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Introduction

The existence of consistent similarities between the theories related to the
division of the circle and that of the lemniscate was firstly recognized by
Gauss in the Discquisitiones Arithmeticae. There, while proving that a
regular n-gon can be constructed with ruler and compass if n = 2ap1p2 . . . pt
where the pj are distinct Fermat primes, the mathematician stated that the
principles underlying that theory apply not only to circular functions like
sine and cosine, but also to the transcendental functions “that depend on
the integral

∫
dt/
√

1− t4 ” which parametrizes the lemniscate ([14]). Abel,
during his work on the division equations on the elliptic functions, came
across the hint given by Gauss, and he was able to prove in his Recherches
sur les fonctions elliptiques ([1], [2]) that

Proposition. The lemniscate can be divided into n equal parts with ruler
and compass if n = 2ap1p2 . . . pt where the pj are distinct Fermat primes.

Later, in 1853, Kronecker stated what we currently know as Kronecker-
Weber’s theorem:

Theorem. Every finite abelian extension of Q is a subfield of a cyclotomic
field.

and in the same paper ([13]) he also suggested that all the finite abelian
extensions of the quadratic field can be obtained by dividing the lemnis-
cate instead of the circle. As Iwasawa reports in [11], this conjecture was
the origin of Kronecker’s Jugendtraum, the conjecture stating (in its pre-
cise form) that all abelian extensions of an imaginary quadratic field k can
be generated by singular values of the elliptic modular function and by the
values of the corresponding elliptic functions in the division points ([19], §
4.3, p. 79). In 1903, in his doctoral thesis [17], Takagi was able to prove
the conjecture regarding Q(i), adapting to this case the ideas used in the
proof of the Kronecker-Weber theorem given by Hilbert in 1896 (a modern
account of that proof can be found in [8]). Later, in 1920, Takagi was also
able to prove the general conjecture in his paper “Über eine Theorie der
relativ-Abel’schen Zahlkörper” [18] using mainly class field theory and a few
facts about elliptic and modular function.
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Even though the similarities between the case of the circle and that of
the lemniscate are profound, as we have pointed out, they do not go as far
as one could expect. An example of a negative result is Leopoldt’s Theorem.
If Q ⊂ N is a finite abelian extension with Galois group Γ, and if set

Λ = {λ ∈ QΓ|λON ⊆ ON}

then Leopoldt’s Theorem states that the ring of integers ON is isomorphic
to Λ as a Λ-module and that we can find some idempotents ei linked to the
ramification of the extension N/Q such that Λ =

⊕
i ZΓei. Recall that

Definition. We say that a Galois extension Q ⊂ N admits a normal integral
basis if the ring ON of integers in N admits a Z-basis consisting of the
translates of a single element by the elements in the Galois group of Q ⊂ N .

Then, as a Corollary of Leopoldt’s Theorem we can obtain the following
result:

Hilbert-Speiser Theorem. If Q ⊂ N is a tame extension, then Q ⊂ N
has a normal integral basis.

Unluckily, the result is not true for the extensions with base field Q(i),
since we can actually prove that

Theorem. For every number field K different from Q, there exists a finite
tamely ramified abelian extension of K that doesn’t have a normal integral
basis.

Since Leopoldt’s theorem can be proven exploiting Kronecker-Weber’s
theorem and the peculiar features of the cyclotomic fields, it seems natu-
ral to wonder whether we can use Takagi’s theorem on the division of the
lemniscate with some additional conditions in order to obtain a similar re-
sult. The main motivation of this thesis is exactly this one: we are going to
follow Takagi’s first paper [17], and give a detailed account of the explicit
construction of the fields obtained by the division of the lemniscate, in order
to fully understand the structure of those fields, that we could possibly use
in the future to investigate the problem of finding a normal basis at least
for some tame extension of Q(i).

Finally, the structure of this Thesis is going to be the following. In
Chapter 1, we are going to define and study the function sin am(z) (which
will play the same role of the sine in the circle case), its relation with a
certain Weierstrass ℘-function, and we will give an accurate description of
the formulas that are involved in its complex multiplication by Z[i]. In
Chapter 2, we will describe the fields that we can obtain by considering the
division point of the lemniscate, and we will analize which are the primes
that ramify in those extensions of Q(i), and finally the whole third Chapter
will be dedicated to the proof of Takagi’s Theorem.
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Chapter 1

Fundamental tools

1.1 Parametrization of the lemniscate

In the following discussion, we are going to use the useful relations that
may be obtained by considering a special parametrization of the lemniscate.
First of all, let us recall

Definition 1.1.1. Given two fixed point n1,n2 and a constant c, the associ-
ated lemniscate is the locus of all the points P such that the product of the
distance between P and n1 with the distance between P and n2 has constant
value c2.

We are interested in a peculiar lemniscate, the one where the fixed points
have coordinates (− 1√

2
, 0) and ( 1√

2
, 0), and where c = 1√

2
. With this choice,

we get the familiar horizontal figure 8 and a parametrization in cartesian
coordinates

(x2 + y2)2 = x2 − y2

which translates in polar coordinates to

r2 = cos(2θ)

If s = s(r) is the arc length associated to the lemniscate, it is clear that
(denoting with a dot the differentiation with respect to r)

ṡ = ẋ+ ẏ

and so we obtain by direct computation (see [15], Chapter 1) that

ds =
dr√

1− r4

So if we measure arc-length starting from the origin and passing into the
first quadrant, by integrating we have the explicit relation

s = s(r) =

∫ r

0

dt√
1− t4

for 0 ≤ r < 1
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Note that for r = 1 this integral is improper, but since it converges, its
value is the arc length of the first quadrant portion of the lemniscate. In
this context, we set

ω

2
=

∫ 1

0

dt√
1− t4

so that, due to the symmetry of the lemniscate, and the fact that r increases
in each quadrant from 0 to 1, the total arch length is 2ω.

Definition 1.1.2. For every v ∈ R such that |v| < ω
2 consider the element

x ∈ R such that

v =

∫ x

0

dt√
1− t4

Then, setting A = {v ∈ R||v| < ω
2 } we define a function as

sin am : A → R
v 7→ x

Moreover, for v ∈ A, we set

cos am(v) =

√
1− sin am2(v)

∆ am(v) =

√
1 + sin am2(v)

Remark 1.1.1. With this definition, r = sin am(s) if and only if s is the
arc length from the origin to the point with polar coordinates (r, θ) in the
upper semiplane of R2.

Now we would like to extend this definition to arbitrary real values of
v. Given the resemblance to the trigonometric case, the idea is to find
an addition formula for the integral. If we consider u, v ∈ A, and xu =
sin am(u), xv = sin am(v), it is possible to prove that there is an r ∈ R such
that

u+ v =

∫ xu

0

dt√
1− t4

+

∫ xv

0

dt√
1− t4

=

∫ r

0

dt√
1− t4

and (as it is described in [15], Chapter 1)

r =
xu
√

1− x4
v + xv

√
1− x4

u

1 + x2
ux

2
v

(1.1)

Hence, we can set
sin am(u+ v) := r

and this formula gives us the possibility to extend the domain of our function
to the whole R.
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Noticing that under the transformation t 7→ it the expression dt/
√

1− t4 is
multiplied by i, Gauss set

sin am(iv) := i sin am(v)

At this point, it is clear how to define sin am(u+ iv) for arbitrary u, v ∈ R.

Moreover, now that we have defined sin am(z) for arbitrary complex
values, we can easily prove the following

Proposition 1.1.1. The function sin am(z) is analytic on

Ω = {z ∈ C|z 6= (m+ in)
ω

2
, m, n ∈ Z}

Proof. Let z = x + iy, with x, y ∈ R. Looking at Eq. (1.1), it is clear that
sin am(z) is not defined only for those elements for which

1 + sin am2(x)sin am2(iy) = 1− sin am2(x)sin am2(y) = 0

Since by definition sin am2(x) ≤ 1 for all x ∈ R, and the equality holds if
and only if x is an odd multiple of ω

2 , sin am is defined on the open set

Ω = {z ∈ C|z 6= (m+ in)
ω

2
, m, n ∈ Z}

As (sin am′(x))2 = 1− sin am4(x) for all x ∈ R (see [4], Proposition 15.2.1),
sin am(x) is infinitely differentiable on R, so if we denote f(x, y) and g(x, y)
the real and imaginary part of the right-hand side of Eq. (1.1), it is clear
that they are differentiable on Ω as functions of (x, y). So we are only left to
show that f(x, y) and g(x, y) satisfy the Cauchy-Riemann conditions, but
since we have that

f(x, y) =
sin am(x)

√
1− sin am4(y)

1− sin am2(x)sin am2(y)
=

sin am(x)sin am′(y)

1− sin am2(x)sin am2(y)

g(x, y) =
sin am(y)

√
1− sin am4(x)

1− sin am2(x)sin am2(y)
=

sin am(y)sin am′(x)

1− sin am2(x)sin am2(y)

this is only matter of a straightforward computation.

This Proposition leads to the following result, that we will use extensively
in this thesis:

Corollary 1.1.1. The addition law

sin am(u+ v) =
sin am(u)cos am(v)∆ am(v) + sin am(v)cos am(u)∆ am(u)

1 + sin am2(u)sin am2(v)

(1.2)

holds for all u, v ∈ C such that both sides are defined.

The proof can be found in [4], Proposition 15.3.1: it uses only the fact
that sin am(z) is analytical and that Eq.(1.1) holds for R.
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1.2 Some properties of sin am

First of all we have to note that as a function of a complex variable, this new
function sin am is doubly periodic, of periods (1 + i)ω and (1 − i)ω. This
can be seen manipulating the equation given in the previous Corollary. In
fact, since by definition sin am(ω2 ) = 1, and since sin am(iu) = isin am(u)
for every u ∈ C, it holds that

cos am(±ω
2

) = 0 = ∆ am(±ω
2
i)

so if we substitute v with ±ω
2 or ±ω

2 i in Eq.(1.2) we get

sin am(u+±ω
2

) = ±cos am(u)

∆ am(u)

sin am(u+±ω
2
i) = ± ∆ am(u)

cos am(u)
i

At this point, we have to remark that for every v ∈ C from the equation
sin am(iv) = isin am(v) follows directly that

sin am(−v) = −sin am(v) (1.3)

Therefore

sin am(
ω

2
− u) = −sin am(u− ω

2
)

= −
(
−cos am(u)

∆ am(u)

)
= sin am(u+

ω

2
) (1.4)

and in the same way

sin am(
ω

2
i− u) = sin am(

ω

2
i+ u) (1.5)

If now we substitute u with u+ ω
2 in Eq.(1.4) and with u+ ω

2 i in Eq.(1.5),
we get

sin am(u+ ω) = −sin am(u) (1.6)

sin am(u+ ωi) = −sin am(u) (1.7)

and then if we substitute again u with u+ iω or and with u−ωi in Eq.(1.6)
we finally obtain that for every u ∈ C

sin am(u+ (1 + i)ω) = sin am(u) (1.8)

sin am(u+ (1− i)ω) = sin am(u) (1.9)

Clearly, we can sum up the previous discussion in the following statement:
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Proposition 1.2.1. For every u ∈ C and for every n,m ∈ Z

sin am(mω + nωi± u) = ±(−1)m+nsin am(u)

which immediately implies

Corollary 1.2.1. For every n,m ∈ Z

sin am(mω + nωi) = 0

Actually, also the converse of this Corollary holds. In fact

Proposition 1.2.2. Let u ∈ C. Then sin am(u) = 0 if and only if there
are m,n ∈ Z such that u = mω + nωi.

Proof. Suppose that sin am(u) = 0, and consider the elements a, b ∈ R such
that u = a+ ib.
Using Eq.(1.2) it follows that

sin am(a)cos am(bi)∆ am(bi) + sin am(bi)cos am(a)∆ am(a)

1 + sin am2(a)sin am2(bi)
= 0

Note that
sin am(a)cos am(bi)∆ am(bi) ∈ R

while
sin am(bi)cos am(a)∆ am(a) = iA with A ∈ R

because

• a ∈ R, so sin am(a), cos am(a),∆ am(a) ∈ R

• b ∈ R so sin am(b) ∈ R, which means that

cos am(ib)∆ am(ib) =
√

1− (sin(ib))4

=
√

1− (sin(b))4

= cos am(b)∆ am(b) ∈ R

Therefore, it must be that

sin am(a)cos am(bi)∆ am(bi) = 0 = isin am(b)cos am(a)∆ am(a)

Since ∆ am(a) 6= 0 for every a ∈ R and since

cos am(ib) =
√

1 + sin(b)2 = ∆ am(b)

the previous equations become

sin am(a)∆ am(bi) = 0 = sin am(b)cos am(a)
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If sin am(a) = 0, then cos am(a) = 1 and so sin am(b) = 0. If sin am(a) 6= 0,
we get

0 = ∆ am(bi) =
√

1 + sin am(ib)2 = cos am(b)

which means that cos am(a) = 0 because at this point sin am(b) = ±1.
We consider first the second case. Let n ∈ Z be such that a = nω + a′,
where 0 ≤ a′ ≤ ω

2 . Then, using Proposition (1.2.1),

sin am(a) = (−1)nsin am(a′)

hence we get the equation

0 = cos am(a) =
√

1− sin am(a)2 =
√

1− sin am(a′)2

which implies that sin am(a′) = ±1. But since 0 ≤ a′ ≤ ω
2 , sin am(a′) must

be positive, so sin am(a′) = 1 which means (since sin am is invertible in
[0, ω2 ]) that a′ = ω

2 and a = (n+ 1
2)ω. In the same way,

0 = ∆ am(bi) = cos am(b)

implies that b can be written as b = (m+ 1
2)ω for some m ∈ Z. Those values

actually lead to a contradiction. In fact, if we consider the general equations

sin am(v +±ω
2

) = ±cos am(v)

∆ am(v)

sin am(v +±ω
2
i) = ± ∆ am(v)

cos am(v)
i

we obtain
sin am(v +

ω

2
)sin am(v +

ω

2
i) = i (1.10)

If now we consider u = a+ ib = (n+ 1
2)ω + (m+ 1

2)ωi it holds that (again
by Proposition (1.2.1))

sin am(u) = (−1)m+nsin am(
ω

2
+
ω

2
i)

Finally, recalling that sin am(ω) = 0, the substitution v = ω
2 in Eq.(1.10)

shows that ω
2 + ω

2 i is a pole of sin am, not a zero.
Thus the only possible case is the first. Using the same argument as before,
we can see that the request sin am(a) = 0 = sin am(b) implies that a = nω
and b = mω for some n,m ∈ Z, and hence we are done.

Remark 1.2.1. All the zeros of sin am(u) are simple, because whenever
sin am(u) = 0 for some u ∈ C

(sin am′(u))2 = 1− sin am4(u) = 1
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Corollary 1.2.2. For any n,m ∈ Z

u =

(
m+

1

2

)
ω +

(
n+

1

2

)
ωi

is a pole of sin am.

Also in this case we can prove that actually

Proposition 1.2.3. Let u ∈ C. Then u is a pole of sin am if and only if
there are m,n ∈ Z such that .

u =

(
m+

1

2

)
ω +

(
n+

1

2

)
ωi

Proof. Considering again the equations

sin am(v +±ω
2

) = ±cos am(v)

∆ am(v)

sin am(v +±ω
2
i) = ± ∆ am(v)

cos am(v)
i

and setting v = u− ω
2 , we see that

sin am(u) · sin am
(
u− ω

2
− ω

2
i
)

= −i (1.11)

Hence if u is a pole, u − ω
2 −

ω
2 i must be a zero of sin am. But from the

previous Proposition this implies that u − ω
2 −

ω
2 i = (m + in)ω for some

n,m ∈ Z, and thus

u =

(
m+

1

2

)
ω +

(
n+

1

2

)
ωi

as we wanted to show.

Remark 1.2.2. Since all the zeros of sin am(u) are simple, considering
Eq.(1.11) we can see that all the poles are simple.

After treating zeros and poles, we are interested in solving more general
equations.

Proposition 1.2.4. Given α ∈ C, the equation

sin am(x) = sin am(α)

is satisfied by x if and only if

x = (−1)m+nα+mω + nωi

for some m,n ∈ Z.

7



A rigorous proof of this statement can be found in [4], Theorem 15.3.3,
but here, we are only going to illustrate the train of thought of Abel (who
was the first to state and use this result), that can be found also in [1]. First
of all, Abel considered the equation

sin am(x)− sin am(α) = 0

Using Eq.(1.2) twice, it follows directly that for (suitable) u, v ∈ C

sin am(u+ v)− sin am(u− v) =
2 (sin am(v)cos am(u)∆ am(u))

1 + sin am2(u)sin am2(v)

So if we set u = x+α
2 , v = x−α

2 what we get is

0 = sin am(x)− sin am(α) =
2
(
sin am(x−α2 )cos am(x+α

2 )∆ am(x+α
2 )
)

1 + sin am2(x+α
2 )sin am2(x−α2 )

In its paper, Abel continues without asking himself whether or not the right
hand side is defined, instead he remarks that this last equation can be “sat-
isfied” in five different ways:

• if sin am(x−α2 ) = 0, i.e if x−α
2 = (n+mi)ω for some n,m ∈ Z.

• if cos am(x+α
2 ) = 0, i.e if x+α

2 = (n+mi)ω + ω
2 for some n,m ∈ Z.

• if ∆ am(x+α
2 ) = 0, i.e if x+α

2 = (n+mi)ω + ω
2 i for some n,m ∈ Z.

• if x−α
2 is a pole of sin am, i.e x−α

2 =
(
m+ 1

2

)
ω +

(
n+ 1

2

)
ωi for some

n,m ∈ Z.

• if x+α
2 is a pole of sin am, i.e x+α

2 =
(
m+ 1

2

)
ω +

(
n+ 1

2

)
ωi for some

n,m ∈ Z.

So, according to the previous computations, the different possibilities are

• x = α+ 2nω + 2mωi for some n,m ∈ Z.

• x = −α+ (2n+ 1)ω + 2mωi for some n,m ∈ Z.

• x = −α+ 2nω + (2m+ 1)ωi for some n,m ∈ Z.

• x = α+ (2m+ 1)ω + (2n+ 1)ωi for some n,m ∈ Z.

• x = −α+ (2m+ 1)ω + (2n+ 1)ωi for some n,m ∈ Z.

Finally Abel checks, using Proposition (1.2.1), whether sin am(x) is really
equal to sin am(α) or not: all the cases give sin am(x) = sin am(α), except
the fifth, which gives sin am(x) = −sin am(α). Thus all the solutions of the
equation are given by the four remaining cases, and they can be summarized
by saying that we must have

x = (−1)m+nα+mω + nωi

for some m,n ∈ Z.
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1.3 Jacobi elliptic function

For reasons that will become clear in the next chapter, we would like to link
the function defined in the previous section to the Weierstrass ℘-function
associated to the lattice Λ = ωZ+iωZ. Note that this is not the most natural
choice for Λ: in fact, since sin am(u) is a doubly periodic meromorphic
function with linearly independent periods (and hence an elliptic function),
the natural idea would be to take the lattice L = (1 + i)ωZ+ (1− i)ωZ and
to find the Weierstrass equation of the elliptic curve E = C/L, in order to
finally link sin am(u) with ℘L(z) = ℘(z, L), the Weierstrass ℘-function of
L. As can be seen in [5], Section 2, in this case the Weierstrass equation of
E is Y 2 = 4X3 +X. Moreover

sin am(u) = −2
℘L(z)

℘′L(z)

and

sin am′(u) =
4℘2

L(z)− 1

4℘2
L(z) + 1

The relations are surely interesting, but following Takagi approach as we
are going to do, the relation is actually even more interesting, since we will
prove that for every u ∈ C

℘Λ(u) =
1

sin am2(u)

Unluckily, the proof of this relation is not short, and we will first need
to introduce a whole new set of functions, the Jacobi elliptic functions.

Definition 1.3.1. For any k ∈ C, consider the integral

u =

∫ φ

0

dt√
1− k2sin2(t)

where t is a complex variable. Define a new family of functions (the Jacobi
elliptic functions) by setting

sn(u, k) = sin(φ)

Considering

K =

∫ π
2

0

dt√
1− k2sin2(t)

it is easy to see that
sn(u+ 4K, k) = sn(u, k)
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In addition, Jacobi introduces the functions

cn(u, k) =
√

1− sn2(u, k)

dn(u, k) =
√

1− k2sn2(u, k)

Note that the substitution sin(φ) = i tan(ψ) yields

dφ√
1− k2sin2φ

=
i · dψ√

1− k′2sin2ψ

where k2+k′2 = 1, hence we get the extension of the Jacobi elliptic functions
to the whole complex plane

sn(iu, k) = i · sn(u, k′)

cn(u, k′)

The functions sn, cn,dn have two periods, which are (4K, 2iK ′),
(4K, 2(K + iK ′)) and (2K, 4iK ′) respectively, where

K ′ =

∫ π
2

0

dt√
1− k′2sin2(t)

(compare with [19], Section 2.2). Furthermore, for a fixed k, and thus writing
sn(u, k)=sn(u) for convenience, it is possible to prove (as in [20], Chapter
XXII, paragraph 22.2, p.494) that the following relations hold :

sn(u+ v) =
sn(u)cn(v)dn(v) + sn(v)cn(u)dn(u)

1− k2sn2(u)sn2(v)
(1.12)

cn(u+ v) =
cn(u)cn(v)− sn(u)sn(v)dn(u)dn(v)

1− k2sn2(u)sn2(v)
(1.13)

dn(u+ v) =
dn(u)dn(v)− k2sn(u)sn(v)dn(u)dn(v)

1− k2sn2(u)sn2(v)
(1.14)

There is an evident similarity between these functions and our function
sin am(u). Actually, sin am(u) is related to them by the following result:

Remark 1.3.1. For u ∈ C

sin am(u) =
sn(u
√

2, 1√
2
)

√
2dn(u

√
2, 1√

2
)

Proof. If we write sd(u, k) := sn(u, k)/dn(u, k), it is possible to prove that

u =

∫ sd(u,k)

0

dt√
(1− k′2t2)(1 + k2t2)

10



where as k2 + k′2 = 1 (compare with [20], p.429). Hence, we can consider
the equation

u
√

2 =

∫ sd(u
√

2, 1√
2

)

0

dt√
(1− 1

2 t
2)(1 + 1

2 t
2)

=

∫ sd(u
√

2, 1√
2

)

0

dt√
1− 1

4 t
4

and using the trivial substitution 1√
2
t 7→ z we get that

u =

∫ 1√
2

sd(u
√

2, 1√
2

)

0

dz√
1− z4

which means that

sin am(u) =
1√
2

sd(u
√

2,
1√
2

) =
sn(u
√

2, 1√
2
)

√
2dn(u

√
2, 1√

2
)

1.3.1 An equivalent definition

The form in which we presented the Jacobi elliptic functions is the good one
in order to prove the formulas we have given previously, but unfortunately it
is not so suitable if we want to establish a connection between the functions
and the ℘-function. In order to fix this problem, let us introduce a new
family of functions.

Definition 1.3.2. For complex variables u and z and a complex constant
k, define

F (k, v) =

∫ v

0

dz√
(1− z2)(1− k2z2)

Then, denote by α(k, v) the function such that

F (k, α(k, v)) = v

Remark 1.3.2. For any k, and any u, we have

sn(u, k) = α(k, u)

Proof. For fixed k and u we have by definition

u =

∫ φ

0

dt√
1− k2sin2(t)

(1.15)

where
sn(u, k) = sin(φ)

11



So, we have to prove that

u =

∫ sin(φ)

0

dz√
(1− z2)(1− k2z2)

But this follows immediately if in Eq. (1.15) we make the change of variables
sin(t) = z.

