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Abstract. We give an overview of the work of É. Fouvry and J. Klüners

on the 4-rank of quadratic number fields. We give a slight generalization of

their work by proving that the Cohen-Lenstra conjectures for the 4-rank of
quadratic number fields hold when restricted to fields with discriminants in

arithmetic progressions, and hence hold with specified splitting conditions at

a finite number of primes. We also prove a Siegel-Walfisz-type theorem for the
4-rank in arithmetic progressions.

1. Introduction

Let d be a square-free rational integer and let K = Q(
√
d) be a quadratic extension

of Q with discriminant D, equal to d or 4d depending on whether d ≡ 1 (mod 4)
or d ≡ 2 or 3 (mod 4). Let O be the ring of integers of K. A fractional ideal of O
is an O-submodule a of K such that there exists α ∈ K× satisfying αa ⊂ O. Every
non-zero fractional ideal a of O has a multiplicative inverse

a−1 = {α ∈ K : αa ⊂ O},
which makes the set of non-zero fractional ideals of O a group under multiplication.
We denote this group by Div(K), and we call its elements divisors.

Let P denote the subgroup of principal divisors, i.e. divisors of the from

(β) = {βα : α ∈ O},
where β ∈ K×. Geometry of numbers can be used to show that Div(K)/P is a
finite group, called the class group. We will use the notation ClD = Div(K)/P to
emphasize its dependence on D.

A closely related group is the narrow class group. Let P+ be the subgroup of
P consisting of principal divisors that can be generated by a totally positive ele-
ment, i.e. principal divisors of the form (β) with σ(β) > 0 for every real embedding
σ : K ↪→ R. Note that in the case of quadratic number fields, a divisor can be gen-
erated by a totally positive element if and only if it can be generated by an element
of positive norm. We define the narrow class group to be CD = Div(K)/P+.

Class groups of quadratic number fields have been studied for a long time, and
there are many very interesting (and very difficult) problems concerning their be-
havior. A particular quantity of interest is, for any prime p, the p-rank of a class
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group ClD, defined as rkp(ClD) = dimFp
(ClD/ClpD) (note the multiplicative nota-

tion). We can similarly define, for any positive integer k, the pk-rank of an abelian

group G by setting rkpk(G) = rkp(G
pk−1

).

In this paper, we will first present what is commonly called Gauss’s genus the-
ory, which describes the 2-rank of the narrow class group. Next, we will briefly
discuss the heuristics of H. Cohen and H. W. Lenstra as well as F. Gerth’s exten-
sion thereof, which are a collection of conjectures about the asymptotic behavior
as D → ±∞ of various quantities associated to class groups. One such quantity is
the q-rank, where q = p if p is an odd prime or q = 4.

In [FK07], É. Fouvry and J. Klüners prove the conjectures about the 4-rank. The
proof involves first expressing the 4-rank of the narrow class group in a form friendly
to the methods of analytic number theory and then handling the main and error
terms with clever analytic and combinatorial arguments. Fouvry and Klüners have
adapted their methods to obtain many interesting results. Perhaps most notably,
in [FK10] they make first significant progress toward a conjecture of Stevenhagen
[Ste93]. This work suggests that their methods are very robust. In this paper,
we will give another example of the robustness of their methods by studying the
4-rank for quadratic number fields with discriminants in arithemetic progressions.
We first modify their proof slightly to show that the Cohen-Lenstra conjecures still
hold when restricted to arithmetic progressions. More precisely, we prove

Theorem 1. Let k ≥ 1, let ε > 0. Define R(X, ε, k) = X(logX)−2−k+ε. Let q ≥ 1
be odd and squarefree and let (a, q) = 1. Finally, let N (k, 2) denote the number
vector subspaces of Fk2 . Then

(1)
∑

−X<D<0
D≡1 (mod 4)
D≡a (mod q)

2krk4(ClD) = N (k, 2)


∑

−X<D<0
D≡1 (mod 4)
D≡a (mod q)

1

+Oε,k,q(R(X, ε, k)).

The case q = 1 recovers the main result in [FK07].

Remark. Specifying how a finite number of non-ramified primes p1, . . . , pm split
in a quadratic extension Q(

√
d) is equivalent to specifying the quadratic character

of D modulo each of the primes, which in turn is equivalent to specifying the
congruence class of D modulo the product p1 · · · pm. Hence, Theorem 1 shows
that the Cohen-Lenstra heuristics are stable under restricting to quadratic fields
with specified splitting conditions at a finite number of unramified primes, thus
positively answering a question posed by Melanie Wood.

Remark. Note that for D < 0, the narrow class group coincides with the ordinary
class group, so it suffices to prove Theorem 1 with CD in place of ClD. In case
D > 0, it is possible that the 4-ranks of ClD and CD differ by 1, but this happens
for only � X/

√
logX discriminants, and so in this case it would also suffice to

prove the statement for CD instead of ClD. For details, see [FK07, Lemma 10 and
Corollary 1].
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Finally, we extend the study of the asymptotics of the 4-rank in arithmetic progres-
sions by proving a Siegel-Walfisz -type result for the first moment of the 4-rank.

Theorem 2. Let q ≥ 1 be odd and squarefree and let (a, q) = 1. Then for any
C > 0, we have

(2)
∑

−X<D<0
D≡1 (mod 4)
D≡a (mod q)

2rk4(ClD) =
1

ϕ(q)

∑
−X<D<0

D≡1 (mod 4)
(D,q)=1

2rk4(ClD) +OC,q(X(logX)−C).

Remark. In the statements above, we restrict the sum to the set of discriminants
that are negative and congruent to 1 modulo 4. Analogous statements hold true
when we restrict to discriminants that are positive and/or congruent to 0 or 4
modulo 8. However, the formulas for the 4-rank in these cases become slightly
more complicated and the subsequent arguments require casework that does not
shed any additional light on the methods involved. Hence, for the sake of simplicity,
we do not treat these other cases. A careful treatment of these cases can be found
in [FK07].

