Artin conductors of tori

Huajun Lu *
master thesis
under the supervision of Prof. Qing Liu

Abstract

This article is based on the paper "Congruences of Néron models for tori and the Artin conductor" by Ching-Li Chai and Jiu-Kang Yu, published in Annal of Mathematics 154 (2001).

Let K be a complete discrete valuation field with perfect residue field. Let T be a torus over K, with Néron model $T^{N R}$ over the ring of integers \mathcal{O}_{K} of K . The Néron model does not commutate with the base change in general. Choose a finite Galois extension L / K which spits T. One can measure the change of Néron models by comparing $\left(\operatorname{Lie} T^{N R}\right) \otimes \mathcal{O}_{L}$ with Lie $\left((T \otimes L)^{N R}\right)$. We define an invariant $c(T) \in \mathbb{Q}$ by $$
c(T)=\frac{1}{e_{L / K}} \operatorname{length}_{\mathcal{O}_{L}} \frac{\operatorname{Lie}(T \otimes L)^{N R}}{\left(\operatorname{Lie} T^{N R}\right) \otimes \mathcal{O}_{L}}
$$ where $e_{L / K}$ is the ramification index of L / K and Lie() denotes the Lie algebra. Let $X_{*}(T)$ be the ocharacter group of T and let $a\left(X_{*}(T) \otimes \mathbb{Q}\right)$ be the Artin conductor of the Galois representation $X_{*}(T) \otimes \mathbb{Q}$ of $\operatorname{Gal}(\bar{K} / K)$. The main theorem $\mathbf{1 0 . 2}$ states that $c(T)$ is invariant by isogeny and $$
c(T)=\frac{1}{2} a\left(X_{*}(T) \otimes \mathbb{Q}\right),
$$ answering a question of B. Gross. Note that in the final step of the proof of theorem 10.2, we restricted ourself to the special case when K has characteristic 0 .

Contents

1 Notation 2
2 Basic properties of tori 3
3 Dilatation 6
4 Néron's measure for the defect of smoothness 8
5 The construction of the Néron model of a torus 10
6 Singularities of commutative group schemes 12
7 Elkik's theory 15
8 Congruences of Néron models 17
9 The invariant c(T) and Artin conductor 19
10 Isogeny invariance in characteristic 0 22
11 Isogeny invariance in characteristic p -Application of Deligne's theory 25

1 Notation

- Let $\mathcal{O}=\mathcal{O}_{K}$ be a discrete valuation ring with residue field κ and let K be its field of fractions. Let $\pi=\pi_{K}$ be the a prime element of \mathcal{O}. The strict henselization and the completion of \mathcal{O} are denoted by $\mathcal{O}^{s h}$ and $\widehat{\mathcal{O}}$ respectively. Their fields of fraction are denoted by $K^{s h}$ and \widehat{K} respectively. The residue fields of $\mathcal{O}^{\text {sh }}$ is the separable closure $\kappa^{\text {sep }}$ of κ. Denote the algebraic closure of K by \bar{K}.
- Denote the multiplicative group scheme over a ring A by $\mathbb{G}_{m, A}$.
- Let T be a torus over K. Denote by Λ the cocharacter group

$$
X_{*}(T)=\operatorname{Hom}\left(\mathbb{G}_{m, \bar{K}}, T \otimes \bar{K}\right)
$$

of T and by

$$
X^{*}(T)=\operatorname{Hom}\left(T \otimes \bar{K}, \mathbb{G}_{m, \bar{K}}\right)
$$

the character group of T. We will often denote by L / K a Galois extension such that T is split over L and by Γ the Galois group $\operatorname{Gal}(L / K)$.

- we will also work with another discrete valuation ring \mathcal{O}_{0}. We will analogous constructs by the same notation with a subscript 0 . And introduce a series of congruence notation:
$-\left(\mathcal{O}, \mathcal{O}_{L}\right) \equiv_{\alpha}\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}\right)$ (level N$)$: this means that α is an isomorphism from $\mathcal{O}_{L} / \pi^{N} \mathcal{O}_{L}$ to $\mathcal{O}_{L_{0}} / \pi_{0}^{N} O_{L_{0}}$ and induce an isomorphism $\mathcal{O} / \pi^{N} \mathcal{O} \rightarrow \mathcal{O}_{0} / \pi_{0}^{N} \mathcal{O}_{L_{0}}$.
$-\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma\right) \equiv_{\alpha, \beta}\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}, \Gamma_{0}\right)($ level N$):$ this means $\left(\mathcal{O}, \mathcal{O}_{L}\right) \equiv_{\alpha}$ $\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}\right)$ (level N$), \beta$ is an isomorphism $\Gamma \rightarrow \Gamma_{0}$, and α is Γ-equivalent relative to $\beta: \alpha(\gamma \cdot x)=\beta(\gamma) . \alpha(x)$.
$-\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right) \equiv_{\alpha, \beta, \phi}\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}, \Gamma_{0}, \Lambda_{0}\right)($ level N$):$ this means that $\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma\right) \equiv_{\alpha, \beta}\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}, \Gamma_{0}\right)$ (level N), and ϕ is isomorphism $\Lambda \rightarrow \Lambda_{0}$ which is Γ-equivalent relative to β.
- If it is not necessary to name the isomorphisms (α, β, etc.), we omit them from the notation.
- In this paper, " X is determined by $\left(\mathcal{O} / \pi^{N} \mathcal{O}, \mathcal{O}_{L} / \pi^{N} \mathcal{O}_{L}, \Gamma, \Lambda\right) "$ means if $\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right) \equiv_{\alpha, \beta, \phi}\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}, \Gamma_{0}, \Lambda_{0}\right)($ level N$)$, then there is a canonical isomorphism $X \rightarrow X_{0}$ determined by (α, β, ϕ).
- All rings in this paper are \mathcal{O}-algebras or \mathcal{O}_{0}-algebra. All maps between two group schemes are the homomorphisms of group schemes.
- If X is an \mathcal{O}-scheme, we sometimes denote $X \times \operatorname{Spec} \mathcal{O} / \pi^{N}$ by $X \otimes$ \mathcal{O} / π^{N}. Similarly, we have the same meaning for $X \otimes L$, etc.
- For a group scheme X over base scheme S, we denote the module of translation invariant top differential forms on X by $\omega(X)$.

2 Basic properties of tori

Definition 2.1. Let K be a field, a torus T over K is an affine group scheme T over K such that $T_{\bar{K}}=T \otimes_{K} \bar{K} \simeq G_{m, \bar{K}}^{d}$, where d is the dimension of T. We say that T is split over some field extension L / K if $T \otimes L$ is isomorphic to \mathbb{G}_{L}^{d}, and that L is a splitting field of T.

Assume L / K is a Galois extension, and X, Y are K-schemes, then there exists a right $\operatorname{Gal}(L / K)$-action on $\operatorname{Hom}_{L}\left(X_{L}, Y_{L}\right)$. Let $\sigma \in \operatorname{Gal}(L / K), \phi \in$ $\operatorname{Hom}_{L}\left(X_{L}, Y_{L}\right)$, we have $i d \otimes \sigma: X \otimes L \rightarrow X \otimes L$. Define the action of σ on ϕ to be $\left(i d_{Y} \otimes \sigma\right) \circ \phi \circ\left(i d_{X} \otimes \sigma\right)^{-1}$, denoted by ϕ^{σ}. Then ϕ^{σ} is also an L-morphism.

If $\phi^{\sigma}=\phi$ for every $\sigma \in \operatorname{Gal}(L / K)$, there exists $\psi \in \operatorname{Hom}_{K}(X, Y)$ such that $\phi=\psi \otimes i d_{L}$. Hence $\operatorname{Hom}_{K}(X, Y)=\operatorname{Hom}_{L}\left(X_{L}, Y_{L}\right)^{\operatorname{Gal}(L / K)}$, where subscript $\operatorname{Gal}(L / K)$ means the $\operatorname{Gal}(L / K)$-fixed morphisms.

Let G be a group and let M, N be two $\mathbb{Z}[G]$-modules. Then $\operatorname{Hom}_{\mathbb{Z}}(M, N)$ has a G-action defined as follows. Let $f \in \operatorname{Hom}_{\mathbb{Z}}(M, N), g \in G$. We define $f^{g}(m)=g\left(f\left(g^{-1}(m)\right)\right)$, for $m \in M$. Then similarly, we have $\operatorname{Hom}_{\mathbb{Z}}(M, N)^{G}=$ $\operatorname{Hom}_{\mathbb{Z}[G]}(M, N)$.
Notation. In this section the character group $X^{*}(T)$ of a torus T over K will be denoted by \hat{T}.

From the above, we have a $\operatorname{Gal}(\bar{K} / K)$-action on \hat{T}. Let A be the affine ring of T . Let $\phi \in \hat{T}$, then ϕ is determined by the image of X in A, where $\mathbb{G}_{m, \bar{K}}=\bar{K}\left[X, X^{-1}\right]$. Suppose $\phi^{\#}(X)=\sum_{\text {finite sum }} k_{i} \otimes a_{i}$, where $k_{i} \in \bar{K}, a_{i} \in A$, then $\left(\phi^{\sigma}\right)^{\#}(X)=\sum_{\text {finite sum }} \sigma\left(k_{i}\right) \otimes a_{i} \in K^{\prime} \otimes A, K^{\prime}$ is a finite Galois extension containing all k_{i}, hence the $\operatorname{Gal}(\bar{K} / K)$-action on \hat{T} is continuous.

Proposition 2.2. The category of tori over K is anti-equivalent to the category of finitely generated, torsion-free abelian groups with continuous $\Gamma_{K}=$ $\operatorname{Gal}(\bar{K} / K)$-action.

Proof. We have defined a functor F between two categories by $T \longrightarrow \hat{T}$. First, we want to show that $\operatorname{Hom}\left(T_{1}, T_{2}\right)=\operatorname{Hom}\left(\hat{T}_{1}, \hat{T}_{2}\right)$.

$$
\begin{aligned}
\operatorname{Hom}\left(T_{1}, T_{2}\right) & \simeq \operatorname{Hom}_{\bar{K}}\left(T_{1} \times \bar{K}, T_{2} \times \bar{K}\right)^{\Gamma_{K}} \\
& \simeq \operatorname{Hom}_{\bar{K}}\left(G_{m, \bar{K}}^{d_{1}}, G_{m, \bar{K}}^{d_{2}}\right)^{\Gamma_{K}} \\
& \simeq \operatorname{Hom}\left(\widehat{G_{m, \bar{K}}^{d_{2}}}, \widehat{G_{m, \bar{K}}^{d_{1}}}\right)^{\Gamma_{K}} \\
& \simeq \operatorname{Hom}_{\mathbb{Z}}\left(\hat{T}_{2}, \hat{T}_{1}\right)^{\Gamma_{K}} \\
& \simeq \operatorname{Hom}_{\mathbb{Z}\left[\Gamma_{K}\right]}\left(\hat{T}_{2}, \hat{T}_{1}\right)
\end{aligned}
$$

For any \mathbb{Z}-torsion-free and finitely generated $\mathbb{Z}\left[\Gamma_{K}\right]$-module M , we want to construct a torus such that $\hat{T}=M$. Let $d=\operatorname{rank}_{\mathbb{Z}} M$. Consider the group algebra $\bar{K}[M]$, where the group operation on M is written as multiplication. Let $A=\left\{x \in \bar{K}[M]: \sigma(x)=x, \forall \sigma \in \Gamma_{K}\right\}$. Since $\Gamma_{K^{-}}$ action is continuous, and M is finitely generated, Γ_{K}-action factors through $\operatorname{Gal}(L / K)$-action for some finite Galois extension L / K. By descend theory, we have $A \otimes \bar{K}=\bar{K}[M]$. Let $T=\operatorname{Spec} A$, then T is a torus over K, and $\hat{T}=\operatorname{Hom}\left(\bar{K}\left[X, X^{-1}\right], \bar{K}[M]\right)=M$.

Corollary 2.3. For every torus T, there exists a minimal (for the inclusion) spliting field L / K. Moreover L / K is a finite Galois extension.

