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1 Notation and conventions

X(d) d-th symmetric power of a variety X
Zk(X) The group of k-dimensional algebraic cycles of variety X
Zk(X) The group of algebraic cycles of codimension k of variety X
�rat The subgroup of cycles which are rationally equivalent to 0
�hom The subgroup of cycles which are homologically equivalent to 0

(with respect to singular cohomology)
�alb The subgroup of cycles which are killed by Albanese map

CH k(X) Zk(X)/Zk(X)rat

CH k(X) Zk(X)/Zk(X)rat

�∨ Dual vector space
k(x) Residue field of a point x

All schemes are locally noetherian. We work exclusively with separated schemes
over the field of complex numbers C, except section 3.2.1 where arbitrary
schemes are considered. Everywhere except sections 3.2.1 and 3.2.2 schemes
are either of finite type over C or are specra of localizations of rings of finite
type over C.

A quasi-projective scheme is a scheme which admits an open embedding into a
projective scheme over C. A variety is a reduced scheme of finite type over C.
Varieties are not assumed to be irreducible or smooth.

By default × means cartesian product over C. Similarly, Pn and An denote
projective (respectively affine) n-dimensional space over C. If f1 : X → Y1

and f2 : X → Y2 are morphisms then (f1, f2) denotes the induced morphism
X → Y1 × Y2. If f1 : X1 → Y1 and f2 : X2 → Y2 are morphisms then f1 × f2

denotes the induced morphism X1 ×X2 → Y1 × Y2.

If X → Z is a morphism and f : Y → Z is another morphism then f−1X denotes
X ×Z Y . If f : X → Y is a morphism and y ∈ Y a point, then Xy is the fiber
of f over y.

All other conventions and notation are standard, and are kept consistent with
books [5], [6], [7], [9] and [15].
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2 The conjecture of Bloch

Let X be a smooth irreducible projective surface. The group CH 1(X) of divisors
on X up to rational equivalence fits into an exact sequence

0→ CH 1(X)hom → CH 1(X)
cl−→ H2(X,Z) ∩H1,1(X)→ 0,

where the map cl associates to a divisor its cohomology class. The subgroup
CH 1(X)hom can be described using the Abel-Jacobi isomorphism

CH 1(X)hom −−−−→ J1(X),

where J1(X) = H0,1(X)/H1(X,Z) is the Jacobian of X. So one can view
CH 1(X) as an extension of a discrete group by an abelian variety. The behaviour
of CH 1(X) is completely determined by Hodge theory of X.

Let us move to CH 0(X). Similarly to the case of CH 1(X) one has an exact
sequence

0→ CH 0(X)hom → CH 0(X)
cl−→ H4(X,Z)→ 0

and an Albanese morphism

CH 0(X)hom
alb−−−−→ AlbX,

where AlbX = J3(X) = H1,2(X)/H3(X,Z). Albanese morphism is surjective.

It was conjectured that the Albanese morphism is an isomorphism, until in 1968
Mumford [11] has demonstrated that if h2,0(X) > 0 then the group

CH 0(X)alb = ker(CH 0(X)hom
alb−−→ AlbX)

is not only nonzero but enormously large (precise meaning of “enormously large”
is explained below). So, Hodge structures can not provide a complete description
of CH 0(X). The question arises: which language is appropriate to work with
objects such as CH 0(X)?

The groups CH 0(X) are closely related to correspondences. A correspondence
between smooth irreducible projective varieties X and Y is a cycle in X × Y of
dimension dimX. In particular, graphs of morphisms or rational maps X → Y
are correspondences. One can view correspondences as multivalued morphisms.

A correspondence Γ: X → Y between varieties of dimensions n and m re-
spectively induces a map of sets Γ∗ : X → CH 0(X), a group homomorphism
Γ∗ : CH 0(X) → CH 0(Y ), and also cohomological pullbacks Γ∗ : Hk(Y,Z) →
Hk(X,Z), and pushforwards Γ∗ : Hk(X,Z)→ Hk+2(m−n)(Y,Z), which are com-
patible with Hodge decomposition. Pushforwards and pullbacks are controlled
by cohomology class [Γ] ∈ Hm,m(X × Y ).
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The group CH 0(Y ) behaves with respect to the map Γ∗ : X → CH 0(Y ) as if it
is something similar to an algebraic variety (or, better, a birational equivalence
class of varieties). The fibers of Γ∗ : X → CH 0(Y ) are countable unions of
closed subvarieties.

The subsets of CH 0(Y ) which have the form Γ∗X for some variety X and
correspondence Γ: X → Y play a special role. Such subsets are called finite-
dimensional in Roitman sense (see original work of Roitman [13], and also chap-
ter 10 of [15]). If X is a surface of positive genus h2,0(X), then CH 0(X)alb is
enormously large in the sense that there is no such variety W and correspon-
dence Γ: W → X that CH 0(X)alb ⊂ Γ∗W .

Mumford based his argument about the size of CH 0(X)alb on the following
theorem (see [11]):1

Theorem A. Let X,Y be smooth irreducible projective varieties, and Γ: X → Y
a correspondence. If Γ∗ : X → CH 0(Y ) is zero, then some integer multiple of Γ
is rationally equivalent in CH ∗(X×Y ) to a cycle which is supported on X ′×Y ,
where X ′ ⊂ X is a proper subvariety.

This theorem immediately implies the following result, also due to Mumford
[11]:2

Theorem B. Let X,Y be smooth irreducible projective varieties, and Γ: X → Y
a correspondence. If Γ∗ : X → CH 0(Y ) is zero, then for every p > 0 the pullback
morphism Γ∗ : Hp,0(Y )→ Hp,0(X) is zero.

So, Γ∗ controls the cohomology class [Γ]. Conversely, Bloch conjectured in [2]
that [Γ] determines the behaviour of Γ∗.

To formulate this conjecture we first need to introduce a decreasing filtration
on CH 0, which is also due to Bloch. Let X be a smooth irreducible projective
variety of arbitrary dimension. Consider a 3-step filtration:

F 0CH 0(X) = CH 0(X),

F 1CH 0(X) = CH 0(X)hom,

F 2CH 0(X) = CH 0(X)alb.

The adjoint graded object with respect to this filtration is

grF CH 0(X) = Z⊕AlbX ⊕ CH 0(X)alb.

1Mumford’s article does not contain a result which is phrased exactly as our theorem
A. Mumford works in terms of morphisms into symmetric powers of varieties, and actually
never mentions correspondences. So he does not address explicitely the question to which our
theorem A answers. But theorems A and B follow directly from what Mumford did in [11],
as we will show in section 5.1 of this text.

2Here the same remark applies as in the case of theorem A.
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This filtration is functorial with respect to correspondences.

Conjecture (Bloch). Let X be a variety, Y a surface, and Γ: X → Y a
correspondence. The pushforward map grpF Γ∗ : grpF CH 0(X) → grpF CH 0(Y ) is
zero if and only if Γ∗ : Hp,0(Y )→ Hp,0(X) is zero.

The conjecture of Bloch is deep and hard. Still, there is a lot of evidence
which supports it. For example, if X = Y is a surface, and Γ = ∆, then
Bloch’s conjecture implies the following hypothetical result (see [2], lecture 1,
proposition 1.11):

Let X be a smooth irreducible projective surface. If h2,0(X) = 0, then the group
CH 0(X)alb is zero, i.e. the Albanese morphism is an isomorphism.

This result can be viewed as a converse of Mumford’s infinite-dimensionality
theorem. It was verified by Bloch, Kas and Lieberman [3] for all surfaces which
are not of general type. The full conjecture of Bloch is still far from being
solved.

Let X be a K3 surface, and i : X → X a symplectic involution, i.e. such an
involution that the pullback morphism i∗ : H2,0(X) → H2,0(X) is the identity.
Bloch’s conjecture predicts that i∗ must act as the identity on CH 0(X). This
prediction was recently verified by Voisin in [14]. Our goal is to work out her
argument, proving on the way all auxillary claims, and providing the context
which is necessary to understand her work.

The ideas behind Voisin’s solution are quite simple and geometric in nature.
Let us explain them briefly.

A symplectic involution i on a K3 surface X is much easier to study than an
arbitrary correspondence between arbitrary surfaces. First of all, i is a mor-
phism, and so gr0

F i∗ = id. Second, X has no global holomorphic 1-forms. As
a consequence CH 0(X)alb = CH 0(X)hom, and AlbX = 0. Finally, there is an
explicit correspondence ∆ which acts on CH 0(X)hom exactly as Bloch’s conjec-
ture predicts for i∗ to act. Thus, it is enough to show that the correspondence
Γ = ∆− Γi acts trivially on CH 0(X)hom (here Γi is the graph of i).

To do so it is a good idea to fit a given zero-cycle z ∈ CH 0(X)hom into a smooth
irreducible curve C ⊂ X, which is mapped by i to itself. We then get an induced
action of i∗ on CH 0(C)hom, which is much easier to study because CH 0(C)hom

is a complex torus, the Jacobian of C.

Voisin does it as follows. Consider the quotient Σ of X by i, which is a normal
irreducible projective surface. A general ample curve on Σ will be smooth, and
its preimage in X will also be smooth, and connected. We thus obtain a family
of curves in X which are i-invariant. Let g be the dimension of this family.
A general effective zero-cycle of degree g fits exactly into one of these curves.
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Acting by Γ on this cycle we obtain another cycle, which is sent to zero by the
quotient morphism X → Σ.

Therefore we obtain a rational map Xg → P(C̃/C), where C is our family of cu-

vres in Σ, C̃ is the family of their preimages in X, and P(C̃/C) is the correspond-

ing Prym fibration, i.e. the fibration in kernels of morphisms J(C̃) → J(C),

where C is a curve from C, and C̃ is its preimage in X. Direct computa-
tion shows that dimP(C̃/C) = 2g − 1 (this property is specific for K3 sur-

faces), while dimXg = 2g. Thus, a general fiber of Xg → P(C̃/C) is positive-
dimensional, which implies that a general fiber of Γ∗ : Xg → CH 0(X)hom is
positive-dimensional.

Since X is a K3 surface, it follows that the group Γ∗(CH 0(X)hom) is finite-
dimensional. To prove this implication one uses the fact that X has a special
effective zero-cycle of degree 1, the zero-cycle of Beauville-Voisin (see section
6.2, and also proposition 53). Then the factorization theorem of Voisin (see
theorem 3) is used to show that Γ∗ restricted to CH 0(X)hom factors through
AlbX = 0, and so must be zero.

3 Algebraic correspondences

Correspondences make precise the notion of a family of (classes of) algebraic
cycles, and so introduce additional structure on Chow groups CH 0(X). Their
careful study is therefore vital for this work.

3.1 Correspondences and families of zero-cycles

Definition 1. Let W be a smooth irreducible quasi-projective variety, and X
a smooth irreducible projective variety. A correspondence Γ: W → X is a cycle
Γ of codimension dimX in W ×X.

This defintion is well-known. We include it only to fix conventions. Note that we
do not require correspondences to be finite or even surjective over their domains.

In the literature a domain W of a correspondence is usually assumed to be
projective. For our purposes there is a significant technical benefit in allowing
W to be just quasi-projective, while all properties relevant to our study continue
to hold in this case too.

A correspondence Γ induces a map Γ∗ : W → CH 0(X) by sending a point w ∈W
to the cycle (iw × id)∗Γ ∈ CH 0(X), where iw : w →W is the evident inclusion.
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Let p : W × X → W and q : W × X → X be the projections. Clearly, Γ∗w =
p∗w · Γ interpreted as a cycle in CH 0({w} × X) = CH 0(X). We can define a
map Γ∗ : Z0(W )→ CH 0(X):

Γ∗

(∑
i

niwi

)
= ni(p

∗wi · Γ).

Assume in addition that W is projective. In this situation the projection q is
proper, and so we get a homomorphism q∗ : CH 0(W ×X)→ CH 0(X). By con-
struction, Γ∗α = q∗(p

∗α · Γ). Moreover, q∗Z0(W ×X)rat = 0, and so Γ∗ factors
through Z0(W )rat and induces a homomorphism Γ∗ : CH 0(W )→ CH 0(X).

The notation for the maps Γ∗ : W → CH 0(X) and Γ∗ : CH 0(W ) → CH 0(X)
clearly conflicts, so let us introduce a convention. If Γ: W → X is a correspon-
dence, then by default the symbol Γ∗ will denote the map Γ∗ : W → CH 0(X).

Let ∆: X → X be the diagonal correspondence, and let d+ and d− be non-
negative integers. Consider a correspondence Σd+,d− : Xd+ ×Xd− → X defined
as

Σd+,d− =

d+∑
i=1

∆ ◦ pi −
d−∑
i=1

∆ ◦ pi+d+

where pi : X
d+ ×Xd− ×X → X ×X are projections

pi(x1, . . . , xd++d− , x) = (xi, x).

Σd+,d− is called the natural correspondence. Let σd+,d− = (Σd+,d−)∗. Clearly

σd+,d−(x+
1 , x

+
2 , . . . , x

+
d+
, x−1 , x

−
2 , . . . , x

−
d−

) =

x+
1 + x+

2 + . . .+ x+
d+
− x−1 − x

−
2 − . . .− x

−
d−
.

3.1.1 Fibers over points

Definition 2. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, and Γ: W → X a correspondence. Let
Zi be an irreducible component of Γ. We say that Zi is vertical if the natural
projection Zi →W is not surjective. We say that Γ is vertical if all its irreducible
components are vertical.

Definition 3. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, Γ: W → X a correspondence, and w ∈W
a point. We say that Γ is finite over w if each its irreducible component is.
Similarly, we say that Γ is flat over w if each its irreducible component is.
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Proposition 1. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, and Γ: W → X a correspondence.

(a) The set of points over which Γ is flat is Zariski-open and nonempty.

(b) Let U be the set of points over which Γ is finite. The set U is Zariski-open
and nonempty. For every irreducible component Zi of Γ the pullback of Zi →W
to U is a finite morphism.

Proof. The statement (a) follows from EGA IV 11.3.1 and generic flatness.

Let Zi → W be an irreducible component of Γ. Since Zi → W is proper,
Chevalley’s theorem tells that fiber dimension function for this morphism is
upper semi-continuous. In particular, the set U of points over which fiber di-
mension is at most 0 is open. If this set is empty, then Zi → W is of relative
dimension at least 1, and so dimZi > dimW , a contradiction. Zariski’s main
theorem together with the fact that Zi →W is proper imply that the pullback
of Zi →W to U is a finite morphism.

Proposition 2. Let C be a smooth irreducible quasi-projective curve, X a
smooth irreducible projective variety, and Γ: C → X a correspondence. If Γ
has no vertical components, then it is finite and flat over C.

Proof. Let Zi be an irreducible component of Γ. By assumptions, the projection
Zi → C is surjective. Since Zi is integral, it follows that Zi is flat over C, and
so each fiber of Zi → C is zero-dimensional, i.e. it is quasi-finite. As it is also
proper, Zariski’s main theorem implies that it is finite.

Definition 4. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, Γ: W → X a correspondence, and w ∈W
a closed point over which Γ is finite. Write Γ as a sum of irreducible components
Γ =

∑k
i=1 niZi. Define the fundamental cycle of the fiber of Γ over w as

Γw =
∑
i

ni(Zi)w

where (Zi)w are fundamental cycles of fibers of respective irreducible compo-
nents (for the definition of a fundamental cycle of a scheme see [6], chapter 1,
paragraph 1.5).

Proposition 3. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, and Γ: W → X a correspondence. Con-
sider a closed point w ∈ W . If Γ is finite over w then Γ∗w is defined in
Z0(X) (i.e. not up to rational equivalence). If moreover Γ is flat over w,
then Γ∗w = Γw in Z0(X).
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Proof. Let f : X →W ×X be the inclusion induced by w ∈W . In the notation
of Fulton [6] (chapter 8), Γ∗w = [X] ·f Γ. Clearly it is enough to deal with the
case when Γ consists of a unique irreducible component with multiplicity 1.

By our assumptions, Γw is a zero-dimensional scheme, so that in particular the
intersection [X] ·f Γ is proper. Let x be a generic point of Γw, and A the local
ring of x in Γ. It is known (cf. [6], chapter 7, proposition 7.1), that

1 6 i(x, [X] ·f Γ) 6 lengthA(A/I),

where i(x, [X] ·f Γ) is the respective intersection multiplicity, and I is the ideal
of Γw in A. But clearly I(A/I) = 0, and so lengthA(A/I) = lengthA/I(A/I) i.e.
the coefficient of x in the fundamental cycle of Γw.