2. Gauss’s genus theory

Gauss’s genus theory gives an explicit answer for the 2-rank of a class group of a qua-
dratic number field. Here we summarize the argument from [Has80], both because
it is rather simple and because it uses Dirichlet’s theorem on primes in arithmetic
progressions in a key way. The result somewhat naturally follows from attempting
to determine when a divisor is a principal divisor. If a divisor b = (β) =

∏
i p
ei
i

is principal, then the absolute norm N(b) =
∏
iN(pi)

e
i =

∏
i(#(O/pi)ei) is equal

to ±NK/Q(β). The converse is not true; that is, if N(b) is equal to ±NK/Q(β) for
some β in K, it need not be the case that b = (β). Nonetheless, we can study the
set (in fact the group) of divisors whose absolute norms are norms of elements of
K, up to sign. This group certainly contains the principal divisors and hence might
tell us something about the class group.

In light of our new goal, we introduce the Hilbert symbols (a, b) and (a, b)v for
non-zero rational numbers a and b and a place v for Q (i.e., v = p for some ra-
tional prime p or v = ∞). We set (a, b) = 1 if b is the norm of an element of
Q(
√
a) and −1 otherwise; similarly, set (a, b)v = 1 if b is the norm of an element of

Qv(
√
a) and −1 otherwise. In other words, (a, b) ∈ {±1} (or (a, b)v ∈ {±1}) and

is equal to 1 if and only if the quadratic form x2 − ay2 − bz2 represents 0 in Q (or
Qv), that is, if and only if there exists a non-zero (x, y, z) ∈ Q3 (or Q3

v) such that
x2 − ay2 − bz2 = 0. This second way of viewing the Hilbert symbol is convenient
because Hasse-Minkowski’s theorem (see [Ser73]) now implies that b is a norm in
Q(
√
a) if and only if b is a norm in Qv(

√
a) for each place v. We now state some

properties of the Hilbert symbol that we will need in our analysis. Their proofs can
be found in [Has80].

Theorem 3. Let a, b ∈ Q×. Then
(i)
∏
v(a, b)v = 1.

(ii) If p is an odd prime, p - a, and p - b, then (a, b)p = 1.

(iii) If p is an odd prime, p - a, and p|b, then (a, b)p =
(
a
p

)
.
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(iv) (a, b)∞ = 1 unless both a and b are negative.
(v) If 2|a and p is a prime conguent to 1 modulo 8, then (a, p)2 = 1.
(vi) If d is an even fundamental discriminant and d2 is the exact power of 2 dividing
d, then for any odd integer b, (d, b)2 depends only on the congruence class of b
modulo d2; moreover, there exist congurence classes b− and b+ modulo d2 such that
(d, b−)2 = −1 and (d, b+)2 = 1.
(vii) The local Hilbert symbol is multiplicative in each of the two arguments.

Remark. Part (i) above is called the product formula and is essentially a conse-
quence of the quadratic reciprocity law. An interesting consequence of the product
formula is that in order to prove that b is a norm in Q(

√
a), it suffices to show that

b is a norm in Qv(
√
a) for all but one place v.

Since O is a Dedekind domain, for any divisor b, there is a unique decompostion

into prime ideals b =
∏
p p

bpp′b
′
p
∏
q q

bq
∏
r r
br ; here the bi are integers, the product

over p is over the primes that decompose, the product over q is over the inert primes,
the product over r is over the ramified primes, and p and p′ are conjugate. Hence

N(b) =
∏
p p

bp+b′p
∏
q q

2bq
∏
r r

br . By part (iii) of Theorem 3, we have, for each p
and q,

(d,N(b))p =

(
d

p

)bp+b′p

= 1

and

(d,N(b))q =

(
d

q

)2bq

= 1.

Moreover, since N(b) > 0, part (iv) of Theorem 3 implies that (d,N(b))∞ = 1.

We now see that there exists β ∈ Q(
√
d) such that N(b) = NK/Q(β) if and only if

(d,N(b))r = 1 for every ramified prime r. The set of b whose norms are element
norms is called the narrow principal genus and denoted by G+:

G+ =
{
b ∈ Div(K)| ∃ β ∈ K such that N(b) = NK/Q(β)

}
.

Clearly G+ is a group under multiplication with P+ as a subgroup. However, in
case that the class group differs from the narrow class group, P is not contained in
G+; for this reason, it is simpler to first study the 2-rank of the narrow class group
and then make modifications to obtain the results for the class group.

Let t = ω(D), the number of distinct prime divisors of D, and let r1, . . . , rt de-
note the prime ideals of O lying above the ramified primes r1, . . . , rt. For each
1 ≤ i ≤ t, we may define a character

χi : Div(K)/G+ → {±1}
by χi(b) = (D,N(b))ri . This is indeed a character by part (vii) of Theorem 3. By
the analysis above, we conclude that the group homomorphism

χ = (χ1, . . . , χt) : Div(K)/G+ → {±1}t

is injective. Let T denote the set of t-tuples (e1, . . . , et) ∈ {±1}t such that
∏
i ei = 1.

By Hilbert’s product formula, the image of χ injects into T . The following is called
the main theorem on genera:

Theorem 4. The group homomorphism χ : Div(K)/G+ → T is an isomorphism.
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Proof. It remains to show that χ is surjective. Suppose that (e1, . . . , et) ∈ {±1}t
with

∏
i ei = 1. We wish to show that there is a divisor b such that (D,N(b))ri = ei

for each 1 ≤ i ≤ t. By parts (iii) and (vi) of Theorem 3, the symbol (D, b)ri de-
pends only on the residue class of b modulo Dri , where Dri = ri if ri is odd, D2 = 4
(resp. 8) if D is congurent to 4 (resp. 0) modulo 8. Parts (iii) and (vi) of Theorem
3 ensure that there exist (invertible) congruence classes bri modulo Dri such that
(D,N(b))ri = ei. There congruence classes determine (an invertible) congruence
class b modulo D, and now Dirichlet’s theorem on primes in arithmetic progres-
sions ensures that there is a prime p congruent to b modulo D. If D is odd, we may
choose p to also be congurent to 1 modulo 8.