1.4 The link between ℘Λ(z) and sin am(z)

Let us start with a general ℘-function defined by the differential equation

℘′2(t) = 4℘(t)3 − g2℘(t)− g3

for some suitable g2 and g3. Due to the differential equation, substituting
z = ℘(t) in the integral ∫

dz√
4z3 − g2z − g3

we get ∫
dz√

4z3 − g2z − g3

=

∫
dt = t = ℘−1(z) (1.16)

Since z goes to infinity when t tends to 0, we may consider, for a fixed z̄,

℘−1(z̄) =

∫ ∞
z̄

dz√
4z3 − g2z − g3

and so

−t̄ = ℘−1(z̄) =

∫ z̄

∞

dz√
4z3 − g2z − g3

(1.17)

Suppose that the ℘- function we are studing is associated to the lattice
Λ = 2ω1Z⊕ 2ω2Z.
It is well know that in this situation the zeros of ℘′ are

e1 = ℘(ω1)

e2 = ℘(ω1 + ω2)

e3 = ℘(ω2)

so that in Eq.(1.17) we actually have

−t̄ =

∫ z̄

∞

dz√
4(z − e1)(z − e2)(z − e3)

12



Making use of the substitution

z = e3 +
e1 − e3

u2
(1.18)

and setting

k2 =
e2 − e3

e1 − e3

we easily obtain that

dz√
4(z − e1)(z − e2)(z − e3)

= − 1√
e1 − e3

du√
(1− u2)(1− k2u2)

Setting e1 − e3 = 1
ε , the previous discussion implies that

− t̄√
ε

=
1√
ε

∫ z̄

∞

dz√
4(z − e1)(z − e2)(z − e3)

= −
∫ ū

0

du√
(1− u2)(1− k2u2)

which means that

ū = sn(
t̄√
ε
, k)

and so since z̄ = ℘(t̄), using Eq.(1.18) we finally obtain (considering the
generality of t̄)

℘(t) = e3 +
1

ε sn2( t√
ε
, k)

(1.19)

Finally, we can prove the following crucial result:

Theorem 1.4.1. Let ℘(z) be the Weierstrass function associated to the
lattice Λ = ωZ⊕ iωZ where

ω

2
=

∫ 1

0

dt√
1− t4

Then

℘(u) =
1

sin am2(v)

Proof. First of all, we need to compute the coefficients g2 and g3 of the
differential equation of ℘. Since iΛ = Λ and i6 = −1, we see that

g3(Λ) = 140
∑

λ∈Λ\{0}

1

λ6
= 0

13



Due to a general result (proved by [10]) we have that
∑

(r + is)−4 = ω4/15
where the sum is over all non zero Gaussian integers. Therefore,

g2(Λ) = 60
∑

λ∈Λ\{0}

1

λ4

= 60
∑
r,s 6=0

1

(rω + isω)4

=
60

ω4

∑
r,s 6=0

1

(r + is)4

=
60

ω4
· ω

4

15
= 4

Hence ℘(z) is parametrized by

℘′2(z) = 4℘(z)3 − 4℘(z)

and this means that the zeros of ℘′ are exactly 0, 1,−1. Since iΛ = Λ, we
easily get that ℘(iz) = −℘(z), hence we get

e1 = ℘(
ω

2
) = 1

e2 = ℘(
ω + iω

2
) = 0

e3 = ℘(
iω

2
) = −1

As a consequence, k = 1/
√

2. Now, using Eq.(1.19) and the previous re-
marks, we have

℘(u) = −1 +
2

sn2(
√

2u, 1√
2
)

=
2− sn2(

√
2u, 1√

2
)

sn2(
√

2u, 1√
2
)

=
2(1− 1

2sn2(
√

2u, 1√
2
))

sn2(
√

2u, 1√
2
)

=
(
√

2(
√

1− 1
2sn2(

√
2u, 1√

2
)))2

sn2(
√

2u, 1√
2
)

=

(√
2dn(
√

2, 1√
2
)

sn(
√

2u, 1√
2
)

)2

=
1

sin am2(v)
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1.5 Division points of the lemniscate

Note : from now on, for typographic reasons, we are going to write ϕ(u),f(u),
F (u) instead of sin am(u), cos am(u),∆ am(u), following Abel’s notation.

1.5.1 The division in n parts

A natural question regarding the lemniscate is the one concerning the divi-
sion points. Clearly if we divide the arc length of the lemniscate in n parts,
by definition of ϕ(u) the polar distances of the points that we obtain (the
n-division points) are

ϕ

(
m

2ω

n

)
, m = 0, 1, . . . , n− 1

so we would like to find an easy way to compute all of them: with the fol-
lowing results we will be actually able to prove that they are the roots of
one specific polynomial, that we will call the n-division polynomial.

Using only the machinery developed so far, it is possible to prove that
for every u ∈ C,

ϕ(2u) =
2ϕ(u)f(u)F (u)

1 + ϕ4(u)

ϕ(3u) = −ϕ(u)
ϕ8(u) + 6ϕ4(u)− 3

1 + 6ϕ4(u)− 3ϕ8(u)

(see [4], Example 15.2.4) so we would like to find similar expression for ϕ(nu)
when we consider an arbitrary natural number n ∈ N. Note that using the
formula given by Corollary ( 1.1.1) we immediately obtain, for any α ∈ C,
the equation

ϕ(α+ u) + ϕ(α− u) =
2ϕ(α)f(u)F (u)

1 + ϕ2(α)ϕ2(u)

Now, if we suppose α = nu for some n ∈ Z, we get

ϕ((n+ 1)u) = −ϕ((n− 1)u) +
2ϕ(nu)f(u)F (u)

1 + ϕ2(nu)ϕ2(u)
(1.20)

and so by recursion ϕ((n+1)u) is a rational function of ϕ(u),f(u) and F (u).
More precisely:

Lemma 1.5.1. Let u ∈ C. For any m positive rational integer, we can find

15



T1, . . . , T6 rational functions of (ϕ(u))2 with integral coefficients such that

ϕ(2mu) = T1ϕ(u)f(u)F (u)

f(2mu) = T2

F (2mu) = T3

ϕ((2m+ 1)u) = T4ϕ(u)

f((2m+ 1)u) = T5f(u)

F ((2m+ 1)u) = T6F (u)

This result follows from Eq.(1.20) via a direct (and not so interesting)
computation. The reader can find the whole proof in [1], p. 115.

Lemma 1.5.2. Given an integer n > 0, there are relatively prime polyno-
mials ψn(u), χn(u) ∈ Z[u] such that, setting x = ϕ(u), if n is odd

ϕ(nu) = ϕ(u)
ψn(x4)

χn(x4)

and if n is even

ϕ(nu) = ϕ(u)f(u)F (u)
ψn(x4)

χn(x4)

Proof. Using the description of the previous Lemma, if n is odd it is clear
that

ϕ(nu) = ϕ(u)T

where T is a rational function of (ϕ(u))2. So we only have to check that T
is actually a function of (ϕ(u))4 (we can always assume that ψn(u), χn(u)
are coprime since Z[u] is an UFD). Let us set ϕ(u) = x. Then, if we set
T = ψ(x2), we have

ϕ(nu) = xψ(x2)

Via the substitution u 7→ iu the last equation becomes

iϕ(nu) = ixψ(−x2)

and hence
ψ(x2) = ψ(−x2)

so ψ(x2) must be the quotient of two polynomials composed only by powers
of the form x4n, as we wanted to show. The even case can be treated in the
same way seen that f(u)F (u) = f(iu)F (iu) for every u ∈ C.

The previous description allows us prove the following result.

Corollary 1.5.1. Let n ∈ N odd. Then the polar distances of the n-division
points of the lemniscate are roots of the polynomial xψn(x4), that from now
on we will call n-division polynomial.

16



Proof. Since ϕ(2ωu) is equal to zero for every u ∈ N, we have that if
t = ϕ(m2ω

n ) is the polar distance of an n-division point,

0 = ϕ(m2ω) = ϕ(n ·m2ω

n
) = t

ψn(t4)

χn(t4)

so t is a root of xψn(x4) as we wanted to prove.

Analogously, we can prove that for n ∈ N even the n-division points are
roots of xψn(x4)(1− x2): using the same argument, they are surely roots of

xψn(x4)
√

1− x4 = xψn(x4)
√

(1− x2)(1 + x2)

and so of
xψn(x4)(1− x2)(1 + x2)

but ϕ(u) ∈ R if u ∈ R, so they are necessarily roots of xψn(x4)(1− x2).

1.5.2 µ-division points

In the previous subsection, we were able to give a description of the formulas
relating ϕ(nu) with ϕ(u) for every n ∈ N. However, we know that ϕ(u) is
defined on all C, so we would like to know whether similar formulas can be
found for ϕ(µu) where µ ∈ Z[i].
Actually, the answer is positive: using the equation ϕ(iu) = iϕ(u) and the
addition formula (1.2) we can clearly obtain a formula relating sin((m+in)u)
with ϕ(u) if m + in ∈ Z[i], i.e. ϕ(u) has complex multiplication by Z[i].
Moreover, for every µ ∈ Z[i] we can give a very precise description of the
formulas involved in the multiplication by µ, but in order to do so, we first
need to introduce some definitions.

Definition 1.5.1. An integer µ ∈ Q(i) is said to be odd if it is coprime with
(1 + i). At the contrary, µ is even if it is divisible by (1 + i).

It is easy to prove that if µ = a+ ib with a, b ∈ Z then

µ is even ⇐⇒ (a+ b) is even

Furthermore, if α, β ∈ Z[i], then

αβ is odd ⇐⇒ α and β are odd

α+ β is even ⇐⇒ α and β are both even or both odd

Now we can start investigating the formulas for complex multiplication;
we will treat separately the three cases µ = i+ 1, µ 6= i+ 1 even, and µ odd.

17



Proposition 1.5.1. If µ = 1 + i, if ℘(z) is the Weierstrass ℘-function
described in Theorem (1.4.1) then we have the following equations

℘((1 + i)u) =
℘2(u)− 1

2i℘(u)

ϕ((1 + i)u) =
(1 + i)ϕ(u)

f(u)F (u)

Proof. In this case, the proof is straightforward: using the addition law
stated in Eq.(1.2) we get

ϕ((i+ 1)u) =
ϕ(iu)f(u)F (u) + ϕ(u)f(iu)F (iu)

1 + ϕ2(iu)ϕ2(u)

=
(i+ 1)ϕ(u)f(u)F (u)

1− ϕ4(u)

=
(i+ 1)ϕ(u)f(u)F (u)

f2(u)F 2(u)

=
(i+ 1)ϕ(u)

f(u)F (u)

and the other equation follows applying Theorem (1.4.1).

In general we have that

Proposition 1.5.2. Given an even element µ ∈ Z[i], there are two poly-
nomials prime to each other fµ(X), gµ(X) ∈ Z[i][X] such that for every
u ∈ C

ϕ(µu) = ϕ(u)f(u)F (u)
fµ(x4)

gµ(x4)

where x = ϕ(u)

Proof. Since µ is even, if a, b ∈ Z are such that µ = a + ib, then a + b is
even, so they must be both odd or both even. In case a and b are both even,
using the addition formula (1.2) and then Lemma (1.5.1) we get

ϕ((a+ ib)u) =
ϕ(au)f(bu)F (bu) + iϕ(bu)f(au)F (au)

1− ϕ2(au)ϕ2(bu)

=
T1S2S3ϕ(u)f(u)F (u) + iS1T2T3ϕ(u)f(u)F (u)

1− ϕ4(u)f4(u)F 4(u)T 2
1 S

2
1

= ϕ(u)f(u)F (u)
T1S2S3 + iS1T2T3

1− ϕ4(u)f4(u)F 4(u)T 2
1 S

2
1

where T1, T2, T3 and S1, S2, S3 are rational functions of ϕ4(u) (compare with
the proof of Lemma (1.5.2)). The other case can be treated in the same
way.
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Actually, the really interesting case is the odd one. In fact, we can prove
the following result:

Proposition 1.5.3. Let µ ∈ Z[i] be odd, and let ε ∈ {0, 1, 2, 3} such that
µ ≡ iε mod 2(i + 1). Then there exist two relatively prime polynomials
ψµ(x), χµ(x) with integral coefficients such that for all u ∈ C

ϕ(µu) = iεx
ψµ(x4)

χµ(x4)
where x = ϕ(u)

ψµ(x) and χµ(x) can be written as

ψµ(y) = yM + a1y
M−1 + . . .+ aM−1y + i−εµ

χµ(y) = µyM + aM−1y
M−1 + . . .+ a1y + 1

where

M =
1

4
(m− 1)

if m is the norm of µ. Moreover, if µ is a prime number, the coefficients
a1, a2, . . . , aM are all divisible by µ.

Note that the Proposition makes sense since

Remark 1.5.1. For every µ ∈ Z[i] odd, there is an ε ∈ {0, 1, 2, 3} such that

µ ≡ iε mod 2(i+ 1)

Proof. Being odd, µ is a unit of Z[i]/2(i+1)Z[i], so we are only left to prove
that there is an isomorphism(

Z[i]

2(i+ 1)Z[i]

)∗
∼= {±i,±1}

Note that a + ib is not coprime with 2(i + 1) only if i + 1 or 1 − i divide
a+ ib. But

a+ ib

(i+ 1)
=
a+ b

2
+
b− a

2
i

is an integer if and only if a ≡ b mod 2 and the same holds for

a+ ib

(1− i)
=
a+ b

2
+
a+ b

2
i

hence a+ ib is not a unit if and only if a ≡ b mod 2. Since∣∣∣∣ Z[i]

2(i+ 1)Z[i]

∣∣∣∣ = NQ[i]|Q(2(i+ 1)) = 8

and we have to avoid all the cases in which a ≡ b mod 2, it follows that∣∣∣∣( Z[i]

2(i+ 1)Z[i]

)∗∣∣∣∣ = 8− 4 = 4

and since ±i,±1 are clearly units, and they are different modulo 2(i + 1),
we get the desired isomorphism.
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The proof in this case is quite long, so we are going to treat the different
steps separately.

Lemma 1.5.3. Let u ∈ C and let µ ∈ Z[i] be odd. Then

ϕ(µu) = ϕ(u)T

where T is a rational function of (ϕ(u))4.

Proof. Since µ is odd, if µ = s + it with s, t ∈ Z then it must be that s is
odd and t is even or viceversa. In the first case, using Corollary (1.1.1) and
then applying Lemma (1.5.1) to s and t we get

ϕ(µu) = ϕ(su+ itu)

=
ϕ(su)f(tu)F (tu) + iϕ(tu)f(su)F (su)

1− (ϕ(su))2(ϕ(tu))2

=
T4T2T3ϕ(u) + iT1T5T6ϕ(u)(f(u))2(F (u))2

1− T 2
4 (ϕ(u))2T 2

1 (ϕ(u)f(u)F (u))2

where as before T1, . . . , T6 are rational functions of (ϕ(u))4, i.e

ϕ(µu) = ϕ(u)T

where T is a rational function of (ϕ(u))4. The other case can be treated in
the same way.

Lemma 1.5.4. Let µ ∈ Z[i] be odd, let m be its norm and let u ∈ C.
Consider Pµ(X), Qµ(X) ∈ Z[i][X] such that, if we set ϕ(u) = x,

ϕ(µu) = x
Pµ(x)

Qµ(x)

and such that Pµ(X), Qµ(X) do not have any common factor. Then the
degree of Pµ(X) with respect to X is equal to m− 1.

Proof. If x = ϕ(u) ∈ C \ {0} is such that Pµ(x) = 0, then

ϕ(µu) = 0

and so, following Proposition (1.2.2) we have that there must be s, t ∈ Z
such that

µu = (s+ it)ω

and so

x = ϕ

(
(s+ it)

µ
ω

)
Moreover, again because of the Proposition, if we choose arbitrarily s, t ∈ Z
we always have that ϕ

(
(s+it)
µ ω

)
is a root. Actually, we can show that we
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can always suppose ρ = s + it to be odd and to be unique modulo µZ[i].
First of all, if ρ is even, then µ− ρ is odd, and by Eq.(1.6) we have

ϕ

(
(µ− ρ)

ω

µ

)
= ϕ

(
ω − ρω

µ

)
= ϕ

(
ρ
ω

µ

)
Moreover, if we suppose that

ϕ

(
ρ
ω

µ

)
= ϕ

(
ρ′
ω

µ

)
with ρ, ρ′ ∈ Z[i] odd, by Proposition (1.2.4) we get that there are c, d ∈ Z
such that

ρω

µ
= (−1)c+d

ρ′ω

µ
+ (c+ di)ω

which implies that
ρ = (−1)c+dρ′ + (c+ di)µ

Since ρ, ρ′ are odd, ρ − (−1)c+dρ′ is even, and then (c + di) must be even.
This means that c+ d is even, hence (−1)c+d = 1 and

ρ = ρ′ + (c+ di)µ

so ρ is unique modulo µZ[i]. At this point, it is clear that the roots different
from 0 are in one-to-one correspondence with the cosets of Z[i]/µZ[i] (given
a representative α ∈ Z[i]/µZ[i], either α or α + µ is odd), and so their
number (regardless of the multiplicity) is equal to∣∣∣∣ Z[i]

µZ[i]

∣∣∣∣− 1 = m− 1

We still do not know whether 0 is a root of Pµ(x) or not. Since Pµ is
composed only by powers of x of the form x4n, if 0 is a root it must be a
multiple root. Actually, we can prove that Pµ does not have multiple roots.
In fact, differentiating the equation

ϕ(µu) = x
Pµ(x)

Qµ(x)

and noticing that we always have

∂ ϕ(α)

∂u
= f(α)F (α)

∂α

∂u

we obtain

µf(µu)F (µu)Qµ(x) + ϕ(µu)
∂Qµ(x)
∂u =

= xf(u)F (u)
∂Pµ(x)

∂x
+ Pµ(x)f(u)F (u) (1.21)
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If we suppose that Pµ has a multiple root x̄ = ϕ(ū), it holds that

Pµ(x̄) =
∂Pµ(x)

∂x
(x̄) = 0

Then (since ϕ(µū) = 0) the previous equation becomes

µf(µū)F (µū)Qµ(x̄) = 0

which means that Qµ(x̄) = 0, seen that f(µū) = 1 = F (µū); but this is a
contradiction, because Pµ(x) and Qµ(x) do not have any common factor.
Therefore, Pµ does not have multiple roots: so 0 is not a root. Moreover,
since we have seen that all the roots are simple, of the form ϕ(ρωµ ) with

ρ ∈ Z, |ρ| ≤ m−1
2 and they are all different, the degree of Pµ is m− 1 as we

wanted to show.

Proposition 1.5.4. Using the previous notation, if µ ≡ iε mod 2(i+i) then

Qµ(x) =
1

iε
xm−1Pµ(x)

Proof. Let y = ϕ(µu). Considering x = ϕ(u) as before, we clearly have∫ y

0

dy√
1− y4

= µu = µ

∫ x

0

dx√
1− x4

and hence
dy√

1− y4
= µ

dx√
1− x4

(1.22)

Let us set y = 1
η and x = 1

itξ where η, ξ ∈ C while t ∈ Z is still to be
determined. Using the previous equation we get by direct computation that

dη√
η4 − 1

=
µitdξ√
ξ4 − 1

and then we can choose a suitable t in order to have

dη√
1− η4

= µ
dξ√

1− ξ4

and we know that this equation implies that

η = ξ
Pµ(ξ)

Qµ(ξ)
(1.23)

On the other hand, since we started with y = 1
η and x = 1

itξ we also have

1

η
= y = x

Pµ(x)

Qµ(x)
=

1

itξ
·
Pµ( 1

itξ )

Qµ( 1
itξ )

=
Pµ(1

ξ )

itξQµ(1
ξ )
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and therefore

η =
itξQµ(1

ξ )

Pµ(1
ξ )

which means that we can express η using the rational function

η = itξ
ξm−1Qµ(1

ξ )

ξm−1Pµ(1
ξ )

(1.24)

(recall that the degree of Pµ(x) is m− 1).
At this point, we can equate Eq.(1.23) with Eq.(1.24) and since Pµ and
Qµ are coprime, up to a complex unit iν we obtain (having in mind the
arbitrariness of η and ξ)

Qµ(x) = iνxm−1Pµ(
1

x
)

Now we only have to prove that iν = i−ε where µ ≡ iε mod 2(i + 1). This
can be done giving a precise value to x. If for example we consider ū = ω

2 ,
since by definition

x̄ = ϕ(ū) = ϕ(
ω

2
) = 1

it holds that

ϕ(µ
ω

2
) = x̄

Pµ(x̄)

Qµ(x̄)
= 1 · Pµ(1)

iν1m−1Pµ(1
1)

=
1

iν

Since µ ≡ iε mod 2(i+ 1) we can find a, b ∈ Z such that

µ = (2a− 2b) + (2a+ 2b)i+ iε

and thus
ϕ(µ

ω

2
) = ϕ((a− b)ω + (a+ b)iω + iε

ω

2
)

But by Proposition (1.2.1)

ϕ((a− b)ω + (a+ b)iω + iε
ω

2
) = (−1)(a−b)+(a+b)ϕ(iε

ω

2
)

hence

iν =
1

ϕ(µω2 )
=

1

iεϕ(ω2 )
=

1

iε

as we wanted to show.

Note: From now on, for sake of convenience we are going to denote by
Qµ(X) the polynomial Xm−1Pµ( 1

X ), so that we have the formula

ϕ(µu) = iεx
Pµ(x)

Qµ(x)

Finally, we need the following

23



Lemma 1.5.5. Let µ ∈ Z[i] be an odd prime such that µ ≡ iε mod 2(i+ 1),
and suppose that Pµ(x) is a monic polynomial (which is always possible).
Then

Pµ(x) = xm−1 + a(m−5)/4x
m−5 + . . .+ a1x

4 + i−εµ

where a1, . . . , a(m−1)/4 are all divisible by µ.

The proof is quite long and it can be found in [4], Theorem 15.4.8, p.
492. Here we only remark that we already know that the polynomial Pµ(x)
is of the form

Pµ(x) = xm−1 + a(m−5)/4x
m−5 + . . .+ a1x

4 + a0

and that, since by the equation

y = iεx
Pµ(x)

Qµ(x)

follows that iεa0 = dy
dx |x=0, using Eq.(3.1) we can see directly that

a0 = i−εµ.

Note that with all those lemmas the Proposition (1.5.3) is finally proven.
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Chapter 2

Lemniscate extensions

We are now ready to start to investigate the properties of the fields which are
constructed by adding to Q(i) the points obtained from the division of the
lemniscate. We are not only interested in the discriminant of those fields,
but also in finding an explicit information about the subfields they have. In
order to do so, we are splitting the discussion in different cases, depending
on the characteristics of the integer µ ∈ Q(i).

2.1 The case of an odd prime number

For a general odd integer, it holds that

Theorem 2.1.1. Let µ be an odd integer of Q(i), m its norm, and consider
the field Cµ = Q(i, ϕ(ωµ )). Then Q(i) ⊂ Cµ is a Galois extension, and there
is an injective homomorphism

Gal(
Cµ
Q(i)

) ↪→
(

Z[i]

µZ[i]

)∗
Proof. Consider the µ-division polynomial xPµ(x) = 0. From the proof of
Lemma (1.5.4) we know that all the roots of this polynomial are given by

ϕ(ρ
ω

µ
) with ρ ∈ Z[i] odd

and that ρ unique modulo µZ[i]. Since we are considering only the case in
which ρ is odd, ϕ(ρωµ ) is always a rational function in ϕ(ωµ ) with coefficients
in Q(i), and thus xPµ(x) splits completely in Cµ. Since ϕ(ωµ ) is one of the
roots, it is clear that Cµ is the splitting field of xPµ(x) over Q(i). Moreover,
we know from the proof of Lemma (1.5.4) that xPµ(x) does not have mul-
tiple roots, so Q(i) ⊂ Cµ is a Galois extension.
Now if we consider an automorphism σ ∈ Gal(Cµ/Q(i)) we have that
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σ
(
ϕ(ωµ )

)
is still a root of Pµ(x), so there must be an odd ρ ∈ Z[i] such

that
σ(ϕ(

ω

µ
)) = ϕ(ρ

ω

µ
)

and from what we have seen before, ρ must be unique modulo µZ[i].
Now we claim that for every α ∈ Z[i] odd,

σ(ϕ(α
ω

µ
)) = ϕ(αρ

ω

µ
) (2.1)

In fact, since α is odd,

ϕ(α
ω

µ
) = ϕ(

ω

µ
)
Pα

(
ϕ(ωµ )

)
Qα

(
ϕ(ωµ )

)
and so

σ(ϕ(α
ω

µ
)) = σ(ϕ(

ω

µ
))
σ(Pα

(
ϕ(ωµ )

)
)

σ(Qα

(
ϕ(ωµ )

)
)

= ϕ(ρ
ω

µ
)
Pα(σ(ϕ(ωµ )))

Qα(σ(ϕ(ωµ )))

= ϕ(ρ
ω

µ
)
Pα(ϕ(ρωµ ))

Qα(ϕ(ρωµ ))

= ϕ(αρ
ω

µ
)

At this point, if we are able to prove that [ρ] ∈ (Z[i]/µZ[i])∗, it is clear how
to define the morphism we need. Let s be the order of σ in Gal(Cµ/Q(i)),
then using repeatedly Eq.(2.1) we obtain that

ϕ(
ω

µ
) = σs

(
ϕ(
ω

µ
)

)
= ϕ(ρs

ω

µ
)

and so by the uniqueness this means that

1 ≡ ρs mod µ

Thus ρ is coprime with µ, and this means that [ρ] ∈ (Z[i]/µZ[i])∗. As a
consequence, the map

Gal

(
Cµ
Q(i)

)
→

(
Z[i]

µZ[i]

)∗
σ 7→ ρ
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is a well defined map, and it is an homomorphism because if σ, τ ∈ Gal(Cµ/Q(i))
map to ρ, ρ′ respectively, then

στ(ϕ(
ω

µ
)) = σ(ρ′ϕ(

ω

µ
))

= ϕ(ρρ′
ω

µ
)

where the last step holds thanks to Eq.(2.1), i.e στ 7→ ρρ′. Furthermore,
the map is injective: if [ρ] = [ρ′] ∈ (Z[i]/µZ[i])∗, there must be c, d ∈ Z such
that

ρ = ρ′ + (c+ id)µ

Note that then c + id is even in Z[i], and c + d is an even rational integer.
But then by Proposition (1.2.1)

ϕ(ρ
ω

µ
) = ϕ((ρ′ + (c+ id)µ)

ω

µ
)

= ϕ(ρ′
ω

µ
+ (c+ id)ω)

= (−1)c+dϕ(ρ′
ω

µ
)

= ϕ(ρ′
ω

µ
)

and so
σ(ϕ(

ω

µ
)) = τ(ϕ(

ω

µ
))

Seen that the automorphisms are determined by the image of ω
µ , this means

that σ = τ , as we wanted to show.

