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Introduction

In this thesis we study the basics of étale cohomology . It is a vast
and extremely rich area of mathematics, with plenty of applications . The
theory is originally developed by Alexander Grothendieck and his numerous
collaborators. Using this theory Deligne was able to prove the famous Weil
Conjectures.

My main aim in this report has been to develop and study the basic
theory. There are no new results here; all are known results, and I have
produced them the way I understood them.

I begin with the study of étale morphisms which are basic kind of mor-
phisms that we would always use. Next, I have developed the theory of
Abelian Sheaves, mostly in the context of étale topology. The last chapter
develops the cohomology. My study culminates, with a fundamental theorem
relating Čech cohomology and derived functor cohomology (originally due to
Michael Artin). But, the gates of the beautiful garden of étale cohomology
remains wide open.

I would like to thank Professor Qing Liu, for numerous helpful discussions
and I want to thank ALGANT for bringing me to this stage.
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Chapter 1

Étale Morphisms

All the schemes we consider in this report, would be locally noetherian and
all commutative rings are assumed to be noetherian.

1.1 Étale Morphisms

This section deals with fundamental properties of étale morphisms. These
are the maps which we would be basically concerned with in the whole of
this report.

Definition 1.1.1. A morphism f : X → Y , locally of finite-type is said to
be unramified at x if mx = myOX,x and k(y) is a finite separable extension
of k(x), where y = f(x).

If f is unramified at all x ∈ X, then it is said to be unramified mor-
phism. The next propositon allows us an alternative definition of unramified,
i.e in terms of differentials .

Theorem 1.1.2. Let f : X → Y be locally finite-type morphism. The fol-
lowing conditions are equivalent :

1. f is unramified ;

2. the sheaf Ω1
X/Y is zero.
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3. the diagonal morphism 4X/Y : X → X ×Y X is an open immersion.

Proof. (1) ⇒ (2) The stalk (Ω1
X/Y )x ' Ω1

OX,x/OY,f(x)
. Let us assume that

OY,f(x) = A and OX,x = B. We have a local morphism of local rings A→ B.
By, condition (1) we know that mAB = mB and B/mB is a finite separable
extension of A/mA. Denote, B

mAB
= B ⊗A A

mA
by B′ and A/mA by A′, then

by the base change property of the differentials we know that

Ω1
B′/A′ ' Ω1

B/A ⊗B B′ '
Ω1
B/A

mBΩ1
B/A

.

Since, B′/A′ is a separble extension so Ω1
B′/A′ = 0 and thus by Nakayama’s

lemma it follows that Ω1
B/A = 0

(2) ⇒ (3). We know that the diagonal is locally a closed immersion ; there
exists U ⊂ X×Y X, an open set such that4 : X → U is a closed immersion.
Let I be the sheaf of ideals on U defining X. Then, we know that Ω1

X/Y =

4∗(I/I2). So, by condition (2)

4∗(I/I2)x = (I/I2)x ⊗OU,x

OU,x
Ix

= 0

By, Nakayama’s lemma therefore Ix = 0 for all x ∈ X. So, I actually
vanishes on some open subset V of U containing X. This means, from the
defintion of I, that V is isomorphic (as schemes) to X. Hence, (3) holds
(3)⇒ (1) Given any point x ∈ X we shall show that f is unramified at x.
Thus, first of all we might assume that f−1(y) = X = specA is affine, where
y = f(x). Then, in view of next proposition (see below) we can work on the
geometric fibers, thus it is enough to show the result for f : X ′ → spec k,
where X ′ = spec(A⊗k(y) k) with k being algebraic closure of k(y).
Choose, some closed point x′ in X ′, then as k(x′) = k (since k is algebraically
closed ) , we have a section g : k → X ′ , with image of g being {x′}. Also,
we have g ◦ f ◦ g = g ◦ IdX′ . From, this it follows that φ ◦ i = 4 ◦ i (
just using the definition of fiber products and of 4), where φ := (IdX , hx′) :
X ′ → X ′ ×k X ′, i : x′ → X ′ and hx′ : X ′ → X ′ is the constant morphism
mapping everything to x′. Now, note that φ(z) ∈ 4(X ′) implies that z = x′.
So, φ−1(4(X ′)) = {x′}, as diagonal is an open subset of X, this implies that
{x′} is open. Thus, every closed point of X is also open, which means that
every prime ideal is maximal. So, X ′ is artinian, consisting of finite number
of points.
We also get that spec OX′,x′ → X ′ is an open immersion, as OX′,x′ is local
artinian. Now, the diagonal map restricted to this open set is still an open
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immersion. So, OX′,x′ ⊗k OX′,x′ → OX′,x′ is isomorphism. This, means that
dim kOX′,x′ = 1 and thus OX′,x′ = k. So, X ′ =

∐
spec k a finite sum, hence

using the next proposition (below) we get that f : X ′ → k is unramified.

Proposition 1.1.3. Let f : Y → X be a morphism of locally finite-type.
Then the following are equivalent

1. f is unramified ;

2. Xy → spec k(y) is unramified for all x ;

3. If we have spec K → Y for K , some separably closed field, then
X ×Y specK → specK is also unramified . This condition is referred
as f has unramified geometric fibers ;

4. ∀ y ∈ Y Xy has an open covering by spectra of finite separable k(y)−
algebras ;

5. ∀ y ∈ Y , Xy is a sum
∐

spec ki, where the ki are finite separable field
extensions of k(y) .(If f is of finite-type, then Xy itself is the spectrum
of a finite separable k(y)−algebra in (4), and Xy is a finite sum in (5);
in particular f is quasi-finite );

Proof. : (1)⇔ (2) If we have φ : B → A with q = φ−1(p), where p ∈ A and
q ∈ B, are prime ideals . Then we have a canonical isomorphism

(A⊗B k(q))p ≈ Ap ⊗Bq k(q)

Thus, it follows from this that , OX,x/myOX,x ≈ OXy ,x. So, if f is unrami-
fied, then OXy ,x is a finite separable extension of k(y), and vice-versa.

(2) ⇒ (4) Choose an open affine subset U = spec A in Xy. Consider a
prime ideal p ⊂ A then, condition (2) implies that Ap is a finite separable
extension of k(y). We, also have

k(p) ⊂ A/p ⊂ Ap/pAp = Ap
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Thus, A/p should also be a field, and hence p is a maximal ideal. Thus,
A is a noetherian ring , with dimension 0, hence it is an Artin ring. Thus,
A =

∏
Ap,with p running over the finite set spec A. Hence, we have (4)

Now, let us show that (3) implies (4).Denote X ×Y specK by Z. If z ∈ Z,
then, as K is separably closed, so by condition (3) we have K = OZ,z. So,
if spec K maps to y in spec B ↪→ Y and f−1(spec B) = ∪spec Ai, then
K = (Ai ⊗B K)q⊗K , where q ⊗K is a prime ideal in Ai ⊗B K. From, this
it follows that (Ai ⊗B k(y))q⊗k(x) is a separable extension of k(x). Now, as
f−1(y) ≈ Xy, so we can cover Xy by the affine open sets spec (Ai ⊗B k(y)).
Now, proceeding as in the previous proof, we get our required conclusion.
Now, (4)⇒ (5) ⇒ (3) and (5)⇒ (2), follows from the next lemma and argu-
ments very similar to (2)⇒ (4)

Lemma 1.1.4. Let k be a field and A ,an artinian k−algebra. of finite type
and k̄ be the algebraic closure of k. If A⊗k k̄ is reduced (no nilpotents), then
A is a finite product of finite separable field extensions of k .

Proof. From the fact that an artinian ring has only finitely many prime ideals
which are again maximal, we get that A =

∏
Ai, where Ai are artinian local

rings . Replacing A by Ai we may assume that A is local . Since the maximal
ideal of A is nilpotent, it is zero and thus A is a field which is finite over k.
Let α be an element of A and f(T ) its minimal polynomial over k. Then
k(α) ∼= k[T ]/f(T ) ; so, k(α)⊗k k̄ ∼=

∏
k̄[T ]/fi(T )ri where the fi(T ) are the

distinct linear factors of f(T ) . By hypothesis, k(α)⊗k k̄ is reduced. So, all
ri = 1; hence α is separable.

Definition 1.1.5. A morphism of schemes f : X → Y is said to be étale at
x ∈ X, if it is flat and unramified at x (so it is locally finite,too). f is said
to be an étale morphism, if it is étale at all the points .

Before, discussing étale morphisms in deatils, I would state (without
proof) here some properties of flat morphisms, that we would use (often
without explicit mention). For the proofs see for example [6]

• open immersions are flat , composition of flat morphism is flat, they
are stable under base change

• A morphism spec A→ specB is flat, iff B → A is flat
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• Again , let A → B is a ring homomorphism and M be a B-module.
Denote spec B by X and spec A by Y , the OX-module M̃ is flat over
Y if and only if M is flat over A.

• Let X be noetherian, and F a coherent OX-module. Then F is flat over
X iff it is locally free.

• Any flat morphism which is locally of finite-type is open.

• Let f : X → Y is locally of finite-type. The set of points x ∈ X such
that Ox is flat over Of(x) is open in X ; it is non-empty if X is integral

We have some common facts for étale morphisms , that we have for many
other kinds of morphisms.

Proposition 1.1.6. 1. Any open immersion is étale

2. The compostion of two étale morphisms is étale

3. étale morphisms are stable under base change

Proof. Since we already know the corresponding facts for flat morphisms,
so we need to check that these are true, for unramified morphims. If U → X
is an open immersion. Then, by definition, OU,x/mxOU,x = k(x), hence (1).
Next, suppose X → Y → Z, and say
x 7→ y 7→ z, then note that by definition mzOX,x = (mzOY,y) · OX,x = mx,
hence OX,x/mzOX,x is a finite separble extension of k(z). So, we have shown
(2).
Now, suppose we make a base change by Z of an unramified morphism X →
Y . Also, suppose that we have specK → Z → X, for some separably closed
field K. Then to show that X×Y Z → Z is unramified , it is enough to show
that (X×Y Z)×Z specK → specK is unramified because of proposition 1.1.3
. But (X ×Y Z) ×Z specK ' X ×Y specK and as X → Y is unramified,
using propostion 1.1.3 (5) again , we get our required result (3).

Finer results on local structure of étale morphisms can be described , if
we use the ’main theorem’ of Zariski . We state here a following variant of
that.
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Theorem 1.1.7. Let Y be locally noetherian scheme and let f : X → Y be
a quasi-projective morphism (e.g a morphism of finite type with X,Y affine
). Let Xy be a finite fiber. Then there exists an open neighborhood U of Xy

such that f |U : U → Y factors into an open immersion U → Z followed by
a finite morphism Z → Y .

