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Chapter 1

Introduction

Problem Statement :How many non overlapping regular tetrahedra, having a common ver-
tex can be arranged in R3?

Solution to this problem (say T(3)) is known to satisfy 20 ≤ T (3) ≤ 22). Thesis aims at
trying to solve the above problem with the help of polynomial optimization.

Thesis is divided into 4 parts. The first part explains basic concepts required further.
Second part deals with the theory of polynomial optimization. In part 3 we study spherical
harmonics and apply polynomial optimization to the kissing number problem.Eventually in
part 4 we try to bound T(3) with tools developed so far.
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Chapter 2

Preliminaries

Some concepts have been introduced ,which will be used later in the thesis .
Definition 2.0.0.1. A polynomial optimization problem is to optimize value of f ∈ R[x1, ...., xn]
over a set K described by some g1, ..., gm ∈ R[x1, , , , xn] .Let us consider computing infimum
of a polynomial f ∈ R[x1, ..., xn] over K = {x ∈ Rn | g1(x) ≥ 0, ....., gm(x) ≥ 0}.

fmin := inf{f(x) | g1(x) ≥ 0, ..., gm(x) ≥ 0} (2.1)

Notations : Let N = N ∪ {0}, t ≥ 0; Nn
t := {(α1, .., αn) ∈ Nn |

∑n
i=1 αi ≤ t}; R[x] :=

R[x1, ..., xn]. Let α ∈ Nn (say α = (α1, .., αn)) ; |α| :=
∑
αi. Then xα = xα1

1 ...x
αn
n ;

R[x]t := {f ∈ R[x] | degf ≤ t} ; [x]t := (xα)|α|≤t (In some fixed order) Now if f ∈ R[x]t.
Then deg f ≤ t. Therefore coefficient of f can be expressed in a vector form [f ] = [fα]α∈Nn

t
:

fα coefficient of xα (in same order as above) So f = [f ]t[x]t. Let I be an ideal in R[x] ,then
It = {f ∈ I | degf ≤ t}

2.0.1 Measure theory

Let X be a set. If 2X is collection of subsets of X.

Definition 2.0.1.1. σ - algebra Σ : Let Σ ⊆ 2X then Σ is a σ − algebra if

1. X ∈ Σ

2. if A ∈ Σ, then X\ A in Σ

3. Σ is closed under countable union. i.e If A1, A2, ... ∈ Σ then ∪i∈NAi ∈ Σ

Definition 2.0.1.2. Measure µ : Measure µ on a set X (with σ − algebra Σ) is a function
from Σ to R ∪ {∞} satisfying

1. µ(A) ≥ 0 ∀ A ∈ Σ

2. µ(φ) = 0

3. LetA1, A2, ... be countable pairwise disjoint subsets of X in Σ, then µ(∪i∈NAi) =
∑

i∈N µ(Ai)

4



CHAPTER 2. PRELIMINARIES 5

Definition 2.0.1.3. Borel measure on a set X : X is locally compact and Hausdorff
space.Let Σ be the smallest σ− algebra containing all open sets in X.And a measure µ defined
on this σ − algebra is a borel measure.

Definition 2.0.1.4. Dirac measure :(let X be set with given σ − algebra Σ).Then dirac
measure w.r.t. a fixed point x ∈ X is

µ(A) = 0 if x /∈ A
= 1 if x ∈ A

where A ∈ Σ.

Definition 2.0.1.5. Probability measure : µ measure on X with σ − algebra Σ is a prob-
ability measure if µ takes values in [0, 1] and µ(X) = 1.

2.0.2 Algebraic Geometry

Let I be an ideal in R[x] .

Definition 2.0.2.1. Radical of I :
√
I :={f ∈ R[x] | fm ∈ I for some m ≥ 1}. I is said to a

radical ideal if I =
√
I.

Definition 2.0.2.2. Real radical of I : R
√
I := {f ∈ R[x] | f 2m + p21 + ... + p2k ∈ I for some

m ≥ 1 and p1, .., pk ∈ R[x]}. I is said to be a real radical ideal if I = R
√
I.

Definition 2.0.2.3. VC(I) : {(a1, ..., an) ∈ Cn | f(a1, ..., an) = 0 ∀ f ∈ I}. It is called a
complex variety.

Definition 2.0.2.4. VR(I) : {(a1, ..., an) ∈ Rn | f(a1, ..., an) = 0 ∀ f ∈ I} = VC(I) ∩Rn .It is
a called a real variety.

