
Université de Bordeaux 1

Stellenbosch University

Master Thesis

Schur products of linear codes:
a study of parameters

Author:
Diego Mirandola

Supervisor:
Prof. Gilles Zémor

July 18, 2012

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Linear codes . 5
2.2 Schur product codes . 9
2.3 Linear secret sharing schemes 11
2.4 LSSS’s with multiplication 13
2.5 From codes to LSSS’s . 15
2.6 Asymptotic notation . 20

3 Recent results 21
3.1 Bound on the corruption tolerance 22
3.2 An asymptotically good family 27

4 Computer tests 33
4.1 Random codes . 33
4.2 Cyclic codes . 35

5 Lower bound on the product dimension 39
5.1 Arrangement lemmas . 40
5.2 Algebraic step . 45
5.3 Analytic step . 48

Bibliography 53

i

ii Contents

1
Introduction

In this Master Thesis we are interested in the study of the parameters of
Schur product codes. Such a code is defined as the linear span of all compo-
nentwise products of all words of a given linear code. From the connection
between linear codes and linear secret sharing schemes (LSSS), it turns out
that good parameters of the product code yield a multiplication property of
the associated LSSS that has applications to multi-party computation and
verifiable secret sharing; for a reference about these applications, see [4].
Moreover, research is presently quite active on those topics.

First recall that codes arise as a solution to the problem of error cor-
rection, which can be easily explained by means of the following classical
example. Bob asks Alice a question, and she wants to reply 1 (which means
“Yes”, whilst 0 means “No”), but the channel she is using to send her mes-
sage does not reproduce symbols faithfully, i.e. there is some probability p
that the 1 is transformed into 0; so she replies (1, 1, 1, 1, 1, 1, 1, 1, 1). Now
suppose that Bob receives the message (1, 1, 0, 0, 1, 1, 0, 1, 0): as it contains
more 1’s than 0’s, he interprets it correctly as a “Yes”. So, what happened?
Alice encoded her answer using the map “Yes”7→ (1, 1, 1, 1, 1, 1, 1, 1, 1),
“No” 7→ (0, 0, 0, 0, 0, 0, 0, 0, 0), which associates to her answer an element of
C := {(0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1, 1)}, which is a 1-dimensional
sub-vector space of F9

2; then Bob noticed that the received message does
not belong to C, interpreted it as the “closest element” (the element with
the highest number of matching entries) of C, and decoded it as “Yes”. In
general, a q-ary linear code C of length n, dimension k and minimum dis-
tance d (or an [n, k, d]q code) is a k-dimensional sub-vector space of Fnq such
that any pair of elements of C differs in at least d entries (definitions 2.1.1

1

2 Chapter 1 Introduction

and 2.1.3); the elements of a code are called codewords. So, Alice used a
code, precisely a repetition [9, 1, 9]2 code. For a reference about coding the-
ory see [8], [14], or any other coding theory handbook. For a more general
overview of information theory see [3].

Secret sharing schemes model the following problem: we have a secret
value s, and we want to distribute shares of s among n players, in a way
such that, for some integers t and r, any team of t players cannot obtain
any information about s (we say that the scheme achieves t-privacy) and
any team of r players can completely recover s (we say that the scheme
achieves r-reconstruction). The classical example is Shamir’s scheme (ex-
ample 2.3.4), where the secret is the value at 0 of a polynomial f of degree
at most k − 1 over a finite field and the i-th share is a point (xi, f(xi)) on
the graph G of f . It is easy to see that any k− 1 points of G give no infor-
mation about f(0), whilst any k points of G allow to recover f , hence f(0).
Therefore, Shamir’s scheme achieves (k − 1)-privacy and k-reconstruction.
Now, it is easy to see that Shamir’s scheme is linear: given two polyno-
mials f1 and f2 of degree at most k − 1 and the corresponding i-th shares
(xi, f1(xi)) and (xi, f2(xi)), then f1 + f2 is again a polynomial of degree at
most k− 1 and the corresponding i-th share is the point (xi, (f1 + f2)(xi))
on the graph of f1 + f2. The important consequence is that the i-th player
can compute the i-th share of the sum of the secrets, without communicat-
ing with the other players. Similarly, given a secret f and a scalar α, the
i-th player can compute the i-th share (xi, (αf)(xi)) of the secret (αf)(0).

As shown in [1], we can canonically construct a secret sharing scheme
Σ(C) on n players from a given linear code C of length n + 1 (proposi-
tion 2.5.1): we choose a codeword c ∈ C whose 0-th coordinate is the secret
s, and we define the i-th share to be the i-th coordinate of c; then Σ(C) is
automatically linear. Applying this construction to a Reed-Solomon code
(examples 2.1.9 and 2.5.5) we obtain Shamir’s scheme. Moreover, one can
prove that good parameters of the code C guarantee good parameters of
the associated LSSS; here the dual distance d⊥ of C, i.e. the distance of
the dual code (definition 2.1.5), is involved. We have that, given a code
C of length n + 1, minimum distance d and dual distance d⊥, the associ-
ated LSSS Σ(C) achieves (d⊥ − 2)-privacy and (n − d + 2)-reconstruction
(theorem 2.5.4).

Interest in linear secret sharing schemes is motivated by their use in
multi-party computation and verifiable secret sharing (see [4]). Multi-party
computation is the problem of n players to compute an agreed function of
their inputs, assuring the correctness of the output and the privacy of the
inputs (even when some players cheat). A classical example is Yao’s Mil-
lionaires’ Problem (see [15]): two millionaires wish to know who is richer
without having any additional information about each other’s wealth. Ver-
ifiable secret sharing is the problem of the distribution of a secret value
s among n players, where the dealer and/or some of the players may be
cheating. However, as shown above for Shamir’s scheme, linear secret shar-

3

ing schemes allow us to perform multi-party sums, but in general they do
not automatically allow multi-party multiplications.

Let C be a code of length n + 1, let c = (s, c1, . . . , cn) and c′ =
(s′, c′1, . . . , c

′
n) be two codewords; from the secret sharing point of view,

we may say that ci is the i-th share of s and c′i is the i-th share of s′. By
linearity of C, c+ c′ = (s+s′, c1 + c′1, . . . , cn+ c′n) is a codeword, and ci+ c′i
is the i-th share of the sum s+ s′ of the secrets. In order to have the same
property for the product ss′ of the secrets, we need that the component-
wise product c∗ c′ = (ss′, c1c

′
1, . . . , cnc

′
n) is also a codeword. Unfortunately,

this is not true in general, so we have to consider the Schur product Ĉ of
C, which is defined as the linear code spanned by all vectors of the form
c∗ c′, for c, c′ ∈ C. Hence we can canonically associate to Ĉ an LSSS Σ(Ĉ),
and consider its parameters: for example, if Σ(Ĉ) achieves r-reconstruction
then any team of r players can reconstruct the secret product ss′ only using
their share products cic

′
i.

We say that Σ(C) has t̂-strong multiplication if it achieves t̂-privacy and
Σ(Ĉ) achieves (n− t̂)-reconstruction (sometimes we will refer to t̂ as to the
multiplication parameter of Σ(C)). This models a secret sharing scenario in
which two secrets s and s′ are shared among n players and we assume that
t̂ players are corrupted: we do not want these corrupted players to have
enough information to recover one of the secrets, whilst the other n − t̂
players shall be able to compute the secret product ss′ only using their
share products. In particular, we obtain that if t̂ ≤ d⊥ − 2 and t̂ ≤ d̂ − 2,
for some integer t̂, then Σ(C) has t̂-strong multiplication, where d⊥ is the
dual distance of C and d̂ is the minimum distance of Ĉ (corollary 2.5.8).

All algebraic structures mentioned above (linear codes, product codes,
LSSS’s and LSSS’s with multiplication) are properly defined and discussed
in chapter 2, together with the link between them (canonical construction
of an LSSS from a linear code, relations between the parameters).

In chapter 3 we discuss two recent results on this topic. Precisely, in
section 3.1 we explain the construction given in [1] of a family of linear
codes yielding a family of LSSS’s having a good multiplication parameter.
In section 3.2 we deal with the construction given in [10] of a family of
linear codes with good parameters (an asymptotically good family, see def-
inition 3.2.1) and whose product codes have good parameters as well. In
both cases, first we give constructions of algebraic-geometric codes (for a
reference, see [13]) with good parameters (as codes and as LSSS’s) which
work for large values of the field size q, and then using a field descent we
construct codes over smaller fields, in order to let these results hold true
for any choice of the field size q. The essential difference between the two
constructions is in the choice of the field descent map: in the first construc-
tion its purpose is to preserve the multiplication parameter of the LSSS
associated to the code, whilst in the second case its aim is to control the
parameters of the code itself; we may say that the first construction is done
from the secret sharing point of view, whilst in the second one the point

4 Chapter 1 Introduction

of view is more coding theoretic (actually, this is partially true: for an
application, see [7]).

In chapters 4 and 5 we give our contribution to this topic. Precisely:
given an [n, k]q code C, we are interested in bounding from below the

dimension k̂ of the Schur product code Ĉ of C as a function of n, k and d⊥.
The relation mentioned above between parameters of codes and parameters
of associated LSSS’s justifies this interest.

In chapter 4 we summarise some computational tests, performed using
the computer algebra system PARI/GP, in which we computed the product
dimension of some given codes. These tests gave us the feeling that this
parameter quickly increases when code dimension and field size increase.

Finally, in chapter 5 we state and prove our main result.

Theorem 5.0.3. For all ε > 0, for all t ∈ N, for all [n, k]q codes with dual

distance d⊥ ≥ 2t+ 1, we have

k̂ ≥ k +

(
1

2
− ε
)
t log2q(n− k) + o

(
log2q(n− k)

)
.

The asymptotic notation will be precisely defined in section 2.6. The
proof of this theorem is split into three parts: first we arrange the generator
matrix of the code in a way which leads us to easily find linearly independent
vectors of the product code (section 5.1), then, using elementary algebraic
tools, we bound from below the number of such vectors (section 5.2), and
finally, using elementary analytic tools, we show that the bound found at
the previous step agrees, at least for sufficiently large values of n− k, with
the statement of the theorem (section 5.3). We also show (example 5.0.4)
that this lower bound is asymptotically the best possible, at least in the
case when d⊥ = 3.

2
Preliminaries

In this chapter we give some basic notions about linear codes and linear
secret sharing schemes (LSSS) and we fix some notation which will be used
in this work.

Section 2.1 deals with linear codes: here we give some basic definitions,
properties and relations between their parameters; for a more exhaustive
discussion we refer to [8], [14] or to any other coding theory handbook. In
section 2.2 we define the Schur product of a linear code, as it is defined in
[1] and [10], and we give some basic properties.

Sections 2.3 and 2.4 deal with linear secret sharing schemes, focusing
on multiplication property; our main references are [1] and [2].

In section 2.5 we show how to construct an LSSS from a given code and
we explain the relations between the parameters of the code and of the LSSS
(dual distance and product distance on one side, privacy, reconstruction and
multiplication on the other). This construction is taken from [1].

The last section is essentially taken from [12]; here we give some notation
which will be useful later, in particular in chapter 5.

Through this chapter, and through the whole work, q will be a fixed
prime power and Fq will denote the field with q elements.

2.1 Linear codes

We start by giving the classical basic definitions in linear coding theory.

Definition 2.1.1 (linear code). A linear code C of length n and dimension
k over Fq (an [n, k]q code) is a k-dimensional linear subspace of Fnq . The
elements of a code are called codewords.

5

6 Chapter 2 Preliminaries

Definition 2.1.2 (generator matrix). Let C be an [n, k]q code. A generator
matrix G for C is a k × n matrix whose rows form an Fq-basis of C.

By definition,

C = {xtG : x ∈ Fkq};

equivalently, C is the image of the linear map

Fkq → Fnq .
x 7→ Gtx

With a basis change and a renumbering of the coordinates, we can write G
in standard form, i.e. as

G =

1
. . . G′

1

with G′ ∈Mk,n−k(Fq); we will often assume that G is written in this way.

Let c = (c1, . . . , cn), c′ = (c′1, . . . , c
′
n) ∈ C, we define their distance

d(c, c′) :=
∣∣{i ∈ {1, . . . , n} : ci 6= c′i

}∣∣ ∈ {0, . . . , n},
i.e. d(c, c′) is the number of the coordinates in which c and c′ are different;
one can verify that d actually defines a metric on Fnq . Also, we define the
weight w(c) of c as its distance from the codeword 0 ∈ C,

w(c) := d(c, 0) ∈ {0, . . . , n}.

In practice, codes are used to send messages through noisy channels. A
message m ∈ Fkq is transformed into a codeword c := mtG ∈ C, which is
sent through the channel. The received vector x ∈ Fnq is not necessarily
a codeword, but it will be decoded as a codeword c′ which minimises the
distance d(x, c′), hence transformed into the message m′ ∈ Fkq such that
c′ = m′tG. Hopefully, m = m′. The distance between c and c′ measures
how much the noise must modify c in order to transform it in a vector x
which is decoded as c′, and cause a misinterpretation of the message. So
we have another parameter which is relevant for a code.

Definition 2.1.3 (minimum distance). Let C be an [n, k]q code. We call

d := min
c,c′∈C
c6=c′

d(c, c′) = min
c∈C\{0}

w(c)

the minimum distance of C. An [n, k, d]q code is an [n, k]q code with mini-
mum distance d.

Note that the equality in the definition of d is true because C is linear.

2.1 Linear codes 7

Definition 2.1.4 (rate, relative minimum distance). Let C be an [n, k, d]q
code. We call

R :=
k

n
and δ :=

d

n

the rate and the relative minimum distance of C.

Definition 2.1.5 (dual code). Let C be an [n, k]q code. The dual code C⊥

of C is the [n, n− k]q code

C⊥ := {x ∈ Fnq : x · c = 0 for all c ∈ C}.

Here the dot denotes the scalar product on Fnq : if x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Fnq then x·y := xty =

∑n
i=1 xiyi. Note that here x·x = 0 does

not imply x = 0 (for example, consider the case of q = 2 and x = (1, 1)),
hence some classical properties of orthogonal vector spaces over R do not
hold for dual codes: for example, it is false that C ∩ C⊥ = {0} and it may
also happen that C = C⊥ (in this case we say that C is self-dual). Clearly,

C = (C⊥)
⊥

.

