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Introduction

The existence of consistent similarities between the theories related to the
division of the circle and that of the lemniscate was firstly recognized by
Gauss in the Discquisitiones Arithmeticae. There, while proving that a
regular n-gon can be constructed with ruler and compass if n = 2%p1ps ... ps
where the p; are distinct Fermat primes, the mathematician stated that the
principles underlying that theory apply not only to circular functions like
sine and cosine, but also to the transcendental functions “that depend on
the integral [ dt/v/1 —t*” which parametrizes the lemniscate ([14]). Abel,
during his work on the division equations on the elliptic functions, came
across the hint given by Gauss, and he was able to prove in his Recherches
sur les fonctions elliptiques ([1], [2]) that

Proposition. The lemniscate can be divided into n equal parts with ruler
and compass if n = 2% ps ... p; where the p; are distinct Fermat primes.

Later, in 1853, Kronecker stated what we currently know as Kronecker-
Weber’s theorem:

Theorem. FEvery finite abelian extension of Q is a subfield of a cyclotomic

field.

and in the same paper ([13]) he also suggested that all the finite abelian
extensions of the quadratic field can be obtained by dividing the lemnis-
cate instead of the circle. As Iwasawa reports in [11], this conjecture was
the origin of Kronecker’s Jugendtraum, the conjecture stating (in its pre-
cise form) that all abelian extensions of an imaginary quadratic field k can
be generated by singular values of the elliptic modular function and by the
values of the corresponding elliptic functions in the division points ([19], §
4.3, p. 79). In 1903, in his doctoral thesis [17], Takagi was able to prove
the conjecture regarding Q(7), adapting to this case the ideas used in the
proof of the Kronecker-Weber theorem given by Hilbert in 1896 (a modern
account of that proof can be found in [8]). Later, in 1920, Takagi was also
able to prove the general conjecture in his paper Uber eine Theorie der
relativ-Abel’schen Zahlkérper” [18] using mainly class field theory and a few
facts about elliptic and modular function.



Even though the similarities between the case of the circle and that of
the lemniscate are profound, as we have pointed out, they do not go as far
as one could expect. An example of a negative result is Leopoldt’s Theorem.
If @ C N is a finite abelian extension with Galois group I', and if set

A={\eQrAOy C Oy}

then Leopoldt’s Theorem states that the ring of integers Oy is isomorphic
to A as a A-module and that we can find some idempotents e; linked to the
ramification of the extension N/Q such that A = @, ZI'e;. Recall that

Definition. We say that a Galois extension Q C N admits a normal integral
basis if the ring Oy of integers in N admits a Z-basis consisting of the
translates of a single element by the elements in the Galois group of Q C N.

Then, as a Corollary of Leopoldt’s Theorem we can obtain the following
result:

Hilbert-Speiser Theorem. If Q C N is a tame extension, then Q C N
has a normal integral basis.

Unluckily, the result is not true for the extensions with base field Q(7),
since we can actually prove that

Theorem. For every number field K different from Q, there exists a finite
tamely ramified abelian extension of K that doesn’t have a mormal integral
basis.

Since Leopoldt’s theorem can be proven exploiting Kronecker-Weber’s
theorem and the peculiar features of the cyclotomic fields, it seems natu-
ral to wonder whether we can use Takagi’s theorem on the division of the
lemniscate with some additional conditions in order to obtain a similar re-
sult. The main motivation of this thesis is exactly this one: we are going to
follow Takagi’s first paper [17], and give a detailed account of the explicit
construction of the fields obtained by the division of the lemniscate, in order
to fully understand the structure of those fields, that we could possibly use
in the future to investigate the problem of finding a normal basis at least
for some tame extension of Q(i).

Finally, the structure of this Thesis is going to be the following. In
Chapter 1, we are going to define and study the function sin am(z) (which
will play the same role of the sine in the circle case), its relation with a
certain Weierstrass gp-function, and we will give an accurate description of
the formulas that are involved in its complex multiplication by Z[i]. In
Chapter 2, we will describe the fields that we can obtain by considering the
division point of the lemniscate, and we will analize which are the primes
that ramify in those extensions of Q(i), and finally the whole third Chapter
will be dedicated to the proof of Takagi’s Theorem.

ii



Chapter 1

Fundamental tools

1.1 Parametrization of the lemniscate

In the following discussion, we are going to use the useful relations that
may be obtained by considering a special parametrization of the lemniscate.
First of all, let us recall

Definition 1.1.1. Given two fixed point nqy,no and a constant ¢, the associ-
ated lemniscate is the locus of all the points P such that the product of the
distance between P and ny with the distance between P and ns has constant

value ¢2.

We are interested in a peculiar lemniscate, the one where the fixed points

have coordinates (—%, 0) and ( %, 0), and where ¢ = % With this choice,

we get the familiar horizontal figure 8 and a parametrization in cartesian
coordinates

($2 +y2)2 — $2 _ y2
which translates in polar coordinates to

r? = cos(26)
If s = s(r) is the arc length associated to the lemniscate, it is clear that
(denoting with a dot the differentiation with respect to r)
s=x+7Yy
and so we obtain by direct computation (see [15], Chapter 1) that
dr
V1—rd

So if we measure arc-length starting from the origin and passing into the
first quadrant, by integrating we have the explicit relation

ds =

Toodt
s:s(r):/ for0<r<1
0 V1—tt



Note that for » = 1 this integral is improper, but since it converges, its
value is the arc length of the first quadrant portion of the lemniscate. In

this context, we set

wo Voot

2 /0 1— ¢
so that, due to the symmetry of the lemniscate, and the fact that r increases
in each quadrant from 0 to 1, the total arch length is 2w.

Definition 1.1.2. For every v € R such that |[v| < § consider the element

z € R such that
/Z dt
v = —_—
0 1—t4

Then, setting A = {v € R|[v| < §} we define a function as

sinam: 4 — R
v o= T

Moreover, for v € A, we set

cos am(v) = y/1 — sin am?(v)
A am(v) = /1 + sin am?(v)

Remark 1.1.1. With this definition, » = sin am(s) if and only if s is the
arc length from the origin to the point with polar coordinates (r, ) in the
upper semiplane of R2.

Now we would like to extend this definition to arbitrary real values of
v. Given the resemblance to the trigonometric case, the idea is to find
an addition formula for the integral. If we consider u,v € A, and z, =
sin am(u), z, = sin am(v), it is possible to prove that there is an r € R such
that

oo dt / oo dt / "oodt
u+v= — + =
/o V1—t4 o V1i—tt o V1—1tt
and (as it is described in [15], Chapter 1)

Tyr/1 — 22 + 2y /1 — 23
1+ 2222

r =
Hence, we can set
sin am(u + v) :=r

and this formula gives us the possibility to extend the domain of our function
to the whole R.



Noticing that under the transformation ¢ — it the expression dt/v/1 — t4 is
multiplied by ¢, Gauss set

sin am(iv) := ¢ sin am(v)

At this point, it is clear how to define sin am(u + iv) for arbitrary u,v € R.

Moreover, now that we have defined sin am(z) for arbitrary complex
values, we can easily prove the following
Proposition 1.1.1. The function sin am(z) is analytic on

w
N={zeClz # (m—H’n)57 m,n € Z}
Proof. Let z = x + iy, with x,y € R. Looking at Eq. (1.1), it is clear that
sin am(z) is not defined only for those elements for which
1 + sin am?(z)sin am?(iy) = 1 — sin am?(z)sin am?(y) =0

Since by definition sin am?(z) < 1 for all € R, and the equality holds if
and only if x is an odd multiple of %, sin am is defined on the open set

Qz{zEC]z#(m—i—in)%, m,n € Z}

As (sin am’(z))? = 1 —sin am®*(z) for all 2 € R (see [4], Proposition 15.2.1),
sin am(x) is infinitely differentiable on R, so if we denote f(z,y) and g(z,y)
the real and imaginary part of the right-hand side of Eq. (1.1), it is clear
that they are differentiable on 2 as functions of (z,y). So we are only left to
show that f(z,y) and g(z,y) satisfy the Cauchy-Riemann conditions, but
since we have that

sin am(x)4/1 — sin am4(y) sin am(z)sin am’(y )
fy) = 1 — sin am?(z)sin am?(y) T 1—sin am?(z)sin am?(y)
sin am(y)4/1 — sin am4(x) sin am(y)sin am’(x)
9(@y) = 1 — sin am?(z)sin am?(y) " 1—sinam 2(z)sin am?(y)
this is only matter of a straightforward computation. O

This Proposition leads to the following result, that we will use extensively
in this thesis:

Corollary 1.1.1. The addition law

sin am(u)cos am(v)A am(v) + sin am(v)cos am(u)A am(u)

sin am(u +v) = 1+ sin am?(u)sin am?(v)
holds for all u,v € C such that both sides are defined.

The proof can be found in [4], Proposition 15.3.1: it uses only the fact
that sin am(z) is analytical and that Eq.(1.1) holds for R.



1.2 Some properties of sin am

First of all we have to note that as a function of a complex variable, this new
function sin am is doubly periodic, of periods (1 + i)w and (1 — ¢)w. This
can be seen manipulating the equation given in the previous Corollary. In
fact, since by definition sin am(%) = 1, and since sin am(iu) = isin am(u)
for every u € C, it holds that

cos am(:t%) =0=A am(:l:%i)

so if we substitute v with &% or £%i in Eq.(1.2) we get

) w,  cosam(u)
sin am(u + ii) = A am(u)

. w.o A am(u) .
sin am(u + igz) = iicos am(u)z

At this point, we have to remark that for every v € C from the equation
sin am(iv) = isin am(v) follows directly that

sin am(—v) = —sin am(v) (1.3)
Therefore
sin am(% —u) = —sin am(u — %)
[ cosam(u)
B A am(u)
= sin am(u + %) (1.4)
and in the same way
sin am(gi —u) =sin am(%i + u) (1.5)

If now we substitute u with u + ¢ in Eq.(1.4) and with v 4 %4 in Eq.(1.5),
we get,

sin am(u +w) = —sin am(u) (1.6)

sin am(u + wi) = —sin am(u)

and then if we substitute again u with u + iw or and with v — wi in Eq.(1.6)
we finally obtain that for every u € C

sin am(u + (1 +4)w) = sin am(u) (1.8)

sin am(u + (1 —{)w) = sin am(u) (1.9)

Clearly, we can sum up the previous discussion in the following statement:



Proposition 1.2.1. For every u € C and for every n,m € Z
sin am(mw + nwi £ u) = £(—1)"""sin am(u)
which immediately implies
Corollary 1.2.1. For every n,m € Z
sin am(mw + nwi) = 0
Actually, also the converse of this Corollary holds. In fact

Proposition 1.2.2. Let u € C. Then sin am(u) = 0 if and only if there
are m,n € 7 such that u = mw + nwi.

Proof. Suppose that sin am(u) = 0, and consider the elements a,b € R such
that © = a 4 b.
Using Eq.(1.2) it follows that

sin am(a)cos am(bi)A am(bi) + sin am(bi)cos am(a)A am(a)

=0

1 + sin am?(a)sin am? ()

Note that
sin am(a)cos am(bi)A am(bi) € R
while
sin am(bi)cos am(a)A am(a) = iA with A € R
because

e a € R, so sin am(a),cos am(a), A am(a) € R
e b€ R sosin am(b) € R, which means that
cos am(ib)A am(ib) = 1 — (sin(ib))*
= 1 — (sin(b))*
= cos am(b)A am(b) € R
Therefore, it must be that
sin am(a)cos am(bi)A am(bi) = 0 = isin am(b)cos am(a)A am(a)
Since A am(a) # 0 for every a € R and since
cos am(ib) = /1 + sin(b)2 = A am(b)
the previous equations become

sin am(a)A am(bi) = 0 = sin am(b)cos am(a)



If sin am(a) = 0, then cos am(a) = 1 and so sin am(b) = 0. If sin am(a) # 0,
we get

0= A am(bi) = /1 + sin am(ib)2 = cos am(b)

which means that cos am(a) = 0 because at this point sin am(b) = £1.
We consider first the second case. Let n € Z be such that a = nw + d/,
where 0 < ' < 4. Then, using Proposition (1.2.1),

sin am(a) = (—1)"sin am(a’)

hence we get the equation

0 = cos am(a) = /1 — sin am(a)2 = y/1 — sin am(a’)?

which implies that sin am(a’) = 1. But since 0 < o/ < ¢, sin am(a’) must
be positive, so sin am(a’) = 1 which means (since sin am is invertible in

[0,%]) that @’ = % and a = (n + 3)w. In the same way,

0= A am(bi) = cos am(b)

implies that b can be written as b = (m+ 3)w for some m € Z. Those values
actually lead to a contradiction. In fact, if we consider the general equations

. w cos am(v)

+—) = —_—

sin am(v + 2) A am(v)

A

sin am(v + igi) = iﬂi

2 cos am(v)

we obtain w w
sin am(v + g)sin am(v + 52) =1 (1.10)

If now we consider u = a +ib = (n+ 3)w + (m + 3)wi it holds that (again
by Proposition (1.2.1))

w W,

m+n: adt e
sin am( 5 + 21)

sin am(u) = (—1)
Finally, recalling that sin am(w) = 0, the substitution v = § in Eq.(1.10)
shows that & + 91 is a pole of sin am, not a zero.
Thus the only possible case is the first. Using the same argument as before,
we can see that the request sin am(a) = 0 = sin am(b) implies that a = nw
and b = mw for some n,m € Z, and hence we are done. ]

Remark 1.2.1. All the zeros of sin am(u) are simple, because whenever
sin am(u) = 0 for some u € C

(sin am’(u))? = 1 — sin am?(u) = 1



Corollary 1.2.2. For anyn,m € Z
1 1 .
u=|(m+ 5 w+ | n+ 2 w1

Also in this case we can prove that actually

s a pole of sin am.

Proposition 1.2.3. Let u € C. Then u is a pole of sin am if and only if
there are m,n € Z such that .

—(m+ D)ot (n+l)w
u—m2w ’I’Z2LL)Z

Proof. Considering again the equations

) w cos am(v)
12y = g2
sin am(v + 2) A am(0)
A
sin am(v + :I:gi) = :I:Mi
2 cos am(v)
and setting v = u — 5, we see that
sin am(u) - sin am (u - g - %z) =— (1.11)
Hence if u is a pole, u — § — %4 must be a zero of sin am. But from the

previous Proposition this implies that v — § — $i = (m + in)w for some

n,m € Z, and thus
= —i—l w+ —i—l )
U m 5 n 5 1

as we wanted to show. O

Remark 1.2.2. Since all the zeros of sin am(u) are simple, considering
Eq.(1.11) we can see that all the poles are simple.

After treating zeros and poles, we are interested in solving more general
equations.

Proposition 1.2.4. Given o € C, the equation
sin am(x) = sin am(«)
1s satisfied by x if and only if
= (—1)"""q + mw + nwi

for some m,n € Z.



A rigorous proof of this statement can be found in [4], Theorem 15.3.3,
but here, we are only going to illustrate the train of thought of Abel (who
was the first to state and use this result), that can be found also in [1]. First
of all, Abel considered the equation

sin am(z) — sin am(a) =0
Using Eq.(1.2) twice, it follows directly that for (suitable) u,v € C

2 (sin am(v)cos am(u)A am(u))

sin am(u +v) — sin am(u — v) = 1 + sin am?(u)sin am?(v)

So if we set u = HTQ’ v = 5% what we get is
2 (sm am(%52)cos am(“*“)A am(M))
0 = sin am(x) — sin am(«) = 2 2
(=) (a) 1+ sin amg(””o‘)sm amQ(%)

In its paper, Abel continues without asking himself whether or not the right
hand side is defined, instead he remarks that this last equation can be “sat-
isfied” in five different ways:

o if sin am(*5%) = 0, i.e if ¥5% = (n + mi)w for some n,m € Z.

e if cos am(£5%) = 0, i.e if £ = (n + mi)w + & for some n,m € Z.

o if A am(%E) =0, i.eif 3¢ = (n + mi)w + i for some n,m € Z.

e if 5% is a pole of sin am, i.e *5* = (m+%)w+ (n—l—%) wi for some
n,m € 7.

e if Z42 is a pole of sin am, i.e Z£% = (m+ ) w+ (n + ) wi for some
n,m € 7.

So, according to the previous computations, the different possibilities are
o r =+ 2nw + 2mwi for some n,m € Z.
e r=—a+ (2n+ 1)w + 2mwi for some n,m € Z.
o z=—a+2nw+ (2m + 1)wi for some n,m € Z.
e z=a+ (2m+1)w+ (2n + 1)wi for some n,m € Z.
e x=—a+(2m+1)w+ (2n+ 1) wi for some n,m € Z.

Finally Abel checks, using Proposition (1.2.1), whether sin am(x) is really
equal to sin am(«) or not: all the cases give sin am(z) = sin am(«), except
the fifth, which gives sin am(z) = —sin am(«). Thus all the solutions of the
equation are given by the four remaining cases, and they can be summarized
by saying that we must have

= (—=1)"""a + mw + nwi

for some m,n € Z.



1.3 Jacobi elliptic function

For reasons that will become clear in the next chapter, we would like to link
the function defined in the previous section to the Weierstrass gp-function
associated to the lattice A = wZ+iwZ. Note that this is not the most natural
choice for A: in fact, since sin am(u) is a doubly periodic meromorphic
function with linearly independent periods (and hence an elliptic function),
the natural idea would be to take the lattice L = (14 i)wZ + (1 — i)wZ and
to find the Weierstrass equation of the elliptic curve E = C/L, in order to
finally link sin am(u) with pr(2) = p(z, L), the Weierstrass p-function of
L. As can be seen in [5], Section 2, in this case the Weierstrass equation of
Eis Y2 = 4X3 + X. Moreover

sin am(u) = —Qp,L(z)
@L(z)
and )
4 —1
sin am’(u) = 7%:(2)
4p7(2) +1

The relations are surely interesting, but following Takagi approach as we
are going to do, the relation is actually even more interesting, since we will
prove that for every v € C

1

pA(u) = m

Unluckily, the proof of this relation is not short, and we will first need
to introduce a whole new set of functions, the Jacobi elliptic functions.

Definition 1.3.1. For any k € C, consider the integral

/¢ dt
u =
0o 1—k%sin?(t)

where ¢t is a complex variable. Define a new family of functions (the Jacobi
elliptic functions) by setting

sn(u, k) = sin(¢)

Considering

K /5 dt
0 1 —k2sin?(t)

sn(u + 4K, k) = sn(u, k)

it is easy to see that



In addition, Jacobi introduces the functions
en(u, k) = 1 —sn2(u, k)
dn(u, k) = 1 — k2sn2(u, k)
Note that the substitution sin(¢) = i tan(y) yields
d i - dy

V1—k2%sinZ¢ /1 — k2sin®

where k?+k"? = 1, hence we get the extension of the Jacobi elliptic functions
to the whole complex plane

sn(u, k')

Sn(Zu, k) =1- m

The functions sn, cn, dn have two periods, which are (4K, 2iK"),
(4K,2(K 4+ iK')) and (2K, 4iK') respectively, where

P /’5 dt
0 1 — k2sin?(t)

(compare with [19], Section 2.2). Furthermore, for a fixed k, and thus writing
sn(u, k)=sn(u) for convenience, it is possible to prove (as in [20], Chapter
XXII, paragraph 22.2, p.494) that the following relations hold :

sn(u+v) = sn(u)Cn(;})_ch;gzilj(z?s(;)?;)(u)dn(u) (1.12)
cn(u)en(v) — sn(u)sn(v)dn(u)dn(v)

1 — k2sn?(u)sn?(v)
dn(u)dn(v) — k?sn(u)sn(v)dn(u)dn(v)

dnfu+v) = 1 — k2sn?(u)sn?(v) (1.14)

cn(u + v) (1.13)

There is an evident similarity between these functions and our function
sin am(u). Actually, sin am(u) is related to them by the following result:

Remark 1.3.1. For u € C
1
B sn(uy/2, —\/5)
- 1
ﬂdn(uﬁ, —\/5)

Proof. 1f we write sd(u, k) := sn(u, k)/dn(u, k), it is possible to prove that

sin am(u)

/ d(u,k) dt
u =
0 V(1= E22) (1 + k2t2)

10



where as k% + k"2 = 1 (compare with [20], p.429). Hence, we can consider
the equation

e /Sd(uﬁ’\}i) dt /Sd(“ﬁv}ﬁ dt
w3 _ _da
0 Ja-iea+ i) o 1— L

and using the trivial substitution %t — z we get that

" /\}ﬁs‘i(“ﬁ’\}i) dz
0 V1—2z4

which means that
1 sn(uy/2, % )

- LI -
sin am(u) = d(uv'2, \/5) ﬁdn(uﬂ,%)

V2

1.3.1 An equivalent definition

The form in which we presented the Jacobi elliptic functions is the good one
in order to prove the formulas we have given previously, but unfortunately it
is not so suitable if we want to establish a connection between the functions
and the gp-function. In order to fix this problem, let us introduce a new
family of functions.