If now we suppose in addition that µ ∈ Z[i] is prime, the polynomial
Pµ(x) is separable over Q(i): in fact, we have already seen and used the fact
that Pµ(x) does not have any multiple root, and furthermore by Proposition
(1.5.3) the coefficients of Pµ(x) satisfy the requests of the Eisenstein crite-
rion, which holds also for Z[i], since this is a PID. With this information,
we can prove the following result, which is crucial for our discussion.

Proposition 2.1.1. Let µ ∈ Z[i] be an odd prime. Then

Gal(
Cµ
Q(i)

) ∼=
(

Z[i]

µZ[i]

)∗
Proof. In order to show that the map defined in Theorem (2.1.1) is an
isomorphism we only need to prove that∣∣∣∣Gal( CµQ(i)

)

∣∣∣∣ =

∣∣∣∣( Z[i]

µZ[i]

)∗∣∣∣∣ (2.2)
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Since Cµ is the splitting field of the separable polynomial Pµ(X) we have
that ∣∣∣∣Gal( CµQ(i)

)

∣∣∣∣ = [Cµ : Q(i)] = degPµ(X) = m− 1

On the other hand, since Z[i] is a PID, µZ[i] is a maximal ideal, and conse-
quently Z[i]/µZ[i] is a field. Thus,∣∣∣∣( Z[i]

µZ[i]

)∗∣∣∣∣ =

∣∣∣∣ Z[i]

µZ[i]

∣∣∣∣− 1 = m− 1

and Eq.(2.2) holds.

Moreover, recalling that every finite subgroup of the multiplicative group
of a field is always cyclic, we obtain that

Corollary 2.1.1. If µ is prime then Q(i) ⊂ Cµ is a cyclic extension.

Now we want to look a little closer. First of all, we are interested in
the discriminant. We begin the discussion by considering the Q(i)-basis B

formed by the m− 1 roots of Pµ(x).

Proposition 2.1.2. The discriminant of B over Q(i) is

D = 2
(m−1)2

2 µm−2

Proof. We begin by considering two arbitrary elements u, v ∈ C. Using
repeatedly Corollary (1.1.1), it easily follows that

(ϕ(u)− ϕ(v))(ϕ(u) + ϕ(v))(ϕ(u+ v)− ϕ(u− v)) =

= 2ϕ(v)f(u)F (u)ϕ(u+ v)ϕ(u− v) (2.3)

In order to compute the discriminant, at this point we substitute ϕ(u), ϕ(v)
in the expression

(ϕ(u)− ϕ(v))(ϕ(u) + ϕ(v))(ϕ(u+ v)− ϕ(u− v)) (2.4)

with all the possible couples of roots

xρ = ϕ(ρ
ω

µ
), xρ′ = ϕ(ρ′

ω

µ
)

of Pµ(x) = 0, leaving aside the values of ρ and ρ′ such that ρ = ρ′ or
ϕ(ρωµ + ρ′ ωµ ) = ϕ(ρωµ − ρ

′ ω
µ ).

Renaming the roots of Pµ(x) as x1 = ϕ(ρ1
ω
µ ), . . . , xm−1 = ϕ(ρm−1

ω
µ ), if now

28



we multiply together all the expressions previously obtained via (2.4) what
we get is the following expression involving the discriminant

D3(∏m−1
j=1 2xj

)3 =

2m−1

m−1∏
j=1

xj

3
m−1∏
j=1

f

(
ρj
ω

µ

)m−1∏
j=1

F

(
ρj
ω

µ

)m−3

(2.5)

We claim that

m−1∏
j=1

f

(
ρj
ω

µ

)m−1∏
j=1

F

(
ρi
ω

µ

)
= (1 + i)m−1 (2.6)

In fact, for every j, using Proposition (1.5.1) we get that

ϕ

(
(1 + i)

ρjω

µ

)
=

(i+ 1)ϕ
(
ρj

ω
µ

)
f
(
ρj

ω
µ

)
F
(
ρj

ω
µ

)
which implies that

m−1∏
j=1

ϕ

(
(1 + i)

ρjω

µ

)
=

(i+ 1)m−1
∏m−1
j=1 ϕ

(
ρj

ω
µ

)
∏m−1
j=1 f

(
ρj

ω
µ

)∏m−1
j=1 F

(
ρj

ω
µ

)
But seen that if ϕ(x) is a root of Pµ(x) then also ϕ((1 + i)x) is a root

m−1∏
j=1

ϕ

(
(1 + i)

ρjω

µ

)
=

m−1∏
j=1

ϕ

(
ρjω

µ

)
and thus Eq.(2.6) holds.
Finally,

m−1∏
j=1

xj = µ

(since µ is the constant term of Pµ(x) and since m − 1 ≡ 0 mod 4) and so
Eq.(2.5) becomes

D = 2
(m−1)2

2 µm−2

as we wanted to show.

Our next goal is to prove the following result, which is fundamental for
our discussion.
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Theorem 2.1.2. Let µ be an odd prime integer of Q(i). Denoting the norm
of µ by m as usual, the discriminant of the extension Q(i) ⊆ Cµ is equal to
2m−1µm−2. Moreover, if

m− 1 = 2h+2ph1
1 ph2

2 . . . phtt

is the prime factorization of m− 1 then Cµ contains for each prime divisor
pi one subfield which is cyclic over Q(i) and such that it is
of degree over Q(i) of discriminant over Q(i)

pλ1
1 µp1

λ1−1 (λ1 = 1, 2, . . . , h1)

pλ2
2 µp2

λ2−1 (λ2 = 1, 2, . . . , h2)
. . . . . . . . . . . . . . . . . .

2λ µ2λ−1 (λ = 1, 2, . . . , h)

2h+1 (1 + i)2h+1
µ2h+1−1

2h+2 (1 + i)2h+3
µ2h+2−1

In the proof of Theorem (2.1.2) we are going to need different complemen-
tary results. Since the proof itself is quite long, for the sake of convenience
we are going to discuss these results in the next Subsection, and then we
are going to develop the proof in Subsection (2.1.2).

2.1.1 Some auxiliary results

First of all, just for future reference, we recall that

Lemma 2.1.1. If E and L are Galois extensions of a field k with Galois
group respectively G,H, then the composite field EL of E and F is a Galois
extension of k. Moreover, the Galois group of the extension k ⊆ EF is
isomorphic to the subgroup U of G × H formed by the ordered pairs (σ, τ)
such that σ and τ have the same restriction on E∩L. The isomorphism sends
each k-automorphism ρ of EL to the couple of its restrictions (ρ |E , ρ |L).

which obviously implies that

Corollary 2.1.2. The composite field of two abelian extensions of Q(i) is
still an abelian extension of Q(i).

One of the key arguments of the proof of Theorem (2.1.2) is based on
the following lemma:

Lemma 2.1.2. Let Q(i) ⊆ K be a cyclic extension of Q(i) of odd degree.
Then the discriminant of this extension is not divisible by 1 + i.

Instead of directly proving the Lemma, we are going to prove a more
general result, but before we need another general Proposition (that we
report here for sake of convenience).
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Proposition 2.1.3. Let k ⊆ L be an abelian field extension of degree
m = ph1

1 ph2
2 . . . phtt . Suppose moreover that there are some cyclic exten-

sions of k C1, C2, . . . , Ct of degree respectively ph1
1 , ph2

2 , . . . , phtt such that
L = C1C2 . . . Ct, and let B be a cyclic extension of k of degree n = pl,
where l ≤ hi for every i. If in addition L and B have a common subfield
that has degree g over k, then the field K obtained by composing L and B
may also be built by composing L with L̄, another cyclic extension of k, such
that L̄ ∩ L = k and

[L̄ : k] =
n

g

Proof. Due to the Primitive Element Theorem, we can find an element α
generating L, and then we can consider the subgroup S of the Galois group of
K formed by all k-automorphisms of K which fix α. Using the construction
of Lemma (2.1.1), it is clear that S must be isomorphic to a subgroup of the
Galois group of B over k: but the latter is by assumption cyclic thus also
S is cyclic. In L, for each i we will denote by αi the element generating Ci,
and by α′i, α

′′
i , . . . its conjugates under the action of the Galois group. For

each i, let σi ∈ Gal(K/k) \ L be the automorphism which sends αi to α′i
and fixes all the other αj ’s. Since the restriction of σi to Ci has order phii
being in Gal(Ci/k), and since the restriction of σi to the other Cj ’s is the

identity, we get that σi has order phii .
Now we focus on the subgroup T of Gal(K/k) generated by all the σi’s.

Note that due to the definition of S and T , we have that Gal(K/k) = ST .
Furthermore T is isomorphic to Gal(L/k): in fact, we may consider the map
(which is actually an isomorphism)

T =< σ1 >< σ2 > . . . < σt >→ Gal(A/k)

x1x2 . . . xt 7→ x = x1 · x2 . . . · xt
and prove the isomorphism considering the orders. Being a subgroup of
Gal(K/k) which is abelian, T is a normal subgroup and so it fixes a Galois
subextension of K that we are going to denote by D. Note that since all
elements in D are fixed by T and for every element in L \ k there is at least
a transformation that does not act trivially on it, the intersection L ∩D is
only k; thus K = LD . Finally, the Galois group of D over k is isomorphic
to the quotient group Gal(K/k)/T and so it is also isomorphic to S: but
this group is cyclic, and so D is a cyclic extension. In order to conclude,
note that being isomorphic to Gal(L/k), T has order m. Since

[K : k] =
[L : k][B : k]

[L ∩B]
=
mn

g

this means that D has degree

[D : k] =
[K : k]

m
=
n

g
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With this machinery at hand, we are ready for the general result we
mentioned before.

Lemma 2.1.3. Consider a cyclic extension Q(i) ⊆ C such that [C : Q(i)] =
ph for p prime, and for all k ≤ h denote by Ck the unique subextension of
C such that [Ck : Q(i)] = pk. Let Ch0 be the maximal subfield of C which
has the property of being contained in a cyclotomic field and the property
of having the discriminant with respect to Q(i) divisible only by divisors of
p. Suppose that the discriminant of the extension Q(i) ⊆ C is divided by
a prime element µ ∈ Q(i) which is coprime with p, and denote by m the
norm of µ. Then if, for some k, µ divides the discriminant of the extension
Q(i) ⊆ Ck, we have that

m ≡ 1 mod ph−h0−k+1

Proof. Let us consider the subfield Eh∩C, where Eh is a cyclic extension of
Q(i) of degree ph such that the discriminant of Q(i) ⊆ Eh is only divisible
by divisors of p and such that Eh is contained in a cyclotomic extension of
Q.

Remark 2.1.1. For every p prime and h ∈ N, we can actually find a field
Eh with the requested characteristics.

Proof. For p odd, consider a primitive ph+1-th root of unity ζ and the cyclo-
tomic extension Q ⊆ Q(ζ), that as we know is a cyclic extension of degree

ph(p − 1). If p − 1 =
∏
j q

lj
j is the prime decomposition of p − 1 (where

the qj ’s are pairwise different primes) using the Sylow theorem for finite
groups on the group Gal(Q(ζ)/Q) we can find for every j a cyclic sub-

group Hj ⊆ Gal(Q(ζ)/Q) of order q
lj
j , and thus by composition a subgroup

H ⊆ Gal(Q(ζ)/Q) of order p−1 (which is normal since being a subgroup of
a cyclic group). Then if we denote by KH the subfield of Q(ζ) fixed by H we
have that [KH : Q] = ph and that the extension is cyclic Galois extension,
seen that

Gal

(
KH

Q

)
∼=
Gal(Q(ζ)/Q)

H

Now consider the composite field KH ·Q(i): it is evident that KH∩Q(i) = Q,
thus Q(i) ⊆ KH ·Q(i) is a cyclic extension of degree ph (which is contained in
a cyclotomic extension since both KH and Q(i) are). So, in order to conclude
we only have to show that if µ is a prime which ramifies in KH ·Q(i) then
µ divides p. Since KH ∩ Q(i) = Q, it holds that (denoting by ∆(L|F ) the
discriminant of any extension F ⊆ L)

∆(KH ·Q(i)|Q) = ∆(KH |Q)2∆(Q(i)|Q)[K:Q]
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(compare with [9], Theorem 87, p. 98) and so we get that

NQ(i)|Q (∆(KH ·Q(i)|Q(i))) ∆(Q(i)|Q)[K:Q] = ∆(KH |Q)2∆(Q(i)|Q)[K:Q]

which means that if µ divides ∆(KH · Q(i)|Q(i)) then µµ̄ must divide
∆(KH |Q), which is a power of p since KH ⊆ Q(ζ) and p is the unique
prime ramifying in Q(ζ).
For p = 2, we can basically repeat the argument, having in mind the fact
that in this case the Galois group of Q(ζ) is the direct product of two dif-
ferent cyclic groups.

Note that due to the property of Ch0 of being the maximal subfield
contained in a cyclotomic extension, we have that Eh ∩C ⊆ Ch0 . Moreover,
Ch0 ⊆ C by definition, but also Ch0 ⊆ Eh: in fact, both fields are contained
in a cyclotomic extension and contain i, both have a power of p as degree
over Q(i) and both have the discriminant over Q(i) divisible only by divisors
of p, so that by the structure of the cyclotomic fields, we have the inclusion.
Hence

Eh ∩ C = Ch0

and so by the composition of the two fields we obtain a field K of degree
p2h−h0 over Q(i), that (by Proposition (2.1.3)) can also be obtained by Eh
and another cyclic extension C∗ of Q(i) such that [C∗ : Q(i)] = ph−h0 and
C∗ ∩ Eh = Q(i).

It is important for the following discussion to remark that µ must ramify
in C∗: in fact, it ramifies in K, and it does not ramify in Eh.
Now we are interested in the field Z = Q(i, ζ) where ζ is a primitive root of
unity of degree ph−h0 . Note that if p is odd Gal(Z/Q(i)) may be generated
by the automorphism s which sends ζ in another primitive root of unity
of degree ph−h0 , which may be written as ζg where g is a primitive root
modulo ph−h0 (i.e. a generator of the group of unities of Z/ph−h0Z). On
the other hand, if p = 2 then the group of units of Z/ph−h0Z is generated
by −1 and 5 and so considering η = ζ + ζ−1 we get that Z = Q(i, η) and
that Gal(Z/Q(i)) is generated by the automorphism s which sends ζ in ζ5

(compare with [3], p. 85, and [16], Proposition A.9, p. 281). Moreover,
Z is by construction contained in a cyclotomic extension of Q, so that the
intersection C∗ ∩Z is actually contained in a cyclotomic extension. But we
built C∗ removing all the subfields satisfying this property: hence C∗ ∩ Z
must be the trivial intersection, i.e. C∗ ∩ Z = Q(i).
Let us denote K2 the composite field ZC∗. From what we have said before,
it follows that K2 is an abelian extension of Q(i) (since C∗ and Z are, and
we can use Corollary (2.1.2)) and it is also a cyclic extension of Z, because
we are in the situation
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K2 = ZC∗

Z

99tttttttttt
C∗

eeKKKKKKKKKK

Q(i)

ddJJJJJJJJJJ

99ssssssssss

and so Gal(K2/Z) ∼= Gal (C∗/Q(i)). Then, we are in the hypothesis of the
following general lemmas

Lemma 2.1.4. Let K be a field of characteristic coprime with n in which
xn − 1 splits, and let ζ be a primitive n-th root of unity. If a is a non zero
element of K, there is a well defined normal extension K( n

√
a), the splitting

field of xn − a. If α is a root of xn = a, there is an injective map

Gal

(
K( n
√
a)

K

)
→ K∗

σ 7→ σ(α)

α

In particular, if a is of order n in K∗/(K∗)n, the Galois group is cyclic and
can be generated by the element σ such that σ(α) = ζα.

Lemma 2.1.5. If K be a field of characteristic coprime with n in which
xn − 1 splits and L is a cyclic extension of K of degree n then L = K( n

√
b)

for some b ∈ K, and b must generate K∗/(K∗)n.

All the proofs are given in [3] in the third chapter, ”Cyclotomic Fields
and Kummer Extensions”, written by B. J. Birch.
In our situation, this simply means that there is an element χ ∈ Z such that

K2 = Z( n̄
√
χ)

where n̄ = ph−h0 .
Note that

Remark 2.1.2. With the notations of the previous lemmas, the discrimi-
nant of K( n

√
a) over K divides nnan−1.

The proof might be found in [3], Chapter III, Lemma 5. This means
that χ can’t be coprime with µ: in fact, if it was, since the discriminant
∆(K2|Z) of the extension Z ⊆ K2 divides (ph−h0)p

h−h0χp
h−h0−1, this would

imply that µ is coprime with ∆(K2|Z). But we know that

∆(K2|Q(i)) = ∆(Z|Q(i))n̄NK2|Z(∆(K2|Z))
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and at the same time ∆(Z|Q(i)) is coprime with the prime µ since in the
extension

Q(i) ⊆ Z = Q(i, ζ)

µ is unramified, being coprime with p by hypothesis.
On the other hand,

NK2|Z(∆(K2|Z)) =
∏

qaifii

where
∆(K2|Z) = qa1

1 . . . qatt

is the decomposition in prime ideals of ∆(K2|Z) in Z, qi = qi ∩Z(i) and fqi
is the inertia degree of qi in K2. So if µ divides NK2|Z(∆(K2|Z)), (µ) must
be one of the qi, and this means that µ divides ∆(K2|Z), which is absurd.
But then, µ does not divide ∆(K2|Q(i)), and thus we also get that µ does
not divide ∆(C∗|Q(i)), which is a contradiction since µ ramifies in C∗.

Let
µOZ = M1M2 . . .Me

be the decomposition of µ in prime ideals in Z (recall that µ is not ramified
there), and

χOZ = MR

where M denotes the product of all the powers of M1,M2, . . . that divide χ
and R is coprime with µ.

At this point recall that we defined s as the generator of Gal(Z/Q(i))
such that s(ζ) = ζg where for p odd g is a primitive root modulo ph−h0 ,
and for p even g is equal to 5 . If h′ is the natural number such that ph

′

is the highest power of p dividing ge − 1 (the definition makes sense in the
odd case since g is a primitive root modulo ph−h0 , and in the even case
because 5e − 1 is always even), consider the unique subgroup of index ph

′

of Gal(C∗/Q(i)), and call the subfield fixed by this group Lh−h0−h′ . Now
consider the composition Lh−h0−h′Z. Since Lh−h0−h′ ⊂ C∗, Lh−h0−h′ ∩Z =
Q(i), thus Z ⊂ Lh−h0−h′Z is a cyclic extension of degree ph−h0−h′ . We claim
that Lh−h0−h′Z = Z( n

√
ν) where n = ph−h0 and ν ∈ Z is coprime with µ.

In order to simplify the notation, from now on we will use the exponential
notation, i.e. for every function f we will denote by xf the element f(x).

For example, we will denote se(χ)
χ by χs

e−1. If we consider the polynomial
expressions (of variable s) se− 1 and s− g, they clearly are coprime modulo
ph−h0 , so we can actually find three polynomial expressions f1(s), f2(s), f3(s)
such that

1 = (se − 1)f1(s) + (s− g)f2(s) + f3(s)ph−h0

and consequently also

ge−1 = (se−1)f1(s)(ge−1)+(s−g)f2(s)(ge−1)+f3(s)ph−h0(ge−1) (2.7)

At this point, we need to use the following general result:
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Lemma 2.1.6. Let Q(i) ⊂ Eh a cyclic extension of degree lh (l prime)
such that Q(i, ζ) ∩ Eh = Q(i) where ζ is a primitive lh-th root of unity.
If χ is the element of Q(i, ζ) such that Q(i, ζ) ∩ Eh = Q(i, ζ)( lh

√
χ), and

if r is a rational integer not divisible by l, considering the automorphism
σ ∈ Gal(Q(i, ζ)/Q(i)) which sends ζ into ζr we have that χ−rσ(χ) is the
lh-th power of an element of Q(i, ζ).

The proof of this lemma can be obtained imitating the argument used in
[9], Lemma 15, §101, using Q(i) as base field instead of Q. In our situation,
the previous result means that χs−g is the ph−h0-th power of an element of
Z, thus by Eq.(2.7) there must be an element α ∈ Z such that

χg
e−1 = χ(se−1)f1(s)(ge−1)αp

h−h0
(2.8)

Since s acts transitively on the primes dividing µ, we have that (arranging
the order)

s(M1) = M2, s
2(M1) = M3, . . . , s

e(M1) = Me−1

while
se(M1) = M1

Of course, for every other j we also have

se(Mj) = Mj

This means that actually χs
e−1 can be written as a fraction in which both

numerator and denominator are integers coprime with µ, and consequently
the same holds for χ(se−1)f1(s)(ge−1), hence we can write

χ(se−1)f1(s)(ge−1) =
ν

ap
h−h0

where ν is an integer of Z coprime with µ and a is a rational integer. Con-
sequently, using Eq. (2.8), we obtain that

ν =
ap

h−h0

αp
h−h0

· χge−1

and thus if n = ph−h0 and ge − 1 = rph
′

n
√
ν =

a

α
· χ

ge−1

ph−h0

=
a

α
· (χr)

1

ph−h0−h′

Then, Lh−h0−h′Z and Z( n
√
ν) must be equal, seen that they are both con-

tained in C∗Z, they have the same degree over Q(i) and the extension
Q(i) ⊂ C∗Z is cyclic. But this means that (µ) is not ramified in Lh−h0−h′ :
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in fact, ν being coprime with µ, the discriminant of Z ⊂ Lh−h0−h′Z is not
divisible by µ, so µ is not ramified in Lh−h0−h′Z which contains Lh−h0−h′ .

On the other hand, if m is the norm of µ, and γ ∈ N is such that pγ is
the highest power of p dividing m− 1, we have

mph−h0−γ ≡ 1 mod ph−h0

In fact, since pγ |m− 1, there is an l ∈ N such that m− 1 = lpγ and so

mph−h0−γ
= (lpγ + 1)p

h−h0−γ

=

ph−h0−γ∑
i=0

(
ph−h0−γ

i

)
(lpγ)i

But (
ph−h0−γ

i

)
pγi =

ph−h0−γ !

i!(ph−h0−γ − i)!
pγi

=
ph−h0−γ(ph−h0−γ − 1)!pγi

i!(ph−h0−γ − i)!

and this is divisible for ph−h0 for every i, except for i = 0, where we get 1:
thus the congruence is true. Also, h − h0 − γ is the smallest exponent for
which this congruence holds.

Remark 2.1.3. For p odd, µ decomposes in e = pγ−1(p−1) different primes
in Z. If p = 2, then e = pγ−2.

In fact, since Q(i)∩Q(ζ) = Q, we have thatGal(Z/Q(i)) ∼= Gal(Q(ζ)/Q),
so the inertia degree of µ in Z is equal to the inertia degree of its norm m
in Q(ζ), and since the latter is ph−h0−γ ( [3], Chapter III, Lemma 4) we
conclude that the inertia degree f̄ of µ is also ph−h0−γ . At the same time
the ramification index is ē = 1, because of the fact that µ is not ramified in
Z. Then, if we consider ḡ = e we have from the general theory that

ēf̄ ḡ = [Z : Q(i)]

so that if p is odd we get

e = ḡ =
ph−h0−1(p− 1)

ph−h0−γ = pγ−1(p− 1)

and if p = 2

e = ḡ =
ph−h0−2

ph−h0−γ = pγ−2
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Note that actually γ = h′: in fact, we know that ge − 1 = rph
′

where r
is coprime with p, hence for p odd

gp
γ−1(p−1) = 1 + rph

′

and

gp
h−h0−1(p−1) =

(
gp

γ−1(p−1)
)ph−h0−γ

=
(

1 + rph
′
)ph−h0−γ

and for analogously for p = 2

52γ−2
= 1 + rph

′

and

52h−h0−2
=
(
gp

γ−2
)ph−h0−γ

=
(

1 + rph
′
)ph−h0−γ

Since for p odd g is a primitive root of unity modulo ph−h0 then

gp
h−h0−1(p−1) ≡ 1 mod ph−h0

and
gp

h−h0−1(p−1) 6≡ 1 mod ph−h0+t

for every t > 0. On the other hand, if p = 2 by induction on l ≥ 3 we may
establish the congruences

52l−3
= (1 + 22)2l−3 ≡ 1 + 2l−1 mod 2l

52l−2 ≡ (1 + 2l−1)2 ≡ 1 mod 2l

and
52l−2 ≡ (1 + 2l−1)2 6≡ 1 mod 2l+t

for every t > 0. Therefore in both cases we have (choosing l = h− h0)(
1 + rph

′
)ph−h0−γ

≡ 1 mod ph−h0

and (
1 + rph

′
)ph−h0−γ

6≡ 1 mod ph−h0+t

for every t > 0, but this holds if and only if h′ = γ.
Finally, take k such that µ ramifies in Ck. Then, since µ is not ramified

in Lh−h0−h′ , we get that
Lh−h0−h′ ( Ck

so that
[Lh−h0−h′ : Q(i)] + 1 ≤ [Ck : Q(i)]
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which means that

h− h0 − γ + 1 = h− h0 − h′ + 1 ≤ k

i.e
h− h0 − k + 1 ≤ γ

Then,

m− 1 ≡ 0 mod pγ

≡ 0 mod ph−h0−k+1

as we wanted to prove.