Definition 2.0.2.5. I(VC(I)):= {f ∈ R[x] | f(a1, ..., an) = 0 ∀ (a1, ..., an) ∈ VC(I)}.

Definition 2.0.2.6. I(VR(I)):= {f ∈ R[x] | f(a1, ..., an) = 0 ∀ (a1, ..., an) ∈ VR(I)}.

Lemma 2.0.2.7. I ⊆
√
I ⊆ I(VC(I))

Proof. f ∈ I ⇒ f 1 ∈ I,Therefore f ∈ I ⇒ f ∈
√
I. f ∈

√
I ⇒ fm ∈ I for some m ≥ 1.

Therefore fm(a1, ..., an) = 0 ∀ (a1, ..., an) ∈ VC(I)⇒ f(a1, ..., an) = 0 ∀ (a1, ..., an) ∈ VC(I)⇒
f ∈ I(VC(I))

Lemma 2.0.2.8. I ⊆ R
√
I ⊆ I(VR(I))

Proof. f ∈ I ⇒ f 2 ∈ I, Therefore f ∈ I ⇒ f ∈ R
√
I. f ∈ R

√
I ⇒ f 2m + p21 + ... + p2k ∈ I . Let

(a1, ..., an) ∈ VR(I) then (f 2m+p21+...+p
2
k)(a1, ..., an) = 0 but (a1, ..., an) ∈ Rn ⇒ pi(a1, ..., an) ∈

R ∀ i and fm(a1, ..., an) ∈ R⇒ f 2m(a1, ..., an) = 0⇒ f(a1, ..., an) = 0⇒ f ∈ I(VR(I))

Theorem 2.0.2.9. Hilbert’s Nulltellensatz and Real Nullstellensatz thm: I ideal in
R[x]. Then

√
I = I(VC(I)) and R

√
I = I(VR(I)).(For Hilbert’s Nulltellensatz refer to Serre

Lang’s and for real Nulltellensatz refer [3] )

Lemma 2.0.2.10. I ⊆ I(VC(I)) ⊆ I(VR(I)).

Proof. VR(I) : VC(I)
⋂

Rn Therefore f ∈ I(VC(I)) ⇒ f(a1, ..., an) = 0 ∀ (a1, ..., an) ∈ VC(I)
which implies f(a1, ..., an) = 0∀(a1, ..., an) ∈ VR(I)⇒ f ∈ I(VR(I)). Therefore, I ⊆ I(VC(I)) ⊆
I(VR(I)).
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Theorem 2.0.2.11. If I is a real radical ideal and | VR(I) |<∞, then VC(I) = VR(I).

Proof. If I is a real radical ideal then I ⊆ I(VC(I)) ⊆ R
√
I = I. It implies I(VC(I)) =

√
I =

I = I(VR(I)) =⇒ I is radical and I(VC(I)) = I(VR(I)). Now if I is a real radical and |VR(I)| <
∞,then VR(I) = VC(J) for some ideal J.(∵ if |VR(I)| = 1 say a = (a1, ..., an) = VR(I),then
xi−ai ∈ R[x1, ..., xn] ∀ 1 ≤ i ≤ n and VC((x1−a1, ...., xn−an)) = VR(I). Now if |VR(I)| = m <
∞ then we get ideals J1, ..., Jm such that each point in VR(I) = VC(Ji) for some 1 ≤ j ≤ m and
therefore VR(I) = VC(J1...Jm)) and so I(VC(I)) = I(VR(I)) = I(VC(J)). VC(I(VC(J))) = VC(J)
(∵ VC(J) ⊆ VC(I(VC(J))) and if a ∈ VC(I(VC(J))) then ∀ f ∈ I(VC(J)); f(a) = 0. But by
Hilbert Nullstellensatz I(VC(J)) =

√
J .J ⊆

√
J,Therefore ∀ f ∈ J ; f(a) = 0. So a ∈ VC(J)).

Similarly VC(I(VC(I))) = VC(I). So VC(I) = VC(J) = VR(I).