Definition 1.3.2. For complex variables © and z and a complex constant
k, define

v dz
Fike)= /o VA=) -R2)

Then, denote by a(k,v) the function such that
F(k,a(k,v))=wv

Remark 1.3.2. For any k, and any u, we have
sn(u, k) = alk,u)

Proof. For fixed k and u we have by definition

¢
w— / dt (1.15)
01— k%sin?(t)

where

sn(u, k) = sin(¢)

11



So, we have to prove that
sin(¢) dz
0 V-2 -2

But this follows immediately if in Eq. (1.15) we make the change of variables
sin(t) = z. O

u =

1.4 The link between p,(z) and sin am(z)
Let us start with a general p-function defined by the differential equation
P (t) = 4p(t)° — g2p(t) — g3

for some suitable go and g3. Due to the differential equation, substituting
z = p(t) in the integral

/ dz
VAzZ3 — goz — g3

we get

d
/ = ZZ - :/dt:t:p_l(z) (1.16)
— §2< — §3

Since z goes to infinity when ¢ tends to 0, we may consider, for a fixed z,

1 & dz
o 1(2):/
7 \/42% — goz — g3

and so

= l(z) = / dz (1.17)
0o /423 — gaz — g3

Suppose that the p- function we are studing is associated to the lattice
A= 20.)12 D QWQZ.
It is well know that in this situation the zeros of ¢’ are

er = p(w)

e = p(w1 + wo)

e3 = p(ws)
so that in Eq.(1.17) we actually have

_ z dz
—t= /oo \/4(2 —e1)(z—e2)(z —e3)

12



Making use of the substitution

€1 — €3

= 1.18
z=-eg+ 2 ( )
and setting
B2 — €2 — €3
€1 —e3
we easily obtain that
dz 1 du

VA(z —e1)(z —e2)(z —e3) T Vei—e3 V(1 —u?) (1 — k2u?)

Setting e; — eg = %, the previous discussion implies that

1 z dz
\% /oo \/4(z —e1)(z—e2)(z —e3)

A

_/“ du
0 \/(1 —u?)(1 — k2u?)

which means that
k)

_ ( t
u=sn(—=

Ve
and so since z = p(t), using Eq.(1.18) we finally obtain (considering the
generality of t)

p(t) = es + (1.19)

€ sn?(
Finally, we can prove the following crucial result:

Theorem 1.4.1. Let p(z) be the Weierstrass function associated to the
lattice A = WZ ® 1wZ where

Then
 sin am?(v)

Proof. First of all, we need to compute the coefficients go and g3 of the
differential equation of p. Since iA = A and i® = —1, we see that

1
g3(A) =140 ) 16 =0
AeA\{0}

13



Due to a general result (proved by [10]) we have that > (r +1is)™* = w*/15
where the sum is over all non zero Gaussian integers. Therefore,

1
g2(A) = 60 M
AEA\{0}

1
= 60 - -
Z (rw + isw)4

r,s7£0
60 1
- Z "4
wh 0 (r+1s)
60 w*

wi 15 T

Hence p(z) is parametrized by
p%(2) = 4p(2)’ — 4p(2)

and this means that the zeros of ¢’ are exactly 0,1, —1. Since iA = A, we
easily get that p(iz) = —p(z), hence we get

w
€1 = @(5):
w + 1w
€y = @( 9 ):0
W
e = pl5)=-1

As a consequence, k = 1/v/2. Now, using Eq.(1.19) and the previous re-
marks, we have
2

sn?(v2u, )
2 —sn?(v2u, %)
02 (v/2u, Jy)
2(1 — gs0*(v2u, 75))
502 (v2u, Jy)
(V2(4/1 - fsn?(V2u, 1))
n(v2u, 1)
Vadn(v2, £)\*
ey
1

sin am?(v)

p(u) = -1+

14



1.5 Division points of the lemniscate

Note : from now on, for typographic reasons, we are going to write ¢(u), f(u),
F(u) instead of sin am(u), cos am(u), A am(u), following Abel’s notation.

1.5.1 The division in n parts

A natural question regarding the lemniscate is the one concerning the divi-
sion points. Clearly if we divide the arc length of the lemniscate in n parts,
by definition of ¢(u) the polar distances of the points that we obtain (the
n-division points) are

2
go(mw>, m=0,1,...,.n—1
n

so we would like to find an easy way to compute all of them: with the fol-
lowing results we will be actually able to prove that they are the roots of
one specific polynomial, that we will call the n-division polynomial.

Using only the machinery developed so far, it is possible to prove that
for every u € C,

2¢(u) f(u)F(u

o) — w(lJ)rf;4zu)()
8 (1 4(y) —
o) = () WE 0P 23

14 69%(u) — 3¢%(u)

(see [4], Example 15.2.4) so we would like to find similar expression for ¢(nu)
when we consider an arbitrary natural number n € N. Note that using the
formula given by Corollary ( 1.1.1) we immediately obtain, for any o € C,
the equation

_ 2p() f(u)F(u)

= 1+ 2 (0)%(w)

Now, if we suppose a = nu for some n € Z, we get

2 () f () F ()
T+ () () (1.20)

platu) +pla —u)

o((n+Du) = —p((n — u) +

and so by recursion ¢((n+1)u) is a rational function of p(u),f(u) and F(u).
More precisely:

Lemma 1.5.1. Let u € C. For any m positive rational integer, we can find

15



T1,...,Ts rational functions of (o(u))? with integral coefficients such that

p2mu) = Tip(u)f(u)F(u)
f@Cmu) = Ty
F(2mu) = T3
o((2m+ 1)) = Tip(u)
F(@m+ D) = Tyf(u)
F(2m+1u) = TsF(u)

This result follows from Eq.(1.20) via a direct (and not so interesting)
computation. The reader can find the whole proof in [1], p. 115.

Lemma 1.5.2. Given an integer n > 0, there are relatively prime polyno-
mials Yn(u), Xn(u) € Zlu| such that, setting x = p(u), if n is odd

wn (374
Xn(2?)

~—

p(nu) = o(u)

and if n is even

plm) = p(u) ) F () 7

Proof. Using the description of the previous Lemma, if n is odd it is clear
that

p(nu) = o(u)T
where T is a rational function of (¢(u))2. So we only have to check that T
is actually a function of (¢(u))?* (we can always assume that v, (u), xn ()

are coprime since Z[u] is an UFD). Let us set ¢(u) = z. Then, if we set
T = (2?), we have

p(nu) = z¢(a?)
Via the substitution u — iu the last equation becomes
ip(nu) = izp(—a?)
and hence
P(a?) = p(—a?)
so 1 (2?) must be the quotient of two polynomials composed only by powers

of the form z%", as we wanted to show. The even case can be treated in the
same way seen that f(u)F(u) = f(iu)F(iu) for every u € C. O

The previous description allows us prove the following result.

Corollary 1.5.1. Let n € N odd. Then the polar distances of the n-division
points of the lemniscate are roots of the polynomial xp,(x*), that from now
on we will call n-division polynomial.

16



Proof. Since ¢(2wu) is equal to zero for every u € N, we have that if

t= cp(m%‘”) is the polar distance of an n-division point,
= p(m2w) = p(n-m—) =
n Xn(t%)
so t is a root of 2, (z*) as we wanted to prove. O

Analogously, we can prove that for n € N even the n-division points are
roots of 1), (x*)(1 — 22): using the same argument, they are surely roots of

2 (2 V1 — 24 = 2, (M) V(1 — 22) (1 + 22)

and so of
a:z/Jn(m4)(1 — x2)(1 + :c2)

but p(u) € R if u € R, so they are necessarily roots of z¢,,(z*)(1 — 22).

1.5.2 p-division points

In the previous subsection, we were able to give a description of the formulas
relating ¢(nu) with ¢(u) for every n € N. However, we know that ¢(u) is
defined on all C, so we would like to know whether similar formulas can be
found for ¢(pu) where p € Z[i].

Actually, the answer is positive: using the equation ¢(iu) = ip(u) and the
addition formula (1.2) we can clearly obtain a formula relating sin((m+in)u)
with p(u) if m +in € Z[i], i.e. @(u) has complex multiplication by Z[i].
Moreover, for every u € Z[i] we can give a very precise description of the
formulas involved in the multiplication by u, but in order to do so, we first
need to introduce some definitions.

Definition 1.5.1. An integer u € Q(4) is said to be odd if it is coprime with
(1+14). At the contrary, p is even if it is divisible by (1 + 7).

It is easy to prove that if gy = a + ¢b with a,b € Z then
i is even <= (a +b) is even
Furthermore, if a, 8 € Z[i], then

afisodd <= « and S are odd
a+ fiseven <= « and B are both even or both odd

Now we can start investigating the formulas for complex multiplication;
we will treat separately the three cases p =i+ 1, u # i+ 1 even, and p odd.

17



Proposition 1.5.1. If p = 1 + i, if p(z) is the Weierstrass o-function
described in Theorem (1.4.1) then we have the following equations

oy ) 1
o1+ i) = T

2 (L Dp()
A1+ i) = S

Proof. In this case, the proof is straightforward: using the addition law
stated in Eq.(1.2) we get

piu) f(u) F(u) + o(u) f (iu) F(iv)
14 ¢ (iu)p*(u)
(u) F'(u)

p(i+1)u) =

(i + Dp(u)f
1 —¢*(u)
(i + Dp(u) f(u) F (u)
f?(u) F%(u)
(i + D)p(u)
f(u)F(u)

and the other equation follows applying Theorem (1.4.1). O

In general we have that

Proposition 1.5.2. Given an even element p € ZJi|, there are two poly-
nomtals prime to each other f,(X),g,(X) € Z[i][X] such that for every
ueC

~—

p(pu) = p(u) f(u) F(u
where © = p(u)

Proof. Since y is even, if a,b € Z are such that y = a + @b, then a + b is
even, so they must be both odd or both even. In case a and b are both even,
using the addition formula (1.2) and then Lemma (1.5.1) we get

e(au) f(bu)F(bu) + ip(bu) f (au) F(au)
1 — ¢?(au)p?(bu)
T152S3p(w) f(u)F(u) + iS1TeT50(u) f(u) F(u)
— @t (u) fA(u) FH(u) TP ST
— o) Flw) Flu 115253 + iS1 1213
= AP i P (w757

where T, Ty, T3 and Si, S, S3 are rational functions of ¢*(u) (compare with
the proof of Lemma (1.5.2)). The other case can be treated in the same
way. O

o((a+ ib)u)

18



Actually, the really interesting case is the odd one. In fact, we can prove
the following result:

Proposition 1.5.3. Let p € Z[i] be odd, and let € € {0,1,2,3} such that
uw = i€ mod 2(i + 1). Then there exist two relatively prime polynomials
Yu(x), xpu(x) with integral coefficients such that for all u € C

1/’/1(934)
Xu($4)

Yu(x) and x,u(x) can be written as

o(pu) =iz where © = p(u)

) =y™M +ay T L ayy i

Xu () = py™ +apy™M 4 a1
where 1
M= - -1
Jm—1)

if m is the norm of u. Moreover, if i is a prime number, the coefficients
ai,a9,...,ap are all divisible by p.

Note that the Proposition makes sense since
Remark 1.5.1. For every u € Z[i] odd, there is an € € {0, 1,2, 3} such that
=i mod 2(i+ 1)

Proof. Being odd, p is a unit of Z[i|/2(i+ 1)Z]i], so we are only left to prove
that there is an isomorphism

Z[d) - .
— | = {44, 41
(s v =120
Note that a + ib is not coprime with 2(7 + 1) only if i + 1 or 1 — 4 divide

a + tb. But
a+ib a+b n b—a.
= i
(t+1) 2 2
is an integer if and only if @ = b mod 2 and the same holds for

a-+1b at+b a+bd.

=iy 2 "2
hence a + b is not a unit if and only if ¢ = b mod 2. Since
Z[i)

= Ngjijj(2(: +1)) =8

2(i + 1)Z[i]

and we have to avoid all the cases in which ¢ = b mod 2, it follows that

‘ (2(i +Z[f])Z[i] ) *

and since 41,41 are clearly units, and they are different modulo 2(i + 1),
we get the desired isomorphism. O

=8—-4=4
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The proof in this case is quite long, so we are going to treat the different
steps separately.

Lemma 1.5.3. Let u € C and let p € Z[i] be odd. Then

p(pu) = o(u)T

where T is a rational function of (¢(u))*.

Proof. Since p is odd, if p = s + it with s,t € Z then it must be that s is
odd and ¢ is even or viceversa. In the first case, using Corollary (1.1.1) and
then applying Lemma (1.5.1) to s and t we get

o(pu) = p(su + itu)
_ o(su) f(tu) F(tu) + ip(tu) f (su) F(su)
1= (p(su))?*(p(tu))?
_ T T (u) + T TsTop(u) (f (u))* (F (u))
1= T3¢ (o(u))*T7 (o (u) f (u) F(u))?

where as before T, ..., Ts are rational functions of (¢(u))?, i.e

o(pu) = p(u)T

where T is a rational function of ((u))*. The other case can be treated in
the same way. O

Lemma 1.5.4. Let p € Z[i] be odd, let m be its norm and let u € C.
Consider P, (X),Qu(X) € Z[i][X] such that, if we set p(u) =,

— Pu(w)

and such that P,(X),Qu(X) do not have any common factor. Then the
degree of P,(X) with respect to X is equal to m — 1.

Proof. If x = ¢(u) € C\ {0} is such that P,(z) = 0, then

p(pu) =0

and so, following Proposition (1.2.2) we have that there must be s,t € Z
such that
pu = (s +it)w

Moreover, again because of the Proposition, if we choose arbitrarily s,t € Z

we always have that ¢ (%w) is a root. Actually, we can show that we

and so
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can always suppose p = s + it to be odd and to be unique modulo pZli].
First of all, if p is even, then u — p is odd, and by Eq.(1.6) we have

(o)) -+ (5)

Moreover, if we suppose that

()= (%)

with p, p’ € Z[i] odd, by Proposition (1.2.4) we get that there are ¢,d € Z
such that )
22— (1)t 22 (e dijw
7 7
which implies that
p= (=" + (c+diu

Since p, p' are odd, p — (—1)“T4p is even, and then (c + di) must be even.

This means that ¢ + d is even, hence (—1)¢*?¢ =1 and
p=p+(c+diu

S0 p is unique modulo pZ[i]. At this point, it is clear that the roots different
from 0 are in one-to-one correspondence with the cosets of Z[i|/uZ[i] (given
a representative o € Z[i|/uZ[i], either a or av + p is odd), and so their
number (regardless of the multiplicity) is equal to

—1=m-1

’ Z[i]
pli]

We still do not know whether 0 is a root of P,(x) or not. Since P, is
composed only by powers of x of the form z*", if 0 is a root it must be a
multiple root. Actually, we can prove that P, does not have multiple roots.
In fact, differentiating the equation

Pu(x)
u) =1
p(pu) 0, (@)
and noticing that we always have
0 o(a Oa
9 pla) _ F(@)F(a)2X

ou ou

we obtain

o () F () Qu () + () 22 =
OP,(x)
= ef(WF(u)—p = + Pu(2) f(w)F(u) (1.21)
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If we suppose that P, has a multiple root Z = (@), it holds that

pu() = 208 @) g

Then (since p(pu) = 0) the previous equation becomes

pf (pu) F(pu)Qu(z) = 0

which means that Q,(Z) = 0, seen that f(pu) = 1 = F(pa); but this is a
contradiction, because P,(x) and Q,(z) do not have any common factor.
Therefore, P, does not have multiple roots: so 0 is not a root. Moreover,
since we have seen that all the roots are simple, of the form go(%) with

p € Z, |p| <21 and they are all different, the degree of P, is m — 1 as we
wanted to show. O

Proposition 1.5.4. Using the previous notation, if p = i€ mod 2(i+1) then
1 m—1
Qule) = L B0

Proof. Let y = p(pu). Considering x = ¢(u) as before, we clearly have
dx

fy el
_ Y = _
0 V1—vy4 a Mo 11—zt

and hence
dx

dy B
V1-—yt 'u\/l—x4
Let us set y = % and x = % where 7,£ € C while t € Z is still to be
determined. Using the previous equation we get by direct computation that

dn pitdg
V=1 /e
and then we can choose a suitable t in order to have
dn d§
N

and we know that this equation implies that

(1.22)

Pu(§)
n =Lt (1.23)
Qu(é)
On the other hand, since we started with y = % and x = % we also have
L, B 1 B R
n Q,u(x) it§ Qu(%) Z%Qu(%)



and therefore

ieQu(b)
Pu(g)
which means that we can express n using the rational function
"1 Qu(z
n=i ”(f) (1.24)
§m 1 Pu(e)

(recall that the degree of P,(x) is m —1).

At this point, we can equate Eq.(1.23) with Eq.(1.24) and since P, and
@, are coprime, up to a complex unit i* we obtain (having in mind the
arbitrariness of 1 and &)

Qulr) = 2" Pu()

Now we only have to prove that i¥ = i~ € where u = i€ mod 2(i + 1). This
can be done giving a precise value to x. If for example we consider u = %,
since by definition
_ _ w
z=gpu) =¢(5) =1
it holds that
w _P,(z) P,(1) 1
plpg) =ao s =1 o =
2 Qu(T) wAm=iP(y)

Since p = i€ mod 2(i + 1) we can find a,b € Z such that
= (2a — 2b) + (2a + 2b)i 4 i

and thus

e(iy) = pl(a—bw + (a+ bliw + i)

But by Proposition (1.2.1)

(= bw + (a+ b)iw + i =) = (—1)@ D+ (e

2 2)

hence

as we wanted to show. O

Note: From now on, for sake of convenience we are going to denote by
Qu(X) the polynomial X™ 1P,(+), so that we have the formula

p(pu) = iefﬂm

Finally, we need the following
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Lemma 1.5.5. Let pu € Z[i] be an odd prime such that p = i€ mod 2(i+ 1),
and suppose that P,(x) is a monic polynomial (which is always possible).
Then

P,(z) =2™ 1+ a(m_5)/4mm_5 + . taizt i

where ay, ..., aun—1)/4 are all divisible by p.

The proof is quite long and it can be found in [4], Theorem 15.4.8, p.
492. Here we only remark that we already know that the polynomial P,(z)
is of the form

Pu(a:) =™ 4 a(m,5)/4xm75 +...+ a1m4 + ag

and that, since by the equation

follows that i€ag = % +—0, using Eq.(3.1) we can see directly that

-—e

ap =11 W.

Note that with all those lemmas the Proposition (1.5.3) is finally proven.
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Chapter 2

Lemniscate extensions

We are now ready to start to investigate the properties of the fields which are
constructed by adding to Q(¢) the points obtained from the division of the
lemniscate. We are not only interested in the discriminant of those fields,
but also in finding an explicit information about the subfields they have. In
order to do so, we are splitting the discussion in different cases, depending
on the characteristics of the integer u € Q(7).

2.1 The case of an odd prime number

For a general odd integer, it holds that

Theorem 2.1.1. Let pu be an odd integer of Q(i), m its norm, and consider
the field C,, = Q(i,gp(%)). Then Q(i) C C, is a Galois extension, and there
s an injective homomorphism

ety (i)

Proof. Consider the p-division polynomial xP,(z) = 0. From the proof of
Lemma (1.5.4) we know that all the roots of this polynomial are given by

go(p%) with p € Z[i] odd

and that p unique modulo uZ[i]. Since we are considering only the case in
which p is odd, go(pf) is always a rational function in go(%) with coefficients
in Q(¢), and thus 2P, (z) splits completely in C),. Since (p(%) is one of the
roots, it is clear that C,, is the splitting field of P, (x) over Q(¢). Moreover,
we know from the proof of Lemma (1.5.4) that 2P, (x) does not have mul-
tiple roots, so Q(i) C C,, is a Galois extension.

Now if we consider an automorphism o € Gal(C,/Q(i)) we have that
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o (np(%)) is still a root of P,(z), so there must be an odd p € Z[i] such
that

and from what we have seen before, p must be unique modulo pZ[i].
Now we claim that for every a € Z[i] odd,

a(pla—)) = p(ap—) (2.1)

In fact, since « is odd,

and so
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At this point, if we are able to prove that [p] € (Z[i]/pZ[i])*, it is clear how
to define the morphism we need. Let s be the order of o in Gal(C,/Q(7)),
then using repeatedly Eq.(2.1) we obtain that

o) =0 (o) = ol®)

and so by the uniqueness this means that
1=p°mod u

Thus p is coprime with g, and this means that [p] € (Z[i]/uZ[i])*. As a
consequence, the map

oo() -~ (2)

o= p

26



is a well defined map, and it is an homomorphism because if o, 7 € Gal(C,,/Q(7))
map to p, p’ respectively, then

or(p(=)) = oalp'y

w
1

where the last step holds thanks to Eq.(2.1), i.e o7 — pp’. Furthermore,
the map is injective: if [p] = [p'] € (Z[i]/uZ]i])*, there must be ¢, d € Z such
that

p=p +(ct+idp

Note that then ¢ + id is even in Z[i], and ¢ + d is an even rational integer.
But then by Proposition (1.2.1)

w , w
plp—) = (o' + (c+id)u)—)
K H
= @(p’% + (¢ +id)w)
— —1 C+d§0 p/g
(=) ( u)
W
= ¢p—
( M)
and so w w
o(p(—=)) =1(p(—
(so( u)) (s ( u))
Seen that the automorphisms are determined by the image of %, this means
that 0 = 7, as we wanted to show. ]

If now we suppose in addition that p € Z[i] is prime, the polynomial
P,(z) is separable over Q(7): in fact, we have already seen and used the fact
that P,(z) does not have any multiple root, and furthermore by Proposition
(1.5.3) the coefficients of P,(x) satisfy the requests of the Eisenstein crite-
rion, which holds also for Z[i], since this is a PID. With this information,
we can prove the following result, which is crucial for our discussion.