Clearly at this point Lemma (2.1.2) follows as a trivial corollary.

2.1.2 The proof of Theorem (2.1.2)

Now we are ready to start with the proof of our theorem. Note that in the
following discussion, if K is a number field we are going to denote by OK
its ring of integers.

Proof. Since Q(i) ⊆ Cµ is a Galois extension of degree m− 1, using Sylow’s
Theorem we get that for every i the group Gal(Cµ/Q(i)) has a subgroup Gi
of order phii (we are calling p0 = 2, and h0 = h + 2). So when we consider
the subfield Lj of Cµ fixed by the product∏

i 6=j
Gi

we get that this field is a cyclic Galois extension of Q(i) (since every subgroup

of a cyclic field is normal) of degree p
hj
j . Moreover, L0L1 . . . Lt = Cµ, because

A = L0L1 . . . Lt is contained in Cµ, and so Gal(Cµ/A) ⊆ Gal(Cµ/Ki) =∏
j 6=iGi for all i. But this means that Gal(Cµ/A) ⊆

⋂
1≤i≤t

∏
j 6=iGi = {1G}

and so Cµ = A = L0L1 . . . Lt.
According to Lemma (2.1.2), for every j 6= 0 the discriminant ∆(Lj |Q(i))
of the extension Q(i) ⊆ Lj is not divisible by 1 + i, and at the same time,
by Proposition (2.1.2) it must divide

2
(m−1)2

2 µm−2

So, since µ is prime in Q(i) there must be a number sj ∈ N, sj 6= 0, such
that ∆(Lj |Q(i)) = (µ)sj .
Now, since the last extension is cyclic, it holds that for all r ≤ hj we have a
subextension Lrj of Lj such that [Ltj : Q(i)] = prj . We note that ∆(Ltj |Q(i))
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must divide ∆(Lj |Q(i)) = µsj , and so there must be a number aj,t ∈ N ,
1 ≤ aj,t ≤ sj such that

∆(Ltj |Q(i)) = (µ)aj,t

Now, let mr be a prime of Lrj lying over µ. Since for all r we have

Lrj ( Lr+1
j , and since the discriminant of this extension must divide a power

of µ, mr must ramify in Lr+1
j , and since the well known formula states

efg = p in this case, then e must be equal to the prime p. Thus Lrj ( Lr+1
j

is a totally ramified extension, and so also Q(i) ⊆ Lj is. Hence there is a
prime ideal Mj of Lj such that

µOLj = M
p
hj
j

j

We have to understand what happens in L0. We have already seen that

m−1∏
j=1

= µ

where x1 = ϕ(ρ1
ω
µ ), . . . , xm−1 = ϕ(ρm−1

ω
µ ) are the roots of Pµ(x). Further-

more, since Pµ(x) is formed only by powers of x of the form x4n for some
n ∈ N, it is clear that if x̄ is a root, then

−x̄, ix̄,−ix̄

are roots too; and so since m− 1 ≡ 0 mod 4 we conclude that µ is a square
in Cµ, i.e. that

√
µ ∈ Cµ.

Clearly [Cµ : Q(i)(
√
µ)] = 2, thus Q(i)(

√
µ) must be contained in L0. Since

the discriminant ∆(Q(i)(
√
µ)|Q(i)) is surely divided by µ, µ must divide also

the discriminant of L0. Now consider the inertia field Kµ of µ in Cµ. From
what we have seen before, it follows that Kµ ⊆ L0; moreover, due to the
fact that L0 is a cyclic extension, it must be that either Kµ ⊆ Q(i)(

√
µ) or

Q(i)(
√
µ) ( Kµ. Since µ is already ramified in Q(i)(

√
µ), it follows that the

inertia field is trivial, and so µ is totally ramified in Cµ (and consequently
also in L0).

The previous discussion implies that there must be a prime ideal M of
Cµ lying over µ such that

µOCµ = Mm−1

and consequently

Mm−1 = (x1 · x2 · . . . · xm−1)OCµ

= (x1) · (x2) · . . . · (xm−1)
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Recalling that OCµ is a Dedekind domain, by unique factorization we get
that for every j

M = (xj)

so that all the roots are associated (in the following, we will write x ∼ y
meaning that x and y are associated).

Now we consider the prime (1 + i) ∈ Q(i). If ρ ∈ Z[i] is odd, both ϕ(ρωµ )
and ϕ((1 + i)ρωµ ) are roots of Pµ(x), and from what we have just seen they
are associated. Then, from

ϕ((1 + i)ρ
ω

µ
) =

(1 + i)ϕ(ρωµ )

f(u)F (u)

it follows that
f(u)F (u) ∼ (1 + i)

If now we consider two roots x1 = ϕ(u), x′1 = ϕ(v) such that x1 6= ±x′1, then
x2 = ϕ(u + v) and x′2 = ϕ(u − v) are also roots of Pµ(x), and x2 6= ±x′2.
Using Eq.(2.3), it follows that

(x1 − x′1)(x1 + x′1)(x2 − x′2) ∼ (1 + i)3x3
1

and the substitution v 7→ −v show that (x1 + x′1)(x1 − x′1)(x2 + x′2) is also
associated with (1 + i)3x3

1, thus (x2 + x′2) ∼ (x2 − x′2).
Consider now two arbitrary roots x 6= ±y. Since we can always find two
suitable elements u, v ∈ C such that x = ϕ(u + v) and y = ϕ(u − v), it is
clear that the previous argument still holds for x and y. As a consequence,
(x1 +x′1) is associated with (x1−x′1), and thus also (x1−x′1)2(x2−x′2) and
(1 + i)3x3

1 are associated. If now we repeat the whole argument with x2 and
x′2, clearly we find two other roots x3, x

′
3 such that x3 6= ±x′3 and

(x2 − x′2)2(x3 − x′3) ∼ (1 + i)3x3
1

and continuing this way we see that for every j < m−1
2 − 1, we can find a

couple of roots (xj , x
′
j), where xj 6= ±x′j , such that

(xj−1 − x′j−1)2(xj − x′j) ∼ (1 + i)3x3
1 ∼ (xj − x′j)2(xj+1 − x′j+1)

and also a couple of roots (xm−1
2
, x′m−1

2

), where xm−1
2
6= ±x′m−1

2

, such that

(x(m−1
2
−1)−x

′
(m−1

2
−1)

)2(xm−1
2
−x′m−1

2

) ∼ (1+i)3x3
1 ∼ (xm−1

2
−x′m−1

2

)2(x1−x′1)

Multiplying all these relations together we get that

(x1 − x′1)3 ∼ (1 + i)3x3
1

41



and so
x1 − x′1 ∼ (1 + i)x1

Since x1 and x′1 where two arbitrary roots such that x1 6= ±x′1, this means
that for every two roots x 6= ±y it holds that

x− y ∼ (i+ 1)x (2.9)

Keeping these properties in mind, we now claim that if x is any root of
Pµ(x) for µ 6= −1 + 2i, then the element x4−1+2i

4 is a unit.
First of all, note that if we consider µ = −1 + 2i, then the polynomial of the
µ-division has degree 4 (the norm of µ is 5), and it has µ as constant term,
hence from what we have seen before we must have Pµ(x) = x4 + (−1 + 2i),
and therefore for every u ∈ C it holds that

ϕ((−1 + 2i)u) = ϕ(u)
(ϕ(u))4 + (−1 + 2i)

(−1 + 2i)(ϕ(u))4 + 1

From this equation it follows immediately that

ϕ(u)− ϕ((−1 + 2i)u)

ϕ((−1 + 2i)u)
=

2(i− 1)((ϕ(u))4 − 1)

(ϕ(u))4 + (−1 + 2i)
(2.10)

Now consider µ 6= (−1 + 2i). Since if ϕ(u) is a root of Pµ(x) then also
ϕ((−1 + 2i)u) is a root, Eq.(2.9) implies that

ϕ(u)− ϕ((−1 + 2i)u)

ϕ((−1 + 2i)u)
∼ (1 + i)

and thus, by Eq.(2.10),

(ϕ(u))4 + (−1 + 2i)

4
∼ (i− 1)((ϕ(u))4 − 1)

2(1 + i)
(2.11)

Actually (ϕ(u))4 − 1 ∼ (i+ 1)2: in fact, using the addition formula, we get
that

ϕ(u+ iu) =
(i+ 1)ϕ(u)f(u)F (u)

1− (ϕ(u))4

and we know from the previous discussion that f(u)F (u) ∼ (i + 1) and
that ϕ(u+ iu) ∼ ϕ(u) (both of them are roots). Consequently, the relation
expressed in Eq.(2.11) proves our claim.
The previous information is crucial in order to find the discriminant of the

extension Q(i) ⊆ K = Q(i, (ϕ(u))4). In fact, since α = (ϕ(u))4+(−1+2i)
4 is

a unit, the discriminant of Q(i, (ϕ(u))4) is the principal ideal generated by

∆(α), the discriminant of the basis {1, α, α2, . . . , α
m−1

4 }.
We can compute this discriminant from the discriminant ∆((ϕ(u))4). In
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fact, setting θi = σi((ϕ(u))4) for every σi ∈ Gal(K/Q(i)) the well known
formula for ∆(α) implies that

∆(α) =
∏
i>j

(σi(α)− σj(α))2

=
∏
i>j

(
(θi + (−1 + 2i)

4
− θj + (−1 + 2i)

4

)2

=
∏
i>j

(θi − θj)2

42

=
∆((ϕ(u))4)

4M(M−1)
where M =

m− 1

4

At this point, we are only left to compute the discriminant of (ϕ(u))4 using
the informations we already have. Before starting, note that from now on if
L′ = L(θ) is a separable extension of dimension n we will denote by ∆(θ|L)
the discriminant of the L-basis {1, θ, θ2, . . . , θn−1}

Claim 2.1.1. In our situation,

∆(ϕ(u)|Q(i)) = NK|Q(i) (∆(ϕ(u))|K) ∆((ϕ(u))4|Q(i))[Cµ:K]

We know that in general if L′ = L(θ) is a separable extension of dimen-
sion n then

∆(θ|L) = (−1)n(n−1)/2NL′|L(f ′(θ)) (2.12)

where f(X) is the minimum polynomial of θ over L and f ′(X) is its deriva-
tive (compare with [12], Theorem 7.6, p. 39 ). Hence in our case we get
that

∆(ϕ(u)|Q(i)) = (−1)(m−1)(m−2)/2NCµ|Q(i)(P
′
µ(ϕ(u)))

= NCµ|Q(i)(P
′
µ(ϕ(u)))

(recall that m − 1 ≡ 0 mod 4) Now let ψµ be the polynomial such that
Pµ(X) = ψµ(X4). Since g(X) = X4 − (ϕ(u))4 is the minimum polynomial
of ϕ(u) over K we also get

∆(ϕ(u)|K) = (−1)4(4−1)/2NCµ|K(g′(ϕ(u))) = NCµ|K(f ′(ϕ(u)))

where f(X) = X4. In the same way,

∆((ϕ(u))4|Q(i)) = (−1)M(M−1)/2NK|Q(i)(ψ
′
µ((ϕ(u))4))

and therefore

NK|Q(i) (∆(ϕ(u))|K) ∆((ϕ(u))4|Q(i))[Cµ:K] =

= NK|Q(i)

(
NCµ|K(f ′(ϕ(u)))

)
NK|Q(i)(ψ

′
µ((ϕ(u))4))4

= NCµ|Q(i)(f
′(ϕ(u)))NK|Q(i)(ψ

′
µ(f(ϕ(u))))4

= NCµ|Q(i)(ψ
′
µ(f(ϕ(u)))f ′(ϕ(u)))
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where the last equation holds because since ψ′µ(f(ϕ(u))) ∈ K it must be

(ψ′µ(f(ϕ(u))))4 = NCµ|K(ψ′µ(f(ϕ(u))))

Hence we conclude by simply remarking that P ′µ(X) = ψ′µ(f(X))f ′(X).

Now recall that we have already seen that

∆(ϕ(u)|Q(i)) = 2
(m−1)2

2 µm−2

Moreover, we can show that ∆(ϕ(u)|K) = −162(ϕ(u))12 applying Eq. (2.12).
The last information we need is the value of NK|Q(i) (∆(ϕ(u))|K) but seen
that NCµ|K(ϕ(u)) is the constant term of g(X) = X4 − (ϕ(u))4 and since
the ideal (ϕ(u))Cµ lies over µ (and is totally ramified) it holds that

NK|Q(i)(−(ϕ(u))4) = NK|Q(i)(NCµ|K(ϕ(u)))

= NCµ|Q(i)(ϕ(u))

= µ

Hence it follows that

NK|Q(i) (∆(ϕ(u))|K) = 16
m−1

2 µ3

so using the previous Claim we obtain

∆((ϕ(u))4|Q(i)) = 4M(M−1)µM−1

which means that the discriminant of K over Q(i) is µM−1.
At this point, it might be useful to stop for a second and summarize what
we have proven so far.

• We have seen how we can find all the subfields mentioned in the state-
ment of the theorem.

• We have proven that the subfield K (which is unique since all the roots
of Pµ(x) are associated) has discriminant ∆(K|Q(i)) = µM−1

• We have seen that µ is totally ramified in Cµ, and consequently in all
its subfields. Moreover, it is the only ramified prime in the subfields
whose degree is an odd power, and in the subfields of degree 2λ where
λ ≤ h.

Note that we still need to find the discriminant of the previously enlisted
subfields. But it holds in general (a convenient reference is [21], Theorem
28, p. 302)
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Theorem 2.1.3. Let R be a Dedekind domain, and R′ its integral in a finite
algebraic separable extension K ′ of the quotient field K of R. If p is a proper
prime ideal in R, let P be a prime ideal in R′ lying over p and denote by
e(P) the ramification index of P over p. Then the different DK′|K may be
factored in prime ideal as the product

DK′|K =
∏
P

Pm(P)

where m(P) ≥ e(P)−1 and the equality holds if and only if both the following
conditions hold:

a) e(P) is not a multiple of the characteristic of R/p,

b) R′/P is separable over R/p.

Our setting satisfies all the hypothesis, so we immediately have that if L
is one of the subfields whose degree is an odd power, or one of the subfields
of degree 2λ where λ ≤ h, denoting by M a prime ideal lying over µ in OL
we get that

DL|Q(i) = M[L:Q(i)]−1

since µ is not only the unique ramified prime, but it is also totally ramified.
Therefore it follows trivially

∆(L|Q(i)) = µ[L:Q(i)]−1

as we wanted to show.

Now we are left to prove the following statements:

Claim 2.1.2. The relative different of the extensions

K = Q(i, (ϕ(u))4) ⊂ Q(i, (ϕ(u))2) = K ′

is equal to (i+ 1)(ϕ(u)2).

Claim 2.1.3. The relative different of the extensions

K ′ ⊂ Cµ

is equal to (i+ 1)(ϕ(u))

In fact, using these claims, we can conclude in the following way: if for
every suitable field extension L ⊂ L′ we denote by DL′|L its relative different,
it holds that

DCµ|K = DCµ|K′(DK′|KOCµ) = (1 + i)2ϕ(u)3
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Therefore,

∆(Cµ|Q(i)) = NK|Q(i)(∆(Cµ|K))∆(K|Q(i))[Cµ:K]

= NCµ|Q(i)(DCµ|K)µ(M−1)4

= (1 + i)2(m−1)µ3µm−5

= 2m−1µm−2

as we needed to prove. Moreover, since (i+1) divides the differentK ⊂ K ′, it
must be ramified in K ′, and since it cannot be ramified in any field extension
of odd power degree, it must ramify in L0. But we know that it is not
ramified in Lh0 (the subfield of L0 such that [Lh0 : Q(i)] = 2h) so it must
ramify in the extension Lh0 ⊂ Lh+1

0 : indeed Lh+1
0 L1 . . . Lt = K ′ due to the

fact that [Cµ : K ′] = 2. Hence (again by Theorem (2.1.3))

DLh+1
0 |Q(i) = (1 + i)(ϕ(u)2)2h+1−1

(µ is totally ramified in Cµ) and analogously

DLh+2
0 |Q(i) = (1 + i)2(ϕ(u))2h+2−1

which means that

∆(Lh+1
0 |Q(i)) = (1 + i)2h+1

µ2h+1−1

∆(Lh+1
0 |Q(i)) = (1 + i)2h+3

µ2h+2−1

as we wanted to show. At this point, we are only left to prove the claims.

For the first claim, we shall consider the elements

τ =
i+ (ϕ(u))2

f(u)F (u)
∈ K ′

and

τ̄ =
i− (ϕ(u))2

f(u)F (u)
∈ K ′

Since (ϕ(u))2 and −(ϕ(u))2 are both roots of the polynomial X2 − (ϕ(u))4,
which is irreducible over K, it is clear that the Galois group of K ⊂ K ′ is
formed by the identity and by the automorphism defined by

(ϕ(u))2 7→ −(ϕ(u))2

Hence τ̄ must be a root of the minimum polynomial T (X) of τ , and conse-
quently we have that T (X) = (X − τ)(X − τ̄).
Actually τ and τ̄ are two associated integers. Since

T (X) = X2 − (τ + τ̄)X + τ̄ τ
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and τ
τ̄ is a root of X2 − ( ττ̄ + τ̄

τ )X + 1, in order to prove that they are asso-
ciated integers it is enough to show that τ + τ̄ , τ̄ τ and τ

τ̄ + τ̄
τ are integers.

Note that since ϕ(2u) = 2ϕ(u)f(u)F (u)
1+(ϕ(u))4 and since ϕ(2u) and ϕ(u) are asso-

ciated (being two roots of Pµ(X)), recalling that f(u)F (u) ∼ (1 + i) and
(1− (ϕ(u))4) ∼ (i+ 1)2 (as we have seen before in the proof) we get

τ + τ̄ =
2i

f(u)F (u)
∼ (i+ 1)

τ τ̄ = − 1 + (ϕ(u))4

(f(u)F (u))2
∼ 2f(u)F (u)

(f(u)F (u))2
∼ (i+ 1)

τ

τ̄
+
τ̄

τ
=

2(1− (ϕ(u))4)

1 + (ϕ(u))4
∼ 2f(u)F (u)

(i+ 1)2
∼ (i+ 1)

thus τ and τ̄ are associated integers.
Moreover, the previous discussion implies that as principal ideals

(i+ 1) = (τ τ̄) = (τ)(τ̄) = (τ)2

hence (i + 1) ramifies in K ⊂ K ′. Since the ramification index e(1 + i) of
(1 + i) must be 1 < e(i + 1) ≤ [K : K ′] = 2, (1 + i) is totally ramified in
K ⊂ K ′, and using again Theorem (2.1.3) we obtain

DK′|K = (1 + i)(ϕ(u)2)

(µ is totally ramified in Cµ, and ϕ(u)2 lies over µ).
Finally, we turn our attention to the extension K ′ ⊂ Cµ. Let γ ∈ Cµ.
Clearly γ can be represented in the form

γ = a+ bϕ(u)

where a, b ∈ K ′ = Q(i, (ϕ(u))2). Hence we may write

γ =
a+ bϕ(u)

c

where a, b, c ∈ Z[i][(ϕ(u))2] and no prime divides all of a, b, c. We know that
γ is an integer if and only if the coefficients of the minimum polynomial(

X − a+ bϕ(u)

c

)(
X − a− bϕ(u)

c

)
are integers, thus if and only if

a2 − b2(ϕ(u))2

c2
∈ OK

2a

c
∈ OK
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Since OK is a free Z[i]-module, c must divide 2a. If a and c have a common
factor λ, then the first relation implies that λ divides b (the unique prime
dividing (ϕ(u))2 is (ϕ(u)) which is not in K ′) contradicting our assumption.
As a consequence, c must be either a unit or an element associated to 2. In
the second case, c = 2ν where ν is a unit and so

γ =
a+ bϕ(u)

2ν
=
aν−1 + bν−1ϕ(u)

2
=
ã+ b̃ϕ(u)

2

where ã and b̃ are integers of K ′; moreover

a2 − b2(ϕ(u))2

c2
=
ã2 − b̃2(ϕ(u))2

4
∈ OK

if and only if
ã2 − b̃2(ϕ(u))2 ≡ 0 mod 4

In the other case, if c is a unit then γ is always an integer, and furthermore
ã = 2ac−1 and b̃ = 2bc−1 are integers such that

γ =
a+ bϕ(u)

c
=
ã+ b̃ϕ(u)

2

and again
ã2 − b̃2(ϕ(u))2 ≡ 0 mod 4

Thus an element γ is an integer if and only if

γ =
a+ bϕ(u)

2

where a, b ∈ OK and

a2 − b2(ϕ(u))2 ≡ 0 mod 4 (2.13)

but we are now going to prove that

Claim 2.1.4. If a couple (a, b) satisfies the congruence (2.13), then (i+ 1)
divides b. On the other hand, if b is an integer in K ′ which is divisible by
(1+i) then there is another integer a such that (a, b) satisfies the congruence
(2.13).

We need to consider the element

ξ = 1 + if(u) = 1 + i
√

1− (ϕ(u))2

ξ is an integer since its is a root of the polynomial X2 − 2X + 2− (ϕ(u))2.
Moreover, since

f(u)

F (u)
+
F (u)

f(u)
=

2

f(u)F (u)
∼ (i+ 1)
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is an integer, f(u) and F (u) are associate, thus as ideals

(1 + i) = (f(u)F (u)) = (f(u))2

which implies that if
z21z

2
2 . . . z

2
g = (1 + i)

is the prime decomposition of (1 + i) in K ′ then

ξ2 − (ϕ(u))2 = 2if(u) ≡ 0 mod z51z
5
2 . . . z

5
g

and the congruence does not hold for any higher power.
Note that for every element ζ ∈ K ′ and for every 1 ≤ l ≤ g the congruence

ζ2 − (ϕ(u))2 ≡ 0 mod z6l

is impossible. This can be shown in the following way: if ζ2 ≡ (ϕ(u))2 mod z6l ,
then

ζ2 ≡ (ϕ(u))2 mod z5l

and so
(ζ − ξ)(ζ + ξ) = ζ2 − ξ2 ≡ 0 mod z5l

But if (ζ − ξ) is divided by zl then

ζ + ξ = ζ − ξ + 2ξ

≡ 0 + 2ξ mod zl

≡ 0 mod zl

since zl divides the ideal (2), thus we actually have

ζ2 − ξ2 = (ζ − ξ)(ζ + ξ) ≡ 0 mod z6l

and so
ξ2 − (ϕ(u))2 = (ζ2 − (ϕ(u))2)− (ζ2 − ξ2) ≡ 0 mod z6l

which is absurd.
Now suppose that b is not divisible by (1 + i), which means that there is an
index 1 ≤ l ≤ g such that z2l does not divide b. From congruence (2.13) it
follows that a and b are divided by the same power of zl and so we can find
an element ζ such that

a ≡ bζ mod z4l

Hence b2ζ2−b2(ϕ(u))2 must by divisible by z8l , and seen that b is not divisible
by z2l this implies that

ζ2 − (ϕ(u))2 ≡ 0 mod z6l
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which is a contradiction.
On the other hand, if (i+ 1) divides b, we simply take a = bξ so that

a2 − b22(ϕ(u))2 = b2(ξ2 − 2(ϕ(u))2) = 2if(u)b2 ≡ 0 mod 4

Hence actually every integer γ can be represented in the form

a+ bϕ(u)

1 + i

and moreover, we can find an integer γ = a+bϕ(u)
(1+i) such that b is coprime

with (1 + i). If now we consider the element

γ′ =
a− bϕ(u)

(1 + i)

we get that
γ − γ′ = (1− i)bϕ(u)

and since b is arbitrary, this means that

DCµ|K′ = (1 + i)(ϕ(u))

as we wanted to prove.

2.2 The division by an odd prime power.

As before, we are considering a odd complex prime µ and its norm m. The
multiplication formula related to the element µh where h is an integer can
clearly be obtained by iteration of the formula

ϕ(µu) = x
Pµ(x4)

Qµ(x)

where as usual x = ϕ(u). More precisely

Theorem 2.2.1. Let µ be an odd complex prime, m its norm. Then for
every h ∈ N it holds that

ϕ(µhu) = x
Ψµ,h(x)

Xµ,h(x)
, where x = ϕ(u)

where Ψµ,h(X),Xµ,h(X) are polynomials such that:

i) every power of X composing these polynomials is of the form X4n for
some n ∈ N.
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ii) Ψµ,h(X) can be factorized as

Ψµ,h(X) = Pµψ2ψ3 . . . ψh

where for every j ∈ {2, . . . , h} and for every x ∈ C, we have that x
is a root of ψj if and only if x is one of the µj-division points of the
lemniscate.

iii) for every j ∈ {2, . . . , h} ψj is of degree mj−1(m− 1).

iv) for every j all the coefficients of ψj are divisible by µ except the lead-
ing coefficient which is equal to 1. Moreover, the constant term is
associated to µ.