If we write the generator matrix G of C in standard form, then a gen-
erator matrix for C⊥ is

H :=

 1

−G′⊥ . . .

1

 ∈Mn−k,n(Fq);

H is called a parity check matrix for C. Finally, we denote by d⊥ the dual
distance of C, i.e. the minimum distance of its dual code C⊥; it is the
cardinality of a minimal linearly dependent set of columns of G.

Clearly, a “good” code is a code which allows us to send long messages
with a small waste of bandwidth and a big resistance to the noise in the
channel. In other words, we are interested in [n, k, d]q codes with big k,
big d and small n. We are going to give some classical bounds which relate
these parameters.

Theorem 2.1.6 (Singleton bound). Let C be an [n, k, d]q code. Then

k + d ≤ n+ 1.

Proof. Let G be the generator matrix of C, written in standard form; then
its first row is a codeword c ∈ C and it has weight w(c) ≤ 1 + n− k.

Definition 2.1.7 (MDS code). Let C be an [n, k, d]q code. We say that C
is an MDS (maximum distance separable) code if k + d = n+ 1.

Theorem 2.1.8. Let C be an [n, k, d]q code. C is MDS if and only if C⊥

is MDS.

8 Chapter 2 Preliminaries

Proof. Let C be MDS, i.e. d = n + 1 − k, and let H ∈ Mn−k,n(Fq) be a

generator matrix for C⊥. As C = (C⊥)
⊥

, C⊥ has dual distance d, hence
any d−1 = n−k columns of H are linearly independent, hence any square
submatrix of H has full rank, hence any non zero codeword of C⊥ has less
than n− k zeros. This proves that d⊥ > k. On the other hand d⊥ ≤ k + 1
by the Singleton bound, hence d⊥ = k + 1 and C⊥ is MDS.

The opposite implication follows since C = (C⊥)
⊥

.

Example 2.1.9 (Reed-Solomon code). Let k ≤ n ≤ q, fix n distinct ele-
ments x1, . . . , xn ∈ Fq.

Let C be the image of the (injective) evaluation map

Fq[X]<k → Fnq ,
f 7→ (f(x1), . . . , f(xn))

i.e. C := {(f(x1), . . . , f(xn)) : f ∈ Fq[X], deg f < k} ≤ Fnq . Then C is
an [n, k]q code, called a Reed-Solomon code. Moreover, C has minimum
distance d = n + 1 − k; indeed: let c ∈ C be such that w(c) ≤ n − k,
i.e. c is the image of a polynomial f ∈ Fq[X] of degree deg f < k with
n−w(c) ≥ k zeros, hence f = 0 and c = 0. This proves that d ≥ n+ 1− k,
hence d = n+ 1−k by the Singleton bound. Therefore, C is an MDS code.
Finally, a generator matrix for C is

G =

1 . . . 1
x1 . . . xn
...

...

xk−11 . . . xk−1n

 ;

note that rkG = k since it is a Vandermonde matrix.

Theorem 2.1.10 (Plotkin bound). Let C be an [n, k, d]q code. Then

d ≤ qk−1(q − 1)

qk − 1
n.

Proof. We compute the quantity
∑

c,c′∈C d(c, c′) in two different ways. First
clearly ∑

c,c′∈C
d(c, c′) ≥

∑
c,c′∈C
c 6=c′

d = dqk(qk − 1).

On the other hand, consider the qk × n matrix of all the codewords of
C. Let α ∈ Fq, we want to compute the number m of appearances of α on
a column of this matrix, say the first; let g be the first column of G, we
have

m = |{x ∈ Fkq : xtg = α}| = qk−1

since this set is a hyperplane of Fkq ; in particular, m does not depend on
α or on the chosen column. Thus, for any column we have m occurrences

2.1 Linear codes 9

of any element, and for any of these occurrences we have a contribution of
qk −m to the sum of the distances, i.e.

∑
c,c′∈C

d(c, c′) =

n∑
i=1

q∑
j=1

m(qk −m) = nqqk−1qk−1(q − 1) =
q − 1

q
(qk)

2
n.

We obtain

dqk(qk − 1) ≤ q − 1

q
(qk)

2
n

which is what we were looking for.

Theorem 2.1.11 (Hamming bound). Let C be an [n, k, d]q code, put t :=

bd−12 c. Then

n− k ≥ logq

t∑
i=0

(
n

i

)
(q − 1)i.

Proof. For all x ∈ Fnq , r ∈ R>, we define the ball of center x and radius r
as

B(x, r) := {y ∈ Fnq : d(x, y) ≤ r};

clearly

|B(x, r)| =
r∑
i=0

(
n

i

)
(q − 1)i.

Now the balls B(c, t), for c ∈ C, are disjoint, hence∣∣∣∣∣⋃
c∈C

B(c, t)

∣∣∣∣∣ =
∑
c∈C
|B(c, t)| = qk

r∑
i=0

(
n

i

)
(q − 1)i;

on the other hand,

⋃
c∈C

B(c, t) ⊆ Fnq =⇒

∣∣∣∣∣⋃
c∈C

B(c, t)

∣∣∣∣∣ ≤ qn
and the conclusion follows.

2.2 Schur product codes

We denote by ∗ the componentwise multiplication (or Schur product) on
Fnq , i.e. for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fnq we put

x ∗ y := (x1y1, . . . , xnyn) ∈ Fnq .

Definition 2.2.1 (Schur product code). Let C be an [n, k, d]q code. We

call Ĉ := 〈c ∗ c′ : c, c′ ∈ C〉 ≤ Fnq the (Schur) product code of C.

10 Chapter 2 Preliminaries

Clearly Ĉ has the same length as C. Moreover, Ĉ contains (a copy of)
C, given by the injective map c 7→ c ∗ c, hence it has dimension k̂ ≥ k and
distance d̂ ≤ d. Often we will call k̂ and d̂ the product dimension and the
product distance of C. Any Fq-basis {g1, . . . , gk} of C gives a generator

system {gi ∗ gj : 1 ≤ i ≤ j ≤ k} of Ĉ over Fq, hence k̂ ≤ k(k+1)
2 .

We will be interested in more precise estimates of k̂. In order to do
that, we decompose Ĉ as

Ĉ = 〈gi ∗ gi : 1 ≤ i ≤ k〉 ⊕ 〈gi ∗ gj : 1 ≤ i < j ≤ k〉

where g1, . . . , gk are the rows of a generator matrix of C written in standard
form. The first summand is (a copy of) C, the second summand is a

subspace of Fn−kq of dimension at most k(k−1)
2 .

The following lemma will often be useful for bounding from below the
dimension of the second summand.

Lemma 2.2.2. Let v0 ∈ (F∗q)
m, v1, . . . , vh ∈ Fmq . If v1, . . . , vh are linearly

independent over Fq then v0 ∗ v1, . . . , v0 ∗ vh are linearly independent over
Fq.

Proof. Denote by vi,j the j-th coordinate of the vector vi.
Let α1, . . . , αh ∈ Fq be such that

h∑
i=1

αiv0 ∗ vi = 0;

then, for all j = 1, . . . ,m,

h∑
i=1

αiv0,jvi,j = 0 =⇒
h∑
i=1

αivi,j = 0,

as v0,j 6= 0; therefore
∑h

i=1 αivi = 0 and since the vi’s are linearly indepen-
dent this yields αi = 0 for all i = 1, . . . , h.

Corollary 2.2.3. Let C be an MDS [n, k]q code. If 2k − 1 ≤ n then

k̂ ≥ 2k − 1.

Proof. Let G be a generator matrix for C, written as

G =

1
. . . G′

1

 ,

where G′ ∈ Mk,n−k(F∗q) (by MDS hypothesis). The MDS hypothesis and
2k − 1 ≤ n imply that k ≤ d, which implies that any k − 1 rows of G′ are
linearly independent. Hence we can apply the previous lemma choosing as
v0, . . . , vk−1 any set of rows and conclude.

2.2 Schur product codes 11

Example 2.2.4. Let k ≤ n ≤ q, fix n distinct elements x1, . . . , xn ∈ Fq
and let C be the Reed-Solomon [n, k]q code generated by the matrix

G =

1 . . . 1
x1 . . . xn
...

...

xk−11 . . . xk−1n

 .

Then Ĉ is generated by

Ĝ =

1 . . . 1
x1 . . . xn
...

...

x2k−21 . . . x2k−2n

 ;

in particular, rk Ĝ = min{2k − 1, n}. Hence, if 2k − 1 ≤ n, Ĉ is a Reed-
Solomon [n, 2k − 1]q code.

Example 2.2.5 (simplex code). Let q be a prime power, k ∈ N. Let G be
the matrix whose columns are a set of representatives of Fkq \ {0} modulo
scalar multiplication (i.e. the points of the (k − 1)-dimensional projective

space over Fq). Then G has rank k and n := qh−1
q−1 columns; hence G is the

generator matrix of an [n, k]q code C, called the simplex [n, k]q code. Note

that, by construction, C has dual distance d⊥ = 3.
Let Ĝ be the matrix whose rows are the vectors gi∗gj for 1 ≤ i ≤ j ≤ k,

where g1, . . . , gk are the rows of G. For all 1 ≤ i ≤ j ≤ k, we find a column
of G whose i-th and j-th entries are non-zero, and all other entries are
equal to zero. The corresponding k(k+1)

2 columns of Ĝ give a maximal rank

submatrix. It follows that the product code Ĉ has dimension k̂ = k(k+1)
2 .

2.3 Linear secret sharing schemes

Definition 2.3.1 (linear secret sharing scheme). A linear secret sharing
scheme (LSSS) is a tuple Σ = (Fq, n, e, v0, V1, . . . , Vn) where:

• Fq is the field with q elements, where q is a prime power;

• n, e ∈ N;

• v0 ∈ Feq \ {0};

• V1, . . . , Vn ≤ Feq such that v0 ∈
∑

i Vi.

We put P := {1, . . . , n} (the set of players); for A ⊆ P we put VA :=∑
i∈A Vi.

Definition 2.3.2 (adversary structure, access structure). Let Σ be an
LSSS.

12 Chapter 2 Preliminaries

a) The adversary structure A(Σ) is the set of all A ⊆ P satisfying the
property: there exists an Fq-linear map φ : Feq → Fq such that φ(v0) = 1
and φ(VA) = 0; moreover, by convention, ∅ ∈ A(Σ).

b) The access structure Γ(Σ) is the set of all B ⊆ P such that v0 ∈ VB; by
definition of LSSS, P ∈ Γ(Σ).

Clearly:

1. A ∈ A(Σ), A′ ⊆ A =⇒ A′ ∈ A(Σ);

2. B ∈ Γ(Σ), B′ ⊇ B =⇒ B′ ∈ Γ(Σ).

Moreover, A(Σ)∩Γ(Σ) = ∅ and A(Σ)∪Γ(Σ) = 2P (the family of all subsets
of P).

Definition 2.3.3 (privacy, reconstruction). Let Σ be an LSSS, t, r ∈ N.
We say that:

a) Σ achieves t-privacy if A(Σ) ⊇ {A ⊆ P : |A| = t};

b) Σ achieves r-reconstruction if Γ(Σ) ⊇ {B ⊆ P : |B| = r}.

A(Σ) ∩ Γ(Σ) = ∅ implies that t < r; we say that Σ is a threshold LSSS
if it achieves t-privacy and (t + 1)-reconstruction for some t ∈ N. Note
that the previous definition does not say anything about the maximality
of t (respectively the minimality of r): for example if Σ achieves t-privacy
then Σ achieves t′-privacy for any t′ < t and it may happen that Σ actually
achieves (t+ 1)-privacy.

These definitions model the following idea. We want to share a secret
s ∈ Fq between n players. We choose (uniformly random) an Fq-linear map
φ : Feq → Fq such that φ(v0) = s; the i-th share (the private information
given to the i-th player) is the image under φ of (a fixed basis of) Vi. Now,
some players can decide to form a team, i.e. share their private information
with their teammates and work together with the purpose of recovering the
secret. Then A(Σ) is the family of all teams having no information about
the secret and Γ(Σ) is the family of all teams having enough information
to recover the secret. Hence Σ achieves t-privacy if any team of t players
has no information about the secret and r-reconstruction if any team of r
players has enough information to recover the secret.

Example 2.3.4 (Shamir’s LSSS). Let k ≤ n < q, fix n+1 distinct elements
x0, . . . , xn ∈ Fq.

We want to share a secret s ∈ Fq among n players. We choose a polyno-
mial f ∈ Fq[X] of degree deg f = k − 1 such that f(x0) = s, and we define
the i-th share to be f(xi). Then the knowledge of any k pairs (xi, f(xi))
allows to recover f , hence the secret s = f(x0), whilst the knowledge of
any k − 1 such pairs does not give any information about s.

2.3 Linear secret sharing schemes 13

This defines an LSSS Σ, namely a Shamir’s LSSS. The parameters of
Σ (notation as in definition 2.3.1) are e = k, v0 = (1, x0, . . . , x

k−1
0)and

Vi = 〈(1, xi, . . . , xk−1i)〉 for all i = 1, . . . , n. We have just said that Σ
achieves (k−1)-privacy and k-reconstruction, hence it is a threshold scheme.

2.4 LSSS’s with multiplication

We fix the following notation. Let v = (v1, . . . , ve), w = (w1, . . . , we) ∈ Feq,
we put

v ⊗ w := (v1w1, . . . , v1we, . . . , vew1, . . . , vewe) ∈ Fe
2

q .

Let V,W ≤ Feq, we put V ⊗W := 〈v ⊗ w : v ∈ V,w ∈ W 〉 ≤ Fe2q . In our

case, for A ⊆ P we put V̂A :=
∑

i∈A Vi ⊗ Vi. The following property links
this product with the scalar product.

Lemma 2.4.1. Let v, v′, w, w′ ∈ Feq. Then

(v ⊗ w) · (v′ ⊗ w′) = (v · v′)(w · w′).

