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Chapter 1

Introduction

Problem Statement :How many non overlapping regular tetrahedra, having a common ver-
tex can be arranged in R3?

Solution to this problem (say T(3)) is known to satisfy 20 < T'(3) < 22). Thesis aims at
trying to solve the above problem with the help of polynomial optimization.

Thesis is divided into 4 parts. The first part explains basic concepts required further.
Second part deals with the theory of polynomial optimization. In part 3 we study spherical
harmonics and apply polynomial optimization to the kissing number problem.Eventually in
part 4 we try to bound T(3) with tools developed so far.



Chapter 2

Preliminaries

Some concepts have been introduced ,which will be used later in the thesis .
Definition 2.0.0.1. A polynomial optimization problem is to optimize value of f € Rz, ...., z,]
over a set K described by some g, ..., gm € Rlzy,,,,x,] .Let us consider computing infimum
of a polynomial f € R[zy,...,z,] over K ={z € R"|gi(z) >0,....., gm(z) > 0}.

fmin = inf{f(z) | g1(x) > 0,..., gm(x) > 0} (2.1)

Notations : Let N = NU {0}, > 0; N" := {(v,..,a) € N" | D7 oy < t}; R[x] :=

Rlx1,...,x,]. Let a € N™ (say o = (ay,..,)) 5 |a| := > ;. Then x* = z{'..a8r ;
Rix]; == {f € R[x] | degf < t} ; [x]¢ := (2%)jaj<¢ (In some fixed order) Now if f € R[x];.
Then deg f < t. Therefore coefficient of f can be expressed in a vector form [f] = [fa]aeny :

fa coefficient of x* (in same order as above) So f = [f]’[z];. Let I be an ideal in R[x] ,then
Iy ={f€lldegf <t}

2.0.1 Measure theory
Let X be a set. If 2% is collection of subsets of X.

Definition 2.0.1.1. o - algebra ¥ : Let X C 2% then ¥ is a ¢ — algebra if
1. XeX
2. if A€ ¥, then X\ Ain ¥
3. X is closed under countable union. i.e If A, A, ... € ¥ then U;enA; € 2

Definition 2.0.1.2. Measure p : Measure p on a set X (with o — algebra ) is a function
from 3 to R U {oo} satisfying

1. u(A) >0V Ae X

2. pu(¢) =0

3. Let Ay, Ay, ... be countable pairwise disjoint subsets of X in X, then p1(UjenA;) = D ;o t(As)
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Definition 2.0.1.3. Borel measure on a set X : X is locally compact and Hausdorff
space.Let X be the smallest o — algebra containing all open sets in X.And a measure ;o defined
on this o — algebra is a borel measure.

Definition 2.0.1.4. Dirac measure :(let X be set with given o — algebra ). Then dirac
measure w.r.t. a fixed point x € X is

p(A)y=0ifx ¢ A
=lifxeA
where A € .

Definition 2.0.1.5. Probability measure : p measure on X with o — algebra ¥ is a prob-
ability measure if p takes values in [0, 1] and pu(X) = 1.

2.0.2 Algebraic Geometry
Let I be an ideal in R[x] .

Definition 2.0.2.1. Radical of I : VI :={f € R[x] | f™ € I for some m > 1}. I is said to a
radical ideal if T = /I

Definition 2.0.2.2. Real radical of I : V/T := {f € R[x] | f>" + p? + ... + p} € I for some
m > 1 and py, .., pr € R[x]}. Tis said to be a real radical ideal if T = v/T.

Definition 2.0.2.3. V() : {(a1,...,a,) € C" | f(a1,...,a,) =0V f € I}. It is called a
complex variety.

Definition 2.0.2.4. Vx(1) : {(a1,...,a,) € R"| f(a1,...,a,) =0V f eI} =Vec(I)NR" It is
a called a real variety.

Definition 2.0.2.5. I(Vc(1)):= {f € R[x] | f(a1,...,a,) =0V (ay,...,a,) € Ve(I)}.
Definition 2.0.2.6. I(Vk(])):= {f € R[x] | f(ai,...,a,) =0V (ay,...,a,) € Vr(I)}.
Lemma 2.0.2.7. I C /1 C I(Ve(1))

Proof. f € I = f' € ITherefore f € I = f € V1. f e I= f™ el for somem > 1.
Therefore f™(ay,...,an) =0V (a1,...,a,) € Ve(I) = flar,....,an) =0V (a1,...,a,) € Vc(I) =
f e 1(Ve(l) .

Lemma 2.0.2.8. I C v/I C I(Vg(I))

Proof fel= f>cI Therefore fcI=feVI. feVI= f>"+p+..+p}cl. Let
(ay,...,an) € Vg(I) then (f2"+pi+...4+p2) (a1, ...,a,) = 0 but (a1, ...,a,) € R" = p;(ay, ...,a,) €
RV iand f™(ay,...,a,) € R = f2™(ay,....,a,) = 0= f(ay,...,a,) = 0= f € I(Vg(I))

[

Theorem 2.0.2.9. Hilbert’s Nulltellensatz and Real Nullstellensatz thm: I ideal in
Rlz]. Then VI = I(Ve(I)) and /I = I(Vx(I)).(For Hilbert’s Nulltellensatz refer to Serre
Lang’s and for real Nulltellensatz refer [3] )

Lemma 2.0.2.10. I C I(V(I)) C I(Vr(])).

Proof. Vg(I) : Ve(I)R™ Therefore f € I(Ve(1)) = f(a1,....a,) = 0V (ay,...,a,) € V(1)
which implies f(ay,...,a,) = 0V (a1, ..., a,) € V(I) = f € I(Vr(I)). Therefore, I C I(Vc(I))
I(Ve(I)).

11N



CHAPTER 2. PRELIMINARIES 6

Theorem 2.0.2.11. If I is a real radical ideal and | Vr(I) |< oo, then V(1) = Vk(I).

Proof. If 1 is a real radical ideal then I C I(Ve(I)) € v/I = I. Tt implies I(Ve(1)) = VI =
I =1(Vg(l)) = lisradical and I(V(I)) = I(Vr({)). Now if I is a real radical and |Vg (/)| <

oo,then V(1) = Vi(J) for some ideal J.(". if |[Vk(I)| = 1 say a = (a4, ...,a,) = Vr(I),then
ri—a; € Rlxy,...,2,]V1<i<nand Ve((x1—aq,....x,—ay,)) = Ve(I). Now if |VR(I)] =m <
oo then we get ideals Jy, ..., J,, such that each point in V(1) = V¢(J;) for some 1 < j < m and
therefore Vg(I) = VC(Jl...J )) and so [(Ve(1)) = I(VR(1)) = I(Ve(J)). Ve(I(Ve(J]))) = Ve(J)

(- Ve(J) C Ve(I(Ve(J))) and if a € Ve(I(Ve(J))) then V f € I(Ve(J)); f(a) = 0. But by
Hilbert Nullstellensatz I(Ve(J)) = VJ.J C v/J, Therefore V f € J; f(a) =0. Soa € Ve(J)).
Similarly Ve(I(Ve(I))) = Ve(I). So Ve(I) = Ve(J) = Va(I).

[

Proposition 2.0.2.12. Let I be an ideal in Rlzy, ..., x,]. Then | Ve(I) |< oo iff Rz, ..., x,]/1
is finite dimensional as a vector space.(For proof refer to [1])

Interpolation Polynomials :

Theorem 2.0.2.13. Let V' C R™ be finite set. Then there exist polynomials p, € Rlxy,...,z,| Vv €
V' satisfying py(u) = 0y Y u,v € V.Then we have that for any polynomial f € Rxy,..,x,]

> s € I(Ve(I)) (22)

v € Ve(I)

Proof. Fix v.¥Nu # v 3 component i, such that v(i,) # u(i,). Define

Dy := H (@(in) — ulin))/(p(in) — ulin)) (2.3)
u € Ve(I)\v
According to this definition p,(v) = 1 and p,(u) =0V u #v € Ve(I).Let f € Rlxy,..,z,].For

any uin Ve (1) we have (f =2, ¢ ve(r) f(0)po)(u) = f(u) =22, ¢ vy F(0)polu) = flu)=f(u) =
0.So by definition of I(Vc(1)), f =32, ¢ vy f(W)pe € I(Ve(I)). O

2.0.3 Linear Functionals

Definition 2.0.3.1. Linear Functional : Let y = (y,)a e n» be a sequence of real num-
bers.Corresponding linear functional L on R[zq, ..., x,] is given by

L :Rlzy,..,2,] — R
% — L(x%) = yq

f= Za Jax® — L(f) = Ea JaYa

Definition 2.0.3.2. Moment Matrix :Let ¥ = (ya)a ¢ n» be a sequence of real numbers
then

M(y) == (Ya+p)ap € Nn-.....(It is an infinite matriz) (2.4)
If g is a polynomial define
G*Pa= D GsYars (2.5)
6<deg(g)

Lemma 2.0.3.3. Let p be any polynomial in Rlzy,..,x,].Let y = (Ya)a ¢ nn be a sequence of
real numbers.Let L be the corresponding linear functional. Then M(y) = 0 iff L(p?) >0V p €
Rlzy, .., z,] and M(g*y) = 0 iff L(gp*) >0V p € Rlzy,..,z,].
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Proof.