Proof. We will proceed by induction, so let us start with the case h = 2.
We have that for every u ∈ C

ϕ(µ2u) = ϕ(µu)
Pµ(ϕ(u))

Qµ

= ϕ(u)
Pµ(x)

Qµ(x)
·
Pµ

(
ϕ(u)

Pµ(x)
Qµ(x)

)
Qµ

(
ϕ(u)

Pµ(x)
Qµ(x)

)
Seen that both Pµ(X) and Qµ(X) have degree equal to m− 1, multiplying
the numerator and the denominator with Qµ(x)m−1 we obtain that

ϕ(µ2u) = ϕ(u)
Pµ(x)

Qµ(x)
· ψ2(x)

τ2(x)

where ψ2(X) and τ2(X) are two polynomials of the same degree prime to
each other, and so we can set Ψµ,2(X) = Pµ(X)ψ2(X). Moreover, since
every power of X which appears in Pµ(X) and Qµ(X) is of the form X4n,
the same holds for ψ2(X). Furthermore, since all the coefficients of Pµ(X)
and Qµ(X) are divisible by µ, except for the leading coefficient of Pµ(X) and
the constant term of Qµ(X), all the coefficients of ψ2(X) except the leading
one are divisible by µ. Moreover, ψ2(X) is monic and its constant term is
associated to µ (since Pµ(0) = iεµ andQm−1

µ (0) = (Qµ(0))m−1 = 1). Finally,
the leading term of ψ2(X) is equal to the leading term of Pµ(ϕ(u)Pµ(x)),
i.e.

ϕ(u)m−1
(
ϕ(u)m−1

)m−1

so ψ2(X) is of degree m(m− 1) = m2−1(m− 1).
Now, supposing that the theorem holds for h ∈ N, we are proving it for
h+ 1. We know that

ϕ(µhu) = x
Ψµ,h(x)

Xµ,h(x)
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thus

ϕ(µh+1u) = ϕ(µhu)
Pµ(ϕ(µhu))

Qµ(ϕ(µhu))

= x
Ψµ,h(x)

Xµ,h(x)
·
Pµ

(
x

Ψµ,h(x)
Xµ,h(x)

)
Qµ

(
x

Ψµ,h(x)
Xµ,h(x)

)
As before, if we multiply both the numerator and the denominator by
(Xµ,h(x))m−1 we obtain

ϕ(µh+1u) = x
Ψµ,h(x)

Xµ,h(x)
· ψh+1(x)

τh+1(x)

where ψh+1(X) and τh+1(X) are two polynomials of the same degree prime
to each other, and so

Ψµ,h+1(X) = Ψµ,h(X)ψh+1(X) = Pµ(X)ψ2(X) . . . ψh(X)ψh+1(X)

as we wanted to show in ii). In order to prove point i) we only need to repeat
the same argument used for the case h = 2. For iv), note that since Qµ(X) =
1
iεX

m−1Pµ(X) (see Proposition (1.5.4)) then using the same argument used
for ψ2(X) we have that the constant term of τ2(X) is equal to 1, and all
the other coefficients are divisible by µ. Hence the same holds for Xµ,2(x),
and by inductive hypothesis on Xµ,h(x): so, using the same argument as in
the case h = 2, we conclude that ψh+1(X) has leading coefficient equal to
1, constant term associated to µ, and all the other coefficient divisible by µ
(and analogously all the coefficients of Xµ,h+1(x) are divisible by µ except
for the constant term which is equal to 1). Finally, since the leading term
of ψh+1(X) is equal to the leading term of the polynomial Pµ(XΨµ,h(X)),
we have that

deg(ψh+1(X)) = deg(Ψµ,h(X) + 1) deg(Pµ(X))

Therefore, seen that

deg(Ψµ,h(X)) = deg(Pµ(X)) +
h∑
j=2

deg(ψh(X))

= (m− 1) +
h∑
j=2

mh−1(m− 1)

=
h∑
j=1

mh−1(m− 1)

= mh − 1
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we get that
deg(ψh+1(X)) = mh(m− 1)

as we needed to show.

Theorem 2.2.2. Let µ be an odd prime integer of Q(i), m its norm, and
for h ∈ N denote by Cµh the splitting field of ψh(X). Then Q(i) ⊂ Cµh is a

Galois extension of degree mh−1(m− 1) and moreover:

• if µ is not real, then Gal(Cµh/Q(i)) is cyclic.

• if µ is a real number q, then

Gal(
Cµh

Q(i)
) = ST

where S and T are cyclic groups of degree respectively qh−1(q2−1) and
qh−1.

Proof. Since by point iv) of the previous theorem ψh(X) satisfies the hy-
pothesis of the Eiseinstein criterion, ψh(X) is irreducible, so in order to
prove that Q(i) ⊂ Cµh is a Galois extension is sufficient to show that ψh(X)
is separable.
Since µh is odd it holds that

x
Ψµ,h(x)

Xµ,h(x)
= ϕ(µhu) = x

Pµ(x)

Qµ(x)

and in the proof of the previous theorem we have shown that

deg Ψµ,h(x) = mh − 1 = degPµh(X)

Therefore, we see that ψh(X) must be separable, otherwise Ψµ,h(x) would
have a multiple root, contradicting the fact that Pµh(X) does not have any
multiple root.
Now let us start with the second part of the proof. If µ is not real, we need
the following general result that we are not going to prove (see Theorem 2,
[7])

Proposition 2.2.1. If a and b are relatively prime integers, then there is
an isomorphism

Z[i]

(a+ ib)Z[i]
∼=

Z
(a2 + b2)Z

Let c, d ∈ Z be such that µh = c + id. Suppose that there is a rational
prime e dividing both c and d, then it must divide µh. There are only three
different cases, according to the prime factorization of e in Z[i].

• if e is inert, it must be equal to µ, which is impossible because µ is
not real.
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• if e splits, then µh id divided by two different primes, that is absurd.

• if e ramifies, then it must be equal to 2, which is a contradiction seen
that µh is odd.

Hence using the previous Proposition we get that

Z[i]

µhZ[i]
∼=

Z
mhZ

and thus with the help of Theorem (2.1.1) we obtain

Gal(
Cµh

Q(i)
) ↪→

(
Z[i]

µhZ[i]

)∗
∼=
(

Z
mhZ

)∗
Since m is a prime different from 2 being the norm of the prime µ ∈ Z[i],

the group of units of Z/mhZ is a cyclic group of order mh−1(m−1) (compare
with [16], Proposition A.8.). Recalling that [Cµh : Q(i)] = mh−1(m − 1) it
follows that

Gal(
Cµh

Q(i)
) ∼=

(
Z

mhZ

)∗
which proves that the extension if µ is not real Q(i) ⊂ Cµh is cyclic.
If µ is a real integer q, we cannot apply the same argument, but we can
instead compute directly the number of units in the following way. First of
all we need to find the cardinality of the group of units. Since q is inert, the
equivalence classes of Z[i]/qhZ[i] are given as

{[a+ ib] : 0 ≤ a ≤ qh − 1 and 0 ≤ b ≤ qh − 1}

(see [6], Theorem 1). Moreover, since a+ ib is coprime with q if at least one
between a and b is not divisible by q, it is easy to see that the cardinality is
equal to q2h−2(q2 − 1). This means that actually there is an isomorphism

Gal(
Cqh

Q(i)
) ∼=

(
Z[i]

qhZ[i]

)∗
so in order to conclude, we only have to find the structure of (Z[i]/qhZ[i])∗.

Consider a primitive root modulo q, i.e. a generator of the the group of
units of Z[i]/qZ[i], which is cyclic of order m − 1 = q2 − 1. Since γ is a a
primitive root modulo q, clearly

γq
2−1 ≡ 1 mod q

For the following argument, γ must be such that

γq
2−1 6≡ 1 mod q2
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If our γ does not satisfy the previous condition, we only need to choose an
integer λ 6≡ 0 mod q and substitute γ with γ + qλ: indeed,

(γ + qλ)q
2−1 ≡ 1 mod q

and
(γ + qλ)q

2−1 6≡ 1 mod q2

The previous discussion means that we can assume that our primitive root
γ satisfies the equation

γq
2−1 = 1 + ξq

for some integer ξ 6≡ 0 mod q, and so

γq(q
2−1) = (1 + ξq)q = 1 + ξ1q

2

for some ξ1 6≡ 0 mod q.
Repeating the argument h−2 times, we can find an element ξh−1 6≡ 0 mod q
such that

γq
h−1(q2−1) = 1 + ξh−1q

h

Therefore, due to the fact that γ generates (Z[i]/qZ[i])∗, for every integer
α 6≡ 0 mod q we have that

αq
h−1(q2−1) ≡ 1 mod qh

Now suppose that there is an element ν such that νq
h−1 ≡ γs mod qh for

some s, and such that for every l < qh−1 and every t,

νl 6≡ γt mod qh

Consider an element of the form

γjνl

where 0 ≤ j ≤ qh−1(q2 − 1)− 1 and 0 ≤ l ≤ qh−1 − 1: seen that

(γjνl)q
h−1(q2−1) ≡ 1 mod qh

γjνl is always a unit mod qh. Moreover, if

γjνl ≡ γrνt mod qh

for a couple (r, t) 6= (j, l) where 0 ≤ r ≤ qh−1(q2−1)−1 and 0 ≤ t ≤ qh−1−1,
then it must be

γj−r ≡ νt−l mod qh
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which is impossible since 0 < t − l < qh−1, so the elements γjνl are all
different. Since the total number of these elements is equal to the cardinality
of (Z[i]/qhZ[i])∗, it follows that if S =< γ > and T =< ν > we get

Gal(
Cqh

Q(i)
) ∼= ST

So we are only left to show that a suitable ν exists. Consider any element a
such that

aq
h−1 ≡ 1 mod qh

and
al 6≡ 1 mod qh

for every l < qh−1. From

aq
h−1 ≡ (1 + (a− 1))q

h−1
mod qh

≡
qh−1∑
i=0

(
qh−1

i

)
(a− 1)i mod qh

we get that
qh−1∑
i=0

(
qh−1

i

)
(a− 1)i ≡ 1 mod qh ≡ 1 mod q

and so 1 + (a− 1)q
h−1 ≡ 1 mod q, i.e.

a ≡ 1 mod q

On the other hand
a 6≡ 1 mod q2

because if a = 1 + ηq2 with η ∈ Z[i] then

aq
h−2

= (1 + ηq2)q
h−2

= (1 + qηq2 + . . .)q
h−3

...

= (1 + qη̄qh−2 + . . .)q

= 1 + η̃qh + . . .

≡ 1 mod qh

which is a contradiction since qh−2 < qh−1. Hence there is an element
η 6≡ 0 mod q such that

a = 1 + ηq
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and so from what we have seen before, the powers of γ that could possibly
be equal to a are only those of the form

γλ(q2−1)

for λ ∈ {1, . . . , q − 1}. Now, choose ν avoiding the powers of γ (which is
possible, since we have q2−1 choices for η and only q−1 elements to avoid):
we are going to prove that ν respect the required condition.
So let l be the smallest exponent such that

νl ≡ γt mod qh

for some t ∈ N. First of all, we have to remark that l must divide qh−1,
since νq

h−1 ≡ 1 mod q. Then, note that since γ generates (Z[i]/qZ[i])∗ and
νl ≡ γt mod q then t must be divisible by l. Moreover, seen that

(γt)q
h−1 ≡ (νl)q

h−1
mod qh

≡ 1 mod qh

tqh−1 must be divisible by qh−1(q2 − 1), so we conclude that t = bl(q2 − 1)
for some b ∈ N. Finally consider the congruence(

νγ−b(q
2−1)

)l
= νlγ−bl(q

2−1) ≡ 1 mod qh

If l < qh−1, then the equation holds only if

νγ−b(q
2−1) ≡ 1 mod q2

( it is enough to use the same argument we used in order to prove that
a 6≡ 1 mod q2), but then since γq

2−1 ≡ 1 mod q2 we get that

ν ≡ 1 mod q2

which is a contradiction, thus l = qh−1 as we wanted to show.

2.2.1 Some further details on the fields Cµh

Note that we can easily obtain other meaningful informations about the
fields Cµh :

• Using the same kind of argument used in Proposition (2.1.2), it is
possible to prove that the discriminant of the Q(i)-basis of Cµh formed
by taking the powers of any root of ψh(X) is divisible only by (i+ 1)
and µ.

• Moreover, following the argument used in the proof of Theorem (2.1.2)
we can see that µ is totally ramified in Cµh and that the prime ideal
M lying over µ can be generated by any of the roots of ψh(X) (which
are then all associated).
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• If µ is not real, using Sylow’s theorem on the Galois group of Q(i) ⊂
Cµh we see that there is a cyclic extension Q(i) ⊂ K ⊂ Cµh such that

[K : Q(i)] = mh−1. Since the degree of the extension is odd, it follows
from Proposition (2.1.2) that the discriminant of this field is a power
of µ. Moreover, Cµ is the field corresponding to the unique subgroup
of Gal(Cµh/Q(i)) of order m− 1, so

Q(i) ⊂ Cµ ⊂ Cµh

• If µ = q is real, then in the Galois group of Q(i) ⊂ Cqh we can find

qh−1 + 1 different groups of order qh−1: for every h ∈ T =< ν >
the group < hγq

2−1 > has order qh−1 and then we have to take in
account T . All those groups fix a different subextension of Cqh of

degree qh−1 over Q(i), and the discriminant of these fields is a power
of q. Moreover, as in the previous case Cq is the field corresponding
to the unique subgroup of Gal(Cqh/Q(i)) of order m− 1.

2.3 The division by a power of (1 + i)

So far we have considered µ-division points for µ odd prime and then we
have looked at the division by µh, using the detailed description of the µh-
division polynomial which is available in this case. Now we have to shift
our attention to the case of any power of (1 + i), and we will need a slightly
different approach.

Our starting point is the equation

℘((1 + i)u) =
℘2(u)− 1

2i℘(u)
(2.14)

which was established in Proposition (1.5.1). Clearly, by iteration, for any
h ∈ N ℘((1 + i)hu) must be a rational function of ℘(u), so let us set

℘(1 + i)hu =
fh(x)

gh(x)
x = ℘u

where fh(x), gh(x) ∈ Z[i][x]. Since

℘((1 + i)h+1u) =
℘2((1 + i)hu)− 1

2i℘((1 + i)hu)

we get by straightforward computation that

fh+1(x) = f2
h(x)− g2

h(x) (2.15)

gh+1(x) = 2ifh(x)gh(x) (2.16)
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so, because of the fact that f1(x) = x2−1 and g1(x) = 2ix these polynomials
can be completely determined by recursion.
First of all we are interested in the degree of fh(x) and gh(x) ( for typo-
graphical reasons, we will denote by ∂fh the degree of fh(x)). We proceed
by induction, and we claim that ∂fh = ∂gh + 1 for every h. In fact, ∂f1 = 2
and ∂g1 = 1; moreover, if we suppose that ∂fh = ∂gh + 1 then

∂gh+1 = ∂fh + ∂gh

= 2∂gh + 1

while

∂fh+1 = ∂2fh

= 2∂gh + 2

Thus we actually have that for every h ∈ N

∂fh+1 = 2∂fh

which implies that fh(x) is of degree 2h for every h.

Theorem 2.3.1. Considering the previous notation, let Dh be the splitting
field of fh(x) over Q(i). Then Q(i) ⊂ Dh is an abelian extension of degree
2h−2 whose discriminant ∆(Dh|Q(i)) is divisible only by powers of (1 + i).

Proof. Since

fh(x) = (fh−2(x)− igh−2(x))2(fh−2(x) + igh−2(x))2

we can consider separately the roots of fh−2(x)− igh−2(x) = 0 and those of
fh−2(x) + igh−2(x) = 0. Let us focus first on

fh−2(x)− igh−2(x) = 0 (2.17)

If x̄ = ℘(ū) is a root of Eq.(2.17), then either gh−2(x̄) = fh−2(x̄) = 0 or

℘((1 + i)h−2ū) =
fh−2(x̄)

gh−2(x̄)
= i

Note that the first option actually leads to a contradiction. In fact, using
Eq.(2.15) and Eq.(2.16), we get

0 = fh−2(x̄) = f2
h−3(x̄)− g2

h−3(x̄)

0 = gh−2(x̄) = 2ifh−3(x̄)gh−3(x̄)

and so fh−3(x̄) = gh−3(x̄) = 0. Repeating the argument, we get that

0 = f1(x̄) = x̄2 − 1

0 = g1(x̄) = 2ix̄
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which is clearly impossible. So the only feasible case is the second one, i.e
it must be

℘((1 + i)h−2ū) = i

for every root x̄ = ℘(ū).
In order to proceed, we have to prove first the following:

Claim 2.3.1. Consider the fundamental parallelogram of the lattice associ-
ated to ℘ and a point u inside of it. Then ℘(u) = i if and only if

u ∈ {ω
4

(1 + 3i),
ω

4
(3 + i)}

Moreover ℘(u) = −i if and only if

u ∈ {ω
4

(1 + i),
ω

4
(3 + 3i)}

This claim can be proved in the following way. First of all (using the
periodicity of ℘ and the fact that ℘(−u) = ℘(u))

℘

(
ω

2(1 + i)

)
= ℘

(
ω(1− i)

4

)
= ℘

(
ω(1− i)

4
+ ωi

)
= ℘

(
ω(1 + 3i)

4

)
and

℘

(
ωi

2(1 + i)

)
= ℘

(
ω(1 + i)

4

)
= ℘

(
−ω(1 + i)

4
+ ωi+ ω

)
= ℘

(
ω(3 + 3i)

4

)
Moreover

℘

(
ω(1 + 3i)

4

)
= ℘

(
−ω(1 + 3i)

4

)
= ℘

(
−ω(1 + 3i)

4
+ ω + ωi

)
= ℘

(
ω(3 + i)

4

)
and analogously

℘

(
ω(1 + i)

4

)
= ℘

(
ω(3 + 3i)

4

)
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Let us set u1 = ω
2(1+i) and u2 = ωi

2(1+i) . Then since

1 = ℘(
ω

2
) =

℘2
(

ω
2(1+i)

)
− 1

2i℘
(

ω
2(1+i)

)
we have that x1 = ℘(u1) is such that

x2
1 − 2ix1 − 1 = 0

which means that x1 = i as we wanted to prove. In the same way, we
can show that ℘(u2) = −i, so we are left to prove the “only if ” part of the
statement. Suppose that there is another ũ in the fundamental parallelogram
such that ℘(ũ) = i: recalling that ℘(u) = 1

ϕ2(u)
we get that

ϕ2(ũ) = ϕ2

(
ω(1 + 3i)

4

)
= ϕ2

(
ω(3 + i)

4

)
Since by Proposition (1.2.4) ϕ(x) = ϕ(α) if and only if there are m,n ∈ Z
such that x = (−1)m+nα+mω+nωi, if ϕ(ũ) = ϕ

(
ω(1+3i)

4

)
then ũ is outside

the fundamental parallelogram contrarily to our assumption. So,

ϕ(ũ) = −ϕ
(
ω(1 + 3i)

4

)
but since the argument was general, we also get that

ϕ

(
ω(3 + i)

4

)
= −ϕ

(
ω(1 + 3i)

4

)
and hence

ϕ(ũ) = ϕ

(
ω(3 + i)

4

)
which leads us to a contradiction exactly as before. Using the same argu-
ment for the other set of points, we conclude.

In our contest, this last results means that if x̄ = ℘(ū) is a root of
Eq.(2.17) then it must be that either

(1 + i)h−2ū = ±ω(1 + 3i)

4
+mω + nωi

for some m,n ∈ Z or

(1 + i)h−2ū = ±ω(3 + i)

4
+mω + nωi
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so (by direct computation) we can see that

ū =
ξ + ηi

(1 + i)h+1
ω

where ξ, η ∈ Z, ξ is even and η ≡ ±1 mod 4. Note that since ℘(−u) = ℘(u)
the previous discussion implies that the roots of Eq.(2.17) are of the form

℘

(
ξ + ηi

(1 + i)h+1
ω

)
where ξ is even and η ≡ 1 mod 4. With the same argument we can also see
that the roots of fh−2 + igh−2 = 0 are of the form

℘

(
ξ + ηi

(1 + i)h+1
ω

)
where ξ, η ∈ Z, η is even and ξ ≡ 1 mod 4.

Since ℘(iu) = −℘(u) it is clear that the roots of fh−2(x)− igh−2(x) = 0
and fh−2(x)+igh−2(x) = 0 define the same field extension: thus we can focus
our attention on fh−2(x) + igh−2(x) = 0 instead of considering fh(x) = 0.
Moreover the equation

℘

(
ξ + ηi

(1 + i)h
ω

)
=
℘2
(

ξ+ηi
(1+i)h+1ω

)
− 1

2i℘
(

ξ+ηi
(1+i)h+1ω

)
implies that Dh ( Dh+1 for every h ∈ N and therefore

Claim 2.3.2. It is sufficient to prove the theorem only for h even.

In fact

• if [Dh : Q(i)] = 2h−2 and [Dh−2 : Q(i)] = 2h−4 then the degree of
Dh−1 over Q(i) can only be 2h−3.

• if Q(i) ⊂ Dh is an abelian extension then clearly also Q(i) ⊂ Dh−1 is
abelian.

• if the discriminant of Q(i) ⊂ Dh is divisible only by (i + 1) the same
must be true for the discriminant of Q(i) ⊂ Dh−1.

In view of this last remark, let us consider the equation

f2l(x) + ig2l(x) = 0 (2.18)
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which is of degree 22l. Note that actually, due to Eq.(2.14), to solve Eq.
(2.18) is equivalent to solve the following chain of quadratic equations:

y0 = −i =
y2

1 − 1

2iy1

y1 =
y2

2 − 1

2iy2
. . . . . . . . .

. . . . . . . . .

y2l−1 =
y2

2l − 1

2iy2l

where for every j

yj = ℘

(
ξ + ηi

(1 + i)j
ω

)
and ξ and η are fixed (and satisfy the previously stated requests): thus in
order to prove that Q(i) ⊂ D2l+2 = Q(i)(y2l) is an extension of degree 22l

we just need to prove that Q(i)(yj) 6= Q(i)(yj+1) for every j.
We proceed by induction. Since y1 = 1±

√
2, Q(i)(yj) 6= Q(i). Now choose

n < 2l and consider the extension Q(i)(yn) ⊂ Q(i)(yn+1). If Q(i)(yn) 6=
Q(i)(yn+1) then this extension must be cyclic of degree 2, and so there must
an element a ∈ Q(i)(yn) which is not a square such that

Q(i)(yn+1) = Q(i)(yn)(
√
a)

and consequently the discriminant of this extension must be divisible by a
(we are using again Lemma (2.1.5)). But we know that the field Q(i)(yn+1)
is defined by the equation

y2
n+1 − 2iynyn+1 − 1 = 0

whose discriminant dn+1 is

dn+1 = −4(y2
n − 1) = −8iyn+1yn

so a must divide −8iyn+1yn. Since we can suppose that a is not divisible
by 2 ( (2) is a square in Q(i)) and since yn+1 /∈ Q(i)(yn) we conclude that
if Q(i)(yn) 6= Q(i)(yn+1) then Q(i)(yn+1) = Q(i)(yn)(

√
yn), so we only need

to show that yn is not a square in Q(i)(yn)(
√
yn).

If yn is actually a square in Q(i)(yn), then there must be α, β ∈ Q(i)(yn−1)
such that yn = (α+ βyn)2 and so

β2y2
n + (2αβ − 1)yn + α2 = 0

But by inductive hypothesis the equation

y2
n − 2iyn−1yn − 1 = 0
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is irreducible in Q(i)(yn−1) hence we must have

α2

β2
= −1

(2αβ − 1)

β2
= −2iyn−1

If α = ±iβ we get that

yn−1 ± 1 =
1

2iβ2
=

(
1

(1 + i)β

)2

so the norm of yn−1±1 must be a square in Q(i)(yn−2). But since the roots
of

y2
n−1 − 2iyn−2yn−1 − 1 = 0

are iyn−2 ±
√
−y2

n−2 − 1 the norm of yn−1 ± 1 is equal to 2iyn−2: then

we have a contradiction, because by the inductive hypothesis yn−2 is not
a square in Q(i)(yn−2). Therefore, yn is not a square, which means that
[D2l+2 : Q(i)] = 22l as we wanted to show.

We still have to prove the extension is abelian and that the discriminant
is divisible only by (1 + i).
Suppose that the discriminant of Q(i) ⊂ Q(i)(yn) is a power of (1+ i). Since
we already know that for every n < 2l the discriminant ∆n of Q(i)(yn) ⊂
Q(i)(yn+1) divides 4yn, it must be a power of (1 + i), because the equation

yn(yn − 2iyn−1) = 1

implies that yn is a unit. But

∆(Q(i)(yn+1)|Q(i)) = ∆(Q(i)(yn)|Q(i))2N(∆n)

( N is the norm of Q(i)(yn) ⊂ Q(i)(yn+1)) so clearly the discriminant
∆(Q(i)(yn+1)|Q(i)) is a power of (1 + i), and by induction we obtain that
the discriminant of Q(i) ⊂ D2l+2 is divisible only by (1 + i).

