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Abstract

This article is based on the paper ”Congruences of Néron models
for tori and the Artin conductor” by Ching-Li Chai and Jiu-Kang Yu,
published in Annal of Mathematics 154 (2001).

Let K be a complete discrete valuation field with perfect residue
field. Let T be a torus over K, with Néron model TNR over the ring
of integers OK of K. The Néron model does not commutate with the
base change in general. Choose a finite Galois extension L/K which
spits T . One can measure the change of Néron models by comparing
(Lie TNR)⊗OL with Lie((T⊗L)NR). We define an invariant c(T ) ∈ Q
by

c(T ) =
1

eL/K
lengthOL

Lie(T ⊗ L)NR

(Lie TNR)⊗OL

where eL/K is the ramification index of L/K and Lie() denotes the Lie
algebra. Let X∗(T ) be the ocharacter group of T and let a(X∗(T )⊗Q)
be the Artin conductor of the Galois representation X∗(T ) ⊗ Q of
Gal(K̄/K). The main theorem 10.2 states that c(T ) is invariant by
isogeny and

c(T ) =
1
2
a(X∗(T )⊗Q),

answering a question of B. Gross. Note that in the final step of the
proof of theorem 10.2, we restricted ourself to the special case when
K has characteristic 0.
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1 Notation

• Let O = OK be a discrete valuation ring with residue field κ and let
K be its field of fractions. Let π = πK be the a prime element of O.
The strict henselization and the completion of O are denoted by Osh

and Ô respectively. Their fields of fraction are denoted by Ksh and K̂
respectively. The residue fields of Osh is the separable closure κsep of
κ. Denote the algebraic closure of K by K.

• Denote the multiplicative group scheme over a ring A by Gm,A.

• Let T be a torus over K. Denote by Λ the cocharacter group

X∗(T ) = Hom(Gm,K , T ⊗K)

of T and by
X∗(T ) = Hom(T ⊗K,Gm,K)

the character group of T . We will often denote by L/K a Galois exten-
sion such that T is split over L and by Γ the Galois group Gal(L/K).
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• we will also work with another discrete valuation ring O0. We will
analogous constructs by the same notation with a subscript 0. And
introduce a series of congruence notation:

– (O,OL) ≡α (O0,OL0) (level N): this means that α is an isomor-
phism from OL/πNOL to OL0/π

N
0 OL0 and induce an isomorphism

O/πNO → O0/π
N
0 OL0 .

– (O,OL, Γ) ≡α,β (O0,OL0 , Γ0) (level N): this means (O,OL) ≡α

(O0,OL0) (level N), β is an isomorphism Γ → Γ0 , and α is
Γ−equivalent relative to β: α(γ.x) = β(γ).α(x).

– (O,OL, Γ, Λ) ≡α,β,φ (O0,OL0 , Γ0, Λ0) ( level N ): this means that
(O,OL, Γ) ≡α,β (O0,OL0 , Γ0) ( level N ), and φ is isomorphism
Λ → Λ0 which is Γ-equivalent relative to β.

– If it is not necessary to name the isomorphisms(α, β, etc.), we omit
them from the notation.

• In this paper, ”X is determined by (O/πNO,OL/πNOL, Γ, Λ) ” means
if (O,OL, Γ, Λ) ≡α,β,φ (O0,OL0 , Γ0, Λ0)( level N ), then there is a canon-
ical isomorphism X → X0 determined by (α, β, φ).

• All rings in this paper areO−algebras orO0-algebra. All maps between
two group schemes are the homomorphisms of group schemes.

• If X is an O-scheme, we sometimes denote X × SpecO/πN by X ⊗
O/πN . Similarly, we have the same meaning for X ⊗ L, etc.

• For a group scheme X over base scheme S, we denote the module of
translation invariant top differential forms on X by ω(X).

2 Basic properties of tori

Definition 2.1. Let K be a field, a torus T over K is an affine group scheme
T over K such that TK̄ = T ⊗K K̄ ' Gd

m,K̄
, where d is the dimension of T .

We say that T is split over some field extension L/K if T ⊗ L is isomorphic
to Gd

L, and that L is a splitting field of T .

Assume L/K is a Galois extension, and X,Y are K−schemes, then there
exists a right Gal(L/K)-action on HomL(XL, YL). Let σ ∈ Gal(L/K), φ ∈
HomL(XL, YL), we have id ⊗ σ : X ⊗ L → X ⊗ L. Define the action of σ
on φ to be (idY ⊗ σ) ◦ φ ◦ (idX ⊗ σ)−1, denoted by φσ. Then φσ is also an
L-morphism.
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If φσ = φ for every σ ∈ Gal(L/K), there exists ψ ∈ HomK(X,Y ) such
that φ = ψ ⊗ idL. Hence HomK(X,Y ) = HomL(XL, YL)Gal(L/K), where
subscript Gal(L/K) means the Gal(L/K)-fixed morphisms.

Let G be a group and let M,N be two Z[G]-modules. Then HomZ(M,N)
has a G-action defined as follows. Let f ∈ HomZ(M,N), g ∈ G. We define
f g(m) = g(f(g−1(m))), for m ∈ M . Then similarly, we have HomZ(M,N)G =
HomZ[G](M,N).

Notation. In this section the character group X∗(T ) of a torus T over K
will be denoted by T̂ .

From the above, we have a Gal(K̄/K)-action on T̂ . Let A be the affine
ring of T. Let φ ∈ T̂ , then φ is determined by the image of X in A, where
Gm,K̄ = K̄[X,X−1]. Suppose φ#(X) =

∑
finite sum

ki⊗ai, where ki ∈ K̄, ai ∈ A,

then (φσ)#(X) =
∑

finite sum

σ(ki)⊗ai ∈ K
′⊗A, K

′
is a finite Galois extension

containing all ki, hence the Gal(K̄/K)-action on T̂ is continuous.

Proposition 2.2. The category of tori over K is anti-equivalent to the cat-
egory of finitely generated, torsion-free abelian groups with continuous ΓK =
Gal(K̄/K)-action.

Proof. We have defined a functor F between two categories by T −→ T̂ .
First, we want to show that Hom(T1, T2) = Hom(T̂1, T̂2).

Hom(T1, T2) ' HomK̄(T1 × K̄, T2 × K̄)ΓK

' HomK̄(Gd1

m,K̄
, Gd2

m,K̄
)ΓK

' Hom(Ĝd2

m,K̄
, Ĝd1

m,K̄
)ΓK

' HomZ(T̂2, T̂1)
ΓK

' HomZ[ΓK ](T̂2, T̂1)

For any Z-torsion-free and finitely generated Z[ΓK ]-module M, we want
to construct a torus such that T̂ = M . Let d = rankZM . Consider the
group algebra K̄[M ], where the group operation on M is written as mul-
tiplication. Let A = {x ∈ K̄[M ] : σ(x) = x, ∀σ ∈ ΓK}. Since ΓK-
action is continuous, and M is finitely generated, ΓK-action factors through
Gal(L/K)-action for some finite Galois extension L/K. By descend theory,
we have A ⊗ K̄ = K̄[M ]. Let T = Spec A, then T is a torus over K, and
T̂ = Hom(K̄[X,X−1], K̄[M ]) = M .

Corollary 2.3. For every torus T , there exists a minimal (for the inclusion)
spliting field L/K. Moreover L/K is a finite Galois extension.
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Proof. Since the ΓK-action is continuous and T̂ is finitely generated, it is
enough to take L to be the field fixed by the kernel of the representation
ΓK → Aut(T̂ ).

Example 2.4. Let L/K be a finite Galois extension, G = Gal(L/K). Let
T = ResL/K(Gm,L) be the Weil restriction of Gm,L to K, then T̂ = Z[G].