Let us look at an example which is useful for us .

Example 1.1.8. Let A be a Noetherian ring, let P (T ) ∈ A[T ] be a monic
poylnomial, and let P ′(T ) denote its derivative. LetB = A[T, P ′(T )−1]/(P (T )).
ThenB is flat overA, since its the localization of the flatA-algebraA[T ]/(P (T )).
Let k(s) denote the residue field of a point s ∈ spec A ; then :

B ⊗A k(s) = k(s)[T, P̄ ′(T )−1]/(P̄ (T )),

here we have denoted by P̄ as the image of P in k(s)[T ]. Thus it is the
direct sum of the decomposition fields of the simple roots of P̄ (T ) . So,
either spec B is empty, or spec B → spec A is étale. In the latter case, the
morphism specB → spec A is called a standard étale morphism .

Proposition 1.1.9. Let Y be locally noetherian f : X → Y be a morphism
of finite type étale at a point x. Let y = f(x). Then, if necessary by
replacing X (respectively Y ) by an open neighborhood of x (respectively y),
there exists a standard étale morphism h : Z → Y and an open immersion
g : X → Z, such that h ◦ g = f .

Proof. Since we are dealing with a local property, we may assume that
X = spec B and Y = spec A are both affine. Also, as X is of finite
type over y, we may as well assume B is local and y the closed point of Y .
Now, by the preceding theorem we are able to assume that B is finite over
A. The fiber Xy is the disjoint union of spec k(x) and of an open subset
U . As, k(x) is separable over k(y), there exists a b̄ ∈ O(Xy) such that
k(x) = k(y)[b̄], b̄ 6= 0, and b̄|U = 0. Now, we can lift b̄ to an element
b ∈ B. Consider the subalgebra C := A[b] of B. Let m be the prime ideal
of B corresponding to the point x, and q = m ∩ C. We want to show that
Cq → B⊗C Cq is actually an isomorphism. Firstly, note that m is the unique
prime ideal of B lying over q because m does not contain b while any other
prime ideal of B lying over my all contain b. Thus, B ⊗C Cq is a local ring .
As C → Cq is flat, the morphism Cq → B⊗C Cq is finite and injective. Now,
(B ⊗C Cq) ⊗Cq k(q) = k(q). From Nakyama’s lemma now it follows that
Cq = B ⊗C Cq.
As B and C are finitely generated over A, the obtained morphism extends
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to a neighborhood of x. We may thus replace B by C, and suppose that B is
generated , as an A-algebra, by a single element b. Let n = dimk(y)B⊗Ak(y).
Then, we check that {1, b̄, ...., b̄n−1} is a basis of B ⊗A k(y) as k(y) vector-
space. Again from Nakayama’s lemma we obtain that {1, b, ...., bn−1} is a
system of generators for the A-module B¿ Thus, there exists a monic poly-
nomial P (T ) ∈ A[T ] of degree n which vanishes at b, and we have a surjective
homomorphism of A-algebras A[T ]/(P (T )) → B which sends T to b. The
image of b′ := P ′(b) in k(x) is non-zero beacuse k(x) is separable over k(y),
and hence x ∈ D(b′). Now, by replacing X by the open subset D(b′) if neces-
sary, we get a surjective homomorphism , D := A[T, P ′(T )−1]/(P (T ))→ B
Now, let n be the inverse image of m inD. We shall exhibit that ψ : Dn → Bm

is an isomorphism. First of all we already have psi⊗k(y) as an isomorphism.
let I = Kerψ. As, Bp is flat over A, and ψ is surjective , we have I⊗Ak(p) = 0,
thus by Nakayama’s lemma I = 0. Since, D is Noetherian, there exists an
open neighborhood U of x such that the closed immersion spec B → specD
is an isomorphism over U

1.2 Hensel Rings

Definition 1.2.1. A local ring A is said to be Henselian if the Hensel’s
Lemma holds for its residue field i.e if f is a monic polynomial with coefffi-
cients in A, such that f̄ ,the reduction modulo its maximal ideal, factors as
f̄ = g0h0 with g0 and h0 monic and coprime, then we can lift g0 and h0 to
get g and h such that f = gh.

In what follows A shall be always local, with residue field k := A/mA

Theorem 1.2.2. Let X = specA, and x denote its closed point. The follow-
ing are equivalent :

1. A is Henselian ;

2. any finite A-algebra B is a direct product of local rings B =
∏
Bi (

Bi ≈ Bmi
, where mi are the maximal ideals of B );

3. If f : Y → X is a quasi-finite and separated, then Y = Y0tY1t· · ·tYn
where f(Y0) does not contain x and Yi is finite over X and is the
spectrum of a local ring, i ≥ 1;
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4. if f : Y → X is étale and there is a point y ∈ Y such that f(y) = x
and k(y) = k(x), then f has a section s : X → Y

5. Consider the polynomial ring A[T1, ...., Tn] and let f1, ...., fn be some
elements there; if f̄i’s have a common zero a = (a1, ..., an) and the
jacobian, det((∂f̄i/∂Tj))(a) 6= 0 , then we can lift a to get a b in A such
that fi(b) = 0, i = 1, ..., n;

Proof. (1)⇒ (2) Note first that B is local if and only if B̄ := B/mB , since
any maximal ideal of B lies over m (going-up theorem ).
First we wrok out the case when B = A[T ]/(f), where f(T ) is a monic poly-
nomial. If f̄ is a power of an irreducible polynomial , then B̄ = k[T ]/(f̄) is
local and so is B. If not, then from our hypothesis B ≈ A[T ]/(g)×A[T ]/(h),
an we repeat this procedure to get the desired decomposition.
Now, if B is any arbitrary finite A-algebra and is not local, then we could
find a non-trivial idempotent ē in B such that ē is idempotent in B̄. Let f
be a monic polynomial such that f(e) = 0; and let φ : A[T ]/(f)→ B be the
homomorphism that send T to e. As, A[T ]/(f) is generated by a single ele-
ment (T̄ ). From the previous discussion, we get that there is an idempotent
α ∈ A[t]/(f) such that φ̄(α) = ē. So we have found a non-trivial idempotent
φ(α) = e′; B = Be′ × B(1 − e′). We can continue this process to get the
desired decomposition

(2)⇒ (3) From, the Zariski’s main theorem f factors as Y
f ′−→ Y ′

g−→ X, with
f ′ being open immersion and g is finite . Then from our hypothesis (2) ,
Y ′ =

∐
spec (OY ′,y), where y runs over the finitely many closed points of Y ′.

let Y∗ =
∐

spec (OY ′,y), where y runs over the closed points of Y ′, which lie
in Y . Y∗ is contained in Y , and is open and closed as well, in Y , since it is
so in Y ′. Write Y = Y∗ t Y0. Then, x /∈ f(Y0).

(3) ⇒ (4) When translated into the laguage of rings this just means that
A has no non-trivial étale ”neighborhood ” (this shall be cleared latter).
More prcisely, from (3) we are in the situation that A→ B is an étale local
homomoprhism , with k = K, where K is the residue field of B. But B is
a free A-module, and as K = B⊗Ak = k, it must have rank 1, and so A ≈ B.
(4)⇒ (5). LetB = A[T1, ..., Tn]/(f1, ...., fn) = A[t1, ..., tn] and let J(T1, ..., Tn) =
det(∂fi/∂Tj). From the hypothesis of (3) , we get a prime ideal p in B lying
over m such that the Jacobian , J(t1, ..., tn) is an unit in Bp. It now follows
that there exists a non-zero b ∈ B , such that J(t1, ..., tn) is an unit in Bb.
Writing Bb as B[s]/sb−1, and using the jacobian criterion, we get Bb is étale
over A. Now, apply (4) to lift the solution in kn to one in An.
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(5)⇐⇒ (1) This a well known equivalent form of Hensel’s Lemma in number
theory. We skip the proof.

Example 1.2.3. Any complete local ring is Henselian.

We list here a few more properties of Hensel rings . For proofs see [11]

• If A is Henselian, then so is any any finite local A-algebra B and any
quotient ring A/I

• If A is Henselian, then the functor B 7→ B ⊗A k, is an equivalence
between the category of finite étale A-algebra and the category of finite
étale k-algebra.

Now we define the notion of étale neighborhood of a local ring.

Definition 1.2.4. It is a pair (B, p) where B is an étale A-algebra and p

is a prime ideal of B lying over m, such that the induced homomorphism
k → k(p) is an isomorphism.

It turns out that the étale neighborhoods of A with connected spectra
form a filtered direct system . Denote (Ah,mh) := lim

→
(B, p). Then, Ah is a

local A-algebra with maximal ideal mh, and Ah/mh = k. Further, it satisfies
the following universal property: if φ : A→ E is a local homomorphism, with
E being Henselian, then φ factors through the canonical map i : A→ Ah.

Definition 1.2.5. Ah is called the Henselization of A.

A strictly Henselian ring is a local ring A, which is Henselian and its
residue field is separably algebraically closed. There is also the notion of
strict henselization of a ring (local) A. It is defined as Ash = lim

→
B, where

B’s are obtained from the following commutative diagrams :

B // ks

A

OO ??~~~~~~~

where, A→ B is étale and ks denotes a fixed separable closure of k. Ash has
no finite étale extensions at all. It also satisfies the universal property , as
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in the case of Ah (just replace there Henselian, by strict Henselian ) .

Now, let X be a scheme and x̄ → X be a geometric point of X , that is
x̄ := spec K → X, maps to x ∈ X where K is a separable closure of k(x).
An, étale neighborhood of x̄ is a commutative diagram

x̄

��?
??

??
??

?
// U

��
X

with U → X étale. Then, (OX,x)sh = lim
→

Γ(U,OU), where the limit is over

all étale neighborhoods of x̄. (OX,x)sh is also denoted by OX,x̄.
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Chapter 2

Abelian Sheaves

2.1 Basics

Consider a class E of morphisms of schemes satisfying the following properties
:

• all isomorphisms are in E

• E is closed under composition

• any base change of a morphism in E is in E

Note that the last two conditions imply, thatE is also closed under fiber
products .
A morphism in this class shall be referred to as E-morphism. The full sub-
category of Sch/X of X-schemes whose structure morphisms are in E shal
be denoted by E/X.

Some examples of such classes are like : (Zar), the class of all open im-
mersions , (ét) of all etale morphisms of finite-type,(fl) of all flat morphisms
that are of locally of finite-type.