Finally, the extension is clearly a Galois extension, since it has been built
by repeatedly adding square roots. It is abelian because the Galois group is
isomorphic to the product Z

2lZ×
Z

2lZ . In fact, it is possible to prove (compare
with [17], §5 ) that we can find two odd elements γ, γ′ ∈ Z[i] such that all
the roots of Eq. (2.18) are of the form

xλ,λ′ = ℘

(
γλγ′λ

′ ω

(1 + i)2m+3

)
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where λ, λ′ ∈ {0, 1, 2, . . . , 2m − 1} (we are not proving this statement, due
to its similarity to the cases we treated in Theorem (2.2.2)). Then, if we
consider an Q(i)-automorphism σ of D2l+2, we have that

σ

(
℘

(
ω

(1 + i)2m+3

))
= ℘

(
γλγ′λ

′ ω

(1 + i)2m+3

)
for a couple (λ, λ′) ∈ Z

2lZ ×
Z

2lZ (the image of a root must be a root). Now

choose s ∈ N : since γs is odd we get (setting k =
(

ω
(1+i)2m+3

)
for typo-

graphical reasons)

σ(ϕ2(γsk)) = σ(ϕ2(k))
σ
(
P 2
γs (ϕ(k))

)
σ
(
Q2
γs (ϕ(k))

)
= ϕ2(γλγ′λ

′
k)
P 2
γs (σ(ϕ(k)))

Q2
γs (σ(ϕ(k)))

= ϕ2(γλγ′λ
′
k)
P 2
γs

(
ϕ(γλγ′λ

′
k)
)

Q2
γs (ϕ(γλγ′λ′k))

= ϕ2(γλ+sγ′λ
′
k)

and so

σ

(
℘

(
γs

ω

(1 + i)2m+3

))
=

1

σ(ϕ2(γsk))

=
1

ϕ2(γλ+sγ′λ′k)

= ℘

(
γλ+sγ′λ

′ ω

(1 + i)2m+3

)
Of course we can repeat the same argument with γ′, obtaining

σ

(
℘

(
γsγ′r

ω

(1 + i)2m+3

))
= ℘

(
γλ+sγ′λ

′+r ω

(1 + i)2m+3

)
thus σ is completely determined by (λ, λ′) and it is clear how to define the
isomorphism we were searching for.

Note that since

Gal(D2l+2/Q(i)) ∼=
Z

2lZ
× Z

2lZ
for every subgroup H of the Galois group there must be two subgroups
H1, H2 ⊆ Z/2lZ such that H ∼= H1 ×H2. So if H is of order 2l (thus if it
fixes a subextension of degree 2l) then

|H1| =
2l

|H2|
which obviously implies that
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Corollary 2.3.1. The field D2l+2 has 2l+1 subfields of degree 2l over Q(i).
The discriminant of all these subextensions is divisible only by (i+ 1).

Proposition 2.3.1. Let x = ϕ(u) and consider yx = ℘(u) = 1
ϕ2(u)

. For

every h ≥ 2, x is the polar distance of an (1 + i)h+1-division point of the
lemniscate which is not a (1+i)h-division point if and only if yx is a solution
of the polynomial fh(X) defined above. Moreover, the polar distances of the
(1 + i)h+1-division points generate the field extension Q(i) ⊂ Dh+1.

Proof. Clearly, if x = ϕ(u) corresponds to a (1 + i)h+1-division point of the
lemniscate then

0 = ϕ((1 + i)h+1u)

which implies that
(1 + i)h+1u = r1ω + r2ωi

for some r1, r2 ∈ Z and consequently

yx = ℘(u) = ℘(
r1ω + r2ωi

(1 + i)h+1
)

But then

℘
(

(1 + i)hu
)

= ℘

(
(1 + i)h

r1ω + r2ωi

(1 + i)h+1

)
= ℘

(
r1ω + r2ωi

(1 + i)

)
= ℘

(
(r1 + r2)ω + (r2 − r1)ωi

2

)
Note that r1 + r2 must be odd. In fact, if it were even, then r2 − r1 would
be even too, and consequently we would have

℘
(

(1 + i)hu
)

= 0

contradicting the fact that x is not the polar distance of an (1 + i)h-division
point.
Hence r1 + r2 and r2 − r1 are both odd: this means that (1 + i)hu is a pole
of ϕ and that ℘((1 + i)hu) = 0, so

fh(℘(u)) = 0

as we wanted to show.
On the other hand, if yx = ℘(u) is a root of fh(X) we can find two numbers
ξ, η ∈ Z such that η is even, ξ ≡ 1 mod 4 and

℘(u) = ℘

(
ξ + ηi

(1 + i)h+1
ω

)
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Hence there must be r1, r2 ∈ Z such that

u =
ξ + ηi

(1 + i)h+1
ω + r1ω + r2ωi

and therefore

ϕ((1 + i)h+1u) = ϕ
(
ξω + ηiω + r1(1 + i)h+1ω + r2(1 + i)h+1ωi

)
= 0

Finally,

(1 + i)hu =
ξ + ηi

(1 + i)
ω + r1(1 + i)hω + r2(1 + i)h+1ωi

so

ϕ((1 + i)hu) = ϕ

(
(ξ + η)ω

2
+

(ξ − η)ωi

2
+ r1(1 + i)hω + r2(1 + i)h+1ωi

)
which means that (1 + i)hu is a pole because ξ − η and ξ + η are both odd
(we are using Proposition (1.2.3)), thus ℘(u) is not the polar distance of an
(1 + i)h-division point.
Now we are left to prove that the polar distances of the (1 + i)h+1-division
points generate the field extension Q(i) ⊂ Dh+1. Let x = ϕ(u) be the
polar distance of one of the division points and let yx = ℘(u) = 1

x2 be the
corresponding root of fh(X). In Theorem (2.3.1) we saw that yx ∈ Dh, and
that Dh+1 = Dh(

√
yx), hence

x =
1
√
yx
∈ Dh+1

Moreover, since x2 ∈ Dh and x /∈ Dh (otherwise
√
yx ∈ Dh, which is absurd)

we get that [Dh(x) : Dh] = 2 = [Dh+1 : Dh]: their intersection is not empty
(it contains x) so we get that Dh(x) = Dh+1 as we wanted to show.

In Theorem (2.3.1), we already saw that the discriminant of the fields
Dh is divisible only by (1 + i), and thus (1 + i) is the only ramified prime.
Moreover, it holds that

Proposition 2.3.2. Consider all the notations exploited in the proof of
Theorem (2.3.1). For every h ≥ 1, (1 + i) is totally ramified in Dh+2.
Moreover, the prime P of Dh lying over (1 + i) can be generated by the
element

τh =
2

yh − yh−1
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Proof. Since ∆(Dh+2|Q(i)) is divisible only by (1+i), and since no nontrivial
extension of Q(i) can have its discriminant equal to a unit, (1 + i) must be
equal to the 2h-th power of a prime P of Dh+2.
For every n ≤ h let us consider

τn =
2

yn − yn−1
∈ k(yn)

Since yn is a root of
x2 − 2iyn−1x− 1 = 0

the Q(i)(yn−1)-automorphism of Dn+2 = Q(i)(yn) different from the identity
sends yn in 2iyn−1 − yn and consequently

τn 7→ τ ′n =
2

2iyn−1 − yn − yn−1

Using the fact that

yj − yj−1 =
(2i− 1)y2

j + 1

2iyn

and
2iyjyj−1 = y2

j − 1

we can see that

τn + τ ′n =
−2(1 + i)

yn−1 − yn−2

τnτ
′
n =

−i
yn−1

· 2

yn−1 − yn−2

We have already seen that the yj ’s are units: hence, τn is an integer if
τn−1 = 2

yn−1−yn−2
is an integer. Then by induction we only need to prove

that

τ1 =
2

y1 − y0
=

2

y1 + i

is an integer: this can be done by simply observing that the trace of τ1 is
equal to −2i and that its norm is -(1 + i). Since

NQ(i)(yn)|Q(i)(τn) = NQ(i)(yn−1)|Q(i)

(
NQ(i)(yn)|Q(i)(yn−1)(τn)

)
= NQ(i)(yn−1)|Q(i)

(
−i
yn−1

· 2

yn−1 − yn−2

)
= εnNQ(i)(yn−1)|Q(i)(τn−1)

where εn is a unit, so by induction, we conclude that

NQ(i)(yn)|Q(i)(τn) = εNQ(i)(y1)(τ1) = −ε(1 + i)
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and that
(τn)2n = (1 + i)

as ideals. Consequently the same holds also for n = h, so we get

(τh)2h = (1 + i)

as we wanted to prove.

2.4 The case of the division of the lemniscate by
a composite number

In previous sections, we have described the extensions that we can obtain
by choosing any prime p ∈ Z[i] and adding to Q(i) the polar distances of the
ph-division points (h ∈ N). So a natural question is to ask what happens
when instead of a prime we are considering a composite number λ ∈ Z[i].
Also in this case, in complete analogy with what we have done before, let us
define Cλ as the field obtained by adding to Q(i) the polar distances of the
λ-division points. Unluckily, we are not able to give a satisfying description
of the minimum polynomial of the polar distances of the λ-division points.
Nevertheless, we have at hand the following result

Theorem 2.4.1. If the prime factorization of λ ∈ Q(i) is λ = ph1
1 . . . phnn

where p1, . . . , pn are pairwise different primes, then the field Cλ is contained
in the composite field

C
p
h1
1

C
p
h2
2

. . . C
phnn

where if pj is equal to (1 + i) for some j we are denoting by C
p
hj
j

the field

Dh, and we are setting conventionally D1 = D2 = Q(i).

Proof. We will proceed in the following way:

Step 1 : the theorem holds for λ = p1p2

Step 2 : the theorem holds for λ = ph1p2 for every h (and hence for λ = p1p
h
2

for every h due to the symmetry of the argument).

Step 3 : the theorem holds for λ = ph1p
l
2 for every h, l.

Step 4 : the theorem holds in general.

Step 1 : in order to prove that Cλ ⊆ Cp1Cp2 , it is enough to show that
ϕ(ρωλ ) ∈ Cp1Cp2 for all ρ ∈ Z[i]. Note that if ρ is divisible by λ, then
ϕ(ρωλ ) = 0 ∈ Cp1Cp2 , and if ρ = cp1 where c is coprime with p2,

ϕ(ρ
ω

λ
) = ϕ(c

ω

p2
) ∈ Cp2 ⊆ Cp1Cp2
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(and we can repeat the argument for ρ = cp2) so actually we only need to
consider the elements coprime with λ; moreover, using the periodicity of
ϕ(u), we can restrict ourselves to the φ(λ) invertible elements of Z[i]

λZ[i] . At

this point, let ζ ∈
(

Z[i]
λZ[i]

)∗
. Suppose that p1 and p2 are both different from

(1 + i). Due to Bézout’s identity, we can represent ζ as

ζ = ηp1 + ξp2

where

η ∈
(

Z[i]

p2Z[i]

)∗
and ξ ∈

(
Z[i]

p1Z[i]

)∗
Then, if we set

w =
ζω

λ
, u =

ξω

p1
, v =

ηω

p2

we obviously get, using the Corollary (1.1.1)

ϕ(w) = ϕ(
ηp1 + ξp2

p1p2
ω) = ϕ(u+ v) =

ϕ(u)f(v)F (v) + ϕ(v)f(u)F (u)

1 + ϕ2(u)ϕ2(v)

We have seen before (in the proof of Theorem (2.1.2)) that when p1 is prime
f(u)F (u) ∼ (i + 1) ∈ Cp1 (and so we also have f(v)F (v) ∼ (i + 1) ∈ Cp2):
hence in this case ϕ(w) is equal to a rational expression of elements of Cp1

and Cp2 , thus ϕ(w) ∈ Cp1Cp2 , i.e Cλ ⊆ Cp1Cp2 .
If at the contrary p2 = (1 + i), we simply observe that we always have

ϕ ((1 + i)p1u) =
(1 + i)ϕ (p1u)

f (p1u)F (p1u)

so the (i + 1)p1-division points are exactly the p1-division points, and thus
they all belong to Cp1 .
Step 2 : here we proceed by induction on the exponent h. We have proved
the case h = 1 in the previous step, so we only need to prove the claim for
n+ 1 supposing it holds for n. So let λ = pn+1

1 p2. As before, we only need
to consider the elements coprime with λ: in fact, if ρ is a multiple of λ,
ϕ(ρωλ ) = 0 ∈ Cpn+1

1
Cp2 ; if ρ = cp2 6≡ 0 mod λ then

ϕ(ρ
ω

λ
) = ϕ(c

ω

pn+1
1

) ∈ Cpn+1
1
⊆ Cpn+1

1
Cp2

and finally if ρ = cp1 then

ϕ(ρ
ω

λ
) = ϕ(c

ω

pn1p2
) ∈ Cpn1Cp2

by induction, which implies that ϕ(ρωλ ) ∈ Cpn+1
1

Cp2 since Cpn1 ⊆ Cpn+1
1

. If

p1 is odd, using the same argument as before we can conclude if we are able
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to prove that for every ξ ∈
(

Z[i]

pn+1
1 Z[i]

)∗
,

f(ξ
ω

pn+1
1

)F (ξ
ω

pn+1
1

) ∼ (i+ 1) in Cpn+1
1

But this can easily be done by copying the argument used in the proof of
Theorem (2.1.2), since as we have remarked previously in Subsection (2.2.1)
p1 is totally ramified in Cpn+1

1
, and it is equal to the product of all the roots

of the pn+1
1 -division, being the constant term of the polynomial ψn+1.

If p1 = (1 + i) we have to prove directly that

f(ξ
ω

(1 + i)n+1
)F (ξ

ω

(1 + 1)n+1
) ∈ Dn+1

Since ξ is coprime with (1+i), we get that ξ = a+ib where a, b ∈ Z and a+b
is odd so we can suppose that b is even and a is odd, so that x = ϕ(ξ ω

(1+i)n+1 )

is the polar distance of one of the (1+i)n+1-division points. Hence x ∈ Dn+1

and

yx = ℘

(
ξ

ω

(1 + i)n+1

)
∈ Dn

We know that Dn+1 can be generated by adding to Dn the roots α, β of the
polynomial X2−2iyxX−1. Let us set α = iyx+

√
1− y2

x: then αx2 ∈ Dn+1,
but

αx2 = x2 i

x2
+

√
x4

(
1− 1

x4

)
= i+ i

√
1− x4

= i+ if(ξ
ω

(1 + i)n+1
)F (ξ

ω

(1 + 1)n+1
)

so we are done, and we can conclude as in the other case.
Step 3 : Since we have proved that the statement holds for λ = ph1p2 for
every h, and for λ = p1p

l
2 for every l, the idea here is use the induction for

N× N. We are proceeding in this way: our claim is
”if a couple of exponents (h, l) is such that the statement holds for every
couple (n,m) where (n,m) < (h, l) according to the reverse lexicographic
order, then the statement holds for (h, l)”.
Note that (if we are able to prove the claim) we really cover N× N; in fact
it is easy to see that representing N × N using the first quadrant of the
cartesian coordinate system, keeping in mind that due to the symmetry of
the problem we only need to consider the part of the quadrant above the
diagonal (because if we prove something for (h, l) it also holds for (l, h)), if
we ideally choose at each step the point of integer coordinates that is less
distant from the origin according to the reverse lexicographic order we really
take into account all the points of N× N.
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We first need to prove that the claim holds for (2, 2): if ρ ∈ Z[i] is not
coprime with λ = p2

1p
2
2, it could mean that

• ρ is a multiple of λ, so we conclude as before.

• ρ = cp1 where c is coprime with p1p2 hence

ϕ(ρ
ω

λ
) = ϕ(c

ω

p1p2
2

) ∈ Cp1Cp2
2
⊆ Cp2

1
Cp2

2

using Step 2 (and the same argument applies in case ρ = cp2 where c
is coprime with p1p2)

• ρ = cp1p2 where c is coprime with p1p2 hence

ϕ(ρ
ω

λ
) = ϕ(c

ω

p1p2
) ∈ Cp1Cp2 ⊆ Cp2

1
Cp2

2

using Step 1

• ρ = cp2
1 where c is coprime with p2 hence

ϕ(ρ
ω

λ
) = ϕ(c

ω

p2
2

) ∈ Cp2
2
⊆ Cp2

1
Cp2

2

(and the same argument applies in case ρ = cp2
2 where c is coprime

with p1)

• ρ = cp1p
2
2 where c is coprime with p1 hence

ϕ(ρ
ω

λ
) = ϕ(c

ω

p1
) ∈ Cp1 ⊆ Cp2

1
Cp2

2

(and the same argument applies in case ρ = cp2p
2
1 where c is coprime

with p2)

So we can restrict ourselves to the elements ρ which are coprime with λ, and
in this case we can follow the argument used before, and we can conclude
directly since we know from the proof of the previous step that for every

prime p, every natural integer n and for every ξ ∈
(

Z[i]
pnZ[i]

)∗
,

f(ξ
ω

pn
)F (ξ

ω

pn
) ∈ Cpn

Now we are ready to prove the claim. It is now evident that the only thing
that we have to prove is that we can restrict ourselves to the case in which
the element ρ is coprime with λ = p1

hp2
l. Thus, let us suppose that ρ is not

coprime:

• if ρ is a multiple of λ then ϕ(ρωλ ) = 0 ∈ Cp1
hCpl2

.
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• if ρ = cpr2p
s
1 for some s < h, r < l (where at least one between s and r

is different from 0) and c is coprime with p1p2, we get

ϕ(ρ
ω

λ
) = ϕ(c

ω

ph−s1 p2
l−r

)

and by the inductive hypothesis ( since (h− s, l− r) < (h, l) ) this last
element belongs to Cph−s1

Cp2
l−r , which is contained in Cp1

hCpl2
.

Therefore also Step 3 is proven.
Step 4 : here we have to follow a slightly different path. There are two
substeps that need to be made, i.e we must prove the following claims:

a) Let An be the set of elements λ in Z[i] such that the prime factorization
of λ involves less than n+ 1 primes. If the statement holds for all the
elements in An, choosing λ ∈ An and a prime p which does not divide
λ then the statement holds for λp.

b) If the statement holds for all the elements in An, choosing λ ∈ An and
a prime p which does not divide λ then the statement holds for λph

for every h ∈ N.

Note that since the case n = 1 of both claims has been proved earlier,
(Step 1 and Step 2), and since trough a) and b) we basically show that
if the statement holds for An then it holds for An+1, the two substeps are
enough to conclude with the proof of this theorem.
Let us start with a). First of all, as usual, we have to show that we can
restrict ourselves to the elements coprime with λp. If ρ is not coprime with
λp, then the following cases can occur:

• If ρ is a multiple of λp we conclude as in the previous cases.

• if ρ = cp for some integer c, then if λ = p1
h1p2

h2 . . . pn
hn

ϕ(ρ
ω

λp
) = ϕ(c

ω

λ
) ∈ C

p
h1
1

C
p
h2
2

. . . C
phnn

since we are supposing that the statement holds for An, and this last
field is obviously a subfield of C

p
h1
1

C
p
h2
2

. . . C
phnn

Cp.

• If ρ is not divisible by p, there must be an element c ∈ Z[i] such that
λ = cd and ρ = ce. Hence

ϕ(ρ
ω

λp
) = ϕ(e

ω

dp
)

and now e is coprime with dp. Moreover, the primes dividing d are
some of the primes dividing λ, so if we prove that the statement holds
for dp, then it holds for λp, since we have Csh ⊆ Csh+1 for every prime
s. Furthermore, due to the previous discussion, the fact that d ∈ An

shows that we actually can restrict ourselves to the cases in which ρ
is coprime with λ.

73



At this point, we need to use the following general property:

Lemma 2.4.1. Let µ ∈ Z[i] be odd. Then f(ωµ )F (ωµ ) ∈ Cµ.

Proof. Since µ− 1 is even, by Proposition (1.5.2)

ϕ((µ− 1)u) = ϕ(u)f(u)F (u)T

where T is a rational function of ϕ(u)4. Moreover,

ϕ((µ− 1)
ω

µ
) = ϕ(ω − ω

µ
) = ϕ(

ω

µ
)

thus
ϕ(
ω

µ
) = ϕ(

ω

µ
)f(

ω

µ
)F (

ω

µ
)T

and finally

f(
ω

µ
)F (

ω

µ
) =

1

T
∈ Cµ

This result gives use the possibility to repeat the previous argument
(because the polar distance of every µ-division point is a rational expression
of ϕ(ωµ ) ). In fact, if (i+1) is the maximum power of (1+i) which divides λp

it holds as before that the λp-division points are exactly the λp
(1+i) -division

points. If on the contrary there is an h ≥ 2 such that (1+i)h is the maximum
power of (1 + i) dividing λp , we only have to make sure that we consider
λp as the product of λp

(1+i)h
and (1 + i)h, which is always possible. Finally,

we should prove b), and we will do it by induction. In point a) we proved
the case h = 1, now we should show that the statement holds for h + 1 if
we suppose it holds for h. Clearly this is equivalent (using what we have
seen in the previous steps and in a)) to prove that we can always restrict
ourselves to a coprime element also in this case. In fact, if ρ is not coprime
with λph+1, then the following cases can occur:

• If ρ is a multiple of λp we conclude as in the previous cases.

• if ρ = cps for some integer c, and some s ≤ h + 1 then since λ =
p1
h1p2

h2 . . . pn
hn

ϕ(ρ
ω

λph+1
) = ϕ(c

ω

λ
ph+1−s) ∈ C

p
h1
1

C
p
h2
2

. . . C
phnn

Cph+1−s

by the inductive hypothesis, and since the last field is a subfield of
C
p
h1
1

C
p
h2
2

. . . C
phnn

Cph+1 , we conclude.
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• If ρ is not divisible by p, there must be an element c ∈ Z[i] such that
λ = cd and ρ = ce. Hence

ϕ(ρ
ω

λph+1
) = ϕ(e

ω

dph+1
)

and repeating the argument used in a) we can conclude.

2.5 Prime ideals decomposition in Cµh

A crucial information that we need in order to fully understand the fields
that we have considered so far is the following:

Proposition 2.5.1. Let µ ∈ Z[i] be any prime, and h ∈ N. If µ is odd
and m is its norm, set M = ϕ(µh) = mh−1(m − 1) and let K = Cµh. If

µ = (1 + i) set M = 2h−2 and K = Dh. Then:

i) µ is totally ramified in K. Let M be the prime ideal
(
ϕ( ω

µh
)
)

if µ is

odd, and the ideal generated by 2
yh−2−yh−3

if µ = (i+1). Then we have

that
µOK = MM

ii) If ν ∈ Z[i] is an odd prime different from µ, and f is the smallest
integer such that νf ≡ 1 mod µh, then

vOK = N1N2 . . .Ng

where gf = M and the Nj’s are pairwise different primes.

iii) If (i+1) 6= µ, let g be such that gf = M
4 where f is the smallest integer

such that (i+ 1)f ≡ iε mod µh for some ε ∈ {0, 1, 2, 3}. Then

(i+ 1)OK = (P1P2 . . .Pg)
4

Proof. Point i) was already discussed for µ odd in Subsection (2.2.1), and
and for (i + 1) in Proposition (2.3.2), so we only have to focus on ii) and
iii).
Consider any odd prime ν ∈ Z[i] different from µ, and denote by n its norm
over Q(i). If x = ϕ(u) is one root of the µh-division polynomial, then clearly
also x′ = ϕ(νu) is a root. Since we know that

x′ = ϕ(µu) = ϕ(u)
Pν(x)

Qν(x)
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using the description of Pν(x) and Qν(x) given in Proposition (1.5.3) we get
that we can find two suitable integers γ and γ′ such that

x′ = x
xn−1 + νγ

νγ′ + 1

This directly implies that x′ ≡ xn mod ν. Note that we can’t find another
root x′′ such that x′′ ≡ xn mod ν, because then x′−x′′ would be divisible by
ν, contradicting the fact that since x′, x′′ are roots of the µh- division poly-
nomial they are associated and x′ − x′′ belongs only to the primes dividing
µ. At this point, let us consider the Q(i)-automorphism of K mapping x to
x′ (we will denote it by σ). If we write σl to denote the composition

σ ◦ σ ◦ . . . ◦ σ︸ ︷︷ ︸
l−times

we immediately have that

σl(x) ≡ xnl mod ν

hence if r is the order of σ in Gal(K/Q(i)) it holds that

xn
r ≡ x mod ν

Let us remark that r is the smallest possible exponent for this congruence,
since as we have seen before x′′ 6≡ xn mod ν for every root x′′ 6= x′.
Now consider an integer θ ∈ OK . Since it can be represented as

θ = b0 + b1x+ . . .+ bM−1x
M−1

where the bj ’s are all gaussian integers, it holds that

θn
r ≡ θ mod ν

In fact, since the binomial coefficients
(
nr

i

)
where 0 < i < nr are all divisible

by n (which is a rational prime being the norm of a prime) and n = νν̄ we
have that

θn
r ≡ bn

r

0 + (b1x+ . . .+ bM−1x
M−1)n

r
mod ν

≡ bn
r

0 + bn
r

1 xn
r

+ (b2x
2 . . .+ bM−1x

M−1)n
r

mod ν

...

