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Preface

Computing eddy currents (i.e. computing line integrals of a particular closed 1-form) on a

surface involve solving some differential equations over it. Approximating the surface with a

simplicial complex appears to be most convenient for computational purposes. There are many

methods to address the problem, but most of them tend to be computationally demanding.

A method is presented in article [5] which involves the use of the different definitions of the

homology and cohomology of the surface together with duality theorems (Poincaré’s and de

Rham’s duality theorems), to transform the problem of solving a differential equation into one

of solving a system of linear equations. It turns out that, in order to efficiently compute the

line integrals, Poincaré’s duality theorem and de Rham’s theory will play an important role.

The thesis aims to introduce the mathematical tools used on the modelling and to explain the

mathematical aspects of the method proposed.

In chapter one, an introduction to homology and cohomology of a chain complex is presented.

In chapters two and three, the singular chain related to a topological space is introduced,

which induces the homology and cohomology of a topological space. Simplicial complexes

are introduced so that the homology and cohomology triangulable topological spaces can be

handled with simplicial homology and cohomology.

Afterwards, CW complexes are introduced and the construction of the dual block complex of a

simplicial complex is explained. Although dual block complex is not always a CW complex, the

homology of the dual block complex is constructed in the same way as that of a CW complex,

and hence it represents the homology of the topological space.

In chapter four, duality theorems are introduced as well. De Rham’s complex is introduced
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allowing one to use differential forms to represent cochains. Poincaré’s duality theorem is also

introduced using the dual block complex, a complex with the same homology of that of a CW

complex. This idea will be useful to explicitly compute the Poincaré dual of a simplex belonging

to a simplicial complex.

At last, in chapter five, the problem with Eddy currents is exposed and the method presented

in [5] is explained.
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Chapter 1

Homology and Cohomology Groups

1.1 Chain Complexes

Definition The pair K = {Kn, ∂n} consisting of a sequence of abelian groups Kn and a

sequence of group homomorphisms ∂ : Kn → Kn−1 (n ∈ Z) satisfying the condition

∂n−1 ∂n = 0 ∀n ∈ Z

is called a chain complex. The elements of Kn are called n-chains and the homomorphisms

∂n the n-th boundary operator.

The subgroups ker ∂n and im ∂n+1 of Kn are denoted Zn(K) and Bn(K) respectively and its

elements are called n-cycles and n-boundaries respectively.

The quotient groups

Hn(K) :=
Zn(K)

Bn(K)

are called the n-th homology group of K. Notice that they are well defined due to the

condition over the boundary operators.

Definition Let K = {Kn, ∂n} and K ′ = {K ′n, ∂′n} be two chain complexes. A sequence of

homomorphisms fn : Kn → K ′n satisfying the commutative conditions

fn−1 ∂n = ∂′n fn

is called a chain map and it s denoted as f : K → K ′.
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Due to the commutative conditions, fn(Zn(K)) ⊂ Zn(K ′) and fn(Bn(K)) ⊂ Bn(K ′) are satis-

fied. Hence, a chain map induces an homomorphism

f∗ : Hn(K)→ Hn(K ′)

given by

zn +Bn(K) 7→ f(zn) +Bn(K ′)

Definition Let f, g : K → K ′ be two chain maps. A sequence of homomorphisms

Dn : Kn → K ′n+1

satisfying

fn − gn = ∂′n+1Dn +Dn+1 ∂n

for all n is called a chain homotopy between f and g and is denoted as D : K → K ′.

Two maps f, g : K → K ′ are said to be chain homotopic if a chain homotopy exists between

them.

Proposition 1.1.1 Let f, g : K → K ′ are chain homotopic then

f∗ = g∗ : Hn(K)→ Hn(K ′)

for all n.

1.2 Homology Groups with Arbitrary Coefficients

Proposition 1.2.1 Let K = {Kn, ∂n}, L be chain complexes, f, g : K → L chain maps,

D : K → L a chain homotopy between f and g and G an abelian group. Then:

The induced sequence

K ⊗G := {Kn ⊗G, ∂⊗1G}

is a chain complex.



Chapter 1. Homology and Cohomology Groups 3

The induced sequence of homomorphisms

fn ⊗ 1G : Kn ⊗G→ Ln ⊗G,

denoted as f ⊗ 1G : K ⊗G→ L⊗G, is a chain map.

Then induced sequence of homomorphisms

Dn ⊗ 1G : Kn ⊗G→ Ln+1 ⊗G

is a chain homotopy between f ⊗ 1G and g ⊗ 1G.

Lemma 1.2.2 If K ′′ is a chain complex of free abelian groups, then any short exact sequence

0→ K ′ → K → K ′′ → 0 is split exact.

Lemma 1.2.3 Let K and K ′ be chain complexes of free abelian groups, and let f : K → K ′

be a chain map such that f∗ : Hn(K) → Hn(K ′) is an isomorphism for all n. Then, for any

abelian group G, the induced chain map f ⊗ 1G : K ⊗G→ K ′ ⊗G also induces isomorphisms

(f ⊗ 1G)∗ : Hn(K ⊗G) ≈ Hn(K ′ ⊗G)

for all n.

1.3 Cochain Complexes

Definition The pair of sequences K = {Kq, δq} of abelian groups Kq and homomorphisms

δq : Kq → Kq+1 satisfying the condition

δq+1δq = 0

for all q ∈ Z is called a cochain complex. The homomorphisms δq are called coboundary

operators.

The subgroups ker δq and im δq−1 of Kq are denoted Zq(K) and Bq(K) respectively and its

elements are called q-cocycles and q-coboundaries respectively

The quotient groups

Hq(K) :=
Zq(K)

Bq(K)

are called the q-th cohomology group of K.
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Definition Let K = {Kq, δq} and K ′ = {K ′q, δ′q} be two cochain complexes. A sequence of

homomorphism f q : Kq → K ′q satisfying the commutative conditions

f q+1δq = δ′qf q

is called a cochain map and it is denoted as f : K → K ′.