Proposition 2.0.2.12. Let I be an ideal in R[x1, ..., xn].Then | VC(I) |< ∞ iff R[x1, ..., xn]/I
is finite dimensional as a vector space.(For proof refer to [1])

Interpolation Polynomials :

Theorem 2.0.2.13. Let V ⊆ Rn be finite set.Then there exist polynomials pv ∈ R[x1, ..., xn] ∀ v ∈
V satisfying pv(u) = δu,v ∀ u, v ∈ V .Then we have that for any polynomial f ∈ R[x1, .., xn]

f −
∑

v ∈ VC(I)

f(v)pv ∈ I(VC(I)) (2.2)

Proof. Fix v.∀u 6= v ∃ component iu such that v(iu) 6= u(iu). Define

pv :=
∏

u ∈ VC(I)\v

(x(iu)− u(iu))/(p(iu)− u(iu)) (2.3)

According to this definition pv(v) = 1 and pv(u) = 0 ∀ u 6= v ∈ VC(I).Let f ∈ R[x1, .., xn].For
any u in VC(I) we have (f−

∑
v ∈ VC(I)

f(v)pv)(u) = f(u)−
∑

v ∈ VC(I)
f(v)pv(u) = f(u)−f(u) =

0.So by definition of I(VC(I)), f −
∑

v ∈ VC(I)
f(v)pv ∈ I(VC(I)).

2.0.3 Linear Functionals

Definition 2.0.3.1. Linear Functional : Let y = (yα)α ∈ Nn be a sequence of real num-
bers.Corresponding linear functional L on R[x1, ..., xn] is given by

L :R[x1, .., xn] −→ R
xα 7−→ L(xα) = yα

f =
∑

α fαx
α 7−→ L(f) =

∑
α fαyα

Definition 2.0.3.2. Moment Matrix :Let y = (yα)α ∈ Nn be a sequence of real numbers
then

M(y) := (yα+β)α,β ∈ Nn ......(It is an infinite matrix) (2.4)

If g is a polynomial define

(g ∗ y)α =
∑

δ≤deg(g)

gδyα+δ (2.5)

Lemma 2.0.3.3. Let p be any polynomial in R[x1, .., xn].Let y = (yα)α ∈ Nn be a sequence of
real numbers.Let L be the corresponding linear functional.Then M(y) � 0 iff L(p2) ≥ 0 ∀ p ∈
R[x1, .., xn] and M(g ∗ y) � 0 iff L(gp2) ≥ 0 ∀ p ∈ R[x1, .., xn].
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Proof.

L(p2) =
∑
α

(p2)αyα

=
∑
α

(
∑

β+γ=α

(p)β(p)γ)yα

=
∑
α

∑
β+γ=α

(p)β(p)γyβ+γ

=
∑
β,γ

(p)β(p)γyβ+γ

= pM(y)pt

So L(p2) = pM(y)pt ∀ p ∈ R[x1, ..., xn].So L(p2) ≥ 0 ∀ p ∈ R[x1, ..xn] iff M(y) � 0.

L(gp2) =
∑
α

(gp2)αyα

=
∑
α

(
∑
δ

gδ(p
2)α−δ)yα

=
∑
α

∑
δ

gδ
∑

β+γ=α−δ

(p)β(p)γyα

=
∑
δ,β,γ

gδ(p)β(p)γyδ+β+γ

= pM(g ∗ y)pt

So L(gp2) = pM(g ∗ y)pt ∀ p ∈ R[x1, .., xn].So L(gp2) ≥ 0 ∀ p ∈ R[x1, ..., xn] iff M(g ∗ y) �
0.



Chapter 3

Polynomial Optimization

3.1 Semidefinite Optimization
In this section we see what is a semidefinite program and its dual . Its application to the max
cut problem is summarized.

3.1.1 Semidefinite Program

Definition 3.1.1.1. Convex Cone : Let K 6= ∅ be a subset of Rn. K is a convex cone if
∀α, β ∈ R≥0 and ∀x, y ∈ K , αx+ βy ∈ K.

Definition 3.1.1.2. Dual Cone of K : K* := { y ∈ Rn | 〈 y , x 〉 ≥ 0 ∀ x ∈ K } where 〈, 〉
is inner product defined on Rn.

Consider Sn = { A ∈ Mn(R) | A = AT}. It is a set of n× n symmetric matrices so dim Sn

= n(n+1)/2.

Definition 3.1.1.3. Inner Product on Sn :

〈A,B〉 = Tr(ATB) =
n∑
i=1

n∑
j=1

aijbij (3.1)

where A = (aij) B = (bij). A ∈ Sn is positive semidefinite if ∀ v ∈ Rn vtAv ≥ 0.