Proposition 2.1.1. Let p € Z[i] be an odd prime. Then

e = (z)

Proof. In order to show that the map defined in Theorem (2.1.1) is an
isomorphism we only need to prove that

gy = |(n)

(2.2)
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Since C}, is the splitting field of the separable polynomial P,(X) we have

that
C

EN =1[C, : Q)] = degP,(X)=m—1
o] = G @i = dear,(x)
On the other hand, since Z[i] is a PID, pZ[i] is a maximal ideal, and conse-
quently Z[i]/uZ][i] is a field. Thus,
_ ’ Z[i]

Gain) |-

and Eq.(2.2) holds. O

Gal(

—1=m-1

Moreover, recalling that every finite subgroup of the multiplicative group
of a field is always cyclic, we obtain that

Corollary 2.1.1. If ji is prime then Q(i) C C, is a cyclic extension.

Now we want to look a little closer. First of all, we are interested in
the discriminant. We begin the discussion by considering the Q(7)-basis B
formed by the m — 1 roots of P,(x).

Proposition 2.1.2. The discriminant of B over Q(i) is

(m—1)2

D=2 3 Mm72

Proof. We begin by considering two arbitrary elements u,v € C. Using
repeatedly Corollary (1.1.1), it easily follows that

(p(u) = o)) (p(u) + (V) (e(u+v) — (u—v)) =
= 20(0) f(u) F(u)p(u+v)p(u —v) (2.3)

In order to compute the discriminant, at this point we substitute p(u), ¢(v)
in the expression

(p(u) — @) (p(u) + ) (p(u+v) = p(u—v)) (2.4)

with all the possible couples of roots

w ;W
zp=(p—), zp = (' =
p (u) o (u

)

of P,(xz) = 0, leaving aside the values of p and p’ such that p = p’ or

plps +p'5) =wlps — 1'%
Renaming the roots of P,(x) as x1 = @(plﬁ), ey D1 = (p(pm_lﬁ), if now
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we multiply together all the expressions previously obtained via (2.4) what
we get is the following expression involving the discriminant

m—3

D3 m—1 3mfl w m—1 w

YA 2 [J | II7/ <Pj> IIr <Pj)

(H] 1 235]) j=1 j=1 m7 5 H
(2.5)

We claim that
ji;[ll (p] )HF( ) (144)m1 (2.6)

In fact, for every j, using Proposition (1.5.1) we get that

pw\  (+1e (Pﬁ)
o (4022 - P

which implies that

ey G ()
1l “’((“ " > [T 7 (o) TIPS F (%)

But seen that if ¢(x) is a root of P,(x) then also ¢((1 +i)x) is a root

e (0e0%) =11+ ()

J=1

and thus Eq.(2.6) holds.

Finally,
-1

3

Tj =W

<.
Il
—

(since p is the constant term of P,(x) and since m — 1 = 0 mod 4) and so
Eq.(2.5) becomes

(m=1)2

D=2 5 Mm—?

as we wanted to show. O

Our next goal is to prove the following result, which is fundamental for
our discussion.
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Theorem 2.1.2. Let p be an odd prime integer of Q(i). Denoting the norm
of i by m as usual, the discriminant of the extension Q(i) C C,, is equal to

2m=1,m=2 " Moreover, if

m—1= 2h+2plf1pg2 .. .pi”

is the prime factorization of m — 1 then C,, contains for each prime divisor
pi one subfield which is cyclic over Q(i) and such that it is

of degree over Q(7) | of discriminant over Q(7)
pi\l upﬁlfl (M 2. h)
p? P21 (A2=1,2,...,hg)
22 221 A=1,2,...,h)
oh+1 (1 +z’)2h+1u2h+1*1
oh+2 (1+ i)2h+3,u2h+2—1

In the proof of Theorem (2.1.2) we are going to need different complemen-
tary results. Since the proof itself is quite long, for the sake of convenience
we are going to discuss these results in the next Subsection, and then we
are going to develop the proof in Subsection (2.1.2).

2.1.1 Some auxiliary results

First of all, just for future reference, we recall that

Lemma 2.1.1. If £ and L are Galois extensions of a field k with Galois
group respectively G,H, then the composite field EL of E and F is a Galois
extension of k. Moreover, the Galois group of the extension k C EF is
isomorphic to the subgroup U of G x H formed by the ordered pairs (o, T)
such that o and T have the same restriction on ENL. The isomorphism sends
each k-automorphism p of EL to the couple of its restrictions (p |g,p |L)-

which obviously implies that

Corollary 2.1.2. The composite field of two abelian extensions of Q(i) is
still an abelian extension of Q(7).

One of the key arguments of the proof of Theorem (2.1.2) is based on
the following lemma:

Lemma 2.1.2. Let Q(i) C K be a cyclic extension of Q(i) of odd degree.
Then the discriminant of this extension is not divisible by 1 + 7.

Instead of directly proving the Lemma, we are going to prove a more
general result, but before we need another general Proposition (that we
report here for sake of convenience).
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Proposition 2.1.3. Let Kk C L be an abelian field extension of degree
m = p}l”p;Z2 .. .pi“. Suppose moreover that there are some cyclic exten-
sions of k C1,Cy,...,C of degree respectively p?l,pg”, . ,pi“ such that
L = C1Cy...Cy, and let B be a cyclic extension of k of degree n = p',
where | < h; for every i. If in addition L and B have a common subfield
that has degree g over k, then the field K obtained by composing L and B
may also be built by composing L with L, another cyclic extension of k, such
that LN L =k and
[L: k] P

Proof. Due to the Primitive Element Theorem, we can find an element «
generating L, and then we can consider the subgroup S of the Galois group of
K formed by all k-automorphisms of K which fix a. Using the construction
of Lemma (2.1.1), it is clear that S must be isomorphic to a subgroup of the
Galois group of B over k: but the latter is by assumption cyclic thus also
S is cyclic. In L, for each ¢ we will denote by «; the element generating Cj,
and by of,af, ... its conjugates under the action of the Galois group. For
each 4, let 0; € Gal(K/k)\ L be the automorphism which sends a; to o
and fixes all the other «;’s. Since the restriction of o; to C; has order pé”
being in Gal(C;/k), and since the restriction of o; to the other Cj’s is the
identity, we get that o; has order pi”

Now we focus on the subgroup T" of Gal(K/k) generated by all the o;’s.
Note that due to the definition of S and T, we have that Gal(K/k) = ST.
Furthermore T is isomorphic to Gal(L/k): in fact, we may consider the map
(which is actually an isomorphism)

T=<o0]><03>...<0y > Gal(A/k)

T1L2 ... T =T =T1-T2..." Tt

and prove the isomorphism considering the orders. Being a subgroup of
Gal(K/k) which is abelian, T is a normal subgroup and so it fixes a Galois
subextension of K that we are going to denote by D. Note that since all
elements in D are fixed by T and for every element in L\ k there is at least
a transformation that does not act trivially on it, the intersection L N D is
only k; thus K = LD . Finally, the Galois group of D over k is isomorphic
to the quotient group Gal(K/k)/T and so it is also isomorphic to S: but
this group is cyclic, and so D is a cyclic extension. In order to conclude,
note that being isomorphic to Gal(L/k), T has order m. Since

[L:k][B: k] mn

K:kl=——FF+—=
[ ] [LN B g
this means that D has degree
K:k
[D: k] = 7[ ] =
m g
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O

With this machinery at hand, we are ready for the general result we
mentioned before.

Lemma 2.1.3. Consider a cyclic extension Q(i) C C such that [C : Q(i)] =
pl for p prime, and for all k < h denote by C}, the unique subextension of
C such that [C), : Q(i)] = pF. Let Cy, be the mazimal subfield of C' which
has the property of being contained in a cyclotomic field and the property
of having the discriminant with respect to Q(i) divisible only by divisors of
p. Suppose that the discriminant of the extension Q(i) C C is divided by
a prime element p € Q(i) which is coprime with p, and denote by m the

norm of . Then if, for some k, u divides the discriminant of the extension
Q(i) € Ck, we have that

m =1 mod ph~o—F+1

Proof. Let us consider the subfield £y NC, where E}, is a cyclic extension of
Q(4) of degree p” such that the discriminant of Q(i) C F}, is only divisible
by divisors of p and such that Ej is contained in a cyclotomic extension of

Q.

Remark 2.1.1. For every p prime and h € N, we can actually find a field
FE, with the requested characteristics.

Proof. For p odd, consider a primitive p"t!-th root of unity ¢ and the cyclo-

tomic extension Q C Q((¢), that as we know is a cyclic extension of degree
php—1). Ifp—1= Hj q;-j is the prime decomposition of p — 1 (where
the ¢;’s are pairwise different primes) using the Sylow theorem for finite
groups on the group Gal(Q(¢)/Q) we can find for every j a cyclic sub-
group H; € Gal(Q(¢)/Q) of order q;j , and thus by composition a subgroup
H C Gal(Q(¢)/Q) of order p— 1 (which is normal since being a subgroup of
a cyclic group). Then if we denote by K the subfield of Q(() fixed by H we
have that [Kz : Q] = p" and that the extension is cyclic Galois extension,

seen that % Gl

Gt (K8 2 CalQ(O/Q)

Q H

Now consider the composite field Kz -Q(4): it is evident that KyNQ(i) = Q,
thus Q(i) € Kz -Q(i) is a cyclic extension of degree p” (which is contained in
a cyclotomic extension since both K and Q(7) are). So, in order to conclude
we only have to show that if y is a prime which ramifies in Kp - Q(¢) then
p divides p. Since Ky N Q(i) = Q, it holds that (denoting by A(L|F') the
discriminant of any extension F' C L)

A(Kp-Q(0)|Q) = A(Kr|Q)*AQ>H)|Q)F
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(compare with [9], Theorem 87, p. 98) and so we get that
No(jo (AKH - Q(0)|Q(0))) AQM)|Q) Y = A(K#|Q)*AQ(H) Q)

which means that if g divides A(Kpgy - Q(7)|Q(¢)) then pi must divide
A(Ky|Q), which is a power of p since Ky C Q(¢) and p is the unique
prime ramifying in Q(().

For p = 2, we can basically repeat the argument, having in mind the fact
that in this case the Galois group of Q(() is the direct product of two dif-
ferent cyclic groups. O

Note that due to the property of Cj, of being the maximal subfield
contained in a cyclotomic extension, we have that £, NC C C},. Moreover,
Chy, € C by definition, but also C, C Ej: in fact, both fields are contained
in a cyclotomic extension and contain ¢, both have a power of p as degree
over Q(i) and both have the discriminant over Q(4) divisible only by divisors
of p, so that by the structure of the cyclotomic fields, we have the inclusion.
Hence

E,NC = Cho

and so by the composition of the two fields we obtain a field K of degree
p?h=ho over Q(4), that (by Proposition (2.1.3)) can also be obtained by Ej,
and another cyclic extension C* of Q(4) such that [C* : Q(i)] = p"~" and
C*NE,= Q(Z)

It is important for the following discussion to remark that p must ramify
in C*: in fact, it ramifies in K, and it does not ramify in Ej.
Now we are interested in the field Z = Q(, () where ( is a primitive root of
unity of degree p"~"0. Note that if p is odd Gal(Z/Q(i)) may be generated
by the automorphism s which sends ( in another primitive root of unity
of degree p"~" which may be written as (¢ where g is a primitive root
modulo p"~" (i.e. a generator of the group of unities of Z/p"~"0Z). On
the other hand, if p = 2 then the group of units of Z/p"~"7Z is generated
by —1 and 5 and so considering = ¢ + ¢~ we get that Z = Q(i,n) and
that Gal(Z/Q(i)) is generated by the automorphism s which sends ¢ in ¢°
(compare with [3], p. 85, and [16], Proposition A.9, p. 281). Moreover,
Z is by construction contained in a cyclotomic extension of @, so that the
intersection C* N Z is actually contained in a cyclotomic extension. But we
built C* removing all the subfields satisfying this property: hence C* N Z
must be the trivial intersection, i.e. C* N Z = Q(i).
Let us denote Ko the composite field ZC*. From what we have said before,
it follows that K is an abelian extension of Q(i) (since C* and Z are, and
we can use Corollary (2.1.2)) and it is also a cyclic extension of Z, because
we are in the situation
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Ky =27C*
Z < C*
Q(7)
and so Gal(K2/Z) = Gal (C*/Q(3)). Then, we are in the hypothesis of the

following general lemmas

Lemma 2.1.4. Let K be a field of characteristic coprime with n in which
" — 1 splits, and let ( be a primitive n-th root of unity. If a is a non zero
element of K, there is a well defined normal extension K(3{/a), the splitting
field of x™ — a. If a is a root of x™ = a, there is an injective map

Gal K(va) - K
(%)

g =

Q.
e

In particular, if a is of order n in K*/(K*)", the Galois group is cyclic and
can be generated by the element o such that o(a) = Cav.

Lemma 2.1.5. If K be a field of characteristic coprime with n in which
2" — 1 splits and L is a cyclic extension of K of degree n then L = K ( {’/E)
for some b € K, and b must generate K*/(K*)".

All the proofs are given in [3] in the third chapter, ”Cyclotomic Fields
and Kummer Extensions”, written by B. J. Birch.
In our situation, this simply means that there is an element y € Z such that

where 7 = ph—ho,

Note that

Remark 2.1.2. With the notations of the previous lemmas, the discrimi-
nant of K({/a) over K divides n"a" .

The proof might be found in [3], Chapter III, Lemma 5. This means
that y can’t be coprime with p: in fact, if it was, since the discriminant
A(K3|Z) of the extension Z C Ky divides (p"~m0)P" "0 \" " =1 thig would
imply that p is coprime with A(K3|Z). But we know that

A(K|Q(i)) = A(Z]Q(1) "N, z(A(K2|Z))
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and at the same time A(Z|Q(7)) is coprime with the prime p since in the
extension

Qi) € Z = Q(5,¢)
1 is unramified, being coprime with p by hypothesis.
On the other hand,

Nicyiz(A(K2|2)) = [ o8

where
A(K2|Z) =qf" ... q¢"

is the decomposition in prime ideals of A(K>3|Z) in Z, ¢; = q; NZ(i) and f,,
is the inertia degree of ¢; in K. So if u divides N,z (A(K2|Z)), (1) must
be one of the ¢;, and this means that p divides A(K2|Z), which is absurd.
But then, o does not divide A(K2|Q(7)), and thus we also get that p does
not divide A(C*|Q(%)), which is a contradiction since p ramifies in C*.
Let
MOZ = Sﬁlﬁﬁg.. .me

be the decomposition of x in prime ideals in Z (recall that p is not ramified
there), and
x0z = MR

where 9t denotes the product of all the powers of i1, Mo, ... that divide x
and ‘R is coprime with p.

At this point recall that we defined s as the generator of Gal(Z/Q(i))
such that s(¢) = ¢9 where for p odd g is a primitive root modulo p"~"0,
and for p even g is equal to 5 . If A/ is the natural number such that "
is the highest power of p dividing ¢g¢ — 1 (the definition makes sense in the
odd case since ¢ is a primitive root modulo p"~"0, and in the even case
because 5¢ — 1 is always even), consider the unique subgroup of index ph/
of Gal(C*/Q(7)), and call the subfield fixed by this group Lj_p,—p/. Now
consider the composition Ly,_p,_pZ. Since Ly_p,—p C C*, Lyp_py—py NZ =
Q(7), thus Z C Lp_p,—nZ is a cyclic extension of degree ph=ho—"  We claim
that Lj,_p,_wZ = Z(Y/v) where n = p"~h0 and v € Z is coprime with .
In order to simplify the notation, from now on we will use the exponential
notation, i.e. for every function f we will denote by x/ the element f(z).
For example, we will denote i) by x*“~!. If we consider the polynomial
expressions (of variable s) s —1 and s — g, they clearly are coprime modulo
p" =" so we can actually find three polynomial expressions f1(s), fa(s), f3(s)
such that

L= (s = 1) fuls) + (s = 9) fa(s) + fs(s)p" "

and consequently also

g°=1=(s"=1)fi(s)(g°— 1)+ (s—9) fa(s)(g° = 1) + fs(s)p" " (g°—1) (2.7)

At this point, we need to use the following general result:
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Lemma 2.1.6. Let Q(i) C Ej a cyclic extension of degree 1" (I prime)
such that Q(i,{) N Ep, = Q(i) where ¢ is a primitive I"-th root of unity.
If x is the element of Q(i,() such that Q(i,¢) N E, = Q(4,¢)(4/X), and
if v is a rational integer not divisible by I, considering the automorphism

o € Gal(Q(7,¢)/Q(i)) which sends ¢ into (" we have that x "o (x) is the
1"-th power of an element of Q(i, ().

The proof of this lemma can be obtained imitating the argument used in
[9], Lemma 15, §101, using Q(¢) as base field instead of Q. In our situation,
the previous result means that y*~9 is the p"~0-th power of an element of
Z, thus by Eq.(2.7) there must be an element « € Z such that

YIT L = (55D () (9" 1) o p" "0 (2.8)

Since s acts transitively on the primes dividing p, we have that (arranging
the order)

8(9321) = My, Sg(ml) =Ms,... ,se(f)ﬁl) =M.
while
sS(9My) = My

Of course, for every other j we also have
s“(am) =,
This means that actually x**~! can be written as a fraction in which both

numerator and denominator are integers coprime with p, and consequently
the same holds for x(8*~Df1()@° =1 hence we can write

s¢—1)f1(s)(g¢—1) _ v
X( )f1(s)(g )7(11#”7**”0

where v is an integer of Z coprime with 1 and a is a rational integer. Con-
sequently, using Eq. (2.8), we obtain that

h—h
ap 0 e_q
v
h—hq X

UV =
oP

and thus if n = ph_ho and ¢g¢ — 1 = rph’

Vo =

Rle Qe

()T
Then, Ly, _p,—nZ and Z({/v) must be equal, seen that they are both con-

tained in C*Z, they have the same degree over Q(i) and the extension
Q(i) c C*Z is cyclic. But this means that (p) is not ramified in Lj_p,_p:
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in fact, v being coprime with p, the discriminant of Z C Lj_p,—p/Z is not
divisible by p, so p is not ramified in Ly_p,_p/Z which contains Lj,_p,—p.

On the other hand, if m is the norm of u, and v € N is such that p” is
the highest power of p dividing m — 1, we have

h—hg— _
mP" " =1 mod phho

In fact, since p?|m — 1, there is an | € N such that m — 1 = [p” and so

m?" 0T (Ip” + 1)P" "7
ph—ho—'y h*hof’y
- (7w
i=0
But
h—ho— h—ho—
P 0= v _ D 0= ~i
i )P A(ph—ho— — )P

ph—ho—fy(ph—ho—y _ 1)!p'yi
il(ph—ho=v —4)!

and this is divisible for p"~" for every 4, except for i = 0, where we get 1:
thus the congruence is true. Also, h — hg — v is the smallest exponent for
which this congruence holds.

Remark 2.1.3. For p odd, y decomposes in e = p?~1(p—1) different primes
in Z. If p=2, then e = p7~2.

In fact, since Q(1)NQ(¢) = Q, we have that Gal(Z/Q(7)) = Gal(Q(¢)/Q),
so the inertia degree of p in Z is equal to the inertia degree of its norm m
in Q(¢), and since the latter is p"~"0=7 ( [3], Chapter III, Lemma 4) we
conclude that the inertia degree f of p is also p"~"~7. At the same time
the ramification index is € = 1, because of the fact that p is not ramified in
Z. Then, if we consider g = e we have from the general theory that

efg =12 : Q)]

so that if p is odd we get
h—ho—1
__p (p—1) -
€=g= ph*hO*'Y - p7 l(p 1)
and if p =2
oo ph—h0—2 p’ny
9= Sh=ho—
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Note that actually v = A': in fact, we know that ¢¢ — 1 = rp"" where r
is coprime with p, hence for p odd

gp'y—l(pfl) =14+ Tphl

and ph—ho—'y ph—ho—’Y
gph*hofl(p—l) _ (gp'yfl(p_l)> _ (1 n T‘phl)
and for analogously for p = 2
5777 =14 rpt
and h—hg—7 h—hqg—"
s2hho=2 _ (gpw_2>p _ (1 N rphl>p

Since for p odd ¢ is a primitive root of unity modulo p"~"0 then

g"" " P = 1 moq phho

and
gph*hofl(p—l) §é 1 mod ph—ho+t

for every t > 0. On the other hand, if p = 2 by induction on [ > 3 we may
establish the congruences

5270 = (1422277 = 142! mod 2!