Proof. Since the Γ_{K}-action is continuous and \hat{T} is finitely generated, it is enough to take L to be the field fixed by the kernel of the representation $\Gamma_{K} \rightarrow \operatorname{Aut}(\hat{T})$.
Example 2.4. Let L / K be a finite Galois extension, $G=\operatorname{Gal}(L / K)$. Let $T=\operatorname{Res}_{L / K}\left(\mathbb{G}_{m, L}\right)$ be the Weil restriction of $\mathbb{G}_{m, L}$ to K, then $\hat{T}=\mathbb{Z}[G]$.
Proof. Let $T=\operatorname{Spec} A$ be the torus such that $\hat{T}=\mathbb{Z}[G]$. Then $T^{\prime} \otimes L=$ Spec $L[G]=\operatorname{Spec} L\left[x_{\sigma}, x_{\sigma}^{-1}\right]_{\sigma \in G}$. For any K-algebra R, the L-homomorphism $f: A \otimes L=L\left[x_{\sigma}, x_{\sigma}^{-1}\right]_{\sigma \in G} \mapsto R \otimes L$ is determined by the image of x_{σ} in $R \otimes L$. If $\sigma \circ f=f \circ \sigma$, this means $\sigma f\left(x_{e}\right)=f\left(x_{\sigma}\right)$. Thus the homomorphism $A \rightarrow R$ is naturally corresponding to an invertible element $f\left(x_{e}\right)$ in $R \otimes L$, which is also corresponding to a homomorphism from $L\left[X, X^{-1}\right] \rightarrow R \otimes L$. Hence $T^{\prime}(X)=\operatorname{Hom}_{L}\left(X \otimes L, \mathbb{G}_{m, L}\right)$ for any K-scheme X. Then by definition T^{\prime} just is $\operatorname{Res}_{L / K}\left(\mathbb{G}_{m, L}\right)$.
Definition 2.5. Let T, T^{\prime} be tori over a field K. A homomorphism $\alpha: T \rightarrow$ T^{\prime} is an isogeny if α is a surjection with finite kernel. The map $\hat{\alpha}: \hat{T}^{\prime} \rightarrow \hat{T}$ is then injective with finite cokernel. Note that the degree of α is equal to be the cardinality of Coker $\hat{\alpha}$.

We write $T \sim T^{\prime}$ when T is isogenous to T^{\prime}.
For any $n \in \mathbb{Z}$, let us denote by $[n]_{G}$ the multiplication by n map on a group scheme G.

Proposition 2.6. Let T, T^{\prime} be tori defined over K, let $\alpha: T \rightarrow T^{\prime}$ be an isogeny. Then there exists an isogeny $\beta: T^{\prime} \rightarrow T$, such that $\beta \circ \alpha=[\operatorname{deg} \alpha]_{T}$, and $\alpha \circ \beta=[\operatorname{deg} \alpha]_{T^{\prime}}$.
Proof. Since $\hat{\alpha}: \hat{T}^{\prime} \rightarrow \hat{T}$ is injective with finite cokernel, then there exists $\hat{\beta}: \hat{T} \rightarrow \hat{T}^{\prime}$, such that $\hat{\beta} \circ \hat{\alpha}=(\operatorname{deg} \alpha) \cdot \mathrm{id}_{\hat{T^{\prime}}}, \hat{\alpha} \circ \hat{\beta}=(\operatorname{deg} \alpha) \cdot \mathrm{id}_{\hat{T}}$. Let $\beta: T^{\prime} \rightarrow T$ be the isogeny corresponding to $\hat{\beta}$. Then $\beta \circ \alpha=[\operatorname{deg} \alpha]_{T}$, and $\alpha \circ \beta=[\operatorname{deg} \alpha]_{T^{\prime}}$.

Proposition 2.7. Let T, T^{\prime} be tori over K and L be a common splitting field of T and T^{\prime}. Let $G=\operatorname{Gal}(L / K)$. Then $T \sim T^{\prime}$ if and only if $\hat{T} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \hat{T}^{\prime} \otimes_{\mathbb{Z}} \mathbb{Q}$ as G-module.
Proof. If $T \sim T^{\prime}$, we have an exact sequence

$$
0 \longrightarrow \widehat{T} \longrightarrow \widehat{T}^{\prime} \longrightarrow M \longrightarrow 0
$$

where M is a finite abelian group. After tensor with \mathbb{Q}, we get an exact sequence

$$
0 \longrightarrow \hat{T} \otimes \mathbb{Q} \longrightarrow \hat{T}^{\prime} \otimes \mathbb{Q} \longrightarrow 0
$$

Conversely, if $\hat{T} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \hat{T}^{\prime} \otimes_{\mathbb{Z}} \mathbb{Q}$, then $n \hat{T} \hookrightarrow \hat{T}^{\prime}$ (as $\mathbb{Z}[G]$-modules) with finite cokernel for some integer n. Let $\widehat{\alpha}$ be the composition of $\widehat{T} \xrightarrow{\cdot n} n \widehat{T} \longrightarrow \widehat{T}^{\prime}$, then $\hat{\alpha}: \hat{T} \rightarrow \hat{T}^{\prime}$ is injective with finite cokernel. By Proposition 2.2 it corresponds a homomorphism $\alpha: T^{\prime} \rightarrow T$ which is a surjection and with finite kernel. Hence $T \sim T^{\prime}$.

Let T be a torus over K , split over L. Let $G=\operatorname{Gal}(L / K), g \in G$ and $K_{g}:=L^{g}=\{x \in L \mid g(x)=x\}$. Let χ_{T} be the character of the representation $\widehat{T} \otimes \mathbb{Q}$ over \mathbb{Q} and $T_{g}=\operatorname{Res}_{K_{g} / K}\left(\mathbb{G}_{m}\right)$, then \widehat{T}_{g} is $\left.\mathbb{Z}[<g\rangle\right]$ where $<g>$ is the subgroup generated by g in G . The character of corresponding representation is denoted by $\chi_{T_{g}}$.

By a theorem of Artin [Serre2, thm 9.2], there exist positive integers $n_{h}, n_{h^{\prime}}$ and subsets H, H^{\prime} of G such that $H \bigcap H^{\prime}=\emptyset$, and

$$
n \chi_{T}+\sum_{h^{\prime} \in H^{\prime}} n_{h^{\prime}} \chi_{T_{h^{\prime}}}=\sum_{h^{\prime} \in H^{\prime}} n_{h} \chi_{T_{h}} .
$$

Hence we get:
Proposition 2.8. There exist positive integers $n_{h}, n_{h^{\prime}}$ such that,

$$
T^{n} \times \prod \operatorname{Res}_{K_{h^{\prime}} / K}\left(\mathbb{G}_{m, K_{h^{\prime}}}^{n_{h^{\prime}}}\right) \sim \prod \operatorname{Res}_{K_{h} / K}\left(\mathbb{G}_{m, K_{h}}^{n_{h}}\right) .
$$

3 Dilatation

Let K be a discrete valuation field with valuation $\operatorname{ring} \mathcal{O}$.
Definition 3.1. Let X be a \mathcal{O}-scheme of finite type, whose generic fibre X_{K} is smooth over K. Let W be a closed subscheme of X_{κ}. The dilatation of W on X is a pair $\left(X^{\prime}, u: X^{\prime} \rightarrow X\right)$, where X^{\prime} is a flat \mathcal{O}-scheme of finite type and $u_{\kappa}: X_{\kappa}^{\prime} \rightarrow X_{\kappa}$ factors through W , satisfying the following universal property:
if Z is a flat \mathcal{O}-scheme, and if $v: Z \rightarrow X$ is an \mathcal{O}-morphism such that its restriction v_{κ} to the special fibre factors through W, then v factors uniquely through u.

Construction of dilatation

Let \mathcal{J} be the sheaf of ideals defining W in X. Let X^{\prime} is an open subset of the blow-up $B l(X, W)$ of X with center W, where $B l(X, W)=\operatorname{Proj} \bigoplus_{t \geq 0} \mathcal{J}^{t}$ and $X^{\prime}=\left\{x \in B l(X, W):\left(\mathcal{J} \cdot \mathcal{O}_{B l(X, W)}\right)_{x}\right.$ is generated by $\left.\pi\right\}$. Locally, if X is affine and A is the affine ring of X, and the ideal sheaf J of W is
generated g_{1}, \ldots, g_{n}, then $X^{\prime}=\operatorname{Spec} A^{\prime}$ and let $u: X^{\prime} \rightarrow X$ be the canonical map corresponding to $A \rightarrow A^{\prime}$, where

$$
A^{\prime}=A\left[\frac{g_{1}}{\pi}, \ldots, \frac{g_{n}}{\pi}\right] /(\pi-\text { torsion })
$$

and

$$
A\left[\frac{g_{1}}{\pi}, \ldots, \frac{g_{n}}{\pi}\right]=A\left[X_{1}, \ldots, X_{n}\right] /\left(\pi X_{1}-g_{1}, \ldots, \pi X_{n}-g_{n}\right) .
$$

Proposition 3.2. Let $\left(X^{\prime}, u\right)$ be constructed as above, then $\left(X^{\prime}, u\right)$ is the dilatation of W on X.

Proof. We just need to show that $\left(X^{\prime}, u\right)$ satisfies the universal property of dilatation. Since the problem is local, we can assume $Z=\operatorname{Spec} B$ is affine. Keep the notation as before. The fact that v_{κ} factors through Y_{κ} implies that the ideal $J \cdot B$ is contained in πB. Hence there exist elements $h_{i} \in B$ with $v^{*}\left(g_{i}\right)=h_{i}$; the elements h_{i} are unique, for B has no π-torsion. Thus the A - morphism $A\left[X_{1}, \ldots, X_{n}\right] \rightarrow X$ sending T_{i} to h_{i} yields a morphism $w^{*}: A^{\prime} \rightarrow B$ and hence a morphism $w: Z \rightarrow X^{\prime}$ such that $v=u \circ w$.

Corollary 3.3. Let X be a closed subscheme of an \mathcal{O}-scheme Z, and let Y_{κ} be a closed subscheme of X_{κ}. Then the dilatation X^{\prime} of Y_{κ} on X is a closed subcheme of the dilatation Z^{\prime} of Y_{κ} in Z.

Proof. This is clear from the construction of dilatation.
Proposition 3.4. Let X be a smooth scheme over \mathcal{O}, and W be a closed subscheme over $X \otimes \kappa$. Let X^{\prime} be the dilatation of W on X. Then $X^{\prime} \otimes \mathcal{O} / \pi^{N}$ depends only on $X \otimes \mathcal{O} / \pi^{N+1} \mathcal{O}$ in a canonical way.

Remark. Canonicity. Assume X_{1} and X_{2} are \mathcal{O}-schemes, and ϕ is an isomorphism $X_{1} \otimes \mathcal{O} / \pi^{N+1} \mathcal{O} \rightarrow X_{2} \otimes \mathcal{O} / \pi^{N+1} \mathcal{O}$. Assume also that $W_{1} \subseteq$ $X_{1} \otimes \kappa, W_{2} \subseteq X_{2} \otimes \kappa$ are closed smooth subschemes over κ, and ϕ induces an isomorphism from W_{1} to W_{2}. Form the dilatation X_{i}^{\prime} and $Y_{i}=B l^{\prime}\left(X_{i}, \mathcal{J}_{i}\right)=$ $\operatorname{Proj} \bigoplus_{t \geq 0} \mathcal{J}_{i}^{t}, i=1,2$. The canonicity statement is that the natural isomorphism $\mathrm{Bl}^{\prime}(\phi): Y_{1} \otimes \mathcal{O} / \pi^{N} \rightarrow Y_{2} \otimes \mathcal{O} / \pi^{N}$ induces an isomorphism from the subschemes $X_{1}^{\prime} \otimes \mathcal{O} / \pi^{N}$ of $Y_{1} \otimes \mathcal{O} / \pi^{N}$ to $X_{2}^{\prime} \otimes \mathcal{O} / \pi^{N}$.

Proof of Proposition 3.4. Let $i=1,2$. Let x_{i}^{\prime} be a point on $X_{i}^{\prime} \otimes \kappa$ which projects to $x_{i} \in X_{i} \otimes \kappa$. Since X_{i} and W_{i} are smooth, we can choose a system of local coordinates $f_{1}^{(i)}, \ldots, f_{r}^{(i)}, g_{r+1}^{i}, \ldots, g_{n}^{(i)}$ at x_{i} on X_{i} such that W_{i} defined by $\left(\pi, g_{r+1}^{i}, \ldots, g_{n}^{(i)}\right)$ near an affine neighborhood U_{i} of x_{i} and X_{i}^{\prime} above U_{i} is $\operatorname{Spec}\left(B_{i}^{\prime} / \pi^{\infty}\right.$-torsion $)$, where $B_{i}^{\prime}=\mathcal{O}_{X_{i}}\left(U_{i}\right)\left[Y_{r+1}^{i}, \ldots, Y_{n}^{i}\right] /\left(\pi Y_{r+1}^{i}-\right.$
$\left.g_{r+1}^{i}, \ldots, \pi Y_{n}^{i}-g_{n}^{i}\right)$. The $f_{1}^{(i)}, \ldots, f_{r}^{(i)}, Y_{r+1}^{i}, \ldots, Y_{n}^{(i)}$ form a system of local coordinates at x_{i}^{\prime} in X_{i}. We can shrink U_{i} such that B_{i}^{\prime} is free of π^{∞}-torsion.