=> () s

a  Bty=a

=3 ()sp)ywsen

a [+y=a

= ®)s(p)yys+~
By

= pM (y)p'

So L(p*) =pM(y)p' Vp € Rlzy,...,z,].80 L(p?) 20V p € Rlzy, ..z, iff M(y) = 0.

Lgr®) = D _(9p")aYa
=30 95(")a5)va
a é
=> Y o > Psp)va

1 B+y=a—4§

= 5(0)s(P)Ys+54
6,8,y

= pM (g *y)p"

So L(gp*) =pM(g*y)p' V¥V p € Rzy,..,x,].80 L(gp*) >0V p € Rlay,...,x,) iff M(g*y) =
0. O]



Chapter 3

Polynomial Optimization

3.1 Semidefinite Optimization

In this section we see what is a semidefinite program and its dual . Its application to the max
cut problem is summarized.

3.1.1 Semidefinite Program

Definition 3.1.1.1. Convex Cone : Let K # & be a subset of R". K is a convex cone if
Vo, € Ryp and Vo,y € K | az + By € K.

Definition 3.1.1.2. Dual Cone of K : K* :={y e R" | (y,x) >0V x € K} where (,)
is inner product defined on R".

Consider S" ={ A € M,(R) | A= AT}. Tt is a set of n x n symmetric matrices so dim S™
=n(n+1)/2.
Definition 3.1.1.3. Inner Product on S" :

n n

(A,B) =Tr(A"B) =) > aiby (3.1)

i=1 j=1

where A = (a;;) B = (b;j). A € S™ is positive semidefinite if Vv € R™ v'Av > 0.

Proposition 3.1.1.4. FEquivalent conditions for being positive semidefinite :

(i))Vv € R v'Av >0

(ii) All eigenvalues of A are non negative. A = Ajey.€} + ... \,en.el , where \;are eigenvalues.
(iii) A= LLT

Proof. (i) = (ii) let A be an eigenvalue of A and v corresponding eigenvector. Av = X v.So
v'Av = M'v. v'v > 0 and v'Av > 0 = X > 0.By Spectral theorem 3 an orthogonal matrix
Us.t. A= UDUT where D is diagonal matrix (A1, ...., \,) with )\; being eigenvalues of A.Let
U= (e, ..., e,) where e; are column vectors.So A = A\jeq.e} + ...\ e,.€.

(i) = (#ii) A=, Ae;el where e; are orthogonal vectors forming U. All \; non negative
= §; = /A € R.Let C =diagonal matrix (41, ....,d,) and let L = UC then A = LLT.

(iti) = (i) Let v € R. v'Av = v'LLTv = (v'L)(v' L)t > 0.
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Definition 3.1.1.5. Cone of positive semidefinite matrices :
St ={A € S| Ais positive semidefinite}.It is a convex cone (can easily be proved from
definition).

Proposition 3.1.1.6. S is self dual .i.e ST* = S}

Proof. Let B € S"s.t. (A,B) >0V A € StletveR" o'Bv=>37" 3" vuvbyLet
V = vvl.Then (4,7)" entry of V is v;v;.By Proposition 3.1.1.4 (iii) above V = vo! = V €
St Therefore, (V,B) > 0.S0 (V,B) = Tr(V'B) = 371, 37", vwb; = v'Bv > 0.v was
arbitray vector in R .So B &€ S%.Therefore, by definition of dual cone S?* C S7.Let
A, A’ € S%.Then from proof of (i4) = (iii) of Proposition 3.1.1.4 we know that A =
SO Auwgul with A; non negative.So (A, A') = (A, Ay = Tr(ATA) = Tr(AT (301, Nuul)) =
S NTr(ATwut).But from the first part of this proof we know that T'r( A7 uul) = ulA'u;.So
(A A = S0 NulA'w; with \; non negative and A’ positive semidefinite.So (A4, A") >

i=1
0.Therefore, by definition of dual cone if A € S¥ then A € S7*.So ST C S7".S0 S}* = S7. O

Definition 3.1.1.7. Semidefinite program : Let C, Ay,..... A, € S" and b= (by,....,b,) €
Rn

Standard Primal form :
p* = sup{{(C, X) | (A;, X) =b¥i=1,...,r and X = 0} (3.2)

Standard Dual form :
d* = inf{b'y | Y yidi—C = 0} (3.3)
i=1

Proposition 3.1.1.8. p* < d*.i.e Weak duality always holds

Proof. Let X be feasible for (3.2) and y be feasible for (3.3).S0 X = 0 and >_,_, y;4;—C > 0.So

by Proposition 3.1.1.6 and definition of dual cone (X, v;4; — C) > 0.So (X, >, v;A; —

C) =" ui(X,A;) — (X, C) > 0.Therefore, > ._, y;b; > (C, X).So b'y > (C, X).So p* < d*.
[

If p* is bounded above and 3 X € S™ which is strictly feasible for (3.2) (i.e X feasible s.t X
> 0 ) then p* = d*.Similarly if d* is bounded from below and 3y € R" which is strictly feasible
for (3.3)(i.e Y.i_,y;iA; — C' > 0) then p* = d*.With the help of convexity theory it can be
shown that in the latter case 3X feasible for (3.2) such that d* < (C, X) (see [1] for proof).So
then weak duality implies p* = d*.With Ellipsoid method we can solve SDP in polynomial
time.Interioir point methods provide efficient algorithms to solve semidefinite programs (upto
any precision).

3.1.2 Applications of Semidefinite Programs to Combinatorial
Problems

Max Cut Problem: Given a graph G = (V| E) where V = v;;i € I with I index set of
vertices. E is set of edges of G. Let denote weight assigned to edge between v;, v;(if exists) by
wy; ;3. Max cut problem asks us to partition the set of vertices V in 2 sets such that the total
weight of edges crossing the partition is maximum.
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We can reformulate it in terms of a polynomial optimization problem. To each vertex
v; € R we assign a variable z; such that it satisfies r? = 1. Any solution z = (z;)ics €
Risatisfying 2 = 1 Vi € I gives us a partition of vertices (say I; = {i € I | #; = 1} and
I, ={i €l|xz; =—1}). And for any partition we have a solution z = (x;);cssatisfying
x? = 1Vi € I. Now say we have a partition corresponding to z. Then the total weight of edges
crossing the partition is Z{i,j}eE,(l — xixj)wg /2. o If v, v; € same side of partition then
r; =x; . .. x;x; = 1. So weight of edge between v;, v;(if exists) is not counted in the sum.
And if v;, v; belong to different sides then x; = —x;. ". 1 — x;2; = 2 and so 1/2 appears in the
sum. So Max cut problem can be reformulated as

mzcut(G, w) = max,epr{ Z (1 — ziwj)wy jy/2 | 27 = Vi € T} (3.4)
{i,j}er

we have an SDP relaxation to this problem.Consider the following SDP problem

macutsdp(G,w) = mazx g, { Z (1 - Xij)wpjn/2 | Xiy = 1Vi € I and X = 0} (3.5)
{i,j}eE

Now observe the feasible region for (2.4).Let x € R! such that 2? = 1Vi € [.Let X =
z.x! (positive semidefinite by Proposition 3.1.1.4).X;; = 22 = 1.So X is feasible for (2.5).And in
this case .}, nep(l — Xij)wij3/2 = 324 jyep(l — 2iwj)wy 5y /2. Therefore set on which max is
calculated for (2.4) C set on which max is calculated for (2.5).

Therefore,mxcut(G,w) < mxcutsdp(G,w).So using semidefinite programming we get a bound
on max cut.

3.1.3 Lovasz sandwich inequalities
Let G = (V, E) be a graph.

Definition 3.1.3.1. Stable Set :5 C V is a stable set with respect to G if V v;,v; €S,{7, j} ¢E.(i.e
there are no edges in the subgraph induced by S in G)

Definition 3.1.3.2. Stability number of G a(G):Stability number is the maximum cardi-
nality of a stable set in G.

Definition 3.1.3.3. Characteristic vector of S C V: y° :

@) =1 if v, €S

Now we reformulate a(G) in terms of a polynomial optimization problem.To each vertex
v; we assign a variable x; Now consider z = (z;) € R! satisfying 2? = z,;Vi €l and z;z; =
0V{i,j} € E.(So z; =1 or 0 Vi € I).Consider the set S = {v; € V|z; = 1}.If v;,v; € S i #
j,then {3, j} ¢ E,because if it did it would imply z;2; = 0 = 1 = 0 giving contradiction.So S is a
stable set.Y ;@ = D g Tit D s o Ti = 2 es T = |S].So Ve € R satisfying a7 = ;i € I
and z;z; = 0 V{i,j} €B,>..; 7; gives cardinality of a stable set in G.And given any stable set
S in G,x” satisfies the above conditions with >, ; z; = |S].So,

a(G) = maxgeRz{Z z; | vw; =0V {i,j} € Eand a2} =x; Vi€ I} (3.6)

i€l
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Definition 3.1.3.4. Theta number of G ¥(G) : is defined by
9(G) = mazxes{Y_ Xij | Xij =0V {i,j} € E,Tr(X)=1and X = 0} (3.7)

Definition 3.1.3.5. Chromatic number of G y(G):Minimum number of colours required
to colour vertices of G such that no 2 adjacent (vertices with an edge between them) vertices
have same colour.