By construction, we have that (D, p)ri = ei for each 1 ≤ i ≤ t. By parts (ii)
and (v) of Theorem 3, we deduce that (D, p)p′ = 1 for all primes p′ not equal
to p or one of the ri. Finally, by part (i) of Theorem 3 and the assumption that∏
i ei = 1, we deduce that also (D, p)p = 1. Part (iii) of Theorem 3 now implies

that
(
D
p

)
= 1, so that p decomposes in Q(

√
d). This means that there exists a

prime ideal p of O such that N(p) = p. Hence (D,N(p))ri = ei for all i. �

Theorem 4 shows that 2t−1 divides the order of the narrow class group CD. To
finish the proof that the 2-rank of CD is t−1, it suffices to show that G+/P+ = C2

D.
We write bs for the conjugate of a divisor b. First note that if c = [b] is a narrow
class, then c1+s = c ·cs = [(N(b))] = 1. Hence c1−s = c1−s ·c1+s = c2, which means
that C2

D = C1−s
D . We will now prove that G+/P+ = C1−s

D .

First, for any divisor b, N(b1−s) = N(b)/N(bs) = 1, so that b1−s belongs to G+.
It remains to show that other inclusion. So suppose that b belongs to G+. Then
N(b) = NK/Q(β) for some non-zero β ∈ Q(

√
d). As N(b) > 0, so also NK/Q(β) > 0,

which means that b and b/β define the same narrow class. But N(b/β) = 1, so
we must have b/β =

∏
p p

bpp′−bp where the product is over the primes p which

decompose in Q(
√
d). Since p′ = ps, we deduce that

[b] = [b/β] =

[∏
p

pbp

]1−s

in the narrow sense. This concludes the proof that rk2(CD) = ω(D)− 1.

For class groups, the answer is a little more complicated. If D < 0 or D > 0
and D has no prime divisors p ≡ 3 (mod 4), then rk2(ClD) = rk2(CD). Else,
rk2(ClD) = rk2(CD) − 1. These results can be deduced by following the same
argument as above, except with (D,±N(b))v in place of (D,N(b))v.

3. Cohen-Lenstra heuristics

If Gauss’s genus theory gives a formula for the 2-rank of a class group ClD, then
what is true about the p-rank for odd primes p? Although no such explicit formulas
exist, Cohen and Lenstra [CL84] developed a heuristic model that is compatible with
the numerical data gathered on class groups of quadratic number fields. Their model
is based on the assumption that the “weight” of an isomorphism class G of finite
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abelian groups should be inversely proportional to the number of automorphisms
of G. One way to explain this assumption is as follows. If #G = n and E is a set of
n elements, then the number of abelian group structures on E that are isomorphic
to G is n!/#Aut(G). Therefore, at least among groups of the same size, those with
smaller automorphism groups should occur more often. This gives a probability
measure on the set of all finite abelian groups of the same size, and Cohen and
Lenstra’s assumption is that, at least in the case of imaginary quadratic fields, the
odd part of the class group is “random” in this sense.

More precisely, let G′ denote the prime-to-2 part of G, and let f be a reasonable
function on isomorphism classes of abelian groups. (Here “reasonable” is not really
well-defined, but this is a heuristic model after all.) The conjectures are as follows.
If D < 0, then Cl′D behaves like the prime-to-2 part of a random group:

lim
X→∞

∑
−X<D<0 f(Cl′D)∑
−X<D<0 1

= lim
X→∞

∑
G,#G≤X f(G′)/#Aut(G)∑
G,#G≤X 1/#Aut(G)

.

If D > 0, then Cl′D behaves like the prime-to-2 part of a random group quotiented
by the cyclic subgroup generated by a random element:

lim
X→∞

∑
0<D<X f(Cl′D)∑

0<D<X 1
= lim
X→∞

∑
G,#G≤X(1/#G)

∑
g∈G f((G/ 〈g〉)′)/#Aut(G)∑

G,#G≤X 1/#Aut(G)
.

In their paper, Cohen and Lenstra compute the predicted average values of f(Cl′D)
for certain choices of f .

If we fix an integer α ≥ 0 and an odd prime p, and we set

fα(G) =
∏

0≤i<α

(
prkp(G) − pi

)
,

then the Cohen-Lenstra heuristics predict that the average value of fα over negative
discriminants is 1 and over positive discriminants is p−α.

Recall that we will use N (α, p) denote the number vector subspaces of Fαp . Fouvry
and Klüners [FK07, Proposition 1] have shown that the above conjectures are true
for all 0 ≤ α ≤ α0 if and only if the average value of

f ′α(G) = pαrkp(G)

over negative discriminants (resp. positive discriminants) isN (α, p) (resp. p−α(N (α+
1, p)−N (α, p))) for all 0 ≤ α ≤ α0. Although these conjectures about the functions
fα and f ′α are in some sense equivalent, the interpetation of Fouvry and Klüners
proves to be very useful in their work on the 4-rank.

Gerth [Ger87] extended the Cohen-Lenstra conjectures to the 2-part of class groups.
The 2-rank is obviously not random in the sense of the Cohen-Lenstra heuristics,
as it is dictated by Gauss’s genus theory, but the 4-rank does seem to be random.
More succinctly, both the 2-part and the prime-to-2 part of Cl2D behave according
to Cohen-Lenstra heuristics. Thus, one expects that, for negative discriminants,

lim
X→∞

∑
−X<D<0 p

αrkp(Cl2D)∑
−X<D<0 1

= N (α, p)
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for all primes p.

So what results are actually known about these conjectures? Gerth [Ger84] used the
theory of Rédei matrices, whose ranks are related to the 4-rank, to show that the
expected 4-rank of ClD over discriminants D that are a product of a fixed number
of primes t approaches the value predicted by Cohen-Lenstra heuristics as t→∞.
Note, however, that for any fixed t, the discriminants D satisfying ω(D) = t form
a set of density 0 in the entire set of discriminants of quadratic number fields.

H. Davenport and H. Heilbronn [DH71] showed that the average value of 3rk3(ClD)

is in accordance with Cohen-Lenstra heuristics. In fact, this result precedes Cohen-
Lenstra heuristics, and Cohen and Lenstra actually cited this result in support of
their heuristics).