If $\phi\left(x_{1}\right)=x_{2}$, we can assume $\phi^{*}\left(f_{j}^{(2)} \bmod \pi^{N}\right) \equiv f_{j}^{(1)} \bmod \pi^{N}$ and $\phi^{*}\left(g_{k}^{(2)} \bmod \pi^{N}\right) \equiv g_{k}^{(1)} \bmod \pi^{N}$, and ϕ induces an isomorphism $\widetilde{\phi}^{*}: \mathcal{O}_{X_{2}}\left(U_{2}\right)$ $\otimes \mathcal{O} / \pi^{N} \rightarrow \mathcal{O}_{X_{1}}\left(U_{1}\right) \otimes \mathcal{O} / \pi^{N}$. Clearly, there is an isomorphism $\left(\phi^{\prime}\right)^{*}: B_{2}^{\prime} \otimes$ $\mathcal{O} / \pi^{N} \rightarrow B_{1}^{\prime} \otimes \mathcal{O} / \pi^{N}$ which extends $\left(\widetilde{\phi}^{*}\right)$ and sends $Y_{j}^{(2)}$ to $Y_{j}^{(1)}$. It remains to show that $\phi^{\prime}: X_{1}^{\prime} \otimes \mathcal{O} / \pi^{N} \rightarrow X_{2}^{\prime} \otimes \mathcal{O} / \pi^{N}$ is induced by $\mathrm{Bl}^{\prime}(\phi)$. Above $U_{i} \otimes$ \mathcal{O} / π^{N}, the affine ring of $B l^{\prime}\left(X_{i}, \mathcal{J}\right) \otimes \mathcal{O} / \pi^{N}$ is $B_{i}^{\prime \prime}=\left(\bigoplus_{t \geq 0} S_{y m_{B_{i}^{N}}^{t}} \mathcal{J}_{i}^{N}\right)_{\pi_{1}}^{\operatorname{deg} 0}$, where $B_{i}^{N}=\mathcal{O}_{X_{i}} \otimes \mathcal{O} / \pi^{N}, \mathcal{J}_{i}^{N}=\left(\pi, g_{r+1}^{(i)}, \ldots, g_{n}^{(i)}\right) \otimes \mathcal{O} / \pi^{N}, \pi$ is regards as a homogeneous element of degree 1 . The element π_{1} is an element of degree 1 in $\bigoplus_{t \geq 0} S y m_{B_{i}^{N}}^{t} \mathcal{J}_{i}^{N}$, and the subscrip indicates localization. The ring $B_{i}^{\prime \prime}$ maps to $B_{i}^{\prime} \otimes \mathcal{O} / \pi^{N}$ by sending $\pi_{1}^{-1} g_{k}^{(i)}$ to Y_{k}. Then it is clear that $\left(\phi^{\prime}\right)^{*}$ is induced by $B l^{\prime}(\phi)$.

4 Néron's measure for the defect of smoothness

Let X be a scheme of finite type over \mathcal{O} such that $X \otimes K$ is smooth over K . Consider $x \in X\left(\mathcal{O}^{s h}\right)$ as a morphism $\operatorname{Spec} \mathcal{O}^{\text {sh }} \rightarrow X$.

Definition 4.1. Define $\delta(x)=$ the length of the torsion part of $x^{*} \Omega_{X / \mathcal{O}}^{1}$ as Néron's measure for the defeat of smooth at x, sometimes we also denote it by $\delta(x, X)$.

The rank of free part is just the rank of $\Omega_{X / K}^{1}$ at x_{K}, which is the dimension of X_{K} at x_{K}, since X_{K} is smooth.

Lemma 4.2. Let x be an $\mathcal{O}^{\text {sh }}$-value point of X. Then x factors through the smooth locus of X if and only if $\delta(x)=0$.

Proof. If x is contained in the smooth locus $X_{\text {smooth }}$ of X, then $x^{*} \Omega_{X / \mathcal{O}}^{1}=$ $x^{*} \Omega_{X_{\text {smooth }} / \mathcal{O}}^{1}$, where $\Omega_{X_{\text {smooth }} / \mathcal{O}}^{1}$ is locally free, so $\delta(x)=0$. Conversely, if $\delta(x)=0$, then $x^{*} \Omega_{X / \mathcal{O}}^{1}$ can be generated by d elements where d is the dimension of X_{K} at x_{K}. In particular, $x^{*} \Omega_{X_{\kappa} / \kappa}^{1}$ can be generated by d-elements at x_{κ}. Since the relative dimension at x_{κ} is at least d. So X_{κ} is smooth over κ at x_{κ} of relative dimension d. Then X is smooth over \mathcal{O} at x.

Let U be a neighborhood of x in X which can be realized as a closed subscheme of an \mathcal{O}-scheme Z where Z is smooth over \mathcal{O}, and has constant relative dimension n. Assume that there exist functions z_{1}, \ldots, z_{n} on Z such
that $d z_{1}, \ldots, d z_{n}$ generate $\Omega_{Z / \mathcal{O}}^{1}$, and let g_{1}, \ldots, g_{m} be functions which generate the sheaf of ideal of \mathcal{O}_{Z} defining U in Z . Then we have $d g_{u}=\sum \frac{\partial g_{u}}{\partial z_{v}} d z_{v}$, and define Jacobian matrix J of g_{1}, \ldots, g_{m} to be $\left(\frac{\partial g_{u}}{\partial z_{v}}\right)_{m \times n}$. Let d be the relative dimension of X_{K} at x_{K}, and $v(a)=\pi$-order of a in \mathcal{O}.

Lemma 4.3. $\delta(x)=\min \{v(\Delta) \mid \Delta:(n-d)$-minors of $J\}$.
Proof. By Jacobi criterion, there exist a $(n-d)$-minors Δ with $x^{*} \Delta \neq 0$, and any minor Δ of J with more than $n-d$ rows will satisfying $x^{*} \Delta=0$. We know $x^{*} \Omega_{X / \mathcal{O}}^{1}$ is representable as a quotient F / M, where $F:=x^{*} \Omega_{Z / \mathcal{O}}^{1}$ is a free $\mathcal{O}^{s h}$-module of rank n , and M is the submodule generated by $x^{*} d g_{1}, \ldots, x^{*} d g_{m}$. Since the rank of M is $n-d$ and $\mathcal{O}^{s h}$ is P.I.D, one can find a base e_{1}, \ldots, e_{n} of $x^{*} \Omega_{Z}^{1}$ such that M is generated by $a_{d+1} e_{d+1}, \ldots, a_{n} e_{n}$, where $a_{i} \in \mathcal{O}$ and $a_{i} \neq 0$. Thus by the theory of elementary divisors, we have $\delta(x)=v\left(a_{d+1}\right)+\ldots+v\left(a_{n}\right)$.

Now consider the ideals in $\mathcal{O}^{\text {sh }}$ generated by all elements $x^{*} \Delta$, where Δ is $(n-d)$-minor, and this ideal is generated by $a_{d+1} \ldots a_{n}$, and there is a minor Δ with $x^{*}(\Delta)=a_{d+1} \ldots a_{n}$.

Proposition 4.4. Let Y be the Zariski closure of $\{x \bmod \pi \in X(\kappa): x \in$ $X\left(\mathcal{O}^{\text {sh }}\right)$ \} as a closed subscheme of $X \otimes \kappa$. Let $X^{\prime} \rightarrow X$ be the dilatation of Y on X. For each $x \in X\left(\mathcal{O}^{\text {sh }}\right)$ with $x_{\kappa} \in Y$, denote $x^{\prime} \in X^{\prime}\left(\mathcal{O}^{\text {sh }}\right)$ be the unique lifting of x. Then $\delta\left(x^{\prime}\right) \leq \max \{0, \delta(x)-1\}$.

Proof. The proof takes too many pages, see the details in [BLR, 3.3 Prop 5].

Lemma 4.5. 1). Suppose X is a group scheme over \mathcal{O}, and $e \in X\left(\mathcal{O}^{\text {sh }}\right)$ is the identity element. Then $\delta(e)=\delta(x)$, for any $x \in X\left(\mathcal{O}^{\text {sh }}\right)$.
2). Change of base field. Let $x \in X\left(\mathcal{O}^{\text {sh }}\right)$, consider x as a point of $X \otimes \mathcal{O}_{L}$, then $\delta\left(x ; X \otimes \mathcal{O}_{L}\right)=e(L / K) \cdot \delta(x, X)$, where $e(L / K)$ is the ramification index of L / K.
3). Closed immersion. Let $i: X \subseteq X^{\prime}$ be a closed immersion of \mathcal{O} scheme such that i induce an isomorphism $X \otimes K \rightarrow X^{\prime} \otimes K$. Then we have a surjection $i^{*} \Omega_{X^{\prime} / \mathcal{O}}^{1} \rightarrow \Omega_{X / \mathcal{O}}^{1}$. Therefor, for any $x \in X\left(\mathcal{O}^{\text {sh }}\right)$, we have $\delta(x ; X) \leq \delta\left(i \circ x ; X^{\prime}\right)$.

Proof. Let $r_{x}: X \otimes \mathcal{O}^{s h} \rightarrow X \otimes \mathcal{O}^{\text {sh }}$ be the isomorphism of right multiplication by x. Then $x=r_{x} \circ e$, hence $e^{*} \Omega_{X / \mathcal{O}}^{1}=x^{*} \Omega_{X / \mathcal{O}}^{1}$, so $\delta(e)=\delta(x)$. The other two are clear.

5 The construction of the Néron model of a torus

Let K be a discrete valuation field.
Definition 5.1. Let T be a torus over K, the (finite type) Néron model of T is a smooth group scheme $T^{N R}$ over $\operatorname{Spec} \mathcal{O}_{K}$ with generic fibre isomorphic to T, such that the image of $T^{N R}\left(\mathcal{O}^{\text {sh }}\right)$ is in $T\left(K^{\text {sh }}\right)$ is the maximal bounded subgroup of $T\left(K^{\text {sh }}\right)$.

Remark. The usual definition of Néron model for a smooth and separated K-scheme X of finite type is the following: it is a smooth, separated \mathcal{O} scheme \mathcal{X}, locally of finite type, satisfying the following universal property:

For each smooth $\operatorname{Spec} \mathcal{O}$-scheme Y and each K-morphism $u_{K}: Y_{K} \rightarrow X$, there is a unique $\operatorname{Spec} \mathcal{O}$-morphism $u: Y \rightarrow \mathcal{X}$ extending u_{K}. For more details, see [BLR].

For a torus T over K, the (finite type) Néron model $T^{N R}$ is an open subscheme of \mathcal{T}. Its special fiber consists in the union of the connected components of \mathcal{T}_{κ} which are of finite order in the group of components $\Phi(T)$. When T is anisotropic (i.e. T does not contain any factor $\mathbb{G}_{m, K}$), then $T^{N R}=\mathcal{T}$. In general, both models have the same neutral component.

Follow the construction of the Néron model of T as explained in [BLR].

- Step 1, construct a group scheme T^{0} over \mathcal{O} such that $T^{0}\left(\mathcal{O}^{\text {sh }}\right)=$ $T^{N R}\left(\mathcal{O}^{s h}\right)=$ the maximal bounded subgroup of $T\left(K^{s h}\right)$.
Let $R=\operatorname{Res}_{L / K}(T \otimes L)$, then there exits a canonical closed embedding $T \rightarrow R$, and choose T^{0} to be the schematic closure of T in $R^{N R} \simeq$ $X_{*}(T) \otimes\left(\operatorname{Res}_{\mathcal{O}_{L} / \mathcal{O}_{K}}\left(\mathbb{G}_{m, \mathcal{O}_{L}}\right)\right)$, where $X_{*}(T)$ is the cocharacter group of T.

Proposition 5.2. $T_{K}^{0}=T$ and $T^{0}\left(\mathcal{O}^{s h}\right)=T^{N R}\left(\mathcal{O}^{s h}\right)$.
Proof. Since all schemes are affine, the first equality is easy from algebraic facts. Let A, B, C, D be the affine rings of $R^{N R}, R, T, T^{0}$ respectively, and assume $f: A \rightarrow B, g: B \rightarrow C, h: A \rightarrow C$ are the corresponding morphisms and $h=g \circ f$. Then $D=A / \operatorname{Kerh}$ and h induce a mapping $h^{\prime}: D \rightarrow C$. Now we want to show $D \otimes K \rightarrow C$ is isomorphic. It is surjective since $A \otimes K=B$ and g is surjective. The injectivity follows from K is flat \mathcal{O}-module. Thus $h^{\prime} \otimes i d: D \otimes K \rightarrow C \otimes K$ is injective and $C \otimes K=C$.