G is complement graph of G.

Theorem 3.1.3.6. Lovsz Inequality :

(G) (3.8)

a(G) X 8
o x(G) (3.9)

Proof. (3.9) follows from (3.8) .So its enough to prove (3.8).

a(G) < Y(G):
Let z € feasible region for a(G). Therefore from above we know it corresponds to a stable set
S with X;c;z; = |S] Consider X = z.a' / |S]. So X = 0 by Proposition 3.1.1.4

Tr(X) = Zieﬂiz‘Q/ S|
= Eiell"i/ |5|
=1

because z;2 = z; Vi € I. Xij =xz; =0 if {i,j} € E. Therefore X € feasible region for
Y(G). And

YXi=> X+ Xy

icl itj
=S /1S + D w18+ D mag/lS
iel i#j{ig}eR i#5: (i} E
=Y "a/IS|+ Y /IS (cai=0if ;¢ 9)
1€S i#jla?i,IjES
=(>_=)?/IS]
i€S
=[S*/|S| = |9

Therefore a(G) < 9(G) .....(because set on which max is < set on which max calculated for
a(@Q) is calculated for ¥(G))

)G <X(@): )
Lets say vertices of G can be colored with r colors s.t no 2 adjacent vertices in G have same
color.Let C; be the set of vertices colored with it color. Let y; be the characteristic vector of
C;. CiNC; = ¢ fori+# jand U_ C; is all vertices in G. Therefore e = Y7, y; where e =
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[1,...,1] € Rl Now consider a matrix X feasible for (3.7).

T

=1

= Z Z Xil,ig Yiz Yiso

i=1 i1,ip

— Z Z Xiii (ifvy & Ciyi, = 0)

i=1 v;;,0;, €C;

—iZij

i=1 v;eC,

Because ifi, # i3 and v;,,v;, € C; = there is no edge between v;,, v;, in G = there is an
edge between v;,, v, inG .. X is feasible for = X, ;, = 0. Therefore (X,> ., yyl) = T.(X) =
1 .Now consider,

r

Y =S (i — ) rys — €)'

=1

= Z ryiy; — (Xr: ryi)e’ —e Z ry; + Z ce’
i=1 =1 =1 =1

.
= E 2yl — ree
i=1

SoY = 0 (by prop (1.1)) and we have X > 0 .
Therefore (X,Y) > 0. Therefore 7*(X, Y77, yiyi)- v (X,eef) > 0. So r* > (3 Xi;). So
r > > X;;. Therefore ¥(G) < x(G).

[l

Definition 3.1.3.7. Clique number:w(G): Let G=(V,E) be a graph. A clique is a graph
in which every two distict vertices are joint by an edge.w(G) is the maximum cardinality of a
clique contained in G.

Definition 3.1.3.8. Perfect Graph : G =(V,E) is a perfect graph if V induced subgraph H
of G w(H)= x(H)

Theorem 3.1.3.9. The Strong Perfect Graph Theorem: A Graph G=(V,E)is perfect iff
G neither contains an odd cycle of length atleast 5 nor complement of such a cycle as an induced
subgraph.

Berge conjectured this theorem in 1961 and in 2004 this theorem was proved by Maria
Chudnovsky,Neil Robertson,Paul Seymour and Robin Thomas. Ref [2]

Theorem 3.1.3.10. Weak Perfect Graph Theorem: If G = (V,E) is a perfect graph then
Gis also a perfect graph.

Remark 3.1. Strong implies weak perfect theorem (just from def of G). Therefore for a perfect
graph G .G is perfect.So x(G) = w(G). A clique in G corresponds to a stable set in G. So

(@) > w(G)= x(G). We already know a(G) < x(G) .. a(G) = x(G) for perfect graphs.... in

case of perfect graphs sandwich inequality => a(G) = ¥(G) =x(G). So by using semidefinite
program we can calculate J(G) and so a(G).
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3.2 Sum of squares

3.2.1 Relation between sum of squares and being positive

We see how to reformulate "a polynomial being a sum of squares" in terms of a semidefinite
program .In this section we study the relation between positivity of a polynomial and it being
a sum of squares with the help of Putinar’s result. Lasserre’s Hierarchy is summarized as well

For any f € R[z], f € Rlz]y for some ¢t > 0. So f = [f][z]s where [f] = (fa)jaj<at
coefficient vector .

Theorem 3.2.1.1. Let f € R[z|y,. Then fis a sum of squares iff S # ¢,where

S={X esM] > Xgy=fo ¥V ae N} and X = 0} (3.10)

Byy €N* such that f+y=«

Proof. =: Let f be a sum of squares. So f = p? + ... + p?, for some m > 1 and p; €
RX]; V1<i<m. P?=[z)ipi]lpi)'lze] YV 1<i<m. So

]

m

1T Tz = [l (Y lpil o] [l

i=1
We have [p;].[pi]" = 0 V 1< i< m.Let [y]; be any vector (compatible with p;),then

m

[y]T(Z[pz-] i)y =D )" (pil[pi]")ly) > 0

i=1
So > [pil[pi]t = 0. Let P =377 [p;][pi]. Then,

')z = (2] Pla)y = Y Ppaa’ (3.11)

IBI<t,|lyI<t
Equating coefficient of o where |a| < 2t we get
fo= > Ps, (3.12)
st Bty=a and |B]1y|<t

V « with |a| < 2t. Therefore P € S.So f is a sum of squares = S # ¢.

=
If S # ¢, then 3 X = 0 € SVl such that

> Xg,=faVa €Nl (3.13)
By EN st B+vy=«

From this we get, [f]T[x]y; = [z]f X[z];. From proof of proposition 3.1.3,we get that X=
el + ...+ Amemel where m= |N7'| with \; > 0. Therefore v/\; € R. So

172l = D _lelf Ve[V e el

i=1

Therefore f = Y p;2 where p;2 = [z]T [V e[V Aieilt[z];. So S # ¢ implies f is a sum of

squares. O
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Theorem 3.2.1.2. Let g1,...,9m € Rlxq,...,x,]. Let deg(g;)= d; Y1 < i < m. Then f

= (pgl + "'p(2)k0> + 91(]7%1 + ~~p%k1) + ot gm(pznl + . +p3nkm) Jor some Dij € R[xh -~71'n] iff
S, ---9m) # ¢ where

S(G1s --Gm) = {(Xo, X1, . Xn) [ Xo € SV, X; € SMer-an2s VI < i <m, X = 0V 0<i<m

and fo =Y Xogo+ > D gis >, Xig, Vo €Np}

B+y=a i=1 0<d;  B+y=a—¢

Proof. =:
Let f = (p§, + ---P5r,) + 91 (P11 + -DTk,) + oo 4 G (Do + - + P2y, )- Similarly as before we can
write

1" [2]oe = [2]¢ Pola)e + (o] [#][2]pa, jor Prlle—ran o) + oo+ [gm] " (2] 4, j20 P[] 1 o
where P, > 0V 0 <7 < m. Equating the coefficients we get,
Ja= D2 Posn+D > 96 D Puas (3.14)
B+y=a 1=1 §<d; B+y=a—5
V a. Therefore Sgi,...,9m) # ¢ -

<~
If S, gm) # ¢, we get (Xo, .., X;,) such that

fa = Z )(05’7 + Z Z gis Z Xiﬁﬂ/ V (6% (315)
B+y=a i=1 6<d; B+y=a—6
So we have
1" [2] = [2]f Xolale + [on]" [2][2]" X [a] + ... + [gin] " [][2]" Xin[2]
As we saw before if X; = 0, we can write [2]" X;[z] = p}, +... +pj, for some k; > 0. Therefore,
f= 001+ o+ Pikg) + 9111 o+ D) F s GOy e+ D) (3.16)
O]
Remark 3.2. g(z1,..,x,) is a sum of squares implies g(xy, .., z,,) > 0.But g(z1,..,z,) > 0 need

not imply that g(xy, .., z,)is a sum of squares.

If K is of the form described in preliminaries and if K is compact then we can use results
of Schmdgen and Putinar to characterize positivity of f over K. Let g = (¢1, ..., g) be used to
describe K.

Definition 3.2.1.3. Q(g) :
Q(g) :=={00+ 0191 + ... + OmGml|o; is sum of squares ¥V 0 <i < m} (3.17)
Definition 3.2.1.4. Qy(g) :

Q:i(g9) == {00+ 191 + ... + OmGm |0i is sum of squares ¥ 0 <i<m
and deg(o;g;) < 2t and deg(oq) < 2t}



CHAPTER 3. POLYNOMIAL OPTIMIZATION 15

Definition 3.2.1.5. I'(g): I'(g) is defined as a quadratic module generated by ¢¢ := ¢{*...gc"
where e € {0,1}"™

Archimedean Condition: 3 R>0 such that R-z7 — .... — 22 € Q(g)

n

Lemma 3.2.1.6. Archimedean condition holds implies K is compact.