Proposition 3.1.1.4. Equivalent conditions for being positive semidefinite :
(i) ∀ v ∈ Rn vtAv ≥ 0
(ii) All eigenvalues of A are non negative. A = λ1e1.e

t
1 + ....λnen.e

t
n,where λiare eigenvalues.

(iii) A = LLT

Proof. (i) ⇒ (ii) let λ be an eigenvalue of A and v corresponding eigenvector. Av = λ v.So
vtAv = λvtv. vtv > 0 and vtAv ≥ 0 ⇒ λ ≥ 0.By Spectral theorem ∃ an orthogonal matrix
U s.t. A = UDUT where D is diagonal matrix (λ1, ...., λn) with λi being eigenvalues of A.Let
U= (e1, ..., en) where ei are column vectors.So A = λ1e1.e

t
1 + ....λnen.e

t
n.

(ii)⇒ (iii) A =
∑n

i=1 λieie
t
i where ei are orthogonal vectors forming U. All λi non negative

⇒ δi =
√
λi ∈ R.Let C =diagonal matrix (δ1, ...., δn) and let L = UC then A = LLT .

(iii)⇒ (i) Let v ∈ R. vtAv = vtLLTv = (vtL)(vtL)t ≥ 0.

8



CHAPTER 3. POLYNOMIAL OPTIMIZATION 9

Definition 3.1.1.5. Cone of positive semidefinite matrices :
Sn+ := {A ∈ Sn | A is positive semidefinite}.It is a convex cone (can easily be proved from
definition).

Proposition 3.1.1.6. Sn+ is self dual .i.e Sn+
∗ = Sn+

Proof. Let B ∈ Sn s.t. 〈A,B〉 ≥ 0 ∀ A ∈ Sn+.Let v ∈ Rn. vtBv =
∑n

i=1

∑n
j=1 vivjbij.Let

V = vvt.Then (i, j)th entry of V is vivj.By Proposition 3.1.1.4 (iii) above V = vvt ⇒ V ∈
Sn+.Therefore, 〈V,B〉 ≥ 0.So 〈V,B〉 = Tr(V TB) =

∑n
i=1

∑n
j=1 vivjbij = vtBv ≥ 0.v was

arbitray vector in R .So B ∈ Sn+.Therefore, by definition of dual cone Sn+
∗ ⊆ Sn+.Let

A , A’ ∈ Sn+.Then from proof of (ii) ⇒ (iii) of Proposition 3.1.1.4 we know that A =∑n
i=1 λiuiu

t
i with λi non negative.So 〈A,A′〉 = 〈A′, A〉 = Tr(A′TA) = Tr(A′T (

∑n
i=1 λiuiu

t
i)) =∑n

i=1 λiTr(A
′Tuiu

t
i).But from the first part of this proof we know that Tr(A′Tuiuti) = utiA

′ui.So
〈A,A′〉 =

∑n
i=1 λiu

t
iA
′ui with λi non negative and A’ positive semidefinite.So 〈A,A′〉 ≥

0.Therefore, by definition of dual cone if A ∈ Sn+ then A ∈ Sn+∗.So Sn+ ⊆ Sn+
∗.So Sn+

∗ = Sn+.

Definition 3.1.1.7. Semidefinite program : Let C, A1, ...., Ar ∈ Sn and b = (b1, ...., br) ∈
Rn

Standard Primal form :

p∗ = sup{〈C,X〉 | 〈Ai, X〉 = bi∀i = 1, ..., r and X � 0} (3.2)

Standard Dual form :

d∗ = inf{bty |
r∑
i=1

yiAi − C � 0} (3.3)

Proposition 3.1.1.8. p∗ ≤ d∗.i.e Weak duality always holds

Proof. Let X be feasible for (3.2) and y be feasible for (3.3).So X � 0 and
∑r

i=1 yiAi−C � 0.So
by Proposition 3.1.1.6 and definition of dual cone 〈X,

∑r
i=1 yiAi − C〉 ≥ 0.So 〈X,

∑r
i=1 yiAi −

C〉 =
∑r

i=1 yi〈X,Ai〉 − 〈X,C〉 ≥ 0.Therefore,
∑r

i=1 yibi ≥ 〈C,X〉.So bty ≥ 〈C,X〉.So p∗ ≤ d∗.