≡ bn
r

0 + bn
r

1 xn
r

+ . . .+ bn
r

M−1x
(M−1)nr mod ν

But since n is the norm of ν, for every integer b ∈ Z[i] it holds that bn ≡
b mod ν, and as we have already seen xn

r ≡ x mod ν, so

θn
r ≡ θ mod ν
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as wanted to show. Then of course the norm of any prime ideal N lying over
ν must be a power of n of exponent f ≤ r (f is the relative degree of N over
ν). Note that the equivalence

xn
f ≡ x mod N

cannot hold for f < r. In fact, since we are in a Galois extension, this would
mean that the same equivalence holds for all the other primes lying over ν,
and we would obtain that

xn
f ≡ x mod ν

but this contradicts the fact that r is the smallest exponent such that xn
r ≡

x mod ν. Hence f = r, but we still have to show that νf ≡ 1 mod µh. We
know that σ(ϕ(u)) = ϕ(νu), so

σr(ϕ(u)) = ϕ(νru)

which implies that
ϕ(νru) = ϕ(u)

for every u such that ϕ(u) is a root of the µh-division polynomial. This
means that actually

ϕ(νr
ω

µh
) = ϕ(

ω

µh
)

thus we can find c, d ∈ Z such

νr
ω

µh
=

ω

µh
+ cω + dωi

and finally
νr ≡ 1 mod µh

Therefore the proof of point ii) can be completed by noticing that since
r is the order of σ, it is the smallest number which can satisfy the last
congruence, and by recalling that ν does not ramify in K since it does not
divide the discriminant.
iii) As usual, denote by x = ϕ(u) a root of the µh-division polynomial. In
order to analyze the decomposition of (i+ 1) in Cµh , in analogy with what
we have done in the proof of Theorem (2.1.2) let us consider K ′, the unique
subfield of Cµh of index 4. As we have seen there, if we set a = (1−2i) then
the powers of the element

y =
x4 − a

4

form an integral basis of K ′ (recall that in the proof of Theorem (2.4.1) we
have seen that f(u)F (u) ∼ (i+ 1) in Cµh).
Now, let us consider

x′ = ϕ((i+ 1)u) =
(i+ 1)ϕ(u)

f(u)F (u)
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which is clearly another root of the µh-division polynomial, and define

y′ =
x′4 − a

4

Since

y′ = − x4

(x4 − 1)2
− a

4

= −(4y + a) + a(2y − i)2

4(2y − i)2

=
−ay2 − (1− ia)y

(2y − i)2

we get that

y′ =
−(1− 2i)y2 + (1 + 1)y

(2y − i)2
≡ y2 mod (i+ 1)

Furthermore, suppose that there is another root x′′ of the µh-division poly-
nomial such that y′′ = x′′2−a

4 satisfies the last congruence: then

x′4 − x′′4

4
= y′ − y′′ ≡ 0 mod (i+ 1)

which is absurd since x′4 and x′′4 are associated and x′4 − x′′4 ∈ µOK . At
this point we can clearly repeat the argument used in the previous point,
and we get that if f is the smallest integer such that (1 + i)4f ≡ 1 mod µh,
then

(1 + i)OK′ = p1p2 . . . pg

where gf = M
4 and the pj ’s are pairwise different prime ideals. But in the

proof of Theorem (2.1.2) we saw that K ′ is the inertia field of (i+ 1): so we
can conclude directly that

(1 + i)OK = (P1P2 . . .Pg)
4

where the Pj ’s are pairwise different prime ideals.

2.6 The definition and the statement

With the work we have done so far, we have shown the existence of a large
number of different field extensions of Q(i) linked to the division points of
the lemniscate. For future reference, let us enlist the results here.

Lemma 2.6.1. Let µ ∈ Z[i] be an odd prime, m its norm.
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i) If ph is the maximum power of the odd prime p dividing m − 1, for
every λ ≤ h we can find a subfield C ⊆ Cµ such that the discriminant

of C over Q(i) is equal to µp
λ−1 and Q(i) ⊂ C is a cyclic extension of

degree pλ.

ii) If 2h is the maximum power of 2 dividing 1
4(m − 1), for every λ ≤ h

there exist a cyclic extension Q(i) ⊂ C ⊂ Cµ such that [C : Q(i) = 2λ

and the discriminant of C over Q(i) is µ2λ−1. Moreover, if
λ ∈ {h+ 1, h+ 2} there is a cyclic extension of Q(i) of degree 2λ such

that the discriminant is equal to (1 + i)2λµ2λ−1.

Moreover

iii) If q ∈ Z is a prime that splits in Q(i) and π ∈ Z[i] is a prime dividing
q, then for every λ ∈ N there is a cyclic extension of Q(i) of degree qλ

such that its discriminant over Q(i) is a power of π.

iv) If q ∈ Z is a prime which is inert in Q(i), then for every λ ∈ N we
can find qλ + 1 cyclic extensions of Q(i) with discriminant over Q(i)
equal to a power of q.

v) For every λ ∈ N, we can find 2λ+ 1 cyclic extensions of Q(i) of degree
2λ whose discriminant is a power of (1 + i).

Note that i) and ii) were proven in Theorem (2.1.2), iii) and iv) in
Subsection (2.2.1), and finally v) was proven in Corollary (2.3.1).

Actually, we can prove that the fields listed in i) and ii) of Lemma (2.6.1)
are unique:

Lemma 2.6.2. Let µ ∈ Q(i) be a prime number, m its norm, ph the the
highest power of the odd prime number p ∈ Z dividing m− 1.
Let Q(i) ⊆ Γ be a cyclic extension with [Γ : Q(i)] = ph

′
for some h′ ≤ h, and

such that its discriminant is not divisible by any prime factor except for µ.
Then Γ coincides with one of the elementary lemniscate fields we described
in Lemma (2.6.1).

Proof. Let’s suppose that Γ is different from the elementary lemniscate field
C with same degree that we find in Lemma (2.6.1). Then we can consider
the composite field K = ΓC, and note that

ph
′ ≤ [K : Q(i)] ≤ [Γ : Q(i)][C : Q(i)] = p2h′

Hence there must be an n such that h′ ≤ n ≤ 2h′ and [K : Q(i)] = pn.
Suppose that k is a subfield of K such that k is cyclic over Q(i). Then, due
to the structure of the composite field, it must be k ⊆ C or k ⊆ Γ, and
hence [k : Q(i)] ≤ ph′ .
Now we look at the ramification field of µ in K. Let V any subfield of K
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in which µ ramifies. Recall that m = afV where fV is the inertial degree of
µ in V , and a is the prime such that (a) = (µ) ∩ Z. It is known that since
Z[i] is the ring of integer of Q(i) it holds that

| Z[i]

µZ[i]
| = m = afV

hence Z[i]
µZ[i] has characteristic a 6= 1, and since a|m, a - (m− 1). Now, let η

be a prime of V lying over µ, and let eV = e(η|µ) be the ramification index.
eV must divide pn: in fact, if η′ is a prime of K lying over η, then η′ lies
over µ and

e(η′|µ) = e(η′|η)e(η|µ)

and at the same time

e(η′|µ)f(η′|µ)g(η′|µ) = [K : Q(i)] = pn

Hence a, the characteristic of Z[i]
µZ[i] , is coprime with eV , since otherwise we

would have a = p|(m− 1) which is a contradiction. Due to the fact that V
was chosen arbitrarily, all this means that K itself is the ramification field
of µ in K, and so that the extension is tamely ramified.
In this situation, the inertia group of µ is cyclic. In order to prove this claim,
we consider the higher ramification groups.

Definition 2.6.1. Let η be a prime of K lying over µ, and let OK be the
ring of integers of K. For every integer n ≥ 1, we call n-th ramification
group of η the subgroup of the inertia group T

Gn = {σ ∈ G | σ(α) ≡ α mod (η)n for all α ∈ OK}

Note that G1 = T and that the groups form a descending chain, and that
Gn is reduced to the identity for n large enough. Moreover, it is possible to
prove (for example as in [21], Chapter V, §.10, Theorem 25) that

Theorem 2.6.1. T
G2

is isomorphic to a subgroup of the multiplicative group

of OK
ηOK

and it is therefore cyclic. For every i ≥ 2, Gi
Gi+1

is isomorphic to a

subgroup of the additive group of OK
ηOK

.

Now let n̄ be the minimum index such that Gn̄ = {1}. Then

|Gn̄−1| = |
Gn̄−1

Gn̄
|

but since Gn̄−1

Gn̄
is isomorphic to a subgroup of the additive group of OK

ηOK
,

and the latter has cardinality afK , this means that |Gn̄−1| divides afK . At
the same time, being a subgroup of T , Gn̄−1 must have a cardinality that
divides eK , and so Gn̄−1 = {1} because eK and afK are coprime. Repeating
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the argument, we find that for every i ≥ 2, Gi = {1}, and thus in particular
T ∼= T

G2
is cyclic.

Since T is a cyclic subgroup of Gal(K/Q(i)), and since we know that the
latter is isomorphic to Gal(Γ/Q(i)) × Gal(C/Q(i)), it must necessarily be
that

ek = |T | ≤ ph′ (2.19)

On the other hand, we know that C ⊆ Cµ, and so we are in the following
situation:

K Cµ

Γ

==|||||||||
C

aaCCCCCCCCC

>>~~~~~~~

Q(i)

aaBBBBBBBB

=={{{{{{{{

We know from Theorem (2.1.2) that µ is totally ramified in Cµ, and so
it must be totally ramified also in C. This means that eC = ph

′
, and so eK ,

which is a multiple of eC , must be bigger than ph
′
. So, using Eq. (2.19),

we get that ek = ph
′
, that implies that the inertia field KT , i. e the field

fixed by T , is of degree pn−h
′

over Q(i). The assumption n > h′ implies that
KT is a nontrivial extension of Q(i), and its discriminant is not divisible
by µ (otherwise µ would ramify). But since the inertia field is a subfield
of K, and the discriminant of the composite field K is only divisible by
µ by construction, we get that KT is a nontrivial extension of Q(i) whose
discriminant is a unit, which is absurd. Hence n = h′ , and this implies that
K = Γ, which means that C and Γ are actually the same field, as we wanted
to prove.

Remark 2.6.1. The previous Lemma holds also if we consider p = 2 and
ph is chosen to be the highest power of 2 dividing 1

4(m − 1). The proof is
identical to the one used in the odd case: we choose ph to be the highest
power of 2 dividing 1

4(m− 1) (instead of m− 1) only because we have seen
that the discriminant of the subextensions of Cµ of degree 2h+1 and 2h+2 is
divided also by (1 + i) (so for these fields we cannot use the final argument
regarding KT ).

Using all these results with Theorem (2.4.1), it is clear that the following
result holds:

Theorem 2.6.2. Every field Cµ obtained from the division of the lemnis-
cate is contained in a field that is the composite of a finite number of the
fields described in Lemma (2.6.1). Being the composite of a finite number
of abelian fields, the composite field is abelian, and so also Cµ is an abelian
extension of Q(i).
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At this point, the similarity to the situation we encounter with the cyclo-
tomic extensions of Q gives the motivation in order to introduce the following
definition

Definition 2.6.2. We call lemniscate field any field extension Q(i) ⊆ K
such that K is one of the fields described in Lemma (2.6.1), and also any
composite field obtained by composing a finite number of the previous fields.

Definition 2.6.3. An extension Q(i) ⊆ K is said to be a lemniscate
extension if K is the subfield of a lemniscate field.

So finally we can state the main result we are going to prove in this
thesis:

Takagi’s Theorem. Every abelian field extension Q(i) ⊆ K which is finite
is a lemniscate extension.
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Chapter 3

The proof of Takagi’s
Theorem

In order to prove Takagi’s Theorem, we will need to make different reduc-
tion steps. It may be interesting to remark that from this point of view
there are several similarities between the techniques that Takagi uses and
the ones that are exploited in Hilbert’s proof of the Kroneker-Weber Theo-
rem, as it might be seen reading the paper of Greenberg on the subject ([8]).

3.1 Reduction to prime power order.

Proposition 3.1.1. If Takagi’s Theorem is true for cyclic extensions of
Q(i) whose degree over Q(i) is a prime power, then it holds for all finite
abelian extensions of Q(i).

Proof. Suppose that we have a finite abelian extension Q(i) ⊆ K with Galois
group G = Gal(K/Q(i)). Using the Structure Theorem for finite abelian
groups, we can decompose G into the direct product of r cyclic subgroups
Gi whose order is a prime power. If Ki is the subfield fixed by

∏
j 6=iGi, since

K/Q(i) is a Galois extension, it holds that Gal(Ki/Q) = G/
∏
j 6=iGi = Gi.

Moreover, K is equal to E , the field obtained by composing all the Ki: in
fact, E is surely contained in K, thus Gal(K/E) ⊆ Gal(K/Ki) =

∏
j 6=iGi

for all i. This implies that Gal(K/E) ⊆
⋂

1≤i≤r
∏
j 6=iGi = {1G} and so

K = E.

Then, if we prove that all the extensions that have a cyclic Galois group
of prime power order are lemniscate extension, then Ki is a subfield of some
lemniscate extension for all i, and thus, due to the definition of lemniscate
extension, also the composite field K is a lemniscate extension.
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3.2 The second reduction step

In order to proceed with the proof of Takagi’s Theorem, we would like to be
able to determine exactly the elements dividing the discriminant of the ex-
tension that we are considering. The second (and most important) reduction
step is the one illustrated by the following

Proposition 3.2.1. In order to prove that Takagi’s Theorem holds for cyclic
extensions Q(i) ⊆ K such that [K : Q(i)] = ph for p prime, we can reduce
ourselves to the case in which the discriminant of the extension is divisible
only by the primes p ∈ Q(i) dividing p.

Since the proof of this statement is quite long, and involves different
intermediate steps, we need to first prove some additional results.

Proposition 3.2.2. Let Q(i) ⊂ C be a cyclic extension of degree ph where
p is prime, and for all k ≤ h denote by Ck the unique subextension of C
such that [Ck : Q(i)] = pk. Suppose that the discriminant of Q(i) ⊂ C is
divided by a prime µ ∈ Z[i] which is coprime with p. If µ ramifies in C1, we
can find a cyclic extension Q(i) ⊆ D ⊆ Ch such that

• DM = ChM

• D ∩M = Q(i).

• the discriminant of Q(i) ⊆ D is divisible by all prime factors dividing
the discriminant Q(i) ⊆ Ch except for µ.

where we denote by M the unique lemniscate field of degree [M : Q(i)] = ph

whose discriminant is divisible only by µ.

Proof. Using Lemma (2.1.3), we have that m− 1 ≡ mod ph. Since the last
congruence holds, we can find a suitable field M among the fields listed in
Lemma (2.6.1), and according to Lemma (2.6.2) M is then the only field
with these characteristics. Suppose Q(i) ( Ch ∩M . According to Corollary
(2.1.2) the composite field ChM is an abelian extension of Q(i) of degree
[ChM : Q(i)] = ph+h′ for a certain h′ ≤ h. Using Proposition (2.1.3) we
can find another cyclic extension C∗ of Q(i) of degree [C∗ : Q(i)] = ph

′
such

that ChM = C∗M and C∗ ∩M = Q(i). For this reason,

Gal

(
ChM

Q(i)

)
= Gal

(
C∗M

Q(i)

)
∼= Gal

(
C∗

Q(i)

)
×Gal

(
M

Q(i)

)
where Gal(C∗/Q(i)) is cyclic of order ph

′
and Gal(M/Q(i)) is cyclic of order

ph. What we want to prove next is that the inertia group T of µ in ChM is
cyclic of order ph. We start by considering that if we have a cyclic extension
of ChM , due to the structure of Gal(ChM/Q(i)) this extension must be of
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degree smaller than ph. Note that if m is the norm of µ, and (µ) ∩ Z = (a),
we have that m = N(µ) = af and

| Z[i]

µZ[i]
| = af

so that Z[i]
µZ[i] has characteristic a, with a such that a|m and a does not divide

m− 1. Using the same argument as in Lemma (2.6.2), we first observe that
ChM is a tamely ramified extension of Q(i), and then that the inertia group
is cyclic. Furthermore, we know that M ⊆ Cµ, and so we are in the following
situation:

ChM Cµ

C∗

<<yyyyyyyy
M

bbEEEEEEEE

>>|||||||

Q(i)

bbEEEEEEEEE

<<yyyyyyyy

So, µ must be totally ramified in M (since it is totally ramified in Cµ) and
so denoting by e(K|µ) the ramification index of µ in an extension K we get

ph = [M : Q(i)] = e(M |µ) ≤ e(ChM |µ) = |T | ≤ ph

Then the inertia field (that we are going to denote by CT ) has degree
[CT : Q(i)] = ph

′
. Note that since

Gal

(
ChM

Q(i)

)
∼= Gal

(
C∗

Q(i)

)
×Gal

(
M

Q(i)

)
we have that

Gal

(
CT

Q(i)

)
∼=
Gal

(
ChM
Q(i)

)
T

∼=
Gal

(
C∗

Q(i)

)
×Gal

(
M
Q(i)

)
T

and since T is cyclic of order ph, it must be that

Gal

(
CT

Q(i)

)
∼= Gal

(
C∗

Q(i)

)
so that CT is a cyclic extension of Q(i). Furthermore, since µ is totally
ramified in M and inert in CT , it holds that M ∩CT = Q(i). On the other
hand, MCT ⊆MCh and

[MCT : Q(i)] = [M : Q(i)][CT : Q(i)] = ph+h′ = [MCh : Q(i)]

hence MCh = MCT .
Finally, the discriminant of the extension Q(i) ⊆ CT is divisible by all the
prime factors dividing the discriminant Q(i) ⊆ Ch except for µ: in fact, all
the primes ramifying in Ch ramifies in ChM = CTM but they don’t ramify
in M so they have to ramify in CT .
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Proposition 3.2.3. Proposition (3.2.2) holds also if the first field in which
µ ramifies is Ck, 1 < k ≤ h.

Proof. We proceed by induction. We already proved the case i = 1, so now
we suppose that the statement holds for i = k and we prove it for i = k+ 1.
The congruence

m ≡ 1 mod ph−k

holds, so we consider the cyclic extension Q(i) ⊆M where [M : Q(i)] = ph−k

and such that the only prime ramifying in M is µ. Repeating the argument
used in the case i = 1, we can suppose that Ch ∩M = Q(i) and we have
that

Gal

(
ChM

Q(i)

)
∼= Gal

(
Ch
Q(i)

)
×Gal

(
M

Q(i)

)
Let µ = m1m2...mg be the decomposition of µ in prime ideals of Ck(µ is not
ramified in Ck by hypothesis, so all the mi are distinct). For every i let Mi

be a prime lying over mi in ChM . We want to prove that the ph−k-th power
of (Mi) divides exactly mi in ChM . In order to do so, we note that µ is
totally ramified in M , since this field is a subextension of Cµ and µ is totally
ramified in Cµ. This implies that the ramification index of µ in ChM is

e(µ|ChM) ≥ ph−k

At the same time,

e(µ|ChM) = e(µ|Ck)e(m|ChM) = e(m|ChM)

since µ is not ramified in Ck. Hence

e(m|ChM) ≥ ph−k

For the same reasons as in the previous proofs, the extension Ck ⊆ ChM is
tamely ramified, and so using the same argument as before we see that the
inertia group T is cyclic. But the subgroup of

Gal

(
ChM

Q(i)

)
∼= Gal

(
Ch
Q(i)

)
×Gal

(
M

Q(i)

)
corresponding to the extension Ck ⊆ ChM is the subgroup formed by all the
transformations fixing Ck, so it must be the direct product of a subgroup
of Gal(Ch/Q(i)) of order ph−k with Gal(M/Q(i)). As a consequence, every
cyclic subgroup of Gal(MCh/Ck) must have order at most ph−k, and this
means that

e(m|ChM) = |T | = ph−k

Thus, the ph−k-th power of (Mi) divides exactly mi in ChM , and therefore
the ramification index of µ in ChM is exactly ph−k. Note that as before,
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we can prove that also Q(i) ⊆ MCh is tamely ramified: as a consequence,
T̄ , which is the inertia group of this last extension, is cyclic, of order ph−k.
The inertia field, that we will denote by C T̄ , is then of degree

[C T̄ : Q(i)] =
[MCh : Q(i)]

ph−k
= ph

Furthermore, Q(i) ⊆ C T̄ is a cyclic extension, since

Gal

(
C T̄

Q(i)

)
≡
Gal

(
ChM
Q(i)

)
T

and we can proceed as in the previous proof. Moreover, C T̄ ∩M = Q(i) (µ
is totally ramified in M , and inert in C T̄ ) and by looking at the degree of
the extension we find that MCh = MC T̄ . So the last thing we need to prove
is that the discriminant of this new extension is divisible by all the primes
dividing the discriminant of Q(i) ⊆ Ch except for µ, but this is clear if we
reason as in the previous case.

Having this machinery, we are now able to prove Proposition (3.2.1)
stating that

Proposition. In order to prove that Takagi’s Theorem holds for cyclic ex-
tensions Q(i) ⊆ K such that [K : Q(i)] = ph for p prime, we can reduce
ourselves to the case in which the discriminant of the extension is divisible
only by the primes p ∈ Q(i) dividing p.

Proof. Let µ be a prime dividing the discriminant of Ch = K but which does
not divide p. From the previous Propositions, we know that, considering to
the first k such that µ ramifies in Ck, we can find a suitable elementary
lemniscate field Mµ and a field Cµk depending on k and µ such that:

• Ch ⊆MµCh = MµC
µ
k

• the discriminant of Q(i) ⊆ Cµk is divisible by all prime factors dividing
the discriminant Q(i) ⊆ Ch except for µ.

• [Cµk : Q(i)] is a power of p.

• Q(i) ⊆ Cµk is a cyclic extension.

In the case in which there is another prime ν ∈ Q(i) which does not divide
p, we can repeat the argument for Cµk , that is we find another index k′, and
two field Mν and Cνl such that

• Cµk ⊆MνC
µ
k = MνC

ν
l
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• the discriminant of Q(i) ⊆ Cνl is divisible by all prime factors dividing
the discriminant Q(i) ⊆ Ch except for µ and ν.

• [Cνl : Q(i)] is a power of p.

• Q(i) ⊆ Cνl is a cyclic extension.

Therefore,

Ch ⊆MµCh = MµC
µ
k ⊆MµMνC

µ
k = MµMνC

ν
l

Repeating the argument for all the primes µ1, . . . , µs dividing the dis-
criminant of Q(i) ⊆ Ch but not dividing p, we find that

Ch ⊆Mµ1 . . .MµsC̃

where Mµ1 , . . . ,Mµs are the elementary lemniscate fields described before

and C̃ is a cyclic extension of Q(i) of degree a power of p, whose discriminant
is only divisible by primes dividing p.
Then, if we are able to prove Takagi’s Theorem for C̃, we are done, since if
C̃ is contained in a lemniscate field V , then

Ch ⊆Mµ1 . . .MµsC̃ ⊆Mµ1 . . .MµsV

and then by definition Ch is a lemniscate extension, as we wanted to prove.

3.3 The final steps

In order to prove the Theorem, from what we have seen before, we only
need to consider the case of a cyclic extension Q(i) ⊆ C such that [C : Q(i)]
is a power of a prime p and such that the discriminant ∆(C|Q(i)) is only
divisible by elements of Q(i) dividing p.

We would like to be dealing with only one prime dividing the discrimi-
nant, but we know that if p ≡ 1 mod 4 then pQ(i) = π1π2 with π1 6= π2, so
that it is possible that the discriminant is divided by two different primes.
In order to avoid this kind of problem, the idea is to separate the three cases
that may occur:

• p ≡ 1 mod 4 so that in this case pQ(i) = π1π2 with π1 6= π2, hence in
standard notation we have g = 2, the ramification index is e = 1 and
the inertia degree is f = 1.

• p ≡ 3 mod 4 and here g = 1, e = 1, f = 2.

• p = 2 and 2 = (1 + i)(1− i) hence g = 2, e = 1, f = 1.

and treat them with different techniques.
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3.3.1 p ≡ 1 mod 4

We first prove that the principle is true in a particular case and then we
show that this case is enough for our purposes.

Proposition 3.3.1. If p ≡ 1 mod 4 and C is a cyclic extension of Q(i) of
degree ph whose discriminant over Q(i) is a power of only one of the two
primes dividing p, then C is one of the elementary lemniscate fields whose
existence was proved in Lemma (2.6.1).