Proof. K= {z € R"|g1(z) >0, ....., gm(z) > 0}. So K is closed. And if Archimedean condition
holds, then K is bounded ( because (let a = (aq,...,a,) € K Archimedean condition holds

— JR>0stR—2?—...— 22 =09+ 01g1 + ... +pgm for some o; sum of squares.
ThereforeR—a? —...—a? = o¢(a)+o1(a)gi(a)+...4+0m(a)gn(a). Soon K, R—(a?+....4a2) > 0.
Therefore |a| < R)). So K is closed and bounded. Therefore K is compact. O

Theorem 3.2.1.7. (Schmiidgen) :Let K be compact.f(z)>0¥ z € K = f €T(g).
Theorem 3.2.1.8. (Putinar) :Lets assume archimedean condition holds. Then f(z)>0¥ x €
K — [ €Q(9)

3.2.2 Lasserre Hierarchy

Let t> [deg(f)/2].Lasserre introduced relaxations to the polynomial optimization problem
based on Putinar’s result.

Counsider

2 =supy er{N: [ = A € Qu9)} (3.18)
Lemma 3.2.2.1. f7° < fin

Proof. Let A be such that f — X € Q(g9) € Q(g9). So f —A > 0on K. frin = infrxf(x). So
fmzn Z fsos' D

Theorem 3.2.2.2. Lasserre Hierarchy :
20 < il < < finin (3.19)
Proof. Now Q+i(9) € Q¢riy1(g) Vi € N. Therefore
{A eR|f =X €Qui(9)} S{N ER[f =X € Quyina(9)} Vi €N

So fo8 < ffes, Vi € N. Therefore we get f7*° < f07 < ... < fin = infg f(x) by using
lemma 3.2.2.1. O

We know that f — X € Qi(g) < S1, .-, gm)’ ™ # ¢,where

S(gh "'7gm)f7)\ = {(XOaXb Xm) ’XO S SNtn X € SN[I(midi)/zJ V1 < { < m, X = 0vo0 < [ <m

and (f — N)., ZXwﬁZZgza > Xig,

B+y=« i=1 §<d; B+y=a—3
Va € Ny}
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So ,
Sty s gm)’ T = {(Xo, X1, . Xn) | Xo € SN X, € SNz v 1 <i<m, X; =0

VO0<i<mand f, = Z X05»7+izgi5 Z Xig .~

B+y=a i=1 §<d; B+y=a—4d

Therefore ,

A f=X €Qug)} =1{fo,..00 — Xow — ZgiOXigo 1Xo € SN X; € SNle-anr2 v 1 < < m,X; =0

.....

i=1
Vo<i<m
and f, = Z Xogy + Z Zgié Z Xig
B+y=a =1 §<d; B+y=a—6

Va €N —(0,..,0)}

Therefore |

,,,,,

i=1
V1i<i<m,X;>=0V0<i1<m

and fo, = Z X[)ﬁ,'y—f_zzgié Z Xigy

B+y=a i=1 6<d; B+y=a—§
Va €Ny —(0,..,0)}
Let
Xo 0 O
0 X; O

0O 0 0 X,

Define Cy = (Co, )54 eny where Cp,, = —1 and everywhere else 0. Define C; = (Ci, )p4 enn .

where Cj,, = —¢io and everywhere else 0 V 1 <7 < m. Define
Co 0 0
0 C; 0
0O 0 0 C,

Va € NP\(0,...,0) define Agg = (Aao, ., )sy eny Where Ay, = 1if 4+ v = o and otherwise
0. Define An; = (Aais. )5y NI 0y where Aqi, = gis where 8+ = a — ¢ and otherwise 0.

Define

Aw 0 0
0 Au 0
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Now one can check that
2% = flo,...0 + sup{(C, X)|X = 0 and (A, X) = fo Vo € N/\(0,...,0)} (3.20)

The dual program can be expressed as

7= foeoy Finfl D fael Y YaAa —C = 0} (3.21)

Therefore , /" = fio..0) +inf{>_, eny faYal D, NP\ (0,...0) YaAa = C = 0 and y(o,...0) = 1}

.........

M(y) 0 0
0 Mgy * 0
Z Yad, — C = ‘ (91 y) ‘
a ENP\(0,...,0 ) : ’
MO0 0 0 0 M(gmy)

when y,..0) = 1,M(y) and M(g; * y) are moment matrices described in preliminaries.

-----

.....

.....

7" = infL erias, {L(f)|IL(1) =1 and L(p) > 0¥ Qu(g)}-rvoveroeirannane. (MOMt) (3.22)
where R[z]}, is a set of linear functionals on R[z|o. frnin = infx f(2) = fiin-

Theorem 3.2.2.3. Lasserre: Assume that the Archimedean condition holds.then f,, =
tlim ftSOS
—00

Proof. So we have to prove that given any € > 0 3 ¢ such that f* > fu.., — ¢ .( Because f7*
is a non decreasing sequence such that f7°° < fiin YV t). fonin = infr f(x). So f — fimin = 0 on
K. Therefore for any € > 0, f — fin + € > 0 on K.So by Putinar’s result f — f... +€ € Q(g).
Therefore f — frin +€ € Q4 (g) for some tyg. So f°° > fiin — €.(By definition of f°°.) So
o = Ji 5 :

3.3 Moments

Let p be a measure on K.Define linear functional L, by

L) = [ =3 fu [ s (32

From calculations in the previous section we see that f7°° < f/"°™ (by weak duality).

Lemma 3.3.0.4. f, = inf{L,(f)|n is a probability measure }.
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Proof. Consider inf{L,(f)|uis a probability measure}. We have that f,., = inf{f(x)|g1(z) >
0,...., gm(z) > 0}.If we fix any x in K and consider Dirac measure associated to x ,then

L= = [ iwasw = s (3:24)

And Dirac measure is a probability measure. So inf{L,(f)|x is a probability measure} < fon
and

L= L) > frin / a1 = Frn (3.25)

y €K y eK

whenever p is a probability measure. O]

Definition 3.3.0.5. f/"™ :

7" =inf{L(f)IL(1) = Land L(p) 20V p € Qi(g)} (3.26)

Theorem 3.3.0.6. Haviland : L = L, for some measure ji on K iff L is nonnegative on
P(K) where P(K)={p € Rlxy,...,z,]|p >0 on K}

Q:(g9) € P(K) and p is a probability measure implies L, (1) = 1.Therefore
{L.(f)|u is a probability measure} C {L(f)|L(1) =1and L(p) >0V p € Qig)}

So f"" < fin. So we have

tsos S ftmom S fm'm (327)

So |Lasserre thm| implies that if archimedean condition holds then

tlggo 1= tlgloqo g ks (3.28)

If for some t optimal value of f/"*™ is L,(f) (where i is a probability measure),then f,;, =
inf,{L,(f)|p is a probability measure on K} > f" . Therefore f.;,, = f"°™ for that t.

Let L be a linear functional. Then M(L):= (L(z%2"))a.5. Ker M(L) = {p € Rlzy,...x,][p" M(L) =
0} = {p € Rlzy,.x,)|L(pg) = p"M(L)g =0V q € Rlzy,..z,]}.Ker M(L) is an ideal in
R[z1, .., z,).IJf M(L) = O,then L(p?) =0 = p €Ker M(L)..(." L(p?) =0 = p"M(L)p =
0 = p'NN"p=0(-M(L) = 0) = (N'p)"N"p=0 — NTp=0 — p'NNT =
0 = p € Ker M(L)).

Theorem 3.3.0.7. (Curto and Fialkow) :Let L be a linear functional.If M(L) = 0 and
rank M(L) = r < oo,then L has a unique representing measure [i.

Proof. Let J = KerM(L). p € V' J = 3k, p1, ..., ps such that p?* + >0 p? € J .Therefore
Lp** + 57 p?) =0As M(L) =0, L(p?) > 0V 1 <i < s and L(p?*) > 0.Therefore, L(p*) =
0.So M(L) = 0 implies p* € J.If k is even we can again derive p" € J for k; = k/2. if k is
odd pF*t1 € J then again we get p**+1/2 ¢ J.Continuing in this way we get p € J.Therefore
V/J = J.So J is real radical ideal. M(L) has finite rank r.Let columns indexed by z*,....,x* be
maximal linearly independent set of columns. Then \jz®1 +...4+ 2% =0 € Rlzy,..z,)/] =
Mz + o+ Aa® e J.Therefore L((Az™ + ...+ \a®).2?) = 0V v € N"™Therefore
M L(x* ) + o+ AN L(x* ) =0V y € N™This implies \; = 0 V1 < i < r..(". columns
corresponding to x® € M(L) are linearly independent.Therefore dimR[z1, ....x,]/J > r.And
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if 3 any 3 such that 21, ...., 2%, 2# are linearly independent ,then columns in M(L) correspond-
ing to (1, ..., 2%, 2°) are also linearly independent.(-.- if not I\, ..., \,y1such that A;(column
corres tor® )+........ +Ary1(column corres tox? ) =0 = L(Aa® + ... + \a” + \2°) =
0 = Mz + ...+ \2" + \y2® € J contradicting z, ..., 2%, 2” linearly independent
€ Rlzy,...xz,|/J over R).Therefore dimR[zy, ....x,]/J > r.Therefore dimR|zy, ...z, ) /J = r. Jis
a real radical ideal. Therefore a radical ideal.So by proposition in preliminaries V¢ (J) = Vr(J)
and [Ve(J)| = |Wr(J)| = r.Let Ve(J) = {v1,....,v,} C R".Let p,, € Rlzy,...,z,|be inter-
polation polynomials at points of Vg(J).(Interpolation polynomials are described explicitly in
preliminaries)p,, (v;) = 0;;.(p2, — pv,)(v;) = P2, (v;) — pu,(v;) = 0.Therefore p2. — p,,(v;) =
0V1I<j<nrl<i<rSopl—p, € IVe(J)V1<i<r ButI(Ve()) =
J(. J is radical). Therefore p2 —p, € J V1 < i < r.Therefore L(p?) — L(py,) =
OV1I<i(<rLp:) >0V1I<i<r( ML =0 = L({p;)>0V1<i<rand
Lp:) =0 = p, € J(as M(L) = 0)giving contradiction as p,,(v;) # 0). Consider
p= > L(py;)dy,(0v; dirac measure with respect to v;).Then for any f€ Rlxy,...x,].L,(f) =
S F = ST Lp) Jye F@)6, = S0y L(po) f (o) By lemma [ — X, < oo F0)p, €
I(Ve(J)) = J.Therefore L(f) = >, < vo(s) f(vi) L(py;)-So L (f) = L(f)V [ € Rlzy, ..., 2,]..So
L=1L,. O