Let $u \in T^{0}\left(\mathcal{O}^{\text {sh }}\right)$, then it is in the maximal bounded subgroup of $R\left(K^{\text {sh }}\right)$ since it is in $R^{N R}\left(\mathcal{O}^{\text {sh }}\right)$. So we have $T^{0}\left(\mathcal{O}^{s h}\right) \subseteq T^{N R}\left(\mathcal{O}^{s h}\right)$. Conversely, let $t \in T^{N R}\left(\mathcal{O}^{s h}\right)$, then it lifts t^{\prime} in $R^{N R}\left(\mathcal{O}^{s h}\right)$, we want to show it factor through T^{0}. And this is clear from the universal property of quotient of rings.

- Step 2, apply the smoothening process to T^{0}, then we can get the Néron model $T^{N R}$ of T.
Let Z^{i} be the Zariski closure of $\left\{x \bmod \pi \in T^{i}\left(\kappa^{s e p}\right): x \in T^{i}\left(\mathcal{O}^{s h}\right)\right\}$ as a closed subscheme of $T^{i} \otimes \kappa$ with the reduced induced structure. Let T^{i+1} is the dilatation of Z^{i} on T^{i}.
Let $\delta=\max \left\{\delta(x): x \in T^{0}\left(\mathcal{O}^{s h}\right)\right\}$, where $\delta(x)$ is the N'eron measure for the defect of smoothness. Then $T^{N R}=T^{i}$ for $i \geq \delta$.
Similarly, do the same process to $R^{0}=R^{N R}$. For $i \geq 0$, let W^{i} be the Zariski closure of

$$
\left\{x \bmod \pi \in R^{i}\left(\kappa^{s e p}\right): x \in T^{0}\left(\mathcal{O}^{s h}\right) \subset R^{i}\left(\mathcal{O}^{s h}\right)\right\}
$$

as a subscheme of $R^{i} \otimes \kappa$ with the reduced induced structure. Then R^{i+1} is the dilatation of W^{i} on R^{i}. Clearly, we have $T^{0}\left(\mathcal{O}^{s h}\right) \subset R^{i}\left(\mathcal{O}^{\text {sh }}\right) \subset$ $\left(R^{i+1}\left(\mathcal{O}^{s h}\right)\right)$.

Lemma 5.3. For $i \geq 0, N \geq 1, R^{i+1} \otimes \mathcal{O} / \pi^{N}$ depends only on $R^{i} \otimes \mathcal{O} / \pi^{N+1} \mathcal{O}$ in a canonical way.

Proof. This is just a corollary of Proposition 3.4.
Lemma 5.4. The schematic closure of T in R^{i} is T^{i} for all $i \geq 1$. In particular, it is $T^{N R}$ for $i \gg 0$.

Proof. Prove it by induction on i. T^{i-1} is a closed subgroup of R^{i-1}, and W^{i-1} is the image of Z^{i-1} in $T^{i-1} \rightarrow R^{i-1}$. Then R^{i} is a closed subscheme of subgroup of R^{i} by Corollary 3.3. So the schemematic closure of T^{i}, s generic fibre T in R^{i} is itself.

Remark. When $i \geq \delta\left(e ; T^{0}\right), T^{i}$ is smooth, hence $T^{N R}=T^{i}$. So we want to control $\delta\left(e ; T^{0}\right)$. Let $T_{L}^{0}=T^{0} \otimes \mathcal{O}_{L}$, the schematic closure of $T \otimes L$ in $R^{N R} \otimes \mathcal{O}_{L}$. Let $R^{\prime}=R^{N R} \otimes \mathcal{O}_{L}, R^{\dagger}=X_{*}\left(R \otimes_{K} L\right) \otimes_{\mathbb{Z}}\left(\mathbb{G}_{m / \mathcal{O}_{L}}\right), T^{\dagger}=$ $X_{*}\left(T \otimes_{K} L\right) \otimes_{\mathbb{Z}}\left(\mathbb{G}_{m / \mathcal{O}_{L}}\right)$. There are canonical morphisms $T^{\dagger} \rightarrow R^{\dagger}$, and $\varphi: R^{\prime} \rightarrow R^{\dagger}$. Let $T^{\prime}=T^{\dagger} \times_{R^{\dagger}} R^{\prime}$. Since $T^{\dagger} \rightarrow R^{\dagger}$ is a closed immersion, hence $T^{\prime} \rightarrow R^{\prime}$ is also a closed immersion by base change. Since T^{\prime} has generic fibre $T \otimes L, T_{L}^{0}$ is equal to the subscheme closure of $T \otimes L$ in T^{\prime}. By the lemma 4.5, we have $\delta\left(e, T^{0}\right) \leq \frac{\delta\left(e, T^{\prime}\right)}{e(L / K)}$. So it is enough to control $\delta\left(e, T^{\prime}\right)$.

We can write T^{\dagger} and R^{\dagger} explicitly. In fact, $T^{\dagger} \simeq \mathbb{G}_{m, \mathcal{O}_{L}}^{d}$ and $R^{\dagger} \simeq \mathbb{G}_{m, \mathcal{O}_{L}}^{n d}$, and T^{\dagger} is cut out by $n d-d$ equations $f_{1}, \ldots, f_{n d-d}$ on R^{\dagger}, where $d=\operatorname{dim} T, n=$ $[L: K]$. By base change, T^{\prime} is cut out by the equations $\varphi^{*} f_{1}, \ldots, \varphi^{*} f_{n d-d}$ on R^{\prime}. Let $z_{1}, \ldots, z_{n d}$ be a system of local coordinates near e, and put $M=\left(\frac{\partial\left(\varphi^{*} f_{i}\right)}{\partial z_{j}}\right)$, then by Lemma 4.3, $\delta\left(e, T^{0}\right)$ is the minimum of the valuation of $e^{*} \Delta$, for all (nd-d)-minors Δ of M.

Lemma 5.5. Suppose that $\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right) \equiv\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}, \Gamma_{0}, \Lambda_{0}\right)($ level $N)$ with $N e(L / K)>\delta\left(e, T^{\prime}\right)$. Form T_{0}^{\prime} in the same way that we form T^{\prime}. Then $\delta\left(e ; T_{0}^{\prime}\right)=\delta\left(e ; T^{\prime}\right)$.

Proof. All following objects are determined only by $\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)$:
$R^{\dagger} \otimes \mathcal{O}_{L} / \pi^{N} \mathcal{O}_{L}, T^{\dagger} \otimes \mathcal{O}_{L} / \pi^{N} \mathcal{O}_{L}, R^{\prime} \otimes \mathcal{O}_{L} / \pi^{N} \mathcal{O}_{L}, T^{\prime} \otimes \mathcal{O}_{L} / \pi^{N} \mathcal{O}_{L}$, and the matrix $e^{*}\left(M \bmod \pi^{N}\right)$. And if $N e(L / K)>\delta\left(e, T^{\prime}\right)$, and by Lemma4.3, $\delta\left(e ; T^{\prime}\right)$ is also determined by $\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)$. So the lemma is true.

6 Singularities of commutative group schemes

Definition 6.1. Suppose A is a noetherian local ring. We say that A is a complete intersection ring if \widehat{A} is isomorphic to a quotient of a complete local regular ring B by a regular ideal J. We say that a locally noetherian scheme X is complete intersection at a point $x \in X$, if $\mathcal{O}_{X, x}$ is a complete intersection ring.

Definition 6.2. Suppose $f: X \rightarrow S$ is a flat, locally of finite presentation morphism. We say that X is relative complete intersection (r.c.i) over S at the point x if the fibre $f^{-1}(f(x))$ is complete intersection at x. We say that f is an r.c.i morphism if X is r.c.i over S at all its points.

Proposition 6.3. Suppose B is a noetherian regular local ring, J is an ideal of B. Then $A=B / J$ is a complete intersection ring if and only if J is a regular ideal of B.

Proof. If J is a regular ideal, then $J \widehat{B}$ is also a regular ideal in \widehat{B}, hence A is a complete intersection ring.

Conversely, suppose that A is a complete intersection ring, we need to show J is a regular ideal. We can assume A and B are both complete since $\widehat{A}=\widehat{B} / J \widehat{B}$.

Choose a presentation $A=B^{\prime} / J^{\prime}$, where B^{\prime} is a noetherian, complete, regular local ring and J^{\prime} is its regular ideal. Denote $\pi_{1}: B \rightarrow A, \pi_{2}: B^{\prime} \rightarrow A$ be the canonical projections. Consider $B^{\prime \prime}=B \times{ }_{A} B^{\prime}$, where $B^{\prime \prime}=\left\{\left(b, b^{\prime}\right) \in\right.$
$\left.B \times B^{\prime} \mid \pi_{1}(b)=\pi_{2}\left(b^{\prime}\right)\right\}$, a subring of $B \times B^{\prime}$. We claim that $B^{\prime \prime}$ is complete local noetherian ring. It is easy to seen that $B^{\prime \prime}$ is a local ring with unique maximal deal $m=\left\{\left(b, b^{\prime}\right): \pi_{1}(b)=\pi_{2}\left(b^{\prime}\right) \in m_{A}\right\}$. And $\left(b, b^{\prime}\right) \in m$ if and only if $b \in m_{B}$ and $b^{\prime} \in m_{B^{\prime}}$, so $B^{\prime \prime}$ is complete. Let \mathfrak{a} be an ideal of $B^{\prime \prime}$, and let \mathfrak{b} be the kernel of $B^{\prime \prime} \rightarrow B$. Then we have

$$
0 \longrightarrow \mathfrak{a} \cap \mathfrak{b} \longrightarrow \mathfrak{a} \longrightarrow \mathfrak{a} / \mathfrak{a} \cap \mathfrak{b} \longrightarrow 0
$$

and $\mathfrak{a} / \mathfrak{a} \cap \mathfrak{b} \simeq(\mathfrak{a}+\mathfrak{b}) / \mathfrak{b}$. Since $(\mathfrak{a}+\mathfrak{b}) / \mathfrak{b}$ is corresponding to an ideal of B, and $\mathfrak{a} \cap \mathfrak{b}$ is corresponding to an ideal of B^{\prime}; they are both of finite type. Hence \mathfrak{a} is also finitely generated.

By Cohen's theorem, there exits a noetherian, complete, regular local ring C such that $B^{\prime \prime}$ is a quotient of C with regular ideal. Let $I=\operatorname{Ker}(C \rightarrow A)$, then I is the preiamge of the regular ideal J^{\prime}, hence I is regular. And J is image of I in a regular ring, hence regular.

Proposition 6.4. Let $k \subset k^{\prime}$ be a filed extension. Suppose X is a locally of finite type k-scheme and $X^{\prime}=X \times_{k} k^{\prime}$. Suppose $x^{\prime} \in X^{\prime}$ and x is its projection on X. Then X is complete intersection at x if and only if X^{\prime} is complete intersection at x^{\prime}.

Proof. The problem is local, so we can assume $X=\operatorname{Spec} A$, where A is a quotient of polynomial ring $k\left[X_{1}, \ldots, X_{n}\right]$ with ideal I. "only if" part is trivial. Assume $\left\{f_{1}, \ldots, f_{n}\right\}$ be a minimal generators of I at x, then they also generate $I^{\prime}=I \otimes k^{\prime}$ at x^{\prime}. If they are not regular sequence in $I_{x^{\prime}}^{\prime}$, then some f_{i} is generated by others in $I_{x^{\prime}}^{\prime}$. Hence f_{i} is also generated by others in I_{x} by the faithfully flatness of k^{\prime} over k. This is contradiction with the choice of $f_{i}^{\prime} s$.

Proposition 6.5. (1). Suppose $f: X \rightarrow S$ is an r.c.i morphism. Let $f^{\prime}=f_{S^{\prime}}: X \times S^{\prime} \rightarrow S^{\prime}$ be the base change compatible with $g: S^{\prime} \rightarrow S$. Then f^{\prime} is also a r.c.i morphism. If g is fpqc (ie. faithfully flat, quasi compact), then vice versa.
(2). If $f: X \rightarrow Y, g: Y \rightarrow Z$ are both r.c.i morphism. Then so is $g \circ f: X \rightarrow Z$.

Proof. Clearly from Proposition 6.4.
Lemma 6.6. Let G be a commutative group scheme, flat and of finite type over a notherain base scheme S. Then $G \rightarrow S$ is an r.c.i morphism.

Proof. We can assume $S=\operatorname{Spec} k$, where k is algebraically closed. Suppose that $0 \longrightarrow G^{\prime} \longrightarrow G \longrightarrow G^{\prime \prime} \longrightarrow 0$ is an exact sequence of commutative
group scheme over k. Assume that G^{\prime} and $G^{\prime \prime}$ are r.c.i over $\operatorname{Spec} k$, we claim that $G \rightarrow G^{\prime \prime}$ is also an r.c.i morphism, hence $G \rightarrow G^{\prime \prime} \rightarrow$ Spec k is an r.c.i morphism. By proposition 6.5, it is enough to check after a fpqc base change $G \rightarrow G^{\prime \prime}$, that is, look at $G \times_{G^{\prime \prime}} G \rightarrow G$. This morphism is canonically isomorphic to $G \times{ }_{\text {Speck }} G^{\prime} \rightarrow G$, which is projection to the first factor, and it is an r.c.i morphism since $G^{\prime} \rightarrow \operatorname{Spec} k$ is.