Cohen-Lenstra heuristics have been extended to the imaginary quadratic extensions
of Fq(t) for any prime power q, and J. Ellenberg, A. Venkatesh, and C. Westerland
[EVW09] have shown that the class groups of these extensions match the predic-
tions of Cohen-Lenstra heuristics as q →∞.

Finally, Theorem 1 with q = 1 is the result of Fouvry and Klüners [FK07] which
proves the f ′α conjectures about the 4-rank. Moreover, Let ηm(t) =

∏m
j=1(1− t−j)

for m a non-negative integer or ∞. Fouvry and Klüners [FK06] have shown that
their theorem implies that the density of negative (resp. positive) fundamen-

tal discriminants D such that rk4(ClD) = r is equal to 2−r
2

η∞(2)ηr(2)−2 (resp.
2−r(r+1)η∞(2)ηr(2)−1ηr+1(2)−1). Morally, “the moments determine the density.”

This result is stronger than that of Gerth because here there is no condition on
the number of prime factors of D. Davenport and Heilbronn’s theorem only gives
the first moment for the 3-rank, which is not sufficient to deduce the density. Higher
moments seem beyond reach at this time. Ellenberg, Venkatesh, and Westerland
are missing finitely many moments for any particular q, and hence cannot deduce
the densities predicted by Cohen-Lenstra heuristics except in the limit as q → ∞.
Thus, in some sense, the result of Fouvry and Klüners is the most complete case of
Cohen-Lenstra heuristics currently known.

4. Proof of Theorem 1

The proof can be roughly divided into four main steps:

1. Algebraic number theory: derive a formula for the 4-rank which is “friendly” to
the tools of analytic number theory

2. Indexing trick: derive a formula for the kth moment which is “friendly” to
analytic number theory

3. Analytic number theory: isolate the main term from the error terms

4. Combinatorics: use linear algebra over F2 to compute the coefficient of the
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main term

We will summarize the main arguments in this order.

4.1. Step 1: algebraic number theory. Suppose D = p1 · · · pt and let pi denote
the prime ideals of OK lying above pi. Let

B = {pe11 · · · p
et
t : ei ∈ {0, 1}}.

It can be shown that B → CD[2] is a 2 : 1 map. Hence

2rk4(CD) = #(C2
D/C

4
D) = #(C2

D[2]) =
1

2
#{b ∈ B : b ∈ C2

D}.

Now, Fouvry and Klüners [FK07, Theorem 5] show that the map b → N(b) gives
a 1-to-1 correspondence between the sets {b ∈ B : b ∈ C2

D} and {b > 0 : µ2(b) =
1, b|D, (D, b) = 1}. It can be shown that (D, b) = (b,−d/b), so that the final
formula becomes

(3) 2rk4(CD) =
1

2
#{b > 0 : µ2(b) = 1, b|D, (b,−d/b) = 1}.

Legendre’s theorem for ternary quadratic forms [FK07, Lemma 6] implies that if a
and b are coprime squarefree integers and b > 0, then (a, b) = 1 if and only if a is
a square modulo b and b is a square modulo |a|.

For D < 0, D ≡ 1 (mod 4), D = d is squarefree, and so equation (3) becomes

2rk4(CD) =
1

2
#{(a, b) : a, b ≥ 1,−D = ab,

a is a square modulo b,

b is a square modulo a},

The reason that this formula is “friendly” to the methods of analytic number theory
is that we can use Legendre symbols to detect the conditions above. In fact, for a
and b odd, coprime and squarefree, the sum

1

2ω(b)

∑
c|b

(a
c

)
=

1

2ω(b)

∏
p|b

(
1 +

(
a

p

))
is 1 if a is a square modulo b and 0 otherwise. Hence we deduce that

2rk4(CD) =
1

2 · 2ω(−D)

∑
−D=ab

∑
c|b

(a
c

)∑
d|a

(
b

d

) .

4.2. Step 2: indexing trick. Set a = D10D11, b = D00D01, c = D00, and d = D11

to obtain

2rk4(CD) =
1

2 · 2ω(−D)

∑
−D=D00D01D10D11

∏
(u,v)∈F4

2

(
Du

Dv

)φ1(u,v)

,

where φ1(u, v) = (u1 + v1)(u1 + v2). Here u = (u1, u2) and v = (v1, v2), so that φ1

is a function φ1 : F4
2 → F2.
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Suppose

−D =
∏
u1∈F2

2

D1
u1 = · · · =

∏
uk∈F2

2

Dk
uk .

Set Du1,...,uk = gcd(D1
u1 , . . . , Dk

uk), and note that

Dl
ul =

∏
(u1,...,ûl,...,uk)∈F2k−2

2

Du1,...,ul,...,uk .

This is convenient because, instead of specifying k different ways of writing −D as
a product of 4 integers, we now simply need to specify one way of writing −D as a
product of 4k integers.

We thus have

2krk4(CD) =
1

2k · 2kω(−D)

∑
D

u1,...,uk

k∏
j=1

∏
(uj ,vj)∈F4

2

(
Dj
uj

Dj
vj

)φ1(uj ,vj)

.

We can now rearrange the product using multiplicative properties of the Jacobi
symbol and sum over −X < D < 0 such that D ≡ a (mod q). We thus obtain what
we will refer to as the “main formula:”

(4)
∑

−X<D<0
D≡1 (mod 4)
D≡a (mod q)

2krk4(CD) = 2−k
∑
(Du)

 ∏
u∈F2k

2

2−kω(Du)

 ∏
u,v∈F2k

2

(
Du

Dv

)φk(u,v)

,

where the sum is over 4k-tuples of squarefree, positive, coprime integers (Du) with
u = (u1, . . . , uk) ∈ F2k

2 satisfying∏
u

Du ≤ X,
∏
u

Du ≡ −1 (mod 4),
∏
u

Du ≡ −a (mod q),

and where φk(u, v) = φ1(u1, v1) + · · ·+ φ1(uk, vk).