Definition 3.3.0.8. Truncated moment matrix of L : L € Rlzy,...,x,]5,

My(L) == (L(z%2"))a,6 € np (3.29)

Definition 3.3.0.9. Flat Extenstion :M;(L) is a flat extension of M;_; (L) if rank M,(L) =rank
M, 1(L).

Theorem 3.3.0.10. Let L € R[xy, ..., zp]5,. . If My(L) is a flat extension of M;_1(L) then 3L €
Rlxy, ..., zp|* such that L =L on R[xy, ..., x,]o and such that rank M (L) = rankM,(L).

Proof. Consider I ideal generated by KerM,(L) € Rlzy,...,z,], My(L) is a flat extension of
M;_1(L). Therefore rank M,(L) =rank M,;_;(L).So columns corresponding to z* where |a| =t
can be expressed in terms of columns corresponding to 2 with |3| < ¢ — 1.Therefore * with
|a| = t can be expressed in terms of x# with |5| < t—1 € Rlxy,...,x,]/I.Soany f € Rz, ..., z,]
can be expressed in terms of z® with|a| < ¢(modulo I).Now define L(f) such that if f = g for
some g in R[zy, ..., ], then i(f) = L(g).(well defined because if g = h, g, MinR[zy, ..., Tn)o

then g —h € Ker M;(L). Therefore L(g) = L(h)).And rank M(L) = rank M;(L).(because
f € Rlzy,..,x,]/I can be expressed in terms of z%;|a| < t) O

Theorem 3.3.0.11. Let L € Rlxy, ..., 3,]5 such that My(L) = 0, My_rq,/21(9;L) =0V 1 <
Jj < m and rankM,(L) =rank M,_q4, (L) where dx = maz{[d;/2:1 < j < mrceil}.Then L has
a representing measure ji such that supp(p) C K

Proof. Similarly as in previous theorem,rank M,(L) = rank M, 4, (L) = 3L € Rlzy, ..., z,]*
such that L = L on R[zy, .., 2] and such that rank M (L) = rank M,(L).By proposition in
preliminaries M(L) = 0 iff L(c) > 0 V ¢ sum of squares.L(c) = L(o’) for some o’ sum
of squares and M;(L) > 0.Therefore L(¢’) > 0.So M(L) = 0.So by theorem of Curto and
Fialkow L and so L has a representing measure y such that L = 3_7_, L(p,,) L., where supp(u)
= {v1,...., v, } € R with r= rank M (L) = rank M,(L).Now to show that v; € KV 1<i<r.
Rank M;(L) = rank M;_ 4, (L).Therefore every p,, can be written in terms of polynomials of
deg atmost ¢ — dx(modulo I= ideal generated by Ker M;(L).Say p,, = h;(modulo I)V 1 <
i < r.Therefore p,, —h;, € IV 1<i<rForanyl <j <m,M_r4/2(g;L) = 0. and deg
hi <t —dg < t—[d;/2].Therefore (g;L)(h?) > 0.S0 L(g;h?) > 0.p7, —h? € IV 1<i<
r.Therefore L(g;h?) = L(g;p3) > 0V 1 < i < r. and V1 < j < m.Therefore L(g;p2) =
S L(po) Lo (gip2) = gj(v;)) >0V 1 <i<randvV1<j<mSowv € KV1<ic<
r.Therefore supp(u) C K.

O
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Theorem 3.3.0.12. Let L € Rlxy,...,x,]5 be an optimal solution of (MOMt).Assume L
satisfies rank My(L) = rank M;_q, . Then fi"™ = fin

Proof. L is optimal solution of (MOMt).Therefore L(p) > 0V p € Q+(g).So My(L) = 0
and M;_rq;2) = 0V 1 < j < marank M;(L) = rank M;_ 4, .So by previous theorem L has
a representing measure p with supp(p) € K.Let supp(p) = {vi,..,v,} € R"Then L =
>y L(py,) Ly, . Therefore fi™™ = L(f) =i, L(py,) f(vi)(v; € supp(p) C KV 1<i<rand
o) = L) 2 0 = f(5) > fuin V1 <7 < 180 77 > (S0 L(po) fmenL(1) = 1
S0 > L(py,) = 1o "™ > finin. Therefore " = frn. O



Chapter 4

Kissing Number

4.1 Spherical Harmonics

Here we go through concepts of spherical harmonics, needed to derive the addition theorem.
This chapter contains description of gegenbauer polynomials . It discusses the ’ kissing number
problem ’ and how to give a bound for it.

Laplace equation in n variables.
Z =90 (4.1)

Definition 4.1.0.13. Harmonic polynomial: Homogeneous polynomials which satisfy Laplace
equation are called harmonic.

Definition 4.1.0.14. Spherical harmonic: Spherical harmonic in n variables is restriction

of homogeneous polynomial (say u) in n variables satisfying the Laplace equation to unit sphere
Sn=1in R

Definition 4.1.0.15. V},, : Homogeneous polynomials of deg k in n variables form a vector
place over R.We denote this space by V},,,.

Now to calculate the dimension of Vj,, .

Lemma 4.1.0.16. dim Vj,, = (n;ik) = (n—;+k)

Proof. Let x = (21, .., ). (X%)|a)=kspanVy,,. And they are linearly independent. dimVj,,, = |S|
where S ={a = (ay,...,a,) € Z% | |a| = a1 + ... + @, = k} . Now consider any arrangement
of n-1 lines and k dots .Each arrangement gives rise to a distinct . And each « gives us a
unique arrangement. Therefore |S| is the number of arrangements of n-1 lines and k dots i.e
(n—l-i—k:) _ (n—;—i-k) 0

n—1

Denote dim of Vj,, by di . So di, = (";jk) All homogeneous polynomials are not har-
monic.Let A = 3" 9%/0x? be Laplace operator. A is a linear operator. Harmonic polynomials
of deg k in n- variables also form a vector space over R Let us denote it by Wy ,. Let p(x) be

a homogeneous polynomial of deg k in n variables. We can write p(x) as

p(z) = ZAk,j(xl, ooy Tp1)X (4.2)

21
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where A, (z1,..,7,-1) is homogeneous polynomial of degree m in n-1 variables.p(x) harmonic
implies Ap(z) = 0. So

hE

Ap(x) =Y A(Ap_j(z1, ., 70 1)2))

j=0
k n—1

= ST O Ap s @1, s w0 )20)[002) + (O Ap (@1, s 00 1)20) [ 02)
=0 =1
o k

= Z A(Ak_j(l'l, cees ZEn_l))ZL’ZL + Z](] - 1>(Ak—j(x1; ceey ZL’n_l))CL’%_Q
j=0 j=2
k=2

c.0= (Ak—j(xla ...,[L’n_l) + (] + 2)(] + ].)Ak_j_g(l'l, ey l’n_l))l'gb
7=0
So

If we have A; and Aj_; then we can compute 4; V 0 < j < k — 2.50 we have p.We can
define ¢ : Vi1 X Vieino1 — Wi by ¢(Ag, Ax — 1) = the corresponding harmonic polyno-
mial computed using (3.3).¢ is linear and bijective.So by null rank theorem dimWj,, = dim

(Vim-1 X Vicim1) = din1 + di—1 n1. Therefore dim Wy, = (") + ("15).

Polar coordinates in n-dimensions(r, 6y, ....,0,,_2, ¢)

x1 = rcos(y) (4.4)
xo = rsin(fy)cos(0s) (4.5)
(4.6)

Tp—1 = rsin(fy)sin(by) ... sin(0,_2)cos(¢) (4.7)
T, = rsin(0y)sin(0s) . .. sin(0,_2)sin(p) (4.8)

with 0 <0, <7 and 0 < ¢ < 27.
We can define inner product on the space of real continuous functions on S”~! by

Definition 4.1.0.17. (f,g) :

(fr9) = f(€)g(&)dw(&) (4.9)

Sn—1

Let Hi(x1, ..., z,) be harmonic homogeneous polynomial of degree k and H,(z1, ..., z,) be har-
monic homogeneous polynomial of degree j.