For any G over k, G admit a composition series in which the factor are smooth, isomorphic to μ_{p}, or α_{p}. And these factors are clearly r.c.i over k, hence by induction, $G \rightarrow S$ is an r.c.i morphism.

Lemma 6.7. Suppose that X is a noetherian scheme and $X \rightarrow \operatorname{Spec} \mathcal{O}$ is a flat r.c.i morphism. Then for any $N \geq 1$, the collection of points:

$$
\bigcup\left\{x \quad \bmod \pi^{N} \in X\left(C / \pi^{N} C\right): x \in X(C)\right\},
$$

as C ranges over local $\widehat{\mathcal{O}}$-algebra which are flat, and r.c.i over $\widehat{\mathcal{O}}$, is schematically dense in $X \otimes \mathcal{O} / \pi^{N}$.

Proof. Since $\mathcal{O} \rightarrow \widehat{\mathcal{O}}$ is faithfully flat and $\operatorname{Spec} \widehat{\mathcal{O}} \rightarrow \operatorname{Spec} \mathcal{O}$ is surjective, we can assume $X=\operatorname{Spec} A$, and A is a complete noetherian local ring such that $\pi \in m_{A}$.

Choose a presentation $A=B / I$, where $B=\left[\left[X_{1}, \ldots X_{b}\right]\right.$. Since X is r.c.i over \mathcal{O}, then I is generated by a regular sequence $\left(t_{1}, \ldots, t_{a}\right)$. Hence, $\left(t_{1}, \ldots, t_{a}\right) \otimes \kappa$ is a regular sequence on $B \otimes \kappa$. Extend $\left(t_{1}, \ldots, t_{a}\right) \otimes \kappa$ to a system of regular parameters, and lift the sequence to a sequence $\left(t_{1}, \ldots, t_{b}\right)$ in B. Put $J_{n}=\left(t_{1}^{n}, \ldots, t_{b}^{n}\right)$. Then $\bigcap_{n} J_{n} \subset \bigcap_{n} m^{n}=0$. Let $C_{n}=B /\left(I+J_{n}\right)$ and $\operatorname{Spec} C_{n} \rightarrow X$ is induced by $B / I \rightarrow B /\left(I+J_{n}\right)$. Then $\left\{\operatorname{Spec} C_{n} \rightarrow\right.$ $X ; n \geq 1\}$ is schematically closed in $X . I+J_{n}=\left(t_{1}, \ldots, t_{a}, t_{a+1}^{n}, \ldots, t_{b}^{n}\right)$ and $\left(t_{1}, \ldots, t_{a}, t_{a+1}^{n}, \ldots, t_{b}^{n}\right)$ is also a regular system in B, hence C_{n} is r.c.i of relative dimension 0 , and then finite over $\widehat{\mathcal{O}}$. Clearly, π^{k} is not in $I+J_{n}$ for any integers k, so C_{n} is also flat.

From above, the points $\left\{\operatorname{Spec} C_{n} \otimes \mathcal{O} / \pi^{N} \rightarrow X \mathcal{O} / \pi^{N}: n \geq 1\right\}$ is schematically dense in $X \otimes \mathcal{O} / \pi^{N}$

Proposition 6.8. Let G be a commutative noetherian group scheme over \mathcal{O}, not necessary flat. Let \bar{G} be the schematic closure of $G \otimes K$ in G. Then $\bar{G} \otimes \mathcal{O} / \pi^{N}$ is the schematic closure in $G \otimes \mathcal{O} / \pi^{N}$ of the following collection of points

$$
\bigcup\left\{x \quad \bmod \pi^{N} \in G\left(C / \pi^{N} C\right): x \in G(C)\right\}
$$

as C ranges over local $\widehat{\mathcal{O}}$-algebras which are flat, finite, and r.c.i over $\widehat{\mathcal{O}}$.

Proof. $\bar{G}(C)=G(C)$ for any flat \mathcal{O}-algebra. Then it is clear from the two lemmas before.

Lemma 6.9. The collection of \mathcal{O} / π^{N}-algebras $\left\{C / \pi^{N} C: C\right.$ is a local, flat,finite,r.c.i $\widehat{\mathcal{O}}$-algebras\} is just the collection of all local \mathcal{O} / π^{N}-algebras which are flat, finite, and r.c.i over \mathcal{O} / π^{N}.

Proof. Since the property of being r.c.i is stable under any base change. So we only need to show that any local flat, finite, r.c.i \mathcal{O}-algebra is of the form C / π^{N} for some C.

Choose a presentation $A=B / I, B=\mathcal{O}\left[X_{1}, \ldots, X_{n}\right]_{m}, m=\left(\pi, X_{1}, \ldots X_{n}\right)$, $\pi^{N} \in I$. Since B is regular and A is r.c.i, then I is generated by a regular sequence $\left(\pi^{N}, f_{1}, \ldots, f_{m}\right)$. Since A is of dimension 0 , we have $m=n$.

Lift f_{i} to $\widetilde{f}_{i} \in \widehat{\mathcal{O}}\left[X_{1}, \ldots, X_{n}\right]_{\tilde{m}}$, where $\widetilde{m}=\left(\pi, X_{1}, \ldots, X_{n}\right)$. Then $C=$ $\widehat{\mathcal{O}}\left[X_{1}, \ldots, X_{n}\right]_{\tilde{m}} /\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{n}\right)$ is flat, finite, and r.c.i $\widetilde{\mathcal{O}}$-algebra and $A=C / \pi^{N}$.

7 Elkik's theory

In this section, let R be a noetherian \mathcal{O}-algebra, complete with respect to the π-adic topology. Consider $R[X]=R\left[X_{1}, \ldots, X_{N}\right]$, the polynomial ring in N variables. Let I be an ideal of $R[X]$ and put $B=R[X] / I, Y=\operatorname{Spec} B$. We assume that $Y \otimes_{\mathcal{O}} K \rightarrow \operatorname{Spec}\left(R \otimes_{\mathcal{O}} K\right)$ is smooth of relative dimension s. The Jacobian ideal of I is defined to be the ideal of $R[X]$ generated by the $(N-s)$-minors of $\left(\frac{\partial f_{i}}{\partial X_{j}}\right)_{s \times N}$ for all f_{1}, \ldots, f_{s} in a generating set of I. By smoothness assumption and Jaccobi Criterion, $J+I \supseteq \pi^{h} R[X]$ for some $h \geq 0$. Fix such an h in the following.

Lemma 7.1 (Elkik). Suppose that I can be generated by $N-s$ elements. Then for any $n>2 h$, the image of $Y(R) \rightarrow Y\left(R / \pi^{n-h} R\right)$ is the same as the image of $Y\left(R / \pi^{n} R\right) \rightarrow Y\left(R / \pi^{n-h} R\right)$.

Proof. We restatement the lemma as following: If $\mathbf{a}=\left(a_{1}, \ldots a_{N}\right) \in R^{N}$ such that $I(\mathbf{a})=0 \bmod \pi^{n}$, where $I(\mathbf{a})=\{f(\mathbf{a}): \forall f \in I\}$, then there exists $\mathbf{a}^{\prime} \in R^{N}$ such that $\mathbf{a} \equiv \mathbf{a}^{\prime} \bmod \pi^{n-h}$ and $I(\mathbf{a})=0$.

Since R is complete and by approximation, it is enough to find $\mathbf{y}=$ $\left(y_{1}, \ldots, y_{N}\right) \in R^{N}$ such that $y_{i} \equiv 0 \bmod \pi^{n-h}, \forall i$ and $I(\mathbf{a}-\mathbf{y}) \subset\left(\pi^{2 n-2 h}\right)$.

Let \mathbf{M} be the Jacobian matrix of I, and by Taylor's expansion,

$$
\left(\begin{array}{c}
f_{1}(\mathbf{a}-\mathbf{y}) \\
\ldots \\
f_{N-s}(\mathbf{a}-\mathbf{y})
\end{array}\right)=\left(\begin{array}{c}
f_{1}(\mathbf{a}) \\
\ldots \\
f_{N-s}(\mathbf{a})
\end{array}\right)-\mathbf{M}(\mathbf{a})\left(\begin{array}{c}
y_{1} \\
\ldots \\
y_{N}
\end{array}\right)+\sum y_{i} y_{j} Q_{i j}(\mathbf{a}-\mathbf{y}),
$$

Where $Q_{i j}$ is an $(N-s)$-column vector whose components are the polynomial in a and \mathbf{y}. Hence we just need to find a $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$, such that $y_{i} \equiv 0$ $\bmod \pi^{n-h}$ and
$\left(\begin{array}{c}f_{1}(\mathbf{a}-\mathbf{y}) \\ \ldots \\ f_{N-s}(\mathbf{a}-\mathbf{y})\end{array}\right)=\mathbf{M}(\mathbf{a})\left(\begin{array}{c}y_{1} \\ \cdots \\ y_{N}\end{array}\right) \bmod \pi^{2 n-2 h}$
Let δ be a nonzero ($N-s$)-minor of M, then exits $N \times(N-s)$ matrix M_{δ} such that $\mathrm{M}_{\delta}=\delta I d$, where Id means the identity matrix. By assumption, we have $\sum_{\delta} \delta P_{\delta}+Q=\pi^{h}$ in $R[X]$ for some $Q \in I$.

$$
\begin{aligned}
& \quad \pi^{h}\left(\begin{array}{c}
f_{1}(\mathbf{a}) \\
\cdots \\
f_{N-s}(\mathbf{a})
\end{array}\right)=\left(\sum \delta P_{\delta}+Q\right)(\mathbf{a})\left(\begin{array}{c}
f_{1}(\mathbf{a}) \\
\cdots \\
f_{N-s}(\mathbf{a})
\end{array}\right) \\
& =\sum \delta P_{\delta}(\mathbf{a})\left(\begin{array}{c}
f_{1}(\mathbf{a}) \\
\cdots \\
f_{N-s}(\mathbf{a})
\end{array}\right) \bmod \pi^{2 n} \\
& =\sum P_{\delta} \mathbf{M}(\mathbf{a}) M_{\delta}(\mathbf{a})\left(\begin{array}{c}
f_{1}(\mathbf{a}) \\
\cdots \\
f_{N-s}(\mathbf{a})
\end{array}\right) \bmod \pi^{2 n} \\
& =\mathbf{M}(\mathbf{a})\left[\sum P_{\delta} M_{\delta}(\mathbf{a})\left(\begin{array}{c}
f_{1}(\mathbf{a}) \\
\cdots \\
f_{N-s}(\mathbf{a})
\end{array}\right)\right] \bmod \pi^{2 n} \\
& \text { Let } \mathbf{y}=\left(\sum P_{\delta} M_{\delta}(\mathbf{a})\left(\begin{array}{c}
f_{1}(\mathbf{a}) \\
\cdots \\
f_{N-s}(\mathbf{a})
\end{array}\right)\right) / \pi^{h}, \text { then } \mathbf{y} \text { is what we need. }
\end{aligned}
$$

Lemma 7.2. Suppose that R is a local ring, and $Y \rightarrow \operatorname{Spec} R$ is a flat r.c. i morphism. Then for any $n \geq 2 h$, the image of $Y(R) \rightarrow Y\left(R / \pi^{n-h} R\right)$ is the same as the image of $Y\left(R / \pi^{n} R\right) \rightarrow Y\left(R / \pi^{n-h} R\right)$.

Proof. Let $y: \operatorname{Spec} R / \pi^{n} \rightarrow Y$ be a closed point of $Y\left(R / \pi^{n}\right)$. Let \mathbf{m} be the unique maximal ideal in $R / \pi^{n}, q=y(m)$.

Since $Y \rightarrow \operatorname{Spec} R$ is r.c.i, and $\operatorname{Spec} R[X] \rightarrow \operatorname{Spec} R$ has regular fibre. Then there exists $f \in R[x]$, such that $q \in Y_{f}$ and Y_{f} is cut out by $(N-s)$ equations in Spec $R[X]_{f}$, and regard Spec $R[X]_{f}$ as a closed subscheme of Spec $R[X][Z]$ cut out by $Z f-1$. Then Y_{f} is cut out by $(N+1-s)$ equations in \mathbb{A}^{N+1}. By Elkik's lemma, there exists $y^{\prime} \in Y_{f}(R) \subset Y(R)$ such that $y \equiv y^{\prime}$ $\bmod \pi^{n-h}$.

8 Congruences of Néron models

In this section, assume K is complete for simplicity. Notations are the same as Section 5.