As we remarked before, the case when D is negative and congruent to 1 modulo 4
is the simplest and most appropriate for communicating the ideas of the proof. To
demonstrate this, we now briefly explain what changes if, for instance, D is positive
and congruent to 1 modulo 4. In this case, equation (3) becomes

2rk4(CD) =
1

2
#{(a, b) : a, b ≥ 1,−D = ab,

−a is a square modulo b,

b is a square modulo a},

and the analogue of the main formula (equation (4)) is
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∑
−X<D<0

D≡1 (mod 4)
D≡a (mod q)

2krk4(ClD) = 2−k
∑
(Du)

 ∏
u∈F2k

2

2−kω(Du)

(5)

·

 ∏
u∈F2k

2

(
−1

Du

)λk(u)
 ∏
u,v∈F2k

2

(
Du

Dv

)φk(u,v)

,(6)

where λk(u) = λ1(u1)+ · · ·+λ1(uk), λ1(uj) = uj1u
j
2, and the other conditions are as

above. The factor with
(
−1
Du

)
creates extra difficulties later on in the computation

of the coefficient of the main term. Other cases of discriminants create even more
problems, most of which require modifications of the combinatorial arguments.

4.3. Step 3: analytic number theory. To exploit the indexing tricks, we define
the notion of linked indices.

Let P be the quadratic form over F2k
2 defined by

P (w) =

k∑
j=1

w2j−1(w2j−1 + w2j).

Then for any two indices u, v ∈ F2k
2 ,

P (u+ v) = φk(u, v) + φk(v, u).

We say that u and v are “linked” if P (u+ v) = 1, and “unlinked” otherwise.

In other words, u and v are linked if and only if exactly one of
(
Du

Dv

)
and

(
Dv

Du

)
appears with an odd exponent in the main formula.

Example. In the case that k = 1, the main formula simplifies to∑
−X<D<0

D≡1 (mod 4)
D≡a (mod q)

2rk4(CD) =
1

2

∑
(Du)

2−ω(D00D01D10D11)

(
D00

D11

)(
D11

D00

)(
D01

D11

)(
D10

D00

)
,

where the sum is over 4-tuples of squarefree, positive, coprime integers (Du) =
(D00, D01, D10, D11) satisfying

D00D01D10D11 ≤ X, ≡ −1 (mod 4), ≡ −a (mod q).

Hence, in this case, there are two pairs of linked indices, namely {00, 10} and
{01, 11}, while the other four pairs are unlinked.

We also define the parameter Ω = e4k(log logX + B0), where B0 is an absolute
constant that will be defined shortly. Then we can show that the contribution to
the right-hand-side of the main formula of those (Du) such that there exists a Du

with ω(Du) > Ω is negligible. The point is that the 4k-tuples with factors that
have many prime divisors are relatively rare. Let Σ1 denote this contribution. We
now use a trivial estimate. More precisely, using the triangle inequality, bounding
the Jacobi symbols trivially, completing the sum to be over all integers less than
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X (not just those that are discriminants in an arithmetic progression), and noting
that a squarefree integer n can be written as a product of 4k integers in 4kω(n)

ways, we have

Σ1 �
∑
n≤X

µ2(n)4kω(n)2−kω(n)

�

 ∑
n≤X
ω(n)>Ω

µ2(n)


1/2∑

n≤X

4kω(n)

1/2

The constant B0 is defined in the following lemma [FK07, Lemma 11], which is
used to give an upper bound for the first factor above:

Lemma 1. There exists an absolute constant B0 such that for every X ≥ 3 and
every l ≥ 0, we have

#{n ≤ X : ω(n) = l, µ2(n) = 1} ≤ B0
X

logX

(log logX +B0)l

l!
.

Using this lemma as well as Stirling’s formula, we can bound the first factor by

�
(

X
logX 4−kω(n)

)1/2

.

To bound the second factor above, we use the following lemma [FK07, Lemma
12]:

Lemma 2. Let γ ∈ R>0. Then∑
X−Y≤n≤X

γω(n) � Y (logX)γ−1

uniformly for 2 ≤ X exp(−
√

logX) ≤ Y < X.

Hence the second factor above is �
(
X(logX)4k−1

)1/2

. Combining the above and

using the definition of Ω again gives that Σ1 � X(logX)−1, which is a lot smaller
than the error term in Theorem 1.

The next big idea is to dissect the sum in the right-hand side of the main for-

mula into pieces that can be handled separately. For this, define ∆ = 1 + log−2k

X.
For each u ∈ F2k

2 , let Au ∈ {1,∆,∆2, . . .}, and for each A = (Au)u∈F2k
2

, define the
sum

S(X, k,A) = 2−k
∑
(Du)

(∏
u

2−kω(Du)

)∏
u,v

(
Du

Dv

)φk(u,v)

,

where now, in addition to the conditions above, the (Du) must satisfy

Au ≤ Du < ∆Au, ω(Du) ≤ Ω.

Hence we have ∑
−X<D<0

D≡1 (mod 4)
D≡a (mod q)

2krk4(CD) =
∑
A

S(X, k,A) +O(X(logX)−1),
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where the sum is over A such that
∏
uAu ≤ X.

We say that A satisfies condition (C1) if
∏
uAu ≥ ∆−4k

X. Then, using a triv-
ial estimate similar to the one above along with Lemma 2,∑

A sat. (C1)

|S(X, k,A)| ≤ 2−k
∑

∆−4kX≤n≤X

µ2(n)4kω(n)2−kω(n)

� (1−∆−4k

)X(logX)2k−1

Now, ∆−4k

= 1− 4k log−2k

X +O(log−2k+1

X), so that∑
A sat. (C1)

|S(X, k,A)| � X(logX)−1.

Define X‡ to be the least ∆l ≥ exp(log2−kεX) (we take ε > 0; this is the same ε
as in the statement of the theorem). We now say that A satisfies (C2) if at most
2k − 1 of the Au are larger than X‡.

Let r parametrize the number of Au that are larger than X‡, let n denote the
product of those Du and m the product of the remaining ones. Then, again using
a trivial estimate∑

A sat. (C2)

≤
2k−1∑
r=0

∑
m≤(X‡)4k−r

µ2(m)(4k − r)ω(m)2−kω(m)

·
∑

n≤X/m

µ2(n)rω(n)2−kω(n)

By Lemma 2, the above is

� X

2k−1∑
r=0

(logX)r2
−k−1

 ∑
m≤(X‡)4k

µ2(m)2kω(m)

m

 .