Proof. As usual, let v = (v1, . . . , ve) (and similarly the other vectors), then

(v ⊗ w) · (v′ ⊗ w′) =
e∑

i,j=1

(viwj)(v
′
iw
′
j) =

(
e∑
i=1

viv
′
i

) e∑
j=1

wjw
′
j

 =

= (v · v′)(w · w′).

Definition 2.4.2 (multiplication). Let Σ be an LSSS. We say that Σ has
multiplication if:

(i) Σ achieves 1-privacy,

(ii) v0 ⊗ v0 ∈ V̂P .

Definition 2.4.3 (t̂-strong multiplication). Let Σ be an LSSS, t̂ ∈ N. We
say that Σ has t̂-strong multiplication if:

(i) Σ achieves t̂-privacy,

(ii) v0 ⊗ v0 ∈ V̂P ,

(iii) for all B ⊆ P with |B| = n− t̂, v0 ⊗ v0 ∈ V̂B.

Property (ii), common to the two definitions, says that

Σ̂ := (Fq, n, e2, v0 ⊗ v0, V1 ⊗ V1, . . . , Vn ⊗ Vn)

is an LSSS. Property (iii) in the latter definition says that Σ̂ achieves (n−t̂)-
reconstruction. So, an LSSS Σ has t̂-multiplication if it achieves t̂-privacy
and its product Σ̂ achieves (n− t̂)-reconstruction.

14 Chapter 2 Preliminaries

Lemma 2.4.4. Let v0, . . . , vn ∈ Feq, λ1, . . . , λn ∈ Fq. We have that v0⊗v0 =∑n
i=1 λivi ⊗ vi if and only if

φ(v0)φ
′(v0) =

n∑
i=1

λiφ(vi)φ
′(vi) for all Fq-linear maps φ, φ′ : Feq → Fq.

(2.4.1)

Proof. We have v0 ⊗ v0 =
∑n

i=1 λivi ⊗ vi if and only if(
n∑
i=1

λivi ⊗ vi − v0 ⊗ v0

)
· (b⊗ b′) = 0 for all b, b′ ∈ Feq,

i.e., by bilinearity of the scalar product,(
n∑
i=1

λivi ⊗ vi

)
· (b⊗ b′) = (v0 ⊗ v0) · (b⊗ b′) for all b, b′ ∈ Feq. (2.4.2)

Now by lemma 2.4.1 the left hand side is(
n∑
i=1

λivi ⊗ vi

)
· (b⊗ b′) =

n∑
i=1

λi(vi ⊗ vi) · (b⊗ b′) =
n∑
i=1

λi(vi · b)(vi · b′)

and the right hand side is

(v0 ⊗ v0) · (b⊗ b′) = (v0 · b)(v0 · b′).

Hence (2.4.2) is equivalent to

n∑
i=1

λi(vi · b)(vi · b′) = (v0 · b)(v0 · b′) for all b, b′ ∈ Feq,

which is equivalent to (2.4.1) since we can identify Fq-linear maps Feq → Fq
and vectors in Feq.

Assume that we have two secrets s, s′ ∈ Fq shared between the n players,
i.e. two maps φ, φ′ : Feq → Fq such that φ(v0) = s, φ′(v0) = s′. Assume that
Vi = 〈vi〉 for all i ∈ P, i.e. that all Vi’s have dimension 1 (this can be easily
generalised to Vi’s of arbitrary dimension, by generalising lemma 2.4.4),
hence the i-th shares are simply φ(vi) and φ′(vi). By property (ii) and the
previous lemma

ss′ = φ(v0)φ
′(v0) =

n∑
i=1

λiφ(vi)φ
′(vi)

for some λ1, . . . , λn ∈ Fq, i.e. the product of the secrets is a linear com-
bination of the products of the shares. This says that in an LSSS with
multiplication the i-th share of the product of two secrets is the product

2.4 LSSS’s with multiplication 15

of the i-th shares of the secrets; in particular, the i-th player can compute
the i-th share of the secret product without communicating with the other
players.

Property (iii) says that, for all sets B ⊆ P with |B| = n− t,

ss′ = φ(v0)φ
′(v0) =

∑
i∈B

λiφ(vi)φ
′(vi)

for some {λi}i∈B ⊆ Fq (arguing as in the previous lemma), i.e. the secret
product is a linear combination of any n− t share products.

An LSSS with t̂-strong multiplication models the following idea. We
have two secrets shared between the n players, and we suspect that t̂ players
are corrupted. By t̂-privacy of Σ, the corrupted players have not enough
information to recover the secrets. By (n − t̂)-reconstruction of Σ̂, the
other n− t̂ players can form a team and recover the product of the secrets
by sharing an information which is not enough to recover one of the two
secrets.

2.5 From codes to LSSS’s

First we fix some notation. Let A ⊆ {0, . . . , n}, then

πA : Fn+1
q → F|A|q

(xi)i=0,...,n 7→ (xi)i∈A

is the (Fq-linear) projection on the coordinates i ∈ A; if A = {i} for some
i then we write πi instead of π{i} and xi instead of πi(x).

Let C be an [n+ 1, k]q code. Assume that e0 6∈ C and e0 6∈ C⊥, where

ei, for i = 0, . . . , n, denotes the i-th vector of the standard basis of Fn+1
q .

Then we have a standard way to construct an LSSS from C.

Proposition 2.5.1. Let C be an [n+ 1, k]q code, with generator matrix G.

If e0 6∈ C and e0 6∈ C⊥ then the tuple Σ(C) = (Fq, n, k, v0, 〈v1〉, . . . , 〈vn〉),
where vi, for i = 0, . . . , n, is the i-th column of G, is an LSSS.

Proof. Clearly v0 6= 0 since e0 6∈ C⊥.

We only have to prove that v0 ∈
∑

i〈vi〉. As e0 6∈ C, we can define the
Fq-linear map

ρ{1,...,n} : π{1,...,n}(C) → Fq
π{1,...,n}(c) = (c1, . . . , cn) 7→ c0

(otherwise, if there exists c, c′ ∈ C such that ci = c′i for i = 1, . . . , n but c0 6=
c′0 then by linearity e0 = c−c′

c0−c′0
∈ C). Hence, we can associate to ρ{1,...,n}

a matrix b = (b1, . . . , bn) ∈ Fnq such that, for all c ∈ C, c0 =
∑n

i=1 bici. In
particular, this implies that v0 =

∑n
i=1 bivi.

16 Chapter 2 Preliminaries

Clearly, the same construction gives an LSSS Σ(C, i) for any choice of
a coordinate i ∈ {0, . . . , n} such that ei 6∈ C and ei 6∈ C⊥.

Note that in the previous proposition we can replace G with any ma-
trix whose rows form a system of generators of C, and are not necessarily
linearly independent. In this case the parameter e (in the tuple defining an
LSSS) is the number of the rows of this matrix.

The previous proposition says that we can use a code C as an LSSS
as follows. Let s ∈ Fq be the secret, then we choose (uniformly random)
c ∈ C such that c0 = s and we share the ci’s. This is equivalent to choose
the Fq-linear map

φ : Fkq → Fq,
(x1, . . . , xk) 7→

∑k
i=1 aixi

where a = (a1, . . . , ak) is such that aG = c, and share the φ(vi)’s.

Now we are going to investigate the relation between the parameters
of the code (length, distance and dual distance) and the parameters of
the associated LSSS (privacy and reconstruction). Again, we put P :=
{1, . . . , n}.

Lemma 2.5.2. Let C be an [n+ 1, k]q code such that e0 6∈ C and e0 6∈ C⊥,
let A ⊆ P. We have that A ∈ A(Σ(C)) if and only if there exists c ∈ C
with c0 = 1 and πA(c) = 0.

Proof. Let c = aG ∈ C, with a ∈ Fkq , be such that c0 = 1 and πA(c) = 0;

this is equivalent to say that the Fq-linear map φ : Fkq → Fq associated to
a is such that φ(v0) = c0 = 1 and φ(vi) = ci = 0 for any i ∈ A, i.e. that
A ∈ A(Σ(C)).

Lemma 2.5.3. Let C be an [n+ 1, k]q code such that e0 6∈ C and e0 6∈ C⊥,
let B ⊆ P. We have that B ∈ Γ(Σ(C)) if and only if there exists b =

(bi)i∈B ∈ F|B|q such that, for all c ∈ C, c0 = b · πB(c) =
∑

i∈B bici.

Proof. Clearly c0 =
∑

i∈B bici for all c ∈ C if and only if v0 =
∑

i∈B bivi ∈∑
i∈B〈vi〉, i.e. B ∈ Γ(Σ(C)).

Note that in the previous lemmas we assumed that e0 6∈ C and e0 6∈ C⊥
only to be allowed to construct Σ(C); these hypotheses are not actually
used in the proofs. In particular, we have proved that:

1. if τ ∈ N is such that any A ⊆ P with |A| = τ satisfies the hypothesis
of lemma 2.5.2 then Σ(C) achieves τ -privacy;

2. if ρ ∈ N is such that any B ⊆ P with |B| = ρ satisfies the hypothesis
of lemma 2.5.3 then Σ(C) achieves ρ-reconstruction.

We denote by t(C) the largest τ ∈ N such that Σ(C) achieves τ -privacy, or
we put t(C) := 0 if there is no such a τ , and by r(C) the smallest ρ ∈ N such

2.5 From codes to LSSS’s 17

that Σ(C) achieves ρ-reconstruction. The assumptions e0 6∈ C and e0 6∈ C⊥
guarantee that t(C) and r(C) are well defined and satisfy 0 ≤ t(C) < n
and 0 ≤ r(C) ≤ n. In the same way, we may define ti(C) and ri(C) for any
i ∈ {0, . . . , n} such that ei 6∈ C and ei 6∈ C⊥.

We have the following important theorem.

Theorem 2.5.4. Let C be an [n+ 1, k, d]q code with dual distance d⊥ such

that e0 6∈ C and e0 6∈ C⊥. Then Σ(C) achieves:

1. (d⊥ − 2)-privacy;

2. (n− d+ 2)-reconstruction.

Proof. We have to prove that all sets A ⊆ P with |A| = d⊥ − 2 satisfy the
hypothesis of lemma 2.5.2 and all sets B ⊆ P with |B| = n− d+ 2 satisfy
the hypothesis of lemma 2.5.3. Clearly, if d⊥ ≤ 2 and d ≤ 2 then there is
nothing to prove, so we may assume d⊥ > 2 and d > 2.

Let A ⊆ P with |A| = d⊥ − 2, we claim that the map

π0,A : C →
(
Fq,F

|A|
q

)
= Fd⊥−1q

c 7→ (c0, πA(c))

is surjective, hence it suffices to pick c ∈ π0,A−1(1, 0). Suppose π0,A is not

surjective, i.e. W := imπ0,A $ Fd⊥−1q ; hence W⊥ 6= 0, i.e. we can find a

codeword c′ ∈ C⊥ of weight w(c′) ≤ d⊥ − 1, a contradiction.

Let B ⊆ P with |B| = n− d+ 2, consider the [1 + |B|, k′]q code C ′ :=
π0,B(C), i.e. the code generated by the matrix G′ ∈ Mk,1+|B|(Fq) whose
columns are v0 and vi for i ∈ B (notation as in proposition 2.5.1). Let e′0 ∈
F1+|B|
q be the first vector of the standard basis of F1+|B|

q ; clearly e′0 6∈ C ′,
otherwise we can find c ∈ C of weight w(c) ≤ 1+(n+1− (1+ |B|)) = d−1,
a contradiction, and e′0 6∈ C ′⊥, otherwise v0 = 0 and e0 ∈ C⊥. Hence we

can argue as in the proof of proposition 2.5.1 and find b = (bi)i∈B ∈ F|B|q

such that, for all c ∈ C, c0 =
∑

i∈B bici.

Note that this result is independent of the choice of the coordinate
i ∈ {0, . . . , n}, provided that e0 6∈ C and e0 6∈ C⊥, i.e. that Σ(C, i) is
defined.

Example 2.5.5. The application of proposition 2.5.1 to a Reed-Solomon
[n+ 1, k]q code C gives Shamir’s LSSS Σ(C). As C is MDS, it has min-

imum distance d = n + 2 − k and dual distance d⊥ = k + 1, hence the
previous theorem says (again) that Σ(C) achieves (k − 1)-privacy and k-
reconstruction.

In the previous sections we have seen that:

• given a code C we can define his product code Ĉ;

18 Chapter 2 Preliminaries

• given an LSSS Σ satisfying some properties (see definitions 2.4.2 and
2.4.3) we can define an LSSS Σ̂.

Now, proposition 2.5.1 tells us that if e0 6∈ Ĉ and e0 6∈ Ĉ⊥ then we can
define Σ(Ĉ), so it is natural to ask whether Σ(Ĉ) = Σ̂(C). The answer is
yes. More precisely, the following holds.

Proposition 2.5.6. Let C be an [n+ 1, k]q code such that e0 6∈ Ĉ and

e0 6∈ Ĉ⊥; then:

1. e0 6∈ C and e0 6∈ C⊥, hence

Σ(C) = (Fq, n, k, v0, 〈v1〉, . . . , 〈vn〉),

where vi, for i = 0, . . . , n, is the i-th column of a (fixed) generator
matrix G for C, is defined;

2. v0 ⊗ v0 6= 0 and v0 ⊗ v0 ∈
∑n

i=1〈vi〉 ⊗ 〈vi〉, hence

Σ̂(C) = (Fq, n, k2, v0 ⊗ v0, 〈v1〉 ⊗ 〈v1〉, . . . , 〈vn〉 ⊗ 〈vn〉)

is defined;

3. if g1, . . . , gk are the rows of G then Ĝ := {g1 ∗ g1, . . . , g1 ∗ gk, . . . , gk ∗
g1, . . . , gk ∗ gk} is a system of generators of Ĉ, hence

Σ(Ĉ) = (Fq, n, k2, w0, 〈w1〉, . . . , 〈wn〉),

where wi, for i = 0, . . . , n, is the i-th column of the matrix whose
rows are the vectors of Ĝ, is defined;

4. wi = vi ⊗ vi for all i = 0, . . . , n, hence

Σ̂(C) = Σ(Ĉ).