If p∗ is bounded above and ∃ X ∈ Sn which is strictly feasible for (3.2) (i.e X feasible s.t X
� 0 ) then p∗ = d∗.Similarly if d∗ is bounded from below and ∃ y ∈ Rr which is strictly feasible
for (3.3)(i.e

∑r
i=1 yiAi − C � 0) then p∗ = d∗.With the help of convexity theory it can be

shown that in the latter case ∃X0 feasible for (3.2) such that d∗ ≤ 〈C,X〉 (see [1] for proof).So
then weak duality implies p∗ = d∗.With Ellipsoid method we can solve SDP in polynomial
time.Interioir point methods provide efficient algorithms to solve semidefinite programs (upto
any precision).

3.1.2 Applications of Semidefinite Programs to Combinatorial
Problems

Max Cut Problem: Given a graph G = (V,E) where V = vi; i ∈ I with I index set of
vertices. E is set of edges of G. Let denote weight assigned to edge between vi, vj(if exists) by
w{i,j}. Max cut problem asks us to partition the set of vertices V in 2 sets such that the total
weight of edges crossing the partition is maximum.
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We can reformulate it in terms of a polynomial optimization problem. To each vertex
vi ∈ RI we assign a variable xi such that it satisfies x2i = 1. Any solution x = (xi)i∈I ∈
RIsatisfying x2i = 1 ∀i ∈ I gives us a partition of vertices (say I1 = {i ∈ I | xi = 1} and
I2 = {i ∈ I | xi = −1}) . And for any partition we have a solution x = (xi)i∈Isatisfying
x2i = 1 ∀i ∈ I. Now say we have a partition corresponding to x. Then the total weight of edges
crossing the partition is

∑
{i,j}∈E,(1 − xixj)w{i,j}/2. ∵ If vi, vj ∈ same side of partition then

xi = xj . ∴ xixj = 1. So weight of edge between vi, vj(if exists) is not counted in the sum.
And if vi, vj belong to different sides then xi = −xj. ∴ 1− xixj = 2 and so 1/2 appears in the
sum. So Max cut problem can be reformulated as

mxcut(G,w) = maxx∈RI{
∑
{i,j}∈E

(1− xixj)w{i,j}/2 | x2i = 1∀i ∈ I} (3.4)

we have an SDP relaxation to this problem.Consider the following SDP problem

mxcutsdp(G,w) = max
X∈Sn{

∑
{i,j}∈E

(1−Xij)w{i,j}/2 | Xii = 1∀i ∈ I and X � 0} (3.5)

Now observe the feasible region for (2.4).Let x ∈ RI such that x2i = 1∀i ∈ I.Let X =
x.xt(positive semidefinite by Proposition 3.1.1.4).Xii = x2i = 1.So X is feasible for (2.5).And in
this case ,

∑
{i,j}∈E(1−Xij)w{i,j}/2 =

∑
{i,j}∈E(1− xixj)w{i,j}/2.Therefore set on which max is

calculated for (2.4) ⊆ set on which max is calculated for (2.5).
Therefore,mxcut(G,w) ≤ mxcutsdp(G,w).So using semidefinite programming we get a bound
on max cut.

3.1.3 Lovász sandwich inequalities

Let G = (V,E) be a graph.

Definition 3.1.3.1. Stable Set :S ⊆ V is a stable set with respect to G if ∀ vi, vj ∈S,{i, j} /∈E.(i.e
there are no edges in the subgraph induced by S in G)

Definition 3.1.3.2. Stability number of G α(G):Stability number is the maximum cardi-
nality of a stable set in G.

Definition 3.1.3.3. Characteristic vector of S ⊆ V : χS :

χS(i) = 1 if vi ∈ S
= 0 if vi /∈ S

Now we reformulate α(G) in terms of a polynomial optimization problem.To each vertex
vi we assign a variable xi.Now consider x = (xi) ∈ RI satisfying x2i = xi∀i ∈I and xixj =
0 ∀{i, j} ∈ E.(So xi =1 or 0 ∀i ∈ I).Consider the set S = {vi ∈ V |xi = 1}.If vi, vj ∈ S i 6=
j,then {i, j} /∈ E,because if it did it would imply xixj = 0⇒ 1 = 0 giving contradiction.So S is a
stable set.

