2.There exists a prime ideal p of OK above p at which E has a bad

reduction of additive type with a potential supersingular good reduction;
3. For all prime numbers l, the prime p divides the integer Bl(if

d = 1, we suppose l 6= p).

Suppose that E is given by a Weierstrass equation with coefficients
in OK . We denote by ∆ the discriminant of OK .

Corollary 4. [3, Corollary 2.5] Let p be a reducible prime for (E,K).
Then, we are in one of the two following situations:

1.p divides 6DKNK/Q(∆);
2. For all prime numbers l, the prime p divides the integer Bl(if

d = 1, we suppose l 6= p).

10.1. Properties of the polynomial P ∗l . Suppose that E has good
reduction at a prime l and let gl be the cardinal of the set of prime
ideals above l.

Lemma 36. [3, Lemma 2.6] The polynomial P ∗l belongs to MZ and

satisfies P ∗l (0) = l12d2gl−1
.

It’s complex roots are of modulus l6d. Moreover, if l 6= p, then P ∗l ∈
MΦ

Z and we have

P ∗l (Ω) = 0,
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where Ω = Πq|lλ(σq)
12vq(l) ∈ Fp.

Here is Billerey’s second result:

Theorem 37. [3, Theorem 2.8] Let p be a prime number reducible for
(E,K). Then, we are in one the following situations:

1. p divides 6DK.
2. There exists a prime ideal p of OK above p at which E has a bad

reduction of additive type with potential supersingular good reduction.
3.For every prime ideal q of good reduction, the prime number p

divides the integer

Rq = Π
[d/2]
k=0 Res(P

(12h),
q (m(12)

γq )∗k)

where qh = γqOK and mγq is the minimal polynomial of γq over Q. (If
d = 1, we suppose that q does not divide p).

Moreover, if E has no complex multiplication over Q, then Rq 6= 0
for an infinite number of prime ideals q.

11. Billerey’s Calculations

Billerey gives an algorithm to calculate the set Red(E/K). The set
of exceptional primes for Billerey is

S1 = {prime divisors of 6DKNK/Q(∆)}.
First he calculates the elements of this set. Then he takes l0 to be the
smallest prime that does not belong to S1 and calculates Bl0 . Remem-
ber that if p 6∈ S1 is a reducible prime, then it should divide Bl for
every prime l. The only problem we might encounter is Bl being zero
for a prime l. Therefore, in Billerey’s algorithm, if Bl0 = 0, then we
take the smallest prime l1 such that l1 6∈ S1 , l1 > l0 and calculate Bl1 .
If Bl1 = 0, then we repeat this procedure till we find a prime ln such
that Bln 6= 0. If we cannot find such an integerBln for a long time, we
go to step 2′, if not, we go to step 2.

Step 2: Now we should find the prime divisors of Bl 6= 0 that we
found above. This may take some time depending on the integer Bl, so
we might consider calculating some more integers Blk as above. Since
a reducible prime p 6∈ S1 should divide all of these integers, we first
calculate the greatest common divisor of all these primes and then try
to factorise it. We denote by S2 the set of prime divisors of this greatest
common divisor, and put S = S1S2

Step 2’: It is possible that it takes a long time to find an integer
Bl 6= 0. However, since we are considering the case where E has no
complex multiplicaiton, by theorem ???, we know the existance of a
prime q where E has good reduction such that Rq 6= 0. Again, to
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make the factorisation faster, we might calculate some integers Rq 6= 0
and try to factorise their greatest common divisor. We denote the set
of prime divisors of this greatest common divisor by S2, and we put
S = S1S2.

Now we have a set S which contains the set Red(E/K), but which
might be bigger. In order to eliminate some of the primes that are
in S − Red(E/K), we can calculate polynomials Pq for some primes
ideal q where E has good reduction. Then for q not dividing p, if Pq is
irreducible (mod p), then p does not belong to Red(E/K). The claim
is that the subset S ′ of S, whose elements are the ones that are not
eliminated, is small enough in general.