Assume now that Γ is flat over w. LetR be the local ring ofW at w, let SpecR→
W be the natural morphism, and let ΓR = Γ ×W SpecR. By construction
ΓR = SpecB for some ring B, and B is finite and flat over R. Hence B is
free over R as a module. Since B is also equidimensional, it follows that B is
Cohen-Macaulay ([5], chapter 18, paragraph 4, corollary 18.17). Therefore A is
Cohen-Macaulay too, and so proposition 7.1 from [6] implies, that

i(x, [X] ·f Γ) = lengthA(A/I),

which is exactly what we need.

Since each correspondence Γ is finite and flat over some nonempty Zariski-open
subset, this proposition implies, that for some open U ⊂ W the map Γ∗ is
actually defined as Γ∗ : U → Z0(X), w 7→ Γw.

3.1.2 Flat points

Definition 5. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, and Γ: W → X a correspondence. The
degree [Γ : W ] of Γ is defined as follows. If Γ consists of a unique irreducible
component of multiplicity 1, then [Γ : W ] is the degree of the projection Γ→W .
In particular, [Γ : W ] = 0 if Γ is vertical. The degree [Γ : W ] is extended to
arbitrary correspondences by additivity.

Let d be a nonnegative integer. The variety X(d) can be viewed as a space of
effective 0-cycles of degree d because there is a map σd,0 : X(d) → Z0(X) which
defines a bijection between closed points of X(d) and effective 0-cycles of degree
d in X. If d+, d− are nonnegative integers, then we can also consider the variety
X(d+)×X(d−) as a space of differences of effective cycles, but this time the map
σd+,d− : X(d+) ×X(d−) → Z0(X) is not injective.

If Γ: W → X is a correspondence and w is a closed point over which Γ is finite,
then, as we know, Γ∗w is well-defined as an element of Z0(X). If moreover Γ
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is effective then the cycles Γ∗w may be unambiguously identified with closed
points of X(d), and therefore we can introduce a definition:

Definition 6. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, and Γ: W → X an effective correspon-
dence of degree d, which is finite and flat over W . Let f : W → X(d) be a map
which sends a closed point w to the cycle Γ∗w considered as a closed point of
X(d). We call f the map induced by Γ.

By construction the map Γ∗ : W → CH 0(X) splits as

W
f−−−−→ X(d) σd,0−−−−→ CH 0(X).

Next proposition shows that the induced map is actually a morphism of algebraic
varieties. So, correspondences can be seen as multivalued algebraic maps, or
equivalently, as families of 0-cycles.

Proposition 4. Let W be a smooth irreducible quasi-projective variety, X
a smooth irreducible projective variety, and Γ: W → X an effective corre-
spondence of degree d. If Γ is finite and flat over W , then the induced map
f : W → X(d) is a morphism of algebraic varieties.

Proof. Write Γ =
∑k
i=1 niZi as a sum of its irreducible components and consider

the closed subscheme Z = supp Γ =
⋃
i Zi ⊂ W × X. Let g : Z → W be the

projection to the first factor.

We want to show that g : Z →W together with the data provided by Γ defines
a family of algebraic cycles in the sense of Kollár (see [7], chapter I, section I.3,
definition 3.10).

Each irreducible component Zi of Z is finite over W by assumption. Moreover,
for each Zi we have the corresponding coefficient ni. What remains to be done
is to provide for each (not necessarily closed) point w ∈ W a cycle-theoretic
fiber g[−1](w), which is an element of Z0(g−1(w)) = Z0(g−1(w)red).

Consider the restrictions gi : Zi → W of g to irreducible components of Z.
Let pi : g

−1
i (w)red → g−1(w)red be the corresponding closed embedding, and let

(Zi)w be the fundamental cycle of g−1
i (w) in Z0(g−1(w)). We define

g[−1](w) =
∑
i

nipi∗((Zi)w).

The conditions (3.10.1) – (3.10.3) of Kollár’s definition are clearly satisfied, and
the only remaining condition is (3.10.4).

Let w ∈ W be a point (not necessarily a closed one), let T be a spectrum of a
DVR with t the closed point, and h : T → W a morphism, which sends t to w.
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Let ht : t→ w be the morphism of closed points induced by h. Since each Zi is
flat over W , its pullback by h is also flat over T , and hence

lim
h→w

(Zi/W ) = (h∗Zi)t = h∗t (Zi)w.

But then ∑
i

ni lim
h→w

(Zi/W ) = h∗t g
[−1](w),

and so the condition (3.10.4) is satisfied.

By construction, Z is a closed subscheme of W ×X, and so g : Z →W together
with the coefficients ni and cycle-theoretic fibers g[−1](w) is a well-defined family
of proper algebraic 0-dimensional cycles of X in the sense of Kollár’s definition
3.11 (see [7], chapter I, section I.3). Moreover, the family g : Z →W is nonneg-
ative since Γ is effective. Since [Γ : W ] = d, all the cycles in the family have
degree d.

Thus, by theorem I.3.21 of Kollár’s book [7], g defines a morphism W →
Chow0,d(X), where Chow0,d(X) is the Chow variety of effective 0-cyles of de-
gree d in X. It is known, that Chow0,d(X) = X(d) (see [7], excercise 3.22). By
construction, the morphism W → X(d) sends each point w to the corresponding
cycle-theoretic fiber g[−1](w). If w is a closed point then g−1(w) = Γw, and so,
by proposition 3, the morphism W → X(d) agrees with the map f : W → X(d)

induced by Γ.

If Γ: W → X is a correspondence which is not necessarily finite and flat over
W , then we can restrict it to the open subset U ⊂W over which it is finite and
flat, and hence obtain a morphism f : U → X(d). From now on we will consider
this map f as a rational map from W to X(d). At this stage we do not know
yet if f agrees with Γ∗ at every point at which f is defined.

Proposition 5. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, d a nonnegative integer, and f : W → X(d)

a morphism. There exists an effective correspondence Γ: W → X of degree d
such that Γ is finite over W , and the map induced by Γ coincides with f at every
closed point over which Γ is flat.

Proof. By definition of the functor Chow0,d(X) the map f : W → X(d) induces a
family g : Z →W of nonnegative 0-cycles of degree d in X in the sense of Kollár.
The supporting scheme Z is by construction a closed subscheme of W ×X, and
each irreducible component Zi of Z is equipped with an integer multiplicity ni.
Hence we have an algebraic cycle Γ ⊂W ×X, Γ =

∑
i niZi. Since all the fibers

of g : Z →W are finite, we conclude that Γ is finite over W .

Moreover, for every point w ∈ W the cycle g[−1](w) coincides with f(w) con-

sidered as a point of X
(d)
k(w). If d > 0, then we conclude that every fiber of

12



g : Z →W is nonempty, and hence all irreducible components of Γ have dimen-
sion dimW . If d = 0, then all the fibers of g are empty, i.e. Z = ∅ and Γ = 0.
In any case, Γ is a correspondence, which is finite over W .

Let w ∈W be such a closed point that Γ is flat over it. Let T be a spectrum of
a DVR, and h : T → W a morphism, which sends the closed point t ∈ T to w.
Let ht : t→ w be the induced morphism of points. By definition of g[−1](w),

h∗t g
[−1](w) =

∑
i

ni lim
h→w

(Zi/W ).

Each Zi is flat over W at w, and so

lim
h→w

(Zi/W ) = h∗t (Zi)w.

Therefore
h∗t g

[−1](w) = h∗tΓw,

and we conclude that g[−1](w) = Γw = Γ∗w.

3.1.3 Pullbacks

It is not easy to see that the rational map induced by a correspondence Γ agrees
with Γ∗ at all closed points over which Γ is finite. Main obstruction is the
definition of a cycle-theoretic fiber g[−1](w). Basically, the only way to control
it is to take a “limit” over some curve which passes through w. To compare this
limit with Γ∗w we need to pull the correspondence back to the curve.

Let X be a smooth irreducible projective variety. Let T and W be smooth
irreducible quasi-projective varieties, Γ: W → X a correspondence, and f : T →
W a morphism. In this situation we can not define the composition Γ ◦ f as
described in the chapter 16 of [6], since the projection T ×W × X → T × X
is not proper in general. Nevertheless, we have a Gysin pullback morphism
(f × id)∗ : CH ∗(W ×X)→ CH ∗(T ×X).

Definition 7. We define the composition Γ ◦ f as (f × id)∗Γ.

If T and W are projective, then our Γ◦f evidently coincides with the one defined
in [6]. If f : w →W is an embedding of a closed point, then Γ ◦ f = Γ∗w.

Proposition 6. Let T,W be smooth irreducible quasi-projective varieties, X a
smooth irreducible projective variety, Γ: W → X a correspondence, and f : T →
W a morphism. If Γ is finite over W , then Γ ◦ f is defined as a cycle (not a
class of rational equivalence), and is finite over T .
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Proof. Clearly it is enough to consider the case when Γ consists of a single
irreducible component with multiplicity one.

The intersection class Γ◦f = (f × id)∗Γ is computed as follows (see [6], chapter
8). First, we take the graph morphism γ = γ(f×id) : T × X → T × W × X.
Since W × X is smooth, γ is a regular embedding. We consider the cross
product [T ] × Γ, where [T ] is the fundamental cycle of T . Since [T ] is just
T with multiplicity one, and Γ is irreducible, the cross product [T ] × Γ is the
fundamental cycle of closed subscheme T × Γ ⊂ T ×W ×X. Next, we form a
cartesian square

γ−1T × Γ −−−−→ T × Γy y
T ×X γ−−−−→ T ×X ×W.

Since γ is regular, it induces a vector bundle N on T ×X, the normal bundle of
an embedding. The closed subscheme γ−1T ×X of T ×X has a normal cone C,
which is in a natural way a purely-dimensional closed subscheme of N . There
is a homomorphism s∗ : CH ∗(N) → CH ∗(T × X) which, informally speaking,
intersects classes with the zero section of N (see [6], chapter 3, definition 3.3).
By definition, (f × id)∗(Γ) = s∗(C).

We have an evident cartesian diagram

γ−1T × Γ −−−−→ T × Γ −−−−→ Γy y y
T ×X γ−−−−→ T ×W ×X −−−−→ W ×Xy y y
T

γf−−−−→ T ×W −−−−→ W,

where γf is the graph of f . The composition T
γf−→ T ×W →W is just T

f−→W ,
and so γ−1T ×Γ = f−1Γ. By assumption, Γ is finite and surjective over W , and
so f∗Γ is finite and surjective over T . Therefore, each irreducible component Zi
of f−1Γ has dimension at most dimT .

On the other hand, lemma 7.1 from chapter 7 of [6] applied to the regular
embedding γ and closed subscheme T×Γ shows, that each irreducible component
Zi of f−1Γ has dimension at least dim(T × Γ) − dimW = dimT . Thus, the
intersection f−1Γ is proper.

In this situation the canonical decomposition of the intersection class s∗(C)
has the form

∑
imi[Zi], where mi are respective intersection multiplicities (see

discussion just below the lemma 7.1 from [6], and also definition 6.1.2 from the
chapter 6 of the same book). Hence Γ◦f is defined as an element of Z∗(T ×X),
and is finite over T .
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Proposition 7. Let W1,W2,W3 be smooth irreducible quasi-projective varieties.
Let f : W1 → W2 and g : W2 → W3 be regular embeddings, and Z ∈ Zk(W3) a
cycle. Assume that both pullbacks g∗(Z) and f∗(g∗(Z)) are proper, i.e. defined
as elements of Z∗(W2) and Z∗(W1) respectively. In this situation (g ◦ f)∗Z
is also proper, and (g ◦ f)∗Z = f∗(g∗Z) in Z∗(W1). The same is true under
assumption that pullbacks (g ◦ f)∗Z and g∗Z are proper.

Proof. It is enough to assume that Z is irreducible of multiplicity 1. Consider
a cartesian diagram

f−1g−1Z −−−−→ g−1Z −−−−→ Zy y y
W1

f−−−−→ W2
g−−−−→ W3.

Here we view Z as a closed subscheme of W3. Since (g ◦ f)−1Z = f−1g−1Z, we
conclude that (g ◦ f)∗ is defined as an element of Z∗(W1).

Let Zgr be the irreducible components of g−1Z and Zfs be the irreducible com-
ponents of f−1g−1Z. There is an associativity formula for intersection multi-
plicities (see [6], chapter 7, example 7.1.8):

i(Zfs ,W1 · Z;W3) =
∑
r

i(Zfs ,W1 · Zgr ;W2) · i(Zgr ,W2 · Z;W3).

On the other hand, by definition of intersection multiplicities

g∗(Z) =
∑
r

i(Zgr ,W2 · Z;W3) · Zgr ,

f∗(Zgr ) =
∑
s

i(Zfs ,W1 · Zgr ;W2) · Zfs ,

(g ◦ f)∗(Z) =
∑
s

i(Zfs ,W1 · Z;W3) · Zfs .

A substitution of formulas shows that (g ◦ f)∗Z = f∗(g∗(Z)).

Proposition 8. Let T,W be smooth irreducible quasi-projective varieties, t ∈ T
a closed point, z ∈ Z∗(W ) a cycle, and j : W → T ×W the regular embedding
induced by t. The pullback j∗([T ]× z) is defined as an element of Z∗(W ), and
is equal to z.

Proof. It is enough to assume that z consists of a unique irreducible component
Z with multiplicity 1. Consider a cartesian square

j−1T × Z −−−−→ T × Zy y
W

i−−−−→ T ×W.
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Clearly, j−1T × Z = Z, so that the intersection is proper, and j∗([T ] × [Z]) =
m[Z] in Z∗(W ), where m is the respective intersection multiplicity. Let us show
that m = 1.

Let η ∈ Z be the generic point, and let A be the local ring of T × Z at j(η),
and I the ideal of j(Z) in A. As in the proof of proposition 3, we notice that

1 6 i(η, [W ] ·j [T × Z];T ×W ) 6 lengthA(A/I).

Since I(A/I) = 0, we conclude that lengthA(A/I) = lengthA/I(A/I). But A/I
is the local ring of Z at η, which is a field, and so lengthA/I(A/I) = 1.

Proposition 9. Let T,W be smooth irreducible quasi-projective varieties, X
a smooth irreducible projective variety, f : T → W a morphism, and Γ: W →
X a correspondence which is finite over W . If t ∈ T is a closed point, then
(Γ ◦ f)∗t = Γ∗f(t) in Z0(X).

Proof. It is enough to assume that Γ consists of a unique irreducible component
with multiplicity 1.

As in the proof of proposition 6, consider the graph morphism γ = γ(f×id) : T ×
X → T ×W ×X. Let i : t → T be the embedding of the closed point, and let
j = (i× id) : X → T ×X be the induced embedding of X. Consider a cartesian
diagram

j−1γ−1T × Γ −−−−→ γ−1T × Γ −−−−→ T × Γy y y
X

j−−−−→ T ×X γ−−−−→ T ×W ×X.
From proposition 6 we know, that γ∗T × Γ is proper. To see that j∗(γ∗T × Γ)
is proper, consider a cartesian diagram

j−1γ−1T × Γ −−−−→ T × Γ −−−−→ Γy y y
X

γ◦j−−−−→ T ×W ×X −−−−→ W ×X.

Since the composition X
γ◦j−−→ T ×W × X → W × X is just (f ◦ i) × id, and

since Γ is finite over f(t), we conclude that j∗(γ∗T × Γ) is also proper. Hence,
by proposition 7, j∗(γ∗T × Γ) = (γ ◦ j)∗T × Γ.

For the sake of brevity, let us introduce notation u = (f ◦ i)× id : X →W ×X,
and v = i× id : W ×X → T ×W ×X. Consider a cartesian diagram

u−1v−1T × Γ −−−−→ v−1T × Γ −−−−→ T × Γy y y
X

u−−−−→ W ×X v−−−−→ T ×W ×X.
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Both u and v are regular embeddings, and v ◦ u = γ ◦ j. Moreover, proposition
8 states that v∗(T × Γ) = Γ in Z∗(W ×X).

Applying proposition 7 once again, we obtan an equality

u∗(v∗T × Γ) = (v ◦ u)∗T × Γ = (γ ◦ j)∗T × Γ = j∗(γ∗T × Γ)

But by definition (Γ ◦ f)∗t = j∗(Γ ◦ f) = j∗(γ∗T × Γ), while u∗(v∗T × Γ) =
u∗(Γ) = Γ∗f(t).