Theorem 4.1.0.18. Harmonic homogeneous polynomials of different degrees are orthogonal.

Proof. Hy, H; harmonic implies AH, = 0 = AH,.So

/ (Hj(z1, ooy xn) AHg (21, ..y ) — Hi(21, ..y ) AH (21, ..., ) )d2yds... .dxy, = 0
23+ 422<1
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By Gauss-Green’s theorem, we get
LHS = [ (H0/0rHulr)les — HAO2/0rH(r) ()

Hy,, Hjare homogeneous of deg k ,deg j respectively. Therefore

0/0r Hy,(ré)|r=1 = 0/0r (r"Hy(§))|y=1 = kr* " Hy(€)|y=1 = kH(§)
8/0rH;(ré)lr—1 = 0/0r(r’ Hy(€))|r=1 = jr’ ' H;(&)|r=1 = jH;(§)

So LHS= [, (k — j)H;(§)H(§)dw(§) = 0. dw(§) is invariant measure on surface of S"~'.
So if k # j then (H;(§), Hp(§)) = 0.Therefore homogeneous harmonic polynomials of different
degrees are orthogonal. O

Denote dim Wi, by ¢ = (nJr:iz) + (n;i;g)

With respect to the above inner product we can use Grahm-Schmidt orthogonalization to
obtain an orthonormal basis of W}, ,,.Let Sy ; for j= 1,...,cx, be the orthonormal basis thus
obtained.

Let O be an orthogonal n x n matrix i.e
070 =1d = 00",
Then we have a map from R” to R" given by x + Ox. Then scalar product

(Ox,Oy) = (0Ox)" (Ox)

=270T0y
= xTy
= (z,y)
Lemma 4.1.0.19. S, ;(Ox) € Wy,
Proof. Consider A(Sj ;(Ox))),
0/0x,
A(Sy,;(Ox))) = (0/0x4, ....,0/0xy) : Sk,;(Ox)
0/0z,
Let y = Ox then (0/0z4, ....,0/0z,) = (0/0y, ...., 0/ 0y, )O. Therefore
Ayith respect to 1,..., xn(Sk,j(Ox)) = Ayitn respect to O(z1,..., xn)(SkJ(O-T)) =0 []

So each Sy ;(Ox) can be written in terms of S ;(z); j =1, ..., ¢4 uniquely.Let S ;(Ox) =
o AR Spa(x) for j =1, ..., cpn.Let A¥ = (A5)); be a ¢y X Cppn matrix. Then

Ck,n

154 il

- /S"l Sk,j(O) Sk (Ox)dw(z)

= Sk, () Sk (x)dw(z) = 0 (asdwisinvariant.).
Sn—1
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Therefore A* is orthogonal.

Let n € S™ 1 Then n can be expressed in such form: 7 = t(1,0,...,0) + V1 — 2/
where |n'| = 1 and 7’ is of the form (0,x,x*,...,%).(n,(1,0,..,0)) = ¢t = 00501 where n =
(1,64, ...,0,_2,¢) in polar coordinates.By relations given by (*) we get

dzy...dx, = r"'sin" 20, .. .sin%6,_ssinb,_odrdb;...do,_odd

So dw,, = rsin™20,df,dw,,_,.Therefore on S™ ! i.e when r = 1 we have

dw, = sin" 20,01 dw,_1 = (VI — V1 — B)dtdw,_ = VI — 2" dtdw,_;  (4.10)

Consider
Sk (1)
Fio(x,7) = [Ska(®), .-, Skep (@)] : : (4.11)
Sk7ck,n (ﬁ)
If we consider Fj as a function of x then it is a homogeneous polynomial of degree k. And it

will be harmonic as each Sy j(x) is harmonic for j = 1,..,¢,. Let O be an orthogonal matrix
which fixes n. Then

Sk (07)
Fr(Oz,0n) = [Sk,l(Ox), e Sk,ck’n(Oz)] :
Sk.cun 071)
Sk (07)
So Fi,(Oz,n) = [Sk1(0x), ..., Ske,., (0x)] (AF)T A" ] (Because On =)
Sk.crn (071)
So Fp(Oz,n) = Fe(z,m) evnen. (Because A% is orthogonal)

Therefore Fj as a function of x is invariant under all orthogonal transformations that fix 7.
Fy. only depends on scalar product (z,7). So we can write Fy(z,7) = bpPr((z,7)).....(***) for
some constant by. We can normalize it by taking Py ((n,7n)) = Pk(1) = 1.
So Y5 (Sk; () = Fi(n,m) = by, Therefore [g,_, bpdw(n) = 3., [gui(Sk(n))*dw(n)...
brw,, = fSnfl bpdw(n) = cxpeee.( Skyj 1 J = 1,..., Cpp is an orthonormal basis for Wy, ,, with
respect to(3.4) ...... (IT)where w, is surface area of S"7!. So by = cx /W,

Fi(,m) = 32755 Sk () Sk (n) = Cn/wn Pi((2, 1))

Ck,n Ck,n

G/ Wa PR (1) =Y Y Sk () k(1) Ski () Si ().
7=1 =1

Ck,n Ck,n

dafud [ BE@)dutn) = 303 Si@Siste) [ SusmSitidut

7j=1 =1

Ck,n

— Z(Sw (z))2.....(by(I1))

= Fy(z,2) = bp P ((z, 7))
= Con/ W Pr(1) = Cppn/wy
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So fsnfl Pk2(<xv n))dw(ﬂ) = wn/ck,n
Fy(w,n) = bpPi((x,m)) = 2231 Sij () Sk ()
Fi(,m) = b, Pi((x,m)) = 275" Spr () Sp5(n)

Therefore byb), [g.- Pr((z, 7)) Pp((z,n))dw(n) = 3555 STET Sky(2) Sk i(®) [ Skj () Sk i () duw(n)
0 (if k #K) .....(by (3.5))

[ Pl PilGemhdoto) = (et (1.12)

Now let x = (1,0,..,0)..Let ¢t = (z,7).Therefore using (3.6) we get [, , Pr((z,n))P((z,1)) =
f P.(t)PL(t) (V1 —t2)"3dt [ dwy,_;....(because as n varies on S™ 1.t varies from -1 to 1)
= Wy_1 ffl P ()P (t)(V1 — t2)"3dt

1

(W) (W10 = / Pu() PLH) (VT = )4t (4.13)

-1

4.2 Gegenbauer Polynomials

Ultraspherical polynomials are defined in terms of their generating function.For a given o, C'%
are coefficients of t" in 1/(1 — 2xt + t2)°. i.e

ZCO‘ " =1/(1 — 2at + t*)°

The above equation (3.8) implies Py (t) = C’.C,?_Q/ ?(t) for some constant C. (For this impli-
cation refer to [4] or [5]). But we have normalized so that P,(1) = 1. Therefore C' =1/ 0272/ 2.
Therefore Py(t) = C7~ (1) /Cr (1)

Definition 4.2.0.20. Gegenbauer Polynomial (of deg k in n variables) :
Gr(t) = Oy (/G ()

So Pi(t) = Gp(t).Gi(t) = Py(t). But PO( ) is constant as it is homogeneous polynomial of
deg 0.But Py(1) =1. So G§(t) =1V n

By (***)we see that Fi(z,n) = bpPe((x,7))
We know by = Cy . /wy,

Therefore Fi(,7) = Y554 Sk ;(2)Sk (7)) = Chon/waGi((x, 7).
So we have proved the addltlon theorem.
Theorem 4.2.0.21. Addition Theorem :

Ckn

Gi((2,7) = wn/Chn Y Sk j(w)Sk;(7]) (4.14)

j=1

Theorem 4.2.0.22. (Schoenberg):If X = (X;);; is a N x N matriz on R s.t X = 0 with
rank atmost n, then G(X) = 0.
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Proof. X » 0 implies X = LL'. rank(X) = rank(L) < n.Therefore we can choose L s.t L is
an Nx n matrics. Therefore each row is a vector in R”™. Let i row be 7;
Then
Tl
)
X = [ . ](T’l ro ... TN)

N
Therefore X;; = (r;,7;)V1 <i,j < N. So G}(X;) = GR((14,75))....(As i, r; € R™ well de fined)

Addition theorem implies

Ck,n
G(Xij) = wn/Crn Z Ska(ri)Sea(r;) V1 <i,j <N

=1

Therefore matrix G(X) = wy,/Cxn MM* where M = (Sy;(r:))i; So GF(X) = 0 . O

4.3 Kissing Number

Given a sphere A in dim n. Kissing number k(n) is the maximum number of spheres of same
size as A that can touch A simultaneously without overlapping each other.
For the case n =2,it is easy to show that k(2)=6 using the diagram below.