We would see that E-morphisms are to play role of the open subsets in
an E-topology.
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Now Fix a base scheme X , a class E as above , and a full subcategory
C/X of Sch/X that is closed under fiber products and is such that, for any
Y −→ X in C/X and any E-morphism U −→ Y , the composite U −→ X is
in C/X.

Definition 2.1.1. : E − covering of an Object Y of C/X is a family

(Ui
gi−→ Y )i ∈ I of E-morphisms such that Y =

⋃
gi(Ui). The class of all

such coverings of all such in the E − topology on C/X. The category C/X
together with E-topology is the E − site. We shall write (C/X)E or simply
XE to denote this. By an étale site Xet we shall mean (ét/X)et, (this is also
called as small étale site ).

Definition 2.1.2. : A presheaf of abelian groups on (C/X)E is a con-
travariant functor (C/X)o → Ab. P (f) : P (U) → P ′(U) shall often be
denoted by resU ′,U

A morphism φ : P −→ P ′ of presheaves on (C/X)E is just a natural trans-
formation of the functors P and P ′.

The presheaves and presheaf morphisms over (C/X)E form an additive
category P(XE).

Example 2.1.3. :

1. Given any abelian group M , the constant presheaf PM is defined to
be the PM(U) = M , ∀ U ∈ (C/X)E, and PM(f) = 1M for all f and
PM(∅) = 0 (∅ denotes the empty scheme). We denote by Z, the
constant sheaf defined by the ring of integers.

2. The presheaf Ga is defind to be Ga = Γ(U,OU) regarded as an additive
group forall U ; for any morphism f : U −→ U ′, Ga(f) : Γ(U,OU) −→
Γ(U ′,OU ′) is the map induced by f .

3. The presheaf Gm has Gm(U) = Γ(U,OU)∗ for all U , and the obvious
restriction maps

Definition 2.1.4. : A presheaf P on XE is a sheaf if it satisfies :
(S1) if s ∈ P (U) and there is an E − covering (Ui → U) of U such that
resUi,U(s) = 0 for all i, then s = 0;
(S2) if (Ui → U)i∈I is a covering and the family (si)i∈I , si ∈ P (Ui) is such
that

resUi×UUj ,Ui
(si) = resUi×UUj ,Uj

(sj)

for all i and j , then there exists an s ∈ P (U) such that resUi,U(s) = si for
all i.
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In other symbols , P is a sheaf if the sequence

(S) P (U)→
∏
i

P (Ui) ⇒
∏
i,j

P (Ui×UUj)

is exact for all U in XE and for all coverings (Ui → U).

Note that in the case when the class E contains all open immersions,
for example the class (ét), then any open covering U =

⋃
Ui in the zariski

topology is also a covering in the E-topology. Thus a sheaf F on XE defines
by restriction, sheaves in the usual sense on all schemes U in C/X.

Following is an criterion which makes it easy to check if a presheaf is a
sheaf.

Proposition 2.1.5. Let P be presheaf for the etale site on X. Then P is a
sheaf if and only if it satisfies the following conditions :
(a) For any U in C/X, the restriction of P to the usual Zariski topology on
U is a sheaf;
(b) For any covering (U ′ → U) with U and U ′ both affine ,
P (U)→ P (U ′) ⇒ P (U ′ ×U U ′) is exact.

Proof. The necessity of the above conditions are obvious from the defintion
of sheaf.
For proving the sufficiency note that (a) implies that if a scheme V is a sum
V =

∐
Vi of subschemes Vi, then P (V ) =

∏
P (Vi) (as we have in the case

of Zariski topology). Thus we have that the sequence (S) arising from a
covering (Ui → U), is isomorphic to that coming from a single morphism
(U ′ → U), U ′ =

∐
Ui , which follows from the relation

(
∐

Ui)×U (
∐

Ui) =
∐

(Ui ×U Uj)

.

So, from (b) we get that (S) is exact for coverings (Ui → U)i∈I , in which
the indexing set I is finite and each Ui is affine , since then

∐
Ui is affine.

Now, the rest of the proposition is just diagaram chasing, so we skip it .
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Let us have a closer look at the étale site of a field. A presheaf P
on (spec k)et can be regarded as a covariant functor Et/k → Ab, where
Et/k deontes the category of étale k algebras . So, P would be a sheaf
iff P (

∏
Ai) = ⊕P (Ai) for every finite family (Ai) of étale k-algebras and

P (k′)
≈−→ P (K)Gal(K/k

′), for every finite Galois extension K/k′ of fields k′ of
finite degree over k.

Choose a separable closure ksep of k, and let G = Gal(ksep/k). Given a
sheaf P on (spec k)et, define

MP = lim
→
P (k′)

Where k′ runs through the subfields k′ of ksep, that finite and Galois over k..
Then MP is a discrete G-module. Conversely, if M is a discrete G-module,
we define

PM(A) = HomG(F (A),M)

where F (A) is the G-set Homk−alg(A, k
sep). Then PM turns out to be sheaf

on spec k. The functors P 7→ MP and M 7→ PM defines an equivalence
between the category of sheaves on (spec k)et and the category of discrete
G-modules.

2.2 Sheaves on Sites

Definition 2.2.1. : Given two sites (C′/X ′)E′ and (C/X)E . A morphism
π : X ′ → X of schemes defines a morphism of sites (C′/X ′)E′ → (C/X)E
if :
(a) for any Y in C/X, Y(X′) is in C′/X ′;
(b) for any E-morphism U → Y in C/X , U(X′) → Y(X′) is an E ′-morphism

Now, as we know that the base change of a surjective family of morphism
is again surjective , hence once we have π we also get a functor

π◦ = (Y 7→ Y(X′)) : C/X → C′/X ′

that take coverings to coverings. We shall often refer simply π, as a con-
tinuous morphism π : X ′E′ → XE.

14



Let π : X ′E′ → XE be continuous . We denote the direct image of a
presheaf P ′ on X ′E′ , by πp(P

′) := P ′ ◦ π◦. πp(P ′)(U) = P ′(U(X′). Clearly,
πp is a functor from P(XE)→ P(X ′E). Now, we have the following result of
category theory (we state it here without proof )

Proposition 2.2.2. Let C and C ′ be two small categories, and let p be a
functor C → C ′. Let A be a category that admits direct limits, denote [C,A]
and [C ′, A] for the category of funtors from C → A and C ′ → A. Then, the
functor

(f 7→ f ◦ p) : [C ′, A]→ [C,A]

admits a left adjoint.

Proof : see [7]

Immediately from this proposition, we get the inverse image functor πp :
P(XE)→ P(X ′E′), this is the left adjoint of πp.
More, explicitly (πpP )(U ′) = lim

→
P (U), which comes from the following

commutative diagram :

U ′

��

g // U

��
X ′

π // X

where the limit is over all U → X in (C/X)E. Note that this is dependent
on g (so that the U ′ ’s are not necessarily distinct ).

Let us consider an example where the description of πp is particularly
simple . Suppose that π : X ′ → X is in (C/X)E and C′/X ′ = ((C/X)E)/X ′.
In this case we have an initial object in the category over which we took the
limit (above), it is with g = idU ′ . Thus, we get Γ(U ′, πpP ) = Γ(U ′, P ), and
so in this πp simply restricts the functor P to the category C′/X ′.

Proposition 2.2.3. The functor πp is exact and πp is right exact . πp is
left exact , if we have finite inverse limits in (C/X)E , for example in Xet or
Xzar, the étale site or the zariski site.

Proof. : The first statement is clear from the definition. πp is right exact
beacuse arbitrary direct limits are right exact in Ab (the category of abelian
groups). Now, if finite inverse limits exists in (C/X)E, then it turns out
that (πpP )(U ′) = lim

→
P (U), is actually a cofiltered limit, and such limits are

exact in Ab. Hence, our result.
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Proposition 2.2.4. If F is a sheaf, then πpF is a sheaf.

Proof. : Let π be a morphism (C′/X ′)E → ((C/X)E). For any U in C/X
we write U ′ = U×XX ′. If (Ui → U) is a covering, then so also is (U ′i → U ′),
and so

F (U ′)→
∏
i

F (U ′i) ⇒
∏
i,j

F (U ′i ×U ′ U ′j)

is exact. But U ′i ×U ′ U ′j ≈ (Ui×U Uj)′, and so this sequence is isomorphic to
the sequence

(πpF )(U)→
∏
i

πpF (Ui) ⇒
∏
i,j

πpF (Ui ×U Uj),

this shows that πpF is a sheaf.

Now, recall the notion of geometric point which we defined at the end
of the 1 st chapter. Given a point x in a scheme X, henceforth x̄ would be
used to denote spec k(x̄), where k(x̄) is any separable closure of k(x) and
ux : x̄→ X, is the map induced by the inclusion k(x) ↪→ k(x̄).

Definition 2.2.5. If P is a presheaf on Xet . We define the stalk of P at x̄
as the abelian group, Px̄ := (upxP )(x̄) = lim

→
P (U), where the limit is over all

the étale neighborhoods of x̄ in X, i.e the U comes from the diagrams:

U

��

x̄oo

ux����
��

��
��

X

Before proceeding, further I would like to recall a basic defintion from
abelian category. In an abelian category A, we say that a sequence

0→M ′ →→M
α−→M ′′

is exact if the sequence of abelian groups

0→ Hom (N,M ′)→ Hom (N,M)→ Hom (N,M ′′)

is exact for all objects N in A. In this case we say M ′ is the kernel of α.
Similarly, a sequence

M ′ β−→M →M ′′ → 0
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is said to be exact if

0→ Hom (M ′′, N)→ Hom (M,N)Hom (M ′, N)

is exact for all N . In this case we say that M ′′ is the cokernel of β

The next theorem is the étale topology analogue of sheafification, in or-
dinary sheaf theory.

Theorem 2.2.6. For any presheaf P on XE there is an associated sheaf aP
on XE, and a morphism φ : P → aP , such that any morphism from P to
another sheaf F factors uniquely, through aP , i.e in terms of category theory
, the inclusion functor i : S(XE) → P(XE) has a left adjoint a : P(XE) →
S(XE). Further, the functor a is exact and preserves direct limits, while i
preserves inverse limits.

Proof : See [9] for a proof

Thus, now we define the category S(Xet) as the full subcategory of P(Xet),
whose objects are sheaves of abelian groups. Now, by a morphism of sheaves
we shall always mean a natural transformation of functors.

Given an abelian group Θ, there is a particular kind of skyscraper sheaf,
associated which shall be useful to us .We discuss it in brief. For an étale
map φ : U → X, define

Θx(U) = ⊕u∈φ−1(x)Θ.