A Mertens-style estimate can be used to show that the second factor above is

� (logX‡)2k

, which then gives the bound∑
A sat. (C2)

|S(X, k,A)| � X(logX)ε−2−k

.

Note that the contribution from the A satisfying (C2) is one of the contributions
to the largest error term.

Now we start exploiting the work we did in step 2 to give some non-trivial estimates.

Let X† = (logX)3(1+4k(1+2k)). We now say that A satisfies (C3) if
∏
uAu < ∆−4k

X
and there exist two linked indices u and v with Au, Av ≥ X†.

We will make use of a result on double oscillation of characters [FK07, Lemma
15]:
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Lemma 3. Let am and bn be complex numbers of modulus < 1. Then for every
M,N ≥ 1 and every ε > 0, we have∑

m≤M

∑
n≤N

ambnµ
2(2m)µ2(2n)

(m
n

)
�ε MN(M−1/2+ε +N−1/2+ε).

Fix (Dw)w and suppose without loss of generality that φk(u, v) = 1 and φk(v, u) =
0. Then apply the lemma above with M = ∆Au, N = ∆Av, ε = 1/6 to give the
bound ∣∣∣∣∣∑

Du

∑
Dv

a(u)b(v)

(
Du

Dv

)∣∣∣∣∣� AuAv(A
−1/3
u +A−1/3

v ),

where

a(u) = 2−kω(Du)
∏

w 6=u,v

(
Du

Dw

)φk(u,w) ∏
w 6=u,v

(
Dw

Du

)φk(w,u)

and

b(v) = 2−kω(Dv)
∏

w 6=u,v

(
Dv

Dw

)φk(v,w) ∏
w 6=u,v

(
Dw

Dv

)φk(w,v)

.

Now if A satisfies (C3), then |S(X, k,A)| is

≤ 2−k
∑

(Dw)w 6=u,v

∏
w 6=u,v

2−kω(Dw)

∣∣∣∣∣∑
Du

∑
Dv

a(u)b(v)

(
Du

Dv

)∣∣∣∣∣
� X(X†)−1/3

There are at most O((logX)4k(1+2k)) choices for A, which then allows us to make
the estimate ∑

A sat. (C3)

|S(X, k,A)| � X(logX)−1.

We now say that A satisfies (C4) if
∏
uAu < ∆−4k

X and there exist two linked
indices u and v with Au ≥ X‡ and ∆ ≤ Av ≤ X†. For such A, S(X, k,A) is

� max
(c,4)=1
(d,q)=1

∑
(Dw)w 6=u,v

∑
Dv

Ω∑
l=0

2−kl

∣∣∣∣∣∣∣∣∣∣∣
∑

ω(Du)=l
Du≡c (mod 4)
Du≡d (mod q)

µ2(2q
∏
w

Dw)

(
Du

Dv

)
∣∣∣∣∣∣∣∣∣∣∣
.

To give a bound for the inner sum above, we appeal to a version of Siegel-Walfisz
theorem [FK07, Lemma 13]:

Theorem 5. For every r ≥ 2, for every primitive character χ modulo r, and for
every C > 0, we have ∑

y≤p≤x

χ(p)�C

√
rx log−C x

uniformly for x ≥ y ≥ 2.
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Writing Du = p1 · · · pl with pi in increasing order and using the theorem with
r = 4qDv ≤ 4q∆X† and x = ∆Au

p1···pl−1
, we see that the inner sum is

� max
(c′,4)=1
(d′,q)=1

∑
p1···pl−1≤(∆Au)1−1/l

∣∣∣∣∣∣∣∣∣
∑

pl≡c′ (mod 4)
pl≡d′ (mod q)

µ2(2qp1 · · · pl
∏
w 6=u

Dw)

(
pl
Dv

)∣∣∣∣∣∣∣∣∣
�C q3/2A1/2

v Au(logX)−C2−k−1ε

Choosing C large in terms of k, we can once again show that∑
A sat. (C4)

|S(X, k,A)| � X(logX)−1.

Note that in this estimate, it was useful for each Du to have at most Ω prime factors.

The previous estimates now imply that∑
−X<D<0

D≡1 (mod 4)
D≡a (mod q)

2krk4(ClD) =
∑
A

S(X, k,A) +O
(
X(logX)ε−2−k

)
,

where the sum is over A satisfying:

−
∏
u

Au < ∆−4k

X

− at least 2k indices u satisfy Au ≥ X‡

− two indices u, v with Au, Av > X† are always unlinked

− if Au and Av with Av ≤ Au are linked, then either Av = 1

or ∆ ≤ Av < X and Av ≤ Au < X‡

At this point, we make use of the following lemma, which is proved via the theory
of symmmetric bilinear forms [FK07, Lemma 18]:

Lemma 4. Let k ≥ 1 and let U ⊂ F2k
2 be a set of unlinked indices. Then #U ≤ 2k

and for any c ∈ F2k
2 , c + U is also a set of unlinked indices. If #U = 2k, then

either U is a vector subspace of F2k
2 of dimension k or a coset of such a subspace

of dimension k.

This lemma allows us to simplify the conditions above to:

−
∏
u

Au < ∆−4k

X

− U = {u : Au ≥ X‡} is a maximal subset of unlinked indices

− if Au /∈ U , then Au = 1

If U is any maximal subset of unlinked indices, we say that A is “admissable” for
U if A satisfies the three conditions above.
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We finally make use of the structure of unlinked indices by applying the law of
quadratic reciprocity. For two unlinked indices u and v, φk(u, v) = φk(v, u) so that(

Du

Dv

)φk(u,v)(
Dv

Du

)φk(v,u)

= (−1)φk(u,v)·Du−1
2

Dv−1
2 .

Not that the right-hand-side is determined completely by the congruence class of
Du and Dv modulo 4.