Proposition 10. Let T,W be smooth irreducible quasi-projective varieties, X a
smooth irreducible projective variety, Γ: W → X a correspondence, f : T → W
a morphism, and t ∈ T a closed point. (Γ ◦ f)∗t = Γ∗f(t) in CH 0(X)

Proof. Let i : t→ T be the inclusion of point. In the notation of Fulton’s chapter
8, (f × id)∗Γ = [T ×X] ·(f×id) Γ, and (i× id)∗z = [X] ·(i×id) z. Proposition 8.1.1
from chapter 8 of [6] shows that there is an equality in CH 0(X):

(i× id)∗((f × id)∗Γ) = [X] ·(i×id) ([T ×X] ·(f×id) Γ) =

([X] ·(i×id) [T ×X]) ·(f◦i×id) Γ = (i× id)∗[T ×X] ·(f◦i×id) Γ.

Proposition 8 shows that (i× id)∗[T ×X] = [X], and so

(i× id)∗((f × id)∗Γ) = ((f ◦ i)× id)∗Γ.

3.1.4 Finite points

Proposition 11. Let W be a quasi-projective variety, X a projective variety,
and Γ: W → X an effective correspondence of degree d. Let U ⊂ W be the
Zariski-open subset over which Γ is flat, and let f : U → X(d) be the induced
morphism. Assume that Γ is finite over W . If f is defined at a closed point
w ∈W , then f(w) = Γ∗w.

Proof. Let C0 ⊂W be an irreducible curve which contains w and meets U , and
let i : C →W be the normalization of C0. By proposition 6, the correspondence
Γ ◦ i is defined as a cycle and is finite over C. By proposition 9, if c ∈ C is a
closed point, then (Γ ◦ i)∗c = Γ∗i(c) in Z0(X).

By proposition 2, Γ ◦ i is flat over C. Hence the morphism g induced by Γ ◦ i is
defined everywhere, and agrees with Γ∗ at all closed points of C. Let u ∈ i−1(U)
be a closed point. Since (Γ ◦ i)∗u = Γ∗i(u) in Z0(X), and since Γ ◦ i is effective,
it follows that g(u) = f(i(u)). We conclude that g|i−1U = f ◦ i|i−1U because our
schemes are of finite type over C. Moreover, the rational map f ◦ i is defined
everywhere because C is smooth, and so g = f ◦ i.

By construction, there exists such a closed point c ∈ C that i(c) = w. Hence,
Γ∗w = (Γ ◦ i)∗c = g(c) = f(w).
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Proposition 12. Let W be a quasi-projective variety, X a projective variety,
and Γ: W → X an effective correspondence of degree d. Let U ⊂ W be the
Zariski-open subset over which Γ is flat, and let f : U → X(d) be the induced
morphism. If Γ is finite over W , then f can be extended to W .

Proof. We need to show that there exists a family g : Z → W of nonnegative
effective 0-cycles of X, which agrees with the one defined by f over U .

Let Z = supp Γ and g : Z → W the projection. The cycle Γ provides us with
multiplicities for irreducible components of Zi of Z, and we have already con-
structed g[−1](w) for every point w ∈W over which Γ is flat.

By assumptions, W is smooth (in particular normal), and g : Z → W satisfies
conditions (3.10.1) – (3.10.3) of Kollár’s definition 3.10 (see [7], chapter I, section
3). We now apply theorem 3.17 from chapter I of [7], which shows that g is a
well-defined family of algebraic cycles of X, i.e. that we can define g[−1](w) for
all points w ∈ W . Over flat points of W this family coincides with the one
defined by f , since in this situation g[−1](w) is unambiguously determined by
scheme-theoretic fibers of g|Zi over w, as we have seen in the proof of proposition
4.

Proposition 13. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, and Γ: W → X a correspondence which
has no vertical components. If there exists such a nonempty Zariski-open subset
U ⊂ W that Γ is finite over U and Γ∗u = 0 in Z0(X) for every closed point
u ∈ U , then Γ = 0 in Z∗(W ×X).

Proof. Restrict Γ to U ×X and write it as a sum of distinct irreducible compo-
nents

Γ|U =

k∑
i=1

niZi.

Assume that k > 0, and consider a cycle Γ′ =
∑k−1
i=1 niZi. For every u ∈ U the

fiber Zk ∩{u}×X is contained in supp Γ′∩{u}×X because Γ′∗u = −nk(Zk)∗u.
Thus Zk ⊂ supp Γ′, and so it must coincide with one of the Zi’s, which is
impossible if k > 0. Hence, Γ|U = 0 in Z∗(U ×X), which in turn means that
Γ ⊂ (W\U) ×X, i.e. that no component of Γ is surjective. Since there are no
vertical components by assumption, we conclude that Γ = 0 in Z∗(W ×X).

We next study closures (extensions) of correspondences.

Proposition 14. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, U ⊂ W a Zariski-open subset, and n =
dimW . There exists an injective homomorphism Zn(U × X) → Zn(W × X),

Γ 7→ Γ̃, called the closure homomorphism. It has the property that Γ̃|U = Γ for

every Γ ∈ Zn(U × X). Moreover if Γ has no vertical components, then Γ̃ has
no vertical components too.
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Proof. Clearly, it is enough to define the operation Γ 7→ Γ̃ for irreducible Γ
of multiplicity 1. In this case we let Γ̃ be the closure of Γ in W × X. If Γ is
not vertical, then Γ̃ surjects onto W , since the image of Γ̃ under the projection
Γ̃→W contains a dense open subset U , which is in turn the image of Γ ⊂ Γ̃.

Proposition 15. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, and Γ: W → X an effective correspon-
dence of degree d, which has no vertical components. Let U be the Zariski-open
subset over which Γ is finite, and f : U → X(d) the induced morphism. Consider
a correspondence Γf : U → X induced by f and take its extension Γ̃f : W → X.

The correspondences Γ and Γ̃f coincide.

Proof. By proposition 11, (Γ̃f )∗u = Γ∗u for every closed point u ∈ U . Moreover

Γf is finite over U by construction, and so Γ̃f has no vertical components.

Proposition 13 then shows that Γ̃f = Γ.

Proposition 16. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, Γ: W → X an effective correspondence
of degree d, which has no vertical components, and f : W → X(d) the induced
rational map. Let U ⊂ W be the Zariski-open subset over which Γ is finite,
and V ⊂W the Zariski-open subset over which f is defined. The sets U and V
coincide.

Proof. From proposition 12 we know, that U ⊂ V . Let Z be the correspondence
induced by f over V . Proposition 15 tells us that Γ|V = Z. Since Z is finite
over V by construction, V = U .

3.1.5 Arbitrary points

What remains is to analyze the behaviour of Γ∗ at points over which Γ∗ is not
finite. As it turns out in this case the assumption that the base W is projective
makes things a lot easier. Fortunately, the general quasi-projective case can be
reduced to the projective one.

Proposition 17. Let W be a smooth irreducible projective variety, U ⊂ W a
nonempty Zariski-open subset, and z ∈ CH 0(W ) a cycle. There exsists a cycle
z′ ∈ CH 0(X), which is rationally equivalent to z and supported on U .

Proof. There exists a curve C ⊂ W such that supp z ⊂ C and C meets U .
Let f : C̃ → X be the normalization of C. We can lift the cycle z to a divisor
z̃ ∈ CH 0(C̃). The subset f−1U is nonempty and its complement C\f−1U is
just a finite number of points. Hence there is a divisor z̃′ which is equivalent
to z̃ and is supported in f−1U . Correspondingly, f∗z̃

′ is equivalent to z and is
supported in U .
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Proposition 18. Let W,X be smooth irreducible projective varieties, Γ: W →
X a correspondence. If there exists a nonempty Zariski-open subset U ⊂ W
such that if Γ∗|U = 0, then Γ∗ = 0.

Proof. Let w ∈W be a closed point. Since W is projective, Γ∗w = q∗(p
∗w · Γ),

where p : W ×X → W and q : W ×X → X are the projections, and the map
Γ∗ in this form is defined not just on W , but on CH 0(W ). By proposition
17, there exists a cycle z which is equivalent to w and supported in U , so that
Γ∗z = 0.

As a corollary, if a correspondence Γ is vertical, then Γ∗ = 0.

Proposition 19. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, Γ: W → X an effective correspondence of
degree d, and f : W → X(d) the rational map induced by Γ. Let p : W ×X(d) →
W and q : W ×X(d) → X(d) be the projections, and G ⊂ W ×X(d) the closure
of the graph of f . If z ∈ G is a closed point, then q(z) is equal in CH 0(X)
to Γ∗p(z). In particular, if z1, z2 ∈ G are such points that p(z1) = p(z2), then
q(z1) = q(z2) in CH 0(X).

Proof. Let us embed W as an open subvariety into an irreducible projective
variety Y , and let π : Ỹ → Y be the resolution of singularities of Y . Because W
is smooth, π restricted to π−1W is an isomorphism, and so we can assume that
W is an open subvariety of a smooth irreducible projective variety Y .

If Γ: W → X is a correspondence, then we can take its extension Γ̃ : Y → X. Let
f̃ : Y → X(d) be the rational map induced by Γ̃. By construction of extension
f̃ agrees with f : W → X induced by Γ, and so the graph G̃ ⊂ Y ×X(d) of f̃
restricted to W ×X(d) is just the graph of f . We can therefore assume that W
is projective.

Let z ∈ G be a closed point. Let U ⊂ W be the nonempty Zariski-open subset
over which Γ is finite. Take a curve C ⊂ G which passes through z and meets
p−1U . Let i : C̃ → G be the normalization of C. Let g = p ◦ i and h = q ◦ i.

Because W is projective, we have a correspondence Γ ◦ g ∈ CH ∗(C × X), as
defined in chapter 16 of [6]. Let Z : C → X be the correspondence induced by
the map h.

Let c ∈ g−1U be a point. By definition, Z∗c = h(c) in Z0(X), and (Γ ◦ g)∗c =
Γ∗g(c) in CH 0(X). Since g(c) ∈ U , the function f is defined at g(c), and so
Γ∗g(c) = f(g(c)) in Z0(X). On the other hand, h(c) = q(i(c)) = f(g(c)) by
definition of the graph G of f .

So, Z∗ and (Γ◦g)∗ agree over an open subset g−1U , and proposition 18 implies,

that they agree everywhere. By construction of C̃, there exists c ∈ C̃, such that
i(c) = z. Hence, Γ∗p(z) = Z∗c = q(z).
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Let us collect all the results obtained before into a single theorem.

Theorem 1. Let W be a smooth irreducible quasi-projective variety, X a smooth
irreducible projective variety, and d a nonnegative integer. There is a bijection
between the sets:

correspondences Γ: W → X, which
are effective, of degree d, and which ⇔ rational maps f : W → X(d).
have no vertical components

If Γ: W → X is such a correspondence, and f : W → X(d) the induced rational
map, then f is defined precisely at the points at which Γ is finite. If w ∈W is a
closed point over which Γ is finite, then Γ∗w is defined as an element of Z0(X),
and Γ∗w = f(w) in Z0(X).

Let G ⊂W ×X(d) be the closure of the graph of f , and let p : W ×X(d) →W ,
q : W × X(d) → X(d) be the projections. If z ∈ G is a closed point, then
Γ∗p(z) = q(z) in CH 0(X). In particular all cycles in a fiber of p : G→W over
a closed point w ∈W are rationally equivalent.

Proof. We pass from left to right by taking the induced rational map, and from
right to left by taking the induced correspondence and then extening it to W .
The fact that it is is a bijection follows from propositions 15 and 5.

The rest follows from propositions 16, 11, 3 and 19.

3.2 Rational equivalence of zero-cycles

Let X be a smooth irreducible projective variety, and d a nonnegative integer.
Closed points of X(d) are in bijection with effective zero-cycles of degree d in
X. Consider the set

R = {(α, β) ∈ X(d)(C)×X(d)(C) | α = β in CH 0(X)}.

We are going to show that R can be parametrized by a countable union of
subvarieties of the cartesian product X(d) × X(d). To do it we need to study
rational curves in X(d) for all d > 0.

Let us introduce additional conventions for this section.

Every smooth irreducible projective variety X is is assumed to be equipped with
an ample line bundle OX(1) with respect to which we will compute degrees of
cycles.

Let f : P1 → X be a morphism. We will say that such a morphism has degree
d if f∗OX(1) ∼= O(d). By projection formula,

d = deg(f∗OX(1)) = deg(f∗(1) · OX(1)) = (deg f) · deg(f(P1) · OX(1)),
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where 1 ∈ CH 1(P1) is the fundamental cycle of P1. We emphasise that the
degree deg f of f as a morphism onto its image is just a multiple of d.

3.2.1 Specialization of rational curves

For the moment, let us admit arbitrary schemes over arbitrary bases to the
study.

Definition 8. Let A be a DVR, η ∈ SpecA its generic point, and X → SpecA a
morphism. The closure of Xη in X is called the flat completion of X → SpecA.
The fiber of the flat completion over the closed point of SpecA is called the flat
limit of X → SpecA.

Proposition 20. Let A be a DVR, η ∈ SpecA its generic point, and : X →
SpecA a morphism. The flat completion of X → SpecA is the maximal closed
subscheme of X which is flat over SpecA.

Proof. Let us first show that the flat completion is flat over SpecA.

Let i : Xη → X be the inclusion of the fiber over η. By construction, the
flat completion is defined by the maximal quasi-coherent subscheaf of the sheaf
I = ker(OX → i∗OX). Notice that in general I needs not be quasi-coherent.

Let SpecB ⊂ X be an affine open subscheme, and let t ∈ A be an uniformizing
parameter. Clearly, Xη|SpecB = SpecBt, and so I|SpecB = ker(B → Bt). In
particular, I is a quasi-coherent sheaf.

Let I = ker(B → Bt). By construction, B/I embeds into Bt, and so it is torsion
free as an A-module. Hence, the flat completion is flat over SpecA.

Let Y be a closed subscheme of X which is flat over SpecA. Let SpecB ⊂ X
be an affine open subscheme, and let J be the ideal of Y |SpecB . By assumption,
B/J is flat over A. Hence, every A-torsion element of B vanishes in B/J , i.e.
is contained in J . But I consists exactly of such elements, and so I ⊂ J , which
means that Y is a closed subscheme of the flat completion.

Definition 9. Let X be a scheme over a field k. We say that X is a rational
curve, if its normialization is a disjoint union of rational curves P1

k.

Proposition 21. Let A be a DVR, and X → SpecA a projective morphism.
If the generic fiber of X is an irreducible rational curve, then the flat limit of
X → A is a connected rational curve.

Proof. Let η be the generic point of SpecA, and let Y → SpecA be the flat
completion of X → SpecA. By construction, Yη = Xη admits a surjection from
P1
k(η), so that we have a rational map ϕ : P1

A → Y over SpecA.
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Since dim P1
A = 2, this scheme is a regular fibered surface in terms of definition

8.3.1 from [9]. Moreover, Y → SpecA is projective by construction, so that
we can apply theorem 9.2.7 from [9] to ϕ, and conclude that there exists a

projective A-scheme Ỹ , and A-morphisms

P1
A

f←−−−− Ỹ
g−−−−→ Y,

such that f is a sequence of blowups of closed points, and ϕ ◦ f = g.

The morphism g is proper because it is a morphism of projective A-schemes.
Also, f restricted to Ỹη is an isomorphism with Xη. Since ϕ◦f = g, we conclude

that the set of points g(Ỹ ) is closed and contains Yη. Therefore, it is equal to
Y , and g is surjective.

Let m ∈ SpecA be the closed point. Since f is a composition of blowups of
closed points, the fiber Ỹm is a “tree” of projective lines P1

k(m). On the other

hand, g restricted to Ỹm is surjective onto Ym, and so Ym = lim(X → SpecA)
is a connected rational curve, as an image of such curve.

3.2.2 Universal families of rational curves

We return back to schemes over C.

Let X be a smooth irreducible projective variety. Consider a Hom-scheme:

Hom(P1, X)(Y ) = {f : P1
Y → XY | f is a morphism over Y }.

For the sake of brevity let us denote it H. It is known that H is an open
subscheme of the Hilbert scheme Hilb(P1×X) (see [7], chapter I, theorem 1.10).
In general H is not of finite type over C, but every irreducible component of
it is quasi-projective. The scheme H is equipped with an evident evaluation
morphism ev : P1

H → X.

Similarly, we can introduce a Hom-scheme of morphisms of degree d:

Homd(P
1, X)(Y ) = {f : P1

Y → XY | f is a morphism of degree d over Y }.

This scheme is quasi-projective.