Thus, Θx(U) = 0 unless x ∈ φ(U), in which case it is a sum of copies of
Θ indexed by points of U mapping to x. Θx is a sheaf, and its stalks are zero
except at x̄ (assuming, that x is a closed point of X), where the stalk is Θ.
If F is some sheaf on X and Fx̄ → Θ is a homomorphism of abelian groups ,
then by choosing an u ∈ φ−1(x) such that (U, u) is an étale neighborhood of
x, we obtain a map F (U)→ Fx̄ → Θ. Thus, combining it with the maps for
u ∈ φ−1(x), we get :

F (U)→ Θx(U) := ⊕uΘ

These maps are compatible with restrictions, hence we have a morphism of
sheaves F → Θx. And, it turns out that the following holds :

Hom(F,Θx) ' Hom(Fx̄,Θ)
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A locally surjective morphism φ : F → F ′ between sheaves ,is one, sta-
isfying the property that for every U and s′ ∈ F ′(U), there is a covering
(Ui → U)i, such that s|Ui is in the image of F (Ui)→ F ′(Ui), for each i.

Proposition 2.2.7. Let φ : F → F ′ be morphism of sheaves on Xet, then
the following conditions are equivalent :

1. F
φ−→ F ′ → 0 is exact, i.e φ is epimorphism.

2. φ is locally surjective .

3. for every geometric point x̄ of X, φx̄ : Fx̄ → F ′x̄ is surjecive.

Proof : (2)⇒ (1) Let ψ : F ′ → G be a map of sheaves such that ψ◦φ = 0,
we want to show that then ψ = 0.
Let s′ ∈ F ′(U) for some étale U → X. By assumption, there exists a covering
(Ui → U)i∈I and si ∈ F ′(U) such that φ(si) = s′|Ui. We have :

ψ(s′)|Ui = ψ(s′|Ui) = ψ ◦ φ(si) = 0, ∀ i

As, G is a sheaf, this gives us ψ(s′) = 0
(1)⇒ (3). We prove this by contradiction. So, suppose that φx̄ is not
surjective for some geometric point x̄ of X, and let Θ 6= 0 be the cok-
ernel of Fx̄ → F ′x̄. Let Θx be the sheaf defined as above, i.e. we have
Hom(G,Θx) = Hom(Gx̄,Θ), for any sheaf G on Xet. The map F ′x̄ → Θ
defines a non-zero morphism F ′ → Θx, whose composite with F → F ′ is 0
(since it corresponds to the composition Fx̄ → F ′x̄ → Θ). This means that

F
φ−→ F ′ → 0 is not exact.

(3)⇒ (2). Again let U → X be an étale, and ū be a geometric point of U .
The composite ū → U → X determines a geometric point x̄ of X. So by
our choice of x̄, it is clear that if F is a sheaf on Xet then Fū ' Fx̄. Thus
from our hypothesis it follows that Fū → F ′ū is surjective for evry geometric
point ū of U . Let s ∈ F ′(U) be given. So now, there exists an étale map
V → U whose image contains u, and which is such that s|V is in the image
of F (V ) → F ′(V ). Continuing this process for sufficiently many u ∈ U , we
obtain a desired covering.

Proposition 2.2.8. Let

0→ F ′ → F → F ′′

be a sequence of sheaves on Xet. The following are equivalent :
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1. the sequence is exact in the category of sheaves ;

2. the sequence
0→ F ′(U)→ F (U)→ F ′′(U)

is exact for all étale U → X ;

3. the sequence
0→ F ′x̄ → Fx̄ → F ′′x̄

is exact for all geometric points

Proof : From theorem 2.2.6, we know that i is left exact, this shows the
equivalence of (1) and (2).
Now, it is a standard fact from homological algebra that direct limits of ex-
act sequences of abelian groups are exact, and thus (2)⇒ (3). Using the fact
that s ∈ F (U) is zero if and only if sū = 0 for all geometric points ū of U ,
a similar argument as in the last proposition proves (3) ⇒ (2).

From the preceding theorem, we see that a sequence 0 → F ′ → F →
F ′′ is exact in S(Xet) iff it is so in P(XE). Also, from the propositions
thereafter , we deduce that, to form arbitrary inverse limits (for example,
kernels, products) in S(Xet) form the inverse limit in P(XE), and then the
resulting presheaf is a sheaf and is the inverse limit in S(Xet). To form
arbitrary direct limit (for example, cokernels, sums) in S(Xet) form the direct
limit in P(XE), and then the associated sheaf is the direct limit in S(Xet).
All, this lets us deduce that.

Proposition 2.2.9. The category of sheaves of abelian groups onXet, S(Xet),
is abelian.

Proof : We have shown the existence of kernels and cokernels for every
morphism , so we are just reduced to show that for any morphism φ : F → F ′

in S(Xet), the induced morphism φ̄ : coim(φ) → im(φ) is an isomorphism .
But, as they are isomorphic at stalks, hence at the level of morphism.

Example 2.2.10. The group scheme, Gm, which also defines a sheaf for the
étale topology, has a subsheaf µn , it is defined as µn(U) = the group of
n-th roots of unity in Γ(U,OU). Actually, it is the sheaf defined by the group
scheme, µn = spec Z[T ]/(T n − 1). Now, consider the Kummer sequence

0→ µn → Gm
(·)n

−−→ Gm → 0
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Here,(·)n : G(U) → G(U) is the n power map. Clearly, 0 → µn → Gm
(·)n

−−→
Gm is exact in P(XE), and so in S(XE). But, (·)n : G(U) → G(U), is not
necessarily surjective. But, if we consider a strict local ring A, where n is
invertible, then by Hensel’s lemma we have

0→ µn(A)→ A∗
(·)n

−−→ A∗ → 0

is exact, since A[T ]/(T n − a) is an étale algebra over A, ∀ a ∈ A∗, so from
proposition 2.2 we have that :

0→ µn → G)m
(·)n

−−→ Gm → 0

is an exact sequence in S(XE) (of course, assuming that characteristic of k(x)
does not divide n for any x ∈ X )

2.3 Direct and Inverse Images of Sheaves

Suppose we have a morphism of sites (C′/X ′)E′ → (C/X)E, defined by
π : X ′ → X

Definition 2.3.1. : The direct image of a sheaf F ′ on X ′E′ is π∗F
′ = πpF

′

and the inverse image of a sheaf F on XE is defined as π∗F = a(πpF ).

Note that π∗F
′ is a sheaf as we have seen earlier. Now , we also have the

following canonical isomorphisms

HomS(XE)(F, π∗F
′) ≈ HomP(X′

E′ )(π
pF, F ′) ≈ HomS(X′

E′ )(π
∗F, F ′)

which we get from the fact that πp is left adjoint of πp and the inclusion
functor i : S(XE)→ P(XE) has a as left adjoint. In particular, we get that
π∗ and π∗ are adjoint functors ;S(X ′E′) � S(XE). Thus π∗ is left exact and
commutes with inverse limits and π∗ is right exact and commutes with direct
limits.

Proposition 2.3.2. If πp is exact then so is π∗.

Proof. By definition we have

π∗ := S(X ′E′) ↪→ P(X ′E′)
πp

−→ P(XE)
a−→ S(XE)

Thus, in this case it right as well as left exact .
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Remark : Let π : X ′ → X be a morphism in (C/X)E, then

π∗ : S(Xet)→ S(X ′E′)

is just the restriction functor;

If we have continuous morphisms X ′′E′′ → X ′E′ → XE . We see that
(π′π)∗ = π′∗π∗ and π∗π′∗ is adjoint to π′∗π∗ which implies that π′∗π∗ = (π′π)∗.

Now let us examine the behaviour of π∗ and π∗ at the stalks, for the étale
topology.

Theorem 2.3.3. Let π : X ′ → X be a morphism (étale) of schemes. Then
we have the following:
(a) For any sheaf F on Xet and any x′ ∈ X ′, (π∗F )x̄′ ≈ F ¯π(x′) that is to say

that the stalk of π∗F at x̄′ is isomorphic to the stalk of F at π̄x′. So that in
particular , if π is the canonical morphism spec OX,x̄ → X, then we have

Fx̄ = (π∗F )x̄

(b) Let us suppose that π is quasi-compact. For x ∈ X and a fixed geometric
point x̄consider the canonical morphism f from X̃ := spec OshX,x → X, and

write X̃ ′ = X ′ ×X X̃ :

X̃ ′
f ′ //

π̃
��

X ′

π

��
X̃ f

// X

Then (π∗F )x̄ = Γ(X̃ ′, F̃ ) for any sheaf F on X ′ and its restriction F̃ = f ′∗F
to X̃ ′.

Proof. (a) Denote π(x′) by x. Assume x̄ = x̄′ (we can do this , since
by defintion x̄ is just spec k(x)sep) . Thus, we get a commutative diagram
(remember that ux map is just , the map induced by the inclusion k(x) ↪→
k(x)sep followed by the canonical map spec k(x)→ X ) :

X ′

π

��

x̄′ = x̄
ux′oo

ux
{{ww

ww
ww

ww
w

X
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Now by defintion of stalk, (π∗F )x̄′ = (u′∗x π
∗F )(x̄′)

but u∗x′π
∗ = ( πux′)∗ (by remark 3.2) and ux′π = ux

hence we get that (π∗F )x̄′ = Fx̄′ .

(b) To prove this first note that , f ′ being base change of an étale
morphism is étale” and f ′p here takes sheaves to sheaves. Thus, we have
here,

(f ′∗F )(X̃ ′) = lim
→
F (U ′)

where the limit runs over all commutative diagrams with U ′ → X ′ étale
morphism . But X̃ is a limit, X̃

U ′

��
X ′ X̃ ′

f ′oo

``BBBBBBBB

On the other hand from the definitions, we have

(π∗F )x̄ = lim
→
πpF (U) = lim

→
F (U(X′))

. Here the limit is over all U which comes from base extensions the diagrams
of the following kind :

U

��
X X ′

foo

``BBBBBBBB

Thus, in order to show that above two limits are same it is sufficient to
show that any morphism X̃ ′ → U ′ factors through X̃ ′ → U(X′) for some
étale U → X, beacuse it would show that the second set of diagrams that
we mentioned are cofinal in the first, hence the limits being equal. Now,
X̃ = lim

←
U , where U is affine and étale over X. As fiber products and inverse

limits commutes and π is also quasi-compact, we have X̃ ′ = X ′× (lim
←
U) =

lim
←
U(X′), where U(X′) is quasi-compact and the transition morphisms are all

affine . Now, if we use the next lemma , then as U ′ is of finite-type over X ′,
so X̃ ′ → U ′ factors through some U(X′) .