Proof. Let T = Spec A be the torus such that T̂ = Z[G]. Then T
′ ⊗ L =

Spec L[G] = Spec L[xσ, x
−1
σ ]σ∈G. For any K-algebra R, the L-homomorphism

f : A ⊗ L = L[xσ, x
−1
σ ]σ∈G 7→ R ⊗ L is determined by the image of xσ in

R⊗L. If σ ◦f = f ◦σ, this means σf(xe) = f(xσ). Thus the homomorphism
A → R is naturally corresponding to an invertible element f(xe) in R ⊗ L,
which is also corresponding to a homomorphism from L[X,X−1] → R ⊗ L.
Hence T

′
(X) = HomL(X⊗L,Gm,L) for any K-scheme X. Then by definition

T
′
just is ResL/K(Gm,L).

Definition 2.5. Let T, T ′ be tori over a field K. A homomorphism α : T →
T ′ is an isogeny if α is a surjection with finite kernel. The map α̂ : T̂ ′ → T̂
is then injective with finite cokernel. Note that the degree of α is equal to be
the cardinality of Coker α̂.

We write T ∼ T ′ when T is isogenous to T ′.

For any n ∈ Z, let us denote by [n]G the multiplication by n map on a
group scheme G.

Proposition 2.6. Let T, T ′ be tori defined over K, let α : T → T ′ be an
isogeny. Then there exists an isogeny β : T ′ → T , such that β ◦α = [deg α]T ,
and α ◦ β = [deg α]T ′.

Proof. Since α̂ : T̂ ′ → T̂ is injective with finite cokernel, then there exists
β̂ : T̂ → T̂ ′, such that β̂ ◦ α̂ = (deg α).idT̂ ′ , α̂ ◦ β̂ = (deg α).idT̂ . Let

β : T ′ → T be the isogeny corresponding to β̂. Then β ◦ α = [deg α]T , and
α ◦ β = [deg α]T ′ .

Proposition 2.7. Let T, T ′ be tori over K and L be a common splitting field
of T and T ′. Let G = Gal(L/K). Then T ∼ T ′ if and only if T̂⊗ZQ ' T̂ ′⊗ZQ
as G-module.

Proof. If T ∼ T ′, we have an exact sequence

0 // T̂ // T̂
′ // M // 0 ,

where M is a finite abelian group. After tensor with Q, we get an exact
sequence

0 // T̂ ⊗Q // T̂ ′ ⊗Q // 0 .
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Conversely, if T̂⊗ZQ ' T̂ ′⊗ZQ, then nT̂ ↪→ T̂ ′ (as Z[G]-modules) with finite

cokernel for some integer n. Let α̂ be the composition of T̂
·n // nT̂ // T̂ ′ ,

then α̂ : T̂ → T̂ ′ is injective with finite cokernel. By Proposition 2.2 it
corresponds a homomorphism α : T ′ → T which is a surjection and with
finite kernel. Hence T ∼ T ′.

Let T be a torus over K, split over L. Let G = Gal(L/K), g ∈ G and
Kg := Lg = {x ∈ L|g(x) = x}. Let χT be the character of the representation

T̂⊗Q over Q and Tg = ResKg/K(Gm), then T̂g is Z[< g >] where < g > is the
subgroup generated by g in G. The character of corresponding representation
is denoted by χTg .

By a theorem of Artin [Serre2, thm 9.2], there exist positive integers
nh,nh′ and subsets H, H ′ of G such that H

⋂
H ′ = ∅, and

nχT +
∑

h′∈H′
nh′χTh′ =

∑

h′∈H′
nhχTh

.

Hence we get:

Proposition 2.8. There exist positive integers nh, nh′ such that,

T n ×
∏

ResKh′/K(Gnh′
m,Kh′

) ∼
∏

ResKh/K(Gnh
m,Kh

).

3 Dilatation

Let K be a discrete valuation field with valuation ring O.

Definition 3.1. Let X be a O-scheme of finite type, whose generic fibre XK

is smooth over K. Let W be a closed subscheme of Xκ. The dilatation of
W on X is a pair (X ′, u : X ′ → X), where X ′ is a flat O-scheme of finite
type and uκ : X ′

κ → Xκ factors through W, satisfying the following universal
property:

if Z is a flat O-scheme, and if v : Z → X is an O-morphism such that its
restriction vκ to the special fibre factors through W , then v factors uniquely
through u.

Construction of dilatation
Let J be the sheaf of ideals defining W in X. Let X ′ is an open subset of

the blow-up Bl(X,W ) of X with center W , where Bl(X,W ) = Proj
⊕

t≥0 J t

and X ′ = {x ∈ Bl(X,W ) : (J · OBl(X,W ))x is generated by π}. Locally, if
X is affine and A is the affine ring of X , and the ideal sheaf J of W is
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generated g1, ..., gn, then X ′ = Spec A′ and let u : X ′ → X be the canonical
map corresponding to A → A′, where

A′ = A[
g1

π
, ...,

gn

π
]/(π − torsion)

and
A[

g1

π
, ...,

gn

π
] = A[X1, ..., Xn]/(πX1 − g1, ..., πXn − gn).

Proposition 3.2. Let (X ′, u) be constructed as above, then (X ′, u) is the
dilatation of W on X.

Proof. We just need to show that (X ′, u) satisfies the universal property of
dilatation. Since the problem is local, we can assume Z = Spec B is affine.
Keep the notation as before. The fact that vκ factors through Yκ implies
that the ideal J · B is contained in πB. Hence there exist elements hi ∈ B
with v∗(gi) = hi; the elements hi are unique, for B has no π-torsion. Thus
the A- morphism A[X1, ..., Xn] → X sending Ti to hi yields a morphism
w∗ : A′ → B and hence a morphism w : Z → X ′ such that v = u ◦ w.

Corollary 3.3. Let X be a closed subscheme of an O-scheme Z, and let Yκ

be a closed subscheme of Xκ. Then the dilatation X ′ of Yκ on X is a closed
subcheme of the dilatation Z ′ of Yκ in Z.

Proof. This is clear from the construction of dilatation.

Proposition 3.4. Let X be a smooth scheme over O, and W be a closed
subscheme over X⊗κ. Let X ′ be the dilatation of W on X. Then X ′⊗O/πN

depends only on X ⊗O/πN+1O in a canonical way.

Remark. Canonicity. Assume X1 and X2 are O-schemes, and φ is an iso-
morphism X1 ⊗ O/πN+1O → X2 ⊗ O/πN+1O. Assume also that W1 ⊆
X1⊗κ,W2 ⊆ X2⊗κ are closed smooth subschemes over κ, and φ induces an
isomorphism from W1 to W2. Form the dilatation X ′

i and Yi = Bl′(Xi,Ji) =
Proj

⊕
t≥0 J t

i , i = 1, 2. The canonicity statement is that the natural isomor-

phism Bl′(φ) : Y1 ⊗ O/πN → Y2 ⊗ O/πN induces an isomorphism from the
subschemes X ′

1 ⊗O/πN of Y1 ⊗O/πN to X ′
2 ⊗O/πN .

Proof of Proposition 3.4. Let i = 1, 2. Let x′i be a point on X ′
i ⊗ κ which

projects to xi ∈ Xi ⊗ κ. Since Xi and Wi are smooth , we can choose a
system of local coordinates f

(i)
1 , ..., f

(i)
r , gi

r+1, ..., g
(i)
n at xi on Xi such that

Wi defined by (π, gi
r+1, ..., g

(i)
n ) near an affine neighborhood Ui of xi and X ′

i

above Ui is Spec(B′
i/π

∞−torsion), where B′
i = OXi

(Ui)[Y
i
r+1, ..., Y

i
n]/(πY i

r+1−
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gi
r+1, ..., πY i

n − gi
n). The f

(i)
1 , ..., f

(i)
r , Y i

r+1, ..., Y
(i)
n form a system of local coor-

dinates at x′i in Xi. We can shrink Ui such that B′
i is free of π∞-torsion.