Proposition 22. Let X be a smooth irreducible projective variety, H the Hom-
scheme introduced earlier, and H̃ the normalization of H. There exists a a
well-defined family g : R̃ → H̃ of nonnegative proper algebraic cycles of X of
dimension 1, which is universal in the sense that every irreducible rational curve
C ⊂ X occurs as a fiber of g over a suitable point of H̃.
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Proof. H is representable, and so we get an universal morphism f : P1
H → XH .

Pulling it back to H̃ we obtain an universal morphism f : P1
H̃
→ XH̃ . Let

G ⊂ H̃ × P1 ×X be its graph. Take its fundamental cycle [G]. Theorem 3.18

from chapter I section 3 of [7] shows that G → H̃ together with coefficients
provided by [G] is a well-defined family of proper nonnegative 1-dimensional
algebraic cycles of P1 ×X.

Let p : P1 ×X → X be the projection. Let R̃→ H̃ be the pushforward along p
of the family G → H̃ (see [7], chapter I, section 6, definition 6.7). All rational

curves in X occur as fibers of R̃ because by construction its support is the image
of the universal morphism f : P1

H̃
→ XH̃ .

There is no guarantee that the image of the universal morphism f : P1
H → XH

will be flat over H in general, and so we need to use Chow varieties instead of
Hilbert schemes. The key difference between Hilb and Chow as functors from
the category of schemes to itself is that Hilb is contravariant (pullbacks of flat
families are flat), while Chow is covariant (pushforwards of families of cycles are
families of cycles).

So, at this point we have a universal family of rational curves R→ H. Its irre-
ducible components are only quasi-projective, and our next goal is to compactify
it.

Proposition 23. Let X be a smooth irreducible projective variety. There exists
a normal scheme H, and a well-defined family g : R→ H of nonnegative proper
1-dimensional algebraic cycles of X with the following properties:

(a) The morphism H → Chow(X) induced by R is finite.

(b) Every irreducible rational curve C ⊂ X occurs as some fiber of g.

(c) Every fiber of g is a connected rational curve.

Proof. For the discussion below it is useful to recall that for every family of
cycles g and every point w in the base of this family

supp g[−1](w) = g−1(w)red

(see [7], chapter I, corollary 3.16).

Let τ : H̃ → Chow(X) be the morphism induced by the family R̃ → H̃ from
proposition 22. We construct H as the normalization of the closure of the
image of τ . Chow(X) is locally noetherian, and so the condition (a) is satisfied.
Let R → H be the family induced by this normalization morphism h : H →
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Chow(X). We have a commutative diagram

R̃ −−−−→ R −−−−→ Univ(X)y y y
H̃

h−−−−→ H
h−−−−→ Chow(X),

where Univ(X) is the universal family over Chow(X), and τ = h ◦ h. Notice
that h is dominant.

Let C ⊂ X be an irreducible rational curve. By proposition 22 there exists a
closed point r ∈ H̃, such that C = supp g[−1](r). Since τ factors as h ◦ h, we
conclude that C = supp g[−1](h(r)), and so the condition (b) is satisfied.

Let r ∈ H be a point, and let ξ ∈ H be a generic point of some irreducible
component which contains r. Since h is dominant, ξ is an image of some point
of H̃, and as earlier we conclude that supp g[−1](ξ) is an irreducible rational
curve.

Let A be a DVR with generic point η, and closed point m. Let j : SpecA→ H
a morphism which sends η to ξ, and m to r. Let gA : Z → SpecA be the
Chow pullback of g : R → H by j (this Chow pullback is just the reduced
scheme-theoretic pullback of g by j with appropriate multiplicities of irreducible
components; see [7], chapter I, section 3, definition 3.18)

Every irreducible component of Z maps onto SpecA since gA : Z → SpecA is a
well-defined family of algebraic cycles. As Z is also reduced, we conclude that
gA : Z → SpecA is flat. We already know that supp g[−1](ξ) = g−1(ξ)red is an
irreducible rational curve, and so gA

−1(η) is an irreducible rational curve too.
Hence, proposition 21 implies, that g−1

A (m)red is a connected rational curve,
which in turn means that g−1(r)red is a connected rational curve.

The scheme H is not of finite type over C in general. Nevertheless, every
irreducible component of H is projective over C. Indeed, by construction of H
there is a finite morphism H → Chow(X), and every irreducible component of
Chow(X) is projective over C.

The scheme Chow(X) is a disjoint union of projective varieties Chowd,d′(X)
parametrizing cycles of dimension d and degree d′. Hence H splits into a disjoint
union of projective varieties Hd indexed by degrees of cycles. Restricions of R
to Hd will be denoted Rd.

To make dependency on X explicit we will also use notation Hd(X) and Rd(X).
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3.2.3 Parametrization of rational equivalence

Next proposition shows that effective cycles are rationally equivalent iff they
can be “continuously deformed” into one another, possibly after adding some
auxillary effective cycle to both.

Proposition 24. Let X be a smooth irreducible projective variety, d a nonnega-
tive integer, and α, β effective 0-cycles of degree d in X. The cycles α and β are
rationally equivalent if and only if there exists a nonnegative integer m, effective
cycle γ of degree m, and a morphism f : P1 → X(d+m), such that f(0) = α+ γ
and f(∞) = β + γ in Z0(X).

Proof. Let Ci ⊂ X be curves and fi rational functions on Ci such that

α− β =
∑
i

div fi.

Let γ′ =
∑
i f
−1
i (0)− α =

∑
i f
−1
i (∞)− β. Write γ′ = γ − γ′′ as a difference of

effective cycles.

Let Γi ⊂ X × P1 be the graph of fi. We can view Γi as a correspondence
Γi : P1 → X. Let p : X×P1 → X be the projection. Consider a correspondence
Γ: P1 → X defined as

Γ =
∑
i

Γi + p∗γ′′.

By construction,

Γ∗0 =
∑
i

f−1
i (0) + γ′′ = α+ γ,

Γ∗∞ =
∑
i

f−1
i (∞) + γ′′ = β + γ.

From theorem 1 we know that Γ induces a morphism f : P1 → X(d+m), such
that f(0) = α+ γ and f(∞) = β + γ.

Conversely, if f : P1 → X(d+m) is a morphism, and γ an effective cycle of degree
m, such that f(0) = α+ γ and f(∞) = β + γ, then f induces a correspondence
Γ: P1 → X. From intersection theory we know, that Γ∗0 = Γ∗∞ in CH 0(X),
and so α = β in CH 0(X) too.

Let X be a smooth irreducible projective variety. In the following we will need
to control degrees of cycles in all symmetric powers X(d) simultaneously. So, let
us pick an ample line bundle OX(1) on X, and construct from it line bundles
on X(d) in the following way. Let πi : X

d → X be the projections. Consider the
line bundle OXd(1) =

⊗d
i=1 π

∗
iOX(1) over Xd. It is ample (see proposition 50).

Moreover, it is invariant under the natural action of symmetric group on Xd,
and so descends to an ample line bundle on X(d) which we will denote OX(d)(1).
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Proposition 25. Let d1, d2 be nonnegative integers, and let f1 : P1 → X(d1),
f2 : P1 → X(d2) be morphisms. Let d = d1 + d2. Consider a morphism
f1 + f2 : P1 → X(d) which is a composition of (f1, f2) with an evident addi-
tion morphism X(d1) ×X(d2) → X(d). In this situation

(f1 + f2)∗OX(d)(1) = f∗1OX(d1)(1)⊗ f∗2OX(d2)(1).

In other words the degree of f1 + f2 is the sum of degrees of fi.

Proof. (Compare the proof of lemma 2 in [11]).

For i = 1, 2 let qi : X
di → X(di) be the quotient morphism, and Si the fiber

product P1 ×X(di) X
di with reduced induced subscheme structure. We have a

commutative diagram
Si −−−−→ Xdiy yqi
P1 fi−−−−→ X(di).

(1)

Let S be the fibered product S1×P1 S2 with reduced induced subscheme struc-
ture, and p : S → P1 the projection. By construction, p : S → P1 is finite
and dominant. Replacing S by a closed subscheme we may assume that each
irreducible component of S dominates P1, and so p is flat.

Let f̃i be the composition of the projection S → Si with the morphism Si → Xdi

from (1). For each i = 1, 2 there is a commutative diagram

S
f̃i−−−−→ Xdiyp yqi

P1 fi−−−−→ X(di).

(2)

Consider a commutative diagram

S
(f̃1,f̃2)−−−−→ Xdyp yq

P1 f1+f2−−−−→ X(d),

(3)

where q is the quotient morphism. Let pi : X
d → Xdi be the projections of

Xd = Xd1 ×Xd2 to respective factors. By construction,

OXd(1) = p∗1OXd1 (1)⊗ p∗2OXd2 (1),

and so
(f̃1, f̃2)∗OXd(1) = f̃∗1OXd1 (1)⊗ f̃2

∗
OXd2 (1).
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On the other hand, the diagram (3) commutes, and so

p∗(f1 + f2)∗OX(d)(1) = (f̃1, f̃2)∗q∗OX(d)(1) = (f̃1, f̃2)∗OXd(1).

Diagrams (2) show that

f̃∗i OXdi (1) = f̃∗i q
∗
iOX(di)(1) = p∗f∗i OX(di)(1).

Hence
p∗(f1 + f2)∗OX(d)(1) = p∗(f∗1OX(d1)(1)⊗ f∗2OX(d2)(1)).

The morphism p is finite and flat by construction, and so proposition 52 shows
that the kernel of p∗ : Pic P1 → PicS is torsion. The group Pic P1 = Z has no
torsion, so p∗ is injective, and

(f1 + f2)∗OX(d)(1) = f∗1OX(d1)(1)⊗ f∗2OX(d2)(1).

Next theorem is the main result of this section. It was taken from the article of
Mumford [11] (see lemma 3).

Theorem 2. Let X be a smooth irreducible projective variety, and d a nonneg-
ative integer. Consider the subset R ⊂ (X(d) ×X(d))(C):

R = {(α, β) ∈ (X(d) ×X(d))(C) | α = β in CH 0(X)}.

There exists a countable collection {Ri}∞i=1 of closed irreducible subvarieties
Ri ⊂ X(d) ×X(d), which satisfies two conditions:

(a) R =
⋃
iRi(C).

(b) For each Ri there exist a nonnegative integer m = m(i) depending only on i,
a quasi-projective variety T , a surjective morphism e : T → Ri, and morphisms
g : T → X(m), h : T ×P1 → X(d+m), such that for every t ∈ T (C)

h(t, 0) = g(t) + q1(e(t)),

h(t,∞) = g(t) + q2(e(t)),

where 0,∞ ∈ P1(C) are the closed points, q1, q2 : X(d) × X(d) → X(d) the
projections, and the plus sing denotes the addition morphism X(m) × X(d) →
X(d+m).

Proof. Let p, k > 0 be integers.

In the previous section for every smooth irreducible projective variety Y and
index p we constructed projective varieties Hp(Y ) which are described by propo-
sition 23. In this proof symbols Hp,k will denote the varieties Hp(X

(d+k)), and
symbols Rp,k will denote the families of cycles Rp(X

(d+k)) over Hp(X
(d+k)).

Let gp,k : Rp,k → Hp,k be corresponding projections.
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By definition, Rp,k is a closed subscheme of Hp,k ×X(d+k), and

Rp,k(C) = {(r, α) ∈ (Hp,k ×X(d+k))(C) | α ∈ g−1
p,k(r)(C)}.

Therefore the subset

{(r, α, β, γ) ∈ (Hp,k ×X(d) ×X(d) ×X(k))(C) | α+ γ, β + γ ∈ g−1
p,k(r)(C)}

is a set of C-points of a closed subscheme of Hp,k×X(d)×X(d)×X(k). Projecting
this subscheme down to X(d)×X(d) we obtain a closed subscheme Zp,k with the
following property: (α, β) ∈ Zp,k(C) if and only if there exists such γ ∈ X(k)(C)
and r ∈ Hp,k(C), that α+ γ, β + γ ∈ g−1

p,k(r)(C).

Since each fiber of Rp,k is a connected rational curve, and since all rational
curves in X(d+k) occur in the families Rp,k for different p, proposition 24 shows,
that

R = ∆(C) ∪
⋃
p,k

Zp,k(C).

Hence, to condition (a) is satisfied if we will take Ri to be irreducible components
of the Zp,k, and ∆.

It remains to verify that the condition (b) also holds for Ri.

Let (α, β) ∈ Ri(C). By construction, there exists r ∈ Hp,k, and γ ∈ X(k), such

that α + γ, β + γ ∈ g−1
p,k(r)(C). Let us write g

[−1]
p,k (r) as a sum of irreducible

components:

g
[−1]
p,k (r) =

l∑
i=1

kiCi,

where l 6 p. Let fi : P1 → X be the normalization of Ci. The degree of fi is
equal to deg(Ci · OX(d+k)).

Without loss of generality we may assume that f1(0) = α + γ and fl(∞) =

β + γ. Since g
[−1]
p,k (r) is connected, we can also assume that fi(∞) = fi+1(0)

for every i = 1, . . . , l − 1, after decreasing l if necessary. Let Γi : P1 → X be
correspondences induced by fi, and let Γ =

∑l
i=1 Γi. By construction,

Γ∗0 = α+ γ +

l∑
i=2

fi(0),

Γ∗∞ =

l−1∑
i=1

fi(∞) + β + γ.

Because fi(0) = fi−1(∞) for every i = 2, . . . , l, we have an equality

l∑
i=2

fi(0) =

l−1∑
i=1

fi(∞).
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Let γ1 = γ +
∑l
i=2 fi(0), and let f : P1 → X(d+k+(l−1)(d+k)) be the morphism

induced by Γ. As we have computed,

f(0) = α+ γ1,

f(∞) = β + γ1.

Moreover, proposition 25 implies that f has degree at most p. By adding con-
stant correspondences to Γ, we can assume that f takes values in X(p(d+k)).
This operation does not change the degree of f .

Therefore, we have demonstrated that for m = p(d + k) − d, and for every
(α, β) ∈ Ri(C) there exists γ ∈ X(m), and f : P1 → X(d+m) of degree at most
p, such that f(0) = α+ γ, and f(∞) = β + γ.

Let T0 =
∐p
j=1 Homj(P

1, X(d+m)). By construction, T0 is equipped with the

evaluation map ev : T0 ×P1 → X(d+m). Let π : X(d) ×X(m) → X(d+m) be the
addition morphism. Let i0, i∞ : T0 → T0×P1 be the inclusions of T0 as a closed
subscheme which projects onto the closed point 0 or ∞ ∈ P1 respectively. Let

qt : T0 ×X(d) ×X(d) ×X(m) → T0,

qa : T0 ×X(d) ×X(d) ×X(m) → X(d),

qb : T0 ×X(d) ×X(d) ×X(m) → X(d),

qc : T0 ×X(d) ×X(d) ×X(m) → X(m),

be the projections to respective factors. Let

u1 : T0 ×X(d) ×X(d) ×X(m) → X(d+m) ×X(d+m),

u2 : T0 ×X(d) ×X(d) ×X(m) → X(d+m) ×X(d+m),

be morphisms which are defined as

u1 = (ev ◦i0 ◦ qt, π ◦ (qa, qc)),

u2 = (ev ◦i∞ ◦ qt, π ◦ (qb, qc)).

For example, if (t, α, β, γ) is a closed point, then u1(t, α, β, γ) = (ev(t, 0), α+γ).

Consider the diagonal subscheme ∆ ⊂ X(d+m) ×X(d+m) and let

T1 = u−1
1 ∆ ∩ u−1

2 ∆.

If (t, α, β, γ) is a C-point of T0 ×X(d) ×X(d) ×X(m), then it belongs to T1(C)
if and only if ev(t, 0) = α+ γ and ev(t,∞) = β + γ.

By construction, T1 is equipped with a projection e1 : T1 → X(d) ×X(d), e1 =
(qa, qb)|T1

. As we have demonstrated earlier, Ri(C) ⊂ e1(T1(C)). Moreover,
there is a morphism g1 : T1 → X(m), g1 = qc|T1

, and a morphism h1 : T1×P1 →
X(d+m), h1 = ev ◦(qt|T1 × id).
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Consider a cartesian square

T −−−−→ T1ye ye1
Ri −−−−→ X(d) ×X(d).

The map e(C) : T (C) → Ri(C) is surjective by construction. Using suitable
compositions with the morphism T → T1, we also get morphisms g : T → X(m)

and h : T ×P1 → X(d+m) which satisfy relevant equations of condition (b).

Finally, we can replace T by Tred, so that it becomes a quasi-projective variety.
As it changes no relevant properties, we conclude that the condition (b) is also
satisfied.