5277 = (1+2"H2 = 1mod 2!
and s

527 = (1 +212 # 1 mod 24
for every t > 0. Therefore in both cases we have (choosing | = h — hg)
h—hg—v

"\ P
(1 + rph ) =1 mod ph_ho

and
h—hg—v

(1 + rph/>p £ 1 mod pl—hott

for every t > 0, but this holds if and only if A’ = ~.
Finally, take k£ such that p ramifies in C}. Then, since p is not ramified
in Lp_p,—p, we get that
Lphg—n & Ck

so that
[Lh—ho—h’ H Q(Z)] +1 < [Ck : Q(Z)]
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which means that

h—ho—~y+1l=h—hg—h +1<k

i.e
h—hy—k+1<xw
Then,
m—1 = 0modp”
= 0 mod ph_ho_kJrl
as we wanted to prove. ]

Clearly at this point Lemma (2.1.2) follows as a trivial corollary.

2.1.2 The proof of Theorem (2.1.2)

Now we are ready to start with the proof of our theorem. Note that in the
following discussion, if K is a number field we are going to denote by Og
its ring of integers.

Proof. Since Q(i) C C, is a Galois extension of degree m — 1, using Sylow’s
Theorem we get that for every i the group Gal(C,/Q(%)) has a subgroup G;
of order p?" (we are calling pg = 2, and hg = h + 2). So when we consider
the subfield L; of C, fixed by the product

I

i#]
we get that this field is a cyclic Galois extension of Q() (since every subgroup
of a cyclic field is normal) of degree pjj. Moreover, LoL; ... L; = C,,, because
A = LoL; ... L; is contained in C,, and so Gal(Cy/A) C Gal(C,/K;) =
[1;,; Gi for all i. But this means that Gal(Cy,/A) € (;<;<, [];4 Gi = {lc}
and so Cy, = A= LoLy... L.
According to Lemma (2.1.2), for every j # 0 the discriminant A(L;|Q(¢))
of the extension Q(i) C Lj is not divisible by 1 + 4, and at the same time,
by Proposition (2.1.2) it must divide

(m-1)2

272

m—2

So, since p is prime in Q(i) there must be a number s; € N, s; # 0, such
that A(L;|Q()) = (1),

Now, since the last extension is cyclic, it holds that for all » < h; we have a
subextension L} of L; such that [L} : Q(i)] = pj. We note that A(L5|Q())
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must divide A(L;|Q(z)) = p*, and so there must be a number aj; € N,
1 <ajs < s; such that

A(LG|Q(1)) = (n)*
Now, let m, be a prime of L? lying over p. Since for all r we have
L ¢ L§+1, and since the discriminant of this extension must divide a power
of p, m, must ramify in L;H, and since the well known formula states

efg = p in this case, then e must be equal to the prime p. Thus L;T - L;“
is a totally ramified extension, and so also Q(i) C L; is. Hence there is a
prime ideal 91; of L; such that

hj
pOr, = Dﬁ?
We have to understand what happens in Ly. We have already seen that
m—1
1T -
j=1

where 1 = cp(plf), ey 1 = gp(pm,lﬁ) are the roots of P,(x). Further-

more, since P,(z) is formed only by powers of x of the form z%" for some
n € N, it is clear that if z is a root, then

—X,1T, —1T

are roots too; and so since m — 1 = 0 mod 4 we conclude that p is a square
in Cy, i.e. that \/u € Cy.

Clearly [C), : Q(i)(y/i)] = 2, thus Q(4)(,//) must be contained in Lg. Since
the discriminant A(Q(¢)(,/12)|Q(7)) is surely divided by y, p must divide also
the discriminant of Lg. Now consider the inertia field K, of u in C,. From
what we have seen before, it follows that K, C Lg; moreover, due to the
fact that Lo is a cyclic extension, it must be that either K, C Q(i)(/i) or
Q(i)(/p) € K. Since p is already ramified in Q(4)(y/1), it follows that the
inertia field is trivial, and so p is totally ramified in C), (and consequently
also in Ly).

The previous discussion implies that there must be a prime ideal 97 of
Cy lying over i such that
NOCH — mm—l

and consequently

= (3}1) . (xg) L— (wm_l)

40



Recalling that O¢, is a Dedekind domain, by unique factorization we get
that for every j
M = (z5)

so that all the roots are associated (in the following, we will write x ~ y
meaning that = and y are associated).

Now we consider the prime (1+i) € Q(z). If p € Z[i] is odd, both ¢ (p%)

and ¢((1 +1)p%) are roots of Py(x), and from what we have just seen they
are associated. Then, from

L w, (T+)e(py)
A= T

it follows that
f(W)F(u) ~ (1+1)

If now we consider two roots 1 = p(u), 2} = ¢(v) such that x1 # +2}, then
z2 = p(u +v) and =4, = p(u — v) are also roots of P,(z), and xo # tab.
Using Eq.(2.3), it follows that

(z1 — ) (z1 + 24) (w2 — 2h) ~ (1 +)°a}

and the substitution v — —v show that (z1 + z})(z1 — z}) (22 + ) is also
associated with (1 + )33, thus (wg + 25) ~ (22 — 75).

Consider now two arbitrary roots x # +y. Since we can always find two
suitable elements u,v € C such that x = p(u +v) and y = ¢(u —v), it is
clear that the previous argument still holds for « and y. As a consequence,
(r1 +2)) is associated with (z1 — ), and thus also (z1 — 2})?(x2 — 25) and
(1+1)3z3 are associated. If now we repeat the whole argument with x5 and
xh, clearly we find two other roots x3, 25 such that z3 # +% and

(w2 — ah)* (w3 — af) ~ (1 +1i)°x}

and continuing this way we see that for every j < mTfl — 1, we can find a
couple of roots (z;, ), where x; # £, such that

(2j-1 = 1) (2 — 2f) ~ (L+0)%ad ~ (2 — 2))* (21 — 2py)

and also a couple of roots (£m-1,2',_,), where xm-1 # +12/,,_,, such that
2 o 2 7

(:L‘(mq_1)—1"(m,171))2(:vm71 —2h 1) ~ (140228 ~ (T mar — 2y )2 (21 —2)

2 2 2 2

2

Multiplying all these relations together we get that

(z1 — 21)® ~ (1 +1)°a}
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and so

xp— 2y ~ (L+4)z
Since z; and z} where two arbitrary roots such that z; # £/, this means
that for every two roots x # +y it holds that

r—y~(i+ 1)z (2.9)

Keeping these properties in mind, we now claim that if = is any root of
P,(z) for p # —1+ 2i, then the element W is a unit.

First of all, note that if we consider u = —1+ 24, then the polynomial of the
p-division has degree 4 (the norm of y is 5), and it has p as constant term,
hence from what we have seen before we must have P, (z) = 2% + (=1 + 2i),
and therefore for every u € C it holds that

(p(u)* + (=1 +2i)
—1+20)(p(u)* +1

(=14 2i)u) = w(U)(
From this equation it follows immediately that

p(u) — p((=1+20)u) _ 2(i — D)((p(u)* —1) (2.10)
p((=1 4 2i)u) (o(u)* + (=1 +2i) '

Now consider p # (—1 + 2i). Since if ¢(u) is a root of P,(x) then also
©((—=1+ 2i)u) is a root, Eq.(2.9) implies that

p(u) = p((=1 + 2i)u)

PEET R
and thus, by Eq.(2.10),
(p(u)* + (=1+2i) (i —1)((p(u)* - 1)
4 - 2(1+1) (2.11)

Actually (p(u))* — 1 ~ (i + 1)2: in fact, using the addition formula, we get

that

(i + D (u) f(u) F(u)
1= (p(u))?
and we know from the previous discussion that f(u)F(u) ~ (i + 1) and
that o(u + iu) ~ p(u) (both of them are roots). Consequently, the relation
expressed in Eq.(2.11) proves our claim.
The previous information is crucial in order to find the discriminant of the
extension Q(i) € K = Q(i, (p(u))*). In fact, since a = w is
a unit, the discriminant of Q(i, (¢(u))*) is the principal ideal generated by
A(a), the discriminant of the basis {1, a,a?,. .. ,amil }.
We can compute this discriminant from the discriminant A((¢(u))*). In

o(u+iu) =
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fact, setting 0; = o;((¢(u))*) for every o; € Gal(K/Q(i)) the well known
formula for A(«) implies that

Ale) = TLde) = oj@)”

- H<(9i+(—1+2i) 9j+(_1+22.))2

4 4

i>j
(6; — 6;)
= H 42
i>j

A((p(u)*) m—1
W where M = T

At this point, we are only left to compute the discriminant of (p(u))* using
the informations we already have. Before starting, note that from now on if
L’ = L(6) is a separable extension of dimension n we will denote by A(6|L)

the discriminant of the L-basis {1,0,0% ... 67!}
Claim 2.1.1. In our situation,

Ap(u)|Q(4)) = Nxjo0) (A(p(u))|K) A((Qp(u))ﬂQ(i))[C’u:K]

We know that in general if L' = L(0) is a separable extension of dimen-
sion n then

A(BIL) = (~1)" V2N (£1(6)) (2.12)

where f(X) is the minimum polynomial of 6 over L and f'(X) is its deriva-
tive (compare with [12], Theorem 7.6, p. 39 ). Hence in our case we get
that

Alp()|Q@) = (=)™ V22Ne, 190 (P ()
= Ng,j00) (P (o(u)))
(recall that m — 1 = 0 mod 4) Now let ¢, be the polynomial such that
P,(X) = ¢, (X*). Since g(X) = X* — (¢(u))? is the minimum polynomial
of p(u) over K we also get
Ap(u)|K) = (=1)*"DNg, k(g (p(w)) = Ne, e (f (9 (w)

where f(X) = X*. In the same way,
A((p() Q1) = (=1)MMDEN 00 (47 (p(w)*)

and therefore

Nk ig@) (Alp(w)| K) A(p(u)*Q(4)) T =
= Ngjo6) (Ne, ik (f (9(w))) Ngjoe (¢ (¢
= N, j00) (F'(0(u)) N jga) (¥, (f (0(u)))
= N, j06) WL (f(p() f (o(u)))
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where the last equation holds because since v, (f(¢(u))) € K it must be

(W (f(p(w)))" = Ne,jx (47, (F(p(w)))
Hence we conclude by simply remarking that P, (X) = ¢/, (f(X))f'(X).

Now recall that we have already seen that

Alp(w)|Q(0)) = 277 =2

Moreover, we can show that A(¢(u)|K) = —16%(p(u))'? applying Eq. (2.12).
The last information we need is the value of N ga) (A(p(w))|K) but seen
that N¢, | (¢(u)) is the constant term of g(X) = X4 — (p(u))* and since
the ideal (¢(u))C), lies over p (and is totally ramified) it holds that

Nrjom (—(e)?) = Ngo@) (Ney, x (p(w)))
Ne,00) (p(u))
= p
Hence it follows that

m

N cjae) (Alp(w)| K) = 16"F 1

so using the previous Claim we obtain

A((p(u)*Q(4)) = 4MM=1)  M—1

which means that the discriminant of K over Q(i) is p™ 1.

At this point, it might be useful to stop for a second and summarize what
we have proven so far.

e We have seen how we can find all the subfields mentioned in the state-
ment of the theorem.

e We have proven that the subfield K (which is unique since all the roots
of P,(z) are associated) has discriminant A(K|Q(i)) = pM~!

e We have seen that p is totally ramified in C,, and consequently in all
its subfields. Moreover, it is the only ramified prime in the subfields
whose degree is an odd power, and in the subfields of degree 2* where
A< h.

Note that we still need to find the discriminant of the previously enlisted
subfields. But it holds in general (a convenient reference is [21], Theorem
28, p. 302)
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Theorem 2.1.3. Let R be a Dedekind domain, and R’ its integral in a finite
algebraic separable extension K' of the quotient field K of R. If p is a proper
prime ideal in R, let P be a prime ideal in R lying over p and denote by
e("B) the ramification index of ‘P over p. Then the different D g may be
factored in prime ideal as the product

D = [[R
B

where m(P) > e(P)—1 and the equality holds if and only if both the following
conditions hold:

a) e(P) is not a multiple of the characteristic of R/p,
b) R'/B is separable over R/p.

Our setting satisfies all the hypothesis, so we immediately have that if L
is one of the subfields whose degree is an odd power, or one of the subfields
of degree 2* where X\ < h, denoting by 9 a prime ideal lying over p in Oy,
we get that

Drj06) = o lL:Q()] -1

since p is not only the unique ramified prime, but it is also totally ramified.
Therefore it follows trivially

A(LIQ()) = e
as we wanted to show.

Now we are left to prove the following statements:

Claim 2.1.2. The relative different of the extensions
K =Q(i, (p(u)!) € Q, (p(u)?) = K

is equal to (i 4+ 1)(¢(u)?).
Claim 2.1.3. The relative different of the extensions

K'cc,

is equal to (i + 1)(p(u))

In fact, using these claims, we can conclude in the following way: if for
every suitable field extension L C L’ we denote by D | its relative different,
it holds that

Dc, 1k =Dk Dk x9c,) = (1+1)*p(u)?
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Therefore,

A(CL|Q(1) = NK|Q(i)(A(CM]K))A(K|Q(Z‘))[CMK}

= Ne,jom) @, k)™M

_ (1 + ,L-)Q(m—l)MSMm—S

om-— IMm—2

as we needed to prove. Moreover, since (i+1) divides the different K C K, it
must be ramified in K’, and since it cannot be ramified in any field extension
of odd power degree, it must ramify in Ly. But we know that it is not
ramified in L} (the subfield of Lo such that [L} : Q(i)] = 2") so it must
ramify in the extension Lg C LS‘H: indeed LSHLl ...Ly = K" due to the
fact that [C), : K'] = 2. Hence (again by Theorem (2.1.3))

. h+1_
D g = (L+HD(p))> !

(o is totally ramified in C,) and analogously

2h+2_1

D prazige = (1+ i) (p(u))
which means that

A(LgHQe) = (1+19)
A(LgTQ@) = (1+4)

2h+1u2h+171

2h+3 2h+2_1
I
as we wanted to show. At this point, we are only left to prove the claims.

For the first claim, we shall consider the elements

_ it (p(w)?

= FwFw <

and » )

i~ (W)’ _

f(u)F(u)

Since (p(u))? and —(¢(u))? are both roots of the polynomial X2 — (¢(u))?,
which is irreducible over K, it is clear that the Galois group of K C K' is
formed by the identity and by the automorphism defined by

(p(u)? = —(p(u))?

Hence 7 must be a root of the minimum polynomial 7'(X) of 7, and conse-
quently we have that T'(X) = (X — 7)(X — 7).

Actually 7 and 7 are two associated integers. Since

7=

T(X)=X*—(r+7)X+71
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and Z is a root of X2 — (24 ;)X + 1, in order to prove that they are asso-

T _
ciated integers it is enough to show that 7+ 7,77 and Z + T are integers.
Note that since p(2u) = % and since ¢(2u) and ¢(u) are asso-
ciated (being two roots of P,(X)), recalling that f(u)F(u) ~ (1 + ) and

(1 — (o(u))?) ~ (i +1)? (as we have seen before in the proof) we get

N
"= Fwr@ Y

L _1+(g0(u))4 N 2f(u)F(u) i

TS THwE@r Y Gwrwe ~ Y
ror ol (p))  2f(w)F()
T T Tyt T arnz 0T

thus 7 and 7 are associated integers.
Moreover, the previous discussion implies that as principal ideals

(i+1) = (r7) = (1)(7) = (7)?

hence (i + 1) ramifies in K C K’. Since the ramification index e(1 + i) of
(I+i) must bel <e(i+1) <[K:K'| =2, (1+1)is totally ramified in
K C K', and using again Theorem (2.1.3) we obtain

Dyenire = (141)(p(u)?)

(1 is totally ramified in C),, and ¢(u)? lies over u).
Finally, we turn our attention to the extension K’ C C,. Let v € C,.
Clearly v can be represented in the form

v = a+bo(u)
where a,b € K’ = Q(i, (¢(u))?). Hence we may write

a+ bp(u)

C

where a, b, ¢ € Z[i][(¢(u))?] and no prime divides all of a, b, c. We know that
~ is an integer if and only if the coefficients of the minimum polynomial

<X_ a—l—bgo(u)) (X_ a—bcp(u))

C

are integers, thus if and only if
a® — b*(p(u))?
2

2a
— € Ok
C

€ Ok
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Since O is a free Z[i]-module, ¢ must divide 2a. If a and ¢ have a common
factor A, then the first relation implies that A divides b (the unique prime
dividing (¢(u))? is (¢(u)) which is not in K') contradicting our assumption.
As a consequence, ¢ must be either a unit or an element associated to 2. In
the second case, ¢ = 2v where v is a unit and so

a+bp(u)  avt4+brtou)  a+ bo(u)

v 2 2

where a and b are integers of K’; moreover

a? = (p(uw)? @ —b*(p(u))?
c2 4

if and only if )
a® — b*(p(u))? = 0 mod 4

In the other case, if ¢ is a unit then 7 is always an integer, and furthermore
a = 2ac™ ! and b = 2bc~! are integers such that

a+bp(u) @+ bo(u)

c 2

and again )
a® — b*(p(u))? = 0 mod 4

Thus an element v is an integer if and only if

_ a+bp(u)
N 2

where a,b € O and
a® — b*(p(u))? = 0 mod 4 (2.13)

but we are now going to prove that

Claim 2.1.4. If a couple (a,b) satisfies the congruence (2.13), then (i + 1)
divides b. On the other hand, if b is an integer in K' which is divisible by

(1414) then there is another integer a such that (a,b) satisfies the congruence
(2.13).

We need to consider the element
E=1+if(u) =141iy/1— (o(u))?

¢ is an integer since its is a root of the polynomial X2 — 2X + 2 — (¢(u))?.
Moreover, since




is an integer, f(u) and F'(u) are associate, thus as ideals

(1+1) = (fFWF(w)) = (f(u)?

which implies that if
313530 = (1+1)

is the prime decomposition of (1 +4) in K’ then

&% — (p(u)® = 2if(u) = 0 mod 3335 .. . 5,

and the congruence does not hold for any higher power.
Note that for every element ¢ € K’ and for every 1 <[ < g the congruence

¢* = (p(u)* = 0 mod 3}

is impossible. This can be shown in the following way: if (? = (¢(u))? mod 3%,
then

¢* = (p(u))? mod 37

and so
€=+ =¢-¢=0mod 3
But if (¢ — &) is divided by 3; then

(+E = (—¢+2
= 04 2 mod y
= 0 mod

since 3; divides the ideal (2), thus we actually have

G- =0(-9(C+& =0mod 3

and so
& — (p(w))? = (¢* — (p(w)?) — (¢* — €*) = 0 mod 37

which is absurd.
Now suppose that b is not divisible by (1 4 ), which means that there is an
index 1 < < g such that 37 does not divide b. From congruence (2.13) it
follows that a and b are divided by the same power of 3; and so we can find
an element ¢ such that

a = b¢ mod 3}

Hence b%¢?—b%(p(u))? must by divisible by 37, and seen that b is not divisible
by 312 this implies that

¢* = (¢(u))* = 0 mod 5}
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which is a contradiction.
On the other hand, if (i + 1) divides b, we simply take a = b{ so that

a® — b*2(p(u))? = b*(62 — 2(p(u))?) = 2if(u)b* = 0 mod 4

Hence actually every integer + can be represented in the form

a + bp(u)
1+
and moreover, we can find an integer v = ajabifg)u) such that b is coprime

with (14 ¢). If now we consider the element

;o a—bcp(u)
 (1+44)

we get that
v=9"= 1 —i)bp(u)

and since b is arbitrary, this means that

D¢,k = (L +14)(p(u))

as we wanted to prove. ]

2.2 The division by an odd prime power.

As before, we are considering a odd complex prime p and its norm m. The
multiplication formula related to the element u” where h is an integer can
clearly be obtained by iteration of the formula

u _xPu(x4)

where as usual z = ¢(u). More precisely

Theorem 2.2.1. Let p be an odd complex prime, m its norm. Then for
every h € N it holds that

\Ilmh(x)

, where x = p(u
X;L,h(x> 90( )

p(u'u) =

where W, 5 (X), X, 1 (X) are polynomials such that:

i) every power of X composing these polynomials is of the form X" for
somen € N.
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ii) W, n(X) can be factorized as

U, n(X) = Puabatps ...y

where for every j € {2,...,h} and for every x € C, we have that x
is a root of V; if and only if x is one of the p’-division points of the
lemmniscate.

iii) for every j € {2,...,h} 1b; is of degree m?~1(m — 1).

iv) for every j all the coefficients of 1; are divisible by 1 except the lead-
ing coefficient which is equal to 1. Moreover, the constant term is
associated to (.