If φ(x1) = x2, we can assume φ∗(f (2)
j mod πN) ≡ f

(1)
j mod πN and

φ∗(g(2)
k mod πN) ≡ g

(1)
k mod πN , and φ induces an isomorphism φ̃∗ : OX2(U2)

⊗O/πN → OX1(U1)⊗O/πN . Clearly, there is an isomorphism (φ′)∗ : B′
2 ⊗

O/πN → B′
1 ⊗O/πN which extends (φ̃∗) and sends Y

(2)
j to Y

(1)
j . It remains

to show that φ′ : X ′
1⊗O/πN → X ′

2⊗O/πN is induced by Bl′(φ). Above Ui⊗
O/πN , the affine ring of Bl′(Xi,J )⊗O/πN is B′′

i = (
⊕

t≥0 Symt
BN

i
J N

i )deg 0
π1

,

where BN
i = OXi

⊗ O/πN , J N
i = (π, g

(i)
r+1, ..., g

(i)
n ) ⊗ O/πN , π is regards as

a homogeneous element of degree 1. The element π1 is an element of degree
1 in

⊕
t≥0 Symt

BN
i
J N

i , and the subscrip indicates localization. The ring B′′
i

maps to B′
i ⊗ O/πN by sending π−1

1 g
(i)
k to Yk. Then it is clear that (φ′)∗ is

induced by Bl′(φ).

4 Néron’s measure for the defect of smooth-

ness

Let X be a scheme of finite type over O such that X ⊗K is smooth over K.
Consider x ∈ X(Osh) as a morphism SpecOsh → X.

Definition 4.1. Define δ(x) = the length of the torsion part of x∗Ω1
X/O as

Néron’s measure for the defeat of smooth at x, sometimes we also denote it
by δ(x,X).

The rank of free part is just the rank of Ω1
X/K at xK , which is the dimen-

sion of XK at xK , since XK is smooth.

Lemma 4.2. Let x be an Osh-value point of X. Then x factors through the
smooth locus of X if and only if δ(x) = 0.

Proof. If x is contained in the smooth locus Xsmooth of X, then x∗Ω1
X/O =

x∗Ω1
Xsmooth/O, where Ω1

Xsmooth/O is locally free, so δ(x) = 0. Conversely, if

δ(x) = 0, then x∗Ω1
X/O can be generated by d elements where d is the dimen-

sion of XK at xK . In particular, x∗Ω1
Xκ/κ can be generated by d−elements

at xκ. Since the relative dimension at xκ is at least d. So Xκ is smooth over
κ at xκ of relative dimension d. Then X is smooth over O at x.

Let U be a neighborhood of x in X which can be realized as a closed
subscheme of an O-scheme Z where Z is smooth over O, and has constant
relative dimension n. Assume that there exist functions z1, ..., zn on Z such
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that dz1, ..., dzn generate Ω1
Z/O, and let g1, ..., gm be functions which generate

the sheaf of ideal of OZ defining U in Z. Then we have dgu =
∑ ∂gu

∂zv
dzv, and

define Jacobian matrix J of g1, ..., gm to be (∂gu

∂zv
)m×n. Let d be the relative

dimension of XK at xK , and v(a) = π-order of a in O.

Lemma 4.3. δ(x) = min{v(∆)|∆ : (n− d)-minors of J}.
Proof. By Jacobi criterion, there exist a (n−d)-minors ∆ with x∗∆ 6= 0, and
any minor ∆ of J with more than n − d rows will satisfying x∗∆ = 0. We
know x∗Ω1

X/O is representable as a quotient F/M , where F := x∗Ω1
Z/O is a free

Osh-module of rank n, and M is the submodule generated by x∗dg1, ..., x
∗dgm.

Since the rank of M is n−d and Osh is P.I.D, one can find a base e1, ..., en of
x∗Ω1

Z such that M is generated by ad+1ed+1, ..., anen, where ai ∈ O and ai 6= 0.
Thus by the theory of elementary divisors, we have δ(x) = v(ad+1)+...+v(an).

Now consider the ideals in Osh generated by all elements x∗∆, where ∆ is
(n− d)-minor, and this ideal is generated by ad+1...an, and there is a minor
∆ with x∗(∆) = ad+1...an.

Proposition 4.4. Let Y be the Zariski closure of {x mod π ∈ X(κ) : x ∈
X(Osh)} as a closed subscheme of X⊗κ. Let X ′ → X be the dilatation of Y
on X. For each x ∈ X(Osh) with xκ ∈ Y , denote x′ ∈ X ′(Osh) be the unique
lifting of x. Then δ(x′) ≤ max{0, δ(x)− 1}.
Proof. The proof takes too many pages, see the details in [BLR, 3.3 Prop
5].

Lemma 4.5. 1). Suppose X is a group scheme over O, and e ∈ X(Osh) is
the identity element. Then δ(e) = δ(x), for any x ∈ X(Osh).

2). Change of base field. Let x ∈ X(Osh), consider x as a point of X⊗OL,
then δ(x; X⊗OL) = e(L/K)·δ(x,X), where e(L/K) is the ramification index
of L/K.

3). Closed immersion. Let i : X ⊆ X ′ be a closed immersion of O-
scheme such that i induce an isomorphism X ⊗ K → X ′ ⊗ K. Then we
have a surjection i∗Ω1

X′/O → Ω1
X/O. Therefor, for any x ∈ X(Osh), we have

δ(x; X) ≤ δ(i ◦ x; X ′).

Proof. Let rx : X⊗Osh → X⊗Osh be the isomorphism of right multiplication
by x. Then x = rx ◦ e, hence e∗Ω1

X/O = x∗Ω1
X/O, so δ(e) = δ(x). The other

two are clear.
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5 The construction of the Néron model of a

torus

Let K be a discrete valuation field.

Definition 5.1. Let T be a torus over K, the (finite type) Néron model of
T is a smooth group scheme TNR over SpecOK with generic fibre isomorphic
to T , such that the image of TNR(Osh) is in T (Ksh) is the maximal bounded
subgroup of T (Ksh).

Remark. The usual definition of Néron model for a smooth and separated
K-scheme X of finite type is the following: it is a smooth, separated O-
scheme X , locally of finite type, satisfying the following universal property:

For each smooth SpecO-scheme Y and each K-morphism uK : YK → X,
there is a unique SpecO-morphism u : Y → X extending uK . For more
details, see [BLR].

For a torus T over K, the (finite type) Néron model TNR is an open
subscheme of T . Its special fiber consists in the union of the connected
components of Tκ which are of finite order in the group of components Φ(T ).
When T is anisotropic (i.e. T does not contain any factor Gm,K), then
TNR = T . In general, both models have the same neutral component.

Follow the construction of the Néron model of T as explained in [BLR].

• Step 1, construct a group scheme T 0 over O such that T 0(Osh) =
TNR(Osh)= the maximal bounded subgroup of T (Ksh).

Let R = ResL/K(T ⊗L), then there exits a canonical closed embedding
T → R, and choose T 0 to be the schematic closure of T in RNR '
X∗(T )⊗ (ResOL/OK

(Gm,OL
)), where X∗(T ) is the cocharacter group of

T .

Proposition 5.2. T 0
K = T and T 0(Osh) = TNR(Osh).

Proof. Since all schemes are affine, the first equality is easy from al-
gebraic facts. Let A,B,C,D be the affine rings of RNR, R, T, T 0 re-
spectively, and assume f : A → B, g : B → C, h : A → C are the
corresponding morphisms and h = g ◦ f . Then D = A/Kerh and h
induce a mapping h′ : D → C. Now we want to show D ⊗K → C is
isomorphic. It is surjective since A⊗K = B and g is surjective. The in-
jectivity follows from K is flatO-module. Thus h′⊗id : D⊗K → C⊗K
is injective and C ⊗K = C.
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Let u ∈ T 0(Osh), then it is in the maximal bounded subgroup of R(Ksh)
since it is in RNR(Osh). So we have T 0(Osh) ⊆ TNR(Osh). Conversely,
let t ∈ TNR(Osh), then it lifts t′ in RNR(Osh), we want to show it factor
through T 0. And this is clear from the universal property of quotient
of rings.