Let U be a maximal subset of unlinked indices and suppose A is admissable for U .
Then using the Chinese remainder theorem and the law of quadratic reciprocity,
we deduce that

S(X, k,A)

= 2−k
∑
(gu)

∑
(hu)

∑
(Du)

µ2(
∏
u∈U

Du)
∏
u∈U

2−kω(Du)

 ∏
{u,v}⊂U

(−1)φk(u,v)·hu−1
2

hv−1
2 ,

where now the sum over (gu) is a sum over 2k-tuples (gu) such that each gu is a
congruence class modulo q coprime to q and such that

∏
u∈U gu ≡ −a (mod q),

the sum over (hu) is a sum over 2k-tuples (hu) such that each hu is a congruence
class modulo 4 coprime to 4 and such that

∏
u∈U hu ≡ −1 (mod 4), and the sum

over (du) is a sum over 2k-tuples (du) such that Au ≤ Du < ∆Au, ω(Du) ≤ Ω,
Du ≡ gu (mod q), and Du ≡ hu (mod 4).

To eliminate the congruence conditions on Du in the statement above, we use the
following lemma on squarefree numbers in arithmetic progressions:

Lemma 5. Let q ≥ 1 be an odd squarefree integer. Let l ≥ 0, let g be a congruence
class modulo q coprime to q, let h be a congruence class modulo 4 coprime to 4, let
n0 be a squarefree integer coprime to 2q. Then for all C > 0 and Y ≥ y ≥ 1, we
have

∑
y≤n≤Y

n≡h (mod 4)
n≡g (mod q)

ω(n)=l

µ2(n0n) =
1

2ϕ(q)

∑
y≤n≤Y
ω(n)=l

µ2(2qn0n)

+OC

(
(l + 1)C+1Y (log Y )−C + ω(n0)Y 1−1/l

)
.

This lemma is analogous to [FK07, Lemma 19] and its proof is exactly the same.
To deal with the sum over (Du) above, enumerate the indices in some way to obtain
U = {u1, . . . , u2k}, and then use the lemma (with C large in terms of k and ε) to
get ∑

Dui

µ2(
∏
j

Duj
)2−kω(Dui

) =
1

2ϕ(q)

∑
Aui
≤Dui

≤∆Aui

ω(Dui
)≤Ω

µ2(2q
∏
j

Duj
)

+O
(
Aui

(logX)−1−4k(1+2k)
)
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In conclusion, repeating this process for each ui and summing over all A admissable
for a particular U , we get that

∑
A adm. for U

S(X, k,A) =2−k−2k

ϕ(q)−1

∑
(hu)

∏
{u,v}⊂U

(−1)φk(u,v) hu−1
2

hv−1
2


·

∑
(Du)

µ2(2q
∏
u∈U

Du)
∏
u∈U

2−kω(Du)

+O(X(logX)−1),

where now the sum is over (Du) such that there is an A admissable for U with
Au ≤ Du ≤ ∆Au and such that ω(Du) ≤ Ω. Note that the congruence conditions
have disappeared. Also, note that it was crucial in this argument that the number
of prime factors of each Du is bounded.

It can be shown using methods similar to those used to handle the contribution
of A satisfying (C2) that∑

(Du)

µ2(2q
∏
u∈U

Du)
∏
u∈U

2−kω(Du) =
∑
n≤X

µ2(2qn) +O(X(logX)ε−2−k

).

Now note that for all C > 0

1

2ϕ(q)

∑
n≤X

µ2(2qn) =
∑
n≤X

n≡−1 (mod 4)
n≡−a (mod q)

µ2(n) +OC(X(logX)−C).

Summing over all maximal subsets U of unlinked indices, we obtain∑
−X<D<0

D≡1 (mod 4)
D≡a (mod q)

2krk4(CD) =21−k−2k

(∑
U
γ(U)

) ∑
−X<D<0

D≡1 (mod 4)
D≡a (mod q)

1

+O(X(logX)ε−2−k

),

where γ(U) =
∑

(hu)

∏
{u,v}⊂U (−1)φk(u,v) hu−1

2
hv−1

2 .

It now remains to compute
∑
U γ(U).

4.4. Combinatorics. We now briefly outline the method used to compute
∑
U γ(U).

This is where the proof changes the most for other families of discriminants (i.e.
those that are not negative and congruent to 1 modulo 4). Although the forms over
F2 used for these other families are different, the methods in these other cases are
similar.

For our case, first define

γ(U , ν) =
∑
S⊂U

#S=s≡ν (mod 2)

(−1)e(S),
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where

e(S) =
∑

{u,v}⊂S

φk(u, v).

Notice that γ(U) = γ(U , 1).

We can decompose φk into

φk(u, v) = L(u, v) + P (v) + Λ(u) + Λ(v),

where L is a bilinear form, P is a quadratic form (same P as before), Λ is a linear
form, and L(u, u) = P (u).

By viewing the power set of U as an abelian group with the symmetric differ-
ence operation and by constructing a multiplicative character on this group, one
can prove the following key lemma [FK07, Lemma 24]:

Lemma 6. Write U = c+ U0, where U0 is a vector subspace. If either γ(U , 0) 6= 0
or γ(U , 1) 6= 0, then L is identically 0 on U0 × U0.

We say that a subspace V of F2k
2 is good if the dimension of V is k and if L is

identically zero on V × V . Note that for any good V and any c ∈ F2k
2 , c + V is a

maximal set of unlinked indices.

Another key lemma is the following [FK07, Lemma 25]:

Lemma 7. Write U = c+U0 as before. If U0 is good and S ⊂ U with s = #S odd,
then e(S) = 0.

Putting the two lemmas together, we get that∑
U
γ(U) =

∑
U0 good

∑
U=c+U0

γ(U) +
∑

U0 not good

∑
U=c+U0

γ(U)

=
∑
U0 good

∑
U=c+U0

#{S ⊂ U : s odd} = 2k22k−1
∑
U0 good

1

The proof is now concluded by establishing a bijection between good subspaces U0

and vector subspaces of Fk2 . (We write F2k
2 = X ⊕ Y for a particular choice of

k-dimensional F2 vector spaces X and Y such that L(πX(u), πY (v)) = L(u, v) and
such that for any subspace F of X, there is exactly one subspace U0 of F2k

2 such
that L is identically zero on U0 × U0 and πX(U0) = F .) �

5. Proof of Theorem 2

In Theorem 2, we are only concerned with the first moment this time (i.e. k = 1),
and so the main formula simplifies considerably (see example on page 10). Step 1
is the same as before, and this time, there is no need for the indexing trick from
step 2. Likewise, we entirely avoid step 4 because the combinatorics are easy for
the case k = 1.