11.1. Examples.

Example 4. We suppose that K = Q(
√
−1). Let E be the curve defined

by the equation
y2 = x3 + 2(3 + 2

√
−1)x+ 2(3 + 2

√
−1). Then the set Red(E/K) is

empty.
To see this, we first calculate ∆ = −16(4a3+27b2) and then NK/Q(∆) =

212.32.2857. Let p be a prime number not belonging to set S1 = {2, 3, 2857}.
The smallest prime not belonging to S1 is 5, and we know that p divides
B5. We hope that B5 6= 0.

In oerder to calculate B5, we need to find polynomials Pq for q|5. In

Q(
√
−1), 5 factorises as (3 + 2

√
1)(3 − 2

√
−1), where the factors are

primes. This should also make the choice of coefficients of the equation
of the curve clear.

Remember that we have Pq(X) = X2− tqX+N(q) where N(q) is the
cardinality of the residue field OK/q and tq = N(q) + 1−Aq, Aq being
the number of points of the reduction of E at q in the field OK/q.

We have {tq}q|5 = {−2, 1}.
Now we should calculate P ∗5 = ∗q|5(P

(12vq(5))
q ) where vq(5) = 1 for all

q|5 since 5 = (3 + 2
√
−1)(3− 2

√
−1). This gives us P ∗5 = ∗q|5(P

(12)
q ).

Then we should calculate B5 = Π
[d/2]
k=0 P

∗
5 (512k). Since we have d =

[K : Q] = 2 in this case, we get B5 = P ∗5 (1)× P ∗5 (512), which gives us
a long list of primes:

B5 = 228.316.539.112.17.61.73.277.397.557.653.757.23833

Now it seems that calculating another integer Bl is a good idea. The
next smallest prime we can take is 7, and 7 is still a prime in OK.



33

We have t7 = 6, and N7 = |OK/7| = 14, so we have P7(X) =
X2 − 6X + 14. This also gives us

P ∗7 = P
(12v7(7))
7 = P

(12)
7 .

Therefore, we get B7 = P ∗7 (1)×P ∗7 (712), which gives us again a long
list of primes:

B7 = 214.38.52.713.11.135.372.2089.2689.3889

But with these two integers B5 and B7, we get S2 := gcd(B5, B7) =
214.38.52.11, so we just have to deal with the elements of the set S =
S1 ∪ S2 = {2, 3, 5, 11, 2857}.
E has good reduction at the prime ideal 3OK and we have P3 =

X2 + 3X + 9.
So P3 is irreducible modulo 2,5 and 11. Then 2, 5, 11 do not belong

to Red(E/K).
Now, for a prime ideal q5 above 5, we have that tq = −2 or 1, that

is tq5 ≡ 1 (mod 3), and that Pq5(X) = X2 + 2X + 2 (mod 3), which is
irreducible modulo 3, meaning that 3 is not in the set Red(E/K).

Finally we have P7(X) = X2− 6X + 49, which is irreducible modulo
2857. Hence, the set Red(E/K) is empty.

Example 5. We take K = Q(
√

2),A = −33.5.173(428525+303032
√

2)
and B = 2.33.5.173(62176502533 + 43965551956

√
2). We let E to be

the elliptic curve defined by the equation

y2 = x3 + Ax+B.

Then Red(E/K) = {13} .

12. Billerey’s results on the uniformity question

Let q be a prime ideal of OK with residual characteristic l. We have

N(q) = |OK/q| = lfq ,

where fq is the residual degre of q. We suppose that E has bad reduc-
tion of additive type at q with potentially good reduction. Then for
every prime p > 3 such that p 6= l, the action of the inertia group Iq
on E[p] factorises through a finite quotient Φq of Iq:

Iq → Φq ↪→ Aut(E[p]).