Due to the commutative conditions, f q(Zq(K)) ⊂ Zq(K ′) and f q(Bq(K)) ⊂ Bq(K ′q) are satis-

fied. Hence, a chain map induces an homomorphism

f ∗ : Hq(K)→ Hq(K ′)

given by

zq +Bq(K) 7→ f(zq) +Bq(K ′)

1.4 Cohomology Groups with Arbitrary Coefficients

Proposition 1.4.1 Let K = {Kn, ∂n}, L be chain complexes, f, g : K → L chain maps,

D : K → L a chain homotopy between f and g and G an abelian group. Then:

The induced sequence

Hom(K,G) := {Hom(Kn, G),Hom(∂n, 1G)}

is a cochain complex, where Hom(∂n, 1G) is the homomorphism mapping and element f : Kn →
G to 1−1

G ◦ f ◦ ∂n : Kn+1 → G.

The induced sequence of homomorphisms

Hom(fn, 1G) : Hom(Kn, G)→ Hom(Ln, G),

denoted as Hom(f, 1G) : Hom(K,G)→ Hom(L,G), is a cochain map.

Then induced sequence of homomorphisms

Hom(Dn, 1G) : Hom(Kn+1, G)→ Hom(Ln, G)

is a cochain homotopy between Hom(f, 1G) and Hom(g, 1G).



Chapter 2

Singular Homology and Cohomology of a

Topological Space

2.1 Simplexes on Rn

Definition A subset A of Rn is called an affine space if for every pair of points x, y contained

in A the line determined by them is contained in A.

An affine combination of points p0, p1, . . . , pm in Rn is a point

x = t0p0 + t1p1 + . . .+ tmpm

for some coefficients t0, t1, . . . , tm such that t0 + t1 + . . .+ tm = 1.

A subset C of Rn is called a convex set if for every par of points x, y contained in A the

segment determined by them is contained in C.

A convex combination of points p0, p1, . . . , pm in Rn is a point

x = t0p0 + t1p1 + . . .+ tmpm

for some coefficients t0, t1, . . . , tm such that t0 + t1 + . . .+ tm = 1 and 0 ≤ ti ≤ 1.

Let X ⊂ Rn. The affine space (resp. convex set) spanned by X is the smallest affine space

(resp. convex set) containing X. The convex set spanned by X is denoted [X].

Theorem 2.1.1 Let p0, p1, . . . , pn ∈ Rn. Then [p0, p1, . . . , pn] is exactly the set of all convex

combinations of p0, p1, . . . , pn.
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Definition An ordered set of points {p0, p1, . . . , pm} ⊂ Rn is said to be affine independent

if {p1 − p0, p2 − p0, . . . , pm − p0} is a linearly independent subset of Rn.

Theorem 2.1.2 Let p0, p1, . . . , pm be and affine independent subset of Rn and A the affine

set spanned by it. Then, ∀x ∈ A there exists a unique (m+1)-tuple (t0, t1, . . . , tm) satisfying∑
ti = 1 and

x =
m∑
i=1

tipi

This (m+1)-tuple is called the barycentric coordinates of x.

Definition Let {p0, p1, . . . , pm} be and affine independent subset of Rn. The convex set

spanned by it is called the m-simplex with vertices p0, p1, . . . , pm. It is denoted by [p0, p1, . . . , pm].

The barycentric coordinates of elements of [p0, p1, . . . , pm] are all non-negative. The element

with barycentric coordinates (1/(m+ 1), . . . , (1/(m+ 1)) is called the barycentre.

For each vertex pi, the (m− 1)-simplex [p0, . . . , p̂i, . . . , pm] is called the face opposite pi. The

union of all its faces is called the boundary of [p0, p1, . . . , pm].

Definition The n-simplex ∆n = [e0, e1, . . . , en] spanned by the origin and the elements of the

canonical basis of Rn is called the standard n-simplex.

An ordering eπ0, eπ1 . . . , eπn of the vertices {e0, e1, . . . , en} is called an orientation on ∆n. Two

orientations eπ0, eπ1 . . . , eπn and eρ0, eρ1 . . . , eρn are said to be equivalent if ρ−1π is an even

permutation.

2.2 The Singular Complex of a Topological Space

Definition Let X be a topological space. A continuous map σ : ∆n → X is called a (singular)

n-simplex in X.

Definition Let X be a topological space. For each n ≥ 0, let Sn(X) be the free abelian group

with basis all singular n-simplexes in X. Let S−1(X) = 0. The elements of Sn(X) are called

n-chains in X.
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Definition The map εni : ∆n−1 → ∆n given by

εni (t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti+1, . . . , tn−1)

in barycentric coordinates, is called the i-th face map.

Let σ : ∆n → X be a n-simplex and denote pi = σ(ei).

The n− 1-simplexes σεni are called the face opposite pi.

The n− 1 chain given by

∂n σ =
∑n

i=0(−1)iσεni , n > 0

∂0 σ = 0.

is called the boundary of σ.

Theorem 2.2.1 For each n ≥ 0, there exist a unique homomorphism ∂ : Sn(X) → Sn−1(X)

extending the boundary definition over the n-simplexes above.

Theorem 2.2.2 For all n ≥ 0, ∂n ∂n+1 = 0.

Definition The pair of sequences (Sn(X), ∂n) form a chain complex, called the singular chain

complex of X. The group of n-cycles is denoted Zn(X) and the group of boundaries Bn(X).

Its homology group is called the singular homology and denoted Hn(X).

The pair of sequences (Hom(Sn(X),Z),Hom(∂n, 1Z)) form a cochain complex, called the sin-

gular cochain complex of X. The group of n-cocycles is denoted Zn(X) and the group of

boundaries Bn(X). Its cohomology group is called the singular cohomology and denoted

Hn(X).

2.3 Universal Coefficients Theorems

Theorem 2.3.1 (Universal Coefficients Theorem for Homology)
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• For every space X and every abelian group G, there are exact sequences for all n ≥ 0

0 −−−→ Hn(X)⊗G α−−−→ Hn(X;G) −−−→ Tor(Hn−1(X), G) −−−→ 0

where α : (clsz)⊗ g 7→ cls(z ⊗ g) and Tor represents the torsion part.