Figure 4.1: Kissing Number for n = 2

There is no space for a 7" circle can be shown using contradiction. Kissing numbers are
known for n=1,2,3,4,8 and 24.For n=3 regular icosahedron gives us a configuration where 12
spheres touch given sphere without overlapping.(Icosahedron has 20 faces and 12 vertices such
that five faces meet at each vertex.If we consider spheres touching the sphere at these 12 vertices
we get the desired configuration ).But a lot of space is left even after placing 12 spheres touching
the center one.Therefore its hard to know if the above is the unique configuration.

For n=4 24-cell provides a configuration.Therefore k(4)> 24. Musin proved in 2003 that
k(4) =24 . For n=8 root latice Eg provides a configuration.It is known that k(8)=240.Leech
latice gives a configuration for n=24. k(24) is known to be 196560.

Delsarte, Goethals and Seidel method can be used to find good bounds on the kissing numbers.
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Figure 4.2: Icosahedron

Theorem 4.3.0.23. Delsarte, Goethals and Seidel: [ff(t):ZZZO cxGL(t) where G (t) are
GegenBauer Polynomial with cg >0 and ¢, >0V k= 1..d and f(t) <0V t € [-1,1/2] then

k(n) < f(1)/co

Consider the following : Let A be unit sphere centered at origin in R". Lets say its possible
that N unit spheres touch A without overlapping .Let 1, ..., zxy denote the points where they
touch A. No two spheres overlap. Therefore (z;,,) =1V 1 <i < N. So (x;,z;) <1/2 Vi#j
(Because 6 between lines joining centers should be > 60 if they don’t overlap. Therefore
cos < cos60 = 1/2. So (z;,z;) < 1/2)

Consider the matrix X such that

X

Xij = <£L’Z‘,l‘j> SX = [ :EQ ](1'1 T2 ... CUN)

TN
Therefore X is positive semidefinite. And as z; e R* V 1<i<n rank z <n.
Consider the set

S={XeSNX=0,24=1V 1<i<Nuz;;<1/2 Vi#j rank x <n}  (4.15)

IfS#4¢thend x€ SVst. X =025, =1 & z;; <1/2 and rank z C n.
So X = LLT forsome L a N xn matriz.
So we can consider rows of L as points on A and so we get a configuration for N points.

Returning to the proof

Proof. According to the explanation above k(n) corresponds to a matrix X = 0 with x; =
V1 <@ < k(n) and x;; < 1/2 Vi # j and rank x < n.So applying Schoenberg’s theorem we
get G(X) > 0.Therefore sum of all entries of G}(X) > 0.

k(n) k(n)

Z Z Gr(Xi5) >0 (4.16)

=1 i=1
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ZZf Z] Z (Xu) +Zf(XZ])
j=1 i=1 =1 1#]
=k(n)f(1) + D F(Xy)

i#]
Xy <1/2if i # jand f <0 on [-1,1/2]. Therefore >, f(X;;) < 0.5o0,

k(n) k(n)
DO F(Xy) < k(n)f(1) (4.17)

=1 i=1

Now calculating again we get

k(n) k(n) n) k(n) d
P IETED 3 BT
j=1 i=1 j=1 i=1 k=0

n) k(n)

= Z c Z > Gi(Xy)
k=0 1 =1
k(n) "
> ¢ Z ZG” ij)---(because we have(1.2) and ¢ > 0)

7j=1 =1

We have G(X;;) =1V i,j. Therefore

k(n) k(n)
22 (Xy) 2 colk(n)? (4.18)
So k(n)f(1) > co(k(n))*.So
k(n) < f(1)/co (4.19)

]

Now lets try to find bound on k(n) using Delsarte’s method and semidefinite optimiza-
tion.Consider the following program for some fixed D.

D
min, = minp{F()|F => MGy, A\ >0,M =1and F(t) <0Vt € [-1,1/2]}  (4.20)
k=0
Then by Delsarte’s theorem F(1)/A\g = F(1) > k(n) V F satisfying the condition.Therefore
min, > k(n)

As we increase D we will get better bounds.Now we have to convert this problem to a
semidefinite optimization problem.

F(t) <oVt € [-1,1/2] < —F(t) > 0on [-1,1/2].]-1,1/2] can be reformulated as
K ={t € Rlg(t) = (1/2 —t)(t + 1) > 0}.If we can show that archimedean condition
holds for Q(g) where g = (g1).Then by Putinar’s theorem we get that —F'(¢) > 0 on [-1,1/2]
<= —F € Q(g).-Then we can replace the program by

D
min, = minp{F(1)|F = ZAkGZ, M >0, =1and — F € Q(g9)} (4.21)
k=0
In chapter 2 section 2 we saw that the condition —F € @),.(g) for some r can be replaced
by a semidefinite program.By varying r and D and using semidefinite optimization we can get
bounds on k(n).Refer appendix for the program.



Chapter 5

Triangle Packing

Problem Statement : What is the maximum number of regular tetrahedron that we can
pack in unit sphere S? having a common vertex origin so that none of them overlap?

This problem corresponds to finding the maximum number of equilateral spherical triangles
with edge length /3 that cover the sphere without overlapping.It is known that this number
T(3) satisfies 20 < T'(3) < 22. The upperbound can be found by dividing the surface area
of sphere by area of a spherical equilateral triangle of edge 7/3.Surface area of sphere is 47
and area of spherical triangle can be calculated using Girard’s theorem.Icosahedron gives us a
configuration for packing 20 tetrahedrons in a sphere.(.". T'(3) >20)As we reformulated ’kissing
number problem’ in terms of points on the sphere,we try to reformulate this problem. We can
denote vertices of spherical triangle as (xy, x5, x3) with certain conditions so that they form
equilateral spherical triangle.So we have to find maximum number of triples (xi,z9,z3) on
sphere such that they form equilateral triangle and no two overlap.So we need to find condition
in terms of (xy, z9, x3) and (y1, y2,y3) that will imply that the 2 triangles donot overlap. So we
need to find conditions depending on scalar products (z;,y;) such that the 2 triangles donot
overlap.

Definition 5.0.0.24. Let 2 be the set of nine tuples (a1, @12, @13, ..., az3) such that if
a; = (v4,y;) ¥V 4,j for 2 triangles (z1, 22, 23) and (y1, Y2, y3)
then (z1, x2, x3) and (y1, ye, y3) donot overlap.
Let us say we can arrange N non overlapping tetrahedrons with common vertex in R3.

Let origin be the common vertex. Let Ti,...., T be the corresponding spherical equilateral
triangles on S?, where T; = {z}, 24,25} V1 <i < N. So

(f,25) =1V1<i<NandV1<;<3 (5.1)
(), 25)=1/2V1<i< Nandj+j" (5.2)

Definition 5.0.0.25. Denote

Xij = (af,a3)
X = (Ar)ks

where Ay is itsel f a matrix given by
kel
A = (X55)iy-

29
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One can check that V1 <k < N

A, =

N[N =
N =N
= NN =

By definition of matrix X it is evident that X > 0. As each x; € R? rank X < 3. For any
Akl s let Al be pOiIlt (Xﬂ,Xg, ,X:]fé) in RY.

Definition 5.0.0.26.
PI?(Z) = PI?(Zla 225 235 R4y B55 265 RTy 285 2:9) = Z GZ(ZZ) (53)

where z = (21, 29, 23, 24, 25, %6, 27, 28, 29)

Theorem 5.0.0.27. If P = S0 f.P3 with fo = 1 and f, > 0 V1 < s < D and if P(2)

<0Vz € Q, then

P(all)
9

N < (5.4)

(N and Ay are as mentioned above)

Proof. X = 0 implies G3(X) = 0 by Schoenberg’s theorem for all s = 0,..., D. So sum of
entries is greater than or equal to 0. So

> G > (5.5)
,7,k,l

Consider

Z akl Z Z fs akl

k.l k. s=0

Y Y Y e

k,l s=0 i,J

—ZfSZGngl

= i,5,k,l

> ZG3 (X5

,5,k,l

Because fr > 0 and (5.12). Therefore

> Plaw) > 9N” (5.6)

k.l

Again calculating >, ; P(ax) we get,

ZP(CEM) = NP(CL”) + ZP(CLM)

k#l
S NP((I”)
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Because P is less than or equal to 0 on (2. So we get

Z P(akl) S NP((I[[) (57)
k,l

So (5.13) and (5.14) imply

P(all)

N <
-9

Now to express () in terms of algebraic inequalities.

Let {z,y, 2} be a spherical equilateral triangle of edge length 7/3 on S?. These 3 points
lie on a plane. Centre of this planar triangle is given by (x+y-+z)/3 . Centre of the spherical
triangle {x,y, 2} lies on the line through origin and (x+y+z)/3 and on S?. So spherical centre
is given by

Coy.=k(xr+y+2)/3
For some scalar k. But C,, , lies on S? so
F((x+y+2),(z+y+2)/9=1

2
k(=

3) = !

Because (z,2) = 1= (y,y) = (2,2) and (z,y) = (y,2) = (z,2). So k = \/g So

(x4+y+2)

V6

Let X = {z1,29,23},Y = {y1,y2,y3} be 2 spherical equilateral triangles of edge length 7/3 on
S%. Let r be the angular distance between Cy, 4, 24, 1. Denote it by 0(Ch, 2p.25, T1)

Coy, = (5.9)

Proposition 5.0.0.28. If 0(Cy, wy.25, Cyrms) = 21, then spherical triangles X and Y donot
overlap. (Note that 0(Cy, yo.s, Y1) = 0(Coy 225, T1) = 0(Cuy 2 245 T2) = 0(Cay y.2. T1). Same for
Y.)