Proof. We will proceed by induction, so let us start with the case h = 2.
We have that for every u € C

2, — oy Pule(w)
ppu) = o )7%

) Pu(e )

Qu() ' Qu (@(u) {QDZ((Q;))

Seen that both P,(X) and Q,(X) have degree equal to m — 1, multiplying
the numerator and the denominator with Q,(z)™ ! we obtain that

Pu(@)  ¢o(z)
Qu(x)  o(2)

where ¥2(X) and 72(X) are two polynomials of the same degree prime to
each other, and so we can set ¥, (X) = P,(X)y2(X). Moreover, since
every power of X which appears in P,(X) and Q,(X) is of the form X",
the same holds for 12(X). Furthermore, since all the coefficients of P, (X)
and Q,(X) are divisible by p, except for the leading coefficient of P,(X) and
the constant term of @, (X), all the coefficients of 1)2(X) except the leading
one are divisible by p. Moreover, ¢(X) is monic and its constant term is
associated to p (since P, (0) = i“uand Q7~1(0) = (Q,(0))™~" = 1). Finally,
the leading term of 12(X) is equal to the leading term of P,(¢(w)P,(x)),
ie.

= o(u)

—

p(uu) = p(u)

o)™ (p(u)m1)™ !

s0 12(X) is of degree m(m — 1) = m?~1(m — 1).
Now, supposing that the theorem holds for h € N, we are proving it for
h + 1. We know that

\I’,u,h(m)

h =X
(p(lu’ 'LL) - X#’h(l‘)
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thus

h+1u)

i@ Q, (xxulh(;))

As before, if we multiply both the numerator and the denominator by
(X,n(z))™ 1 we obtain

Vyun(@) Pny1(z)

h+1u)
Xun(r)  Thii(z)

o(p

where 9,41 (X) and 7541 (X) are two polynomials of the same degree prime
to each other, and so

W1 (X) = Wy n(X)n1 (X) = Pu(X) 2 (X) . P (X)Pnia (X)

as we wanted to show in ii). In order to prove point i) we only need to repeat
the same argument used for the case h = 2. For iv), note that since Q,(X) =
LXm=1P, (X) (see Proposition (1.5.4)) then using the same argument used
for 12(X) we have that the constant term of m5(X) is equal to 1, and all
the other coefficients are divisible by x. Hence the same holds for X, (),
and by inductive hypothesis on X, ,(x): so, using the same argument as in
the case h = 2, we conclude that 1p41(X) has leading coefficient equal to
1, constant term associated to u, and all the other coefficient divisible by p
(and analogously all the coefficients of X, ,,11(x) are divisible by u except
for the constant term which is equal to 1). Finally, since the leading term
of ¥p41(X) is equal to the leading term of the polynomial P, (X ¥, (X)),
we have that

deg(thnt1(X)) = deg(¥yn(X) + 1) deg (P, (X))

Therefore, seen that

h
deg(¥,, (X)) = deg(Pu(X))+ > deg(¢n(X))

j=2
h
= (m—-1)+ th_l(m -1)
j=2
h

= thil(m -1)

j=1
= mh-1



we get that
deg(Yn41(X)) = m"(m — 1)

as we needed to show. O

Theorem 2.2.2. Let p be an odd prime integer of Q(i), m its norm, and
for h € N denote by C,n the splitting field of 1n(X). Then Q(i) C Cyn is a
Galois extension of degree m"~'(m — 1) and moreover:

e if pu is not real, then Gal(C\n /Q(i)) is cyclic.

e if 1 is a real number q, then

Cn
Gal(=t=) = ST
Q@
where S and T are cyclic groups of degree respectively ¢" 1 (¢*> —1) and
h—1
q .

Proof. Since by point iv) of the previous theorem (X)) satisfies the hy-
pothesis of the Eiseinstein criterion, )y (X) is irreducible, so in order to
prove that Q(i) C C» is a Galois extension is sufficient to show that ¢y, (X)
is separable.

Since p" is odd it holds that

l,\l'u,h(gv) xpu(x)
Xy (@) Qu(z)

and in the proof of the previous theorem we have shown that

= p(uu) =

deg ¥, »(x) = m" —1 = deg Pn(X)

Therefore, we see that v,(X) must be separable, otherwise ¥, ,(x) would
have a multiple root, contradicting the fact that P,»(X) does not have any
multiple root.
Now let us start with the second part of the proof. If u is not real, we need
the following general result that we are not going to prove (see Theorem 2,
[7])
Proposition 2.2.1. If a and b are relatively prime integers, then there is
an isomorphism

Z]i - 7

(a +ib)Z[i] ~ (a® + b?)Z
Let ¢,d € Z be such that u" = ¢ + id. Suppose that there is a rational
prime e dividing both ¢ and d, then it must divide x”. There are only three
different cases, according to the prime factorization of e in Z[i].

e if e is inert, it must be equal to u, which is impossible because pu is
not real.
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e if e splits, then p” id divided by two different primes, that is absurd.

e if e ramifies, then it must be equal to 2, which is a contradiction seen
that p” is odd.

Hence using the previous Proposition we get that

Zi . Z

whZli] — mhZ

and thus with the help of Theorem (2.1.1) we obtain

ey () = (72)

Since m is a prime different from 2 being the norm of the prime u € Z[i],
the group of units of Z/m"Z is a cyclic group of order m"~!(m—1) (compare
with [16], Proposition A.8.). Recalling that [C\n : Q(i)] = m"~(m — 1) it

follows that o _
N~
Callg@) = (m’%)

which proves that the extension if p is not real Q(i) C C,n is cyclic.

If 1 is a real integer ¢, we cannot apply the same argument, but we can
instead compute directly the number of units in the following way. First of
all we need to find the cardinality of the group of units. Since ¢ is inert, the
equivalence classes of Z[i]/q"Z[i] are given as

{lat+ib):0<a<g"—Tand0<b<q"—1}

(see [6], Theorem 1). Moreover, since a + ib is coprime with g if at least one
between a and b is not divisible by g, it is easy to see that the cardinality is
equal to q2h_2(q2 — 1). This means that actually there is an isomorphism

o= (Fam)

so in order to conclude, we only have to find the structure of (Z[4]/q"Z[i])*.

Consider a primitive root modulo ¢, i.e. a generator of the the group of
units of Z[i]/qZ[i], which is cyclic of order m — 1 = ¢®> — 1. Since 7 is a a
primitive root modulo g, clearly

Gal(

7‘12_1 =1 mod ¢
For the following argument, v must be such that

7q2—1 £ 1 mod ¢?
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If our v does not satisfy the previous condition, we only need to choose an
integer A Z 0 mod ¢ and substitute v with v + ¢A: indeed,

(y+ ¢\ ' =1mod g

and ,
(v +gN)? 1 £ 1 mod ¢

The previous discussion means that we can assume that our primitive root
~ satisfies the equation

Y =14 ¢
for some integer £ Z 0 mod ¢, and so

YT = (14 69)7 =1+ &1°

for some & # 0 mod gq.
Repeating the argument h — 2 times, we can find an element &, 1 % 0 mod ¢
such that

h—1/.2_
YT =14 g

Therefore, due to the fact that v generates (Z[i]/qZ[i])*, for every integer
a # 0 mod g we have that

hfl(

a? @) = 1 mod "

Now suppose that there is an element v such that Y A— v* mod ¢" for
some s, and such that for every | < ¢"~! and every t,

v 2+t mod ¢"
Consider an element of the form
%
where 0 < j < ¢" 1(¢> —1) =1 and 0 < < ¢"~! — 1: seen that
(417" @D = 1 mod ¢"
AVt is always a unit mod ¢”. Moreover, if
At = 4"t mod ¢"
for a couple (r,t) # (j,1) where 0 <7 < ¢" 1(¢®?~1)—1and 0 <t < ¢" 11,

then it must be

fyj*’" =" mod qh
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which is impossible since 0 < t — 1 < ¢"~1, so the elements 77! are all

different. Since the total number of these elements is equal to the cardinality
of (Z[i]/q"Z]i])*, it follows that if S =< v > and T =< v > we get

Cyn
Q(4)
So we are only left to show that a suitable v exists. Consider any element a
such that

Gal( )= ST

a? "' =1 mod ¢"

and
a' #1 mod ¢"

for every I < ¢"~'. From

h—1
a?

Il
Qo

1+ (a— 1))‘1h71 mod ¢"
S ‘
< , )(a —1)* mod ¢"

)

i=0
we get that
g1 qh—l '
< , )(a—l)’zlmodqhzlmodq
i=0 !
and so 1+ (a—1)7""" =1 mod ¢, i.e.
a =1 mod q
On the other hand
a % 1 mod ¢*

because if a = 1+ ng? with n € Z[i] then

h—2

o = (14T
= (I+ang*+...)1

2

h—3

(1+qag"2+...)4
= 1+aq"+...
= 1mod ¢"

which is a contradiction since ¢"2 < ¢"1.

1n #Z 0 mod ¢ such that

Hence there is an element

a=1+nq
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and so from what we have seen before, the powers of v that could possibly
be equal to a are only those of the form

,YA(tf—l)

for A € {1,...,q¢ — 1}. Now, choose v avoiding the powers of v (which is
possible, since we have ¢? — 1 choices for 7 and only ¢ — 1 elements to avoid):
we are going to prove that v respect the required condition.

So let [ be the smallest exponent such that

v =~ mod ¢"
for some ¢t € N. First of all, we have to remark that { must divide ¢"~ 1,
since 7' =1 mod ¢. Then, note that since v generates (Z[i]/qZ[i])* and
' = ~* mod ¢ then t must be divisible by I. Moreover, seen that

(" = 0O mod ¢
= 1 mod ¢"

tg"~! must be divisible by ¢"~!(¢*> — 1), so we conclude that ¢t = bl(¢> — 1)
for some b € N. Finally consider the congruence

<V'y_b(q2_1))l = l/ly_bl(‘f_l) =1 mod ¢"

If | < ¢"~1, then the equation holds only if
V’y*b(qtl) =1 mod ¢*

(it is enough to use the same argument we used in order to prove that
a # 1 mod ¢?), but then since 7q2_1 = 1 mod ¢? we get that

v =1mod ¢

1

which is a contradiction, thus | = ¢"~! as we wanted to show. O

2.2.1 Some further details on the fields C,uh

Note that we can easily obtain other meaningful informations about the
fields C)n:

e Using the same kind of argument used in Proposition (2.1.2), it is
possible to prove that the discriminant of the Q(7)-basis of Cn formed
by taking the powers of any root of ¢, (X) is divisible only by (i + 1)
and .

e Moreover, following the argument used in the proof of Theorem (2.1.2)
we can see that p is totally ramified in C,» and that the prime ideal
M lying over u can be generated by any of the roots of 1 (X) (which
are then all associated).
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e If 1 is not real, using Sylow’s theorem on the Galois group of Q(i) C
C\n we see that there is a cyclic extension Q(i) C K C C)n such that
[K : Q(i)] = m"~!. Since the degree of the extension is odd, it follows
from Proposition (2.1.2) that the discriminant of this field is a power
of pu. Moreover, C, is the field corresponding to the unique subgroup
of Gal(C\,»/Q(i)) of order m — 1, so

Q@) cCLC Oy

e If i = g is real, then in the Galois group of Q(i) C Cyn we can find
¢" ! + 1 different groups of order ¢"~': for every h € T =< v >
the group < h’yq2_1 > has order ¢"~! and then we have to take in
account 7. All those groups fix a different subextension of Cn of
degree ¢"~1 over Q(i), and the discriminant of these fields is a power
of g. Moreover, as in the previous case Cj is the field corresponding
to the unique subgroup of Gal(C,n/Q(i)) of order m — 1.

2.3 The division by a power of (1 + 1)

So far we have considered p-division points for y odd prime and then we
have looked at the division by p”, using the detailed description of the -
division polynomial which is available in this case. Now we have to shift
our attention to the case of any power of (1+ 1), and we will need a slightly
different approach.

Our starting point is the equation

p°(u) — 1

e (3] (2.14)

p((1+i)u) =

which was established in Proposition (1.5.1). Clearly, by iteration, for any
h € N p((1 + i)"u) must be a rational function of p(u), so let us set

N fh(x)
p(l+1i)'u = (@

T = pu

where fp,(x), gn(z) € Z[i][z]. Since

P2((1+0)'u) — 1

p((L+0)"" ) = 2ip((1+4)"u)

we get by straightforward computation that

fonr(@) = fi(z) — gi(x) (2.15)
Ihii(z) = 2ifu(x)gn(z) (2.16)
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so, because of the fact that fi(x) = 22 —1 and g;(z) = 2ix these polynomials
can be completely determined by recursion.

First of all we are interested in the degree of fj(z) and gp(z) ( for typo-
graphical reasons, we will denote by 9f, the degree of f;(z)). We proceed
by induction, and we claim that 0f, = dgp + 1 for every h. In fact, 0f; = 2
and dg; = 1; moreover, if we suppose that df, = dgp + 1 then

Ogny1 = Ofn+Ogn
= 20gp+1
while
Ofny1 = 02fn
= 20gp + 2

Thus we actually have that for every h € N

Ofns1 = 20fn

which implies that fy,(z) is of degree 2" for every h.

Theorem 2.3.1. Considering the previous notation, let Dy be the splitting
field of fn(x) over Q(i). Then Q(i) C Dy, is an abelian extension of degree
2/=2 whose discriminant A(Dy,|Q(4)) is divisible only by powers of (1 +1).

Proof. Since
fu(@) = (froa(z) —ign—2(2))*(fn2(z) + ign—2(z))

we can consider separately the roots of f,_o(x) —igp—2o(x) = 0 and those of
fr—2(z) +ign—2(x) = 0. Let us focus first on

frn—a(z) —igh—2(z) =0 (2.17)
If z = p(a) is a root of Eq.(2.17), then either gj_o(Z) = fr—2(Z) =0 or
(@ _

Nh—2
wL+4770) 9n—2(Z)

Note that the first option actually leads to a contradiction. In fact, using
Eq.(2.15) and Eq.(2.16), we get

0=foo2(t) = fi3(7)—gh3(@)
0=gn—2@) = 2ifa—3(%)9n-3(7)
and so fr_3(%) = gn_3(Z) = 0. Repeating the argument, we get that
0=fi(z) = z*—-1

Ozgl( ) = 2ix

8l
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which is clearly impossible. So the only feasible case is the second one, i.e
it must be

p((1+0)" %) = i
for every root = p(u).
In order to proceed, we have to prove first the following:

Claim 2.3.1. Consider the fundamental parallelogram of the lattice associ-
ated to p and a point u inside of it. Then p(u) =i if and only if
w

w .
RS {Z(l + 32)5 4

(3+1)}

Moreover p(u) = —i if and only if
w

L (3+30)

ue {%(1—1—1’),

This claim can be proved in the following way. First of all (using the
periodicity of p and the fact that p(—u) = p(u))

v (2(11 i)) - v (w(14_2)>

- o (w(14_ b, wi)

and

@<2<1wii>> -

Moreover

<
<
<
() - o(252)
<
<

and analogously




Let us set u1 = 5722 and ug =

5057 Then since

wi
2(1+12) "

w9 (am)
1 60(2) 2”@(%)

we have that 1 = p(u;) is such that

2t —2ix1 —1=0

which means that 1 = 7 as we wanted to prove. In the same way, we
can show that p(ug) = —i, so we are left to prove the “only if ” part of the
statement. Suppose that there is another @ in the fundamental parallelogram
such that p(@) = i: recalling that p(u) = (p%(u) we get that

p?(a) = ¢* <w(1 I 3i)> = ¢? <w(34ﬂ)>

Since by Proposition (1.2.4) ¢(z) = ¢(«) if and only if there are m,n € Z

such that x = (=1)" " a+mw—+nwi, if p(a) = ¢ (W) then 4 is outside

the fundamental parallelogram contrarily to our assumption. So,
_ w(l+ 39)
)= o (2039)

but since the argument was general, we also get that

(550) - (22)

o) = o (“O77)

which leads us to a contradiction exactly as before. Using the same argu-
ment for the other set of points, we conclude.

and hence

In our contest, this last results means that if z = p(u) is a root of
Eq.(2.17) then it must be that either

1430
(1+4)2a = i% + mw + nwi
for some m,n € Z or
34
(149" 2a = iw(4—i—z) + mw + nwi
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so (by direct computation) we can see that

§+mi

R G 1o i

where {,n € Z, £ is even and n = +1 mod 4. Note that since p(—u) = p(u)
the previous discussion implies that the roots of Eq.(2.17) are of the form

§tmi
P\t
where € is even and n = 1 mod 4. With the same argument we can also see
that the roots of f,_o + igp_o = 0 are of the form

§+m
P\a+ip®
where £, € Z, i is even and £ = 1 mod 4.

Since p(iu) = —p(u) it is clear that the roots of fi_o(z) —igh_o(x) =0
and f,—o(x)+ign—2(x) = 0 define the same field extension: thus we can focus
our attention on fr_o(x) 4 igr—o(x) = 0 instead of considering fp,(z) = 0.
Moreover the equation

( £ +ni w) _# ((135%1“) !

S 2ip ((ﬁ)ﬁiﬂ“’)

implies that Dy C Dpyq for every h € N and therefore

Claim 2.3.2. It is sufficient to prove the theorem only for h even.
In fact

o if [D), : Q(4)] = 2" 2 and [Dy_s : Q(i)] = 2" then the degree of
Dj,_1 over Q(i) can only be 2/73.

e if Q(i) C Dy, is an abelian extension then clearly also Q(i) C Dp_1 is
abelian.

e if the discriminant of Q(i) C Dy, is divisible only by (i + 1) the same
must be true for the discriminant of Q(i) C Dp_.

In view of this last remark, let us consider the equation

fgl(l’) + iggl(:b) =0 (2.18)
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which is of degree 2%. Note that actually, due to Eq.(2.14), to solve Eq.
(2.18) is equivalent to solve the following chain of quadratic equations:

Yo=—1 = vi—1
2iy1

2
. y; — 1

ue= 2y
o
ys — 1

Yai-1 = 21.
2y

where for every j

§+ni
yj:p((lﬂ)ﬂ'w)

and ¢ and 7 are fixed (and satisfy the previously stated requests): thus in
order to prove that Q(i) C Dgyo = Q(i)(y2) is an extension of degree 2%

we just need to prove that Q(7)(y;) # Q(7)(yj+1) for every j.
We proceed by induction. Since y; = 1 £ v/2, Q(i)(y;) # Q(i). Now choose

n < 2l and consider the extension Q(i)(yn) C Q(7)(yn+1). If Q(i)(yn) #
Q(7)(yn+1) then this extension must be cyclic of degree 2, and so there must
an element a € Q(7)(y,) which is not a square such that

Qi) (yn+1) = Q(i) (yn)(Va)

and consequently the discriminant of this extension must be divisible by a
(we are using again Lemma (2.1.5)). But we know that the field Q(7)(yn+1)
is defined by the equation

Y211 — 2iYnYni1 — 1 =0
whose discriminant dj,41 is
dpy1 = _4(3/721 —1) = =8iynr1yn

so a must divide —8iy,+1y,. Since we can suppose that a is not divisible
by 2 ( (2) is a square in Q(i)) and since y,+1 ¢ Q(7)(y,) we conclude that

if Q(7)(yn) # Qi) (Yn+1) then Q%) (yn+1) = Q(¢)(Yn)(/YUn), sO we only need
to show that yy,, is not a square in Q(i)(yn)(\/Yn)-

If y,, is actually a square in Q(¢)(yy,), then there must be a, 8 € Q(7)(yn—1)
such that 3, = (a + By,)? and so

By + (208 = 1)yn +a® = 0
But by inductive hypothesis the equation

y121 - Qiyn—lyn -1=0
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is irreducible in Q(7)(y,—1) hence we must have

2
«
R
208 — 1
GaP =D~ sy,

32
If a = +i8 we get that

1 1 2
Un1 E 1= o = ((Hi)ﬁ)

so the norm of y,_; £ 1 must be a square in Q(7)(y,—2). But since the roots
of

y121—1 - 2iyn—2yn—1 —-1=0

are iYp—2 £ 1/—y2_o5 — 1 the norm of y,_1 £ 1 is equal to 2iy,_o: then
we have a contradiction, because by the inductive hypothesis y,_2 is not
a square in Q(7)(yn—2). Therefore, y, is not a square, which means that
[Dorio : Q(i)] = 22" as we wanted to show.

We still have to prove the extension is abelian and that the discriminant
is divisible only by (1 + 7).
Suppose that the discriminant of Q(i) C Q(i)(y») is a power of (1+414). Since
we already know that for every n < 2 the discriminant A,, of Q(7)(yn) C
Q(7)(yn+1) divides 4yy, it must be a power of (1 + i), because the equation

yn(yn - 2iyn—1) =1

implies that y,, is a unit. But

A Q1) (n+1)1Q(1)) = A(Q() (y2)|Q())*N(A)

( N is the norm of Q(i)(yn) C Q(i)(Yn+1)) so clearly the discriminant
A(Q(7)(yn+1)|Q(i)) is a power of (1 + 7), and by induction we obtain that
the discriminant of Q(i) C Dy is divisible only by (1 + 3).