• This sequence splits; that is,

Hn(X;G) ≈ Hn(X)⊗G⊕ Tor(Hn−1(X), G)

See [1] Theorem 9.32.

Theorem 2.3.2 (Universal Coefficients Theorem for Cohomology)

• For every space X and every abelian group G, there are exact sequences for all n ≥ 0

0 −−−→ Ext(Hn−1, G) −−−→ Hn(X;G)
β−−−→ Hom(Hn(X), G) −−−→ 0

where β is given by β(cls(ϕ) = φ′ and φ′(zn +Bn) = φ(zn).

• This sequence splits; that is, there are isomorphisms for all n ≥ 0,

Hn(Hom(C∗, G)) ≈ Hom(Hn(C∗), G)⊕ Ext(Hn−1(C∗), G)

See [1] Theorem 12.11.

2.4 Relative Homology

Definition Let (X,A) be a pair of topological spaces such that A ⊆ X and it has the subspace

topology, and S∗(X), S∗(A) their respective singular chain complexes. The groups Sn(X)
Sn(A)

form

a chain complex. Its homology groups Hn(S∗(X)/S∗(A)) are called the relative homology

groups and denoted Hn(X,A).

Theorem 2.4.1 If A is a subspace of X, there exists a long exact sequence

. . . −−−→ Hn(A) −−−→ Hn(X) −−−→ Hn(X,A)
∂−−−→ Hn−1(A) −−−→ . . .
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The proof is based on applying the snake lemma to the short exact sequences 0 → Hn(A) →
Hn(X)→ Hn(X,A)→ 0.

Definition The group of relative n-cycles mod A is defined as

Zn(X,A) = {c ∈ Sn(X) : ∂ c ∈ Sn−1(A)}

The group of relative n-boundaries mod A is defined as

Bn(X,A) = {c ∈ Sn(X) : c = c′ + ∂ d, for some c′ ∈ Sn(A)d ∈ Cn+1(X)}

Theorem 2.4.2 For all n ≥ 0,

Hn(X,A) ≈ Zn(X,A)/Bn(X,A)
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Chapter 3

Simplicial Homology and Cohomology

3.1 Simplicial Complexes

Definition Let s = [v0, . . . , vq] be a q-simplex in Rn. Its vertex set is defined by

Vert(s) = {v0, . . . , vq}

A simplex s′ satisfying Vert(s′) ⊆ Vert(s) is called a face of s and is denoted as s′ ≤ s. If the

inclusion is proper, then s′ is called a proper face of s and is denoted as s′ < s.

Definition A simplicial complex K is defined as a finite collection of simplexes in Rn sat-

isfying:

• if s ∈ K, then every face of s belongs to K

• if s, t ∈ K, then s ∩ t is either empty or a common face of both s and t

The collection of 0-simplexes in K is called the vertex set and is denoted Vert(K).

The subspace |K| of the ambient space defined as

|K| =
⋃
s∈K

s

is called the underlying space of K.
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Definition A topological space X is called a polyhedron if there exists simplicial complex

K and an homeomorphism h : |K| → X. The ordered pair (K,h) is called a triangulation of

X.

By abuse of notation, the identification X = |K| might be done.

Definition The dimension of a simplicial complex K is defined by

dimK := sup
s∈K
{dim s}

where a q − simplex is assumed to have dimension q.

Definition A simplicial complex K equipped with a partial order on Vert(K) whose restriction

to any simplex in K is a total order is called an oriented simplicial complex.

Definition If K is an oriented simplicial complex and q ≥ 0, let Cq(K) be the abelian group

having the following presentation:

Generators: (q + 1)-tuples (p0, . . . , pq) with pi ∈ Vert(K) such that

{p0, . . . , pk} spans a simplex in K.

Relations:

1. (p0, . . . , pq) = 0 if some vertex is repeated

2. (p0, . . . , pq) = (sgnπ)(pπ0, . . . , pπq), where π is a permutation of {0, 1, . . . , q}.

One denotes the element of Cq(K) corresponding to (p0, . . . , pq) by < p0, . . . , pq >.

Lemma 3.1.1 Let K be an oriented simplicial complex of dimension m. Then,

1. Cq(K) is a free abelian group with basis of symbols < p0, . . . , pq >, where {p0, . . . , pq}
spans a q-simplex in K and p0 < p1 < . . . < pq. Moreover, < pπ0, . . . , pπq >= (sgnπ) <

p0, . . . , pq >.

2. Cq(K) = 0 for all q > m.
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Definition Define a boundary operator ∂ : Cq(K)→ Cq−1(K) by setting

∂q(< p0, . . . , pq >)

q∑
i=0

(−1)i < p0, . . . , p̂i, . . . , pq >

and extending it by linearity.

Theorem 3.1.2 Let K be and oriented simplicial complex of dimension m. Then,

0→ Cm(K)→ . . .→ C1(K)→ C0(K)→ 0

is a chain complex.

Definition Let K be an oriented complex. Then, define

Zq(K) = ker ∂q, the group of simplicial q-cycles,

Bq(K) = im ∂q+1, the group of simplicial q-boundaries,

Hq(K) = Zq(K)

Bq(K)
, the q-th simplicial homology group.

Theorem 3.1.3 For each oriented simplicial complex K, there exists a chain map j : C∗(K)→
S∗(|K|) where each jq : Cq(K)→ Sq(K) is injective. Furthermore it induces isomorphisms,

Hq(K) ≈ Hq(|K|)

where Sq(K) refers to the q-th singular complex of |K| and Hq(|K|) its homology group.

See [1] Theorem 7.22.

The Barycentric Decomposition of a Simplicial Complex

Definition Let K be a simplicial complex. If s ∈ K is a simplex, let bs denote its barycentre.