3.3 Fibers of induced maps

We are now ready to study maps Γ∗ : W → CH 0(X) induced by correspon-
dences Γ: W → X. As we will see their properties resemble closely the relevant
properties of morphisms of projective varieties.

Proposition 26. Let X be a smooth irreducible projective variety, and d a
nonnegative integer. Consider the map σd,d : X(d)×X(d) → CH 0(X). The fiber
σ−1
d,d(0) is a union of at most countably many Zariski-closed subsets.

Proof. Follows directly from theorem 2, condition (a).

Proposition 27. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, and Γ: W → X a correspondence. Con-
sider the map Γ∗ : W → CH 0(X). The fiber Γ−1

∗ (0) is a union of at most
countably many Zariski-closed subsets.

Proof. Without loss of generality we may assume that Γ has no vertical com-
ponents, since they do not contribute to Γ∗. Write Γ = Γ+−Γ− as a difference
of effective correspondences. Let f+ : W → X(d+) and f− : W → X(d−) be the
rational maps induced by these correspondences.

If d+ 6= d−, then evidently Γ−1
∗ (0) = ∅, so assume that d+ = d− = d for

some d. Let G ⊂ W ×X(d) ×X(d) be the closure of graph of the rational map
(f+ × f−) : W → X(d) ×X(d). Let p : G→W and q : G→ X(d) ×X(d).

Let w ∈ W be a point. From theorem 1 (more precisely, from proposition 19)
we know, that Γ∗w = 0 if and only if q(p−1(w)) ⊂ σ−1

d,d(0). Hence, Γ∗w = 0

iff w ∈ p(q−1(σ−1
d,d(0))). The projection p is proper, and so p(q−1(σ−1

d,d(0))) is a
union of at most countably many Zariski-closed subsets.
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Proposition 28. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, Γ: W → X a correspondence, and z ∈
CH 0(X) a cycle. Consider the map Γ∗ : W → CH 0(X). The fiber Γ−1

∗ (z) is a
union of at most countably many Zariski-closed subsets.

Proof. If z does not belong to the image of Γ∗, then there is nothing to prove.
So, assume that z = Γ∗w for some w ∈W .

Let p1, p2 : W 2 →W be projections to respective factors. Consider a correspon-
dence Z = Γ ◦ p1 − Γ ◦ p2. Proposition 10 shows, that it sends (w1, w2) ∈ W 2

to Γ∗w1 − Γ∗w2. Let R = ker(Z∗) ⊂ W 2. By proposition 27, R is a union
of at most countably many Zariski-closed subsets. The fiber of Γ∗ over z is
p2(R∩{w}×W ), and so it is a union of at most countably many Zariski-closed
subsets too.

In particular for every w ∈ W the dimension of the fiber of Γ∗ over Γ∗w is
well-defined. Next proposition says that in some sense the fiber dimension is an
upper semi-continuous function.

Proposition 29. Let W be a smooth irreducible quasi-projective variety, X a
smooth irreducible projective variety, Γ: W → X a correspondence, and k > −1
an integer. Consider the map Γ∗ : W → CH 0(X) and a set

V = {w ∈W | dimWΓ∗w 6 k}

The set V is an intersection of at most countably many Zariski-open subsets.

Proof. As in the proof of proposition 27, let p1, p2 : W 2 →W be the projections,
let Z = Γ ◦ p1 − Γ ◦ p2, and let R = ker(Z∗). The fiber of Γ∗ over Γ∗w is
p2({w} ×W ∩R).

As we know, R =
⋃
iRi, where each Ri is a Zariski-closed subset. Let qi = p1|Ri

and let
Vi = {w ∈W | dim q−1

i (w) 6 k}.

By Chevalley’s theorem, Vi is a Zariski-open subset of W . But clearly V =⋂
i Vi.

4 Factorization theorem

Let X be a smooth irreducible projective variety. In general it is difficult to com-
pute the group CH 0(X)hom. A rare example of such computation is provided
by next theorem, due to Roitman [13]:

Let X be a smooth irreducible projective variety. If there exists such a smooth
projective variety W and a correspondence Γ: W → CH 0(X) that Γ∗W =
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CH 0(X)hom, then the Albanese homomorphism alb: CH 0(X)hom → AlbX is
an isomorphism.

This theorem was generalized by Voisin in [14]:

Let M,X be smooth irreducible projective varieties, and Z : M → X a cor-
respondence. If there exists a smooth projective variety W , and a correspon-
dence Γ: W → X such that Z∗(CH 0(M)hom) ⊂ Γ∗W , then the homomorphism
Z∗ : CH 0(M)hom → CH 0(X) factors through the Albanese torus AlbM .

Our goal is to present a proof of this theorem, following [14].

4.1 Albanese varieties

We sketch briefly some basic facts about Albanese varieties.

Proposition 30. Let X be a smooth irreducible projective variety of dimension
n. Consider a map H1(X,Z) → H1,0(X)∨ which sends a homology class α to
the integration operator

∫
α

: H1,0(X) → C. This map is well-defined, and fits
into a commutative diagram

H1(X,Z) −−−−→ H1,0(X)∨x x
H2n−1(X,Z) −−−−→ Hn−1,n(X),

(4)

where the left vertical arrow is a Poincaré duality isomorphism, the right vertical
arrow is a Serre duality isomorphism, and the lower horizontal arrow is the
natural projection.

Proof. For well-definedness recall that by ∂∂-lemma every global holomorphic
form is closed, and so Stokes theorem shows that

∫
α

depends only on homology
class. Next, decompose the map H1(X,Z)→ H1,0(X)∨ as

H1(X,Z)→ H1(X,C)→ H1(X,C)∨ → H1,0(X)∨,

where the first map is the change of coefficients homomorphism, the second
map is induced by pairing of homology and de Rham cohomology classes by
integration, and the last map is the projection induced by Hodge decomposition
H1(X,C) = H1,0(X)⊕H0,1(X).

Poincaré duality isomorphisms between homology and cohomology groups are
natural with respect to change of coefficients, and so we have a commutative
diagram:

H1(X,Z) −−−−→ H1(X,C)x x
H2n−1(X,Z) −−−−→ H2n−1(X,C).
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Also, cup product Poincaré duality isomorphism H2n−1(X,C) → H1(X,C)∨

splits as
H2n−1(X,C) −−−−→ H1(X,C) −−−−→ H1(X,C)∨,

where the first arrow is the homology-cohomology Poincaré duality isomorphism,
and the second one is the isomorphism provided by evaluation of cohomology
classes on homology classes, or equivalently the de Rham integration pairing.
To show that the diagram (4) commutes it remains to notice that cup product
Poincaré duality is compatible with Serre duality on groups Hp,q(X).

Thus H1(X,Z) modulo torsion can be viewed as a lattice in H1,0(X)∨. Quotient
by this lattice is a complex torus which is called the Albanese variety of X
and denoted AlbX. Equivalently, one can describe AlbX as a quotient of
Hn−1,n(X) by the group H2n−1(X,Z) considered as a lattice under natural
projection map H2n−1(X,Z) → Hn−1,n(X) induced by Hodge decomposition.
It is known that AlbX is always projective, i.e. it is an abelian variety.

Fixing a closed point x0 ∈ X we can construct a morphism albx0
: X → AlbX as

follows. Let x ∈ X be a closed point, and let γ ∈ C1(X,Z) be a smooth 1-chain
such that δ(γ) = x − x0. Consider an integration operator

∫
γ

: H1,0(X) → C,

and set albx0
(x) =

∫
γ
. If γ′ is another chain such that δ(γ) = x−x0, then γ−γ′

is a cycle, and so
∫
γ

is equal to
∫
γ′

modulo the lattice H1(X,Z) ⊂ H1,0(X)∨.
Thus, the map albx0

is well-defined. It is known that it is a morphism of
algebraic varieties. By adding several copies of albx0

together we obtain a
morphism albx0

: Xk → AlbX for every k > 0. Since albx0
is invariant with

respect to the natural action of symmetric group on Xk, we also get a morphism
albx0 : X(k) → AlbX. For k large enough albx0 : Xk → AlbX is known to be
surjective.

Similarly, we can define a morphism alb: Xk×Xk → AlbX by sending a point
(x1, x2) ∈ Xk × Xk to albx0

(x1) − albx0
(x2). Consider the case k = 1. Let

γ1, γ2 ∈ C1(X,Z) be such 1-chains that δ(γ1) = x1 − x0, δ(γ2) = x2 − x0. By
construction, alb(x1, x2) =

∫
γ1
−
∫
γ2

=
∫
γ
, where γ ∈ C1(X,Z) is such a chain

that δ(γ) = x1 − x2. Therefore, alb : Xk × Xk → AlbX does not depend on
the choice of base point. The same argument shows that there is a well-defined
group homomorphism alb: Z0(X)hom → AlbX.

Proposition 31. Let X be a smooth irreducible projective variety. The Al-
banese homomorphism alb: Z0(X)hom → AlbX factors through Z0(X)rat, and
descends to a homomorphism alb: CH 0(X)hom → AlbX.

Proof. Let α − β ∈ Z0(X)hom be a cycle, which is rationally equivalent to 0.
Let d = degα = deg β. By assumption there exists an effective cycle γ ∈ Z0(X)
of some degree m, and a morphism f : P1 → X(d+m), such that f(0) = α +
γ and f(∞) = β + γ. Let x0 ∈ X be a point, and consider a composition
albx0

◦f : P1 → AlbX. Every morphism from P1 to abelian variety is constant,
and so albx0

(α+γ) = albx0
(β+γ), which in turn means that alb(α−β) = 0.
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When X is a curve, Abel-Jacobi theorem shows that alb: CH 0(X)hom → AlbX
induces an isomorphism between the Jacobian of X and its Albanese variety.

Proposition 32. Let f : X → Y be a morphism of smooth irreducible projective
varieties of dimensions n and m respectively. Both diagrams

H1(X,Z)
f∗−−−−→ H1(Y,Z)y y

H1,0(X)∨
(f∗)∨−−−−→ H1,0(Y )∨,

H2n−1(X,Z)
f∗−−−−→ H2m−1(X,Z)y y

Hn−1,n(X)
f∗−−−−→ Hm−1,m(X)

commute and are Poncaré duals of each other. Consequently, the morphism f
induces a functorial morphism Alb(f) : AlbX → AlbY .

Proof. Let γ ∈ H1(X,Z) be a cycle. Clearly,
∫
γ
◦f∗ =

∫
f∗γ

, and so the left

diagram commutes and induces a morphism Alb(f) : AlbX → AlbY . The
right diagram is a Poincaré dual of the left one by definition of cohomology
pushforwards. Functoriality of Alb(f) is evident.

Proposition 33. Let f : X → Y be a morphism of smooth irreducible projective
varieties. It induces a commutative diagram:

CH 0(X)hom
f∗−−−−→ CH 0(Y )homyalbX

yalbY

Alb(X)
Alb(f)−−−−→ Alb(Y ).

Proof. Let x1, x2 ∈ X be points, and γ ∈ C1(X,Z) such a chain that δ(γ) =
x1−x2. By construction Alb(f) sends a point corresponding to the operator

∫
γ

to
∫
γ
◦f∗ =

∫
f∗γ

, which in turn is the image of f∗(x1) − f∗(x2) ∈ Z0(Y ) under
the Albanese morphism albY .

Proposition 34. Let X be a smooth irreducible projective variety of dimension
n > 2, x ∈ X a point, and π : X̃ → X a blowup of X at x. The morphism
Alb(π) : Alb X̃ → AlbX is an isomorphism.

Proof. Let U = X\{x}. Consider relative homology groups Hi(X,U,Z). By
excision Hi(X,U,Z) = Hi(C

n,Cn\{0},Z). The pair (Cn,Cn\{0}) is a defor-
mation retract of the pair (Cn, U ′) where U ′ is the complement of the standard
closed unit ball in Cn. Hence, Hi(X,U,Z) ∼= Hi(S

2n,Z). Since n > 2, we
conclude that H1(X,U,Z) = H2(X,U,Z) = 0. Long exact sequence of the pair
(X,U) shows that H1(U,Z)→ H1(X,Z) is an isomorphism.
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Consider a commutative diagram

H1(π−1U,Z)
π∗−−−−→ H1(U,Z)y y

H1(X̃,Z)
π∗−−−−→ H1(X,Z).

The upper horizontal arrow is an isomorphism, and the right vertical arrows is
an isomorphism too as we demonstrated above. Thus, H1(X̃,Z)→ H1(X,Z) is
surjective.

Consider the pullback morphism π∗ : H1,0(X) → H1,0(X̃). It is injective. We

want to show that h1,0(X) = h1,0(X̃). Consider a composition of maps

H0(X̃,Ω1
X̃

)→ H0(π−1U,Ω1
π−1U )→ H0(U,Ω1

U )→ H0(X,Ω1
X), (5)

where the first map is restriction, the second one is induced by isomorphism
π : π−1U → U , and the last one is extension, which is well-defined because
X\U is of codimension at least 2. The map (5) is clearly injective, and so

h1,0(X) = h1,0(X̃). Thus the pullback π∗ is an isomorphism.

Consider a commutative square

H1(X̃,Z)
π∗−−−−→ H1(X,Z)y y

H1,0(X̃)∨
(π∗)∨−−−−→ H1,0(X)∨.

We know that the vertical arrows are injective modulo torsion, the lower hori-
zonal arrow is an isomorphism and the upper horizontal arrow is surjective.
Hence it is also injective modulo torsion, and so Alb(π) is an isomorphism.

Proposition 35. Let X be a smooth irreducible projective variety, x ∈ X a
point, and π : X̃ → X a blowup of X at x. The morphism π∗ : CH 0(X̃) →
CH 0(X) is an isomorphism.

Proof. The morphism π∗ is evidently surjective, so it is enough to prove its
injectivity. Let z ∈ Z0(X̃) be such a cycle, that

π∗z =

n∑
i=1

div fi,

where fi’s are rational functions supported on curves Ci ⊂ X. Let C̃i’s be strict
transforms of these curves and f̃i’s corresponding rational fuctions. Consider a
cycle

z′ = z −
n∑
i=1

div f̃i.
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By construction, π∗z
′ = 0, and hence deg z′ = 0. Moreover, z′ is concentrated

on the exceptional divisor of the blowup. Since this divisor is a projective space,
we conclude that z′ and hence z is rationally equivalent to zero.

In fact both Alb and CH 0 are birational invariants, but we will not need it in
such generality.

Proposition 36. Let C be a smooth irreducible projective curve, and let AlbC
be its Albanese variety. There exists a correspondence A : AlbC → C, such that
A∗x = alb−1(x).

Proof. Let c0 ∈ C be a point, and let g be the genus of C. Consider the Albanese
morphism albc0 : Cg → AlbC. It is known that this morphism is birational and
surjective. Notice, that

albc0(c1, . . . , cg) = alb(c1 + . . .+ cg − gc0).

Let f : AlbC → Cg be the inverse rational map. It induces a correspondence
Z : AlbC → C. Let Z0 : AlbC → C be the constant correspondence sending
each point of AlbC to c0. Consider a correspondence A = Z−gZ0. By construc-
tion, Z∗x is such an effective cycle z ∈ CH 0(C) of degree g, that x = alb(z−gc0).
Hence, A∗x = z − gc0 = alb−1(x).

Proposition 37. Let X be a smooth irreducible projective variety, Y ⊂ X a
smooth irreducible hyperplane section. If dimX > 2, then the map AlbY →
AlbX is an isomorphism. If dimX = 2, then it is a surjection and the kernel
is connected, i.e. it is an abelian variety.

Proof. Let n = dimX. By Lefschetz hyperplane section theorem the maps
Hk(Y,Z) → Hk(X,Z) are isomorphisms when k < n − 1 and surjections when
k = n − 1. Similarly, the maps Hk(X,C) → Hk(Y,C) are isomorphisms when
k < n − 1 and injections when k = n − 1. So, if n > 2 then the map AlbY →
AlbX is an isomorphism.

In case n = 1 consider a commutative diagram

H1(Y,Z) −−−−→ H1(X,Z)y y
H1,0(Y )∨ −−−−→ H1,0(X)∨

The upper horizontal arrow is surjective. Thus, if an element y ∈ H1,0(Y )∨

is mapped into H1(X,Z), then there exists such α ∈ H1(Y,Z) that y − α is
mapped exactly to zero.

Notice that a similar claim for CH 0 is completely wrong.