Since $R^{N R}$ is the Néron model of an induced torus, we can realize $R^{N R}$ as a closed subscheme of $\mathbb{A}_{/ \mathcal{O}}^{d(n+1)}$, defined by n explicit equations. Recall that the closed subscheme T^{\prime} of R^{\prime} is cut out by $\left(\operatorname{dim} R^{N R}-\operatorname{dim} T\right)$ equations, and $R^{\prime}=R^{N R} \otimes \mathcal{O}_{L}$. Hence, T^{\prime} can be realizes as a closed subscheme of $\mathbb{A}_{/ \mathcal{O}_{L}}^{d(n+1)}$ defined by an ideal I^{\prime} generated by $(d(n+1)-\operatorname{dim} T)$ equations. Let \mathcal{J}^{\prime} be the Jacobian ideal for I^{\prime}. Since the generic fibre of T^{\prime} is smooth, $I^{\prime}+\mathcal{J}^{\prime}$ contains π^{h} for some $h>0$. Let $h=h\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right)$ be the smallest integer with this property.

Lemma 8.1. Suppose $\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right) \equiv\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}, \Gamma_{0}, \Lambda_{0}\right)($ level $N)$. Form the Jacobian ideals \mathcal{J}^{\prime} and \mathcal{J}_{0}^{\prime} and define the integer h and h_{0} for both data. If $h<N$ or $h_{0}<N$, then $h=h_{0}$.

Proof. Suppose $h<N$. Since T^{\prime} just depends on $\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right)$, hence I^{\prime} and J^{\prime} just depends on $\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right)$. Then $J^{\prime} \otimes \mathcal{O} / \pi^{N}$ just depends on $\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)$. So $I_{0}^{\prime}+J_{0}^{\prime}+\pi_{0}^{N} \mathcal{O}_{L_{0}}\left[X_{1}, \ldots, X_{d(n+1)}\right]$ contains π_{0}^{h}. Then by Nakayama's Lemma, we have $I_{0}^{\prime}+J_{0}^{\prime} \supset \pi_{0}^{h} \mathcal{O}_{L_{0}}\left[X_{1}, \ldots, X_{d(n+1)}\right]$ Therefore $h_{0} \leq h \leq N$. Similarly, $h \leq h_{0}$, hence $h=h_{0}$.

Definition 8.2. If $h<n$, define $h\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right)$ to be h; otherwise define $h\left(\mathcal{O}, \mathcal{O}_{L}, \Gamma, \Lambda\right)=N$. This is justified by the lemma.

Proposition 8.3. The group scheme $T_{L}^{0} \otimes \mathcal{O}_{L} / \pi^{N-h}$ is determined by $\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)$ if $N>2 h$.

Proof. By lemma 6.8, it is enough to show that the collection of points

$$
\bigcup_{C} \operatorname{image}\left(T^{\prime}(C) \rightarrow T^{\prime}\left(C / \pi^{N-h}\right)\right),
$$

where C ranges over all local finite flat $\widehat{\mathcal{O}}$-algebra, is determined by $\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)$. Since T^{\prime} is complete intersection and by Lemma 7.2, this collection is the same as the union of the image $T^{\prime}\left(C / \pi^{N}\right) \rightarrow T^{\prime}\left(C / \pi^{N-h}\right)$ over all local, flat, r.c.i over \mathcal{O} / π^{N} and this is clearly determined by $\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)$.

Corollary 8.4. The group scheme $T^{0} \otimes \mathcal{O} / \pi^{N-h}$ is determined by $\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)$ for $N>2 h$.

Proof. We have $T_{L}^{0}=T^{0} \otimes \mathcal{O}_{L}$, and by Proposition 8.3, the corollary is clearly derived from the following easy lemma: Suppose X, X^{\prime} are closed Ssubschemes of an S-scheme Y such that $X \times_{S} S^{\prime}=X^{\prime} \times{ }_{S} S^{\prime}$ in $Y \times_{S} S^{\prime}$ for some $S^{\prime} \rightarrow S$ faithfully flat. Then $X=X^{\prime}$

In the following, we use the notations and procedure in Section 4 and Section 5. T^{0} is a closed subscheme of $\mathbb{A}^{d(n+1)}$, defined by an ideal I and let $J \subset \mathcal{O}\left[X_{1}, \ldots, X_{d(n+1)}\right]$ be the Jaccobian ideal of I. Since $I^{\prime} \subset I$, we have $J^{\prime} \subset J$ and $\pi^{h} \in\left(J^{\prime}+I^{\prime}\right)$.
Proposition 8.5. 1), $T^{0} \otimes \mathcal{O} / \pi^{N}$ is determined by $\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$ for all $N \geq 1, m \geq \max (N+h, 2 h+1)$.
2), $R^{i} \otimes \mathcal{O} / \pi^{m-i}$ depends only on $\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$ for all $m \geq \max (2 h+$ $i, 3 h+1)$.
3), W^{i} depends only on fourm, for $m \geq \max (2 h+i+1,3 h+1)$.

Proof. 1). $T^{0} \otimes \mathcal{O} / \pi^{N}$ is determined by $T^{0} \otimes \mathcal{O} / \pi^{\max (n, h+1)}$, and then the proposition follows immediately from Corollary 8.4.
2), By Lemma 5.3 and by induction, $R^{i} \otimes \mathcal{O} / \pi^{m-i}$ is determined by $R^{0} \otimes \mathcal{O}^{m}$, and $R^{0}=\Lambda_{*}(T) \otimes \operatorname{Res}_{\mathcal{O}_{L} / \mathcal{O}_{K}}\left(\mathbb{G}_{m}\right)$, then the statement is clear.
3), For $\mathrm{i}=0$. From definition of W^{0}, W^{0} is determined by the image of $T^{0}\left(\mathcal{O}^{s h}\right) \rightarrow T^{0}\left(\mathcal{O}^{s h} / \pi^{N}\right)$ for any $N \geq 1$, in particular $N=h+1$. Moreover, W^{0} is group scheme, hence is r.c.i. By lemma 8.2, this image is determined by $T^{0}\left(\mathcal{O}^{s h} / \pi^{2 h+1}\right)$, and the latter is determined by $T^{0} \otimes \mathcal{O}^{s h} / \pi^{2 h+1}$, which is determined by $\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$ for $m \geq 3 h+1$, according to Corollary 8.4 .

In general, let B^{i} be the affine ring of R^{i}, and recall the notations in Section 3 ,

$$
B^{i}=B^{i-1}\left[Y_{1}, \ldots, Y_{n}\right] /\left(\pi Y_{1}-g_{1}, \ldots, \pi Y_{n}-g_{n}\right) \quad \bmod \pi-\text { torsion },
$$

where write the image of Y_{i} as $\frac{g_{i}}{\pi}$, suggestively. A point y in R^{i} is determined by the projection of y on R^{i-1}, together with the additional "coordinates" $\left(\pi^{-1} g_{1}(y), \ldots, \pi^{-1} g_{n}(y)\right)$.

For $x \in T^{0}\left(\mathcal{O}^{\text {sh }}\right)$, by the universal property of dilatations, x is also in $R^{i}\left(\mathcal{O}^{s h}\right)$, denoted by x_{i}. Then $x_{i} \bmod \pi$ is determined by $x_{i-1} \bmod \pi^{2}$. Inductively, the image of $T^{0}\left(\mathcal{O}^{s h}\right) \rightarrow T^{0}\left(\left(\mathcal{O}^{s h}\right) / \pi^{i+1}\right)$ determined W^{i}. As in the case $\mathrm{i}=0$, this image is determined by $\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$ whenever $m \geq \max (2 h+i+1,3 h+1)$.

Let $\delta=\left\lfloor\frac{\delta\left(e, T^{\prime}\right)}{e(L / K)}\right\rfloor$, we have $\delta \leq h$ from Section 4. If $\delta<N$, we define $\delta\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)$ to be δ; otherwise, we define $\delta\left(\mathcal{O} / \pi^{N}, \mathcal{O}_{L} / \pi^{N}, \Gamma, \Lambda\right)=$ N. The definition is justified by lemma $\mathbf{5 . 5}$.

Lemma 8.6. Let X be a smooth group scheme over \mathcal{O}. Then the schematic closure of the points $\left\{x: x \in X\left(\mathcal{O}^{\text {sh }} / \pi^{N}\right)\right\}=\left\{x \bmod \pi^{N}: x \in X\left(\mathcal{O}^{\text {sh }}\right)\right\}$ in $X \otimes \mathcal{O} / \pi^{N}$ is the whole $X \otimes \mathcal{O} / \pi^{N}$.

Proof. We first show $\left\{x: x \in X\left(\mathcal{O}^{\text {sh }} / \pi^{N}\right)\right\}=\left\{x \bmod \pi^{N}: x \in X\left(\mathcal{O}^{\text {sh }}\right)\right\}$. The notations are the same as Section 7. By lemma 4.2, we have $h=0$, then the equality is clear by lemma $\mathbf{7 . 2}$.

The statement is local, we can assume $X=\operatorname{Spec} A$ is smooth over \mathcal{O}. Suppose $f \in A$ satisfies $x^{*} f=0, \forall x$. Then $f \bmod \pi$ is zero on every closed points of $X \otimes \kappa^{\text {sep }}$, hence $f \in \pi A$. And by induction, we have $f=0$.

Theorem 8.7 (Main Theorem). Suppose that $N \geq 1, m \geq \max (N+\delta+$ $2 h, 3 h+1)$, where $h=h\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$ as defined at the beginning of this section, $\delta=\delta\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$ as defined above. Then, $T^{N R} \otimes \mathcal{O} / \pi^{N}$ is determined by $\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$.

Proof. By lemma 3.3 and remark in Section 5, $T^{N R}$ is the schematic closure of T in R^{δ}.

Let Y be the image of $T^{N R}\left(\mathcal{O}^{s h} / \pi^{N}\right)$ in $R^{\delta}\left(\mathcal{O}^{\text {sh }} / \pi^{N}\right)$, then the schematic closure of Y in $R^{\delta} \otimes \mathcal{O} / \pi^{N}$ is simply $T^{N R} \otimes \mathcal{O} / \pi^{N}$ by the precious lemma. So we just need to show $\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$ determine Y.

As explained in the proof of Proposition 8.5(3), Y is determined by the image of $T^{0}\left(\mathcal{O}^{s h}\right) \rightarrow T^{0}\left(\mathcal{O}^{s h} / \pi^{\delta+N}\right)$, which is determined by the image of $T^{0}\left(\mathcal{O}^{s h}\right) \rightarrow T^{0}\left(\mathcal{O}^{s h} / \pi^{\max (\delta+N, h+1)}\right)$, which is the same as the image of $T^{0}\left(\mathcal{O}^{s h} / \pi^{\max (N+\delta, h+1)+h}\right) \rightarrow T^{0}\left(\mathcal{O}^{s h} / \pi^{\max (\delta+N, h+1)}\right)$ by lemma 7.2. By Corollary 8.4, $T^{0}\left(\mathcal{O}^{\text {sh }} / \pi^{\max (\delta+N+h, 2 h+1)}\right)$ is determined by $\left(\mathcal{O} / \pi^{m}, \mathcal{O}_{L} / \pi^{m}, \Gamma, \Lambda\right)$. Hence, the proof is over.

9 The invariant c(T) and Artin conductor

Let K be a complete discrete valuation field. We define an invariant of a torus T over K as following: by the universal property of the Néron model, there is a canonical morphism $\mathcal{T} \otimes \mathcal{O}_{L}$ to the (usual) Néron model of $T \otimes$ L extending the identity morphism on the generic fibres. This morphism induces a morphism

$$
\Phi_{T, L}: T^{N R} \otimes \mathcal{O}_{L} \rightarrow(T \otimes L)^{N R},
$$

Definition 9.1. Let L be a splitting field of T, and let $e(L / K)$ be the ramification index of L / K. Define

$$
c(T)=\frac{1}{e(L / K)} \operatorname{length}_{\mathcal{O}_{L}} \frac{\omega\left(T^{N R}\right) \otimes \mathcal{O}_{L}}{\Phi_{T, L}^{*}\left(\omega\left((T \otimes L)^{N R}\right)\right)}
$$

where $\omega\left(T^{N R}\right)$ (resp. $\omega\left((T \otimes L)^{N R}\right)$) denotes the module of the translation invariant top differential forms on $T^{N R}$ (resp. $(T \otimes L)^{N R}$). It can easily seen that this rational number does not depend on the choice of a splitting extension L / K.

Note that $\omega(G)$ is the dual of $\bigwedge^{\text {top }} \operatorname{Lie}(G)$ for any smooth group scheme G over \mathcal{O}_{L}.