∑
i∈I xi =

∑
i∈S xi+

∑
i∈I−S xi =

∑
i∈S xi = |S|.So ∀x ∈ RI satisfying x2i = xi∀i ∈ I

and xixj = 0 ∀{i, j} ∈E,
∑

i∈I xi gives cardinality of a stable set in G.And given any stable set
S in G,χS satisfies the above conditions with

∑
i∈I xi = |S|.So,

α(G) = maxx∈RI{
∑
i∈I

xi | xixj = 0 ∀ {i, j} ∈ E and x2i = xi ∀ i ∈ I} (3.6)



CHAPTER 3. POLYNOMIAL OPTIMIZATION 11

Definition 3.1.3.4. Theta number of G ϑ(G) : is defined by

ϑ(G) = maxX∈Sn{
∑

Xij | Xij = 0 ∀ {i, j} ∈ E, Tr(X) = 1 and X � 0} (3.7)

Definition 3.1.3.5. Chromatic number of G χ(G):Minimum number of colours required
to colour vertices of G such that no 2 adjacent (vertices with an edge between them) vertices
have same colour.

Ḡ is complement graph of G.

Theorem 3.1.3.6. Lovsz Inequality :

α(G) ≤ ϑ(G) ≤ χ(Ḡ) (3.8)
α(Ḡ) ≤ ϑ(Ḡ) ≤ χ(G) (3.9)

Proof. (3.9) follows from (3.8) .So its enough to prove (3.8).

α(G) ≤ ϑ(G):
Let x ∈ feasible region for α(G). Therefore from above we know it corresponds to a stable set
S with Σi∈Ixi = |S| Consider X = x.xt / |S|. So X � 0 by Proposition 3.1.1.4

Tr(X) = Σi∈Ixi
2/ |S|

= Σi∈Ixi/ |S|
= 1

because xi2 = xi ∀ i ∈ I. Xij = xixj = 0 if {i, j} ∈ E. Therefore X ∈ feasible region for
ϑ(G). And∑

Xij =
∑
i∈I

Xii +
∑
i 6=j

Xij

=
∑
i∈I

x2i /|S|+
∑

i 6=j:{i,j}∈E

xixj/|S|+
∑

i 6=j:{i,j}/∈E

xixj/|S|

=
∑
i∈S

x2i /|S|+
∑

i 6=j:xi,xj∈S

xixj/|S| (∵ xi = 0 if xi /∈ S)

= (
∑
i∈S

xi)
2/|S|

= |S|2/|S| = |S|

Therefore α(G) ≤ ϑ(G) .....(because set on which max is ≤ set on which max calculated for
α(G) is calculated for ϑ(G))

ϑ(G) ≤ χ(Ḡ) :
Lets say vertices of Ḡ can be colored with r colors s.t no 2 adjacent vertices in Ḡ have same
color.Let Ci be the set of vertices colored with ith color. Let yi be the characteristic vector of
Ci. Ci ∩ Cj = φ for i 6= j and ∪ri=1Ci is all vertices in G. Therefore e =

∑r
i=1 yi where e =
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[1, ..., 1] ∈ R|I|. Now consider a matrix X feasible for (3.7).

〈X,
r∑
i=1

yiy
t
i〉 =

r∑
i=1

〈X, yiyti〉

=
r∑
i=1

∑
i1,i2

Xi1,i2yii1yii2

=
r∑
i=1

∑
vi1 ,vi2∈Ci

Xi1i2 (∵ ifvj /∈ Ci yij = 0)

=
n∑
i=1

∑
vj∈Ci

Xjj

Because ifi1 6= i2 and vi1 , vi2 ∈ Ci ⇒ there is no edge between vi1 , vi2 in Ḡ ⇒ there is an
edge between vi1 , vi2 inG ∴ X is feasible for ⇒ Xi1i2 = 0. Therefore 〈X,

∑r
i=1 yiy

t
i〉 = Tr(X) =

1 .Now consider,

Y =
r∑
i=1

(ryi − e)(ryi − e)t

=
r∑
i=1

r2yiy
t
i − (

r∑
i=1

ryi)e
t − e

r∑
i=1

ryti +
r∑
i=1

eet

=
r∑
i=1

r2yiy
t
i − reet

So Y � 0 (by prop (1.1)) and we have X � 0 .
Therefore 〈X, Y 〉 ≥ 0. Therefore r2〈X,

∑r
i=1 yiy

t
i〉- r 〈X, eet〉 ≥ 0. So r2 ≥ r(

∑
Xij). So

r ≥
∑
Xij. Therefore ϑ(G) ≤ χ(Ḡ).