Lemma 2.3.4. Let X be a scheme and let Y = lim
←
Yi, where (Yi) is a filtered

inverse system of X-schemes such that the transition morphisms Yi → Yj are
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affine . Assume that the Yi are quasi-compact and let Z be a scheme that is
locally of finite-type over X . Then any X-morphism Y → Z factors through
Y → Yi for some i. In, particular we have, HomX(Y, Z) = lim

→
HomX(Yi, Z).

Proof. We do not prove the general case. The affine case is trivial , X =
spec A, yi = spec Bi, and Z = spec C, just says that if B = lim

→
Bi and

C is finitely generated over A, then any A-homomorphism C → B factors
through some Bi. For the general case see [5]

Corollary 2.3.5. 1. Let π : V → X be an open immersion, and F a
sheaf on Vet . If x ∈ V , and say π(z) = x . Then, (π∗F )x̄ = Fz̄

2. If ı : Z → X is a closed immersion, and F is a sheaf on Zet, then
(i∗F )x̄ = 0, if x /∈ i(Z) and is Fz̄ otherwise, where i(z) = x

Proof. 1. Note that we can find étale neighborhoods φ : U → X of x̄ such
that φ(U) ⊂ V and we have U = φ−1(V ) = U ×X V . Thus, the neigh-
bourhoods of the form UV are cofinal in the set of étale neighborhoods
of z̄. Hence, our result.

2. From, the notation in the theorem Z̃ is empty if x /∈ i(Z) and so from
part (2) of the theorem we get the result. If i(z) = x, then assuming
X is affine (we can, since we are working locally, at stalks ), we get
Z̃ = spec (OX,x̄/IOX,x̄) = spec OZ,z̄, where I is the sheaf of ideals
defining Z. Now, from part (1) of the theorem we get our result.

Relations with Subschemes

Let X be a scheme and consider the situation

Z
i−→ X

j←− U

where U is an open subscheme of X and Z it’s complement. Given a sheaf
F on Xet we have correspondingly, sheaves F1 = i∗F and F2 = j∗F on Z
and U , respectively. Now, Hom(j∗F, j∗F ) ≈ Hom(F, j∗j

∗F ), so we have a
canonical morphism F → j∗j

∗F corresponding to the identity morphism of
j∗F . By, applying i∗ to this, we get a canonical morphism φF : F1 → i∗j∗F2.
Thus. with every sheaf F ∈ S(Xet) we have associated a triple (F1, F2, φF ),
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it shall be shown that there is an equivalence of categories here.

We define a new category T(X) whose objects are triples (F1, F2, φ) with
F1 ∈ S(Zet), F2 ∈ S(Uet), and φ a morphism F1 → i∗j∗F2. Morphisms in

this category are defined as : (F1, F2, φ)
(ψ1,ψ2)−−−−→ (F ′1, F

′
2φ
′), with ψ1 being a

morphism from F1 → F ′1 and ψ2 is a morphism F2 → F ′2 and we should have
the following commutativity :

F1
φ //

ψ1

��

i∗j∗F2

i∗j∗(ψ2)
��

F ′1 φ′
// i∗j∗F

′
2

Theorem 2.3.6. The categories S(Xet) and T(X) are equivalent, under the
natural transformation F 7→ (i∗F, j∗F, φF )

Proof Consider ψinHomS(F, F
′). Then we get a morphism in T; (i∗(ψ), j∗(ψ))

from
(i∗F, j∗F, φF )→ (i∗F ′, j∗F ′, φF ′).

So, we get a canonical functor t : S(Xet)→ T(X).
Now, if (F1, F2, φ) ∈ Ob(T(X)), define s(F1, F2, φ) to be the categorical
fiber product of i∗F1 and j∗F2 over i∗i

∗j∗F2, so the diagram

s(F1, F2, φ) //

��

j∗F2

��
i∗F1

i∗(φ) // i∗i
∗j∗F2

is cartesian. Now, from a given morphism

(ψ1, ψ2) : (F1, F2, φ)→ (F ′1, F
′
2, φ
′)

we obtain a canonical morphism from the universal property of fiber products,

s(ψ1, ψ2) : s(F1, F2, φ)→ s(F ′1, F
′
2, φ
′)

it is induced by the maps, s(F1, F2, φ) → j∗F2
j∗ψ2−−→ j∗F

′
2 and s(F1, F2, φ) →

i∗F1
i∗ψ1−−→ i∗F

′
1. Thus, we get a functor s : T(X)→ S(Xet).

For any F ∈ S(Xet) the canonical maps F → i∗i
∗F and F → j∗j

∗F induce a

24



map F → st(F ). To show that F is actually isomorphic to the fiber product
in S(Xet), it suffices to show that the diagram :

F

��

// j∗j
∗F

��
i∗i
∗F // i∗i

∗j∗j
∗F

is cartesian. Since, we are in the étale topology, this is enough that this is
true at stalks. Now , if x ∈ U , then by corollary 3.4 ,the diagram we have in
our hand is :

Fx̄

��

// Fx̄

��
0 // 0

This is clearly cartesian. If x ∈ Z, then the diagram we have is :

Fx̄

��

// (j∗j
∗F )x̄

��
Fx̄ // (j∗j

∗F )x̄

This is cartesian too.
Now, again taking the stalks we see that , s and t induce inverse maps
on morphisms. So, we have shown that the two categories in question are
actually equivalent.

�

If Y is a subscheme of X and F is a sheaf on Xet, we say that F has its
support on Y if for any geometric point, Fx̄ = 0 where x /∈ Y

Corollary 2.3.7. If i :→ X is a closed immersion, then the functor i∗ :
S(Zet)→ S(Xet) induces an equivalence between S(Zet) and the full subcat-
egory of S(Xet) consisiting of the sheaves with support on i(Z)

Proof Note, that F has support in Z if and only if t(F ) has the form
(F1, 0, 0). Then, by applying the theorem, we get our result.
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Now, there are six functors which relates the categories S(Uet), S(Zet)
and S(Xet) :

i∗
oo

j!
oo

S(Zet)
i∗ // S(Xet)

i∗ // S(Uet)

i!
oo

j∗
oo

By the identification of S(Xet) with T(X), these functors are defined as

i∗ : (F1, F2, φ) 7→ F1 j! : F2 7→ (0, F2, 0)

i∗ : F1 7→ (F1, 0, 0) j∗ : (F1, F2, φ) 7−→ F2

i! : (F1, F2, φ) 7→ kerφ j∗ : F2 7→ (i∗j∗F2, F2, 1)

Following is a list of basic properties of these functors

• Any given functor functor is left adjoint to the one below it.

• i∗, i∗, j∗, j! are exact, j∗, i
! are left exact.

• i∗j! = i!j! = i!j∗ = j∗i∗ = 0

• i∗, j∗ are fully faithful, and F ∈ S(Xet) has support in Z if and only if
F ≈ i∗F1 for some F1 ∈ S(Zet).

• The functors j∗,j
∗, i!, i∗ maps injectives to injectives

Note that for the functor s that was defined earlier and a geometric point
x̄, we have s(F1, F2, φ)x̄ = (F1)x̄ if x ∈ Z and is equal to (F2)x̄ otherwise. In
view of this and theorem 3.4 , a sequence

(F ′1, F
′
2, φ
′)→ (F1, F2, φ)→ (F ′′1 , F

′′
2 , φ

′′)

in T(X) is exact if and only if the sequences

F ′1 → F1 → F ′′1 , F ′2 → F2 → F ′′2
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exact (just take stalks ).

Thus we get a canonical exact sequence :

0→ j!j
∗F → F → i∗i

∗F → 0

in S(Xet), which comes from the following exact sequence in T(X) :

0→ (0, j∗F, 0)→ (i∗F, j∗F, φF )→ (i∗F, 0, 0)→ 0

For more details of these discussions, see [9]

Remark Let j : U → X be an object in C/X for some arbitrary site
(C/X)E. We shall exhibit that there is a left adjoint functor for j∗.

Let p be the functor C/U → C/X, p(Y
g−→ U) = (Y

jg−→ X). Then the
functor jp : P(X) → P(U), that we had defined earlier is idnetical to the
functor

(f 7→ f ◦ p) : [C/X,Ab]→ [C/U,Ab]

. According to proposition 2.1 , we know that this has a left adjoint,written
as j! : P(U) → P(X). This is the extension by zero functor . Explicitly, if
P ∈ P(U) and V ∈ C/X, then j!P (V ) = lim← P (V ′) , where V ′ comes from
the following kind of commutative diagrams,

V ′

��

Voo

��
U // X

The limit breaks up into

(j!P )(V ) =
⊕

φ∈HomX(V,U)

lim−−→
S(φ)

P (V ′)

where S(φ) is the set of squares with (V → V ′ → U) = φ. Since S(φ)
contains a final object (the square with V ′ = V ), we see that

(j!P )(V ) =
⊕

φ∈HomX(V,U)

P (Vφ)

where Vφ is the object V
φ−→ U of C/U . Thus j! is exact. If j is an open

immersion, then (j!P )(V ) = P (V ) if V → X factors through U and is zero
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otherwise.
On, sheaves j! is defined to be the composite

S(X) ↪→ P(X)
j!−→ P(U)

a−→ S(U).

This is clearly adjoint to, j∗, the restriction functor. Being a left adjoint, it
is automatically right exact, and it is left exact because it is a composite of
left exact functors. If, we wrok on the étale site, and j is an open immersion,
then we are back to our old extension by zero, defined before.
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Chapter 3

Cohomology

3.1 Preliminaries on homological algebra and

cohomology

All the categories in this section are assumed to be abelian and the functors
are assumed to be additive.

In an abelian category A an object I is said to be injective, if the functor
M 7→ HomA(M, I) is an exact functor. A is said to have enough injectives
if, for every object M in A has a monomorphism into an injective object .
Now, I’m listing here some propeties of the right derived functors Rif : A→
B, i ≥ 0 for a given left exact functor f : A → B between two abelian
categories, with A having enough injectives. (the proofs are skipped )

1. R0f = f

2. Rif(I) = 0 for i 0, if I is an injective object

3. Then we have the notion of connecting morphisms. For any exact
sequence 0 → M ′ → M → M ′′ → 0 in A, there are morphisms δi :
Rif(M ′′)→ R(i+ 1)f(M ′), i ≥ 0, such that the sequence

· · · → Rif(M)→ Rif(M ′′)
δi

−→ Ri+1f(M ′)→ Ri+1f(M)→ ··

4. The association in (3)of the long exact sequence to the short exact
sequence is functorial.
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An object M in A is said to be f − acyclic if Rif(M) = 0 for all i 0.
Further if we have an injective resolution of M

0→M → N0 → N1 → N2 → ··

With N i being f − acyclic objects then the objects Rif(M) are canonically
isomorphic to the cohomology objects of the complex

0→ fN0 → fN1 → fN2 → ··

To know more about the derived functors see for example [7].