Proof. We proceed by induction on h. So in the case h = 1, suppose that we
have two different fields C 6= C ′ with the same characteristics listed before.
We may consider the composite field CC ′ and add a primitive p-th root
of unity ζ, obtaining an abelian extension K = CC ′(ζ) which has degree
p2(p − 1) over Q(i): in fact, we conclude that ζ /∈ C,C ′ thinking about
the degree, and for the same reason C ∩ C ′ = Q(i). Considering as usual
Z = Q(i, ζ), we have that since p ≡ 1 mod 4 and p is totally ramified in
Q(ζ), there are two primes p, p′ of Z = Q(i, ζ) such that

pQ(i, ζ) = (pp′)p−1

Moreover, pQ(i) = ππ′, so πQ(i, ζ) = pp−1 and π′Q(i, ζ) = p′p−1. Further-
more, as it may be proved following [3], Lemma 3, Chapter III, p. 87, if we
set η = 1− ζ we get that

(η) = pp′

Now, we consider Z ⊆ C(ζ). It holds that

[C(ζ) : Z] =
[C(ζ) : Q(i)]

[Z : Q(i)]
=
p(p− 1)

p− 1
= p

so the extension is necessarily cyclic and by Lemma (2.1.5) there must be an
element χ in Z such that C(ζ) = Z( p

√
χ). Now we show that it is possible

to choose χ with the property

χ ≡ 1 mod p

since if χ does not satisfy the congruence, we can use the same type of
argument we exploited in the proof of Lemma (2.1.3). In fact, if we choose
g ∈ N such that 1 < g < p then the automorphism of Z sending ζ into ζg

(that we are going to denote by s) is a generator of Gal(Z/Q(i)), and we
have that

s(p) = p′, s2(p) = p

So, following the idea of Lemma (2.1.3), we note that s2−1 and s−g are co-
prime modulo p, which means that we can find three polynomial expressions
f1(s), f2(s), f3(s) such that

1 = (s2 − 1)f1(s) + (s− g)f2(s) + pf3(s)
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As a consequence, since by Lemma (2.1.6) χs−g is a p-th power, there must
be an element α ∈ Z such that

χ = χ(s2−1)f1(s)αp

Seen that s2(p) = p, χ(s2−1) can be written as a fraction in which neither
the denominator nor the numerator are divisible by p. The same holds for
χ(s2−1)f1(s) which then can be written as

χ(s2−1)f1(s) =
χ∗

ap

where χ∗ ∈ Z is an integer coprime with p and a is a rational integer. In
conclusion, χ∗ = ap

αpχ so clearly p
√
χ∗ and p

√
χ define the same field, and

χ∗ ≡ 1 mod p

Now, since p is an ideal of degree 1, the congruence

χ∗ ≡ 1 + aη mod p2

(η = 1− ζ)

is satisfied by an element a ∈ Z: in fact p = p2 + pp′ since the two ideals are
coprime, and

Z

pZ
∼=

Z
pZ

We claim that a is not divisible by p. In fact, if a is divisible by p then

a ∈ (p) = (pp′)p−1 = pp−1(p′)p−1 ⊆ p2(p′)p−1 ⊆ p2

and then the congruence
χ∗ ≡ 1 mod p2

holds. Now let d be the maximum natural number such that we can find
l ∈ Z coprime with p such that

χ∗ − 1 ≡ lηd mod pd+1 (3.1)

and suppose d < p. Seen that χs−g is a p-th power, (χ∗)s−g =
(
ap

αp

)s−g
χs−g

must be the p-th power of an element β ∈ Z. Using the congruence (3.1),
we see that

βp ≡ (1 + lηd)s−g mod pd+1

≡ (1 + ls(η)d)(1 + lηd)−g mod pd+1

First of all, let us remark that

s(η) = 1− ζg ≡ gη mod p2
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so s(η)d = (gη)d mod pd+1. On the other hand,

(1 + lηd)g(1− lηd)g ≡ (1− lη2d)g mod pd+1

≡ 1 mod pd+1

hence

(1 + lηd)−g ≡ (1− lηd)g mod pd+1

≡ 1− glηd mod pd+1

Therefore,

βp ≡ (1 + l(gη)d)(1− glηd) mod pd+1

≡ 1 + l(gη)d − glηd mod pd+1

which implies first that β ≡ 1 mod p and then βp ≡ 1 mod pp. Finally,
this means that l(gη)d ≡ glηd mod p which is a contradiction, because g
is a primitive root modulo p and e < p; as a consequence, we get that
χ∗ ≡ 1 mod pp and so

p
√
χ∗ ≡ 1 mod p

At this point, if we choose an algebraic integer ν ∈ p′ \ p, we can define the
element

ω =
ν

η
(1− p

√
χ∗)

which is a root of the polynomial

(ηX − ν)p + νpχ∗

Since η = 1− ζ, ν, χ∗ are algebraic integers, and since

ν(1− p
√
χ∗) ∈ pp′ = (1− ζ)

ω is also an algebraic integer. Clearly, Z(ω) = C(ζ), so the discriminant of
the extension Z ⊂ C(ζ) must divide the discriminant ∆(ω|Z) of ω. Using
Eq.(2.12) we get that

∆(ω|Z) = (−1)
p(p−1)

2 NC(ζ)|Z
(
p(ηω − ν)p−1η

)
= νp(p−1)(χ∗)p−1ppηp

But we know that (p) = (pp′)p−1 and that η = (pp′), so we have

(ppηp) = (pp′)p(p−1) ≡ 1 mod p

since p, p′ ⊂ Z = Q(i, ζ) so the discriminant is coprime with p, and so p
does not ramify in C(ζ). Now let P ⊆ OC(ζ) denote a prime ideal lying over
p. Pp−1 is the maximal power of P that divides π: in fact,

(P ∩ Z)p−1 = pp−1 = π
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and as we have seen before p does not ramify in C(ζ). This means that the
ramification index e(π|C(ζ)) = p − 1 and so the inertia field DT related to
π has degree

[DT : Q(i)] =
[C(ζ) : Q(i)]

e(π|C(ζ))
=
p(p− 1)

p− 1
= p

But this result yields a contradiction. In fact, consider the intersection
DT ∩ C: if DT ∩ C = Q(i) then since DT ⊆ C(ζ) = CZ we have that
DT ⊆ Z which is absurd since [DT : Q(i)] = p > p − 1 = [Z : Q(i)]. If
otherwise, Q(i) ( DT ∩C, then the intersection is a subfield of C, but since
[C : Q(i)] = p this implies DT ∩C = C. Then DT = C since [DT : Q(i)] = p,
and so at the same time π must be inert in DT and ramified in C, which is
impossible since the extension is not trivial. So, we are in the situation

χ∗ ≡ 1 + aη mod p2

a 6= 0 mod p

With the same argument, we can find an element ρ such that

C ′(ζ) = Q(i, ζ, p
√
ρ)

where

ρ ≡ 1 + bη mod p2

b 6= 0 mod p

If we denote by c an integer number satisfying

a+ bc ≡ 0 mod p

and we set θ = χ∗ρc ∈ Z it holds that

θ ≡ (1 + aη)(1 + bη)c mod p2

≡ (1 + aη) (1 + cbη) mod p2

≡ 1 + aη + cbη + abcη2 mod p2

≡ 1 mod p2

Now suppose that C 6= C ′. In this case, θ is not a p-th power in Z, seen
that

p
√
θ = p

√
χ∗ p
√
ρc

and p
√
χ∗, p
√
ρc /∈ Z. Since C(ζ, p

√
θ) = CC ′(ζ) = K as before we can find a

contradiction starting from the congruence

θ ≡ 1 mod p2
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In fact, starting from the last congruence we can find as before that p does
not ramify in K. Then, if Q ⊂ OK is a prime ideal lying over p, exactly as
before we see that the maximum power of Q dividing π is p− 1, hence the
ramification index is e(π|K) = p− 1 and the inertia field DT ⊂ K of π has
degree [DT : Q(i)] = p2. Also in this case the intersection Dt ∩C cannot be
trivial, because otherwise DT ⊂ C ′(ζ) which is absurd because

[C ′(ζ) : Q(i)] = p(p− 1) < p2 = [DT : Q(i)]

The only other possibility is Dt ∩ C = C, which implies that C ⊂ DT : but
this is impossible, because π is ramified in C and inert in DT . Hence C
must be equal to C ′, proving our assertion for this case.

We are left to prove the inductive step. In order to do so, we suppose
that the statement holds for h = k − 1, and we prove it for h = k. Suppose
that we have two different fields C,C ′ with the same desired properties. If
Ck−1 and C ′k−1 are subfields respectively of C and C ′ , such that they are

both cyclic extensions of Q(i) of degree pk−1,by the inductive hypothesis
they must coincide.
However, composing C and C ′ we get a field K such that

[K : Q(i)] =
[C : Q(i)][C ′ : Q(i)]

[C ∩ C ′ : Q(i)]
=
phph

ph−1
= ph+1

By Proposition (2.1.3) K might be composed also by C and another
cyclic extension L1 of Q(i) of degree [L1 : Q(i)] = p such that L1∩C = Q(i)
But then the discriminant of the extension Q(i) ⊆ L1 must be a power of
π. Now note that, being a cyclic extension, C has a subfield that has degree
p over Q(i), and whose discriminant is a power of π or an unit. By the
previous discussion, the first case implies that the subfield coincides with
L1, so that we find the contradiction L1 ⊆ C. On the other hand, the other
case is impossible since [L1 : Q(i) = p] and so L1 would be a non trivial
extension of Q(i) with trivial discriminant. Therefore, C and C ′ must be
the same field, as we wanted to prove.

Lemma 3.3.1. Studying the case p ≡ 1 mod 4, we can always reduce the
problem to the case in which the discriminant is the power of only one of
the two primes dividing p.

Proof. Suppose we have a cyclic extension Q(i) ⊆ C of degree ph, where
the discriminant is divided only by elements dividing p. If pQ(i) = ππ′ is
the prime decomposition of p in Q(i), we denote by Πh and Π′h the two
elementary lemniscate fields of degree ph whose discriminant over Q(i) is
respectively a power of π or of π′. Let us consider the field Ph = ΠhΠ′h: it’s
an abelian extension of Q(i) of degree p2h, seen that Πh ∩ Π′h = Q(i) since
the two discriminant are coprime. In P h, we find ph + 1 different subfields
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of degree ph over Q(i) whose discriminant is divisible only by π and π′: they
are built by composing, for every i ∈ {1, . . . , h}, the subfield Πh−k ⊂ Πh

of degree ph−k over Q(i) with the subfield Π′k ⊂ Π′h of degree pk over Q(i)
(where we set Π0 = Π′0 = Q(i)).
Now we want to prove that C is one of these subfields. We proceed by
induction on h.
Suppose that h = 1, i.e. [C : Q(i)] = p. Consider a primitive p-th root of
unity ζ. As before, since p is totally ramified in Q(ζ), there are two primes
p, p′ of Z = Q(i, ζ) such that

pQ(i, ζ) = (pp′)p−1

If now we set K = CZ = C(ζ), due the fact that we find Z ∩ C = Q(i) by
looking at the degree of the two extensions, we get

[K : Z] =
[C(ζ) : Q(i)]

[Z : Q(i)]
=
p(p− 1)

p− 1
= p

and so Z ⊆ K must be a cyclic extension. Therefore, there is an element
χ ∈ Z such that K = Z( p

√
χ).

Also in this case it is possible to find a particular χ such that there is an
element α ∈ Z such that

χ ≡ 1 + αη mod p2

where η = 1− ζ and
α 6= 0 mod p

Moreover, since we can check easily that for every r ∈ Z

ζr ≡ 1− rη mod p2

setting ρ = ζαχ we get that

ρ ≡ 1 mod p2

Consider now K ′ = Q(i, ζ, p
√
ρ). K ′ ⊆ K and the discriminant ∆(K ′|Z) is

coprime with p since ρ ≡ 1 mod p2: hence ∆(K ′|Z) is only divided by p′.

Then K ′ = ZΠ′. In fact, K ′ = ZQ(i, p
√
ρ) is an abelian extension satisfy-

ing the hypothesis of Proposition (2.1.3), so there must be a field Q(i) ⊆ C̃
such that [C̃ : Q(i)] = p, C̃ ∩ Z = Q(i) and K ′ = ZC̃. Therefore

∆(K ′|Q(i)) = ∆(Z|Q(i))[C̃:Q(i)]∆(C̃|Q(i))[Z:Q(i)]

and
∆(K ′|Q(i)) = NZ|Q(i))

(
∆(K ′|Z)

)
∆(Z|Q(i))[K′:Z]
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which implies that

∆(C̃|Q(i))[Z:Q(i)] = NZ|Q(i))
(
∆(K ′|Z)

)
because we know that [K ′ : Z] = [C̃ : Q(i)]. Since ∆(K ′|Z) is only divided
by p′, it means that ∆(C̃|Q(i)) is a power of π′, and from what we have seen
in Proposition (3.3.1), this implies that C̃ = Π′1.
In the same way, we can prove that also K2 = ZΠ1 is a subfield of K. Thus,
we can consider the composite field K ′K2 ⊆ K, but considering the degree,
it is actually true that K = K2 = K ′. Hence

K = K ′K2 = ZΠ′1ZΠ1 = ZΠ1Π′1 = ZP1

and since C ∩ Z = Q(i), this means that C ⊆ P1 as we wanted to prove.
Now we want to prove it for a general h+1, supposing that the property

holds for h. If [C : Q(i)] = ph+1, we can consider the subfield C̄ ( C such
that [C̄ : Q(i)] = ph. Then by induction C̄ ⊆ Ph, therefore we are in the
situation

PhC

C

=={{{{{{{{
Ph

bbDDDDDDDD

C̄

aaCCCCCCCCC

<<zzzzzzzz

It follows that

[PhC : Q(i)] =
[C : Q(i)][Ph : Q(i)]

[Ch : Q(i)]

=
ph+1p2h

ph

= p2h+1

Being an abelian extension of Q(i) satisfying the hypothesis of Proposition
(2.1.3) PhC can be formed also by Ph and a field C̃ such that C̃ ∩Ph = Q(i)
and [C̃ : Q(i)] = p. But again by induction, C̃ ⊆ P1, thus

PhC = PhC̃ ⊆ PhP1

but
PhP1 = ΠhΠ′hΠ1Π′1 ⊆ ΠhΠ′h = Ph

since Π1 ⊆ Πh and Π′1 ⊆ Π′h so that

PhC ⊆ Ph ⊆ Ph+1

and finally C ⊆ Ph+1 as we wanted to show.
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3.3.2 p ≡ 3 mod 4

In Lemma (2.6.1) we have seen that for every prime q ≡ 3 mod 4 and any
h ∈ N there are qh + 1 different cyclic extensions of Q(i) of degree qh and
whose discriminant is a power of q. All those fields are subfields of an abelian
extension Q(i) ⊆ Qh of degree q2h.

Proposition 3.3.2. The fields listed in the previous discussion are all the
cyclic extensions of Q(i) with the property of having degree qh and discrim-
inant divisible only by q.

If we prove this Proposition, we have proved Takagi’s Theorem for this
case, since all the fields we are considering are lemniscate fields.

Proof. We first consider the case h = 1. Let ζ be a primitive root of unity of
order q2. The extension Q(i) ⊆ Q(i, ζ) is cyclic, and since [Q(i, ζ) : Q(i)] =
q(q − 1) we can consider the unique subfield C̃ of Q(i, ζ) which is a cyclic
extension of Q(i) of degree q.

Claim 3.3.1. C̃ is actually one of the q + 1 subfields of Q1.

Proof. Let us set Z = Q(i, ζ). Suppose that C̃ 6⊂ Q1, and choose C 6= C ′

between the q+ 1 subfields of Q1 of degree q. By considering the degree, we
see that Q1 = CC ′. Moreover, since

[Z : Q(i)] = q(q − 1)

and
[Q1 : Q(i)] = q2

it holds that [Z ∩ Q1 : Q(i)] must divide q. So if Z ∩ Q1 6= Q(i), it would
follow that Z ∩Q1 = C̃, since the latter is the unique subfield of Z of degree
q, contradicting the fact that C̃ 6⊂ Q1. As a consequence

Q(i) ⊂ Q1(ζ) = CC ′(ζ)

is a field extension of degree q3(q − 1).
By [3], Lemma 3, Chapter III, p.87, we know that if η = 1− ζ then (η) = q
is a prime ideal such that

qOZ = qq(q−1)

Furthermore, since Z ⊂ C(ζ) is a cyclic extension satisfying the requests
of Lemma (2.1.5), following the argument that we used in order to prove
Proposition (3.3.1), we observe that there are χ, θ ∈ Z such that

CZ = C(τ) = Z( q
√
χ)

C̄Z = C̄(τ) = Z(
q
√
θ)
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and

χ ≡ 1 mod q 6≡ 1 mod q2

θ ≡ 1 mod q 6≡ 1 mod q2

Copying what we did before, since q is of degree 1 in the extension Q(i) ⊆ Z
we can find a, a′, b, b′ ∈ Z such that a+ ib and a′ + ib′ are not divisible by q
and such that

χ ≡ 1 + (a+ ib)η mod q2

θ ≡ 1 + (a′ + ib′)η mod q2

Since for every r ∈ Z it holds that

τ r ≡ 1− rη mod q2

if we set
ρ = τ rχθc

(where r, c ∈ N are arbitrary) we obtain, by direct computation,

ρ ≡ 1 + (u+ iv)η mod q

where u = a+ ca′ − r and v = b+ cb′. At this point, we can choose c and r
so that u and v are both divided by q, and consequently

ρ ≡ 1 mod q2

From here, we can follow the argument used in the proof of Proposition
(3.3.1) in order to find a contradiction: in fact Q(i) ⊂ CZ( q

√
ρ) ⊂ CC ′(ζ)

is an extension of degree q2(q − 1), and as before we can see that q is not
ramified there and that the ramification index of q is equal to q(q − 1), so
that for the inertia field DT ⊂ CZ( q

√
ρ) it holds that

[DT : Q(i)] =
q2(q − 1)

q(q − 1)
= q

If now we consider the intersection DT ∩ C, because of the degree we can
only have DT = C or DT ∩ C = Q(i).
In the first case, we immediately have a contradiction, because q ramifies in
C and it is inert in DT by definition. In the second case, note that

DT ⊂ CZ( q
√
ρ) ⊂ CC ′(ζ)

thus the fact that DT ∩ C = Q(i) implies that DT ⊂ C ′(ζ). Consequently,
DT ∩ C ′ 6= Q(i), because otherwise DT ⊂ Z, but this is impossible because
q is totally ramified in Z and inert in DT which is not the trivial extension.
Then considering again the degree we obtain that DT = C ′, and we conclude
as in the first case: therefore C̃ must be contained in Q1, as we wanted to
prove.
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Now that we have proved this claim, we can continue with the proof of
the Proposition.

Let C 6= C̃ be another of the q+1 subfields of Q1, and suppose that there
is a cyclic extension Q(i) ⊂ C̄ of degree q whose discriminant is a power of q
and which is not contained in Q1. Our goal now is to show that also in this
situation we can reproduce the argument used in the proof of Proposition
(3.3.1) and in the previous Claim: in order to do so, let us prove that

Q1C̄(τ) = CC̄( q
√
τ)

where τ is a primitive q-th root of unity.
Clearly

[Q1(τ) : Q(i)] = [Q1 : Q(i)](q − 1) = q2(q − 1)

and at the same time

[C( q
√
τ) : Q(i)] = q[C(τ) : Q(i)] = q2(q − 1)

Note that ( q
√
τ)q

2
= 1 so q

√
τ is a q2-root of unity which is also primitive

since τ is. Then in C( q
√
τ) we can find all the q2-th roots of unity, but the

same holds for Q1(τ), because in C̃ ⊂ Q1 we can find all the q2-th roots of
unity that are not q-th roots of the unity, and by adding τ we add all the
q-th roots (which are clearly q2-th roots too). Then, if we consider as before
the field of q2-th roots Z = Q(i, ζ) we obtain, by considering the degree,
that CZ = Q1(τ) (C cannot be contained in Z because C̃ is the unique field
with that property, and looking at the degree we get that C ∩ Z = Q(i))
but at the same time CZ = C( q

√
τ) for the same reasons, so C( q

√
τ) = Q1(τ)

and hence Q1C̄(τ) = CC̄( q
√
τ).

At this point, the proof becomes identical to the one we have used before
(we only have minor adjustments to make) so for sake of brevity here we are
proceeding a little faster than usual. Setting Z̄ = Q(i, τ), if η = 1− τ then
(η) = q is a prime ideal such that

qOZ = qq−1

and arguing in the usual way we can find χ2, θ2 ∈ Z̄ such that

CZ̄ = C(τ) = Z̄( q
√
χ2)

C̄Z̄ = C̄(τ) = Z̄( q
√
θ2)

and

χ2 ≡ 1 mod q 6≡ 1 mod q2

θ2 ≡ 1 mod q 6≡ 1 mod q2
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Since q is of degree 1 in the extension Q(i) ⊆ Z̄, as in the proof of the
previous claim we can choose opportunely c, r ∈ N so that setting

ρ2 = τ rχ2θ
c
2

we get
ρ2 ≡ 1 mod q2

Then the extension Q(i) ⊂ CZ̄( q
√
ρ2) is such that

• its degree is equal to q2(q − 1).

• q is not ramified in CZ̄( q
√
ρ2).

• the ramification index of q is equal to q − 1.

• the inertia field DT ⊂ CZ̄( q
√
ρ2) has degree

[DT : Q(i)] =
q2(q − 1)

(q − 1)
= q2

If DT ∩ C = Q(i), since

DT ⊂ C(ζ)( q
√
ρ2) ⊆ CC̄( q

√
τ)

we get that DT ⊂ C̄( q
√
τ), but this means that DT ∩ C̄ 6= Q(i), otherwise

we would have DT ⊂ Z̄( q
√
τ) which is impossible since

[Z̄( q
√
τ) : Q(i)] = q(q − 1) < q2 = [DT : Q(i)]

Then DT ∩ C̄ = C̄ because [C̄ : Q(i)] is prime, and this is a contradiction
because q is ramified in C̄ but not in its inertia field DT . If at the contrary
DT ∩ C 6= Q(i), we get DT ∩ C = C and we conclude as above, hence C̄
must be contained in Q1 as we wanted to show, and the proof of the case
h = 1 is completed.

Now we are left to prove the inductive step: consider is a field extension
Q(i) ⊂ C with the required properties. By inductive hypothesis, the subfield
Ch−1 ⊂ C of degree qh−1 must be contained in Qh1 ⊂ Qh so we can find a
fields C ′ ⊂ Qh with the required properties and such that C ∩ C ′ = Ch−1

(we are supposing that C 6= C ′, otherwise there is nothing to prove) and
then

[CC ′ : Q(i)] =
[C : Q(i)][C ′ : Q(i)]

[C ∩ C ′ : Q(i)]
=
qhqh

qh−1
= q

Consequently as in Proposition (3.3.1) we can find a field extension Q(i) ⊂ L
of degree q such that CC ′ = C ′L. Then, q must be the only prime ramifying
in L, so by induction L ⊂ Q1 ⊂ Qh and finally

CC ′ = C ′L ⊂ QhQ1 ⊂ Qh
which means that C ⊂ Qh as we wanted to prove.
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3.3.3 p = 2

Proposition 3.3.3. Every cyclic extension Q(i) ⊆ C whose degree is a
power of 2 and whose discriminant is a power of 1 + i is a lemniscate ex-
tension.

Proof. Consider the abelian extension Q(i) ⊆ D4 of degree 4 obtained by
considering the (1+ i)7-division points of the lemniscate. As we saw in The-
orem (2.3.1), this field is generated by the element y satisfying the equation

y2 − 2ixy − 1 = 0

where
x2 − 2x− 1 = 0

Then D4 = Q(y) = Q(
√
x, i) with x = 1±

√
2.

Let us set now α :=
√

2+1 and β =
√

2−1: α and β are in D4, and so since

2(1± i) = (
√
α± i

√
β)2

also
√

1 + i,
√

1− i ∈ D4. Moreover, also
√
i =

√
1+i√
1−i ∈ D4, hence

Q(
√
i),Q(

√
i+ 1),Q(

√
i− 1) ⊆ D4

and those are all the quadratic extensions of Q(i) with discriminant which
is a power of 1 + i. Hence the principle is true if we consider fields C of
degree [C : Q(i)] = 2h where h = 1. Then we can repeat the inductive proof
used in the previous Propositions, and we are done.
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[3] J.W.S. Cassels, A. Frölich, eds., Algebraic Number Theory. Pro-
ceedings of an instructional conference organized by the London
Mathematical Society (a NATO Advanced Study Institute) with the
support of the International Mathematical Union, Academic Press,
London (1967).

[4] D. A. Cox, Galois Theory, Wiley & Sons, Hoboken, NJ USA, (2004).

[5] D. A. Cox, T. Hyde, The Galois theory of the lemniscate, J. Number
Theor., Vol. 135,(Feb, 2014), 43-59.

[6] J. T. Cross, The Euler ϕ-function in the Gaussian integers, Amer.
Math. Monthly, Vol. 90, No. 8 (Oct, 1983), 518-528.

[7] G. Dresden, W. Dymacek, Finding Factors of Factor Rings over
the Gaussian Integers, Amer. Math. Monthly, Vol. 112, (Aug-Sep,
2005), 602–611.

[8] M. J. Greenberg, An elementary proof of the Kronecker-Weber The-
orem, Amer. Math. Monthly, Vol. 81, 16 (1974), 601-607.

[9] D. Hilbert, The Theory of Algebraic Number Fields, Springer-
Verlag, Berlin, (1998).
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