The barycentric subdivision of K, denoted Sd(K), is the simplicial complex given by

V ert(Sd(K)) = {bs : s ∈ K}

and simplexes [bs0 , . . . , bsq ], where si are simplexes in K and si is a face of si+1

If the simplicial complex is oriented, an orientation can be induced on Sd(K) by setting bτ ≤ bσ

whenever σ is a face of τ .
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3.2 CW Complexes

Definition Let Dn ∈ Rn be the closed unit disc Dn = {(x1, . . . , xn)|x2
1 + . . .+ x2

n ≤ 1}, D̊n its

interior and Ḋ its topological boundary. A topological space X is said to be a cell of dimension

m if it isomporphic to Dm.

Definition A par (X,E) consisting of a topological space X and a family of cells E = {eα}
which are pairwise disjoint and cover X is said to be a CW complex if:

• X is a Hausdorff space

• For each open m-cell eα, there exists an isomorphism fα : Dm → X whose restriction to

D̊m is an homeomorphism into eα and fα(Ḋ) is a union of cells of dimension lower than

m.

• A subset A in X is closed iff A ∩ ēα is closed in ēα for each α. It is said that X has the

weak topology.

The maps fα related to eα are called characteristic maps.

If the family of cell eα is finite, then X is said to be a finite CW complex. We will only deal

with finite CW complexes.

The subspaces Xp = ∪eα, where the union goes over all cells of dimension lower or equal to p

are called the p-skeleton of X.

A CW complex (Y, F ) is called a CW subcomplex of (X,E), if X ⊆ Y and F ⊆ E.

Proposition 3.2.1 Let (X,E) be a CW complex. If a topological subset Y ⊆ X can be ex-

pressed as union of cells for some F ⊆ E, where ēα ⊆ Y for all eα ∈ F , then (Y, F ) is a CW

subcomplex of (X,E).

In particular the p-skeleton Xp of a CW complex (X,E) equipped with the family cells of E of

dimension lower or equal to p is a CW subcomplex.
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Definition Let X be a CW complex. Define,

Dp(X) = Hp(X
p, Xp−1)

together with ∂p : Dp(X)→ Dp(X) as the composition of

Hp(X
p, Xp−1)→ Hp(X

p−1)→ Hp(X
p−1, Xp−2)

where the first homomorphism is the boundary operator on relative homology and the second

one the homomorphism induced by the inclusion j : (Xp−1, ∅) ⊆ (Xp−1, Xp−2).

It follows that ∂p−1 ∂p for all p and hence D = {Dp, ∂p} is a chain complex. It is called the

cellullar chain complex of X.

Theorem 3.2.2 Let (X,E) be a CW complex. The groups Hi(X
p, Xp−1) vanishes if i 6= p,

and is free abelian if i = p. If γ generates Hp(D
p, Sp−1), then Hp(X

p, Xp−1) is generated by

elements (fα)∗(γ), where fα are the characteristic maps of the cells eα of dimension p.

Theorem 3.2.3 Let X be filtered by the subspaces X0 ⊂ X1 ⊂ . . .. Assume that Hi(Xp, Xp−1) =

0 whenever i 6= 0, and that for any compact C ⊂ X, there exists Xp such that C ∈ Xp. Let

D(X) be the chain complex defined by setting Dp = Hp(Xp, Xp−1) and boundary operator δ∗

defined as composition between the boundary operator on relative homology of and inclusion, as

before.

Then there exists an isomorphism

λ : Hp(D(X))→ Hp(X)

between the homology of the chain complex above and the singular homology of X.

In particular, the homology of a CW complex is isomorphic to the singular homology.

See [4] theorem 39.4.

3.3 The Dual Block Complex to a Simplicial Complex

In the next section, a complex related to simplicial complexes will be introduced. In general, it

will not have a CW -complex structure, because the elements are not necessarily cells. However,
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it admits a chain complex constructed as the cellular chain complex of a CW -complex which

determines its homology. This will allow to compute the cohomology of the underlying topo-

logical space of the simplicial complex in a different way. Besides, when the original simplicial

complex is a triangulation of some manifold, the blocks will actually be cells, and hence they’ll

constitute a CW -complex. This structure will prove useful to prove Poincaré’s duality, and it

will give an explicit way to compute the isomorphism.

Definition Let X be a polyhedron with triangulation (K,h), where K is a finite oriented

simplicial complex, and let Sd(K) be its barycentric subdivision with induced orientation. Let

σ ∈ K be a simplex and bσ its barycentre. The dual block to σ, denoted D(σ) is defined as

the union of all open simplexes for which bσ is the final vertex, i.e.,

σ̂ =
⋃

τ

where the union runs over all simplexes τ such that

bσ ∈ Vert(τ) and v ≤ bσ,∀v ∈ Vert(τ)

Its topological closure D̄(σ) is called the closed dual block to sigma. Let Ḋ(σ) denote the

topological boundary.

Theorem 3.3.1 Let X be the underlying topological space of a simplicial complex K of dimen-

sion n consisting entirely of n-simpices and their faces. Let σ be a k-simplex. Then,

1. The dual blocks are disjoint and their union is X.

2. D̄(σ) is the polytope of a subcomplex of Sd(K) of dimension n− k.

3. Ḋ(σ) is the union of all blocks D(τ) for which τ has σ as a proper face. These blocks

have dimensions lower than n− k.

4. If Hi(X,X − b(σ)) ≈ Z for i = n and vanishes otherwise, then (D̄(σ), ∂(D(σ)) has the

homology of an n− k cell modulo its boundary.

Definition Let X be the underlying topological space of a finite simplicial complex K. The

collection of dual blocks {D(σ) : σ ∈ K} is called the dual block decomposition of X. The
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union of blocks of dimension at most p are denoted by Xp and called the dual p-skeleton of

X. The dual chain complex D(X ) is defined by

Dp(X) = Hp(Xp, Xp−1)

with boundary operator δ∗ given as in the definition of a CW complex.