• Step 2, apply the smoothening process to T 0, then we can get the Néron
model TNR of T.
Let Zi be the Zariski closure of {x mod π ∈ T i(κsep) : x ∈ T i(Osh)}
as a closed subscheme of T i⊗κwith the reduced induced structure. Let
T i+1 is the dilatation of Zi on T i.
Let δ = max{δ(x) : x ∈ T 0(Osh)}, where δ(x) is the N’eron measure
for the defect of smoothness. Then TNR = T i for i ≥ δ.

Similarly, do the same process to R0 = RNR. For i ≥ 0, let W i be the
Zariski closure of

{x mod π ∈ Ri(κsep) : x ∈ T 0(Osh) ⊂ Ri(Osh)},
as a subscheme of Ri⊗κ with the reduced induced structure. Then Ri+1

is the dilatation of W i on Ri. Clearly, we have T 0(Osh) ⊂ Ri(Osh) ⊂
(Ri+1(Osh)).

Lemma 5.3. For i ≥ 0, N ≥ 1, Ri+1⊗O/πN depends only on Ri⊗O/πN+1O
in a canonical way.

Proof. This is just a corollary of Proposition 3.4.

Lemma 5.4. The schematic closure of T in Ri is T i for all i ≥ 1. In
particular, it is TNR for i À 0.

Proof. Prove it by induction on i. T i−1 is a closed subgroup of Ri−1, and
W i−1 is the image of Zi−1 in T i−1 → Ri−1. Then Ri is a closed subscheme of
subgroup of Ri by Corollary 3.3. So the schemematic closure of T i’s generic
fibre T in Ri is itself.

Remark. When i ≥ δ(e; T 0), T i is smooth, hence TNR = T i. So we want
to control δ(e; T 0). Let T 0

L = T 0 ⊗ OL, the schematic closure of T ⊗ L
in RNR ⊗ OL. Let R′=RNR ⊗ OL, R† = X∗(R ⊗K L) ⊗Z (Gm/OL

), T † =
X∗(T ⊗K L) ⊗Z (Gm/OL

). There are canonical morphisms T † → R†, and
ϕ : R′ → R†. Let T ′ = T † ×R† R′. Since T † → R† is a closed immersion,
hence T ′ → R′ is also a closed immersion by base change. Since T ′ has
generic fibre T ⊗L, T 0

L is equal to the subscheme closure of T ⊗L in T ′. By

the lemma 4.5, we have δ(e, T 0) ≤ δ(e,T ′)
e(L/K)

. So it is enough to control δ(e, T ′).

11



We can write T † and R† explicitly. In fact, T † ' Gd
m,OL

and R† ' Gnd
m,OL

,
and T † is cut out by nd−d equations f1, ..., fnd−d on R†, where d = dimT, n =
[L : K]. By base change, T ′ is cut out by the equations ϕ∗f1, ..., ϕ

∗fnd−d on R′.
Let z1, ..., znd be a system of local coordinates near e, and put M = (∂(ϕ∗fi)

∂zj
),

then by Lemma 4.3, δ(e, T 0) is the minimum of the valuation of e∗∆, for all
(nd-d)-minors ∆ of M .

Lemma 5.5. Suppose that (O,OL, Γ, Λ) ≡ (O0,OL0 , Γ0, Λ0)(levelN) with
Ne(L/K) > δ(e, T ′). Form T ′

0 in the same way that we form T ′. Then
δ(e; T ′

0) = δ(e; T ′).

Proof. All following objects are determined only by (O/πN ,OL/πN , Γ, Λ):
R† ⊗OL/πNOL, T † ⊗OL/πNOL, R′ ⊗OL/πNOL, T ′ ⊗OL/πNOL, and

the matrix e∗(M mod πN). And if Ne(L/K) > δ(e, T ′), and by Lemma4.3,
δ(e; T ′) is also determined by (O/πN ,OL/πN , Γ, Λ). So the lemma is true.

6 Singularities of commutative group schemes

Definition 6.1. Suppose A is a noetherian local ring. We say that A is
a complete intersection ring if Â is isomorphic to a quotient of a complete
local regular ring B by a regular ideal J . We say that a locally noetherian
scheme X is complete intersection at a point x ∈ X, if OX,x is a complete
intersection ring.

Definition 6.2. Suppose f : X → S is a flat, locally of finite presentation
morphism. We say that X is relative complete intersection ( r.c.i ) over S at
the point x if the fibre f−1(f(x)) is complete intersection at x. We say that
f is an r.c.i morphism if X is r.c.i over S at all its points.

Proposition 6.3. Suppose B is a noetherian regular local ring, J is an ideal
of B. Then A = B/J is a complete intersection ring if and only if J is a
regular ideal of B.

Proof. If J is a regular ideal, then JB̂ is also a regular ideal in B̂, hence A
is a complete intersection ring.

Conversely, suppose that A is a complete intersection ring, we need to
show J is a regular ideal. We can assume A and B are both complete since
Â = B̂/JB̂.

Choose a presentation A = B′/J ′, where B′ is a noetherian, complete,
regular local ring and J ′ is its regular ideal. Denote π1 : B → A, π2 : B′ → A
be the canonical projections. Consider B′′ = B ×A B′, where B′′ = {(b, b′) ∈

12



B × B′|π1(b) = π2(b
′)}, a subring of B × B′. We claim that B′′ is complete

local noetherian ring. It is easy to seen that B′′ is a local ring with unique
maximal deal m = {(b, b′) : π1(b) = π2(b

′) ∈ mA}. And (b, b′) ∈ m if and
only if b ∈ mB and b′ ∈ mB′ , so B′′ is complete. Let a be an ideal of B′′, and
let b be the kernel of B′′ → B. Then we have

0 // a ∩ b // a // a/a ∩ b // 0

and a/a ∩ b ' (a + b)/b. Since (a + b)/b is corresponding to an ideal of B,
and a ∩ b is corresponding to an ideal of B′; they are both of finite type.
Hence a is also finitely generated.

By Cohen’s theorem, there exits a noetherian, complete, regular local ring
C such that B′′ is a quotient of C with regular ideal. Let I = Ker(C → A),
then I is the preiamge of the regular ideal J ′, hence I is regular. And J is
image of I in a regular ring, hence regular.

Proposition 6.4. Let k ⊂ k′ be a filed extension. Suppose X is a locally
of finite type k-scheme and X ′ = X ×k k′. Suppose x′ ∈ X ′ and x is its
projection on X. Then X is complete intersection at x if and only if X ′ is
complete intersection at x′.

Proof. The problem is local, so we can assume X = Spec A, where A is
a quotient of polynomial ring k[X1, ..., Xn] with ideal I. ”only if” part is
trivial. Assume {f1, ..., fn} be a minimal generators of I at x, then they also
generate I ′ = I ⊗ k′ at x′. If they are not regular sequence in I ′x′ , then some
fi is generated by others in I ′x′ . Hence fi is also generated by others in Ix by
the faithfully flatness of k′ over k. This is contradiction with the choice of
f ′is.

Proposition 6.5. (1). Suppose f : X → S is an r.c.i morphism. Let
f ′ = fS′ : X × S ′ → S ′ be the base change compatible with g : S ′ → S. Then
f ′ is also a r.c.i morphism. If g is fpqc (ie. faithfully flat, quasi compact),
then vice versa.

(2). If f : X → Y, g : Y → Z are both r.c.i morphism. Then so is
g ◦ f : X → Z.