Another well-known property of Albanese varieties which we will not need but
have to mention is that every morphism from a smooth irreducible projective
variety X to a complex torus factors through AlbX.
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4.2 Simple kernels

Let X be a smooth irreducible projective surface, and C ⊂ X a smooth irre-
ducible ample curve. As we know from proposition 37, the kernel of the induced
morphism AlbC → AlbX is an abelian variety. Our goal is to show that for a
very general curve in a fixed ample linear system this kernel is actually simple,
i.e. it has no nontrivial proper abelian subvarieties.3

We recall briefly some properties of Lefschetz pencils needed for further discus-
sion (for a reference see [15], chapters 2 and 3).

Let X be a smooth irreducible projective variety of dimension n.

Definition 10. A Lefschetz pencil Xt, t ∈ P1 is a pencil of hypersurfaces in
X, such that its base locus is smooth of codimension 2 (in particular, a general
member is smooth), and every section has at most one singular point, which is
a quadratic singularity.

Let L be an ample invertible sheaf on X. Let DX ⊂ |L| be the subset of points
which correspond to singular hyperplane sections. It is known that DX is a
subvariety of |L|, and either of the following holds:

(a) dimDX 6 n− 2,

(b) dimDX = n − 1, and there exists a dense open subset D0
X ⊂ DX , such

that all points of D0
X correspond to hyperplane sections with a single quadratic

singular point.

As a consequence for a projective line ` ⊂ |L| to be a Lefschetz pencil it is
necessary and sufficient that either (a) ` does not meet DX or (b) ` meets DX
transversally at points of D0

X . In particular, for every complete ample linear
system |L| a general projective line ` ⊂ |L| is a Lefschetz pencil, and every
point of |L| which corresponds to a smooth irreducible hyperplane section can
be included into a Lefschetz pencil.

Let Xt, t ∈ P1 be a Lefschetz pencil. Fix a point 0 ∈ P1. For every i define
a vanishing cohomology group Hi(X0,Z)van as the kernel of the pushforward
Hi(X0,Z) → Hi+2(X,Z) induced by inclusion X0 ⊂ X. It is known (see [15],
chapter 2, corollary 2.25) that if i 6= n − 1, then Hi(X0,Z)van = 0. Theory of
Lefschetz pencils provides a description of the remaining group Hn−1(X0,Z)van

in terms of vanishing cycles.

Let U ⊂ P1 be the set of regular values, i.e. the set of points t ∈ P1 such that
the hyperplane sections Xt are smooth. Let {t1, . . . , tm} be the complement
of U . For each i = 1, . . . ,m fix a small disc ∆i ⊂ P1 centered at ti, a point
t′i ∈ ∆i\{ti}, and a path γ′i ⊂ U starting at 0 and ending at t′i.

3Author of this text learned this fact from [14].
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Let X∆i be the restriction of the family Xt → P1 to the disc ∆i, and let
j : Xt′i

→ X∆i be the inclusion. It is known that the cohomology pushforward

morphism Hn−1(Xt′i
,Z) → Hn+1(X∆i

,Z) induced by inclusion Xt′i
⊂ X∆i

is
surjective and its kernel is a cyclic subgroup (see [15], chapter 2, corollary 2.17).
Let δ′i be a generator of this kernel, which is well-defined up to sign.

Let δi ∈ Hn−1(X0,Z) be the transfer of δ′i along the path γ′i. Theory of Lefschetz
pencils shows that Hn−1(X0,Z)van is generated by classes δi, which are called
vanishing cycles. Notice that these vanishing cycles depend on paths γi and a
choice of signs for δ′i.

Loops in U based at 0 induce automorphisms of Hn−1(X0,Q), so that we have
a monodromy representation ρ : π1(U, 0) → Hn−1(X0,Q). The vanishing co-
homology group Hn−1(X0,Q)van defines a sub-representation of Hn−1(X0,Q).
Picard-Lefschetz formula describes monodromy representation Hn−1(X0,Q)van

in terms of vanishing cycles. To write it down we need to fix small loops li ⊂ ∆i

which are based at t′i and go once around critical points ti. Let γi = γ′i · li ·γ′i
−1

.
The loops γi generate π1(U, 0).

Select a fundamental class [X0] ∈ H2n−2(X0,Q) and consider cup product
pairing 〈, 〉 on Hn−1(X0,Q). Let ρ : π1(U, 0) → AutHn−1(X0,Q)van be the
monodromy representation. Picard-Lefschetz formula states that:

ρ(γi)(α) = α+ ε〈α, δi〉δi,

where ε = ±1. If the loops li are coherently oriented and cycles δ′i are selected
with respect to this orientation, and if n is even, then one has a formula ε =

−(−1)
n(n+1)

2 (see [15], chapter 3, theorem 3.16, remark 3.18).

For us the key result about the monodromy representation Hn−1(X0,Q)van is
that it is irreducible (see [15], chapter 3, theorem 3.27). Using this fact one can
show that a slightly stronger result holds when X is a surface:

Proposition 38. Let X be a smooth irreducible projective surface, and Xt, t ∈
P1 a Lefschetz pencil of very ample curves on X. Let U ⊂ P1 be an open
subset of regular values (not necessarily the full subset of regular values), and
0 ∈ U a point. Let G ⊂ π1(U, 0) be a subgroup of finite index. The monodromy
representation ρ : G→ Aut(H1(X0,Q)van) is irreducible.

Proof. For each point ti 6∈ U we have a vanishing cycle δi ∈ H1(X0,Q)van, and
a loop γi. If ti is not a critical value then δi = 0, and the loop γi acts trivially
on H1(X0,Q)van since it can be contracted to a trivial loop in the subset of all
regular values. Thus, Picard-Lefschetz formula holds for non-critical values too.

Since X0 is a curve, the cup product pairing on H1(X0,Q) is alternating. Hence,
Picard-Lefschetz formula shows that ρ(γi)(δi) = δi, and so for every i, every
integer m > 0 and every α ∈ H1(X0,Q)van

ρ(γmi )(α) = α+m〈α, δi〉δi. (6)
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Let m be the index of G in π1(U, 0), V ⊂ H1(X0,Q)van be a subrepresentation
of G, and α ∈ V . By formula (6) 〈α, δi〉δi = 1

m (ρ(γmi )(α) − α) ∈ V . Thus,
ρ(γi)(α) ∈ V , which means that V is a subrepresentation of π1(U, 0), and so it
is either 0 or coincides with H1(X0,Q)van.

Proposition 39. Let S be a scheme, f : A → S an abelian fibration, O(1)
an invertible sheaf on A which is relatively ample with respect to f , and P a
Hilbert polynomial. There exists a scheme g : H → S, and a closed subscheme
F ⊂ H ×S A with following properties:

(a) H is reduced, and quasi-projective over S.

(b) F is flat over H with Hilbert polynomial P with respect to O(1).

(c) F is a sub-abelian family of H ×S A over H.

(d) For every closed point s ∈ S and every abelian subvariety A′ ⊂ As which has
Hilbert polynomial P there exists a closed point h ∈ g−1(s) such that the natural
closed immersion Fh → As factors as Fh → A′ → As and the first arrow is an
isomorphism.

Proof. Consider a relative Hilbert scheme HilbP (A/S). Let U ⊂ HilbP (A/S)
be the open subscheme over which the fibers of the universal family are smooth
and connected, and let FU → U be the corresponding family.

Recall that by construction A → S is equipped with a zero section s : S → A.
Consider a cartesian diagram

U
sU−−−−→ U ×S Ay y

S
s−−−−→ A.

sU is a closed immersion by construction. Let us denote U0 the corresponding
closed subscheme of U ×S A.

Let W be the image of FU ∩ U0 in U , and let FW be the corresponding family.
The abelian fibration A → S comes equipped with a relative subtraction mor-
phism A×S A→ A over S. Let W ×S ×A×S A→W ×S A be its pullback and
consider its restriction to FW ×W FW → W ×S A. This morphism is proper,
and so its image I is a closed subscheme of W ×S A.

Let d be the dimension of subvarieties determined by P , i.e. the degree of P .
Since each fiber of FW meets the zero section s0, its image under the subtraction
morphism contains this fiber, and hence the fibers of I →W have dimension at
least d. The morphism I →W is proper, and so there exists an open subscheme
H ⊂W such that fibers of I over U are exactly of dimension d. But then they
just coincide with corresponding fibers of FW , since the latter ones are smooth
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and connected by construction. Thus, if h ∈ H is a point then (FW )h is an
abelian subvariety of As, where s is the image of h in S. We equip H with
reduced induced subscheme structure.

We let F be the restriction of FW to H. Properties (a) – (d) are clear from
construction.

Proposition 40. Let X be a smooth irreducible quasi-projective curve, f : A→
X an abelian fibration, and O(1) an invertible sheaf on A which is relatively
ample with respect to f . If for every closed point x ∈ X the fiber Ax is not
a simple abelian variety, then ther exists an étale morphism g : Y → X and a
proper nontrivial sub-abelian fibration A′ ⊂ g−1A.

Proof. Let P be a Hilbert polynomial, and consider corresponding scheme H →
X constructed in proposition 39. Since H is quasi-projective, its image in X is
constructible, i.e. a closed subset or an open one, as X is a curve. Because all
fibers of A over closed points are not simple, the union of the images of schemes
H parametrizing nontrivial proper abelian subfamilies contains all points of X.
Hence, by Baire category theorem, one of such H’s dominates X.

Let H be this scheme, and F corresponding universal family. Replacing H by
a nonempty open subscheme we may assume that it is smooth over C. By
generic smoothness, there exists a nonempty open V ⊂ X such that HV → V
is smooth. A smooth morphism has a section étale-locally, i.e. there exists an
étale morphism g : Y → V , and a section s : Y → g−1HV . Pulling FV back to
Y by s we obtain a proper abelian subfamily A′ ⊂ g−1A over Y .

Proposition 41. Let X be a smooth irreducible projective surface, and L a very
ample line bundle on X. Let C ∈ |L| be a general smooth irreducible curve. The
kernel of the Albanese morphism AlbC → AlbX is a simple abelian variety.

Proof. We first include C into a Lefschetz pencil Ct, t ∈ P1. Let U ⊂ P1 be the
set of regular points of this pencil, let f : C → U be the corresponding fibration
in hyperplane sections with fiber Ct, and let A→ U be the induced fibration in
Albanese varieties Alb(Ct).

The family A → U comes with an U -morphism A → U × Alb(X), induced by
inclusion C → U ×X. Let K → U be the kernel of this morphism. From 37 we
know that K → U is an abelian fibration. Assume that every fiber of K → U is
not simple. By proposition 40, there exists an étale morphism g : V → U and a
proper nontrivial sub-abelian fibration K ′ ⊂ g−1K. We are going to show that
its existence contradicts proposition 38.

A family of g-dimensional complex tori over a base Y is given by a holomorphic
vector bundle H over Y , a local system L, and an injection of sheaves L → H
such that for every closed point x ∈ X the fiber Lx is a lattice of rank 2g in
Hx. In case of family A → U this local system is R1f∗Z with fiber H1(Ct,Z)
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over a point t ∈ T , as follows from the definition of Albanese variety as a
factor H0,1(Ct)/H

1(Ct,Z). The inclusion C → U ×X yields a morphism from
R1f∗Z to the constant sheaf H3(X,Z), which acts as cohomology pushforward
H1(Ct,Z)→ H3(X,Z) on fibers. Hence the local system L which corresponds to
the abelian fibration K has fibers H1(Ct,Z)van = ker(H1(Ct,Z)→ H3(X,Z)).
Sub-abelian fibration K ′ ⊂ g−1K yields a sub-local system L′ ⊂ g−1L.

Let 0 ∈ V be a point. Recall that local systems M with fiber F over V are in
natural bijection with pairs (π1(V, 0) → AutF,M0 → F ) where the first arrow
is a representation, and the second one is an isomorphism (see [15], chapter
3, corollary 3.10). In particular, the local system g−1L provides us with a
representation π1(V, 0) → H1(Cg(0),Z)van. This representation is reducible,
because g−1L admits a proper nontrivial sub-local system L′.

Changing coefficients to Q we obtain a reducible representation H1(Cg(0),Q)van

of a subgroup π1(V, 0) ⊂ π1(U, g(0)), which has finite index in π1(U, g(0)), a
contradiction to proposition 38.

4.3 Finite-dimensional groups of zero-cycles

The notion of a finite-dimensional subset of CH 0(X) plays an important role in
the works of Mumford, Roitman and Voisin about zero-cycles.

Definition 11. Let X be a smooth irreducible projective variety, and G ⊂
CH 0(X) a group of 0-cycles of X. We call G finite-dimensional if there exists
a smooth projective variety W , and a correspondence Γ: W → X such that
G ⊂ Γ∗W .

Notice that a finite-dimensional group G always lies in CH 0(X)hom. Indeed,
deg(Γ∗w) stays constant when w varies in a chosen connected component of W ,
so that the set deg(Γ∗W ) is finite. Since G is a group, it follows that Γ is of
degree 0.

Proposition 42. A group G of zero cycles is finite-dimensional if and only if
there exists an integer d > 0 such that G ⊂ σd,d(Xd ×Xd).

Proof. Just apply theorem 1.

Proposition 43. Let X,K be smooth irreducible projective varieties, and W
a smooth projective variety, such that dimK > dimW . Let Z : K → X and
Γ: W → X be correspondences. If Z∗K ⊂ Γ∗W , then all the fibers of Z∗ : K →
CH 0(X) have dimension at least dimK − dimW .

Proof. Let p : K × W → K and q : K × W → W be the projections. As
proposition 27 shows, the set R = ker(Z ◦ p − Γ ◦ q) is a union of at most
countably many Zariski-closed subsets Ri ⊂ K ×W .
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By assumption, Z∗K ⊂ Γ∗W , and so the projection p : R → K is surjective.
Baire category theorem shows that for some index i the projection p|Ri is surjec-
tive. Hence dimRi > dimK >W , and so over closed points all fibers of the pro-
jection q : Ri →W have dimension at least dimRi − dimW > dimK − dimW .

Let k ∈ K be a closed point. Take any closed point w ∈ q(p−1 ∩ Ri). Let
F = p(q−1w ∩ Ri). By construction Z∗ restricted to closed points of F is
constant, and dimF = dim(q−1w ∩Ri) > dimK − dimW .

Proposition 43 hints that the notion of dimension makes sense for a finite-
dimensional subgroup of CH 0(X).

4.4 Factorization theorem

We are finally ready to prove the factorization theorem of Voisin [14].

Proposition 44. Let A be an abelian variety, G an abstract group (i.e. a
set with a group structure), and f : A → G a homomorphism of groups. Let
V ⊂ A be an irreducible closed subvariety which lies in the kernel of f and
contains 0 ∈ A. There exists an abelian subvariety A′ of A such that V ⊂ A′

and A′ ⊂ ker f .

Proof. Consider the map V × V → A which sends a pair (v1, v2) to v1 − v2,
and let V ′ be its image. By construction, V ′ ⊂ ker f . Since V is irreducible,
V ′ is irreducible too. Moreover, V ⊂ V ′ as 0 ∈ V . If V = V ′ then V is an
abelian subvariety. Otherwise dimV ′ > dimV , and we finish by induction on
dimension.

Theorem 3. Let M,X be smooth irreducible projective varieties, Z : M → X
a correspondence. If Z∗(CH 0(M)hom) is finite-dimensional, then the homomor-
phism Z∗ : CH 0(M)hom → CH 0(X) factors through AlbM .

Proof. Let z ∈ CH 0(M) be such a cycle, that albM (z) = 0. We want to show
that Z∗(z) = 0 in CH 0(X).

Let π : M̃ → M be the blowup of M at the support of z, and E ⊂ M̃ the
exceptional divisor. There exists a lift z̃ of z to M̃ which is supported on E.
Proposition 34 shows that alb

M̃
(z̃) = 0 for each lift z̃.

Assume that dimM > 2. Let i : H → M̃ be a smooth irreducible hyperplane
section, and EH = H ∩ E. By construction, for each z0 ∈ supp z the preimage
π−1(z0) is of codimension 1 in M̃ . Hypersurface H is ample, and so it must
meet π−1(z0), and moreover H ∩ π−1(z0) is of codimension 1 in H. Thus, EH
is of codimension 1 in H, and supp z ⊂ π(i(EH)). In particular, there exists a
lift z̃ of z to H. By propositions 37 and 33, albH(z̃) = 0 for each lift z̃ of z to
H.
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Hence, by induction we may assume that dimH = 2. We take an ample smooth
irreducible curve j : C → H as in proposition 41. Again, supp z ⊂ π(j−1E′),
and so we may assume that there exists a lift z̃ of z to C.