Theorem 3.3.2 Let X be the underlying topological space of a finite simplicial complex K, Xp

the dual p-skeleton and D(X) the dual chain complex. Then,

1. The group Hi(Xp, Xp−1) vanishes for i 6= p and is a free abelian group for i = p. A basis

for it is obtained by choosing generators for the groups (D̄(σ), Ḋ(σ)), as D(σ) ranges over

all p-blocks of X, and taking their images in Hp(Xp, Xp−1).

2. D(X) can be used to compute the homology of X. In fact, Dp(X) equals to a subgroup

of Cp(Sd(X)) consisting of those chains in Xp such that their boundary is on Xp−1 The

inclusion map Dp(X)→ Cp(Sd(X)) induces a homology isomorphism.

A remark could be done on the fact that this blocks are very similar to simplexes. By how

they are constructed, the dual block to a simplex σk is the union of some open simplexes of

dimensions lower or equal to n−k. These are the same as closed simplexes of dimension exactly

n−k of the previous union. Hence, they can be viewed as chains in Sd(K). Hence, they admit

an alternative definition, and handling them as chains of simplexes is often convenient.

Definition Let K be an oriented simplicial complex of dimension n, Sd(K) its barycentric

subdivision and i : K → Sd(K) the inclusion. Let σ be a simplex in K and i(σ) its image on

Sd(K).

For each 0-simplex σ0 ∈ K, define

σ̂0 =
∑

τn ∈ Cn(Sd(K))

where the sum runs over all n simplexes τn in Sd(K), which have i(σ0) as a face and are

oriented positively with respect to the orientation on K.

For each q-simplex σq = [v0, . . . , vk] ∈ K, define

σ̂k =
∑

τn−q ∈ Cn−q(Sd(K))
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where the sum runs over all n− q simplexes τn−q ∈ Sd(K), which are common faces of ˆ[vk] for

each k = 0, . . . , q, and are oriented positively with respect to ˆ[v0].

The elements σ̂k are called dual block to σk. The elements of

K̂q := {∆q : ∆q = σ̂n−q for some σn−q ∈ Kn−q} ⊂ Cq(Sd(K))

are called dual q-blocks. The set K̂ =
⋃n
q=0Kq is called the dual block complex to K.

Proposition 3.3.3 Let K be an oriented simplicial complex and K̂ its dual block complex. Let

Cq(K̂) be the free abelian group with basis Kq and jq : Kq → Cq(Sd(K)) the inclusion. Then,

1. jq can be extended to an injective group homomorphism j : Cq(K̂)→ Cq(Sd(K)).

2. There exists unique set of homomorphisms ĵk : Ck(K̂)→ Ck−1(K̂), k = 0, . . . , n such that

∂q jq = jq−1δ̂q, for each q = 0, . . . , n

where δ is the boundary operator on C∗(Sd(K)). In other words, ∂q j(∆q) ∈ Cq−1(Sd(K))

for all ∆q ∈ K̂q.

3. ∂̂q−1∂̂q = 0 for all q.

As a result, (C∗(K̂), ∂̂) can be seen as a subchain complex of (C∗(Sd(K), ∂).



Chapter 4

Homology and Cohomology of a Manifold and

Duality Theorems

4.1 De Rham’s Duality Theorem

4.1.1 De Rham’s Cochain Complex of a Topological Space

Definition Let A be a ring and M an A-module. The abelian group defined as the quotient

of F := A×M × . . .M (p copies of M) by the subgroup S generated by:

(a,m1, . . . ,mi +m′i, . . . ,mp)− (a,m1, . . . ,mi, . . . ,mp)− (a,m1, . . . ,m
′
i, . . . ,mp)

(a+ a′,m1, . . . ,mp)− (a,m1, . . . ,mp)− (a′,m1, . . . ,mp)

(a,m1, . . . ,mp)− (1,m1, . . . , ami, . . . ,mp)

(a,m1, . . . ,mp) if mi = mj for i 6= j

for all possible values of a, a′,mi,m
′i and indexes i, j, is called p-th exterior power of M and

is denoted
∧pM .

The cosets (a,m1, . . . ,mp) +S are referenced as a∧m1 ∧ . . .∧mp and satisfy relations induced

by the definition of S.

Proposition 4.1.1 If M = An, it is a free A-module with basis e1, . . . , en. Then,
∧pM

has basis {ei1 ∧ eip |1 ≤ i1 < . . . < ip ≤ n}, and each element ω ∈
∧pM admits a unique

decomposition

ω =
∑

ai1...ipei1 ∧ . . . ∧ eip
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Definition Let M be a R-manifold and C∞(M) the ring of differentiable functions f : M → R.

The C∞(M)-module Ωp(X) :=
∧pC∞(M)n is called the space of differential p-forms on M .

The elements of the basis of C∞(M)n are denoted dxi, and hence the elements of Ωp(M) admit

decomposition

ω =
∑

αi1...ip dxi1 ∧ . . . ∧ dxip

for αi1...ip ∈ C∞(M).

The C∞(M)-module homomorphism denoted dp : Ωp(M)→ Ωp+1(M) given by:

d0(ω) =
n∑
j=1

(
∂α

∂xj

)
dxj, if ω = α ∈ C∞(M)

dp(ω) =
∑

d0(αi1...ip) ∧ dxi1 ∧ . . . ∧ dxip , if p ≥ 1, ω = αi1...ip ∧ dxi1 ∧ . . . ∧ dxip

is called the exterior derivative.

(Ω∗(M), d) is a cochain complex calle the de Rham’s cochain complex of M . The k-forms

ω satisfying dω = 0 are called the closed differential k-forms and the ones who admit

and expression ω = dω′ for some k − 1-for ω′ are called exact differential k-forms. Its

cohomology groups, consisting of closed forms modulo exact ones, are called the de Rham’s

homology of M .

A singular p-simplex σ : ∆p → M determines n coordinate functions σi. Given a p-form

ω =
∑
αi1,...,ip dxi1 ∧ . . . ∧ dxip and a singular p-simplex σ : ∆p →M , define∫

σ

ω =

∫
∆p

σ#ω

where σ#ω =
∑∑

αi1,...,ipJ dxi1 , with J = det(∂σij/∂xik) and dxik are the differentials on Rn.