Let C > 0. We will re-define the parameters from the proof of Theorem 1 as
follows. We set Ω = 4eC(log logX + B0), ∆ = 1 + log−C X, X† = (logX)3(4+5C),
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and X‡ = exp(log1/2X).

With this choice of Ω, and for C ≥ 1, the same arguments as on page 11 can
be used to show that, on both the left-hand side and the right-hand side of equa-
tion (2) in Theorem 2, the contributions from 4-tuples with a factor having many
prime divisors are � X(logX)1−4eC .

Using the same argument as on page 12, we see that the contribution from the
sums over A satisfying conditions (C3) on both the left-hand side and the right-
hand side of equation (2) is � X(logX)1−C .

With the new choice of ∆, there are at most O((logX)4(1+C)) choices for A. Thus,
with the new choice of X†, following the the same argument as on page 13 gives
that the contribution from the sums over A satisfying condition (C3) on both the
left-hand side and the right-hand side of equation (2) is � X(logX)−C .

With the new choice of X‡, the same argument as on pages 13-14 with the constant
in Theorem 5 taken to be 56C shows that the contribution from the sums over
A satisfying condition (C4) on both the left-hand side and the right-hand side of
equation (2) is � X(X†)5/6(logX)−14C � X(logX)10−C .

As we have just seen, all of the above contributions belong to the error term in
Theorem 2 separately for the left-hand side and the right-hand side of equation
(2). However, a little more work needs to be done for the sums over A satisfying
condition (C2) and for those that contribute to the main term.

The main terms for the left-hand side and the right-hand side of the equation
in Theorem 2 are given by∑

A

S(X, 1, A) and
1

ϕ(q)

∑
A

S(X, 1, A)∗

where both sums are over A satisfying the conditions on the bottom of page 14;
where

S(X, 1, A) =
1

2

∑
(Du)

2−ω(D00D01D10D11)

(
D00

D11

)(
D11

D00

)(
D01

D11

)(
D10

D00

)
is as in the proof of Theorem 1; and where S(X, 1, A)∗ is the same as S(X, 1, A)
except that the condition

∏
uDu ≡ −a (mod q) is replaced by the condition

(
∏
uDu, q) = 1. An application of the Chinese remainder theorem and Lemma

5 as on pages 15-16 shows that the difference between the main terms is bounded
by

� (Ω + 1)C+2X(logX)−C/2,

which suffices for Theorem 2.

It remains is to handle the contribution from A satisfying condition (C2). For
this, first note that, for both the left-hand side and the right-hand side of equa-
tion (2), the contributions from the A where none of the Au is larger than X‡ are
� (X‡)4 logX � Xδ for any δ > 0. Hence we must compare the contributions
where exactly one of the Au is larger than X‡.
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First suppose that this Au is A10. Since D10 is linked with D00, we may sup-
pose that A00 = 1. (Otherwise, these would satisfy either condition (C3) or (C4).)
Both A01 and A11 must be less than X‡, and, as they are linked, we may suppose
that one of them, say A01 is less than X† (otherwise, these would satisfy condition
(C3)). In summary, we have the following conditions on A: A00 = 1, 1 ≤ A01 ≤ X†,
A10 > X‡, and 1 ≤ A11 ≤ X‡.

Thus, the difference S(X, 1, A)−S(X, 1, A)∗/ϕ(q) for A satisfying these conditions
is

∑
D01

(D01,q)=1

∑
D10

(D01,q)=1

∑
D11

D11≡−a/(D01D10) (q)

2−ω(D01D10D11)

(
D01

D11

)

− 1

ϕ(q)

∑
D01

(D01,q)=1

∑
D10

(D01,q)=1

∑
D11

(D11,q)=1

2−ω(D01D10D11)

(
D01

D11

)
.

where the sums are over odd, squarefree, coprime Du satisfying the usual conditions
Au ≤ Du < ∆Au, ω(Du) < Ω,

∏
uAu < X, and

∏
uDu ≡ −1 (mod 4). We handle

the difference above by rearranging the order of summation so that the inner sums
are over D10. Since the number of prime divisors of D10 is bounded, Lemma 5 can
be used as before to give the bound

∑
D10

D10≡−a/(D01D11) (q)

2−ω(D10) − 1

ϕ(q)

∑
D10

(D10,q)=1

2−ω(D10) � A10(logX)−4−5C .

Now trivially estimating the Jacobi symbols
(
D01

D11

)
and the sums over D01 and D11,

we get that the difference above is � (
∏
uAu)(logX)−4−5C � X(logX)−4−5C .

Finally, summing over all A satisfying the conditions above, we get that the con-
tribution of this difference is � X(logX)−C .

The case where A01 is the large variable is symmetric to the situation above. The
other two remaining cases are when A00 > X‡ and A11 > X‡. These two last cases
are symmetric, so we may assume without loss of generality that A00 > X‡. This
forces A10 = 1 (otherwise such an A would satisfy condition (C3) or (C4)). The

extra complication now is that the factor
(
D00

D11

)(
D11

D00

)
does not disappear. Hence,

to proceed as before, we must fix the congruence classes of D00 and D11 modulo 4
and apply the law of quadratic reciprocity to fix this factor. Lemma 5 still applies
when congruences modulo 4 are imposed on the Du, and so the previous argument
handles this case as well. There are only finitely many ways to fix the congruence
classes of D00 and D11 modulo 4 and so the difference from all the contributions
in the case A00 is the large variable is still � X(logX)−C . This finishes the esti-
mate of the difference of contributions to the left-hand and the right-hand sides of
equation (2) coming from those A satisfying (C2), and thus also finishes the proof
of Theorem 2.
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