Finally, the extension is clearly a Galois extension, since it has been built
by repeatedly adding square roots. It is abelian because the Galois group is
isomorphic to the product % X %. In fact, it is possible to prove (compare
with [17], §5 ) that we can find two odd elements v,~" € Z[i] such that all
the roots of Eq. (2.18) are of the form

_ AN w
AN = @ (’Y v (1—H)2m+3>
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where A\, N € {0,1,2,...,2™ — 1} (we are not proving this statement, due
to its similarity to the cases we treated in Theorem (2.2.2)). Then, if we
consider an Q(7)-automorphism o of Do, o, we have that

(¢ (i) =0 (7 s

Z L
2z = 207

choose s € N: since 7° is odd we get (setting k = <(1+Z)#+3) for typo-

for a couple (A, \) € (the image of a root must be a root). Now

graphical reasons)

sy oo @ (P (e(0)
(" (k) = oalg (k))U(Q?YS (o(k)))
/ 25 9 k
= @’ (¥Vk) cl;s ((U((i( k))))))
P2 (p(:*VK))
. 2/ AN 7
= ¢ (k) Q3 (p(y*"'k))
= (M)

and so

p? (Yo NE)

_ Ats I w
o (7 i)

Of course we can repeat the same argument with 4/, obtaining

’ w _ As N+ w
C’<@<78”7"<1+z'>2m+3>>“7<7 7 T<1+i>2m+3>

thus o is completely determined by (A, \') and it is clear how to define the
isomorphism we were searching for. O

Note that since
Z Z

Gal(Dai+2/Q(0) = 5y X 517

for every subgroup H of the Galois group there must be two subgroups
H{,Hy C Z/2ZZ such that H = Hy x Hy. So if H is of order 2! (thus if it

fixes a subextension of degree 2') then
2l
Hi|=—
1] | H|

which obviously implies that
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Corollary 2.3.1. The field Doy o has 2! + 1 subfields of degree 2 over Q(4).
The discriminant of all these subextensions is divisible only by (i + 1).

Proposition 2.3.1. Let x = ¢(u) and consider y, = p(u) = #(u)' For

every h > 2, x is the polar distance of an (1 + )" -division point of the
lemniscate which is not a (14-1)"-division point if and only if y, is a solution
of the polynomial fr(X) defined above. Moreover, the polar distances of the
(1 + 4)"*1-division points generate the field extension Q(i) C Dy 1.

Proof. Clearly, if £ = ¢(u) corresponds to a (1 + i) *!-division point of the
lemniscate then
0= p((1+i)"""u)

which implies that
(1+3) "y = rw + rowi

for some 1,79 € Z and consequently

riw + rowi
Yo = p(u) = KJ(W)

But then

© ((1 —i—z’)hu) = p ((1 +i)h7m)

B <r1w+r2wi>
-9 (141)

. <(7~1 +ra)w : (rs — rl)wz)

Note that r; + ro must be odd. In fact, if it were even, then ro — r; would
be even too, and consequently we would have

© ((1 + z)hu) =0

contradicting the fact that x is not the polar distance of an (14 i)"-division
point.

Hence 71 + r9 and ry — 71 are both odd: this means that (1 + i)hu is a pole
of  and that p((1 +i)"u) =0, so

fu(p(u)) =0

as we wanted to show.
On the other hand, if y, = p(u) is a root of f;(X) we can find two numbers
&,n € Z such that n is even, £ =1 mod 4 and
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Hence there must be 71,79 € Z such that

_ Stm .
u = WW—FHW‘FT%«)Z

and therefore

o((14 )" u) = <£w + niw + 1 (1 + )" w4+ (1 + i)h+1wi> —0

Finally,
(1+4)'u= (51122)‘“ + (1 4+ 4) " w + (1 + )" wi
SO
e(L+i)"u) = ¢ <(f +277)w L& _277)m +r1(1+4)"w + ro(1 + z‘)h“wz‘>

which means that (1 + i) is a pole because ¢ — 7 and & + 1 are both odd
(we are using Proposition (1.2.3)), thus p(u) is not the polar distance of an
(1 4 4)"-division point.

Now we are left to prove that the polar distances of the (1 4+ i)h“—division
points generate the field extension Q(i) C Dp41. Let z = ¢(u) be the
polar distance of one of the division points and let y, = p(u) = ;12 be the
corresponding root of f,(X). In Theorem (2.3.1) we saw that y, € Dy, and

that Dp11 = Dp(\/yz), hence
1
vV Yz

Moreover, since 2 € Dy, and = ¢ Dy, (otherwise /yz € Dp,, which is absurd)
we get that [Dy(z) : Dp] = 2 = [Dj41 : Dy)]: their intersection is not empty
(it contains x) so we get that Dy (x) = Dp4q as we wanted to show. O

T = € Dpt1

In Theorem (2.3.1), we already saw that the discriminant of the fields
Dy, is divisible only by (1 4 7), and thus (1 + 4) is the only ramified prime.
Moreover, it holds that

Proposition 2.3.2. Consider all the notations exploited in the proof of
Theorem (2.3.1). For every h > 1, (1 + i) is totally ramified in Dpo.
Moreover, the prime B of Dy, lying over (1 + i) can be generated by the

element
2

= —""
Yn — Yh—1
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Proof. Since A(Dp,42]Q(4)) is divisible only by (1+44), and since no nontrivial
extension of Q(7) can have its discriminant equal to a unit, (1 + ¢) must be
equal to the 2"-th power of a prime B of Dj_ .

For every n < h let us consider

2
Tn = ————— € k(yn)
Yn — Yn—1
Since y, is a root of
22 = 2y, —1=0

the Q(7)(yn—1)-automorphism of Dy, 12 = Q(%)(yy) different from the identity
sends ¥, in 2iy,—1 — y, and consequently

T 2
T Ty = =
T iy 1 — Yn — Yna
Using the fact that
(20 — 1)y +1
Yy —Yj-1= ——F

2iyn
and

2iyjy;1 =y; — 1
we can see that
—2(1+14)

Yn—1 — Yn—2
’ —1 2

TnTh = .
Yn—1 Yn—1 — Yn—2

/
T+ 7, =

n

We have already seen that the y;’s are units: hence, 7, is an integer if

2 is an integer. Then by induction we only need to prove

Tn—1 = Yn—1—"Yn—2

that
2 2

Y-y Yyt
is an integer: this can be done by simply observing that the trace of 7 is
equal to —2¢ and that its norm is -(1 +4). Since

1

No@)wiew () = Nae @a-nie@ Now @)1e@ w1 ()

i 2
= Nog i :
Q00) (va-1)1Q() <yn_1 T yn_2>

= eaNg()(yn_1)0G0) (Th-1)

where €, is a unit, so by induction, we conclude that

No@) )@ (Ta) = eNggi) ) (r) = —€(1 +19)
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and that
(Tn)Qn =(1+1)

as ideals. Consequently the same holds also for n = h, so we get
(m)*" = (1+1)

as we wanted to prove. ]

2.4 The case of the division of the lemniscate by
a composite number

In previous sections, we have described the extensions that we can obtain
by choosing any prime p € Z[i] and adding to Q(4) the polar distances of the
ph-division points (h € N). So a natural question is to ask what happens
when instead of a prime we are considering a composite number A € Z[i].
Also in this case, in complete analogy with what we have done before, let us
define C'\ as the field obtained by adding to Q(¢) the polar distances of the
A-division points. Unluckily, we are not able to give a satisfying description
of the minimum polynomial of the polar distances of the A-division points.
Nevertheless, we have at hand the following result

Theorem 2.4.1. If the prime factorization of A € Q(i) is A = p/™ ... pl»
where p1, ..., pn are pairwise different primes, then the field C) is contained
in the composite field
Cp?l C’p;m . .C’pgn
where if p; is equal to (14 i) for some j we are denoting by C n; the field
p.

Dy, and we are setting conventionally D1 = Dy = Q(3).

Proof. We will proceed in the following way:

Step 1 : the theorem holds for A = p1ps

Step 2 : the theorem holds for A = p’fpg for every h (and hence for A = plpg

for every h due to the symmetry of the argument).

Step 3 : the theorem holds for A = p}fpl2 for every h,l.

Step 4 : the theorem holds in general.

Step 1: in order to prove that C\ C Cp C),, it is enough to show that
©(p%) € Cp,Cyp, for all p € Z[i]. Note that if p is divisible by A, then
©(p%) =0 € Cp,Cp,, and if p = cpy where ¢ is coprime with po,

w

w
SD(pX) = 90(6172) S sz - CPICPZ
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(and we can repeat the argument for p = cpy) so actually we only need to
consider the elements coprime with \; moreover, using the periodicity of
©(u), we can restrict ourselves to the ¢(\) invertible elements of /\ZZ%. At

this point, let ¢ € (%) . Suppose that p; and py are both different from
(1 + 7). Due to Bézout’s identity, we can represent ¢ as
¢ =mnp1+Ep2
where i il
Z[i) \* Z[i] \"
€ - and £ € ;
0 (jz1) € (3z00)
Then, if we set
Cw fw nw
w=->= u=-—, v=-—
A D1 P2

we obviously get, using the Corollary (1.1.1)

it @) W)F) + o) ()P
Py = o gy W) = elut) L @2 (w)e(0)

We have seen before (in the proof of Theorem (2.1.2)) that when p; is prime
f(u)F(u) ~ (i +1) € Cp, (and so we also have f(v)F(v) ~ (i+1) € Cp,):
hence in this case p(w) is equal to a rational expression of elements of Cp,
and Cp,, thus p(w) € Cp,C),, i.e C\ C Cp, Cp,.

If at the contrary ps = (1 + i), we simply observe that we always have

(1+14)p (pru)
[ (p1u) F (pru)

so the (i + 1)p;-division points are exactly the pi-division points, and thus
they all belong to Cy, .

Step 2 : here we proceed by induction on the exponent h. We have proved
the case h = 1 in the previous step, so we only need to prove the claim for
n + 1 supposing it holds for n. So let A = p’prZ. As before, we only need
to consider the elements coprime with A: in fact, if p is a multiple of A,

p(py) =0¢€ Cp?HCm; if p = cpa # 0 mod A then

o (1 +i)pru) =

w w
Sp(px) = @(C}F) € Cp?+1 - Cp?HCpQ
and finally if p = ¢p; then

w
DTP2

w
so(px) = p(c——) € CpnCy,

by induction, which implies that p(p%) € Cp?+1 Cp, since Cpr C Cp?“' If
p1 is odd, using the same argument as before we can conclude if we are able
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. *
to prove that for every £ € ( Z[1] ) ’

Py L]
w W
p1+1 p1+1 P

But this can easily be done by copying the argument used in the proof of
Theorem (2.1.2), since as we have remarked previously in Subsection (2.2.1)
p1 is totally ramified in Cp?ﬂ, and it is equal to the product of all the roots

of the p?“—division, being the constant term of the polynomial ;1.
If p1 = (1 4 ¢) we have to prove directly that

f(§

(1 +Z’)n+1 )F(f(l + 1)n+1

) € Dn+1

Since £ is coprime with (1+41), we get that £ = a+1ib where a,b € Z and a+b
is odd so we can suppose that b is even and a is odd, so that x = w(ﬁW)

is the polar distance of one of the (1+4)"*!-division points. Hence z € D, 1

and
— w D
Yo = §W € Un
We know that D, 1 can be generated by adding to D,, the roots «a, 3 of the

polynomial X2 —2iy, X —1. Let us set o = iy, ++/1 — y2: then ax? € Dy,
but

= i+iV1—at

= i+ Z‘f(g(l +C;)"+1 )F(f(l +u1})"+1)

so we are done, and we can conclude as in the other case.

Step 3 : Since we have proved that the statement holds for A = p’fpg for
every h, and for A = p1p}, for every I, the idea here is use the induction for
N x N. We are proceeding in this way: our claim is

"if a couple of exponents (h,l) is such that the statement holds for every
couple (n,m) where (n,m) < (h,l) according to the reverse lexicographic
order, then the statement holds for (h,l)”.

Note that (if we are able to prove the claim) we really cover N x N; in fact
it is easy to see that representing N x N using the first quadrant of the
cartesian coordinate system, keeping in mind that due to the symmetry of
the problem we only need to consider the part of the quadrant above the
diagonal (because if we prove something for (h,1) it also holds for (I, h)), if
we ideally choose at each step the point of integer coordinates that is less
distant from the origin according to the reverse lexicographic order we really
take into account all the points of N x N.

71



We first need to prove that the claim holds for (2,2): if p € Z[i] is not
coprime with A = p%p%, it could mean that

e p is a multiple of A\, so we conclude as before.

e p = cp; where c is coprime with p;p2 hence

w w
SO(pX) = SO(CMT%) € Cplcp% - Cp%Cpg

using Step 2 (and the same argument applies in case p = cpy where ¢

is coprime with p;p2)

e p = cpi1p2 where c is coprime with pips hence
w

w
YN ofe
w(pA) o( s

) € CPI CPQ g Cpfcpg

using Step 1

p = cp? where c is coprime with py hence

w w
QD(IOX) = (p(C;%) € Cp% - Cp%Cpg

(and the same argument applies in case p = cpg where ¢ is coprime

with pl)

e p = cp1p3 where c is coprime with p; hence

w w
‘P(Px) = ‘P(CPT) € Cp CCprly

(and the same argument applies in case p = cpap? where c is coprime

with p9)

So we can restrict ourselves to the elements p which are coprime with A, and

in this case we can follow the argument used before, and we can conclude

directly since we know from the proof of the previous step that for every
Z[4]

*
prime p, every natural integer n and for every £ € (W) )

w w
f(§ﬁ)F(§ﬁ) € Cpn

Now we are ready to prove the claim. It is now evident that the only thing
that we have to prove is that we can restrict ourselves to the case in which
the element p is coprime with A = py"p,!. Thus, let us suppose that p is not
coprime:

o if p is a multiple of A then ¢(p%) =0€ CpnCpy.
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o if p = cphp; for some s < h,r <[ (where at least one between s and r

is different from 0) and ¢ is coprime with p;p2, we get
w w
elp~) = pleg——
A p’f Spat=r
and by the inductive hypothesis ( since (h—s,l —r) < (h,1) ) this last
element belongs to Cph—scpzl—r, which is contained in Cpth’pl2 )
1

Therefore also Step 3 is proven.
Step 4 : here we have to follow a slightly different path. There are two
substeps that need to be made, i.e we must prove the following claims:

a)

Let A,, be the set of elements A in Z[i] such that the prime factorization
of X involves less than n + 1 primes. If the statement holds for all the
elements in A,,, choosing A € A,, and a prime p which does not divide
A then the statement holds for Ap.

If the statement holds for all the elements in A,,, choosing A € A,, and
a prime p which does not divide A then the statement holds for \p"
for every h € N.

Note that since the case n = 1 of both claims has been proved earlier,
(Step 1 and Step 2), and since trough a) and b) we basically show that
if the statement holds for A, then it holds for A, 1, the two substeps are
enough to conclude with the proof of this theorem.

Let us start with a). First of all, as usual, we have to show that we can
restrict ourselves to the elements coprime with Ap. If p is not coprime with
Ap, then the following cases can occur:

If p is a multiple of Ap we conclude as in the previous cases.

if p = ¢p for some integer ¢, then if A = py™ip"2 . p,/»

w w
SD(p)Tp) = @(CX) € Cpibl Cp;v . ..szn
since we are supposing that the statement holds for A,,, and this last
field is obviously a subfield of Cphl Cph2 .. .Cphn Cp.
1 2 n

If p is not divisible by p, there must be an element ¢ € Z[i] such that
A =cd and p = ce. Hence

w
e

dp)
and now e is coprime with dp. Moreover, the primes dividing d are
some of the primes dividing A, so if we prove that the statement holds
for dp, then it holds for Ap, since we have C;n C Cy i1 for every prime
s. Furthermore, due to the previous discussion, the fact that d € A,
shows that we actually can restrict ourselves to the cases in which p
is coprime with .

@(p%p) = ¢(

73



At this point, we need to use the following general property:

Lemma 2.4.1. Let i € Z[i] be odd. Then f(%)F(%) € Cy.

Proof. Since p — 1 is even, by Proposition (1.5.2)
e((n = Du) = @(u) f(w) F(u)T

where T is a rational function of ¢(u)*. Moreover,

(- 1);) = p(w — ;) = 30(;)
thus w W w w
90(;) = @(;)f(ﬁ)F(;)T
and finally .
f(ﬁ)F(ﬁ) =7 € Cy

O]

This result gives use the possibility to repeat the previous argument
(because the polar distance of every u-division point is a rational expression
of (%) ). In fact, if (i+1) is the maximum power of (1+4) which divides Ap

it holds as before that the Ap-division points are exactly the (l’\Tpi)—division
points. If on the contrary there is an h > 2 such that (1+4)" is the maximum
power of (1 + i) dividing Ap , we only have to make sure that we consider
Ap as the product of (1:\5‘)h and (1 +4)", which is always possible. Finally,
we should prove b), and we will do it by induction. In point a) we proved
the case h = 1, now we should show that the statement holds for h + 1 if
we suppose it holds for h. Clearly this is equivalent (using what we have
seen in the previous steps and in a)) to prove that we can always restrict
ourselves to a coprime element also in this case. In fact, if p is not coprime

with A\p"*1, then the following cases can occur:

e If p is a multiple of Ap we conclude as in the previous cases.

e if p = cp® for some integer ¢, and some s < h + 1 then since A =
p"Mpa" L pptn
w _ ﬁ h+1—s
Sp(p/\ph—&-l) - QD(C/\p ) € Cpiq Cp;Q s CpZn Cpthlfs

by the inductive hypothesis, and since the last field is a subfield of
Cph1 Cph2 . Cphn Cph+1, we conclude.
1 2 n
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e If p is not divisible by p, there must be an element ¢ € Z[i| such that
A =cd and p = ce. Hence

w w
SO(ﬂw) = 80(€W)

and repeating the argument used in a) we can conclude.

2.5 Prime ideals decomposition in C»

A crucial information that we need in order to fully understand the fields
that we have considered so far is the following:

Proposition 2.5.1. Let p € Z[i] be any prime, and h € N. If p is odd
and m is its norm, set M = @(u") = m"1(m — 1) and let K = Cun. If
p=(141) set M =2"2 and K = Dy,. Then:

i) w is totally ramified in K. Let 9 be the prime ideal (gp(:’—h)) if uois
odd, and the ideal generated by m if u=(i+1). Then we have
that

pOx = MM

it) If v € Z[i] is an odd prime different from p, and f is the smallest
integer such that vf =1 mod pu", then

UOK = 9”(1‘)12 .. .‘th
where gf = M and the M;’s are pairwise different primes.

i11) If (i+1) # p, let g be such that gf = % where f is the smallest integer
such that (i + 1)7 = i€ mod p" for some e € {0,1,2,3}. Then

(i+1)0x = (P1%2...B,y)*

Proof. Point i) was already discussed for p odd in Subsection (2.2.1), and
and for (i + 1) in Proposition (2.3.2), so we only have to focus on i) and
).

Consider any odd prime v € Z[i] different from p, and denote by n its norm
over Q(i). If z = ¢(u) is one root of the p-division polynomial, then clearly
also 2/ = ¢(vu) is a root. Since we know that

P,(x)
Qu(z)

/

r' = p(pu) = p(u)
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using the description of P, (z) and @, (x) given in Proposition (1.5.3) we get
that we can find two suitable integers v and 4 such that

r =r———
vy +1

This directly implies that 2’ = 2™ mod v. Note that we can’t find another
root " such that 2”7 = 2™ mod v, because then 2’ — z” would be divisible by
v, contradicting the fact that since a/, 2" are roots of the p'- division poly-
nomial they are associated and z’ — z” belongs only to the primes dividing
. At this point, let us consider the Q()-automorphism of K mapping x to
a2’ (we will denote it by o). If we write o; to denote the composition

g000...00
N e’

l—times

we immediately have that

nl

oi(z) = 2™ mod v

hence if r is the order of o in Gal(K/Q(i)) it holds that

nT:

T z mod v

Let us remark that r is the smallest possible exponent for this congruence,
since as we have seen before " # 2™ mod v for every root z” # x’.
Now consider an integer # € Og. Since it can be represented as

0=0by+brz+...+by_q1zM?!

where the b;’s are all gaussian integers, it holds that

0" =6 mod v
In fact, since the binomial coefficients (";) where 0 < ¢ < n” are all divisible
by n (which is a rational prime being the norm of a prime) and n = vv we
have that

r

o" bgT + (blx + ...+ bM_l.%'M_l)nr mod v

= b 40 2™ 4 (box? ... 4 by12™H™ mod v

= o 0" by MY mod v

But since n is the norm of v, for every integer b € Z[i] it holds that b =
b mod v, and as we have already seen 2" = x mod v, so

" =0 mod v
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as wanted to show. Then of course the norm of any prime ideal 91 lying over
v must be a power of n of exponent f < r (f is the relative degree of 9 over
v). Note that the equivalence

f
2" =z mod N

cannot hold for f < r. In fact, since we are in a Galois extension, this would
mean that the same equivalence holds for all the other primes lying over v,
and we would obtain that

2" =z mod v
but this contradicts the fact that r is the smallest exponent such that 2" =
x mod v. Hence f = r, but we still have to show that vf = 1 mod p. We
know that o(p(u)) = p(vu), so

which implies that
(v u) = o(u)

for every u such that ¢(u) is a root of the p-division polynomial. This

means that actually "

7)

=

thus we can find ¢,d € Z such

w w .
Vi— = — + aw + dwi
1
and finally
V" =1 mod p"

Therefore the proof of point i) can be completed by noticing that since
r is the order of o, it is the smallest number which can satisfy the last
congruence, and by recalling that v does not ramify in K since it does not
divide the discriminant.

iii) As usual, denote by x = ¢(u) a root of the p/-division polynomial. In
order to analyze the decomposition of (i + 1) in C», in analogy with what
we have done in the proof of Theorem (2.1.2) let us consider K’, the unique
subfield of C,n of index 4. As we have seen there, if we set a = (1 —2¢) then

the powers of the element
B zt —a
YTy

form an integral basis of K’ (recall that in the proof of Theorem (2.4.1) we
have seen that f(u)F(u)~ (i+1) in Cpn).