More generally, given c =
∑
kiσi ∈ Sp(M), then∫

c

ω =
∑

ki

∫
σi

ω

Theorem 4.1.2 (Stoke’s theorem) If c is a (p+ 1)-chain and ω a differential p-form, then∫
c

dω =

∫
∂ c

ω
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4.1.2 De Rham’s Cochain Complex of a Simplicial Complex: Piece-

wise Linear Differential Forms

An approach in [3] allows working with differential forms that are piecewise linear, which can

be used to represent differential forms on a simplicial complex.

LetK be a simplicial complex and σn ∈ K a simplex. σn can be seen as elements {(t0, t1, . . . , tn) ∈
Rn+1 : 0 ≤ ti ≤ 1,

∑n
i=0 t0 = 1} given by the barycentric coordinates. Let Ω∗ be the de Rham

cochain complex of Rn+1. Consider the restriction to σn of the forms in Ω∗ of the form∑
ϕi1,...,ij d ti1 ∧ . . . ∧ d tij

where ϕi1,...,ij are polynomials on Q.
∑n

i=1 d ti = 0 is met due to
∑
ti = 1. The group of all

p-forms of the above form is denoted Ap(σ).

Definition Let K be a simplicial complex. Define,

Ap(K) = {(ωpσ)σ∈K : ωpσ ∈ Ap(σ) and ωpσ |τ = ωpτ ,∀τ < σ}

together with dp : Ap(K) → Ap+1(K) given by dp((ω
p
σ)) = (dp ω

p
σ) and wedge product (ωpσ) ∧

(ωqσ) = (ωpσ ∧ ωqσ).

It is a cochain complex, called the de Rham’s cochain complex of K. It’s cohomology group

is called the de Rham’s homology of K. Its elements can be understood as forms in each

simplex of K that are compatible in their common faces.

4.1.3 De Rham’s Duality Theorem for Simplicial Complexes

Theorem 4.1.3 (Piecewise Linear De Rham’s Duality Theorem) Let K be a simplicial

complex and A∗(K) its de Rham’s cochain complex. The product defined as

< (ωτ )τ∈K , σ
n >:=

∫
σn

ωσ

induces a cochain homomorphism A∗(K)→ C∗(K;Q).

See [3] P.L. deRham Theorem.
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4.2 Poincaré’s Duality Theorem and Intersection

Poincaré’s duality theorem is introduced following [4], which uses the dual block complex of a

simplicial complex to compute its dual block, and find the associated isomorphism between the

k-th homology and the n− k-th cohomology.

Definition Let M be a compact manifold of dimension n that admits triangulation K. We

say that M is orientable if K admits an orientation such that
∑

σn∈Kn
σn = 0.

Theorem 4.2.1 let M be a compact manifold of dimension n that admits a triangulation K.

Then,

• If M is orientable, there exists an isomorphism

Hp(X;G) ≈ Hn−p(X;G)

for each p = 0, . . . , n, G abelian group.

• If M is non orientable, there exists an isomorphism

Hp(X;Z/2Z) ≈ Hn−p(X;Z/2Z)

for each p = 0, . . . , n.

Proof. Let K̂ be the dual block complex of K. One can use the simplicial cochain complex

C∗(K) to compute the cohomology on M and the chain complex of the dual block complex

D∗(K̂) to compute the homology on M .

By construction of the dual block complex, there exists a one-to-one correspondence between

p-simplexes on K and n− p blocks on K̂. Hence, the free abelian groups Cp(K) and Dn−p(K̂)

are isomorphic, with isomorphism ϕ mapping σ∗, algebraic dual to an oriented simplex σ, to

some generator of Hn−p(D̄(σ), Ḋ(σ)). If M is orientable, then ϕ can be defined so that the

diagram

Cp−1(K)
ϕ−−−→ Dn−p+1(K̂)

δ

y y∂
Cp(K)

ϕ−−−→ Dn−p(K̂)
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commutes.

ϕ is defined inductively on the dimension of the cohomology group:

• For each s ∈ Kn, D(s) is the barycentre bs of s which is a generator for H0(bs. Thus an

isomorphism

ϕnC
n(K)→ D0(K)

has been defined.

• For each s ∈ Kn−1 there are exactly 2 n-simplexes σ0, σ1 such that s is a face of them.

Choose them so that s has positive relative orientation with respect to σ1 and negative

relative orientation with respect to σ0. Then δ s∗ = σ∗1−σ∗0. Thus, ϕ(s∗) = ϕ(σ∗1)−ϕ(σ∗0) =

bσ1 − bσ0 .

As a result,

ϕ(s∗) = [bσ0 , bs] + [bs, bσ1 ]

is a fundamental cycle for (D̄(s), Ḋ(s)) and ∂ ϕ(s∗) = bσ1 − bσ0 = ϕ(δ s∗) as expected.

• Let s ∈ Kp, p < n − 1, and assume that ϕ has been defined for simplexes of dimension

greater than p. ϕ(s∗) must be defined such that ∂ ϕ(s∗) = ϕ(δ s∗).

δ s∗ =
∑

s<σi
εiσ
∗
i can be expressed, where σi are the p+ 1 simplexes of whom s is a face,

and εi is 1 if they have same relative orientation and −1 if they have opposite relative

orientation. By hypothesis, ϕ(σ∗i ) is a fundamenta cycle for D̄(σi) as σi is a p+1 simplex.

Because s is a face of σi, D̄(σi) ⊆ Ḋ(s). Hence ϕ(δ s∗) is carried by Ḋ(S).

ϕ(δ s∗) is a cycle, because ∂ ϕ(δ s∗) = ϕ(δ δ s∗) = 0. Hence, ϕ(δs∗) generatesHn−p−1(Ḋ(s)).