Definition 3.1.1. Let A and B be two abelian categories. A (covaraint)
δ − functor from A to B is a collection of functors T = (T i)i>0, together
with a morphism δi : T i(A′′) → T i+1(A′) for each short exact sequence
0→ A′ → A′′ → 0, and each i > 0, such that :

1. For each short exact sequence as above , there is a long exact sequence

0→ T 0(A′)→ T 0(A)→ T 0(A′′)
δ0−→ T 1(A′)→ · · ·

· · · → T i(A)→ T i(A′′)
δi

−→ T i+1(A′)→ T i+1(A)→ · · ·

2. For each morphism of one short exact sequence (as above) into another
0→ B′ → B → B′′ → 0, we have the following commutative diagram

T i(A′′)
δi

//

��

T i+1(A′)

��
T i(B′′)

δi
// T i+1(B′)

Definition 3.1.2. The δ-functor T = (T i) : A→ B is said to be universal
if, given any other δ-functor T ′ = (T ′i) : A → B, and given any morphism
of functors f 0 : T 0 → T ′0, there exists an unique sequence of morphisms
f i : T i → T ′i for each i > 0, starting with given f 0, which commutes with
the δi for each short exact sequence.

Definition 3.1.3. An additive functor F : A→ B is said to be effaceable
if for each obeject A of A, there is a monomorphism u : A → M , such that
F (u) = 0. It is called coeffaceable if for each A there exists an epimorphism
u : P → A such that F (u) = 0.
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Theorem 3.1.4. Let T = (T i)i>0 be a covariant δ− functor from A to B .
If T i effaceable for each i > 0, then T is universal.

Proof. For proof see [1]

Corollary 3.1.5. Assume that A has enough injectives. Then for any left
exact functor F : A → B, the derived functors (RiF )i>0 form a universal
δ-functor with F ∼= R0F . Coversely, if T = (T i)i>0 is any universal δ-functor,
then T 0 is left exact, and the T i are isomorphic to RiT 0 for each i > 0.

Proof. If F is left exact functor, then the (RiF )i≥0 form a δ-functor . For
some object M in , let u : M → I be a monomorphism into an injective
object. Then RiF (I) = 0 for i > 0, so RiF (u) = 0 (see above). Thus RiF
is effaceable for each i > 0 . So, from the theorem it follows that (RiF ) is
universal.
Conversely, if we are given an universal δ-functor T , we have from the def-
initions T 0 as a left exact functor. As A has enough injectives, the derived
functors RiT 0 exists. Now, as (RiT 0) is also universal and R0T 0 = T 0, we
obtain that RiT 0 ∼= T i for each i

We need the following lemma from category theory .

Lemma 3.1.6. (a) Product of two injective objects is injective
(b) If f : A → B has an exact left adjoint g : B → A , then f preserves
injectives.
Thus, if π is a continuous morphism of sites, then π∗ preserves injectives,
when π∗ is exact.

Proof. (a) Using the fact that functor Hom(M, ·) commutes with products
and that, for a given functors (additive) F and G, X 7→ F (X) ⊕ G(X) is
exact if and only if F and G are exact.
(b) Consider an injective object I in A. As g is the left adjoint of f so
by defintion, we have M 7→ HomB(M, fI) is same as the functor M 7→
HomA(gM, I). But, by hypothesis HomA(�, I) and g are both exact and
hence their composite.

Proposition 3.1.7. S(Xet) has enough injectives .
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Proof. Let ix : x̄ → X be a geometric point of X. Now, the category of
sheaves on (x̄et) is ismorphic to Ab, ( see chpater 2 after proposition 1.5 ,
F 7→ F (x̄) gives an equivalence ). Thus, it has got enough injectives. Let
F ∈ S(Xet), for each x ∈ X consider an embedding i∗x → I ′x , where I ′ is

an injective object in S(x̄). Now, define F ∗ =
∏
x∈X

ix∗i
∗
xF , then we have a

canonical injection F ↪→ F ∗, and from the definitions of direct and inverse

images, we also get the injection F ∗ ↪→
∏
x∈X

ix∗Ix . By the previous lemma

ix∗F and
∏
x∈X

ix∗Ix are both injective, thus the composition of these two

monomorphisms gives us the required embedding in the category S(Xet)

Spectral Sequences

Let M be an object of an abelian category A. A (decreasaing) filtration of
M is a family (F p(M))p∈Z of subobjects F p(M) of M , such that F p+1(M) ⊂
F p(M), for all p. We define grp(A) = F p(M)/F p+1(M). Given objects M
and N with filtrations, a morphism u : M → N is said to be compatible with
the filtrations if u(F p(M)) ⊂ F p(B) ∀ p ∈ Z.

Definition 3.1.8. : A spectral sequence in the abelian category A is a system

E = (Ep,q
r , En)

consisting of the following data

1. Ep,q
r are objects of A, for all p, q ∈ Z and r ≥ 2

2. morphisms dp,qr : Ep,q
r → Ep+r,q−r+1

r in A such that dp+r,q−r+1
r ◦dp,qr = 0.

3. There are isomorphisms αp,qr : ker(dp,qr )/im(dp−1,q−r+1
r )

≈−→ Ep,q
r+1,

4. En are filtered (decreasing) objects of A. And we may assume that
for every fixed pair (p, q), the morphisms dp,qr and dp−r,q−r+1

r vanish for
sufficiently large r. By the previous condition it follows that Ep,q

r are
independent of r, for sufficiently large r, so we denote this object by
Ep,q
∞ . Another assumption that we consider is that for every n ∈ Z ,

32



F p(En) = En for sufficiently small p and F p(En) = 0 for sufficiently
large p.

5. there are isomorphisms βp,q : Ep,q
∞

≈−→ grp(E
p+q).

We shall denote such a spectral sequence by Ep,q
2 ⇒ Ep+q. If Ep,q = 0

for p < 0 and q < 0, then it is said to be cohomological spectral sequence.
Following are some important propeerties of such a spectral sequence .

Proposition 3.1.9. 1. There exists morphisms En,0
2 → En and En →

E0,n
2 , that are functorial. They are called edge morphisms

2. The sequence

0→ E1,0
2 → E1 → E0,1

2
d2−→ E2,0

2 → E2

is exact

3. If the terms Ep,q
2 vanish for 0 < q < n. Then Em,0

2
∼= Em for m < n

and the following sequence is exact

0→ En,0
2 → En → E0,n

2 → En+1,0
2 → En+1

2

Thus, if Ep,q
2 = 0 for all q > 0, we have

En,0
2
∼= En

for all n. The spectral sequence is then said to be trivial

Proof. For proofs of these see for example [3].

Theorem 3.1.10. Let A, B and C be abelian categories, where A and B
have enough injectives . Let f : A→ B and g : B→ C be left exact functors.
If f maps injective objects to g-acyclics, then there is a cohomological spectral
sequence :

(Rpg)(Rqf)(A)⇒ Rp+q(gf)(A)

for any object A of A. In particular, there is an exact sequence

0→ R1g(fA)→ g(R1f)A→ R2g(fA)→ · · ·.

Proof . [7]
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Definition 3.1.11. : We, know that the functor Γ(X,−) : S(XE) → Ab
with Γ(X,F ) = F (X), is left exact and so we can consider its right derived
functors:

RiΓ(X,−) = H i(X,−) = H i(XE,−)

The group H i(XE, F ) is called the ith cohomology group of XE with values
in F .
We have a few more important functors here.

1. For any fixed sheaf F0 on XE, the functor F 7→ HomS(F0, F ) is left ex-
act , hence has right derived functors RiHomS(F0,−) = ExtiS(F0,−).

2. For any U → X in C/X, the right derived functors for F 7→ F (U) :
S(XE) → Ab is denoted by H i(U, F ). We shall see that it is same as
H i(U, F |U).

3. From ...we know that i : S(XE)→ P(XE) is left exact. Its right derived
functors are denoted as H i(F ).

4. Given any continuous morphism π : X ′E′ → XE, we can define the right
derived functors Riπ∗ of the functor π∗ : S(X ′E′)→ S(XE) are defined.
The sheaves Riπ∗F are called higher direct images of F

5. If we consider π∗ : S(XE) → S(X ′E′) corresponding to some continu-
ous morphism π : X ′E′ → XE, then the canonical map H0(X,F ) →
H0(X ′, π∗F ) induces , maps on the higher cohomology groups by the
universality of the derived functors.

A natural question that might arise now, is what is the relation between
étale cohomology theory and Zariski Cohomology (i.e the ordinary sheaf co-
homology for schemes ). A partial answer to this, is the following :

Theorem 3.1.12. (Leray spectral seqence ) The continuous morphism π :
Xet → XZar, of the étale site on X into the Zariski site, gives rise to the
spectral sequence :

Hp(XZar, R
qπ∗F )⇒ Hp+q(Xet, F )

where F is a sheaf on Xet.
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Proof. We want to apply theorem 3.1.10 here to the functors Γ(XZar,−) and
π∗. As, from the definition of right derived functors, we know that injective
sheaves on XZar are Γ(XZar,−) acyclic, so we are just reduced to show that
π∗ maps injective sheaves to injectives. But, note that π∗ is exact, here as
we are working on the Zariski site (see 2.3.2 and 2.2.3).That means π∗ has
an exact left adjoint and hence it preserves injectives.

In general we would have Rqπ∗ 6= 0, so that the spectral sequence is
non-trivial.

Cohomology with support

Consider the following

Z
i−→ X

j←− U = X − Z

Here, i is a closed immersion and j is an open immersion. The group

Γ(X, i∗i
!F ) = Γ(Z, i!F ) = Ker(F (X)→ F (U))

is called the group of sections of F with support on Z. The functor F 7→
Γ(Z, i!F ) is left exact, and its right derived functors are called the cohomolgy
groups of F with support on Z.