Artin conductors of representations
Let L / K be a finite Galois extension with Galois group G. Let v_{L} be the normalized valuation of L and π_{L} be a prime element of \mathcal{O}_{L}. Let f be the residue degree of L / K. Let $\sigma \in G$ and set

$$
\begin{gathered}
a_{G}(\sigma)=-f \cdot v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \quad \text { if } \sigma \neq 1 \\
a_{G}(1)=f \sum_{\sigma \neq 1} v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right)
\end{gathered}
$$

Then the function a_{G} is the character of a linear representation $\rho: G \rightarrow$ $G L(V)$ by [Serre1, VI. 2 Thm 1].

Definition 9.2. The Artin conductor $a(V)$ of the presentation $\rho: G \rightarrow$ $G L(V)$ is defined to be the number

$$
\frac{1}{\operatorname{Card}(G)} \sum_{\sigma \in G} a_{G}(\sigma) \chi\left(\sigma^{-1}\right),
$$

where χ is the character of the presentation.
Let G_{i} be the i-th ramification group of L / K, of cardinality g_{i}. Then

$$
a(V)=\sum_{i \geq 0} \frac{g_{i}}{g_{0}} \operatorname{dim}\left(V / V^{G_{i}}\right)
$$

Example 9.3. Let $T=\operatorname{Res}_{L / K}\left(\mathbb{G}_{m}\right)$, then

$$
c(T)=\frac{1}{2} a\left(X_{*}(T) \otimes \mathbb{Q}\right)=\frac{1}{2} v_{K}(\Delta)
$$

where $a(-)$ is the Artin conductor of a module over $\mathbb{Q}\left[\operatorname{Gal}\left(K^{\text {sep }} / K\right)\right], \Delta$ is the discriminant of L / K, and v_{K} is the normalized valuation of K .

Proof. In Section 2, we saw that $X_{*}(T)=\mathbb{Z}[G]$, where $G=\operatorname{Gal}(L / K)$. Hence $a(\mathbb{Q}[G])=f v_{L}(\mathfrak{D})=v_{K}(\Delta)$, where \mathfrak{D} is the different of L / K. The first equality is attained by [Serre1, IV. Prop 4] and the second one follows from $N_{L / K}(\mathfrak{D})=\Delta$, where $N_{L / K}$ is the norm of L / K.

Let $n=[L: K]$. Assume $G=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ and $\left\{\alpha_{i}, i=1, \ldots, n\right\}$ is a base of $\mathcal{O}_{L} / \mathcal{O}_{K}$, then the norm N of $\sum\left(x_{i} \alpha_{i}\right)$ is a polynomial on the $x_{i}^{\prime} s$. Let $A=\mathcal{O}_{K}\left[X_{1}, \ldots, X_{n}, 1 / N\right]$ and let R be any \mathcal{O}_{K}-algebra. If $f \in \operatorname{Hom}(A, R)$, then $\sum f\left(X_{i}\right) \otimes \alpha_{i}$ is a unit in $R \otimes \mathcal{O}_{L}$, and vice versa. Hence $\operatorname{Hom}(A, R) \simeq$ $\left(R \otimes \mathcal{O}_{L}\right)^{\times}$for any \mathcal{O}_{K}-algebra R, and $\operatorname{Res}_{\mathcal{O}_{L} / \mathcal{O}_{K}}\left(\mathbb{G}_{m}\right)=\operatorname{Spec} A$. Similarly, $\operatorname{Res}_{L / K}\left(\mathbb{G}_{m, L}\right)=\operatorname{Spec} K\left[X_{1}, \ldots, X_{n}, 1 / N\right]$ with the same polynomial N. And the identity map $A \rightarrow A$ induce a unit $\sum_{j}\left(X_{j} \alpha_{j}\right)$ in $A \otimes \mathcal{O}_{L}$. Fix the isomorphism $\Psi: T \otimes L \rightarrow \mathrm{G}_{m, L}^{n}$ which is associated to the ring homomorphism $\Psi^{\#}: L\left[X_{\sigma_{i}}, X_{\sigma_{i}}^{-1}\right] \rightarrow L\left[X_{1}, \ldots, X_{n}, 1 / N\right]$ given by $X_{\sigma_{i}} \rightarrow \sum_{j} \sigma_{i}\left(\alpha_{j}\right) X_{j}$.

The map Ψ induces an isomorphism $(T \otimes L)^{N R} \rightarrow \mathrm{G}_{m, \mathcal{O}_{L}}^{n}$, and we define the composition Θ of $T^{N R} \otimes \mathcal{O}_{L} \rightarrow(T \otimes L)^{N R} \rightarrow \mathrm{G}_{m, \mathcal{O}_{L}}^{n}$ as following. Let $\Theta^{\#}$ be the ring homomorphism associated to Θ. The map $\Theta^{\#}$ is defined as following:

$$
\Theta^{\#}: \mathcal{O}_{L}\left[X_{\sigma_{i}}, X_{\sigma_{i}}^{-1}\right] \rightarrow A \otimes \mathcal{O}_{L}, \quad X_{\sigma_{i}} \rightarrow \sum_{j} \sigma_{i}\left(\alpha_{j}\right) X_{j} .
$$

Now, it is clear that $c(T)=v_{K}\left(\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)\right)=\frac{1}{2} v_{K}(\Delta)$.
Proposition 9.4. The following two statements are equivalent:
(1) $c\left(T_{1}\right)=c\left(T_{2}\right)$ for any tori T_{1}, T_{2} over K such that T_{1} is isogenous to T_{2} over K.
(2) $c(T)=\frac{1}{2} a\left(X_{*}(T) \otimes \mathbb{Q}\right)$ for any torus T over K, where $a(-)$ is the Artin conductor of a module over $\mathbb{Q}\left[\operatorname{Gal}\left(K^{\text {sep }} / K\right)\right]$.

Proof. Clearly (2) implies (1) by the Proposition 2.7.
Assume (1). We have seen (2) is true when T is an induced torus. Since $c(-)$ and $a(-)$ are both additive with respect to fibre product. And by Proposition 2.8, we have (2).

Let $\alpha: T_{1} \rightarrow T_{2}$ be an isogeny over K. Let L be a common splitting field of T_{1} and T_{2}, then $T_{i} \otimes L \simeq X_{*}\left(T_{i}\right) \otimes \mathbb{G}_{m, L}$ and $\Omega_{T_{i} / K}^{1}=X^{*}\left(T_{i}\right) \otimes \Omega_{\mathbb{G}_{m, K} / K}^{1}$. We have the commutative diagram

with injective vertical maps. When $\operatorname{char}(K)=0$, then the horizontal maps are also injective.

For any homomorphism $g: M \rightarrow N$ of \mathbb{Z}-modules with finite cokernel, we define

$$
c(g)=\operatorname{length}(N / g(M)) .
$$

Clearly
$c(g \circ h)=c(g)+c(h)$. Hence $c\left(\Phi_{T_{2}}^{*}\right)=c\left(\Phi_{T_{1}}^{*}\right)$ if and only if $c\left((\alpha \otimes L)^{*}\right)=$ $c\left(\alpha^{*} \otimes \mathcal{O}_{L}\right)$. We have $c\left(\Phi_{T_{i}}\right)=e(L / K) c\left(T_{i}\right)$, and $c\left((\alpha \otimes L)^{*}\right)=v_{L}(\operatorname{deg} \alpha)$, where v_{L} is the normalized valuation of L. Hence,

Proposition 9.5. $c\left(T_{1}\right)=c\left(T_{2}\right)$ if and only if $c\left(\alpha^{*}\right)=v_{K}(\operatorname{deg} \alpha)$, where v_{K} is the discrete valuation of K with $v_{K}(\pi)=1$, and $\alpha^{*}: \omega\left(T_{2}^{N R}\right) \rightarrow \omega\left(T_{1}^{N R}\right)$.

Corollary 9.6. If the residue field κ of \mathcal{O} has characteristic 0 , then $c\left(T_{1}\right)=$ $c\left(T_{2}\right)$ for any two isogenous tori T_{1} and T_{2}.

Proof. Let $\alpha: T_{1} \rightarrow T_{2}$ be an isogeny. By Proposition 2.6, there exists an isogeny $\beta: T_{2} \rightarrow T_{1}$, such that $\beta \circ \alpha=[\operatorname{deg} \alpha]_{T_{1}}$, and $\alpha \circ \beta=[\operatorname{deg} \alpha]_{T_{2}}$. Since $\operatorname{char}(\kappa)=0, \operatorname{deg} \alpha$ is invertible in \mathcal{O}_{K}, hence $(\alpha \otimes L)^{*}$ and $\alpha^{*} \otimes \mathcal{O}_{L}$ are both isomorphisms. Then $c\left(\alpha^{*}\right)=c\left((\alpha \otimes L)^{*}\right)=c\left(\alpha^{*} \otimes \mathcal{O}_{L}\right)=0$, thus $c\left(T_{1}\right)=c\left(T_{2}\right)$

10 Isogeny invariance in characteristic 0

In this section, we will prove that $c(T)$ is invariant by isogeny when K has characteristic 0 . As we have already proved this when the residue field κ of \mathcal{O}_{K} has characteristic 0 , we can assume that char $\kappa=p>0$.

Lemma 10.1. Let K be a field equipped with a discrete valuation and let T be a torus over K. Let T_{s} be the maximal split subtorus of T, and let T_{a} be the quotient torus T / T_{s}. Then the canonical sequence

$$
1 \rightarrow T_{s}^{N R} \rightarrow T^{N R} \rightarrow T_{a}^{N R} \rightarrow 1
$$

is exact.
Proof. By [SGA 7 VIII. Cor. 6.6], we can extend the sequence

$$
1 \rightarrow T_{s} \rightarrow T \rightarrow T_{a} \rightarrow 1
$$

to an exact sequence of smooth group schemes

$$
1 \longrightarrow T_{s}^{N R} \longrightarrow T^{*} \longrightarrow T_{a}^{N R} \longrightarrow 1
$$

Hence we have the commutative diagram

Since $T^{*} \rightarrow T_{a}$ is smooth, and by [BLR. 2.2 Prop 14], the first low is exact. Thus $T^{*}\left(\mathcal{O}^{s h}\right)=T\left(K^{\text {sh }}\right)$, and by [BLR. 7.1 Thm 1], we have $T^{*}=T^{N R}$.

Theorem 10.2. Let K be a complete discrete valuation field with mixed characteristic $(0, p)$ and perfect residue field. Let T_{1}, T_{2} be two tori over K, and let $\alpha: T_{1} \rightarrow T_{2}$ be a K-isogeny. Then two tori have the same invariant:

$$
c\left(T_{1}\right)=c\left(T_{2}\right)=\frac{1}{2} a\left(X_{*}\left(T_{1}\right) \otimes \mathbb{Q}\right) .
$$

Remark. I will restrict myself to the case when K is a finite extension of \mathbb{Q}_{p}. For the general case, see the original paper of Ching-Li Chai and Jiu-Kang Yu.

Proposition 10.3. Consider the pull-back map $\alpha^{*}: \omega\left(T_{2}^{N R}\right) \rightarrow \omega\left(T_{1}^{N R}\right)$. There exists an element $a \in \mathcal{O}_{K}$, unique up to \mathcal{O}_{K}^{\times}, such that $\alpha^{*}\left(\omega\left(T_{2}^{N R}\right)\right)=$ $a \cdot \omega\left(T_{1}^{N R}\right)$. Denote the rational number $p^{\operatorname{ord}_{p}(a)}$ by $\operatorname{deg}_{\text {diff }}(\alpha)$. Then

$$
\operatorname{deg}_{d i f f}(\alpha) \leq p^{o r d_{p}(\operatorname{deg} \alpha)}
$$

In the above, ord_{p} denotes the valuation on K with $\operatorname{ord}_{p}(p)=1$.
Proof. Suppose K is a finite extension of \mathbb{Q}_{p}.
By lemma 10.1, we may assume that T_{1} and T_{2} are anisotropic over the maximal unramified extension of K (replacing K by a finite unrmified extension L / K if necessary). Then $T_{i}^{N R}\left(\mathcal{O}_{L}\right)=T_{i}(L)$ for any unramified extension $L / K, i=1,2$.