By considering the exact sequence

0→ Hn−p(D̄(s), Ḋ(s))→ Hn−p−1(Ḋ(s))→ 0

once can define ϕ(s∗) as the fundamental cycle for (D̄(s), Ḋ(s)) for which

∂(ϕ(s)) = ϕ(δ s∗)

In conclusion, ϕ : C∗(K) → D∗(K̂ has been defined, and is a group isomorphism at each link

of the chain. It induces isomorphism,

Hom(Cp(M),Z)→ Dn−p(M).
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By the universal coefficient theorem, an isomorphism

Hom(Cp(M), G) ≈ Hom(Cp(M),Z)⊗G→ Dn−p(M)⊗G

can be induced.

For the non orientable case, the proof is analogue. It cannot be assumed that for n−1 simplexes,

the two simplexes of whom they are faces will be oriented one with same relative orientation

and the other one with opposite. This difficulty is overcome by taking coefficients in Z/2Z,

taking away the importance of the relative orientation. Thus, ϕ is directly defined as,

Hom(Cp(M),Z/2Z)→ Dn−p(M)⊗ Z/2Z

�

4.2.1 Intersection number

Notice that the proof of Poincaré’s duality provides a way to orientate dual blocks, and also

induces a monomorphism D∗(K̂) → C∗(Sd(K)), by regarding D̄(s) = ϕ(s∗) as the unique

oriented chain in Sd(K) whose boundary is ϕ(δs∗) and whose underlying topological space is

D̄(s). This allows for a definition of intersection number between primal and dual chains, which

is useful in many ways.

Definition The intersection number between a p-simplex σ and a dual n − p-simplex τ̂ is

defined as

I(σ, τ̂) =


+1, if τ̂ = D̄(s)

−1, if τ̂ = −D̄(s)

0, otherwise

it can be extended to a map I : Cp(K)×Dn−p(K̂) by

I

(∑
i

aiσi,
∑
j

bj τ̂j

)
=
∑
i,j

aibjI(σi, τ̂j)



Chapter 5

Eddy Currents on a manifold

Let Γ be a compact, connected and orientable surface. For simplicity, assume it has no bound-

ary. Any such surface admits a finite oriented simplicial complex K that is a triangulation for

Γ and let K̂ its dual block complex (reference to previous part).

For simplicity, 0-simplexes in K will be called vertices and denoted vi, 1-simplexes in K will

be called edges and denoted ei and 2-simplexes will be called faces and denoted fi. σ will be

used when its dimension is irrelevant.

The number of vertices, edges and faces in K will be denoted nv, ne, nf respectively.

The corresponding elements in the dual block complex will be addressed as dual vertices, dual

edges and dual faces. The corresponding element to σ ∈ K will be denoted σ̂ ∈ K̂.

The density of an eddy current over Γ can be represented as a 1-form on Γ which is closed, and

hence, be seen as an element ω ∈ Z1
dR(Γ). It is computed from given differential equations. The

goal of the method presented consists on using the tools of simplicial homology and cohomology

to convert the problem into solving a system of linear equations.

From previous chapters, there exists an isomorphism

ϕ : C1(K) → C1(K̂)

c =
∑

i ciei 7→ ϕ(c) =
∑

i ciê
∗
i

By construction, given a =
∑

i ai ∈ C1(K) the element ϕ(a) is the linear map given by

ϕ(a)(b̂) =
∑
i

aiê
∗
i

(∑
j

bj êj

)
=
∑
k

akbk = I(a, b̂)
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Its algebraic dual is the isomorphism

ψ = ϕ∗ : C1(K̂) → C1(K)

ĉ =
∑

i ciêi 7→ ψ(ĉ) =
∑

i cie
∗
i

which also induces the same Poincaré’s isomorphism H1(Γ) → H1(Γ). In fact, given b̂ =∑
i ciêi ∈ C1(K̂), the element ψ(b̂) is the linear map given by

ψ(b̂)(a) =
∑
j

bj ê
∗
j

(∑
i

aiei

)
=
∑
k

bkak = I(a, b̂)

In order to describe the problem in a simple way, a basis for the first homology of K is needed.

The algorithm proposed in [6] offers a way to compute 1-cycles hi ∈ Z1(K), whose classes

[hi] ∈ H1(K) will form a basis of the first homology. This basis has the property of being the

”shortest”, which is optimal for computational purposes.

A basis for H1(K̂) can be induced in the following way: for each vertex vj that is a the starting

point of some edge ej of hi, consider the edges ejk on K with vj as its ending point. Select

those that lie on the correct side of ej (see the explanation of the algorithm to see how this is

ensured). Then, the dual blocks of this edges sum into a 1-cycle ĥ′i =
∑
j

∑
k

êjk on K̂. Notice

that hi and ĥ′i bound a region on Sd(K), and hence have the same homology class on Γ.

The isomorphism ψ∗ : H1(K̂) → H1(K) induced by ψ gives rise to a first cohomology basis

with elements [ψ(ĥ′i)] ∈ H1(K), who have representatives ψ(ĥ′i) = h′i ∈ Z1(K).

Because K is a triangulation for Γ,

H1(K) ≈ H1(Γ) and H1(K) = H1(Γ)

as described in chapter 3. As a consequence, elements hi can be assumed to belong to H1(Γ)

and elements h′∗i to H1(Γ).

Due to de Rhams duality, H1(Γ) is isomorphic to the de Rham cohomology space H1
dR(Γ). This

means that for each cochain h′∗i there exist a 1-form ωi ∈ Z1
dR(Γ) such that

h′i(c) = ψ(ĥ′i)(c) =

∫
c

ωi

Notice that the classes [ωi] form a basis for H1
dR(Γ).
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Let [ωi] be the previously given basis of H1
dR(Γ) and let ω ∈ Z1(K) be the eddy current density.