Proposition 3.1.13. For any sheaf on Xet there is a long exact sequence,

0→ (i!F )(Z)→ F (X)→ F (U)→ ···Hp(X,F )→ Hp(U, F )→ Hp+1
Z (X,F )→ ···

Proof. Given any sheaf F on Xet we have the following exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0

If we consider the constant sheaf Z then we have the exact sequence

0→ ZU → Z→ ZZ → 0

here we have denoted j!j
∗Z by ZU and i∗i

∗Z by ZZ . From this we obtain a
long exact sequence for the functor Exti(−, F )

· · · → Extp(Z, F )→ Extp(ZU , F )→ Extp+1(ZZ , F )→ · · ·.
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(Note, this comes from a general statement in homological algebra, i.e if
we are given a short exact sequence B′ � B � B′′ , then for any object A
we take an injective resolution I ., then we get an exact sequence

0→ Hom (B′′, I .)→ Hom (B, I .)→ Hom(B′, I .)→ 0

, From this we obtain a long exact sequence for the Ext- functor in second
variable. )
Now, the functor Γ(X,−) : S(XE) → Ab is representable by the constant
sheaf Z which implies that Extp(Z, F ) = Hp(X,F ). We also know that
HomS(X)(j!j

∗Z, F ) ≈ HomS(U)(Z, j∗F ). Thus,by the definition of Ext func-
tor, we get that Extp(ZU , F ) is actually the pth right derived functor for

F 7→ HomS(U)(Z, j∗F ) = Γ(U, F |U).

Since, j∗ sends injectives to injectiives and is also exact (see, chapter 2 )

, we get that Extp(ZU , F ) = Hp(U, F |U). There are also canonical ismor-
phisms

HomS(X)(ZZ , F )S(Z)(Z, i!F ) ≈ H0
Z(X,F ).

Which means that Extp(ZZ , F ) ≈ Hp
Z(X,F ). Thus from the exact se-

quence for the Ext we get our required exact sequence for the cohomology
groups with support on Z.

Now, we shall discuss excision in the setting of étale site.

Proposition 3.1.14. Let Z ⊂ X and Z ′ ⊂ X ′ be closed subschemes, and
let π : X ′ → X be an étale morphism, such that restriction of π to Z ′

is an isomorphism onto Z and π(Z ′C) ⊂ ZC . Then, the canonical map
Hp
Z(X,F ) → Hp

Z′(X ′, π∗F ) is an isomoprphism for all p ≥ 0 and all sheaves
F on Xet.

Proof. In order to make the required conclusion we need to show two things;
firstly show that the functors H0

Z(X,−) is isomorphic to H0
Z′(X ′, π∗−) and

secondly Hp
Z′(X ′, π∗−) is an universal δ-functor .

Since, here π ∈ (C/X)E , so π∗ is exact and thus composing it with the
δ-functor Hp

Z′(X ′,−) we again get a δ-functor. Further, here we also know
that π∗ preserves injectives , hence Hp

Z′(X ′, π∗I) = 0 if I is an injective sheaf
. This means that Hp

Z′(X ′, π∗−) is effaceable, thus in the light of theorem
3.1.4, we see that Hp

Z′(X ′, π∗−) is an universal δ-functor.

36



Now , we exhibit the first claim
From the hypothesis of the proposition, we have :

U ′
j′ //

��

X ′

π

��

Z ′
i′oo

≈
��

U
j // X Z

i
oo

Here we have denoted ZC by U and Z ′C by U ′. Here i, j, i′ and j′ are the
canonical immersions. Now, π : X ′ → X is an étale morphism, so the functor
π∗F is just the restricted sheaf F |X ′. Thus, we get a commutative diagram
.

0 // H0
Z(X,F ) //

��

Γ(X,F ) //

��

Γ(U, F )

��
0 // H0

Z′(X ′, F |X ′) // Γ(X ′, F ) // Γ(U ′, F )

Note that the first arrow comes from the the fact that i!F (Z) = Ker(F (X)→
F (U)). Now, we do a little diagram chasing. Suppose t ∈ H0

Z(X,F ) maps
to zero in H0

Z′(X ′, F |X ′) . Then by exactness at Γ(X,F ) we get that t|U = 0
(here we regard t as an element of Γ(X,F ) ) and by the commutativity of
the first square we get t|X ′ = 0. Now, note that in our étale site, U → X
and X ′ → X is a covering of X . Thus, by property of sheaf, t = 0. This
proves the required injectivity.

Now, let t′ ∈ H0
Z′(X ′, F |X ′) and look at it as an element of Γ(X ′, F ).

Note that by the commutativity of the second square, t′ ∈ Γ(X ′, F ) and
0 ∈ Γ(U, F ) agree on X ′ ×X U = π−1(U) = U ′, thus we are just reduced
to verify that restrictions of t′, under the two maps X ′×X X ′ ⇒ X ′ actually
coincide. For a point in U ′ ×X U ′ , both the restrictions are zero. The two
maps , Z ′×X Z ′ ⇒ Z ′ are same , hence restrictions coincide. But, X ′×X X ′
is a disjoint union of U ′ ×X U ′ and Z ′ ×X Z ′. Thus, by property of sheaf t′

and 0 come from a section t ∈ Γ(X,F ), which again should lie in H0
Z(X,F )

because of the exactness at Γ(X,F ). Thus, the required surjectivity.
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3.2 Čech Cohomology

Let U = (Ui
φi−→ X)i∈I be covering for X in the E-topology on X. For any

(p+ 1)-tuple (i0, ...., ip) with the ij in I, denote Ui0 ×X ....×X Uip = Ui0....ip .
The projection map

Ui0...ip → Ui0..îj ..ip = Ui0 × · · ·Uij−1
× Uij+1

× · · · × Uip

induces restriction morphism

P (Ui0..îj ..ip)→ P (Ui0...ip)

We shall denote this by resj. Now, we define a complex C .(U, P ) of abelian
groups as follows. For each p > 0, let

Cp(U, P ) =
∏

i0<...<ip

P (Ui0,...ip)

Thus an element α ∈ Cp(U, P ) is determined by giving an element αi0,...ip ∈
P (Ui0,...,ip) for each (p + 1)-tuple i0 < .. < ip of elemnts of I. We define the
coboundary maps dp : Cp(U, P )→ CP+1(U, P ) by setting

(dpα)i0,...ip+1 =

p+1∑
j=0

(−1)jresj(αi0..îj ..ip).

As usual we have dp+1 ◦ dp = 0, Thus, we have a complex and the
cohomology groups of this complex are called the Čech cohomology groups,
Ȟp(U, P ), of P with respect to the covering U of X.

Lemma 3.2.1. Given X ,U and P as above, we have Ȟ0(U, P ) ∼= Γ(X,P ).

Proof. By defintion Ȟ0(U, P ) = Ker(
∏
P (U)

d0−→
∏
P (Uij)). If t ∈

∏
P (Ui)

, then for each i < j, (dt)ij = ti − tj, where ti, tj denotes the ith and jth

co-ordinates of t. Thus, dt = 0 implies that ti and tj agree on Ui × Uj. So,
from the sheaf axioms it follows that Ȟ0(U, P ) = Γ(X,P ).

If we consider any other covering, say V = (Vj
ψj−→ X)j∈J , then we say

that it is a refinement of U, if we have maps τ : J → I such that for each j, ψj
factors through φτj that is we have ψj = φτjηj for some ηj : Vj → Uτj. These

38



induces a cochain map between the two complexes, σ : C ·(U, P )→ C ·(V, P ).
For, t = (ti0...ip) ∈ Cp(U, P ), it is given by :

(σpt)j0....jp = resηj0×ηj1×....×ηjp(tτj0....τjp).

Taking cohomology, we get a map

ρ(V,U, τ) : Ȟp(U, P )→ Ȟp(V, P ).

For another similar map τ ′ and a family (η′j) from J → I, we get a ρ′(V,U, τ ′).
But, this map is actually same as ρ(V,U, τ) because there exists a homotopy
∆ : C ·(U, P )→ C ·(V, P ), which is given on each term by

(∆pt)j0....jp−1 =
∑

(−1)rresηj0×...×(ηjr,η′jr)×...×η′jp−1(tτj0....τjrτ ′jr...τ ′jp−1)

Note here also that if we are given any third covering W, which is a refine-
ment of V, then we have ρ(W,U) = ρ(W,V)ρ(V,U). This allows us to define
Čech cohomology groups of P over X, as Ȟp(XE, P ) = lim−→ Ȟp(U, P ), the
limit being taken over all coverings U of X.

Remark : The category of coverings of X need not be filtered in general.
So, we can actually consider the direct limit over the category of coverings
modulo an equivalence relation: U ≡ V, if each is a refinement of the other.
Call this category as IX , then I is actually filtered because any two coverings
U = (Ui) and V = (Vi) has a common refinement (Ui×Vi). According to our
discussion above the functor U 7→ Ȟp(U, P ) , then factors through I, and so
we take limit over this category.

If U → X is in C/X and P is a presheaf on (C/X)E, then analo-
gusly we may define the cohomology groups Ȟp(U/U, P ) and Ȟp(U, P ) =
lim−→ Ȟp(U/U, P ), where U now denotes a covering of U . From the definitions

we also have Ȟp(U, P ) isomorphic to Ȟp(U, P |U)

We also have a canonical long eaxct sequence of Čech cohomology groups
corresponding to any given short exact sequence of presheaves , 0 → P ′ →
P → P ′′ → 0 and a covering U of X. The sequence

0→ Cp(U, P ′)→ Cp(U, P )→ Cp(U, P ′′)→ 0
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is exact for all p, being a product of exact sequence of abelian groups. This
gives us a long exact sequence of complexes

0→ C ·(U, P ′)→ C ·(U, P )→ C ·(U, P ′′)→ 0,

This gives rise to the connecting homomorphisms δ : Ȟp(U, P )→ Ȟp+1 that
satisfy the following properties

• The δ-s gives rise to a long exact sequence of cohomology groups

0→ Ȟ0(U, P ′)→ · · · → Ȟp(U, P )→ Ȟp(U, P ′′)
δi

−→ Ȟp+1(U, P ′)→ · · ·.

• For a morphism of the short exact sequence of presheaves into another,
0→ Q′ → Q→ Q′′ → 0, we have the following :

Ȟp(U, P ′′)
δ //

��

Ȟp+1(U, P ′)

��

Ȟp(U, Q′′)
δ // Ȟp+1(U, Q′)

This, shows that Ȟp(U,−) is actually an exact δ-functor. Similarly Ȟp(U/U,−)
is also a δ-functor.

Since we are working with abelian groups, we can also pass on to the direct
limit over all coverings over X (strictly speaking, over IX). The exactness is
preserved there and so we also have another long exact sequence :

0→ Ȟ0(U, P ′)→ · · ·Ȟp(U, P )→ Ȟp(U, P ′′)→ Ȟp+1(U, P ′)→ · · ·

Theorem 3.2.2. The functors Ȟp(U/U,−) (p > 0), are effaceable .