Proof. Clearly from Proposition 6.4.

Lemma 6.6. Let G be a commutative group scheme, flat and of finite type
over a notherain base scheme S. Then G → S is an r.c.i morphism.

Proof. We can assume S = Spec k, where k is algebraically closed. Suppose
that 0 // G′ // G // G′′ // 0 is an exact sequence of commutative
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group scheme over k. Assume that G′ and G′′ are r.c.i over Spec k, we claim
that G → G′′ is also an r.c.i morphism, hence G → G′′ → Spec k is an
r.c.i morphism. By proposition 6.5, it is enough to check after a fpqc base
change G → G′′, that is, look at G×G′′G → G. This morphism is canonically
isomorphic to G ×Spec k G′ → G, which is projection to the first factor, and
it is an r.c.i morphism since G′ → Spec k is.

For any G over k, G admit a composition series in which the factor are
smooth, isomorphic to µp, or αp. And these factors are clearly r.c.i over k,
hence by induction, G → S is an r.c.i morphism.

Lemma 6.7. Suppose that X is a noetherian scheme and X → SpecO is a
flat r.c.i morphism. Then for any N ≥ 1, the collection of points:

⋃
{x mod πN ∈ X(C/πNC) : x ∈ X(C)},

as C ranges over local Ô-algebra which are flat, and r.c.i over Ô, is schemat-
ically dense in X ⊗O/πN .

Proof. Since O → Ô is faithfully flat and Spec Ô → SpecO is surjective, we
can assume X = Spec A, and A is a complete noetherian local ring such that
π ∈ mA.

Choose a presentation A = B/I, where B = [[X1, ...Xb]]. Since X is
r.c.i over O, then I is generated by a regular sequence (t1, ..., ta). Hence,
(t1, ..., ta) ⊗ κ is a regular sequence on B ⊗ κ. Extend (t1, ..., ta) ⊗ κ to a
system of regular parameters, and lift the sequence to a sequence (t1, ..., tb)
in B. Put Jn = (tn1 , ..., t

n
b ). Then

⋂
n Jn ⊂

⋂
n mn = 0. Let Cn = B/(I + Jn)

and Spec Cn → X is induced by B/I → B/(I + Jn). Then {Spec Cn →
X; n ≥ 1} is schematically closed in X. I + Jn = (t1, ..., ta, t

n
a+1, ..., t

n
b ) and

(t1, ..., ta, t
n
a+1, ..., t

n
b ) is also a regular system in B, hence Cn is r.c.i of relative

dimension 0, and then finite over Ô. Clearly, πk is not in I + Jn for any
integers k, so Cn is also flat.

From above, the points {Spec Cn⊗O/πN → XO/πN : n ≥ 1} is schemat-
ically dense in X ⊗O/πN

Proposition 6.8. Let G be a commutative noetherian group scheme over O,
not necessary flat. Let G be the schematic closure of G ⊗ K in G. Then
G⊗O/πN is the schematic closure in G⊗O/πN of the following collection
of points ⋃

{x mod πN ∈ G(C/πNC) : x ∈ G(C)}

as C ranges over local Ô-algebras which are flat, finite, and r.c.i over Ô.
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Proof. G(C) = G(C) for any flat O-algebra. Then it is clear from the two
lemmas before.

Lemma 6.9. The collection of O/πN -algebras {C/πNC: C is a local,

flat,finite,r.c.i Ô-algebras} is just the collection of all local O/πN -algebras
which are flat, finite, and r.c.i over O/πN .

Proof. Since the property of being r.c.i is stable under any base change. So
we only need to show that any local flat, finite, r.c.i O-algebra is of the form
C/πN for some C.

Choose a presentation A = B/I, B = O[X1, ..., Xn]m,m = (π, X1, ...Xn),
πN ∈ I. Since B is regular and A is r.c.i, then I is generated by a regular
sequence (πN , f1, ..., fm). Since A is of dimension 0, we have m = n.

Lift fi to f̃i ∈ Ô[X1, ..., Xn]m̃, where m̃ = (π, X1, ..., Xn). Then C =

Ô[X1, ..., Xn]m̃/(f̃1, ..., f̃n) is flat, finite, and r.c.i Õ-algebra and A = C/πN .

7 Elkik’s theory

In this section, let R be a noetherian O-algebra, complete with respect to
the π-adic topology. Consider R[X] = R[X1, ..., XN ], the polynomial ring in
N variables. Let I be an ideal of R[X] and put B = R[X]/I, Y = Spec B.
We assume that Y ⊗O K → Spec(R ⊗O K) is smooth of relative dimension
s. The Jacobian ideal of I is defined to be the ideal of R[X] generated by
the (N − s)-minors of ( ∂fi

∂Xj
)s×N for all f1, ..., fs in a generating set of I. By

smoothness assumption and Jaccobi Criterion, J + I ⊇ πhR[X] for some
h ≥ 0. Fix such an h in the following.

Lemma 7.1 (Elkik). Suppose that I can be generated by N − s elements.
Then for any n > 2h, the image of Y (R) → Y (R/πn−hR) is the same as the
image of Y (R/πnR) → Y (R/πn−hR).

Proof. We restatement the lemma as following: If a = (a1, ...aN) ∈ RN such
that I(a) = 0 mod πn , where I(a) = {f(a) : ∀f ∈ I}, then there exists
a′ ∈ RN such that a ≡ a′ mod πn−h and I(a) = 0.

Since R is complete and by approximation, it is enough to find y =
(y1, ..., yN) ∈ RN such that yi ≡ 0 mod πn−h,∀i and I(a− y) ⊂ (π2n−2h).

Let M be the Jacobian matrix of I, and by Taylor’s expansion,



f1(a− y)
...

fN−s(a− y)


 =




f1(a)
...

fN−s(a)


−M(a)




y1

...
yN


 +

∑
yiyjQij(a− y),
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Where Qij is an (N−s)-column vector whose components are the polynomial
in a and y. Hence we just need to find a y = (y1, ..., yn), such that yi ≡ 0
mod πn−h and


f1(a− y)
...

fN−s(a− y)


 = M(a)




y1

...
yN


 mod π2n−2h

Let δ be a nonzero (N−s)-minor of M , then exits N×(N−s) matrix Mδ

such that MMδ = δId, where Id means the identity matrix. By assumption,
we have

∑
δ δPδ + Q = πh in R[X] for some Q ∈ I.

πh




f1(a)
...

fN−s(a)


 = (ΣδPδ + Q)(a)




f1(a)
...

fN−s(a)




=
∑

δPδ(a)




f1(a)
...

fN−s(a)


 mod π2n

=
∑

PδM(a)Mδ(a)




f1(a)
...

fN−s(a)


 mod π2n

= M(a)[
∑

PδMδ(a)




f1(a)
...

fN−s(a)


] mod π2n

Let y = (
∑

PδMδ(a)




f1(a)
...

fN−s(a)


)/πh, then y is what we need.

Lemma 7.2. Suppose that R is a local ring, and Y → Spec R is a flat r.c.i
morphism. Then for any n ≥ 2h, the image of Y (R) → Y (R/πn−hR) is the
same as the image of Y (R/πnR) → Y (R/πn−hR).

Proof. Let y : Spec R/πn → Y be a closed point of Y (R/πn). Let m be the
unique maximal ideal in R/πn, q = y(m).

Since Y → Spec R is r.c.i, and Spec R[X] → Spec R has regular fibre.
Then there exists f ∈ R[x], such that q ∈ Yf and Yf is cut out by (N − s)
equations in Spec R[X]f , and regard Spec R[X]f as a closed subscheme of
Spec R[X][Z] cut out by Zf −1. Then Yf is cut out by (N +1−s) equations
in AN+1. By Elkik’s lemma, there exists y′ ∈ Yf (R) ⊂ Y (R) such that y ≡ y′

mod πn−h.
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8 Congruences of Néron models

In this section, assume K is complete for simplicity. Notations are the same
as Section 5.