Proof. It is easy to see that, for any i ∈ {0, . . . , n}, ei 6∈ Ĉ =⇒ ei 6∈ C and
ei 6∈ Ĉ⊥ ⇐⇒ ei 6∈ C⊥, hence Σ(C) is defined by proposition 2.5.1.

Since e0 6∈ C⊥, v0 ⊗ v0 6= 0. By lemma 2.4.4, v0 ⊗ v0 =
∑n

i=1 λivi ⊗ vi
for some λi ∈ Fq if and only if

n∑
i=1

λi(vi · b)(vi · b′) = (v0 · b)(v0 · b′) for all b, b′ ∈ Fkq ,

and since the vi’s are the columns of a generator matrix for C this is
equivalent to

n∑
i=1

λicic
′
i = c0c

′
0 for all c, c′ ∈ C.

2.5 From codes to LSSS’s 19

Since e0 6∈ Ĉ, this is true; indeed, arguing as in the proof of proposi-
tion 2.5.1, we can define an Fq-linear map

ρ{1,...,n} : π{1,...,n}(Ĉ) → Fq
π{1,...,n}(c ∗ c′) = (c1c

′
1, . . . , cnc

′
n) 7→ c0c

′
0

and take as (λ1, . . . , λn) the matrix associated to this map. Hence Σ̂(C) is
an LSSS.

The third statement is clear from the definition of Ĉ and the last follows
by construction of the wi’s and definition of ⊗.

We define another important parameter. Let C be an [n+ 1, k]q code

such that e0 6∈ Ĉ and e0 6∈ Ĉ⊥; we put

t̂(C) := min{t(C), n− r(Ĉ)}.

Again, we may define t̂i(C) := min{ti(C), n− ri(Ĉ)} for any i ∈ {0, . . . , n}
such that ei 6∈ Ĉ and ei 6∈ Ĉ⊥. In practice, it is useful to assume (renum-
bering the coordinates) that t̂(C) is the biggest among these numbers.

We have the following important theorem.

Theorem 2.5.7. Let C be an [n+ 1, k]q code such that e0 6∈ Ĉ and e0 6∈
Ĉ⊥. Then:

1. Σ(C) has t̂(C)-strong multiplication;

2. Σ(C) achieves (n− 2t̂(C))-reconstruction;

3. t̂(C) ≤ n−1
3 .

Proof. By definition t̂(C) ≤ t(C), hence Σ(C) achieves t̂(C)-privacy, and
r(Ĉ) ≤ n − t̂(C), hence Σ̂(C) achieves (n − t̂(C))-reconstruction. This
proves the first statement.

Let B ⊆ P with |B| = n − 2t̂(C); hence we can write P \ B = A ∪ A′
with |A| = |A′| = t̂(C). Let c ∈ C, we have to prove that there exists

b = (bi)i∈B ∈ F|B|q such that c0 =
∑

i∈B bici. By t̂(C)-privacy of Σ(C)
and lemma 2.5.2, there exists c′ ∈ C such that c′0 = 1 and πA(c′) = 0.

Consider c ∗ c′ ∈ Ĉ, note that π0(c ∗ c′) = c0 and πA(c ∗ c′) = 0. Let
B′ := P \A′ = B∪A, |B′| = n− t̂(C); by (n− t̂(C))-reconstruction of Σ̂(C)

and lemma 2.5.3, there exists b′ = (b′i)i∈B′ ∈ F|B
′|

q such that π0(c ∗ c′) =∑
i∈B′ b

′
iπi(c ∗ c′); hence

c0 = π0(c∗c′) =
∑
i∈B′

b′iπi(c∗c′) =
∑
i∈B

b′iπi(c∗c′)+
∑
i∈A

b′iπi(c∗c′) =
∑
i∈B

(b′ic
′
i)ci,

so if we pick bi := b′ic
′
i for all i ∈ B we conclude.

Finally, since Σ(C) achieves t̂(C)-privacy and (n−2t̂(C))-reconstruction,
we have t̂(C)+1 ≤ n−2t̂(C), which is equivalent to the last statement.

20 Chapter 2 Preliminaries

Clearly, the same result holds replacing t̂(C) by any integer 1 ≤ t ≤
t̂(C).

Later on, the following corollary will be useful.

Corollary 2.5.8. Let C be an [n+ 1, k]q code with dual distance d⊥ and

product distance d̂ such that e0 6∈ Ĉ and e0 6∈ Ĉ⊥, t̂ ∈ N. If t̂ ≤ d⊥ − 2 and
t̂ ≤ d̂− 2 then Σ(C) has t̂-strong multiplication.

Proof. It follows from theorem 2.5.4 and theorem 2.5.7.

Example 2.5.9. Let C be a Reed-Solomon [n+ 1, k]q code; assume 2k −
1 ≤ n + 1, hence we can consider the Reed-Solomon [n+ 1, 2k − 1]q code

Ĉ. We have t(C) = k−1, r(Ĉ) = 2k−1 and t̂(C) = min{k−1, n−2k+ 1}.
Assume k = n+2

3 , then t̂(C) = n−1
3 , which is the maximum value attainable

by t̂(C). The previous theorem says that Shamir’s LSSS Σ(C) has (k− 1)-
strong multiplication and achieves k-reconstruction.

2.6 Asymptotic notation

We write “for sufficiently large n” to mean “there exists n0 ∈ N such that
for all n ≥ n0”.

Definition 2.6.1 (big-O, little-o). Let g : N→ R>.

a) O(g) is the set of all functions f : N → R such that, for some c ∈ R>
and for sufficiently large n, |f(n)| ≤ cg(n).

b) o(g) is the set of all functions f : N→ R such that f(n)
g(n) → 0.

We can actually define the relations f ∈ O(g) (f is big-O of g) and
f ∈ o(g) (f is little-o of g) for functions g and f defined on subsets of N
of the form N \ S, where S is a finite set. Moreover, by abuse of notation,
we will often write (e.g. in sums) “O(g(n))” instead of “f(n), for some
f ∈ O(g)”, and similarly for f ∈ o(g).

3
Recent results

In this chapter we collect some recent results about the parameters of Schur
product codes.

Section 3.1 is taken from [1]. Here we outline the proof of a lower bound
for the asymptotic optimal corruption tolerance τ̂(q) (definition 3.1.3),
which is a function of a prime power q (the size of a fixed field). The
fact that τ̂(q) > 0 allows us to use the construction given in section 2.5 to
obtain a family (Σi) of LSSS’s with t̂i-strong multiplication over Fq, on ni
players, such that ni →∞ and t̂i is arbitrarily close to ni

3 τ(q). For example

this means that, for any q and for any t̂, we can find an LSSS over Fq with
t̂-strong multiplication.

Section 3.2 is taken from [10]. Here we construct a family of codes with
good parameters (rate and relative minimum distance) whose products form
a family which also has good parameters.

In these sections we actually use very similar techniques. First we give
constructions of algebraic-geometric codes with good parameters (as codes
and as LSSS’s) which work for large values of the field size q, then using
a field descent we construct codes over smaller fields, in order to let these
results hold true for any choice of the field size q. The essential difference
between the two construction is in the choice of the field descent map: in
the first construction its purpose is to preserve the multiplication parameter
of the LSSS associated to the code, whilst in the second case its aim is to
control the parameters of the code itself. We may say that [1] is done from
the secret sharing point of view, whilst in [10] the point of view is more
coding theoretic (actually, this is partially true: for an application of [10],
see [7]).

21

22 Chapter 3 Recent results

3.1 Bound on the corruption tolerance

Theorem 2.5.7 naturally yields the following definition.

Definition 3.1.1 (corruption tolerance). Let C be an [n+ 1, k]q code such

that e0 6∈ Ĉ and e0 6∈ Ĉ⊥. We call

τ̂(C) :=
3t̂(C)

n− 1

the corruption tolerance of C.

By theorem 2.5.7, τ̂(C) ≤ 1. For convenience, from here on we denote
by C†(Fq) the set of all codes C over Fq such that e0 6∈ Ĉ and e0 6∈ Ĉ⊥, i.e.
such that the corruption tolerance τ̂(C) is defined.

Example 3.1.2. If C is a Reed-Solomon [n+ 1, n+2
3]

q
code then τ̂(C) = 1

(see example 2.5.9).

Definition 3.1.3 (asymptotic optimal corruption tolerance). Let q be a
prime power. We call

τ̂(q) := lim sup
C∈C†(Fq)

τ̂(C)

the asymptotic optimal corruption tolerance over Fq.

Our purpose is to prove that τ̂(q) > 0 for every prime power q. This
means that for every prime power q there exists a family (Ci) of codes over
Fq, of length ni + 1, such that ni →∞ and

3t̂(Ci)

ni − 1
→ τ̂(q) > 0.

This gives a family (Σ(Ci)) of LSSS’s with t̂i-strong multiplication over Fq,
on ni players, such that ni →∞ and t̂i is arbitrarily close to ni

3 τ(q).

The first step is to construct an algebraic code with some particular
properties. For all the notions that are needed (function fields, places,
divisors, genus, weak approximation theorem, Riemann-Roch theorem) one
may refer to [13]. In particular, given a function field F over Fq, P(F)
denotes the set of all places of degree 1 of F and g(F) denotes the genus of
F.

Definition 3.1.4 (algebraic-geometric code). Let F be an algebraic func-
tion field over Fq; let P0, . . . , Pn ∈ P(F) be pairwise distinct places of degree
1, D :=

∑n
i=0 Pi, G a divisor such that suppG ∩ suppD = ∅. We call

C(G,D) := {(f(P0), . . . , f(Pn)) : f ∈ L(G)}

an algebraic-geometric code or Goppa code.

3.1 Bound on the corruption tolerance 23

The code C(G,D) defined above is an [n+ 1, k, d]q code. We have some
information about its parameters:

1. if degG ≥ g(F) then k ≥ degG+ 1− g(F) and d ≥ n+ 1− degG;

2. if degG > 2g(F)− 2 then k = degG+ 1− g(F).

Theorem 3.1.5. Let F be an algebraic function field over Fq. For all
t̂, n ∈ N such that 1 ≤ t̂ < n, |P(F)| ≥ n+ 1 and 3t̂ < n− 4g(F) there exists
a code C ∈ C†(Fq) of length n+ 1 such that t̂(C) ≥ t̂.

Proof. For simplicity, put g := g(F). Let P0, . . . , Pn ∈ P(F) be pairwise
distinct places of degree 1, let D :=

∑n
i=0 Pi. By the weak approximation

theorem, there exists a divisor G such that suppG ∩ suppD = ∅ and
degG = 2g + t̂. Consider the algebraic-geometric code

C := C(G,D) = {(f(P0), . . . , f(Pn)) : f ∈ L(G)},

we claim that the dual distance d⊥ and the product distance d̂ of C satisfy:

1. d⊥ > t̂+ 1;

2. d̂ > t̂+ 1.

This clearly implies C ∈ C†(Fq), and t̂(C) ≥ t̂ follows by theorem 2.5.4.
Let i ∈ {0, . . . , n}, A ⊆ {0, . . . , n} \ {i} with |A| = t̂. Since

2g − 2 < deg

G− Pi −∑
j∈A

Pj

 < deg

G−∑
j∈A

Pj

the Riemann-Roch theorem yields

dimL

G− Pi −∑
j∈A

Pj

 < dimL

G−∑
j∈A

Pj

 ,

hence there exists f ∈ L(G) such that f(Pi) = 1 and f(Pj) = 0 for all
j ∈ A. This proves that d⊥ > t̂+ 1.

As to the second claim, note that f, g ∈ L(G) implies fg ∈ L(2G),
hence Ĉ ⊆ C(2G,D), hence Ĉ has minimum distance

d̂ ≥ n+ 1− deg 2G = n+ 1− 2(2g + t̂) > t̂+ 1.

Note that, in general, there may be no t̂, n ∈ N satisfying the hypotheses
of the theorem. However, they exist under the additional assumption (on
the function field F) that |P(F)| > 4(g(F) + 1).

We want to use this theorem to construct a family of codes which allows
us to bound τ̂(q) from below.

24 Chapter 3 Recent results

Definition 3.1.6 (Ihara’s constant). Let q be a prime power. We call

A(q) := lim sup
g→∞

Nq(g)

g
,

where Nq(g) denotes the maximum, over all function fields F of genus g
whose constant field is Fq, of |P(F)|, Ihara’s constant.

The Drinfeld-Vladuts bound states that A(q) ≤ √q − 1. Moreover, we
have the following bounds on Ihara’s constant.

Theorem 3.1.7 (Ihara [6]). Let q be a prime power, If q is a square then
A(q) =

√
q − 1.

Theorem 3.1.8 (Serre [11]). There exists c ∈ R> such that, for all prime
powers q, A(q) ≥ c log q.

Putting together these theorems, we get the following result.

Theorem 3.1.9 (Chen and Cramer [2]). Let q be a prime power.

1. If A(q) > 4 then

τ̂(q) ≥ 1− 4

A(q)
> 0.

2. If q ≥ 49 and q is a square then

τ̂(q) ≥ 1− 4
√
q − 1

.

Moreover, limq→∞ τ̂(q) = 1.

Proof. By definition of A(q), we can find a family (Fi) of function fields

with g(Fi)→ +∞ such that |P(Fi)|g(Fi) → A(q) > 4.

For any function field Fi in the family, put ni := |P(Fi)| − 1, t̂i :=

bni−4g(Fi)3 c. Note that if ni−4g(Fi)
3 ≥ 1 then t̂i and ni satisfy the hypotheses

of the theorem, and as

ni − 4g(Fi) = |P(Fi)| − 4g(Fi)− 1 =

(
P(Fi)
g(Fi)

− 4

)
g(Fi)− 1

and A(q) > 4 this is true at least for sufficiently large g(Fi). Hence we get
a family (Ci) of codes with

τ̂(Ci) =
3t̂(Ci)

ni − 1
≥ 3t̂i
ni − 1

→ 1− 4

A(q)
.