Let A : AlbC → C be the correspondence from proposition 36. The map A∗
is the inverse of the Albanese morphism alb: CH 0(C)hom → AlbC, and so it is
a group homomorphism. By Abel-Jacobi theorem A∗ : AlbC → CH 0(C)hom is
an isomorphism, and so z̃ ∈ A∗(AlbC). Proposition 37 implies that moreover
z̃ ∈ A∗(K), where K = ker(AlbC → AlbH). By proposition 41, K is a simple
abelian variety.

Let us restrict A to K, and consider a correspondence Z : K → X, which is
defined as

Z = Z ◦ π ◦ i ◦ j ◦A.

We want to show that the map Z∗ : K → CH 0(X) is zero. Notice, that Z∗ is a
group homomorphism because A∗ is.

Let Γ: W → X be such a correspondence, that Z∗(CH 0(M)hom) ⊂ Γ∗W . By
construction, Z∗(K) ⊂ Z∗(CH 0(M)hom), and so Z∗(K) ⊂ Γ∗W . Taking C
to be ample enough we may assume that dimK > dimW . By proposition 43
all fibers of Z∗ : K → CH 0(X) are positive-dimensional. In particular, there
exists such a positive-dimensional subvariety V ⊂ K that 0 ∈ V and Z∗|V = 0.
Proposition 44 implies that Z∗ vanishes on some positive-dimensional abelian
subvariety of K. But K is simple, and so in fact Z∗ = 0.

5 Results of Mumford

Let W,X be smooth irreducible projective varieties, and Γ: W → X a cor-
respondence. If Γ consists solely of vertical components then in terms of the
map Γ∗ (and so, of the induced rational map) it is indistinguishable from the
zero correspondence. It is an interesting question, what we can say about the
rational equivalence class of Γ, if we assume that Γ∗ = 0. As it turns out, in
this case some integer multiple of Γ is rationally equivalent to a correspondence
consisting of vertical components only.

This observation goes back to Mumford [11]. Moreover, in the same article
Mumford demonstrated that this observation leads to strong conclusions on the
structure of CH 0(X) when X is a surface of positive genus. Our goal is to
describe the results of Mumford in this direction.

This section is a variation on the corresponding part of chapter 10 of the book
of Voisin [15].
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5.1 Bloch-Srinivas decomposition

Proposition 45. Let X,Y be smooth quasi-projective varieties, and f : X →
Y a smooth morphism. If f has a section, then f∗ : CH ∗(Y ) → CH ∗(X) is
injective.

Proof. Let s : Y → X be a section. It is necessary a regular embedding, and so
induces the usual Gysin pullback s∗ : CH ∗(X)→ CH ∗(Y ). Proposition 6.5 (b)
from chapter 6 of [6] shows, that s∗ ◦ f∗ = (f ◦ s)∗ = id.

Proposition 46. Let T,W,X be smooth irreducible quasi-projective varietes,
f : T →W a smooth morphism, and Γ ∈ CH ∗(W×X) a cycle. If (f×id)∗Γ = 0,
then there exists a nonempty Zariski-open subset U ⊂W and a positive integer
m, such that mΓ|U×X = 0 in CH 0(U ×X).

Proof. Every smooth morphism has a section étale-locally (EGA IV, 17.16.3).
Let U ⊂ W be an open subset, and g : V → U a surjective étale morphism.
Consider a cartesian diagram

TV ×X −−−−→ TU ×X −−−−→ T ×Xy(fV ×id)

y(fU×id)

y(f×id)

V ×X (g×id)−−−−→ U ×X −−−−→ W ×X.
All the arrows in this diagram are flat, and so the induced Gysin pullbacks of
cycles coincide with flat pullbacks (see [6], chapter 8, proposition 8.1.2 (a)).
Also, all the vertical arrows are smooth.

Flat pullbacks commute already on the level of cycles. Thus,

(fV × id)∗(g × id)∗Γ|U×X = 0.

If fV : TV → V has a section, then proposition 45 implies, that

(g × id)∗Γ|U×X = 0.

Applying projection formula we obtain an equality

(g × id)∗(g × id)∗(Γ|U×X) = mΓ|U×X = 0,

where m is the degree of g.

Next theorem is due to Bloch and Srinivas [4]. Our proof goes back to Mumford
[11].

Theorem 4. Let W be a smooth irreducible quasi-projective variety, X a smooth
irreducible projective variety, and Γ: W → X a correspondence. If Γ∗ = 0, then
there exists a proper subvariety W ′ ⊂ W , a nonzero integer m and a cycle
Γ′ ∈ CH ∗(W ×X) supported on W ′ ×X, such that

mΓ = Γ′ in CH ∗(W ×X).
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Proof. Due to localization exact sequence for Chow groups it is enough to find
such a nonempty Zariski-open subset U ⊂ W that Γ is torsion when restricted
to U .

Without loss of generality we can assume that Γ has no vertical components.
Write Γ = Γ+ − Γ− as a difference of effective cycles. Let f+, f− : W → X(d)

be induced rational maps (the indices d coincide for f+ and f−, since otherwise
Γ∗ 6= 0). Let f = (f+, f−) : W → X(d) ×X(d).

Replacing W by an open subset we may assume that f is defined everywhere.
The condition Γ∗ = 0 now implies that f(W (C)) is a subset of R ⊂ (X(d) ×
X(d))(C), where R is the relation of rational equivalence from theorem 2. Be-
cause there exists such a countable collection {Ri} of closed irreducible sub-
varieties Ri ⊂ X(d) × X(d) that R =

⋃
iRi(C), we can apply Baire category

theorem and conclude that f factors through an inclusion Ri → X(d)×X(d) for
some i.

Part (b) of theorem 2 implies that there exists a quasi-projective variety T , a
nonnegative integer k, a surjective morphism e : T → W , a morphism g : T →
X(k), and a morphism h : T ×P1 → X(d+k) such that

h ◦ i0 = g + f+ ◦ e, (7)

h ◦ i∞ = g + f− ◦ e, (8)

where i0, i∞ : T → T × P1 are evident inclusions, and the plus sign denotes
the addition morphism X(d) ×X(k) → X(d+k). Resolving singularities, we may
assume that T is smooth. Replacing T by a nonempty Zariski-open subset we
may assume that e : T →W is smooth. Of course e needs not be surjective, but
it is still dominant.

Let H : T ×P1 → X and G : T → X be the correspondences induced by h and
g respectively. Proposition 9 shows that for every closed point t ∈ T

(H ◦ i0)∗t = (h ◦ i0)(t), (H ◦ i∞)∗t = (h ◦ i∞)(t),

(Γ+ ◦ e)∗t = (f+ ◦ e)(t), (Γ− ◦ e)∗t = (f− ◦ e)(t)

in Z0(X). Combining it with (7) and (8) we obtain equalities

(H ◦ i0)∗t = G∗t+ (Γ+ ◦ e)∗t,
(H ◦ i∞)∗t = G∗t+ (Γ− ◦ e)∗t.

in Z0(X) for every closed point t ∈ T . Since all the correspondences involved
are finite over T , proposition 13 shows that

H ◦ i0 = G+ Γ+ ◦ e,
H ◦ i∞ = G+ Γ− ◦ e.
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in Z∗(T ×X). Hence Γ ◦ e = H ◦ i0−H ◦ i∞. But the cycles H ◦ i0 and H ◦ i∞
are rationally equivalent, and so proposition 46 finishes the proof.

In fact, the original method Bloch and Srinivas implies a stronger result:

Theorem 5. Let W,X be smooth irreducible projective varieties, and Γ: W →
X a correspondence. If there exists a proper subvariety i : X ′ → X such that
Γ∗CH 0(W ) ⊂ i∗CH 0(X ′), then there exists an integer m > 0, a proper closed
subset W ′ ⊂ W , a cycle Γ′ supported on W ′ ×X and a cycle Γ′′ supported on
W ×X ′, such that

mΓ = Γ′ + Γ′′ in CH ∗(W ×X).

For the proof, see [15], chapter 10, theorem 10.19. When Γ = ∆, the expression
above is called Bloch-Srinivas decomposition of the diagonal. Such a decompo-
sition was generalized by Paranjape [12] and Laterveer [8]:

Theorem 6. Let X be a smooth irreducible projective variety of dimension n.
If the cycle class map cl : CH i(X)⊗Q→ H2n−2i(X,Q) is injective for all i 6 k,
then there exists a positive integer m and a decomposition

m∆ = Z0 + . . .+ Zk + Z ′,

in CH n(X ×X), where Zi are supported on W ′i ×Wi, Wi ⊂ X are subvarieties
of dimension i, W ′i are subvarieties of dimension n− i, and Z ′ is supported on
W ′ ×X, where W ′ ⊂ X is a proper subvariety.

(see [15], chapter 10, theorem 10.29).

5.2 Correspondences and differential forms

Let W,X be smooth irreducible projective varieties, and Γ: W → X a corre-
spondence. Let π : W ×X → W and q : W ×X → X be the projections. Let
n be the dimension of X, and let [Γ] ∈ H2n(W ×X,Z) be the cycle class of Γ.
For an integer k > 1 consider a map Γ∗ : Hk(X,Z)→ Hk(W,Z):

Γ∗α = π∗(q
∗α · [Γ])

Replacing Z by C we obtain a similar map for complex cohomology.

Since [Γ] is a class of an algebraic subvariety, it is in fact of type (n, n). There-
fore the map Γ∗ : Hk(X,C) → Hk(W,C) preserves Hodge decomposition, and
defines a morphism of Hodge structures of bidegree (0, 0). In particular, for
each p > 0 we obtain morphisms Γ∗ : H0(X,ΩpX)→ H0(W,ΩpW ).

If T is another smooth irreducible projective variety, and Z : T → W a corre-
spondence, then the usual computation shows that (Γ ◦ Z)∗ = Z∗ ◦ Γ∗. If Γ is
a graph of a morphism f : W → X, then Γ∗ = f∗.
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Following proposition is taken from [15] (see chapter 10, proposition 10.24).

Proposition 47. Let Γ: W → X be a correspondence between smooth irre-
ducible projective varieties. If Γ is vertical, then Γ∗ : H0(X,ΩpX)→ H0(W,ΩpW )
vanishes for every p > 0.

Proof. Let W ′ ⊂ W be such a closed proper subset that Γ is supported on
W ′ × X. Let l : W̃ ′ → W ′ ⊂ W be the desingularization of W ′. Consider a
cycle Γ̃ = (l × id)∗Γ. By construction, (l × id)∗Γ̃ = Γ.

Let π′ : W̃ ′ × X → W̃ ′ and q′ : W̃ ′ × X → X be the projections. We have
equalities of morphisms:

π ◦ (l × id) = l ◦ π′,
q ◦ (l × id) = q′.

Let α ∈ Hk(X,C) be a cohomology class. Using the above equations, projection
formula, and the fact that cycle class map is compatible with pullbacks and
pushforwards, we conclude that

l∗π
′
∗(q
′∗α · [Γ̃]) = π∗(l × id)∗((l × id)∗q∗α · [Γ̃]) = π∗(q

∗α · [Γ]) = Γ∗α.

Hence Γ∗ factors through l∗.

Notice that Γ̃ is not a correspondence in our sense. Indeed, Γ is of codimension
n = dimX in W ×X, while Γ̃ is of codimension n− s, where s is the codimen-
sion of W0. Moreover, l∗ defines a morphism of Hodge structures of positive
bidegree (s, s), and so its image misses the groups Hp,0(W ) for each p > 0.
Thus Γ∗ : Hp,0(X)→ Hp,0(W ) is zero.

In [11] Mumford demonstrated (in slightly different terms) that the following
theorem holds:

Theorem 7. Let W,X be smooth irreducible projective varieties, and Γ: W →
X a correspondence. If Γ∗ = 0, then for every p > 0 the pullback morphisms
Γ∗ : H0(X,ΩpX)→ H0(W,ΩpW ) are zero.

According to Mumford, this theorem goes back to work of Severi on 0-cycles
(see references in [11]).

Proof of theorem 7. Apply theorem 4 and proposition 47.

Next proposition is taken almost verbatim from [15], chapter 10 (see proof of
lemma 10.25).

Proposition 48. Let X be a smooth irreducible projective surface, and d > 1
an integer. Consider the variety Y = Xd ×Xd. Let p1, p2 : Y × Y → Y be the
projections, and Γ: Y × Y → X a correspondence defined as Γ = Σd,d ◦ p1 −
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Σd,d ◦ p2. Let R be an irreducible component of the fiber of Γ∗ over 0. Assume
that p1 is surjective when restricted to R.

If ω is a nonzero global holomorphic 2-form on X, then its pullback Γ∗ω is
symplectic at almost all smooth points of R, and moreover R is lagrangian with
respect to this form. In particular, dimR = 4d.

Proof. Let qi : X
d ×Xd → X, 1 6 i 6 2d be the projections. Recall, that

Σd,d =

d∑
i=1

∆ ◦ qi −
2d∑

i=d+1

∆ ◦ qi.

Hence, if ω ∈ H2,0(X), then

Σ∗d,dω =

d∑
i=1

q∗i ω −
2d∑

i=d+1

q∗i ω.

Let η = Σ∗d,dω so that Γ∗ω = p∗1η − p∗2η.

Consider the desingularization f : R̃→ Y 2 of R. Since (Γ◦f)∗ = 0 by construc-
tion, the theorem 7 implies, that f∗(Γ∗ω) = 0.

Assume, that ω 6= 0. Let r ∈ R̃ be a general point. The map p1 ◦f is surjective,
and so p1(f(r)) is general too. Hence, we may assume that for each i the form
ω is nondegenerate at qi(p1(f(r))), which implies that η is nondegenerate at
p1(f(r)).

The map p1◦f is generically smooth, and so for a general r ∈ R it is a submersion
at r. Under this assumption the form f∗p∗1η is of rank 4d at r, in the sense that

the dimension of the image of the map TrR̃ → (TrR̃)∨ induced by (f∗p∗1η)r is
4d.

Since f∗p∗1η = f∗p∗2η, the form f∗p∗2η is of rank 4d at r too. But then η is of
rank 4d at p2(f(r)), i.e. it is nondegenerate. Therefore Γ∗ω = p∗1η − p∗2η is
nondegenerate at f(r).

Assume further that R is smooth at f(r). In this case R is an isotropic subvariety
at f(r) with respect to the form Γ∗ω, so that

dimf(r)R 6
1

2
dimf(r) Y × Y = 4d.

On the other hand, R surjects onto Y , and so dimf(r)R = 4d, i.e. R is la-
grangian.

An immediate corollary of the proposition 48 is the following theorem of Mum-
ford [11]:
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Theorem 8. Let X be a smooth irreducible projective surface, and let d > 1 be
an integer. If h2,0(X) > 0 then a very general fiber of the map σd,d : Xd×Xd →
CH 0(X) is zero-dimensional.

Proof. Let p1, p2 : (Xd ×Xd)2 → X be the projections. Consider a correspon-
dence Γ = Σd,d ◦ p1 − Σd,d ◦ p2, and let R ⊂ (Xd × Xd)2 be the subset over
which Γ∗ vanishes. We know that R is an at most countable union of irreducible
subvarieties Ri. Consider a set

V =
⋂
i

{z ∈ Xd ×Xd | p−1
1 (z) ∩Ri is finite }.

Clearly, for each z ∈ V the fiber of σd,d at z is at most countable. By Chevalley’s
theorem, V is an intersection of at most countably many open subsets. By
proposition 48, for each i the projection p1|Ri is either generically finite or not
surjective. Applying Baire category theorem, we conclude that V is dense.

Let X be a smooth irreducible projective surface. Assume that CH 0(X)hom

is finite-dimensional in the sense of definition 11, i.e. that σd,d(X
d × Xd) =

CH 0(X)hom for some d > 0. Take any k > d, and let z = (z+, z−) be an
arbitrary point of Xk ×Xk. By construction, there exist effective cycles z′+, z

′
−

of degree d such that z = z′+ − z′− in CH 0(X)hom. Since k > d, we see that
all fibers of σk,k are positive-dimensional, and so, by theorem 8, h2,0(X) = 0.
Conversely, if h2,0(X) > 0 then CH 0(X)hom is not finite-dimensional in the
sense of Roitman.

Similarly, if h2,0(X) > 0, then the group

CH 0(X)alb = ker(alb: CH 0(X)hom → AlbX)

is not finite-dimensional too. Indeed, it is known that for d large enough
the composition alb ◦σd,d : Xd × Xd → AlbX is surjective. Hence, for ev-
ery cycle z ∈ CH 0(X)hom there exists a point (x1, x2) ∈ Xd × Xd, such that
z − σd,d(x1, x2) ∈ CH 0(X)alb. So, if CH 0(X)alb is contained in the image of
some correspondence Γ: W → X, then CH 0(X)hom is contained in the im-
age of a correspondence Z : W × (Xd × Xd) → X, such that Z∗(w, x1, x2) =
Γ∗w + σd,d(x1, x2).