Since RNR is the Néron model of an induced torus, we can realize RNR as
a closed subscheme of Ad(n+1)

/O , defined by n explicit equations. Recall that

the closed subscheme T ′ of R′ is cut out by (dim RNR − dim T ) equations,
and R′ = RNR ⊗ OL. Hence, T ′ can be realizes as a closed subscheme of
Ad(n+1)

/OL
defined by an ideal I ′ generated by (d(n + 1) − dim T ) equations.

Let J ′ be the Jacobian ideal for I ′. Since the generic fibre of T ′ is smooth,
I ′ + J ′ contains πh for some h > 0. Let h = h (O,OL, Γ, Λ) be the smallest
integer with this property.

Lemma 8.1. Suppose (O,OL, Γ, Λ) ≡ (O0,OL0 , Γ0, Λ0)(levelN). Form the
Jacobian ideals J ′ and J ′

0 and define the integer h and h0 for both data. If
h < N or h0 < N , then h = h0.

Proof. Suppose h < N . Since T ′ just depends on (O,OL, Γ, Λ), hence I ′

and J ′ just depends on (O,OL, Γ, Λ). Then J ′ ⊗ O/πN just depends on
(O/πN ,OL/πN , Γ, Λ). So I ′0 + J ′0 + πN

0 OL0 [X1, ..., Xd(n+1)]contains πh
0 . Then

by Nakayama’s Lemma , we have I ′0 + J ′0 ⊃ πh
0OL0 [X1, ..., Xd(n+1)] Therefore

h0 ≤ h ≤ N . Similarly, h ≤ h0, hence h = h0.

Definition 8.2. If h < n, define h (O,OL, Γ, Λ) to be h; otherwise define
h (O,OL, Γ, Λ) = N . This is justified by the lemma.

Proposition 8.3. The group scheme T 0
L ⊗OL/πN−h is determined by

(O/πN ,OL/πN , Γ, Λ) if N > 2h.

Proof. By lemma 6.8, it is enough to show that the collection of points

⋃
C

image (T ′(C) → T ′(C/πN−h)),

where C ranges over all local finite flat Ô-algebra, is determined by
(O/πN ,OL/πN , Γ, Λ). Since T ′ is complete intersection and by Lemma 7.2,
this collection is the same as the union of the image T ′(C/πN) → T ′(C/πN−h)
over all local, flat, r.c.i over O/πN and this is clearly determined by
(O/πN ,OL/πN , Γ, Λ).

Corollary 8.4. The group scheme T 0 ⊗O/πN−h is determined by
(O/πN ,OL/πN , Γ, Λ) for N > 2h.
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Proof. We have T 0
L = T 0 ⊗ OL, and by Proposition 8.3, the corollary is

clearly derived from the following easy lemma: Suppose X,X ′ are closed S-
subschemes of an S-scheme Y such that X ×S S ′ = X ′ ×S S ′ in Y ×S S ′ for
some S ′ → S faithfully flat. Then X = X ′

In the following, we use the notations and procedure in Section 4 and
Section 5. T 0 is a closed subscheme of Ad(n+1), defined by an ideal I and
let J ⊂ O[X1, ..., Xd(n+1)] be the Jaccobian ideal of I. Since I ′ ⊂ I, we have
J ′ ⊂ J and πh ∈ (J ′ + I ′).

Proposition 8.5. 1), T 0 ⊗ O/πN is determined by (O/πm,OL/πm, Γ, Λ)
for all N ≥ 1,m ≥ max(N + h, 2h + 1).
2), Ri⊗O/πm−i depends only on (O/πm,OL/πm, Γ, Λ) for all m ≥ max(2h+
i, 3h + 1).
3), W i depends only on fourm, for m ≥ max(2h + i + 1, 3h + 1).

Proof. 1). T 0 ⊗ O/πN is determined by T 0 ⊗ O/πmax(n,h+1), and then the
proposition follows immediately from Corollary 8.4.

2), By Lemma 5.3 and by induction, Ri ⊗ O/πm−i is determined by
R0 ⊗Om, and R0 = Λ∗(T )⊗ ResOL/OK

(Gm), then the statement is clear.
3), For i=0. From definition of W 0, W 0 is determined by the image of

T 0(Osh) → T 0(Osh/πN) for any N ≥ 1, in particular N = h + 1. Moreover,
W 0 is group scheme, hence is r.c.i. By lemma 8.2, this image is determined
by T 0(Osh/π2h+1), and the latter is determined by T 0⊗Osh/π2h+1, which is
determined by (O/πm,OL/πm, Γ, Λ) for m ≥ 3h + 1, according to Corollary
8.4.

In general, let Bi be the affine ring of Ri, and recall the notations in
Section 3 ,

Bi = Bi−1[Y1, ..., Yn]/(πY1 − g1, ..., πYn − gn) mod π − torsion,

where write the image of Yi as gi

π
, suggestively. A point y in Ri is determined

by the projection of y on Ri−1, together with the additional ”coordinates”
(π−1g1(y), ..., π−1gn(y)).

For x ∈ T 0(Osh), by the universal property of dilatations, x is also in
Ri(Osh), denoted by xi. Then xi mod π is determined by xi−1 mod π2.
Inductively, the image of T 0(Osh) → T 0((Osh)/πi+1) determined W i. As in
the case i=0, this image is determined by (O/πm,OL/πm, Γ, Λ) whenever
m ≥ max(2h + i + 1, 3h + 1).

Let δ = b δ(e,T ′)
e(L/K)

c, we have δ ≤ h from Section 4. If δ < N , we define

δ (O/πN ,OL/πN , Γ, Λ) to be δ; otherwise, we define δ (O/πN ,OL/πN , Γ, Λ) =
N . The definition is justified by lemma 5.5.
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Lemma 8.6. Let X be a smooth group scheme over O. Then the schematic
closure of the points {x : x ∈ X(Osh/πN)} = {x mod πN : x ∈ X(Osh)} in
X ⊗O/πN is the whole X ⊗O/πN .

Proof. We first show {x : x ∈ X(Osh/πN)} = {x mod πN : x ∈ X(Osh)}.
The notations are the same as Section 7. By lemma 4.2, we have h = 0,
then the equality is clear by lemma 7.2.

The statement is local, we can assume X = Spec A is smooth over O.
Suppose f ∈ A satisfies x∗f = 0, ∀x. Then f mod π is zero on every closed
points of X ⊗ κsep, hence f ∈ πA. And by induction, we have f = 0.

Theorem 8.7 (Main Theorem). Suppose that N ≥ 1,m ≥ max(N + δ +
2h, 3h + 1), where h = h (O/πm,OL/πm, Γ, Λ) as defined at the beginning of
this section, δ = δ (O/πm,OL/πm, Γ, Λ) as defined above. Then, TNR⊗O/πN

is determined by (O/πm,OL/πm, Γ, Λ).

Proof. By lemma 3.3 and remark in Section 5, TNR is the schematic closure
of T in Rδ.

Let Y be the image of TNR(Osh/πN) in Rδ(Osh/πN), then the schematic
closure of Y in Rδ ⊗ O/πN is simply TNR ⊗ O/πN by the precious lemma.
So we just need to show (O/πm,OL/πm, Γ, Λ) determine Y .

As explained in the proof of Proposition 8.5(3), Y is determined by
the image of T 0(Osh) → T 0(Osh/πδ+N), which is determined by the im-
age of T 0(Osh) → T 0(Osh/πmax(δ+N,h+1)), which is the same as the image of
T 0(Osh/πmax(N+δ,h+1)+h) → T 0(Osh/πmax(δ+N,h+1)) by lemma 7.2. By Corol-
lary 8.4, T 0(Osh/πmax(δ+N+h,2h+1)) is determined by (O/πm,OL/πm, Γ, Λ).
Hence, the proof is over.