Let $T_{i}^{N R \circ}$ be the neutral component of the Néron model $T_{i}^{N R}, i=1,2$. Let ω_{i} be an \mathcal{O}_{K}-generator of $\omega\left(T_{i}\right)^{N R}, i=1,2$. Let ord ${ }_{K}$ be the valuation of K with $\operatorname{ord}_{K}(\pi)=1$. Let $M=\operatorname{Ker}(\alpha)$, the kernel of isogeny α. Consider finite unramified extension L / K, and let q_{L} be the cardinality of the residue field κ_{L} of \mathcal{O}_{L}. Let $\left|\omega_{i}\right|$ be the Haar measure on $T_{i}^{N R}$ attached to $\omega_{i}, i=1,2$. Hence we have

$$
\left|\alpha^{*} \omega_{2}\right|\left(T_{1}^{N R \circ}\left(\mathcal{O}_{L}\right)\right)=\operatorname{Card}\left(M(L) \bigcap T_{1}^{N R \circ}\left(\mathcal{O}_{L}\right)\right) \cdot\left|\omega_{2}\right|\left(\alpha\left(T_{1}^{N R}\right)\right)
$$

By definition, for $i=1,2,\left|\omega_{i}\right|\left(T_{i}^{N R \circ}\right)\left(\mathcal{O}_{L}\right)$ is equal to the number of $\kappa_{L^{-}}$ rational points of the closed fibre of $T_{i}^{N R \circ}$, divided by $q_{L}^{\operatorname{dim} T_{i}}$. Since T_{i}
is anisotropic, its closed fibre is a unipotent group over κ_{L}, and has the same number of κ_{L}-rational points as $\mathbb{A}^{\operatorname{dim}\left(T_{i}\right)}$. Hence $\left|\omega_{1}\right|\left(T_{1}^{N R \circ}\left(\mathcal{O}_{L}\right)\right)=$ $\left|\omega_{2}\right|\left(T_{2}^{N R \circ}\left(\mathcal{O}_{L}\right)\right)$, and

$$
\left[T_{2}^{N R \circ}\left(\mathcal{O}_{L}\right): \alpha\left(T_{1}^{N R \circ}\right)\right]=\operatorname{Card}\left(M(L) \cap T_{1}^{N R \circ}\left(\mathcal{O}_{L}\right)\right) \cdot q_{L}^{o^{o r d} d_{K}(a)}
$$

Let $C_{T_{i}}$ be the group of geometric connected components of the closed fibre of $T_{i}^{N R}, i=1,2$. For sufficiently large finite unramified extension L of K, we have

$$
\left[T_{2}^{N R \circ}\left(\mathcal{O}_{L}\right): \alpha\left(T_{1}^{N R \circ}\left(\mathcal{O}_{L}\right)\right)\right]=\frac{\operatorname{Card}\left(\mathrm{C}_{\mathrm{T}_{1}}\right)}{\operatorname{Card}\left(\mathrm{C}_{\mathrm{T}_{2}}\right)}\left[T_{2}^{N R}\left(\mathcal{O}_{L}\right): \alpha\left(T_{1}^{N R}\left(\mathcal{O}_{L}\right)\right)\right]
$$

On the other hand, by Tate's formula for the Euler-Poincaré characteristic for the Galois cohomologies of local fields, we have

$$
\operatorname{Card}\left(\mathrm{H}^{1}(L, M)\right)=q_{L}^{\operatorname{ord}_{K}(\operatorname{deg} \alpha)} \cdot \operatorname{Card}(M(L)) \cdot \operatorname{Card}\left(\mathrm{H}^{2}(L, M)\right) .
$$

By the local duality for Galois cohomology of local fields ([Milne, I, Cor. $2.3]), \mathrm{H}^{2}(L, M)$ is the dual of $M^{D}(L)$, where M^{D} is the Cartier dual of the finite group scheme M over K.

From the long exact sequence of Galois cohomologies attached to the isogeny α, we get an injection from $T_{2}(L) / \alpha\left(T_{1}(L)\right)$ to $\mathrm{H}^{1}(L, M)$. Thus we have
$\frac{\operatorname{Card}\left(C_{T_{2}}\right)}{\operatorname{Card}\left(\mathrm{C}_{\mathrm{T}_{1}}\right)} \operatorname{Card}\left(M(L) \cap T_{1}^{N R \circ}\left(\mathcal{O}_{L}\right)\right) \cdot q_{L}^{\operatorname{ord}_{K}(a)} \leq q_{L}^{\operatorname{ord}_{K}(\operatorname{deg} \alpha)} \cdot \operatorname{Card}(M(L)) \cdot \operatorname{Card}\left(\mathrm{H}^{2}(L, M)\right)$.
As L tends to $K^{\text {sh }}$, we have $q_{L} \rightarrow+\infty$. Hence, we get $\operatorname{ord}_{K}(a) \leq \operatorname{ord}_{K}(\operatorname{deg} \alpha)$. Since $\operatorname{ord}_{K}=\operatorname{ord}_{K}(p) \cdot \operatorname{ord}_{p}$, we have

$$
\operatorname{deg}_{d i f f}(\alpha) \leq p^{\operatorname{ord}_{p}(\operatorname{deg} \alpha)}
$$

Proof of Theorem 10.2. Choose an isogeny $\beta: T_{2} \rightarrow T_{1}$ such that $\beta \circ \alpha=$ $[n]_{T_{1}}$. Let $d=\operatorname{dim} T_{1}=\operatorname{dim} T_{2}$. Write $n=p^{m} u$, where $m=\operatorname{ord}_{p}(n)$. We have

$$
p^{m d}=\operatorname{deg}_{d i f f}(\beta \circ \alpha)=\operatorname{deg}_{d i f f}(\beta) \operatorname{deg}_{d i f f}(\alpha) \leq p^{\operatorname{ord}_{p}(\operatorname{deg} \alpha)} p^{\operatorname{ord}_{p}(\operatorname{deg} \beta)}=p^{m d}
$$

So the equality holds throughout the above inequality. Hence by Proposition 9.5, we have $c\left(T_{1}\right)=c\left(T_{2}\right)$.

11 Isogeny invariance in characteristic p -Application of Deligne's theory

Deligne's theory

Let K be a complete local field with a perfect residue field κ. Let \mathcal{O} be the ring of integers of K, and let $e \geq 1$. A Galois extension L / K is at most e-ramified if $\operatorname{Gal}(L / K)^{e}=1$, where e refers to the upper numbering filtration of the ramifications groups. In other words, $\operatorname{Gal}(L / K)$ is a quotient of $\operatorname{Gal}\left(K^{\text {sep }} / K\right) / \operatorname{Gal}\left(K^{\text {sep }} / K\right)^{e}$.

Deligne [Deligne] shows that $\operatorname{Gal}\left(K^{\text {sep }} / K\right) / \operatorname{Gal}\left(K^{\text {sep }} / K\right)^{e}$ is canonically determined by $\operatorname{Tr}_{e} K=\left(\mathcal{O} / \mathfrak{p}^{e}, \mathfrak{p} / \mathfrak{p}^{e+1}, \epsilon\right)$, where \mathfrak{p} is the prime ideal of \mathcal{O}, and ϵ is the canonical map from $\mathfrak{p} / \mathfrak{p}^{e+1}$ to $\mathcal{O} / \mathfrak{p}^{e}$. Denote $\operatorname{Gal}\left(K^{\text {sep }} / K\right) / \operatorname{Gal}\left(K^{\text {sep }} / K\right)^{e}$ by $\Gamma\left(\operatorname{Tr}_{e} K\right)$.

Suppose $\operatorname{Tr}_{e} K$ is isomorphic to $T r_{e} K_{0}$ and L / K is at most e-ramified. Then there exits a corresponding L_{0} / K_{0} and $\left(\mathcal{O}, \mathcal{O}_{L}\right) \equiv\left(\mathcal{O}_{0}, \mathcal{O}_{L_{0}}\right)$ (level $\left.e\right)$. We can construct L_{0} as following:
Suppose $\phi: \mathcal{O} / \pi^{e} \rightarrow \mathcal{O} / \pi_{0}^{e}$ and $\eta: \mathfrak{p} / \mathfrak{p}^{e+1} \rightarrow \mathfrak{p}_{0} / \mathfrak{p}_{0}^{e+1}$ define the isomorphism $\operatorname{Tr}_{e} K \rightarrow \operatorname{Tr}_{e} K_{0}$. Let π_{L} be a prime element of \mathcal{O}_{L} satisfying the Eisenstein equation

$$
X^{n}+\sum_{i=0}^{n-1} a^{(i)} X^{i}=0, \quad a^{(i)} \in \mathfrak{p}
$$

Let $a_{0}^{(i)} \in \mathcal{O}_{0}$ be the lifting of $\eta\left(a^{(i)} \bmod \mathfrak{p}^{e+1}\right)$. Then the equation $X^{n}+\sum_{i=0}^{n-1} a_{0}^{(i)} X^{i}=0$ defines the extension L_{0} / K_{0}.

Proposition 11.1. Let T be a torus over K, then the invariant $c(T)$ is determined by $\operatorname{Tr}_{e} K$ for $e \gg 0$.

Proof. Let $e \gg N \gg 0$ and $\Lambda=X_{*}(T)$. Since $\left(T r_{e}(K), \Gamma=\Gamma\left(T r_{e} K\right), \Lambda\right)$ determines $\left(\mathcal{O} / \pi^{e}, \mathcal{O}_{L} / \pi^{e}, \Gamma, \Lambda\right)$, hence determines the following morphisms by Section 8: $T_{L}^{0} \otimes \mathcal{O}_{L} / \pi^{N} \rightarrow(T \otimes L)^{N R} \otimes \mathcal{O}_{L} ; \quad R^{i+1} \otimes \mathcal{O} / \pi^{N} \rightarrow R^{i} ;$ $T^{N R} \otimes \mathcal{O} / \pi^{N} \rightarrow R^{\delta} \otimes \mathcal{O} / \pi^{N}$. The last morphism factors through the closed immersion $T^{N R} \otimes \mathcal{O} / \pi^{N} \rightarrow T^{0} \otimes \mathcal{O} / \pi^{N}$, hence the morphism $T^{N R} \otimes \mathcal{O} / \pi^{N} \rightarrow$ $T^{0} \otimes \mathcal{O} / \pi^{N}$ is determined by $\left(T r_{e} K, \Lambda\right)$. Finally, we conclude that the morphism $T^{N R} \otimes \mathcal{O}_{L} / \pi^{N} \rightarrow(T \otimes L)^{N R} \otimes \mathcal{O}_{L} / \pi^{N}$ is determined by $\left(T r_{e}(K), \Lambda\right)$ for $e \gg N$. Hence $c(T)$ is determined by $\left(\operatorname{Tr}_{e}(K), \Lambda\right)$ for $e \gg N \gg 0$.

Theorem 11.2. Assume that K is of equal-characteristic p and the residue field of \mathcal{O}_{K} is perfect. Let T be a torus over K. Then $c(T)=\frac{1}{2} a\left(X_{*}(T) \otimes \mathbb{Q}\right)$. In particular, it is invariant under isogeny.

Proof. Since $T^{N R} \otimes \widehat{\mathcal{O}} \simeq(T \otimes \widehat{K})^{N R}$, we can assume K is complete.
By Deligne's theory, choose a local field K_{0} of characteristic 0 such that $\operatorname{Tr}_{e} K_{0} \simeq \operatorname{Tr}_{e} K$, then $c(T)=c\left(T_{0}\right)=\frac{1}{2} a\left(X_{*}\left(T_{0}\right) \otimes \mathbb{Q}\right)$. Since $X_{*}\left(T_{0}\right)$ is isomorphic to $X_{*}(T)$ as $\Gamma\left(\operatorname{Tr}_{e} K\right) \simeq \Gamma\left(\operatorname{Tr}_{e} K_{0}\right)$-module, we have $a\left(X_{*}\left(T_{0}\right) \otimes\right.$ $\mathbb{Q})=a\left(X_{*}(T) \otimes \mathbb{Q}\right)$. Hence $c(T)=\frac{1}{2} a\left(X_{*}(T) \otimes \mathbb{Q}\right)$.

References

[BLR] S. Bosch, W. Lütkebohment, M.Raynaud, Néron Models, Ergebn. der Math. und ihrer Grenzgebiete 21, Springer-Verlag, New York (1990)
[Chai-Yu] Ching-Li Chai and Jiu-Kang Yu, Congruences of Néron models for tori and the Artin conductor, With an appendix "Another approach to the characteristic p case " by E. de Shalit, Ann. Math 154(2001),347-382.
[Deligne] P. Deligne, Les corps de caractéristique p, limites de corps locaux de caractéristique 0, in Représentations des Groupes Rductifs sur un Corps Local ,119-157, Hermann, Paris(1984)
[Elkik] R. Elkik, Solutions d'équations à coefficients dans un anneau hensélien, Ann, Sci. École Norm. Sup. 6 (1973), 553-604.
[Milne] J. S. Milne Arithmetic Duality Theorems, Perspectives in Math. 1, Academic Press Inc.,Boston(1986)
[Ono] T. Ono, Arithmetic of algebraic tori, Ann. Math 74(1961), 101-139
[Serre1] J.-P. Serre, Local Fields, Grad.Texts in Math 42, Springer-Verlag, New York (1977)
[Serre2] J.-P. Serre, Linear Representations of finite Groups, Grad.Texts in Math 42, Springer-Verlag, New York (1964)
[Waterhouse] W. Warterhouse, Introduction to Affine Group Schemes, Grad.Texts in Math 66, Springer-Verlag, New York (1979)