Serre also studies the case of non-stable elliptic curves E without com-
plex multiplication via this finite quotient Φq. His analysis focuses on
the curves defined over Q and in his paper, Billerey extends some of
Serre’s propositions to the case of number fields.
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Proposition 38. Let E be an elliptic curve without complex multipli-
cation defined over K such that E has bad reduction of additive type at
q with potential good reduction. Suppose that for every integer n ≥ 0,
the order of the group Φq does not divide N(q)n(N(q) − 1). Then the
representation φp is irreducible for all prime numbers p ≥ 3 such that
p 6= l.

Here is a useful corollary of the previous propositon in the case that
q divides 2:

Corollary 5. [3, Corollary 3.4] We suppose that q divides 2 and one
of the following two conditions is satisfied:

1.The group Φq is of order 8 or 24;
2.The group Φq is of order 3 or 6 and the residue degre fq is an odd

number.
Then the representation φp is irreducible for all prime number p ≥ 5.

And here is another corollary in the case that q divides 3:

Corollary 6. [3, Corollary 3.5]
We suppose that q divides 3 and one of the following two conditions

is satisfied:
1.The group Φq is of order 12;
2.The group Φq is of order 4 and the residue degre fq is an odd

number.
Then the representation φp is irreducible for all prime number p ≥ 5.

Example 6. We let K = Q(
√

5) and consider the elliptic curve E
defined by the equation y2 = x3 + 2x2 + ωx where ω=(1 +

√
5)/2

Then Red(E/K) = 2.
We have ∆E = −26ω. Since ω is a unit in OK, we know E has

good reduction at all primes p 6= 2. At p = 2, we have an additive bad
reduction since...... Since the extension K/Q is not ramified, we have
|Φ2| = 4 or 8....... We deduce that |Φ2| = 8 and by the above corollary,
φp is irreducible for all primes p ≥ 5.

The curve has good reduction at 7 and t7 = −12. We get
P7(X) = X2 − t7X + 49 = X2 + 1 (mod 3), which is irreducible

modulo 3.
Therefore, ϕ3 is irreducible. However, the representation ϕ2 is re-

ducible since (0, 0) is a point of order 2. [2]

13. Conclusion

We have studied two articles concerning the Galois representations
attached to elliptic curves. Serre’s article is written in 1972 and Billerey’s
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article is written in 2011. In this nearly 40 years period, there has been
a great progress on a very important tool that we use today in mathe-
matics: the computers. I believe this is an important fact to consider
when comparing these two articles.

Serre was more limited than todays mathematicians in the amount of
calculations he could make, and he obtained some results which apply
to the case of elliptic curves defined over Q mostly, but which requires
very limited amount of calculations.

On the other hand, Billerey, as we can observe easily from his ex-
amples, obtained more general results that works for elliptic curves
defined over any number field at the cost of more complicated calcula-
tions, which can be done easily with the help of a computer.

Regarding the results proved in these articles, Serre shows that there
is a great difference between the Galois representations attached to el-
liptic curves with complex multiplication and with no complex mul-
tiplication. In the first case, their images are never surjective while
in the second case, for almost all prime l, the representations ϕl are
surjective.

Another point I want to emphasize is that Billerey’s work aims to
take a step into solving Serre’s uniformity question, which remains
unsolved today. A partial solution to this question is give by Pierre
Parent and Yuri Bilu in their article “Serre’s uniformity problem in
the Split Cartan Case”[8].
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[3] N. Billerey, “Critères d’irréductibilité pour les représentations des courbes el-
liptiques,” Int. J. Number Theory, pp. 1001–1032, 2011.

[4] J. Silverman, The Arithmetic of Elliptic Curves, vol. 106. Springer-Verlag, New
York.

[5] J. Milne, Elliptic Curves. Booksurge Publishing.
[6] J. Neukirch, Algebraic Number Theory. Springer-Verlag.
[7] J.-P. Serre and J. Tate, “Good reduction of abelian varieties,” Ann. of Math.,

vol. 88, pp. 492–517, 1968.
[8] P. Parent and Y. Bilu, “Serre’s uniformity problem in the split cartan case,”

Ann. of Math., vol. 173, pp. 569–584, 2011.