This proves the first claim.
The second claim follows from the first claim and theorem 3.1.7, the

final statement from the first claim and theorem 3.1.8.

3.1 Bound on the corruption tolerance 25

Theorem 3.1.9 gives a lower bound for τ(q) in the case of q ≥ 49, q
square. It remains to bound τ̂(q) in the following cases:

• 2 ≤ q < 49;

• q > 49 is not a square.

We deal with these cases using the following notion.

Definition 3.1.10 (multiplication-friendly embedding). A multiplication-
friendly embedding of Fqm over Fq with expansion r is a pair (σ, ψ) of
Fq-linear maps σ : Fqm → Frq, ψ : Frq → Fqm such that, for all x, y ∈ Fqm ,

xy = ψ(σ(x) ∗ σ(y)).

The existence of a multiplication-friendly embedding of Fqm over Fq
allows us to associate to a code C over Fqm of length n+ 1 a code C ′ over
Fq of length rn+1 such that t̂(C ′) ≥ t̂(C). Precisely, the following theorem
holds.

Theorem 3.1.11. Let C ∈ C†(Fqm) of length n + 1, 1 ≤ t̂ ≤ t̂(C); let
(σ, ψ) be a multiplication-friendly embedding of Fqm over Fq with expansion
r. Then there exists C ′ ∈ C†(Fq) of length rn+ 1 such that t̂(C ′) ≥ t̂.

Proof. Consider G := {c ∈ C : c0 ∈ Fq} ⊆ Fq⊕(Fqm)n, which is an Fq-linear
subspace of C, and the Fq-linear map

χ : Fq ⊕ (Fqm)n → F1+rn
q .

(c0, c1, . . . , cn) 7→ (c0, σ(c1), . . . , σ(cn))

Let C ′ := χ(G), it is easy to see that C ′ ∈ C†(Fq); we claim that:

1. Σ(C ′) achieves t̂-privacy;

2. Σ̂(C ′) achieves (rn− t̂)-reconstruction.

For convenience, we fix some notation. Put P := {1, . . . , n} and P ′ :=
{1, . . . , rn}. For A′ ⊆ P ′ we define the set β(A′) ⊆ P of all “parents” of
indexes in A′ and the set α(A′) ⊆ P ′ of all “siblings” of indexes in β(A′)
(for example, 1 ∈ P is the parent of 1, . . . , r ∈ P ′, which are the siblings of
1 ∈ P, 2 ∈ P is the parent of r + 1, . . . , 2r ∈ P ′, and so on). Finally, we

distinguish the Fqm-linear projection πA : Fn+1
qm → F|A|qm (for A ⊆ P) and the

Fq-linear projection π′A′ : F
rn+1
q → F|A

′|
q (for A′ ⊆ P ′).

Let A′ ⊆ P ′ with |A′| = t̂. As |β(A′)| ≤ |A′| = t̂ ≤ t̂(C), by lemma 2.5.2
there exists c ∈ C such that c0 = 1 and πβ(A′)(c) = 0, hence c′ := χ(c) ∈ C ′
is such that c′0 = 1 and π′α(A′)(c

′) = 0. By lemma 2.5.2 this implies the first
claim.

Let B′ ⊆ P ′ with |B′| = rn − t̂, let A′ := P ′ \ B′, then |A′| = t̂. Let
B := P \ β(A′) ⊆ P, then |B| ≥ n − t̂, hence by lemma 2.5.3 there exists

26 Chapter 3 Recent results

b = (bi)i∈B ∈ F|B|qm such that, for all c, c′ ∈ C, c0c
′
0 = b · πB(c ∗ c′). We

can extend ψ : Frq → Fqm to ψ : Fq ⊕ (Frq)
n → Fq ⊕ Fnqm in the natural way;

note that, for all c, c′ ∈ G, ψ(χ(c) ∗ χ(c′)) = c ∗ c′ and that if x, y ∈ Frn+1
q

are such that π′B′(x) = π′B′(y) then πB(ψ(x)) = πB(ψ(y)). Hence we can
define a linear form

F|B
′|

q → Fq,
π′B′(x) 7→ b · πB(ψ(x))

let b′ ∈ F|B
′|

q be the vector associated to this map. Now, for all c, c′ ∈ G,
we have

b′ · π′B′(χ(c) ∗ χ(c′)) = b · πB(ψ(χ(c) ∗ χ(c′))) = b · πB(c ∗ c′) = c0c
′
0

and by lemma 2.5.3 this implies the second claim.

It is now natural to compare this theorem with theorem 3.1.5, as both
of them construct a code C and prove that C ∈ C†(Fq) and t̂(C ′) ≥ t̂. How-
ever, their proofs are essentially different: in theorem 3.1.5 we proved that
the code we constructed has good dual distance and product distance and
has henceforth good secret sharing parameters, whilst in theorem 3.1.11
we proved directly that the secret sharing parameters of the code we con-
structed are good, ignoring the parameters of the code itself which, indeed,
may be not good.

However, this theorem is useful only if we can prove the existence of the
embeddings we need. The following theorem guarantees this, for the proof
(which is an explicit construction of the embeddings) see [1].

Theorem 3.1.12. 1. There exists a multiplication-friendly embedding
of Fqm over Fq with expansion

(
m+1
2

)
.

2. Let m ∈ N, 2 ≤ m ≤ q+2
2 . Then there exists a multiplication-friendly

embedding of Fqm over Fq with expansion 2m− 1.

Putting everything together we get the following result.

Theorem 3.1.13. Let q be a prime power. Then τ̂(q) ≥ ν(q), where

ν(q) :=

1
35 if q = 2
1
18 if q = 3
3
35 if q = 4
5
54 if q = 5

1− 4√
q−1 if q ≥ 49, q square

1
3

(
1− 4

q−1

)
otherwise

.

Proof. The case of q ≥ 49, q square is theorem 3.1.9.
Let 7 ≤ q < 49 or q ≥ 49, q not square. Then we know that τ̂(q2) ≥

1− 4
q−1 and using a multiplication-friendly embedding of Fq2 over Fq with

3.1 Bound on the corruption tolerance 27

expansion 3 (it exists by theorem 3.1.12) we get τ̂(q) ≥ 1
3 τ̂(q2) by theo-

rem 3.1.11.

The other cases are similar: for q = 4 use an embedding of F64 over
F4 with expansion 5, for q = 2, 3, 5 use embeddings of Fq2 over Fq with
expansion 3.

Example 3.1.14. In the case of q = 2 the previous theorem says that we
can find a family (Σi) of LSSS’s with t̂i-strong multiplication over F2, on
ni players, such that ni → ∞ and t̂i is arbitrarily close to ni

3 τ(2) ≥ ni
105 .

Hence we can find an LSSS Σ with t̂-strong multiplication over F2, on n
players, such that t̂ ≥ 1

105n.

Finally, we state the following non-asymptotic upper bound on corrup-
tion tolerance. For a proof, see [1].

Theorem 3.1.15. Let C ∈ C†(Fq) of length n+ 1. Then

τ̂(C) ≤ 1−
logq(n+ 2)− 2

2n− 2
.

3.2 An asymptotically good family

In this section we report a Randriambololona’s construction (see [10]),
which gives an asymptotically good family (Ci) of codes over Fq, of length

going to infinity, such that the family (Ĉi) is also asymptotically good.

Recall that for an [n, k, d]q code C we have defined the rate R(C) := k
n

and the relative minimum distance δ(C) := d
n . Moreover, in this section,

we denote by d(C) the distance of the code C.

Definition 3.2.1 (asymptotically good family). Let (Ci) be a family of
codes over Fq, of length going to infinity. We say that the family is asymp-
totically good if both R(Ci) and δ(Ci) admit a positive asymptotic lower
bound, i.e. if there exist ε, ε′ > 0 such that

lim inf
i

R(Ci) ≥ ε and lim inf
i

δ(Ci) ≥ ε′.

As R(Ĉi) ≥ R(Ci) and δ(Ĉi) ≤ δ(Ci), we are looking for a family (Ci),
of length going to infinity, such that there exist ε, ε′ > 0 such that

lim inf
i

R(Ci) ≥ ε and lim inf
i

δ(Ĉi) ≥ ε′.

The core in Randriambololona’s construction is a method which allows
to construct a code over a small alphabet from a code over a large alphabet:
precisely, it associates to any code C over Fq2s+1 of length n a code C ′ over
Fq of length (s+ 1)(2s+ 1)n.

28 Chapter 3 Recent results

Put r := 2s + 1, let {γ1, . . . , γr} be an Fq-basis of Fqr To each a ∈ Fqr
we can associate a linear form

ta : Fqr → Fq,
x 7→ Tr(ax)

where Tr: Fqr → Fq denotes the trace map. Then {tγ1 , . . . , tγr} is an Fq-
basis of the dual space of Fqr .

We order the set {tγi : 1 ≤ i ≤ r} ∪ {tγi+γj : 1 ≤ i < j ≤ r} and we

rename its elements as φ1, . . . , φ r(r+1)
2

= φ(s+1)(2s+1) (note that r(r+1)
2 =

(s+ 1)(2s+ 1)). This naturally defines an injective map

φ = (φ1, . . . , φ(s+1)(2s+1)) : Fq2s+1 → F(s+1)(2s+1)
q ,

hence associates to any [n, k]q2s+1 code C an [(s+ 1)(2s+ 1)n, (2s+ 1)k]q
code C ′ := φ(C). However, in order to have some information about its
minimum distance, we need to do some additional work which involves
bilinear algebra.

Given an Fq-vector space V , we denote by Sym(V,Fq) the Fq-vector

space of symmetric bilinear forms on V . For all i = 1, . . . , r(r+1)
2 , we define

φ⊗2i ∈ Sym(Fqr ,Fq) as

φ⊗2i : Fqr × Fqr → Fq;
(x, y) 7→ φi(x)φi(y)

one can prove that

{φ⊗2i }i=1,...,
r(r+1)

2

is an Fq-basis of Sym(Fqr ,Fq). For all j ∈ N>, we define a symmetric
Fq-bilinear map

mj : Fqr × Fqr → Fqr
(x, y) 7→ xyq

j
+ xq

j
y

and we denote by m0 the usual multiplication law on Fqr ; one can prove
that

{tγi ◦mj}i=1,...,r
j=0,...,s

is an Fq-basis of Sym(Fqr ,Fq). We can naturally define two symmetric
Fq-bilinear maps

Φ := (φ⊗21 , . . . , φ⊗2(s+1)(2s+1)) : Fq2s+1 × Fq2s+1 → F(s+1)(2s+1)
q

and

Ψ := (m0, . . . ,ms) : Fq2s+1 × Fq2s+1 → (Fq2s+1)s+1.

The following lemma holds.

3.2 An asymptotically good family 29

Lemma 3.2.2. Notation as above. There exists an Fq-vector space iso-
morphism

θ : F(s+1)(2s+1)
q → (Fq2s+1)s+1

such that θ ◦ Φ = Ψ.

Proof. See [10].

Let C be an [n, k]q2s+1 code, let C ′ := φ(C) as above. For all j ∈ N,
we can consider the Fq-vector space generated by mj(C,C) and define its
minimum distance dj as the distance taken in (Fq2s+1)n. Note that this
is not a code in the usual sense, since it is an Fq-vector subspace of an
Fq2s+1-vector space.

Lemma 3.2.3. Notation as above; then

d(Ĉ ′) ≥ min
j=0,...,s

dj .

Proof. Let c ∈ Ĉ, of weight w < minj=0,...,s dj ; we claim that c = 0.

By definition c ∈ F(s+1)(2s+1)n
q , but we can also see c as a word of length

n over F(s+1)(2s+1)
q and of weight w̃ ≤ w. Applying the isomorphism θ

defined by lemma 3.2.2, we get a codeword θ(c) ∈ 〈Ψ(C,C)〉 of weight w̃.
Now consider, for j = 0, . . . , s, the j-th projection πj : (Fq2s+1)s+1 → Fq2s+1

and note that by definition mj = πj ◦Ψ; the vector πj(θ(c)) ∈ 〈mj(C,C)〉
has weight at most w̃ ≤ w < dj , hence πj(θ(c)) = 0. As this holds for all
j, we obtain that θ(c) = 0, hence c = 0.

The following lemma gives us the information about the minimum dis-
tance of Ĉ ′ that we need. Here C1+qs denotes the (1+qs)-th Schur product
code,which can be formally defined by induction, in the obvious way.

Lemma 3.2.4. Let C be an [n, k]q2s+1 code, C ′ := φ(C). Then

d(Ĉ ′) ≥ d(C1+qs).

Proof. As 〈mj(C,C)〉 ⊆ C1+qj we have dj ≥ d(C1+qj). It is easy to see that,

in general, d(Ct) ≥ d(Ct+1), hence d(C1+qj) ≥ d(C1+qs) for all j = 0, . . . , s.
Finally by lemma 3.2.3 we conclude.

We construct an algebraic-geometric code as follows. Again, for the
basic notions about function fields and algebraic-geometric codes, we refer
to [13].

Proposition 3.2.5. Let F be an algebraic function field over Fq2s+1, P1, . . . , Pn ∈
P(F) pairwise distinct places of degree 1 with n > (1 + qs)g(F); let D :=∑n

i=1 Pi, G a divisor of degree g(F) ≤ degG < (1 + qs)−1n such that
suppG ∩ suppD = ∅. Then we can define the algebraic-geometric code
C := C(G,D) and the corresponding concatenated code C ′ := φ(C) is such
that:

30 Chapter 3 Recent results

1. dimC ′ ≥ (2s+ 1)(degG+ 1− g(F));

2. d(Ĉ ′) ≥ n− (1 + qs) degG;

3. R(C ′) ≥ 1
s+1

degG+1−g(F)
n ;

4. δ(Ĉ ′) ≥ 1
(s+1)(2s+1)

(
1− (1+qs) degG

n

)
.

Proof. We know that dimC ′ = (2s+1) dimC and dimC ≥ degG+1−g(F),
hence the first claim follows and the third claim follows from the first one.