Now, let us consider

(i + Dop(u)

v =o((i+1)u) = FaF ()
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which is clearly another root of the u-division polynomial, and define

, T —a
YTy
Since
, xt a
Y = A1z 14
(x4 —1) 4
 (y+a)+al2y— i)?
4(2y —i)?
—ay® — (1 —ia)y
- (2y — 1)
we get that

;o —(1=20)y* 4+ (1+1)y

V= — g =Y med(+])

Furthermore, suppose that there is another root z” of the u/-division poly-

nomial such that 3" = # satisfies the last congruence: then

13/4 _ :L'//4

1 =9y —y"=0mod (i +1)

which is absurd since 2% and 2 are associated and z'* — 2% € pOg. At
this point we can clearly repeat the argument used in the previous point,
and we get that if f is the smallest integer such that (1 +i)*/ =1 mod p”,
then

(1 +Z)OK/ =p1p2.. 'pg

where gf = % and the p;’s are pairwise different prime ideals. But in the
proof of Theorem (2.1.2) we saw that K’ is the inertia field of (i + 1): so we
can conclude directly that

(1+9)0Kx = (P1%P2...By)*

where the 3;’s are pairwise different prime ideals. ]

2.6 The definition and the statement

With the work we have done so far, we have shown the existence of a large
number of different field extensions of Q(7) linked to the division points of
the lemniscate. For future reference, let us enlist the results here.

Lemma 2.6.1. Let pu € Z[i] be an odd prime, m its norm.
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i) If p* is the mazimum power of the odd prime p dividing m — 1, for
every A < h we can find a subfield C' C C,, such that the discriminant
of C over Q(i) is equal to ,upkfl and Q(i) C C is a cyclic extension of
degree p*.

i) If 2" is the mazimum power of 2 dividing %(m — 1), for every A < h
there exist a cyclic extension Qi) C C' C 9‘ such that [C : Q(i) = 2*
and the discriminant of C over Q(i) is u* ~1. Moreover, if
A€ {h+1,h+2} there is a cyclic extension of Q(i) of degree 2* such
that the discriminant is equal to (1 + i)QA,uQX_l.

Moreover

iii) If ¢ € Z is a prime that splits in Q(i) and w € Zl[i] is a prime dividing
q, then for every A\ € N there is a cyclic extension of Q(3) of degree ¢*
such that its discriminant over Q(i) is a power of .

w) If ¢ € Z is a prime which is inert in Q(i), then for every X € N we
can find ¢* + 1 cyclic extensions of Q(i) with discriminant over Q(q)
equal to a power of q.

v) For every A € N, we can find 2 +1 cyclic extensions of Q(i) of degree
2) whose discriminant is a power of (1 + 7).

Note that i) and i) were proven in Theorem (2.1.2), 7ii) and iv) in
Subsection (2.2.1), and finally v) was proven in Corollary (2.3.1).

Actually, we can prove that the fields listed in 7) and 4¢) of Lemma (2.6.1)
are unique:

Lemma 2.6.2. Let p € Q(i) be a prime number, m its norm, pl the the
highest power of the odd prime number p € Z dividing m — 1.

Let Q(i) C T be a cyclic extension with [ : Q(i)] = p/ for some h' < h, and
such that its discriminant is not divisible by any prime factor except for p.
Then I' coincides with one of the elementary lemniscate fields we described
in Lemma (2.6.1).

Proof. Let’s suppose that I is different from the elementary lemniscate field
C with same degree that we find in Lemma (2.6.1). Then we can consider
the composite field K = I'C, and note that

P <K Q)] < [0 QM)(C: Q)] = p™

Hence there must be an n such that A’ < n < 2h" and [K : Q(i)] = p".
Suppose that k is a subfield of K such that k is cyclic over Q(i). Then, due
to the structure of the composite field, it must be K C C or £ C I', and
hence [k : Q(i)] < p"'.

Now we look at the ramification field of p in K. Let V any subfield of K

/

79



in which p ramifies. Recall that m = a/V where fy is the inertial degree of
win V, and a is the prime such that (a) = (1) N Z. It is known that since
Z|i] is the ring of integer of Q(4) it holds that

Zli)
pli]

o =m = ol
Zji

nZli]
be a prime of V' lying over p, and let ey = e(n|p) be the ramification index.

ey must divide p™: in fact, if ' is a prime of K lying over 7, then 7’ lies
over p and

hence

has characteristic a # 1, and since alm, a { (m — 1). Now, let 7

e(n'|p) = e(n'[n)e(n|w)

and at the same time

e('|w) f(n'lw)g(n'|p) = [K : Q)] = p"

Hence a, the characteristic of #ZZ—[%, is coprime with ey, since otherwise we
would have a = p|(m — 1) which is a contradiction. Due to the fact that V'
was chosen arbitrarily, all this means that K itself is the ramification field
of ©in K, and so that the extension is tamely ramified.

In this situation, the inertia group of u is cyclic. In order to prove this claim,

we consider the higher ramification groups.

Definition 2.6.1. Let n be a prime of K lying over u, and let Og be the
ring of integers of K. For every integer n > 1, we call n-th ramification
group of n the subgroup of the inertia group T'

G,={0c€eG|o(a)=a mod (n)" for all @« € Og}

Note that G; = T and that the groups form a descending chain, and that
Gy, is reduced to the identity for n large enough. Moreover, it is possible to
prove (for example as in [21], Chapter V, §.10, Theorem 25) that
Theorem 2.6.1. G% is isomorphic to a subgroup of the multiplicative group
of n%—f; and it is therefore cyclic. For every i > 2, % s isomorphic to a

subgroup of the additive group of 77%—";

Now let 7 be the minimum index such that G = {1}. Then

Gl = 15271
Gr
but since Gg—;l is isomorphic to a subgroup of the additive group of n%—‘;,

and the latter has cardinality a/¥, this means that |G_1| divides a/%. At
the same time, being a subgroup of T', Gz_1 must have a cardinality that
divides ex, and so G—1 = {1} because ex and alf® are coprime. Repeating
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the argument, we find that for every i > 2, G; = {1}, and thus in particular
T= % is cyclic.

Since T is a cyclic subgroup of Gal(K/Q(i)), and since we know that the
latter is isomorphic to Gal(I'/Q(i)) x Gal(C/Q(7)), it must necessarily be
that

e =|T| < p" (2.19)

On the other hand, we know that C' C (), and so we are in the following

situation: . ,
N
\@( ')/

We know from Theorem (2.1.2) that p is totally ramified in C), and so
it must be totally ramified also in C'. This means that ec = ph/, and so ey,
which is a multiple of ec, must be bigger than ph/. So, using Eq. (2.19),
we get that e, = p/, that implies that the inertia field K7, i. e the field
fixed by T, is of degree p" " over Q(7). The assumption n > b’ implies that
KT is a nontrivial extension of Q(i), and its discriminant is not divisible
by p (otherwise p would ramify). But since the inertia field is a subfield
of K, and the discriminant of the composite field K is only divisible by
© by construction, we get that K7 is a nontrivial extension of Q(i) whose
discriminant is a unit, which is absurd. Hence n = b’ , and this implies that
K =T, which means that C' and I" are actually the same field, as we wanted
to prove. O

Remark 2.6.1. The previous Lemma holds also if we consider p = 2 and
pl is chosen to be the highest power of 2 dividing %(m —1). The proof is
identical to the one used in the odd case: we choose p” to be the highest
power of 2 dividing §(m — 1) (instead of m — 1) only because we have seen
that the discriminant of the subextensions of C,, of degree 2"*1 and 22 is
divided also by (1 + ) (so for these fields we cannot use the final argument
regarding K7).

Using all these results with Theorem (2.4.1), it is clear that the following
result holds:

Theorem 2.6.2. Every field C,, obtained from the division of the lemnis-
cate is contained in a field that is the composite of a finite number of the
fields described in Lemma (2.6.1). Being the composite of a finite number
of abelian fields, the composite field is abelian, and so also C}, is an abelian
extension of Q(i).
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At this point, the similarity to the situation we encounter with the cyclo-
tomic extensions of Q gives the motivation in order to introduce the following
definition

Definition 2.6.2. We call lemniscate field any field extension Q(i) C K
such that K is one of the fields described in Lemma (2.6.1), and also any
composite field obtained by composing a finite number of the previous fields.

Definition 2.6.3. An extension Q(i) C K is said to be a lemniscate
extension if K is the subfield of a lemniscate field.

So finally we can state the main result we are going to prove in this
thesis:

Takagi’s Theorem. Every abelian field extension Q(i) C K which is finite
s a lemniscate extension.
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Chapter 3

The proof of Takagi’s
Theorem

In order to prove Takagi’s Theorem, we will need to make different reduc-
tion steps. It may be interesting to remark that from this point of view
there are several similarities between the techniques that Takagi uses and
the ones that are exploited in Hilbert’s proof of the Kroneker-Weber Theo-
rem, as it might be seen reading the paper of Greenberg on the subject ([8]).

3.1 Reduction to prime power order.

Proposition 3.1.1. If Takagi’s Theorem is true for cyclic extensions of
Q(i) whose degree over Q(i) is a prime power, then it holds for all finite
abelian extensions of Q(i).

Proof. Suppose that we have a finite abelian extension Q(z) C K with Galois
group G = Gal(K/Q(i)). Using the Structure Theorem for finite abelian
groups, we can decompose G into the direct product of r cyclic subgroups
G; whose order is a prime power. If K is the subfield fixed by Hj# G}, since
K/Q(i) is a Galois extension, it holds that Gal(K;/Q) = G/[1,.,G: = G;.
Moreover, K is equal to E , the field obtained by composing all the K;: in
fact, E is surely contained in K, thus Gal(K/E) C Gal(K/K;) =[], Gi
for all 7. This implies that Gal(K/E) C (<<, [[;,Gi = {1¢} and so
K=F.

Then, if we prove that all the extensions that have a cyclic Galois group
of prime power order are lemniscate extension, then K is a subfield of some
lemniscate extension for all 7, and thus, due to the definition of lemniscate
extension, also the composite field K is a lemniscate extension. ]
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3.2 The second reduction step

In order to proceed with the proof of Takagi’s Theorem, we would like to be
able to determine exactly the elements dividing the discriminant of the ex-
tension that we are considering. The second (and most important) reduction
step is the one illustrated by the following

Proposition 3.2.1. In order to prove that Takagi’s Theorem holds for cyclic
extensions Q(i) C K such that [K : Q(i)] = p" for p prime, we can reduce
ourselves to the case in which the discriminant of the extension is divisible
only by the primes p € Q(i) dividing p.

Since the proof of this statement is quite long, and involves different
intermediate steps, we need to first prove some additional results.

Proposition 3.2.2. Let Q(i) C C be a cyclic extension of degree p" where
p is prime, and for all k < h denote by C) the unique subextension of C
such that [Cy : Q(i)] = p*. Suppose that the discriminant of Q(i) C C is
divided by a prime u € Z[i] which is coprime with p. If u ramifies in Cy, we
can find a cyclic extension Q(i) C D C C}, such that

e DM =CyM
e DN M =Q().

e the discriminant of Q(i) C D is divisible by all prime factors dividing
the discriminant Q(i) C Cy, except for p.

where we denote by M the unique lemniscate field of degree [M : Q(i)] = p"

whose discriminant is divisible only by p.

Proof. Using Lemma (2.1.3), we have that m — 1 = mod p". Since the last
congruence holds, we can find a suitable field M among the fields listed in
Lemma (2.6.1), and according to Lemma (2.6.2) M is then the only field
with these characteristics. Suppose Q(i) C C;, N M. According to Corollary
(2.1.2) the composite field C, M is an abelian extension of Q(i) of degree
[ChM = Qi)] = p"t for a certain B’ < h. Using Proposition (2.1.3) we
can find another cyclic extension C* of Q(i) of degree [C* : Q(i)] = p" such
that Cp,M = C*M and C* N M = Q(i). For this reason,

an) = () o (@) * o (i)

Gal — | = Gal — | =2 Gal — | X Gal | —=

< Q(i) Q(7) Q(4) Q(i)

where Gal(C*/Q(4)) is cyclic of order p" and Gal(M/Q(i)) is cyclic of order
p". What we want to prove next is that the inertia group 7" of y in C, M is
cyclic of order p". We start by considering that if we have a cyclic extension
of C, M, due to the structure of Gal(Cy,M/Q(7)) this extension must be of
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degree smaller than p”. Note that if m is the norm of u, and (1) NZ = (a),
we have that m = N(u) = o/ and

2
pili]

so that “ZZ[Z[‘}I.] has characteristic a, with a such that a|m and a does not divide
m — 1. Using the same argument as in Lemma (2.6.2), we first observe that
CpM is a tamely ramified extension of Q(7), and then that the inertia group
is cyclic. Furthermore, we know that M C (), and so we are in the following

situation:

=af

Cp,M

/\/
\/

So, p must be totally ramified in M (since it is totally ramified in C),) and
so denoting by e(K|u) the ramification index of p in an extension K we get

p" =M Q(i)] = e(M|p) < e(ChM|p) = |T| < p"

Then the inertia field (that we are going to denote by CT) has degree
[CT - Q(i)] = p'. Note that since

(i) =0 (em) o (aw)
we have that

oty _ Gal (%) Gal(§

Gal = =
“(am) = r
and since T is cyclic of order p”, it must be that

oa(Gh)=eu (&)

so that C7T is a cyclic extension of Q(i). Furthermore, since y is totally
ramified in M and inert in C7, it holds that M N CT = Q(i). On the other
hand, MCT C MC}, and

[MCT - Q(i)] = [M : Q(i)][CT : Q(i)] = p"*"" = [MCy, : Q(i)]

hence MCj, = MCT.

Finally, the discriminant of the extension Q(i) € C” is divisible by all the
prime factors dividing the discriminant Q(z) C C}, except for u: in fact, all
the primes ramifying in C}, ramifies in C, M = CT M but they don’t ramify
in M so they have to ramify in C7. O
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Proposition 3.2.3. Proposition (3.2.2) holds also if the first field in which
w ramifies is Cp, 1 < k < h.

Proof. We proceed by induction. We already proved the case i = 1, so now
we suppose that the statement holds for i = k£ and we prove it for i = k + 1.
The congruence

m =1 mod p"~ ¥
holds, so we consider the cyclic extension Q(i) C M where [M : Q(i)] = p"~*
and such that the only prime ramifying in M is u. Repeating the argument
used in the case i = 1, we can suppose that C, N M = Q(7) and we have

that
oa (G = () ou (&)

Let pr = mymy...m, be the decomposition of x4 in prime ideals of Cj,(u is not
ramified in Cj by hypothesis, so all the m; are distinct). For every i let I;
be a prime lying over m; in C;, M. We want to prove that the p"~*-th power
of (M;) divides exactly m; in Cp, M. In order to do so, we note that u is
totally ramified in M, since this field is a subextension of C), and p is totally
ramified in C,. This implies that the ramification index of p in C, M is

e(plChM) = p"*
At the same time,
e(p|CrLM) = e(u|Cr)e(m|CL,M) = e(m|C, M)
since p is not ramified in Cj. Hence
e(m|CyL M) > ph=F

For the same reasons as in the previous proofs, the extension Cy C Cp M is
tamely ramified, and so using the same argument as before we see that the
inertia group 7' is cyclic. But the subgroup of

oa (G = () ou (&)

corresponding to the extension Cy, C Cy M is the subgroup formed by all the
transformations fixing C%, so it must be the direct product of a subgroup
of Gal(Cy,/Q(4)) of order p"~* with Gal(M/Q(i)). As a consequence, every
cyclic subgroup of Gal(MC},/Cy) must have order at most p"~*, and this
means that

e(m|CpM) = |T| = p"~*

Thus, the p"~*-th power of (9M;) divides exactly m; in Cj, M, and therefore
the ramification index of p in Cp M is exactly p"~*. Note that as before,
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we can prove that also Q(i) € M}, is tamely ramified: as a consequence,
T, which is the inertia group of this last extension, is cyclic, of order phk.
The inertia field, that we will denote by C7, is then of degree

e iy = I

Furthermore, Q(i) C C7 is a cyclic extension, since

Gal ( cr ) = Gl <%(Jz\;[)

Q(7) T

and we can proceed as in the previous proof. Moreover, CT N M = Q(i) (u
is totally ramified in M, and inert in QT) and by looking at the degree of
the extension we find that MCy, = MCT. So the last thing we need to prove
is that the discriminant of this new extension is divisible by all the primes
dividing the discriminant of Q(i) C C}, except for p, but this is clear if we
reason as in the previous case. [

Having this machinery, we are now able to prove Proposition (3.2.1)
stating that

Proposition. In order to prove that Takagi’s Theorem holds for cyclic ex-
tensions Q(i) C K such that [K : Q(i)] = p" for p prime, we can reduce
ourselves to the case in which the discriminant of the extension is divisible
only by the primes p € Q(i) dividing p.

Proof. Let p be a prime dividing the discriminant of C, = K but which does
not divide p. From the previous Propositions, we know that, considering to
the first k such that p ramifies in C%, we can find a suitable elementary
lemniscate field M, and a field C}, depending on k and g such that:

e C) C M,Cj, = M,C!

e the discriminant of Q(i) C C]‘: is divisible by all prime factors dividing
the discriminant Q(¢) C C}, except for p.

o [C)': Q(4)] is a power of p.
e Q(i) C C¥ is a cyclic extension.

In the case in which there is another prime v € Q(7) which does not divide
p, we can repeat the argument for CJ/, that is we find another index &', and
two field M, and C} such that

o O C M,Cl = M,CY
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e the discriminant of Q(i) C CY is divisible by all prime factors dividing
the discriminant Q(i) C C}, except for u and v.

o [CY : Q(i)] is a power of p.
e Q(i) C CY} is a cyclic extension.
Therefore,
Cy € M,Cy, = M,Cl € M, M, C}' = M, M,C}

Repeating the argument for all the primes pi,..., us dividing the dis-
criminant of Q(¢z) C C}, but not dividing p, we find that

CnC M, ...M,C

where M,,,,..., M, are the elementary lemniscate fields described before
and C'is a cyclic extension of Q(7) of degree a power of p, whose discriminant
is only divisible by primes dividing p.

Then, if we are able to prove Takagi’s Theorem for 5, we are done, since if
C is contained in a lemniscate field V', then

CpC My, ..M, ,CCM, ..M,V

and then by definition C}, is a lemniscate extension, as we wanted to prove.
O

3.3 The final steps

In order to prove the Theorem, from what we have seen before, we only
need to consider the case of a cyclic extension Q(i) C C such that [C : Q(7)]
is a power of a prime p and such that the discriminant A(C|Q(%)) is only
divisible by elements of Q(z) dividing p.

We would like to be dealing with only one prime dividing the discrimi-
nant, but we know that if p = 1 mod 4 then pQ(i) = 7wy with m # 72, so
that it is possible that the discriminant is divided by two different primes.
In order to avoid this kind of problem, the idea is to separate the three cases
that may occur:

e p =1 mod 4 so that in this case pQ(i) = mmy with m # 7e, hence in
standard notation we have g = 2, the ramification index is e = 1 and
the inertia degree is f = 1.

e p=3mod4and hereg=1, e=1, f=2.
ep=2and2=(1+i)(1—1i) henceg=2,e=1, f=1.

and treat them with different techniques.
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3.3.1 p=1mod14

We first prove that the principle is true in a particular case and then we
show that this case is enough for our purposes.