Then, the class of the eddy current density can be decomposed as [ω] =
∑n

i=1 αi[ωi]. At coset

level can be expressed as ω = ω0 +
∑n

i=1 αiωi for an appropriate ω0 ∈ B1
dR(Γ). Since ω0 is exact,

it can also be written as d f for some f ∈ Z0
dR(Γ) ⊆ C∞(Γ) and hence,

ω = d f +
n∑
i=1

αiωi

As a result, given c ∈ C1(Γ) the integral
∫
c
ω can be decomposed as:∫

c

ω =

∫
c

(
d f +

n∑
k=1

αkωk

)
=

∫
∂ c

f +
n∑
k=1

αk

∫
c

ωk

By restricting to K and K̂, we can assume that c ∈ C1(K) and
∫
c
ωk = I(c, ĥ′k). Since C1(K)

has basis consisting of edges ei on K, knowing the integrals over the edges equals to knowing

the integrals on all chains.

Let i be the column vector consisting of values
∫
ei
ω, i0 be the column vector with values f(vl)

and it be the column vector with values αk. Due to the equation above, there exist matrices

G ∈Mne,nv(Z) and Qne,n(Z) satisfying

i = Gi0 +Qit

where n is the first Betti number.

Matrices G and Q are called node-to-edge and hloop-to-edge incidence matrices respectively

due to the content they hold: (the term hloop being used for loops representing the homology

classes).

The elements Gi,l on row i and column l of G have values

Gi,l =


1, if vl is the ending vertex of ei,

−1, if vl is the starting vertex of ei,

0, otherwise.

and the elements Qi,k on row i and column k of Q have values

Qi,k = I(ei, ĥ′j) =


1, if ĥ′j intersects ei positively,

−1, if ĥ′j intersects ei negatively,

0, if ĥ′j and ei do not intersect.
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Notice in this decomposition, that G and Q are independent from ω, they only depend on the

choice of K. As a result, computing G and Q makes knowing ω equivalent to knowing the

vectors i0, it, which will become the unknowns of the linear equations.

As mentioned above, the matrix Q has elements Qj
i = I(σ1

i , ĥ
′
j), i.e. the intersection between

the i-th 1-simplex in K and the cycle in K̂ homotopic to a representative of the j-th element

of the shortest homology basis of K. By following the previous steps, this intersections can be

calculated by the following algorithm:

See Intersection Algorithm

The algorithm works the following way:

It loops through each pair (hj, ejk) where hj is a cycle representative of the homology basis and

ejk and edge appearing in hj. Sets e = ejk .

Afterwards, finds the faces of K that have e contained, selects the one with same relative

orientation to e (call it ∆) and picks the edge (call it e′) with vertices v0, the vertex of ∆ not

in ejk , and v1 the vertex in which e ends. Then, the value of Q at row representing e′ and

column representing ĥ′j (as described above), i.e., the intersection number between e′ and ĥ′j

will be 1 if e′ starts at v0 and ends at v1 and −1 if it starts at v1 and ends at v0. This value is

the incidence between e′ and v1 and hence it appears at matrix G at row representing e′ and

column representing v1.

The last step is repeated for edge e′ just obtained until this edge lies in hj.

This process ensures that the dual blocks of the edges considered form a cycle in K̂, namely h′j.

Because dω = 0, the edge-to-face incidence matrix C ∈Mnf ,ne(Z), which has elements

Ci,j =


1, if ej lies in ∆i with same relative orientation,

−1, if ej lies in ∆i with opposite relative orientation,

0, otherwise.

will satisfy the equation Ci = 0.

By construction, matrix G represents the coboundary operator δ0 : C0(K) → C1(K) while C

represents the coboundary operator δ1 : C1(K)→ C2(K). As a result, the kernel of C are the

coordinates of the 1-cocycles in K and the image of G the coordinates of the 2-coboundaries.
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1 Intersection algorithm

1: for r = 1 : #hloops do

2: hloop← hloops(r) . select r-th hloop hr

3: last← hloop(#hloop)

4: N ← dim(hloop) . check number of edges in hr

5: for s = 1 : N do

6: vert← hloop(s)

7: next← hloop(s mod N + 1)

8: lastedg ← {last, vert} . select previous edge erk−1

9: nextedg ← {vert, next} . select current edge erk
10: other ← vert

11: edge← lastedg

12: while other 6= next do . cycle through all edges e′ associated to erk
13: cells← neight(edge) . find faces that have erk contained

14: if cells[0] > 0 then . select the one with same relative orientation

15: cell← cells[0]

16: else

17: cell← cells[1]

18: end if

19: other ← cell \ edge
20: edge← {other, vert} . find intersecting edge

21: Q[iedge, r]← G[iedge, ivert] . write incidence between e′ and v1 to Q

22: end while

23: last← vert . new hloop node

24: end for

25: end for
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Matrix Q has in its columns the coordinates of the cocycles that span the cohomology. As a

result, the kernel of C is spanned by G and Q, and the problem is well posed for surfaces with

non-trivial homology.

Introducing notations Gm = [G;Q] (Q appended to G) and im = [i0; it], condition i = Gi0 +Qit

can be rewritten as i = Gmim.

The equation i = Gmim for currents on K can be complemented by an equation for electro-

magnetic fields on K̂, by Faraday’s law GT e + jαb0 = 0, where e and b0 are arrays of induced

electro-magnetic fields on dual edges and magnetic fluxes on dual faces, j is the imaginary unit,

and α an angular frequency of the magnetic fields. Additional constraints lead to equation:

GT
me+ jαbm = 0

where bm = [b0; bt].

The relationship between the newly given data and the intensity of the eddy currents i given

before is given by physical laws e = Ri and the pair a = Li, bm = GT
ma+GT

mas.

Edge elements wi who interpolate the eddy current density form ω can be used to approximate

1 cochains in Γ. Then, the resistance matrix R will have elements

Ri,j =
∑
k

∫
σk

ρwi(x) · wj(x) dx

where ρ the resistivity. The inductancce matrix L has elements

Li,j =
µ

4π

∑
r,s

∫
σr

∫
σs

wri (x) · wsj(y)

‖x− y‖
dx d y

where µ is the magnetic permeability. as is the array of line integrals of the source magnetic

vector potential.

By merging it all the relations together,

(GT
mZGm)im = −jαGT

mas

is obtained, where Z = R + jαL.

It allows to compute approximated values of im which can be used to retrieve a value for i,

thus computing the eddy current.
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