9 The invariant c(T) and Artin conductor

Let K be a complete discrete valuation field. We define an invariant of a
torus T over K as following: by the universal property of the Néron model,
there is a canonical morphism T ⊗ OL to the (usual) Néron model of T ⊗
L extending the identity morphism on the generic fibres. This morphism
induces a morphism

ΦT,L : TNR ⊗OL → (T ⊗ L)NR,

Definition 9.1. Let L be a splitting field of T , and let e(L/K) be the
ramification index of L/K. Define

c(T ) =
1

e(L/K)
lengthOL

ω(TNR)⊗OL

Φ∗
T,L(ω((T ⊗ L)NR))
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where ω(TNR) (resp. ω((T ⊗ L)NR)) denotes the module of the translation
invariant top differential forms on TNR (resp. (T ⊗ L)NR). It can easily
seen that this rational number does not depend on the choice of a splitting
extension L/K.

Note that ω(G) is the dual of
∧top Lie(G) for any smooth group scheme

G over OL.

Artin conductors of representations
Let L/K be a finite Galois extension with Galois group G. Let vL be the
normalized valuation of L and πL be a prime element of OL. Let f be the
residue degree of L/K. Let σ ∈ G and set

aG(σ) = −f · vL(σ(πL)− πL) if σ 6= 1

aG(1) = f
∑

σ 6=1

vL(σ(πL)− πL)

Then the function aG is the character of a linear representation ρ : G →
GL(V ) by [Serre1, VI.2 Thm 1].

Definition 9.2. The Artin conductor a(V ) of the presentation ρ : G →
GL(V ) is defined to be the number

1

Card(G)

∑
σ∈G

aG(σ)χ(σ−1),

where χ is the character of the presentation.

Let Gi be the i-th ramification group of L/K, of cardinality gi. Then

a(V ) =
∑
i≥0

gi

g0

dim(V/V Gi).

Example 9.3. Let T = ResL/K(Gm), then

c(T ) =
1

2
a(X∗(T )⊗Q) =

1

2
vK(∆)

where a(−) is the Artin conductor of a module over Q[Gal(Ksep/K)], ∆ is
the discriminant of L/K, and vK is the normalized valuation of K .

Proof. In Section 2, we saw that X∗(T ) = Z[G], where G = Gal(L/K).
Hence a(Q[G]) = fvL(D) = vK(∆), where D is the different of L/K. The
first equality is attained by [Serre1, IV. Prop 4] and the second one follows
from NL/K(D) = ∆, where NL/K is the norm of L/K.
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Let n = [L : K]. Assume G = {σ1, ..., σn} and {αi, i = 1, ..., n} is a base
of OL/OK , then the norm N of

∑
(xiαi) is a polynomial on the x′is. Let

A = OK [X1, ..., Xn, 1/N ] and let R be any OK-algebra. If f ∈ Hom(A,R),
then

∑
f(Xi)⊗ αi is a unit in R⊗OL, and vice versa. Hence Hom(A,R) '

(R ⊗ OL)× for any OK-algebra R, and ResOL/OK
(Gm) = Spec A. Similarly,

ResL/K(Gm,L)=Spec K[X1, ..., Xn, 1/N ] with the same polynomial N . And
the identity map A → A induce a unit

∑
j(Xjαj) in A ⊗ OL. Fix the iso-

morphism Ψ : T ⊗L → Gn
m,L which is associated to the ring homomorphism

Ψ# : L[Xσi
, X−1

σi
] → L[X1, ..., Xn, 1/N ] given by Xσi

→ ∑
j σi(αj)Xj .

The map Ψ induces an isomorphism (T ⊗ L)NR → Gn
m,OL

, and we define
the composition Θ of TNR ⊗ OL → (T ⊗ L)NR → Gn

m,OL
as following. Let

Θ# be the ring homomorphism associated to Θ. The map Θ# is defined as
following:

Θ# : OL[Xσi
, X−1

σi
] → A⊗OL, Xσi

→
∑

j

σi(αj)Xj.

Now, it is clear that c(T ) = vK(det(σi(αj))) = 1
2
vK(∆).

Proposition 9.4. The following two statements are equivalent:

(1) c(T1) = c(T2) for any tori T1, T2 over K such that T1 is isogenous to T2

over K.

(2) c(T ) = 1
2
a(X∗(T )⊗Q) for any torus T over K, where a(−) is the Artin

conductor of a module over Q[Gal(Ksep/K)].

Proof. Clearly (2) implies (1) by the Proposition 2.7.
Assume (1). We have seen (2) is true when T is an induced torus. Since

c(−) and a(−) are both additive with respect to fibre product. And by
Proposition 2.8, we have (2).

Let α : T1 → T2 be an isogeny over K. Let L be a common splitting field
of T1 and T2, then Ti ⊗ L ' X∗(Ti)⊗Gm,L and Ω1

Ti/K = X∗(Ti)⊗ Ω1
Gm,K/K .

We have the commutative diagram

ω((T2 ⊗ L)NR)

Φ∗T2
²²

(α⊗L)∗// ω((T1 ⊗ L)NR)

Φ∗T1
²²

ω(TNR
2 ⊗OL)

α∗⊗OL // ω(TNR
2 ⊗OL)

with injective vertical maps. When char(K) = 0, then the horizontal maps
are also injective.
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For any homomorphism g : M → N of Z-modules with finite cokernel,
we define

c(g) = length(N/g(M)).

Clearly
c(g ◦ h) = c(g) + c(h). Hence c(Φ∗

T2
) = c(Φ∗

T1
) if and only if c((α ⊗ L)∗) =

c(α∗ ⊗ OL). We have c(ΦTi
) = e(L/K)c(Ti), and c((α ⊗ L)∗) = vL(deg α),

where vL is the normalized valuation of L. Hence,

Proposition 9.5. c(T1) = c(T2) if and only if c(α∗) = vK(deg α), where vK

is the discrete valuation of K with vK(π) = 1, and α∗ : ω(TNR
2 ) → ω(TNR

1 ).

Corollary 9.6. If the residue field κ of O has characteristic 0, then c(T1) =
c(T2) for any two isogenous tori T1 and T2.

Proof. Let α : T1 → T2 be an isogeny. By Proposition 2.6, there exists an
isogeny β : T2 → T1, such that β ◦ α = [deg α]T1 , and α ◦ β = [deg α]T2 .
Since char(κ) = 0, deg α is invertible in OK , hence (α ⊗ L)∗ and α∗ ⊗ OL

are both isomorphisms. Then c(α∗) = c((α ⊗ L)∗) = c(α∗ ⊗ OL) = 0, thus
c(T1) = c(T2)

10 Isogeny invariance in characteristic 0

In this section, we will prove that c(T ) is invariant by isogeny when K has
characteristic 0. As we have already proved this when the residue field κ of
OK has characteristic 0, we can assume that charκ = p > 0.

Lemma 10.1. Let K be a field equipped with a discrete valuation and let T
be a torus over K. Let Ts be the maximal split subtorus of T , and let Ta be
the quotient torus T/Ts. Then the canonical sequence

1 // TNR
s

// TNR // TNR
a

// 1

is exact.

Proof. By [SGA 7 VIII. Cor. 6.6 ], we can extend the sequence

1 // Ts
// T // Ta

// 1

to an exact sequence of smooth group schemes

1 // TNR
s

// T ∗ // TNR
a

// 1 .
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Hence we have the commutative diagram

1 // TNR
s (Osh)

'
²²

// T ∗(Osh)

²²

// TNR
a (Osh)

'
²²

// 1

1 // Ts(K
sh) // T (Ksh) // Ta(K

sh)

Since T ∗ → Ta is smooth, and by [BLR. 2.2 Prop 14], the first low is exact.
Thus T ∗(Osh) = T (Ksh), and by [BLR. 7.1 Thm 1], we have T ∗ = TNR.