Proposition 3.3.1. If p =1 mod 4 and C is a cyclic extension of Q(i) of
degree p* whose discriminant over Q(i) is a power of only one of the two
primes dividing p, then C is one of the elementary lemniscate fields whose
existence was proved in Lemma (2.6.1).

Proof. We proceed by induction on h. So in the case h = 1, suppose that we
have two different fields C' # C” with the same characteristics listed before.
We may consider the composite field CC’ and add a primitive p-th root
of unity ¢, obtaining an abelian extension K = C'C’({) which has degree
p?(p — 1) over Q(4): in fact, we conclude that ¢ ¢ C,C’ thinking about
the degree, and for the same reason C' N C’" = Q(¢). Considering as usual
Z = Q(i,¢), we have that since p = 1 mod 4 and p is totally ramified in
Q(¢), there are two primes p,p’ of Z = Q(i, () such that

pQ(i,¢) = (pp')P~*

Moreover, pQ(i) = 7', so 7Q(i,¢) = pP~ and #/Q(4,¢) = p’?~*. Further-
more, as it may be proved following [3], Lemma 3, Chapter 111, p. 87, if we
set n =1 — ¢ we get that
(n) = pp’
Now, we consider Z C C(¢). It holds that
[C(O):Q[)] _plp—1)

COA="Tzeer T Y

so the extension is necessarily cyclic and by Lemma (2.1.5) there must be an
element y in Z such that C(¢) = Z(y¥/x). Now we show that it is possible
to choose x with the property

x =1 mod p

since if x does not satisfy the congruence, we can use the same type of
argument we exploited in the proof of Lemma (2.1.3). In fact, if we choose
g € N such that 1 < g < p then the automorphism of Z sending ( into (9
(that we are going to denote by s) is a generator of Gal(Z/Q(7)), and we
have that
s(p) =9, s°(p) =p

So, following the idea of Lemma (2.1.3), we note that s> —1 and s — g are co-
prime modulo p, which means that we can find three polynomial expressions

f1(8), f2(s), f3(s) such that
1= (s> = 1)f1(s) + (s — g) fa(s) + pfs(s)
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As a consequence, since by Lemma (2.1.6) x*9 is a p-th power, there must
be an element o € Z such that

¥ = (DA

Seen that s%(p) = p, X(SZ_I) can be written as a fraction in which neither
the denominator nor the numerator are divisible by p. The same holds for
X(SQ_l)fl(s) which then can be written as

(DA Z X
aP
where x* € Z is an integer coprime with p and « is a rational integer. In
conclusion, x* = Z—ZX so clearly ¢/x* and y/x define the same field, and
X*=1mod p

Now, since p is an ideal of degree 1, the congruence

* —

x* = 1+ an mod p?
m = 1-0)

is satisfied by an element a € Z: in fact p = p? + pp’ since the two ideals are

coprime, and
Z Z

pZ L
We claim that a is not divisible by p. In fact, if a is divisible by p then
ac(p)=(pp)" " =p" ()P C PP Cp?

and then the congruence
x* =1 mod p?

holds. Now let d be the maximum natural number such that we can find
l € Z coprime with p such that

x* —1=In? mod pd*! (3.1)

and suppose d < p. Seen that x*79 is a p-th power, (x*)* 79 = (%)s—g 59

must be the p-th power of an element 5 € Z. Using the congruence (3.1),
we see that

B = (1+41n%)°79 mod p!
(1+1s(m)?) (1 + In®) ™9 mod p**!

First of all, let us remark that

s(n) =1—¢% = gn mod p?
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so 5(n)% = (gn)? mod p?*!. On the other hand,

1+InH91-nh? = (1—1n*?)9 mod pdt!
= 1 mod p¢*!
hence
1+nH™9 = (1-In%)9 mod pdtt
= 1— gln® mod p*!
Therefore,
AP = (L+Ugm?)(L — gln?) mod p*!

= 1+1(gn)?— gln® mod p?*+?

which implies first that § = 1 mod p and then P = 1 mod pP. Finally,
this means that I(gn)? = gln? mod p which is a contradiction, because g
is a primitive root modulo p and e < p; as a consequence, we get that
x* =1 mod p? and so

¢x*x=1mod p

At this point, if we choose an algebraic integer v € p’ \ p, we can define the

element y
w = 5(1 - /x*)

which is a root of the polynomial
(X —v)P + 07X
Since n =1 — (, v, x" are algebraic integers, and since

v(1—/x*) epp’ = (1-)

w is also an algebraic integer. Clearly, Z(w) = C((), so the discriminant of
the extension Z C C(¢) must divide the discriminant A(w|Z) of w. Using
Eq.(2.12) we get that

p(p—1)

Aw|Z) = (=1)" 2z Ngoz (p(nw —v)P~'n)
= ,,p(p—l)(x*)p—lppnp
But we know that (p) = (pp’)P~! and that n = (pp’), so we have
(pP1) = (pp')"®~) = 1 mod p

since p,p’ € Z = Q(i,¢) so the discriminant is coprime with p, and so p
does not ramify in C(¢). Now let B C Oc(¢) denote a prime ideal lying over
p. PP~1 is the maximal power of P that divides 7: in fact,

PBnzpt=pt=nr
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and as we have seen before p does not ramify in C(¢). This means that the
ramification index e(m|C(¢)) = p — 1 and so the inertia field DT related to
7 has degree

[DT . Q(Z)] _ [C(C) : @(2)] _ p(p - 1) =p
e(r|C(C)) p—1

But this result yields a contradiction. In fact, consider the intersection
DT nC: if DTN C = Qi) then since DT C C(¢) = CZ we have that
DT C Z which is absurd since [DT : Q(i)] =p >p—1=[Z: Q»:)]. If
otherwise, Q(i) € DT NC, then the intersection is a subfield of C, but since
[C : Q(i)] = p this implies DTNC = C. Then DT = C since [DT : Q(i)] = p,
and so at the same time 7 must be inert in D” and ramified in C, which is
impossible since the extension is not trivial. So, we are in the situation

x* = 1+ an mod p?
a # 0modp

With the same argument, we can find an element p such that
C'(€) = Q(i, ¢, ¢/p)
where

p = 1+ by mod p
b # 0modp

If we denote by ¢ an integer number satisfying
a+bc=0mod p
and we set 0 = x*p° € Z it holds that

0 = (1+an)(1+0bn)° mod p
(1+ an) (1 + cbn) mod p?

1 4 an + cbn + aben® mod p?
= 1 mod p?

Now suppose that C' # C’. In this case, 0 is not a p-th power in Z, seen

that
Vo= v

and ¥/x*, ¥p° ¢ Z. Since C(¢, {/0) = CC'(¢) = K as before we can find a
contradiction starting from the congruence

6 =1 mod p?
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In fact, starting from the last congruence we can find as before that p does
not ramify in K. Then, if Q C Ok is a prime ideal lying over p, exactly as
before we see that the maximum power of £ dividing 7 is p — 1, hence the
ramification index is e(7|K) = p — 1 and the inertia field DT C K of 7 has
degree [DT : Q(i)] = p?. Also in this case the intersection D! N C cannot be
trivial, because otherwise D C C’(¢) which is absurd because

[C'(¢) : Q(i)] =plp—1) < p* = [DT : Q(3)]

The only other possibility is D! N C' = C, which implies that C C DT but
this is impossible, because 7 is ramified in C and inert in D?. Hence C
must be equal to C’, proving our assertion for this case.

We are left to prove the inductive step. In order to do so, we suppose
that the statement holds for h = k — 1, and we prove it for h = k. Suppose
that we have two different fields C',C" with the same desired properties. If
Ci—1 and Cj_, are subfields respectively of C' and C” , such that they are
both cyclic extensions of Q(i) of degree p*~! by the inductive hypothesis
they must coincide.

However, composing C' and C’ we get a field K such that

€ QMIIC: Q@) _ o' _
[CNC Q)] ph—1

[K:Q(i)] =

By Proposition (2.1.3) K might be composed also by C' and another
cyclic extension Ly of Q(7) of degree [L; : Q(i)] = p such that L; NC = Q(7)
But then the discriminant of the extension Q(i) C L; must be a power of
w. Now note that, being a cyclic extension, C' has a subfield that has degree
p over Q(7), and whose discriminant is a power of 7 or an unit. By the
previous discussion, the first case implies that the subfield coincides with
L1, so that we find the contradiction L; C C. On the other hand, the other
case is impossible since [L; : Q(i) = p] and so L; would be a non trivial
extension of Q(i) with trivial discriminant. Therefore, C' and C’ must be
the same field, as we wanted to prove. ]

Lemma 3.3.1. Studying the case p = 1 mod 4, we can always reduce the
problem to the case in which the discriminant is the power of only one of
the two primes dividing p.

Proof. Suppose we have a cyclic extension Q(i) C C of degree p”, where
the discriminant is divided only by elements dividing p. If pQ(i) = 7’ is
the prime decomposition of p in Q(i), we denote by IIj and II; the two
elementary lemniscate fields of degree p* whose discriminant over Q(4) is
respectively a power of m or of 7. Let us consider the field P, = II,II}: it’s
an abelian extension of Q(i) of degree p?", seen that II, NI} = Q(4) since
the two discriminant are coprime. In P", we find p" + 1 different subfields
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of degree p" over Q(i) whose discriminant is divisible only by 7 and 7’: they
are built by composing, for every i € {1,...,h}, the subfield II;_; C IIj
of degree p"~* over Q(i) with the subfield IT}, C II} of degree p* over Q()
(where we set 1Ty = ITj, = Q(z)).

Now we want to prove that C' is one of these subfields. We proceed by
induction on h.

Suppose that h = 1, i.e. [C : Q(i)] = p. Consider a primitive p-th root of
unity ¢. As before, since p is totally ramified in Q((), there are two primes
p,p’ of Z =Q(i,¢) such that

pQ(i, Q) = (pp)""
If now we set K = CZ = C((), due the fact that we find ZNC = Q(i) by
looking at the degree of the two extensions, we get

1Z - Q(i)] p—1

and so Z C K must be a cyclic extension. Therefore, there is an element
X € Z such that K = Z(¢/X).

Also in this case it is possible to find a particular y such that there is an
element o € Z such that

x = 1+ an mod p?

where n =1 — ¢ and
a # 0 mod p

Moreover, since we can check easily that for every r € Z
¢"=1—rn mod p?
setting p = (“x we get that
p =1 mod p?

Consider now K’ = Q(i,¢, ¢/p). K' € K and the discriminant A(K’|Z) is
coprime with p since p = 1 mod p?: hence A(K'|Z) is only divided by p’.

Then K’ = ZII'. In fact, K' = ZQ(i, ¢/p) is an abelian extension satisfy-

ing the hypothesis of Proposition (2.1.3), so there must be a field Q(i) C C
such that [C: Q(i)] =p, CNZ =Q(i) and K' = ZC. Therefore

AK'|Q() = A(ZIQ()TROIA(C|Q(0)) #e)

and
A(K'Q(i) = Nyjaw) (AK'|2)) A(Z]Q(0) "7
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which implies that
A(C1Q()7 ) = Nyjga) (AK'|2))

because we know that [K’ : Z] = [C' : Q(i)]. Since A(K’|Z) is only divided
by p’, it means that A(C|Q(4)) is a power of 7', and from what we have seen
in Proposition (3.3.1), this implies that C' = II}.

In the same way, we can prove that also Ko = ZII; is a subfield of K. Thus,
we can consider the composite field KKy C K, but considering the degree,
it is actually true that K = Ky = K’'. Hence

K=K'Ky=ZII)ZIl) = ZILI| = ZP,

and since C' N Z = Q(7), this means that C C P; as we wanted to prove.
Now we want to prove it for a general h+ 1, supposing that the property

holds for h. If [C : Q(i)] = p"*!, we can consider the subfield C' C C such

that [C : Q(7)] = p". Then by induction C C Py, therefore we are in the

/\
\/

[C: QM)][E : Q)]
[Ch : Q(@)]
phtip2h
ph
= 2t

It follows that

[PnC = Q)] =

Being an abelian extension of Q(i) satisfying the hypothesis of Proposition
(2.1.3) P,C can be formed also by P}, and a field C such that C'N P, = Q(7)
and [C : Q(7)] = p. But again by induction, C' C P;, thus

P,C = P,C C P,P,

but
Py Py = LI IL 1T C 1,00, = P,

since IT; C IIj, and II} C IIj, so that
PyC C Py C Py

and finally C' C P}y as we wanted to show. ]
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3.3.2 p=3mod14

In Lemma (2.6.1) we have seen that for every prime ¢ = 3 mod 4 and any
h € N there are ¢" + 1 different cyclic extensions of Q(i) of degree ¢" and
whose discriminant is a power of ¢g. All those fields are subfields of an abelian
extension Q(i) C Qy, of degree ¢*".

Proposition 3.3.2. The fields listed in the previous discussion are all the
cyclic extensions of Q(i) with the property of having degree ¢ and discrim-
inant divisible only by q.

If we prove this Proposition, we have proved Takagi’s Theorem for this
case, since all the fields we are considering are lemniscate fields.

Proof. We first consider the case h = 1. Let ( be a primitive root of unity of
order ¢2. The extension Q(i) C Q(4,() is cyclic, and since [Q(4,¢) : Q(i)] =
q(q — 1) we can consider the unique subfield C of Q(i,¢) which is a cyclic
extension of Q(i) of degree q.

Claim 3.3.1. C is actually one of the g + 1 subfields of Q1.

Proof. Let us set Z = Q(i,(). Suppose that C ¢ Q1, and choose C' # C'
between the ¢+ 1 subfields of Q)1 of degree ¢q. By considering the degree, we
see that Q1 = C'C’. Moreover, since

[Z:Q(i)] = q(qg - 1)

and
[Q1:Q(i)] = ¢*

it holds that [Z N Q1 : Q(i)] must divide ¢. So if Z N Q1 # Q(i), it would
follow that ZNQ1 = C, since the latter is the unique subfield of Z of degree
q, contradicting the fact that C' ¢ Q1. As a consequence

Q(i) € Q1(¢) = CC'(Q)

is a field extension of degree ¢®(q — 1).
By [3], Lemma 3, Chapter III, p.87, we know that if n = 1 — ¢ then (n) = q
is a prime ideal such that

qOy = qq(q—l)

Furthermore, since Z C C(() is a cyclic extension satisfying the requests
of Lemma (2.1.5), following the argument that we used in order to prove
Proposition (3.3.1), we observe that there are x, 6 € Z such that

CzZ = C(r)=Z(Yx)
CZ = C(r)=2Z(V0)
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and

x = 1modq#1mod g
& = 1modq#1mod g

Copying what we did before, since q is of degree 1 in the extension Q(i) C Z
we can find a,a’, b, b’ € Z such that a + ib and a’ + it are not divisible by ¢
and such that

X = 1+ (a+ib)y mod ¢>
0 = 1+ (d +ib)n mod ¢°

Since for every r € Z it holds that
™ =1 —7rn mod ¢>
if we set
p=T1"x0°
(where r, ¢ € N are arbitrary) we obtain, by direct computation,
p =1+ (u+iv)n mod q

where u = a + ca’ —r and v = b+ cb’. At this point, we can choose ¢ and r
so that u and v are both divided by ¢, and consequently

p =1 mod g

From here, we can follow the argument used in the proof of Proposition
(3.3.1) in order to find a contradiction: in fact Q(i) C CZ(y/p) C CC'(C)
is an extension of degree ¢%(¢ — 1), and as before we can see that q is not
ramified there and that the ramification index of ¢ is equal to ¢(¢ — 1), so
that for the inertia field DT C CZ(/p) it holds that
T oy a1

(D7 Q) =L =
If now we consider the intersection DT N C, because of the degree we can
only have DT = C or DT N C = Q(3).
In the first case, we immediately have a contradiction, because ¢ ramifies in
C and it is inert in DT by definition. In the second case, note that

DT c cz(yp) c CC'(C)

thus the fact that DT N C = Q(i) implies that DT C C’(¢). Consequently,
DT N C" # Q(i), because otherwise DT C Z, but this is impossible because
q is totally ramified in Z and inert in D7 which is not the trivial extension.
Then considering again the degree we obtain that DT = C’, and we conclude
as in the first case: therefore C' must be contained in @1, as we wanted to
prove. ]

97



Now that we have proved this claim, we can continue with the proof of
the Proposition.

Let C # C be another of the q+ 1 subfields of @1, and suppose that there
is a cyclic extension Q(i) C C of degree ¢ whose discriminant is a power of ¢
and which is not contained in 1. Our goal now is to show that also in this
situation we can reproduce the argument used in the proof of Proposition
(3.3.1) and in the previous Claim: in order to do so, let us prove that

Q1C(1) = CC(¥/7)

where 7 is a primitive g-th root of unity.
Clearly

[Qi(7) : Q(0)] = [@1: Q)(a = 1) = ¢*(g = 1)

and at the same time

[C(¥7): Q)] = q[C(7) : Q)] = ¢*(¢ — 1)

Note that (¢/7)7 = 1 so ¢7 is a ¢2-root of unity which is also primitive
since 7 is. Then in C(¥/7) we can find all the g-th roots of unity, but the
same holds for Q;(7), because in C' C @Q; we can find all the ¢?-th roots of
unity that are not g-th roots of the unity, and by adding 7 we add all the
g-th roots (which are clearly ¢2-th roots too). Then, if we consider as before
the field of ¢?-th roots Z = Q(i,() we obtain, by considering the degree,
that CZ = Q1(7) (C cannot be contained in Z because C' is the unique field
with that property, and looking at the degree we get that C' N Z = Q(i))
but at the same time C'Z = C(¥/7) for the same reasons, so C(¥/7) = Q1(7)
and hence Q1C(1) = CC(¥T).

At this point, the proof becomes identical to the one we have used before
(we only have minor adjustments to make) so for sake of brevity here we are
proceeding a little faster than usual. Setting Z = Q(i,7), if n = 1 — 7 then
(n) = q is a prime ideal such that

q0z =q""

and arguing in the usual way we can find xs, 62 € Z such that

CZ = C()=2(¢yx)
CZ = C(r)=2(Y/0)

and

x2 = 1mod q#1 mod q?
1 mod q # 1 mod ¢?

>
no
|
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Since q is of degree 1 in the extension Q(i) C Z, as in the proof of the
previous claim we can choose opportunely c¢,r € N so that setting

p2 =T X205
we get,
p2 =1 mod ¢?
Then the extension Q(i) C CZ(¢/pz) is such that
e its degree is equal to ¢%(q — 1).
e q is not ramified in CZ(y/pz).
e the ramification index of ¢ is equal to ¢ — 1.

e the inertia field DT C CZ(/pz) has degree

ey Clg=1)
[DT-@(Z)] = W —q2

If DT'nC = Q(i), since

DT ¢ C(¢)(p2) € CC(Y/T)

we get that DT c C(¢/7), but this means that DT N C # Q(i), otherwise
we would have DT C Z(/7) which is impossible since

[Z(¢/7) : Q)] = a(g — 1) < ¢* = [D" : Qi)

Then DT N C = C because [C : Q(i)] is prime, and this is a contradiction
because ¢ is ramified in C' but not in its inertia field DT. If at the contrary
DT N C # Q(i), we get DT NC = C and we conclude as above, hence C
must be contained in ()1 as we wanted to show, and the proof of the case
h =1 is completed.

Now we are left to prove the inductive step: consider is a field extension
Q(7) C C with the required properties. By inductive hypothesis, the subfield
Cj,_1 C C of degree ¢"! must be contained in Qn, C @, so we can find a
fields C" C Qj, with the required properties and such that C N C" = C}y_;4
(we are supposing that C' # C’, otherwise there is nothing to prove) and

then
' oy~ €O Q6] _ o
e ="oneren) T

Consequently as in Proposition (3.3.1) we can find a field extension Q(¢) C L
of degree ¢ such that CC’ = C’L. Then, ¢ must be the only prime ramifying
in L, so by induction L C 1 C @y and finally

CC'=C'L C QnQ1C Qn

which means that C' C Q);, as we wanted to prove. O
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3.3.3 p=2

Proposition 3.3.3. Every cyclic extension Q(i) C C whose degree is a
power of 2 and whose discriminant is a power of 1+ i is a lemniscate ex-
tension.

Proof. Consider the abelian extension Q(i) C Dy of degree 4 obtained by
considering the (1+i)"-division points of the lemniscate. As we saw in The-
orem (2.3.1), this field is generated by the element y satisfying the equation

y? —2izy—1=0

where
22 -2 —-1=0

Then Dy = Q(y) = Q(y/x,i) with 2 = 14 /2.
Let us set now o := v/2+1 and 8 = v/2—1: a and 3 are in Dy, and so since

2(1+14) = (Va+iy/B)’

also /14,1 —1i € D4. Moreover, also Vi = \/%rz € Dy, hence

Q(vV4),Q(Vi+1),Q(vi—1) C Dy

and those are all the quadratic extensions of Q(i) with discriminant which
is a power of 1 + i. Hence the principle is true if we consider fields C' of
degree [C': Q()] = 2" where h = 1. Then we can repeat the inductive proof
used in the previous Propositions, and we are done.

O
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