The second claim follows from

d(Ĉ ′) ≥ d(C(G,D)1+q
s

) ≥ d(C((1 + qs)G,D)) ≥ n− (1 + qs) degG;

the only non trivial inequality is the first one, which follows from lemma 3.2.4.
Finally, the last claim follows from the second one.

Comparing this theorem with theorem 3.1.11, we see that in both of
them we construct a code C ′ from an algebraic-geometric code C using
a field descent. The essential difference is that the descent used in this
theorem controls the parameters of the code, whilst in theorem 3.1.11 we
were interested only in the parameters of the LSSS associated to the code
we constructed.

Recall the definition of Ihara’s constant (definition 3.1.6), one can prove
that there exists s ∈ N such that A(q2s+1) > 1 + qs (see [5]).

The main result of [10] is the following theorem.

Theorem 3.2.6. Let s be such that A(q2s+1) > 1 + qs. Then, for all

1 < µ < A(q2s+1)
1+qs , there exists a family (Ci) of codes over Fq, of length

going to infinity, such that

lim inf
i

R(Ci) ≥
1

s+ 1

µ− 1

A(q2s+1)

and

lim inf
i

δ(Ĉi) ≥
1

(s+ 1)(2s+ 1)

(
1− (1 + qs)µ

A(q2s+1)

)
.

Proof. By definition of A(q), we can find a family (Fi) of function fields

over Fq2s+1 with g(Fi) → +∞ such that |P(Fi)|g(Fi) → A(q2s+1). Let (mi) ⊆ N
be a sequence such that mi

g(Fi) → µ.

For any function field Fi in the family we can find |P(Fi)| places of degree
1 P0, . . . , Pni , where ni := |P(Fi)|−1; put G := miP0, D :=

∑ni
j=1 Pj . Then

by proposition 3.2.5 we get a code Ci ⊆ F(s+1)(2s+1)ni
q with

R(Ci) ≥
1

s+ 1

mi + 1− g(Fi)
ni

and

δ(Ĉi) ≥
1

(s+ 1)(2s+ 1)

(
1− (1 + qs)mi

ni

)
.

Now it is easy to see that the family (Ci) has the required properties.

3.2 An asymptotically good family 31

The existence of an integer s such that A(q2s+1) > 1 + qs is guaranteed
by what we have said above.

Note that the construction given by the theorem actually works for
any family (Fi) of function fields over Fq2s+1 with g(Fi) → +∞ such that

lim infi
|P(Fi)|
g(Fi) ≥ A′, for some 1 + qs < A′ ≤ A(q2s+1); all occurrences of

A(q2s+1) in the theorem are henceforth replaced by A′.

Example 3.2.7. [5] gives a family (Fi) of function fields over F29 with
g(Fi)→ +∞ such that

lim inf
i

|P(Fi)|
g(Fi)

≥ 465

23
> 17 = 1 + 24.

Let µ := 186
161 . Then the previous theorem gives a family (Ci) of binary

codes, of length going to infinity, such that

lim inf
i

R(Ci) ≥
1

651
and lim inf

i
δ(Ĉi) ≥

1

1575
.

We consider this result from the secret sharing point of view. From
what we have just said, we get a code C, of length n, with product distance
d̂ arbitrarily close to 1

1575n. Assume that d⊥ ≥ d̂; then by corollary 2.5.8

Σ(C) has (d̂ − 2)-strong multiplication, so the LSSS associated to C has
t̂-strong multiplication, with t̂ close to 1

1575n. Comparing this result with
example 3.1.14, we see that the parameters guaranteed for the codes con-
structed by proposition 3.2.5 are worse than the ones guaranteed for the
codes constructed by theorem 3.1.11 from the secret sharing point of view.

32 Chapter 3 Recent results

4
Computer tests

We have seen in the section 2.5 the link between codes and LSSS’s, as well
as the relations between their parameters. For example, corollary 2.5.8 tells
us that if a code C has dual distance d⊥ > 2 and its product Ĉ has distance
d̂ > 2 then the LSSS Σ(C) associated to C has 1-strong multiplication. So,
it is natural to look for codes whose product dimension is not too large,
otherwise the product distance would be too small.

This is indeed the purpose of this section, in which we list some exper-
imental results: first we deal with random codes (over a fixed field, with
fixed length and dimension, and with dual distance greater than 2), then
with binary cyclic codes. In the second section we also state some basic
facts about cyclic codes; for a more exhaustive discussion, we refer again to
[8], [14] or to any other coding theory handbook. For all the computations,
the computer algebra system PARI/GP has been used.

4.1 Random codes

In this section, through computer computations, we want to understand
the likelihood of the Schur product of a code being trivial.

In each test, we fix a prime q, a dimension k and a number N of it-
erations. We always choose n := 3k as length. We randomly generate N
matrices of size k × n and rank k with entries in Fq, of the form

G =

1
. . . G′

1

 ,

such that the code C generated by G has dual distance d⊥ > 2. Then we

33

34 Chapter 4 Computer tests

compute the dimension of the product code Ĉ. We gather all outcomes in
a table of the following form.

Product dimension · · · k̂i · · ·
· · · # of codes of product dimension k̂i · · ·

In all but the last test, we fix N := 1000. We start with k := 5, so
n = 3k = 15. The following five tables are the outcomes in the cases of
q = 2, 3, 5, 7, 11 respectively.

Product dimension 12 13 14 15

2 87 578 333

Product dimension 12 13 14 15

2 74 536 388

Product dimension 13 14 15

6 266 728

Product dimension 14 15

168 832

Product dimension 14 15

92 908

Now let k := 7, so n = 3k = 21. We only report, in the following
tables, the outcomes in the cases of q = 2 and q = 3. The same test with
q = 5, 7, 11 produced N matrices of product rank 21.

Product dimension 19 20 21

1 42 957

Product dimension 20 21

20 980

Finally, for k = 10, n = 3k = 30 and q = 2, we obtained N = 1000
matrices of full product rank. The same test with the same parameters but
with N = 10000 produced the following outcome.

Product dimension 29 30

2 9998

Of course, these tests do not prove anything. Anyway, they give the
feeling that the product dimension of a code quickly becomes the maximum
possible if parameters as code dimension and field size increase, suggesting
that some lower bound on the product dimension could be obtained.

4.1 Random codes 35

4.2 Cyclic codes

We start by defining cyclic codes and giving their basic properties.

Definition 4.2.1 (cyclic codes). Let C be an [n, k]q code. We say that C
is cyclic if (c0, c1, . . . , cn−1) ∈ C implies (c1, . . . , cn−1, c0) ∈ C.

The map

C ↪→ Fq [X]
Xn−1

(c0, c1, . . . , cn−1) 7→ c0 + c1X + · · ·+ cn−1X
n−1

lets us identify (and we will always implicitly use this identification) any

cyclic code of length n with an ideal of the ring R :=
Fq [X]
Xn−1 . Moreover,

as R is a P.I.D., such an ideal is of the form (g), with g | Xn − 1 and
deg g = n− k. Therefore a generator matrix for C is

G =

g
gX

...
gXk−1

 .

Note that multiplication by X in R corresponds to a shift in C.

Now, it is easy to see that the product code Ĉ of a cyclic code C of
length n is again a cyclic code of length n, hence also Ĉ can be identified
with an ideal of R, hence with a polynomial ĝ ∈ Fq[X] such that ĝ | Xn−1

and deg ĝ = n− k̂.

In particular, in the case of q = 2, as C ⊆ Ĉ, we have that ĝ | g.

The following proposition tells us that we can easily compute ĝ.

Proposition 4.2.2. Let C = (g) be a cyclic [n, k]q code. Then Ĉ = (ĝ),
where

ĝ := gcd(g∗g, g∗gX, . . . , g∗gXk−1) = gcd

(
g ∗ g, g ∗ gX

X
, . . . ,

g ∗ gXk−1

Xk−1

)
.

Proof. As Xj | g ∗ gXj for j = 0, . . . , k − 1 and X - ĝ (otherwise X | ĝ |
Xn − 1), the two gcd’s are equal.

Clearly Ĉ is generated by ĝ := gcd(gXi ∗ gXj : 0 ≤ i ≤ j ≤ k − 1).
Also note that if i ≤ j then gXi ∗ gXj = Xi(g ∗ gXj−i). Hence, for some

36 Chapter 4 Computer tests

polynomials aij , a
′
ij ∈ Fq[X], we can write

ĝ = a00g ∗ g + a01g ∗ gX + · · ·+ a0 k−1g ∗ gXk−1+

+ a11gX ∗ gX + a12gX ∗ gX2 + · · ·+ a1 k−1gX ∗ gXk−1+

+ · · ·+
+ ak−1 k−1gX

k−1 ∗ gXk−1 =

= a00g ∗ g + a01g ∗ gX + · · ·+ a0 k−1g ∗ gXk−1+

+ a′11g ∗ g + a′12g ∗ gX + · · ·+ a′1 k−1g ∗ gXk−2+

+ · · ·+
+ a′k−1 k−1g ∗ g =

= a′00g ∗ g + a′01g ∗ gX + · · ·+ a′0 k−1g ∗ gXk−1

and the conclusion follows.

We now repeat the work done in the previous section, using binary cyclic
codes instead of randomly generated codes. Note that proposition 4.2.2
gives us an easy way to compute the product dimension, hence we are
allowed to perform our computations on codes of higher dimension. Again,
we are interested in counting the cyclic codes (of given dimension k and
length n) with dual distance d⊥ > 2 which have a certain product dimension
k̂.

The outcomes are listed in the following table.

k n outcomes k n outcomes

5 15 2 codes with k̂ = 11 7 21 2 codes with k̂ = 19

8 24 1 code with k̂ = 20 10 30

2 codes with k̂ = 22

3 codes with k̂ = 24

1 code with k̂ = 28

2 codes with k̂ = 29

3 codes with k̂ = 30

11 33 2 codes with k̂ = 31 12 36
1 code with k̂ = 30

1 code with k̂ = 36

13 39 2 codes with k̂ = 39 14 42

2 codes with k̂ = 33

3 codes with k̂ = 34

4 codes with k̂ = 38

6 codes with k̂ = 39

1 code with k̂ = 40

2 codes with k̂ = 41

4 codes with k̂ = 42

15 45
2 codes with k̂ = 33

3 codes with k̂ = 45
16 48

2 codes with k̂ = 40

1 code with k̂ = 44

17 51 14 codes with k̂ = 51 19 57 2 codes with k̂ = 55

4.2 Cyclic codes 37

k n outcomes k n outcomes

20 60

2 codes with k̂ = 44

4 codes with k̂ = 48

3 codes with k̂ = 50

6 codes with k̂ = 52

4 codes with k̂ = 54

4 codes with k̂ = 55

13 codes with k̂ = 56

2 codes with k̂ = 57

10 codes with k̂ = 58

2 codes with k̂ = 59

33 codes with k̂ = 60

21 63

8 codes with k̂ = 54

6 codes with k̂ = 56

8 codes with k̂ = 57

8 codes with k̂ = 60

6 codes with k̂ = 61

43 codes with k̂ = 62

208 codes with k̂ = 63

22 66

3 codes with k̂ = 54

2 codes with k̂ = 62

3 codes with k̂ = 64

23 69 2 codes with k̂ = 67

24 72

4 codes with k̂ = 60

1 code with k̂ = 64

1 code with k̂ = 66

3 codes with k̂ = 72

25 75

2 codes with k̂ = 55

2 codes with k̂ = 71

4 codes with k̂ = 75

26 78

3 codes with k̂ = 64

1 code with k̂ = 76

2 codes with k̂ = 77

2 codes with k̂ = 78

28 84

4 codes with k̂ = 66

3 codes with k̂ = 68

12 codes with k̂ = 69

4 codes with k̂ = 70

4 codes with k̂ = 72

4 codes with k̂ = 73

4 codes with k̂ = 74

6 codes with k̂ = 75

8 codes with k̂ = 76

32 codes with k̂ = 78

4 codes with k̂ = 79

25 codes with k̂ = 80

16 codes with k̂ = 81

26 codes with k̂ = 82

4 codes with k̂ = 83

88 codes with k̂ = 84

29 87 2 codes with k̂ = 87 30 90

2 codes with k̂ = 66

3 codes with k̂ = 72

9 codes with k̂ = 74

6 codes with k̂ = 78

1 code with k̂ = 84

2 codes with k̂ = 86

8 codes with k̂ = 87

4 codes with k̂ = 88

4 codes with k̂ = 89

95 codes with k̂ = 90

38 Chapter 4 Computer tests

Recall that in the test described in the previous section we found only
2 random codes (out of 10000 attempts), of dimension 10, length 30 and
dual distance greater than 2, whose product is not the whole space; here we
see that 8 cyclic codes of dimension 10, length 30 and dual distance greater
than 2 (out of 11) have product smaller than the whole space. Intuitively,
this should say that cyclic codes have a small product dimension.

On the other hand, there are also cases in which all cyclic codes have
full product rank, for example for k = 17, 29, and cases in which all cyclic
codes have almost full product rank, for example for k = 7, 11, 19, 23.

Now recall corollary 2.5.8, which tells us that if a code C has dual
distance d⊥ ≥ t̂ + 2 and its product Ĉ has distance d̂ ≥ t̂ + 2 (for some
t̂ ∈ N) then the LSSS Σ(C) has 1-strong multiplication, so it is natural
to ask some information about dual distance and product distance of the
cyclic codes we are dealing with. We have that the two [15, 5]2 codes have

dual distance d⊥ = 4 and product distance d̂ = 3, so they give LSSS’s with
1-strong multiplication; these codes are generated by the polynomials

X10+X9+X8+X6+X5+X2+1 and X10+X8+X5+X4+X2+X+1.