By these reasons theorem 8 is sometimes called the infinite-dimensionality the-
orem. It shows that in general CH 0(X)hom can not be represented by a finite-
dimensional abelian variety in a reasonable way, which is in stark contrast with
the case of CH 1(X)hom.

6 Symplectic involutions of K3 surfaces

Let X be a projective K3 surface, and i : X → X an involution. Such an
involution is called symplectic if the induced map i∗ : H2,0(X) → H2,0(X) is
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the identity. Recall that in this case the conjecture of Bloch states, that i∗ acts
as identity on CH 0(X). In [14] Voisin demonstrated that it is indeed the case.
Below we reproduce her argument elaborating some details as it is appropriate
for a master thesis.

6.1 Auxillary geometric facts

Proposition 49. Let X be a smooth irreducible projective surface. Every ample
divisor on X is connected.

Proof. Let D be an ample divisor, and assume by contradiction that D =
D1 + D2 where D1 and D2 do not intersect. Then D1.D2 = 0. Since D is
ample, and Di are effective, D.Di = D2

i > 0. But these two inequalities can not
hold simultaneously by Hodge index theorem.

Proposition 50. For i = 1, 2 let Xi be a smooth irreducible projective variety,
Li an ample invertible sheaf on Xi, and pi : X1 ×X2 → Xi the projection. The
invertible sheaf p∗1L1 ⊗ p∗2L2 is ample.

Proof. Assume without loss of generality that Li are very ample, and let
fi : Xi → PNi be corresponding embeddings. Let σ : PN1 × PN2 → PN be
a Segre embedding, N = (N1 + 1)(N2 + 1) − 1. Since Pic(PN1 × PN2) =
Pic PN1⊕Pic PN2 = Z⊕Z, the pullback σ∗O(1) has the form q∗1O(n1)⊗q∗2O(n2),
where qi are respective projections, and ni some integers.

Let xi ∈ PNi be closed points, and let ei : PNi → PN1 ×PN2 be corresponding
embeddings. By construction (qi ◦ ej)∗ = id if i = j and 0 otherwise. From
definition of σ it is clear that σ ◦ ei embeds PNi as a linear subspace. Hence
(σ◦ei)∗O(1) = O(1). On the other hand, (σ◦ei)∗O(1) = (qi◦ei)∗O(ni) = O(ni).
Therefore, σ∗O(1) = q∗1O(1) ⊗ q∗2O(1). As a consequence, p∗1L1 ⊗ p∗2L2 =
(σ ◦ (f1 × f2))∗O(1), and so this sheaf is ample.

Proposition 51. Let X be an irreducible projective variety, L a base point free
line bundle on X, and k 6 dim |L| a positive integer. Consider an incidence
variety Γ ⊂ |L| ×Xk defined as

Γ = {(D,x1, . . . , xk) | xi ∈ D}.

Let p : Γ→ |L| and q : Γ→ Xk be projections. The following properties hold:

1. The projection q is surjective.

2. If U ⊂ |L| is a nonempty Zariski-open subset, then q(p−1(U)) contains a
nonempty Zariski-open subset.
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3. If k = dim |L|, then there exists a nonempty Zariski-open U ⊂ Γ such that
q|U is an isomorphism onto its image (here the fact that we work over an
algebraically closed field of characteristic zero is crucial).

Proof. Let Ix ⊂ OX be the ideal of x, and let Ox = OX/Ix. Consider an exact
sequence

0→ H0(X,L⊗ Ix)→ H0(X,L)→ H0(x, L⊗Ox).

The sheaf L ⊗ Ox is just the fiber of L over x, and the last morphism in this
sequence sends a section to its value at x. Since L is base point free, this last
morphism is surjective.

Let us denote by Hx the space of all divisors D ∈ |L| containing x, i.e. the pro-
jectivization of the kernel of the restriction morphism H0(X,L) → H0(X,L ⊗
Ox). We have just shown that Hx is a hyperplane. Since an intersection of
k 6 dim |L| hyperplanes is always nonempty, we see that q is surjective, i.e. the
first property holds.

If U ⊂ |L| is a Zariski-open dense subset, then p−1(U) is also Zariski-open and
dense. The image q(p−1(U)) is in general only constructible, i.e. q(p−1(U)) =⋃m
i=1 Zi, where Zi are closed in open subsets Ui ⊂ Xk. But q is also surjective

and p−1(U) dense, and so some of the Zi’s must be dense too. Then it coincides
with the corresponding Ui, and thus the second property holds.

Now, assume that k = dim |L|. Looking at the fibers of p we see, that dim Γ =
kn, where n = dimX. Since dimXk = kn too, and since q is surjective, the
theorem of Chevalley tells us that there exists a nonempty Zariski-open subset
U ⊂ Γ such that q is quasi-finite over U . Let u ∈ U be a point. The set p(q−1(u))
is finite. At the same time it is an intersection of k = dim |L| hyperplanes Hx

for some x ∈ X, and so must be a linear subspace of |L|. Therefore it consists
of a single point.

By Zariski main theorem q factors as U → U ′ → Xk, where the first arrow is an
open immersion and the second one is finite. But we also know, that U ′ → Xk

is generically bijective, and since we work in characteristic zero, it follows that
U ′ → Xk is birational. Finally, Xk is normal and so U ′ → Xk is in fact an open
immersion.

Proposition 52. Let f : X → Y be a finite flat morphism of schemes. In this
situation ker(f∗ : PicY → PicX) lies in PicX[d], where d is the degree of f .

Proof. By assumptions, f∗OX is locally free. If L ∈ PicY is such that
f∗L = OX , then by projection formula f∗OX = f∗f

∗L = L ⊗ f∗OX . Tak-
ing determinants we conclude, that L⊗d = OY .
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6.2 Special zero-cycle of Beauville-Voisin

Bogomolov, Mumford, Mori and Mukai [10] discovered that an ample linear
system on a K3 surface always contains a rational curve. As an immediate
corollary one obtains the following theorem of Beauville-Voisin [1]:

Theorem 9. Let X be a projective K3 surface. It contains a rational curve. If
x, y ∈ X are points supported on rational curves, then x = y in CH 0(X).

The class of a point supported on a rational curve is denoted c0 ∈ CH 0(X)
and is called the special 0-cycle of Beauville-Voisin. It has many important
properties. For example, it splits the degree homomorphism CH 0(X) → Z, so
that CH 0(X) = CH 0(X)hom ⊕Zc0. The intersection pairing on CH 1(X) takes
values in Zc0, and c2(X) = 24c0 (see [1]).

Proof of theorem 9. Existence is clear. Let x, y ∈ X be points supported on
rational curves C1, C2, and let H be an ample divisor which is a rational curve.
Since H is ample, all irreducible components of C1 and C2 must intersect it,
either properly or not. Since H is connected, x = y in CH 0(X).

Theorem 9 has an important corollary for correspondences on K3 surfaces, due
to Voisin [14]:

Proposition 53. Let X be a projective K3 surface, W a smooth irreducible
projective variety, Γ: X →W a correspondence. Suppose that for some integer
g > 1 all fibers of Γ∗ : Xg → CH 0(W ) are at least one-dimensional. Then every
cycle z ∈ Γ∗CH 0(X) can be represented in the form

z = Γ∗t1 − Γ∗t2 + (deg z)c0,

where t1, t2 are effective 0-cycles of degree g − 1. In particular, Γ∗CH 0(X)hom

is finite-dimensional.

Proof. Let z = (z1, . . . , zg) ∈ Xg(C) be a point and C ⊂ Xg a curve passing
through z, such that Γ∗z = Γ∗z

′ for every z′ ∈ C(C).

Let H be an ample rational curve on X. Let Hg =
∑g
i=1 π

∗
iH, where πi : X

g →
X is the projection to i-th factor. The divisor Hg is ample by proposition 50.
It therefore intersects C at some point t = (t1, . . . , tg). By construction of Hg,
some ti, considered as a 0-cycle of degree 1, is equal in CH 0(X) to the special
cycle c0 of Beauville-Voisin. Without loss of generality we assume, that tg = c0.
Hence, we have shown that in CH 0(W ) there is an equality

Γ∗z = Γ∗z1 + . . .+ Γ∗zg = Γ∗t1 + . . .+ Γ∗tg−1 + Γ∗c0.

Therefore, if l > g is an integer, then for every z1, . . . , zl ∈ X there exist
t1, . . . , tg−1 ∈ X(C) such that

Γ∗z1 + . . .+ Γ∗zl = Γ∗t1 + . . .+ Γ∗tg−1 + (l − g + 1)Γ∗c0.
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Now let z ∈ CH 0(X) be a 0-cycle. Write it in the form z = z+− z− where both
z+, z− are effective and of degree at least g − 1. We conclude, that for some
t1, t2 ∈ Xg−1(C)

Γ∗z = Γ∗t1 − Γ∗t2 + (deg c)Γ∗c0.

6.3 Bloch’s conjecture for symplectic involutions

Let X be a projective K3 surface, and i : X → X an involution. Such an
involution is called symplectic if the induced map i∗ : H2,0(X) → H2,0(X) is
the identity.

Consider the quotient Σ = X/{1, i}, and let q : X → Σ be the quotient map.
Σ is a normal projective surface which is not smooth in general. Let Σ′ ⊂ Σ
be the complement of the singular subset. Blowing up the singularities of Σ we
obtain a birational morphism π : Σ̃→ Σ, such that Σ̃ is a smooth surface.

Proposition 54. ωΣ′ is trivial, and h1(Σ̃,OΣ̃) = 0.

Proof. Let X ′ = q−1(Σ′). The map q is unramified over Σ′, and thus q∗Ω1
Σ′ =

Ω1
X′ . Hence q∗ωΣ′ = ωX′ is trivial.

Since Σ′ is smooth, the theory of trace implies that h0(X ′,ΩpX′) = h0(Σ′,ΩpΣ′)
for p = 1, 2. On the other hand h0(X ′,ΩpX′) = h0(X,ΩpX) because X\X ′ is of
codimension at least 2. By proposition 52, ωΣ′ is 2-torsion. It has a nonzero
section, and so must be trivial.

Similarly, h0(p−1(Σ′),Ω1
Σ̃

) = h0(Σ′,Ω1
Σ′) = 0, and so h0(Σ̃,Ω1

Σ̃
) = 0. Then

Hodge theory implies, that h1(Σ̃,OΣ̃) = 0.

Proposition 55. Let L be an ample line bundle on Σ. A general divisor C ∈
|L| is a reduced, irreducible and smooth curve C of genus g = dim |L| > 1.
Moreover, q∗C is connected, q∗C → C is étale, and g(q∗C) = 2g − 1.

Proof. The theorem of Bertini says, that a general section C ∈ |L| is irreducible,
reduced and its singularities are contained in the singular locus of Σ. This locus
consists of a finite number of points, and hence a general section is smooth.

Take a smooth irreducible curve C ∈ |L| not meeting the singular locus. The
curve q∗C is connected since it is an ample divisor. Positivity of (q∗C)2 implies
positivity of g(q∗C). Moreover, q∗C → C is étale, and so g = g(C) > 0.
Riemann-Hurwitz formula shows, that g(q∗C) = 2g − 1.

Consider a short exact sequence

0→ OΣ → L→ L|C → 0
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and pull it back to Σ̃:

0→ OΣ̃ → π∗L→ π∗L|π∗C → 0.

Since π is not flat this sequence is a priori only right exact. Nevertheless, since
the morphism OΣ → L is given by a section of L, its pullback is also injective.
Next, consider induced cohomology sequence:

0→ H0(Σ̃,OΣ̃)→ H0(Σ̃, π∗L)→ H0(π∗C, π∗L|π∗C)→ 0.

It is exact since h1(Σ̃,OΣ̃) = 0. Moreover, π∗L|π∗C = L|C since C ⊂ Σ′.

We now construct a map H0(Σ̃, π∗L) → H0(Σ, L) as follows. First of all,

we have a natural injection H0(Σ̃, π∗L) → H0(π−1Σ′, π∗L|Σ′) = H0(Σ′, L|Σ′).
The restriction map H0(Σ, L) → H0(Σ′, L|Σ′) is an isomorphism as Σ\Σ′ is
of codimension at least 2. Composing these maps we obtain what we need.
Our map clearly splits the pullback map H0(Σ, L) → H0(Σ̃, π∗L), and so this
pullback is in fact an isomorphism.

Thus we demonstrated that there exists an exact sequence

0→ H0(Σ,OΣ)→ H0(Σ, L)→ H0(C,L|C)→ 0.

By adjunction formula, ωC = (ωΣ′ ⊗ L)|C = L|C . Hence h0(C,L|C) = g, and
we conclude, that dim |L| = g.

Proposition 56. Consider the correspondence Γ: X → X defined as Γ = ∆−
Γi, where Γi is the graph of i. There exists an integer g > 1 and a nonempty
Zariski-open subset U ⊂ Xg such that all fibers of Γ∗ : U → CH 0(X) are at
least one-dimensional.

Proof. We take an ample line bundle L ∈ Pic Σ and let V ⊂ |L| be the open
subvariety of curves which are smooth and do not meet the singular locus. Let
π : C → V be the universal bundle of curves from |L| over V . By proposition

55 there exists a fibration π̃ : C̃ → C, C̃ ⊂ V ×X, such that for C ∈ V the fiber
π̃−1π−1C is the curve q∗C. We thus have an induced morphism of Jacobian
fibrations J(C̃)→ J(C) over V , and correspondingly a Prym fibration P(C̃/C) =

ker(J(C̃)→ J(C)). A priori the fibers of P(C̃/C) are not necessarily connected,
i.e. they are just commutative projective group schemes.

Let Cg be the g-th cartesian power of C over V . By proposition 51 there exists
a nonempty Zariski-open subset U0 ⊂ Σg and a morphism U0 → Cg sending
a point (σ1, . . . , σg) into the unique curve C ∈ V which supports σi. Put

U = q−1U0. There exists an analogous morphism U → C̃g.

Recall that every fibration in smooth curves C̃ is equipped with corresponding
Albanese morphism alb: C̃g ×V C̃g → J(C̃) for each g > 1:

alb(C̃;x1, . . . , xg; y1, . . . , yg) = albC̃(x1 + . . .+ xg − y1 − . . .− yg) ∈ J(C̃).
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Thus there exists a morphism f : U → J(C̃) defined as follows:

f(x1, . . . , xg) = albC̃(x1 + . . .+ xg − i(x1)− . . .− i(xg))

(here C̃ is the unique curve supporting xi).

Since q∗(x1 + . . .+xg− i(x1)− . . .− i(xg)) = 0, the morphism f factors through

P(C̃/C). Assume that there exists a point x ∈ U such that dimx P(C̃/C)f(x) = 0.
By upper semi-continuity of fiber dimension we conclude that there exists a
nonempty Zariski-open subset U ′ ⊂ U of such points. The dimension of U ′

conincides with that of U , i.e. with 2g. On the other hand, dimP(C̃/C) = 2g−1,
which contradicts the existence of U ′. Therefore all fibers of f are at least one-
dimensional.

It remains to notice that Γ∗ is constant along the fibers of f .

Proposition 57. Consider the correspondence Γ: X → X defined as Γ = ∆−
Γi, where Γi is the graph of i. There exists an integer g > 1 such that all the
fibers of Γ∗ : Xg → CH 0(X) are at least one-dimensional.

Proof. By proposition 56 our claim holds for some nonempty Zariski-open sub-
set U ⊂ Xg. Baire category theorem shows that U can not be covered by a
countable union of proper closed subsets. Hence, proposition 29 implies that no
fiber of Γ∗ : Xg → CH 0(X) can be zero-dimensional.

Theorem 10. i∗ acts as identity on CH 0(X), i.e. the conjecture of Bloch holds
in this case.

Proof. Consider Γ = ∆ − Γi. By proposition 57 there exists an integer
g > 1 such that Γ∗ : Xg → CH 0(X) has at least one-dimensional fibers, and
so Γ∗CH 0(X)hom is finite-dimensional, as proposition 53 demonstrates. Apply-
ing theorem 3 we conclude that Γ∗ : CH 0(X)hom → CH 0(X) factors through
AlbX = 0. Moreover, Γ∗c0 = 0, where c0 ∈ CH 0(X) is the special zero-cycle of
Beauville-Voisin, and so Γ∗ = 0. In other words, i∗ = ∆∗ = id.
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