Proof. . We want to show here that Ȟp(U/U, P ) = 0 for any injective
presheaf P . So, we wish to show that the cochain complex∏

P (Ui)
d1−→

∏
P (Ui0i1)

d2−→ · · ·

is exact. For a given W → U in C/X. Consider the presheaf ZW on X
which we have defined previously. (see remark at the end of chapter 2, our
ZW here corresponds to j!Z there. )
Recall, that it satisfies Hom(ZW , P

′) = P ′(W ) for any presheaf P ′ ∈ P(X),
and ZW (V ) =

⊕
HomX(V,W ) Z . Thus, we shall show that∏
Hom(ZUi

, P )→
∏

Hom(ZUi0i1
,P )→ · · ·
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=
Hom(

⊕
ZUi

, P )→ Hom(
⊕

ZUi0i1
, P )→ · · ·is exact

As, P is an injective presheaf, so it is enough to show that⊕
ZUi
←

⊕
ZUi0i1

← · · ·

is an exact sequence of presheaves (note here that the maps are determined
by the maps of the previous line ), i.e. we must show that for each V ∈ C/X.

(∗)
⊕

ZUi
(V )←

⊕
ZUi0i1

(v)← · · ·

.

Further we have that

HomX(V, Ui0....ip) =
⊔

φ∈HomX(V,U)

(Homφ(V, Ui0)× .......×Homφ(V, Ui0....ip))

Denote S(φ) = ti HomX(V, Ui). Then, we get⊔
i0....ip

HomX(V, Ui0....ip) =
⊔

φ∈HomX(V,U)

(S(φ)× .....× S(φ))

.

So, from the definitions,
⊕

ZUi0....ip
(V ) is the free abelian group on

⊔
φ∈HomX(V,U)(S(φ)×

....× S(φ)). So, (*) can now be written as

⊕
φ∈HomX(V,U)

(
⊕
S(φ)

Z←
⊕

S(φ)×S(φ)

Z← .....)

.

But, the complex inside the bracket is homotopically trivial, i.e. we have
a contracting homotopy given by

ni0....ip 7→ ns,i0...ip

Where s is any fixed element of S(φ) and ni0...ip means n in the (i0...ip)-
th component of

⊕
S(φ)p+1 Z. Presence of contracting homotopy implies the

sequence is exact.

Corollary 3.2.3. The functors Ȟp(U/U,−) are the derived functors for H0

.
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Proof. We have already seen that Ȟp(U/U,−) (p ≥ 0) form a δ-functor, thus
in the light of corollary 3.1.5 , we get our result.

Corollary 3.2.4. In the case of sheaves the functors Ȟp(X,−) coincides
with Hp(X,−), iff for any short exact sequence of sheaves there is a func-
torially associated long exact sequence of Čech cohomology groups. For ex-

ample if for any surjection of sheaves F → F ′′, the map lim−→
U

∏
F (Ui0...ip)→

lim−→
U

∏
F ′(Ui0...ip) is surjective (limit is over all coverings U of X), then our

hypothesis is satisfied.

Proof. . (⇒) This just follows from the definition of Hp(X,−).
(⇐) Let F be an injective sheaf . Take a short exact sequence of presheaves

0→M ′ →M →M ′′ → 0

As a : P(Xet)→ S(Xet) is an exact functor,so

0→ aM ′ → aM → aM ′′ → 0 is exact

Now, from the isomorphism Hom(P, iF ) ≈ Hom(aP, F ) we have

0→ Hom(M ′′, iF )→ Hom(M, iF )→ Hom(M ′, iF )→ 0

is exact . Thus, an injective object in the category S(Xet) is also injective in
P(Xet).
Now we already know that H0(X,−) = Ȟ0(X,−). Thus the hypothesis of
the theorem holds in this case for the category S(Xet). Hence Hp(X,−) =
Ȟp(X,−).
For the last statement , if we are given a short exact sequence of sheaves
0→ F ′ → F → F ′′ → 0, by the given condition we have

0→ Cp(U, P ′)→ Cp(U, P )→ Cp(U, P ′′)→ 0

is exact. Then we consider the exact sequence for the corresponding complex
and get a long exact sequence of Čech cohomology groups. Passing onto the
direct limit, we see that our hypothesis is satisfied.

Corollary 3.2.5. Let U → X be in C/X; let U be a covering of U , and let
F be a sheaf on XE. There are spectral sequences

Ȟp(U/U,Hq(F ))⇒ Hp+q(U, F ),

Ȟp(U,Hq(F ))⇒ Hp+q(U, F ).

42



Proof. : Here we want to use theorem 3.1.10,to the pair of functors Ȟ0(U/U,−),
i : S(XE) → P(XE) and Ȟ0(U,−), i. Now, we know that Ȟ0(U/U, P ) ∼=
P (U) if P is any presheaf. So, from the definitions we have

Ȟ0(U/U, iF ) = H0(U, F ) = Ȟ0(U, iF )

As i preserves injectives we want to check if injective presheaves are acyclic
for Ȟ0(U/U,−) and Ȟ0(U,−). This follows form the theorem.

Now we will examine a case where čech cohomology group and étale
cohomolgy groups coincide. In what follows we shall assume that X is a
quasi-compact scheme, such that every finite subset of X is contained in
an open affine subset . For, example we might consider a quasi-projective
scheme over an affine scheme.

We need the following lemma

Lemma 3.2.6. LetA be a ring, p1, ....., pr be prime ideals ofA, andAshp1
, ...., Ashpr

denote the strict heneselizations of the local rings Ap1 , ...., Apr . Then, every
map Ashp1

⊗A ....⊗AAshpr
−→ B, which is faithfully flat and étale has a section

, B −→ Ashp1
⊗A ....⊗A Ashpr

.

Proof : [10],

Theorem 3.2.7. Let X be as above and let F be a sheaf on Xet. Then, we
have canonical isomorphisms Ȟp(Xet, F ) ∼= Hp(Xet, F ) for all p.

To prove this we need to prove another lemma .But, first we fix some
notations. If Y is a X − scheme then Y n will denote the n − th fibered
power over X. Given an r tuple of geometric points (p) = (p1, ...pr) of X
(not necessarily distinct ), we will denote by X(p) the strict localizations Xpi

of X at pi.

Lemma 3.2.8. Let X be as above in the theorem. Let U → X be étale and
of finte type, and let p1, ....., pr be geometric points of X. Let W → Un×X(p)
be an étale cover. Then there exists an étale surjective map U ′ → U , such
that the canonical X −morphism
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U ′n ×X(p) → Un ×X(p)

factors through W .

Proof. For n ≥ 1 we proceed by induction. Let V → U be étale and of finite
type, but not necessarily surjective, and let the map V n×X(p) → Un×X(p)

factor through W , (we might take V to be empty for instance ). Let q
be a geometric point of U which is not covered by V , note that Xq ≈ Uq
(since, U → X is étale ). Now, (V t Xq)

n is a sum of schemes of the form
V i × Xj

q (i + j = n). Now, we have a canonical map V i × Xj
q × X(p) →

U i × U j × X(p) = Un × X(p) (since we have canonically Xj
q = U j

q → U j ).
Deonte V i × Xj

q × X(p) by W1 and Un × X(p) by W0. Then the pullback
W ×W0 W1, of W to V i ×Xj

q ×X(p) satisfies the original hypothesis on W .
So, by induction we see that for i < n , we have V ′ an étale cover of V such
that , V ′i×X(p′) → V i×X(p′), factors through W ×W0W1, where (p′) denotes
the r + j-tuple (q, ...q, p1, ..., pr).

so we have the following diagram :

V ′i ×X(p′)

&&NNNNNNNNNNN

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

**UUUUUUUUUUUUUUUUUUUUU

W ×W1
//

��

W1

��
W // W0

This means that for i < n if we replace V by this V ′ then , W1 → W0

factors through W . For i = n , the map factors by assumption. Thus we
may assume that (V tXq)

n ×X(p) → Un ×X(p) factors through W .
Now, by definition Uq = Spec lim

→
Γ(Y,OY ), where the limit is over all

étale neighborhoods Y of q. Now, here the affine étale neighborhoods are
clearly cofinal in the set of all étale neighborhoods. So, that we may write
Uq = lim

←
Spec Ai where Yi := Spec Ai are affine étale neighborhoods of q.

Thus Xq is a limit of schemes Yi étale over U , then by lemma 2.3.4 and the
fact that inverse limits commute with fiber products, we get some Yi, such
that the map (V t Yi)n × X(p) → Un × X(p) also factors through W . By
proceeding in this way we obtain a sequence of maps V1 → U , V2 → U ,....
whose images in U form a strictly increasing sequence of open subsets of U .
As U is a noetherian topological space ,after finitely many steps we obtain a
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surjective map.

For the case n = 0 we proceed as follows. The images of p1, .....pr are
contained in some open affine subset specA of X, thus we have

X(p) = Spec (Ashp1 ⊗A · · ·A
sh
pr

)

. So, by the previous lemma W → X(p) has a section .

Now, we have all the ingredients to prove the theorem 2.7. We want to use
the spectral sequence of proposition 3.2.5 , i.e Ȟp(X,Hq(F ))⇒ Hp+q(U, F ).
Now, it follows from proposition 3.1.9 that to show our required result , it
enough to show that Ep,q

2 := Ȟp(X,Hq(F )) = 0 , for all q > 0. But to show
this , it suffices to prove that for every étale cover U of X, and every class
α ∈ Hq(Un, F ), there is a cover U ′ → U such that α 7→ 0 in Hq(U ′n, F ).
Since cohomology is locally trivial, there is a cover W → Un for which α is
zero in Hq(W,F ). Then, apply the theorem with no points .

Alternatively, we could use corollary 3.2.4. Let F → F ′′ be a surjective
map of sheaves in S(Xet) and let Y be in Xet. Note that since X and Y are
both quasi-compact so the coverings U → Y consisting of single morphism is
cofinal in the set of all coverings of Y . Let s′′ ∈ F ′′(Un). By the surjectivity
of sheaves, we have an étale covering W → Un and a s ∈ F (W ) such that
s 7→ s′′|W . Thus, according to our previous lemma , we have a covering
U ′ → U such that U ′n → Un factors through W . So, s|U ′n 7→ s′′|U ′n, then
from corollary 2.4. our result follows.

�

45



Bibliography

[1] Grothendieck Alexander. Sur quelques points d’algèbre homologique.
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