Unfortunately, dual distance and product distance do not improve for
larger length and dimension. Precisely, we find out that

• the two [30, 10]2 codes with k̂ = 22,

• the two [45, 15]2 codes with k̂ = 33,

• the two [60, 20]2 codes with k̂ = 44,

have again d⊥ = 4 and d̂ = 3, and these are the only binary cyclic codes of
dimension k ≤ 20 and n = 3k such that d⊥ > 2 and d̂ > 2. We also note
that these codes are generated by the polynomials

X10i+X9i+X8i+X6i+X5i+X2i+1 and X10i+X8i+X5i+X4i+X2i+Xi+1

for i = 2, 3, 4. This is not casual: these codes are constructed from the
two [15, 5]2 codes. For example, let C be the [15, 5]2 code generated by
X10 +X9 +X8 +X6 +X5 +X2 + 1, then the [30, 10]2 code C ′ generated
by X20 +X18 +X16 +X12 +X10 +X4 + 1 is the linear span of all vectors
of the form

(c0, 0, c1, 0, . . . , cn−1, 0) and (0, c0, 0, c1, . . . , 0, cn−1)

with (c0, c1, . . . , cn−1) ∈ C. This preserves distance and dual distance.
Moreover, proposition 4.2.2 tells us that also Ĉ ′ can be obtained from Ĉ
in the same way, hence product distance and product dual distance are
preserved as well.

5
Lower bound on the product dimension

From here on, q will be a fixed prime power.

Our purpose is to prove the following result.

Theorem 5.0.3. For all ε > 0, for all t ∈ N, for all [n, k]q codes with dual

distance d⊥ ≥ 2t+ 1, we have

k̂ ≥ k +

(
1

2
− ε
)
t log2q(n− k) + o

(
log2q(n− k)

)
.

First note that for t = 0 this result is trivial, hence we may assume t ≥ 1.
So all the codes we are dealing with have dual distance d⊥ ≥ 2t+ 1 > 2.

The following example shows that there exist [n, k]q codes with d⊥ = 3

and k̂ = k + 1
2 log2q(n − k) + O

(
logq(n− k)

)
, therefore the lower bound of

the theorem, at least in the case when d⊥ = 3, is asymptotically the best
possible. However, for higher dual distance, it can be improved; this is
essentially due to the fact that the Hamming bound, which is used in the
proof, is loose for large dual distance.

Example 5.0.4. Let h ∈ N, N := qh−1
q−1 , consider the simplex [N,h]q code

C ′ (see example 2.2.5). C ′ has dual distance d⊥ = 3. We have seen that

dim Ĉ ′ = h(h+1)
2 .

Let k := qh − 1, let G′ ∈ Mk,N (Fq) be the matrix whose rows are all
the non zero codewords of C ′. Let n := k + N , let G ∈ Mk,n(Fq) be the
matrix whose first k columns form a k × k identity matrix and whose last
N columns form G′.

39

40 Chapter 5 Lower bound on the product dimension

Let C be the [n, k]q code generated by G. We have

dim Ĉ = dimC + dim Ĉ ′ = k +
h(h+ 1)

2
=

= k +
logq(N(q − 1) + 1)(logq(N(q − 1) + 1) + 1)

2
=

= k +
1

2
log2q(n− k) +O

(
logq(n− k)

)
.

In order to prove theorem 5.0.3, we adopt the following strategy:

1. we arrange the generator matrix of the code in a way which leads
us to easily find linearly independent vectors of the product code
(section 5.1);

2. using elementary algebraic tools, we bound from below the number
of such vectors (section 5.2);

3. using elementary analytic tools, we show that the bound found at the
previous step agrees, at least for sufficiently large values of n−k, with
the statement of the theorem (section 5.3).

5.1 Arrangement lemmas

Let C be an [n, k]q code with dual distance d⊥ > 2. Let G ∈ Mk,n(Fq) be
a generator matrix for C, written in standard form as

G =

1
. . . G′

1

with G′ ∈ Mk,n−k(Fq). From here on, we put N := n − k; thus G′ ∈
Mk,N (Fq).

We want to arrange G in a special way. The allowed operations are:

• swap columns (corresponding to a coordinate renumbering);

• perform elementary operations on the rows (corresponding to a basis
change).

The first idea is to reorder G (actually the columns of G′, i.e. the last
N columns of G) as follows.

1. Initialisation: let i := 1, Gi := G′;

2. if m1 + · · ·+mi−1 < N then

2.1 (basis change) choose as first row of Gi a non zero row;

5.1 Arrangement lemmas 41

2.2 (coordinate renumbering) let the first row of Gi be

(∗ · · · ∗︸ ︷︷ ︸
mi

| 0 · · · · · · · · · 0︸ ︷︷ ︸
N−(m1+···+mi)

);

2.3 let i := i + 1, Gi ∈ Mk−(i−1),N−(m1+···+mi−1)(Fq) be the matrix
formed by the last k − (i − 1) rows and N − (m1 + · · · + mi−1)
columns of Gi−1, repeat step 2;

3. else put ` := i− 1 and output the rearranged G.

Note that d⊥ > 2 ensures that G′ has no zero columns, hence step 2.1
is justified and eventually m1 + · · ·+mi = N and the algorithm stops.

After this arrangement, G′ is written as

G′ =

∗ · · · ∗ 0 · · · · · · · · · · · · · · · 0
? · · · ? ∗ · · · ∗ 0 · · · · · · 0

? · · · · · · ? · · · ?
. . . 0 · · · 0

...
. . . ∗ · · · ∗

? · · · · · · · · · · · · · · · · · · ? · · · ?

 ,

where the stars mean a non-zero element of Fq and the question marks
mean any element of Fq.

We have proved the following arrangement lemma.

Lemma 5.1.1. Let C be an [n, k]q-code with dual distance d⊥ > 2. Then
we can write the generator matrix of C as

G =

1
. . . G′

1

 ,

where G′ = (G′i,j) ∈ Mk,N (Fq) has the following property: there exists a
(finite) sequence m1, . . . ,m` ∈ N> with m1 + · · · + m` = N such that, for
all i = 1, . . . , `:

(i) for all j = m1 + · · ·+mi−1 + 1, . . . ,m1 + · · ·+mi, G
′
i,j 6= 0;

(ii) for all j > m1 + · · ·+mi, G
′
i,j = 0.

Proof. Clear from the construction above.

This arrangement naturally defines ` matrices Ai ∈ Mk−i+1,mi(Fq)
whose top row has no zero entries. These matrices give a natural decom-
position of (a subspace of) Ĉ: if we take, for all i = 1, . . . , `, the product
of another non zero row of Ai and its first row then we obtain a family
of linearly independent vectors of Ĉ, which generates a subspace having
intersection 0 with (the copy contained in Ĉ of) C.

42 Chapter 5 Lower bound on the product dimension

In particular, as d⊥ > 2, Ai always has another non zero row, so all
these matrices give a positive contribution. Moreover, we can find a linearly
independent set of rkAi − 1 linearly independent rows of Ai which does
not contain its first row. Thus, the decomposition above and lemma 2.2.2
yield

k̂ ≥ k +
∑̀
i=1

max{ rkAi − 1, 1}. (5.1.1)

We will see that rkAi ≥ f(mi), where f is an increasing function. This
means that we are interested in conditions on the mi’s. In order to do this,
we use the Plotkin bound (theorem 2.1.10).

For h ∈ N, we put

α := α(h) := 1− qh(q − 1)

qh+1 − 1
=

qh − 1

qh+1 − 1
;

(α(h)) defines an increasing sequence converging to 1
q .

Again, we start from a generator matrix G of an [n, k]q code C with

d⊥ > 2 written in standard form. We arrange it as follows.

1. Initialisation: let i := 1, Gi := G′;

2. if rkGi ≥ h+ 1 then

2.1 (basis change) choose as first row of Gi a row of weight

0 < mi ≤ (1− α)(N − (m1 + · · ·+mi−1)),

2.2 (coordinate renumbering) let the first row of Gi be

(∗ · · · ∗︸ ︷︷ ︸
mi

| 0 · · · · · · · · · 0︸ ︷︷ ︸
N−(m1+···+mi)

),

2.3 let i := i + 1, Gi ∈ Mk−(i−1),N−(m1+···+mi−1)(Fq) be the matrix
formed by the last k − (i − 1) rows and N − (m1 + · · · + mi−1)
columns of Gi−1, repeat step 2;

3. else put `′ := `′(h) := i− 1 and use the previous algorithm on Gi.

Note that the Plotkin bound says exactly that, for an [N − (m1 + · · ·+
mi−1), h+ 1, d]q code, we have

d ≤ (1− α)(N − (m1 + · · ·+mi−1)),

i.e. that step 2.1 is justified.
After this arrangement, we may assume that G is of the form

G =

1 ?
. . . G′

0 1

 ,

5.1 Arrangement lemmas 43

where the question mark stands for any element of Fq, with the constraint
that, on the left part of the matrix, we have at most h+ 1 non zero entries
per row, including the one on the diagonal, and only on the first `′ rows.
G′ will be again of the form

G′ =

∗ · · · ∗ 0 · · · · · · · · · · · · · · · 0
? · · · ? ∗ · · · ∗ 0 · · · · · · 0

? · · · · · · ? · · · ?
. . . 0 · · · 0

...
. . . ∗ · · · ∗

? · · · · · · · · · · · · · · · · · · ? · · · ?

 ,

but with bounds on the mi’s.

Hence we have a second arrangement lemma.

Lemma 5.1.2. Let C be an [n, k]q-code with dual distance d⊥ > 2; let

h ∈ N, α := qh−1
qh+1−1 . Then we can write the generator matrix of C as

G =

1 ?
. . . G′

0 1

 ,

where the question mark stands for any element of Fq, with the constraint
that we have at most h + 1 non zero entries per row (including the one
on the diagonal), and G′ = (G′i,j) ∈ Mk,N (Fq) has the following property:
there exists a (finite) sequence m1, . . . ,m` ∈ N> with m1 + · · · + m` = N
such that, for all i = 1, . . . , `:

(i) for all j = m1 + · · ·+mi−1 + 1, . . . ,m1 + · · ·+mi, G
′
i,j 6= 0;

(ii) for all j > m1 + · · ·+mi, G
′
i,j = 0.

Moreover, there exists an index `′ < ` such that:

(iii) the submatrix of the left part of G obtained by removing its first `′

rows and `′ columns is an (k − `′)× (k − `′) identity matrix;

(iv) the submatrix of G formed by its last m`′+1 + · · · + m` columns has
rank < h+ 1;

(v) for all i = 1, . . . , `′,

mi ≤ (1− α)(N − (m1 + · · ·+mi−1)).

Proof. Clear from the construction above.

We proof a simple arithmetic property of the mi’s.

44 Chapter 5 Lower bound on the product dimension

Lemma 5.1.3. Let N ∈ N>, α ∈]0, 1[, m1, . . . ,m`′ ∈ N> such that, for all
i = 1, . . . , `′,

mi ≤ (1− α)(N − (m1 + · · ·+mi−1)).

Then
`′∑
i=1

mi ≤ (1− α`′)N.

Proof. We argue by induction on `′. The case of `′ = 1 is true by hypothesis,
so assume that `′ > 1 and

`′−1∑
i=1

mi ≤ (1− α`′−1)N.

We have

`′∑
i=1

mi =

`′−1∑
i=1

mi +m`′ ≤
`′−1∑
i=1

mi + (1− α)

(
N −

`′−1∑
i=1

mi

)
=

= N − αN + α
`′−1∑
i=1

mi ≤ N − αN + α(1− α`′−1)N =

= N − α`′N = (1− α`′)N.

Again, we can write a lower bound for k̂ as the one of (5.1.1). Again,
all matrices give a positive contribution. But in this case, we have to take
into account the new non zero entries in the left part of G: for example,
if the i-th entry of the first row of G is non zero then the product of the
first row of G and its i-th row may belong to (the copy contained in Ĉ of)
C; hence, as there may be at most h such entries, except the one on the
diagonal, we have

k̂ ≥ k +
`′∑
i=1

max{ rkAi − 1− h, 1}+
∑̀
i=`′+1

max{ rkAi − 1, 1}. (5.1.2)

The last arrangement step is a lemma which allows us to assume that
the mi’s form a decreasing sequence.

Lemma 5.1.4. Let M ∈ N>, β ∈]0, 1[; let m,m′ ∈ N> be such that m′ ≤
β(M −m). If m < m′ then

1. m′ ≤ βM ,

2. m ≤ β(M −m′).

5.1 Arrangement lemmas 45

Proof. Let s := m′ −m ∈ N>.

The first claim is trivial, since (as β > 0) m′ ≤ β(M −m) ≤ βM .

The second claim is equivalent to m+ βm′ ≤ βM and we have

m+ βm′ = m′ + βm′ − s ≤ β(M −m) + βm′ − s =

= βM + β(m′ −m)− s = βM − (1− β)s ≤
≤ βM

as β < 1, s > 0.

If, in the sequence m1, . . . ,m`′ ∈ N> such that, for all i = 1, . . . , `′,

mi ≤ (1− α)(N − (m1 + · · ·+mi−1)),

we have, for some index i, mi < mi+1 then applying this lemma with
M := N − (m1 + · · · + mi−1), β := 1 − α,m := mi,m

′ := mi+1 we get a
decreasing sequence with the same property. This arithmetic property of
the mi’s will be useful later.

5.2 Algebraic step

Let t ∈ N> and let C be an [n, k]q code with dual distance d⊥ ≥ 2t + 1.

As d⊥ > 2, the arrangement lemmas in the previous section give a natural
way to bound the product dimension k̂, by constructing ` submatrices Ai ∈
Mk−i+1,mi(Fq) of a generator matrix of C such that inequalities as (5.1.1)
and (5.1.2) hold. We estimate the rank of these matrices as follows.

Lemma 5.2.1. Let A ∈Mk′,m(Fq) be a matrix whose columns are non zero

and d′-wise linearly independent, put t′ := bd′2 c. Then

rkA ≥ logq

t′∑
i=0

(
m

i

)
(q − 1)i.

Proof. This is a corollary of the Hamming bound (theorem 2.1.11) applied
to the dual of the [m, rkA]q code generated by the rows of A, which is an

[m,m− rkA, d⊥]q code with d⊥ > d′.

Corollary 5.2.2. Let A ∈ Mk′,m(Fq) be a matrix whose columns are non
zero and pairwise linearly independent, let h ∈ N. If m ≥ qh then rkA ≥
h+ 1.

Proof. Applying the previous lemma with d′ = 2, we get

rkA ≥ logq(1 +m(q − 1)) ≥ logq(1 + qh(q − 1)) > h+ logq(q − 1) > h,

hence rkA ≥ h+ 1.