Theorem 10.2. Let K be a complete discrete valuation field with mixed
characteristic (0, p) and perfect residue field. Let T1, T2 be two tori over K,
and let α : T1 → T2 be a K-isogeny. Then two tori have the same invariant:

c(T1) = c(T2) =
1

2
a(X∗(T1)⊗Q).

Remark. I will restrict myself to the case when K is a finite extension of Qp.
For the general case, see the original paper of Ching-Li Chai and Jiu-Kang
Yu.

Proposition 10.3. Consider the pull-back map α∗ : ω(TNR
2 ) → ω(TNR

1 ).
There exists an element a ∈ OK, unique up to O×

K, such that α∗(ω(TNR
2 )) =

a · ω(TNR
1 ). Denote the rational number pordp(a) by degdiff (α). Then

degdiff (α) ≤ pordp(deg α).

In the above, ordp denotes the valuation on K with ordp(p) = 1.

Proof. Suppose K is a finite extension of Qp.
By lemma 10.1, we may assume that T1 and T2 are anisotropic over

the maximal unramified extension of K (replacing K by a finite unrmified
extension L/K if necessary). Then TNR

i (OL) = Ti(L) for any unramified
extension L/K, i = 1, 2.

Let TNR◦
i be the neutral component of the Néron model TNR

i , i = 1, 2.
Let ωi be an OK-generator of ω(Ti)

NR, i = 1, 2. Let ordK be the valuation
of K with ordK(π) = 1. Let M = Ker(α), the kernel of isogeny α. Consider
finite unramified extension L/K, and let qL be the cardinality of the residue
field κL of OL. Let |ωi| be the Haar measure on TNR

i attached to ωi, i = 1, 2.
Hence we have

|α∗ω2|(TNR◦
1 (OL)) = Card(M(L)

⋂
TNR◦

1 (OL)) · |ω2|(α(TNR
1 ))

By definition, for i = 1, 2, |ωi|(TNR◦
i )(OL) is equal to the number of κL-

rational points of the closed fibre of TNR◦
i , divided by qdim Ti

L . Since Ti
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is anisotropic, its closed fibre is a unipotent group over κL, and has the
same number of κL-rational points as Adim(Ti). Hence |ω1|(TNR◦

1 (OL)) =
|ω2|(TNR◦

2 (OL)), and

[TNR◦
2 (OL) : α(TNR◦

1 )] = Card(M(L) ∩ TNR◦
1 (OL)) · qordK(a)

L

Let CTi
be the group of geometric connected components of the closed

fibre of TNR
i , i = 1, 2. For sufficiently large finite unramified extension L of

K, we have

[TNR◦
2 (OL) : α(TNR◦

1 (OL))] =
Card(CT1)

Card(CT2)
[TNR

2 (OL) : α(TNR
1 (OL))].

On the other hand, by Tate’s formula for the Euler-Poincaré characteristic
for the Galois cohomologies of local fields, we have

Card(H1(L,M)) = q
ordK(deg α)
L · Card(M(L)) · Card(H2(L,M)).

By the local duality for Galois cohomology of local fields ([Milne, I, Cor.
2.3]), H2(L,M) is the dual of MD(L), where MD is the Cartier dual of the
finite group scheme M over K.

From the long exact sequence of Galois cohomologies attached to the
isogeny α, we get an injection from T2(L)/α(T1(L)) to H1(L,M). Thus we
have

Card(CT2)

Card(CT1)
Card(M(L)∩TNR◦

1 (OL))·qordK(a)
L ≤ q

ordK(deg α)
L ·Card(M(L))·Card(H2(L,M)).

As L tends to Ksh, we have qL → +∞. Hence, we get ordK(a) ≤ ordK(deg α).
Since ordK = ordK(p) · ordp, we have

degdiff (α) ≤ pordp(deg α).

Proof of Theorem 10.2. Choose an isogeny β : T2 → T1 such that β ◦ α =
[n]T1 . Let d = dim T1 = dim T2. Write n = pmu, where m = ordp(n). We
have

pmd = degdiff (β ◦ α) = degdiff (β) degdiff (α) ≤ pordp(deg α)pordp(deg β) = pmd.

So the equality holds throughout the above inequality. Hence by Proposition
9.5, we have c(T1) = c(T2) .

24



11 Isogeny invariance in characteristic p

—–Application of Deligne’s theory

Deligne’s theory
Let K be a complete local field with a perfect residue field κ. Let O be
the ring of integers of K, and let e ≥ 1. A Galois extension L/K is at
most e−ramified if Gal(L/K)e = 1, where e refers to the upper numbering
filtration of the ramifications groups. In other words, Gal(L/K) is a quotient
of Gal(Ksep/K)/ Gal(Ksep/K)e.

Deligne [Deligne] shows that Gal(Ksep/K)/ Gal(Ksep/K)e is canonically
determined by TreK = (O/pe, p/pe+1, ε), where p is the prime ideal of O, and
ε is the canonical map from p/pe+1 toO/pe. Denote Gal(Ksep/K)/ Gal(Ksep/K)e

by Γ(TreK).
Suppose TreK is isomorphic to TreK0 and L/K is at most e-ramified.

Then there exits a corresponding L0/K0 and (O,OL) ≡ (O0,OL0) (level e).
We can construct L0 as following:
Suppose φ : O/πe → O/πe

0 and η : p/pe+1 → p0/p
e+1
0 define the isomorphism

TreK → TreK0. Let πL be a prime element of OL satisfying the Eisenstein
equation

Xn +
n−1∑
i=0

a(i)X i = 0, a(i) ∈ p.

Let a
(i)
0 ∈ O0 be the lifting of η(a(i) mod pe+1). Then the equation

Xn +
∑n−1

i=0 a
(i)
0 X i = 0 defines the extension L0/K0.

Proposition 11.1. Let T be a torus over K, then the invariant c(T ) is
determined by TreK for e À 0.

Proof. Let e À N À 0 and Λ = X∗(T ) . Since (Tre(K), Γ = Γ(TreK), Λ)
determines (O/πe,OL/πe, Γ, Λ), hence determines the following morphisms
by Section 8: T 0

L ⊗ OL/πN → (T ⊗ L)NR ⊗ OL; Ri+1 ⊗ O/πN → Ri;
TNR ⊗O/πN → Rδ ⊗O/πN . The last morphism factors through the closed
immersion TNR⊗O/πN → T 0⊗O/πN , hence the morphism TNR⊗O/πN →
T 0 ⊗O/πN is determined by (TreK, Λ). Finally, we conclude that the mor-
phism TNR ⊗OL/πN → (T ⊗ L)NR ⊗OL/πN is determined by (Tre(K), Λ)
for e À N . Hence c(T ) is determined by (Tre(K), Λ) for e À N À 0.

Theorem 11.2. Assume that K is of equal-characteristic p and the residue
field of OK is perfect. Let T be a torus over K. Then c(T ) = 1

2
a(X∗(T )⊗Q).

In particular, it is invariant under isogeny.
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Proof. Since TNR ⊗ Ô ' (T ⊗ K̂)NR, we can assume K is complete.
By Deligne’s theory, choose a local field K0 of characteristic 0 such that

TreK0 ' TreK, then c(T ) = c(T0) = 1
2
a(X∗(T0) ⊗ Q). Since X∗(T0) is

isomorphic to X∗(T ) as Γ(TreK) ' Γ(TreK0)-module, we have a(X∗(T0) ⊗
Q) = a(X∗(T )⊗Q). Hence c(T ) = 1

2
a(X∗(T )⊗Q).

References

[BLR] S. Bosch, W. Lütkebohment, M.Raynaud, Néron Models,
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