Figure 5.1: spherical caps

Lemma 5.0.0.29. The condition that 0(Clyy 204, Cyyyys) = 2r can be rewritten in terms of
scalar product , which is given by

> (wiyy) <2 (5.10)

Z'hj 6{17273}
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Proof. 0(Cyy 2924, Cyy yoys) = 21 implies
0(Coy a5 Cyr as) = 20(Cy g o5 T1)
So

COS(Q(C:ELM,QC?,’ Cy11y27y3)) < 005(2‘9(031:1,952,9537 xl))
COS(Q(CM@Q@S, Cyl,yz,ys)) < 2005(0((7961,962,137 xl))Q -1

As Cuy oy sy Cyr ogss Cloy oo s €1 lie on S2, we have
2
(Cﬂm,xz,wsv Cyhyz,ys) < Q(Cxl,wz,wmxl) -1
But by (5.9)

2 iy 1,2,3 (i, 9;)
(011,12,13, Cy17y2,y3) — J €{ 76, }

(Cm,zg,xg; xl) =

S

So,

Z (@i, y;) <2

ij €{1,2,3}

So we know that X and Y donot overlap if (5.6) is satisfied.

Now we have to consider the case when >~, . (1, (2, y;) > 2.

32

(5.11)

For any u # v points on S? forming an edge of a spherical equilateral triangle with edge
7/3, {u,v,u A v} form a basis for R®. ((u Av) is point on S? such that ,that vector is normal

to plane spanned by u and v) . So for any point h in R? we can write
h = au+ bv + c(u Av)

So as (u,u) =1 = (v,v) and (v Av),u) =0= ((uAv),v)
(h,u) = a(u,u) + b(v,u) + c((u Av),u) =a+ g
(h,v) = a(u,v) + b(v,v) + c((u Av),v) = g +b
Solving these equations we get

4 2
a== - -

i(f% u) g(hav)
b= §<h’ v) — g(h,u)

Now let ki, hy be 2 points in R?. So again we can write

hl = a1u + bl’U + Cl(U/\"U)
h2 = asU + bQU + CQ(U/\’U)

(5.12)

(5.13)

(5.14)
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So

(hi,h2) = ((h1 = a1u + byv + c1(u A v)), (ha = asu + bov + co(u A v)))
= ((alu + bl’U), (CLQU + bgv)) + ci1Co
a1b2 + CLle

= (a1a2 + b1b2 + 9

) + c1Co

(h1,u Av) = c; and (hg,u A v) = 3. So hy, hy belong to different halfspaces created by plane
spanned by u,v iff cico < 0. i.e iff

CL1b2 + a2b1

(h1,ha) — (arag + b1 + 5

) <0 (5.15)

Definition 5.0.0.30. H(x,7;2): Vector x and vector y span a plane. This plane creates 2
halfspaces. H(z,y; z) is the halfspace different from halfspace containing z.

X C H(yr, y23) (5.16)
<~ {x;,ys} satisfy (5.15) Vi € {1,2,3} (5.17)

Let hy = z; and hy = y3. So by (5.13) and (5.14) we have
4 2 4 2

a; = g(hl,yﬁ 3<h17y2) - g(xhyl) - §($i7y2>
4 2 4 2
by = g(h17y2) - g(hbyl) = g(x’”yQ) o g(x“yl)
4 2 4 2 1
ay = g(hQ,yl) - g(h%yz) = g(yB»yl) - §<y3’y2) ~ 3
4 2 1 2 1
by = 5(hg,yz) - §(h2,y1) = 5(3/37242) - 5(3/37341) ~ 3
So by (5.15)
X C H(yr, y293) <
4 2 4 2 o(@iyn) = 5@ ys) | 5w 92) — 5@y
(i ys) = (5 (@i y1) = Gl o) + 5 (20, 2) = 5 (@i yn) + A 2 ooute) | o) 2 =
<0
So

X C H(y1,12:93) <=

(i, 1) + (24, y2)
3

(miayi%) - S 0

Vi € {1,2,3}. Similarly

Y C H(xy,x9;23) <~
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(i, x1) + (yi, v2) <0

3 <
Claim 5.0.0.31. If >, ; (195 (2i,y;) > 2 then X and Y donot overlap iff atleast one of the
following 1is true.

(yu 333) -

<0Vvie {1,2,3}

2 ) Ty, + (5,
X C Ay, yss ) e (s, yg) — ¥ ! (5, o)

<0Vie {1,2,3}

] ) L, + (5,
X C H(y2,y3; 1) i-e (zi,91) — (i, 2) . (i, ys)

<0Vie {1,2,3}

g ; L, + (@4,
X C H(yr,y3:92) e (xi,92) — (i, 91) 5 (i, y3)

(Yi, 1) + (yi, 22)
3

Y C H(zy, 705 23) i.e (y;, T3) — <0V i e {1,2,3}

(yi7 3’)2) + (yl7 1’3)
3

Y C H(xy,w3;21) d.e (y;, 1) — <0V i e {1,2,3}

(%@ﬂg@“m)SOV¢ € {1,2,3}

Y C H(xy,23;20) i.e (ys,T2) —
Proof. < is clear.
=
Consider this diagram. Let the spherical triangle in the diagram be X .

Figure 5.2: spherical caps

Let Y be any other spherical equilateral triangle.If Y C H(zy,z3; 72) then we are done. If
not there are 3 cases.If we consider each case we get atleast one of the above conditions.

Figure 5.3: Kissing Number for n = 2

1. 2 points in H(zy,73;25) and 1 in other halfspace. wlg call those 2 points y; and s
(a) y1,y0 in Hy : Atleast one edge ys,y1 or ys, yo of spherical equilateral triangle passes
through interior of X so X and Y overlap.
(b) y1 in Hys and ys in Haz not possible because we want equilateral triangle.

(¢) y1 in Hys and ys in Hy. Then we can have
from figure we can see that X subset of H(y2,ys3;2).



CHAPTER 5. TRIANGLE PACKING 35

Figure 5.4: Kissing Number for n = 2

2. 1 point in H(zy,r3;25) and 2 in other.
3. All 3 in halfspace different from H(x1,xs;25) .

O

Now as we did in kissing number problem we can express €2 in a semidefinite program with
the help of polynomial optimization.
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5.1 Appendix

Here I am adding the code for kissing number problem.
load("/Applications/sage/build /pkgs/SDP /SDP.py")

load (" /Users/satishjoshi/Desktop /documents/Gegenbauerpoly.sage")
load (" /Applications/sage/gcoeff.sage")

load(" /Applications/sage/sos.sage")

load(" /Applications/sage/soskiss.sage" )

¢ =matriz(RR,2x D + 1,1, lambdai,j : G_coef f(n, j,i))
G = matriz(RR,2* D + 1,2 x D, lambdai,j : G_coef f(n,j+ 1,1))
Gy = transpose(G)
G = transpose(matriz(RR,2* D + 1,(D + 1)*, lambdai, j : sos(D,1,7)))
Gy = transpose(matriz(RR,2 +* D + 1, D* lambdai, j : soskiss(D,1i,j)))
ho = transpose(matriz([1for i in [0..(2 % D — 1)]]))
hy = matriz(RR, D + 1, D + 1,lambdai, j : 0)
ho = matriz(RR, D, D,lambdai, j : 0)
¢ = matrix.onverter(c,’ cozopt’)
Go = matriz.onverter(Gy, cvzopt')
Gy = matriz.onverter(Gy,' cozopt’)

1
Gy = matriz.onverter(Gs,’ cvzopt’)

/

hy = matriz.onverter(hy,’ cozopt')

(

(

ho = matriz.onverter(hy,’ cozopt’)
(h1

ho = matriz.onverter(hs, coropt')

hs = [hh hQ]
Gy =[Gy, Gy
import cvxopt from cvxopt import matrix, solvers

sol = solvers.sdp(c, Gy, hg, Gs = G, hs = hy)
print sol|'x|

Gegenbauerpoly.sage

def G(n,k) :

R.<x>=CCJ |

a=(n-2)/2

c=sage. functions.orthogonal _polys.gegenbauer(k,a, 1)
b=sage. functions.orthogonal _polys.gegenbauver(k, a, x)
if k>0:

return b/c

else:
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return 0*x + b/c

gcoeff.sage

defG coef f(n,k,d) :

if d<k+1:

R.<x>=CC]]

load(" /Users/satishjoshi/Desktop/documents/Gegenbauerpoly.sage")
p:G(n,k)

v=p.coeflicients(sparse=False)

return v|d]

else :

return 0

sos.sage

def sos(D,i,j):
a=j%(D + 1)
b=int(j/(D+1))
if a+b==i:
return 1

else:

return 0

soskiss.sage

def soskiss(D,i,j):
v=[1/2, -1/2, -1]
a=j%D
b=int(j/D)
c=i-(a+b)
fo<e<2:
return vc|

else:

return 0
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