46 Chapter 5 Lower bound on the product dimension

Corollary 5.2.3. Let A ∈ Mk′,m(Fq) be a matrix whose columns are non

zero and d′-wise linearly independent, put t′ := bd′2 c.

1. If t′ ≤ m
2 then rkA ≥ t′ logqm− t′ logq 2− logq t

′!.

2. If t′ > m
2 then rkA ≥ m.

Proof. Clearly

t′∑
i=0

(
m

i

)
(q − 1)i ≥

(
m

t′

)
=
m(m− 1) · · · (m− t′ + 1)

t′!
≥ (m− t+ 1)t

′

t′!
,

hence if t′ ≤ m
2 then

t′∑
i=0

(
m

i

)
(q − 1)i ≥

(m2)t
′

t′!

and by lemma 5.2.1 rkA ≥ t′ logqm− t′ logq 2− logq t
′!.

As to claim 2, if t′ > m
2 then d′ > m, hence rkA ≥ m.

For convenience, from here on we put τ := t logq 2 + logq t! and

ft(x) :=

{
t logq x− τ, if x ≥ 2t

x if x < 2t
,

so the two claims of the previous lemma can be replaced by rkA ≥ ft′(m).
For any d′ < d⊥ the Ai’s satisfy the hypothesis of this corollary, hence

(5.1.1) yields

k̂ ≥ k +
∑̀
i=1

max{ft(mi)− 1, 1}

and (5.1.2) yields

k̂ ≥ k +
`′∑
i=1

max{ft(mi)− 1− h, 1}+
∑̀
i=`′+1

max{ft(mi)− 1, 1} ≥

≥ k +

`′∑
i=1

max{ft(mi)− 1− h, 1}. (5.2.1)

Put N := n− k. For h ∈ N, we put

α := α(h) :=
qh − 1

qh+1 − 1
, γ := γ(h) :=

1

logq
1
α

− 1

h
,

r := r(h) := bγ logqNc+ 1;

note that these define increasing sequences and

α(h)↗ 1

q
, γ(h)↗ 1, r(h)↗ blogqNc+ 1.

5.2 Algebraic step 47

From here on, assume r ≤ `′. Let δ ∈]0, 1[; let

r′ := min{i ∈ N : mi+1 < (αiN)
1−δ

or i = `′}

i.e. mi ≥ (αi−1N)
1−δ

for all i = 1, . . . , r′ and mr′+1 < (αr
′
N)

1−δ
. More-

over, assume that, for all i = 1, . . . , r′, t ≤ mi
2 . Hence, (5.2.1) yields

k̂ ≥ k +
r′∑
i=1

max{t logqmi − τ − 1− h, 1}+
`′∑

i=r′+1

max{ft(mi)− 1− h, 1}

≥ k +

r′∑
i=1

max{t logqmi − τ − 1− h, 1}+ (`′ − r′). (5.2.2)

We have broken the sum in (5.2.1) into two summands: a main part and
a tail. The idea is that if r′ is “large enough” then the main part is large
enough to achieve the result stated in theorem 5.0.3, whilst if r′ is “small”
then we argue by considering the tail.

We start by considering the case of r′ ≥ r. First note that

r′∑
i=1

max{t logqmi − τ − 1− h, 1} ≥
r∑
i=1

max{t logqmi − τ − 1− h, 1} ≥

≥
r∑
i=1

(t logqmi − τ − 1− h) =

= t

r∑
i=1

logqmi − r(τ + 1 + h). (5.2.3)

By definition of r′, we have

r∑
i=1

logqmi ≥
r∑
i=1

logq (αi−1N)
1−δ

=
1− δ
log 1

α
q

r∑
i=1

(
log 1

α
N − (i− 1)

)
=

=
1− δ
log 1

α
q

(
r log 1

α
N − r(r − 1)

2

)
.

As γ log 1
α
N ≤ r ≤ log 1

α
N + 1, we have

r∑
i=1

logqmi ≥
1− δ
log 1

α
q

(
γ log21

α

N −
log 1

α
N(log 1

α
N + 1)

2

)
=

=
1− δ
log 1

α
q

(
γ − 1

2

)
log21

α

N − 1− δ
2 log 1

α
q

log 1
α
N =

=
1− δ
logq

1
α

(
γ − 1

2

)
log2q N −

1− δ
2

logqN. (5.2.4)

48 Chapter 5 Lower bound on the product dimension

Putting together (5.2.2), (5.2.3) and (5.2.4) we get

k̂ ≥ k +
1− δ
logq

1
α

(
γ − 1

2

)
t log2q N −

1− δ
2

t logqN − r(τ + 1 + h). (5.2.5)

Now we consider the case of r′ < r. By lemma 5.1.4 we may assume
that the mi’s form a decreasing sequence, hence

`′∑
i=r′+1

mi ≤ (`′ − r′)mr′+1 < (`′ − r′)(αr′N)
1−δ

.

Moreover ∑̀
i=`′+1

mi < qh,

otherwise by corollary 5.2.2 the matrix formed by the last
∑`

i=`′+1mi

columns of G would have rank at least h + 1, which is against the defi-
nition of `′ (see lemma 5.1.2). On the other hand, by lemma 5.1.3,

∑̀
i=r′+1

mi =
∑̀
i=1

mi −
r′∑
i=1

mi ≥ N − (1− αr′)N = αr
′
N.

Putting everything together we obtain

`′ − r′ ≥ αr
′
N − qh

(αr′N)
1−δ = (αr

′
N)

δ
(

1− qh

αr′N

)
. (5.2.6)

As r′ < r ≤ γ logqN + 1 = log 1
α
N − 1

h log 1
α
N logq

1
α + 1, we have that

αr
′
> αN−1N

1
h
logq

1
α ,

hence (5.2.6) yields

`′ − r′ ≥ αδN
δ
h
logq

1
α − qh

α1−δN
1−δ
h

logq
1
α

. (5.2.7)

Putting together (5.2.2) and (5.2.7) we get

k̂ ≥ k + αδN
δ
h
logq

1
α − qh

α1−δN
1−δ
h

logq
1
α

. (5.2.8)

5.3 Analytic step

As in the previous section, let t ∈ N> and τ := t logq 2+logq t!. Let C be an

[n, k]q code with dual distance d⊥ ≥ 2t+1 and generator matrix G arranged
as in lemma 5.1.2 (so m1, . . . ,m` and `′ are defined); put N := n− k.

5.3 Analytic step 49

In the previous section we have defined, for h ∈ N, three sequences

α(h) :=
qh − 1

qh+1 − 1
, γ(h) :=

1

logq
1
α

− 1

h
, r(h) := bγ logqNc+ 1,

such that

α(h)↗ 1

q
, γ(h)↗ 1, r(h)↗ blogqNc+ 1.

In this section, we choose as h := h(N) ∈ N an increasing function such that

h(N)→∞ and h2 ∈ o(logqN); to fix ideas, one may think h := b(logqN)
1
4 c

or h := blogq logqNc. So now α, γ and r are actually functions of N . Again,
let δ ∈]0, 1[and let

r′ := min{i ∈ N : mi+1 < (αiN)
1−δ

or i = `′}.

Recall that all computations performed in the previous section make
sense only under the two assumptions

1. r ≤ `′,

2. for all i = 1, . . . , r′, t ≤ mi
2 .

By definition of r′, the second assumption is clearly true for sufficiently
large N . The following lemma justifies the first.

Lemma 5.3.1. Notation as above. Then, for sufficiently large N , r ≤ `′.

Proof. By definition of `′, if the matrix Gr formed by the last mr+ · · ·+m`

columns of G has rank greater than h + 1 then `′ ≥ r. By corollary 5.2.2,
rkGr ≥ blogq(N − (m1 + · · ·+mr−1))c+ 1, hence if blogq(N − (m1 + · · ·+
mr−1))c ≥ h then `′ ≥ r. As r ≤ γ logqN + 1 we have

blogq(N − (m1 + · · ·+mr−1))c ≥ logq(N − (m1 + · · ·+mr−1))− 1 ≥
≥ logq(N − (1− αr−1)N)− 1 =

= (r − 1) logq α+ logqN − 1 ≥
≥ γ logqN logq α+ logqN − 1 =

= (γ logq α+ 1) logqN − 1 =

= −1

h
logq α logqN − 1.

Now note that, as h2 ∈ o(logqN),

− 1
h logq α logqN − 1

h
→ +∞,

hence for sufficiently large N

blogq(N − (m1 + · · ·+mr−1))c ≥ −
1

h
logq α logqN − 1 ≥ h.

50 Chapter 5 Lower bound on the product dimension

This means that, for sufficiently large N , everything we said in the
previous section is true. In particular, the product dimension of C satisfies
either (5.2.5) or (5.2.8). We recall them for convenience:

k̂ ≥ k +
1− δ
logq

1
α

(
γ − 1

2

)
t log2q N −

1− δ
2

t logqN − r(τ + 1 + h), (5.2.5)

k̂ ≥ k + αδN
δ
h
logq

1
α − qh

α1−δN
1−δ
h

logq
1
α

. (5.2.8)

We claim that both of them imply theorem 5.0.3.
In particular, δ ∈]0, 1[is arbitrary, hence we can choose δ := δ(N) :=

1
g , where g := g(N) is an increasing function such that g(N) → ∞ and

gh logq logqN ∈ o(logqN); to fix ideas, one may think g :=

√
logq N

h logq logq N
.

Note that
1− δ
logq

1
α

(
γ − 1

2

)
↗ 1

2
,

hence, for all ε > 0 and sufficiently large N ,

1− δ
logq

1
α

(
γ − 1

2

)
≥ 1

2
− ε.

Moreover, as r ∈ O(logqN) and h2 ∈ o(logqN),

−t1− δ
2

logqN − r(τ + 1 + h) ∈ o(log2q N).

This proves that (5.2.5) implies theorem 5.0.3.
Now we claim that:

2αδN
δ
h
logq

1
α

log2q N
→ +∞, (5.3.1)

qh

α1−δN
1−δ
h

logq
1
α

→ 0. (5.3.2)

In particular, (5.3.1) implies that, for sufficiently large N , αδN
δ
h
logq

1
α ≥

1
2 t log2q N , hence if these claims are true then (5.2.8) implies theorem 5.0.3.
We have

lim
N→∞

2αδN
δ
h
logq

1
α

log2q N
= 2 lim

N→∞

N
δ
h

log2q N
= 2 lim

N→∞

q
δ
h
logq N

q2 logq logq N
=

= 2 lim
N→∞

q
δ
h
logq N−2 logq logq N

and, as gh logq logqN ∈ o(logqN),

lim
N→∞

(
δ

h
logqN − 2 logq logqN

)
= lim

N→∞

logqN − 2gh logq logqN

gh
= +∞.

5.3 Analytic step 51

This implies (5.3.1). As to (5.3.2),

lim
N→∞

qh

α1−δN
1−δ
h

logq
1
α

= q lim
N→∞

qh

N
1
h

= q lim
N→∞

qh

q
1
h
logq N

=

= q lim
N→∞

qh−
1
h
logq N

and

lim
N→∞

(
h− 1

h
logqN

)
= lim

N→∞

h2 − logqN

h
= −∞.

This concludes the proof of theorem 5.0.3.

52 Chapter 5 Lower bound on the product dimension

Bibliography

[1] Cascudo I.; Chen H.; Cramer R.; Xing C. (2009). Asymptotically Good
Ideal Linear Secret Sharing with Strong Multiplication over any Fixed
Finite Field. CRYPTO, pp. 466–486.

[2] Chen H.; Cramer R. (2006). Algebraic Geometric Secret Shar-
ing Schemes and Secure Multi-Party Computation over Small Fields.
CRYPTO, pp. 521–536.

[3] Cover T.; Thomas J. (2006). Elements of Information Theory. Wiley-
Interscience, second edition.

[4] Cramer R.; Damgaard I.; Maurer U. (2000). General Secure Multi-Party
Computation from any Linear Secret-Sharing Scheme. EUROCRYPT.

[5] Garcia A.; Stichtenoth H.; Bassa A.; Beelen P. (2012). Towers of func-
tion fields over non-prime finite fields. http://arxiv.org/abs/1202.5922.

[6] Ihara Y. (1981). Some remarks on the number of rational points of
algebraic curves over finite fields. J. Fac. Sci. Tokyo, 28(3), 721–724.

[7] Ishai Y.; Kushilevitz E.; Ostrovsky R.; Prabhakaran M.; Sahai A.;
Wullschleger J. (2011). Constant-Rate Oblivious Transfer from Noisy
Channels. CRYPTO, pp. 667–684.

[8] MacWilliams F.; Sloane N. (1977). The Theory of Error-Correcting
Codes. North-Holland.

[9] Massey J. (1993). Minimal Codewords and Secret Sharing. In Sixth
Joint Swedish-Russian Workshop on Information Theory, pp. 276–279.

[10] Randriambololona H. (2012). Asymptotically good binary
linear codes with asymptotically good self-intersection spans.
http://arxiv.org/abs/1204.3057.

[11] Serre J.-P. (1985). Rational points on curves over finite fields notes of
lectures at Harvard University.

[12] Shoup V. (2008). A Computational Introduction to Number Theory
and Algebra. Cambridge University Press, second edition.

[13] Stichtenoth H. (1993). Algebraic function fields and codes. Springer,
Heidelberg.

53

54 Bibliography

[14] van Lint J. (1999). Introduction to Coding Theory. Springer, Heidel-
berg.

[15] Yao A. (1982). Protocols for secure computations. In Proceedings of
the twenty-third annual IEEE Symposium on Foundations of Computer
Science, pp. 160–164.

	Introduction
	Preliminaries
	Linear codes
	Schur product codes
	Linear secret sharing schemes
	LSSS's with multiplication
	From codes to LSSS's
	Asymptotic notation

	Recent results
	Bound on the corruption tolerance
	An asymptotically good family

	Computer tests
	Random codes
	Cyclic codes

	Lower bound on the product dimension
	Arrangement lemmas
	Algebraic step
	Analytic step

	Bibliography