Definition 3.1.3.7. Clique number:w(G): Let G=(V,E) be a graph. A clique is a graph
in which every two distict vertices are joint by an edge.w(G) is the maximum cardinality of a
clique contained in G.

Definition 3.1.3.8. Perfect Graph : G =(V,E) is a perfect graph if ∀ induced subgraph H
of G w(H)= χ(H)

Theorem 3.1.3.9. The Strong Perfect Graph Theorem: A Graph G=(V,E)is perfect iff
G neither contains an odd cycle of length atleast 5 nor complement of such a cycle as an induced
subgraph.

Berge conjectured this theorem in 1961 and in 2004 this theorem was proved by Maria
Chudnovsky,Neil Robertson,Paul Seymour and Robin Thomas. Ref [2]

Theorem 3.1.3.10. Weak Perfect Graph Theorem: If G = (V,E) is a perfect graph then
Ḡis also a perfect graph.

Remark 3.1. Strong implies weak perfect theorem (just from def of Ḡ). Therefore for a perfect
graph G .Ḡ is perfect.So χ(Ḡ) = w(Ḡ). A clique in Ḡ corresponds to a stable set in G. So
α(G) ≥ w(Ḡ)= χ(Ḡ). We already know α(G) ≤ χ(Ḡ) ∴ α(G) = χ(Ḡ) for perfect graphs.∴ in
case of perfect graphs sandwich inequality => α(G) = ϑ(G) =χ(Ḡ). So by using semidefinite
program we can calculate ϑ(G) and so α(G).
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3.2 Sum of squares

3.2.1 Relation between sum of squares and being positive

We see how to reformulate "a polynomial being a sum of squares" in terms of a semidefinite
program .In this section we study the relation between positivity of a polynomial and it being
a sum of squares with the help of Putinar’s result. Lasserre’s Hierarchy is summarized as well
.

For any f ∈ R[x], f ∈ R[x]2t for some t ≥ 0 . So f = [f ]t[x]2t where [f ] = (fα)|α|≤2t
coefficient vector .

Theorem 3.2.1.1. Let f ∈ R[x]2t. Then f is a sum of squares iff S 6= φ,where

S = { X ∈ SNn
t |

∑
β,γ ∈Nn

t such that β+γ=α

Xβ,γ = fα ∀ α ∈ Nn
2t and X � 0} (3.10)

Proof. ⇒: Let f be a sum of squares. So f = p21 + .... + p2m for some m > 1 and pi ∈
R[X]t ∀ 1 6 i 6 m. P 2

i = [x]tt[pi][pi]
t[xt] ∀ 1 6 i 6 m. So

[f ]T [u]2t = [x]Tt (
m∑
i=1

[pi].[pi]
t)[u]t

We have [pi].[pi]
t � 0 ∀ 1 6 i 6 m.Let [y]t be any vector (compatible with pi),then

[y]T (
m∑
i=1

[pi][pi]
t)[y] =

m∑
i=1

[y]T ([pi][pi]
t)[y] ≥ 0

So
∑m

i=1[pi][pi]
t � 0. Let P =

∑m
i=1[pi][pi]

t. Then,

[f ]t[u]2t = [x]Tt P [x]t =
∑

|β|6t ,|γ|6t

Pβγx
βxγ (3.11)

Equating coefficient of α where |α| ≤ 2t we get

fα =
∑

s.t β+γ=α and |β|,|γ|≤t

Pβ,γ (3.12)

∀ α with |α| ≤ 2t. Therefore P ∈ S.So f is a sum of squares =⇒ S 6= φ.

⇐ :
If S 6= φ, then ∃ X � 0 ∈ S|Nn

t | such that∑
β,γ ∈Nn

t s.t. β+γ=α

Xβ,γ = fα ∀ α ∈ Nn
2t (3.13)

From this we get, [f ]T [x]2t = [x]Tt X[x]t. From proof of proposition 3.1.3,we get that X=
λ1e1e

t
1 + ....+ λmeme

t
m where m= |Nn

t | with λi ≥ 0. Therefore
√
λi ∈ R. So

[f ]T [x]2t =
m∑
i=1

[x]Tt [
√
λiei][

√
λiei]

t[x]t.

Therefore f =
∑
pi

2 where pi2 = [x]Tt [
√
λiei][

√
λiei]

t[x]t. So S 6= φ implies f is a sum of
squares.
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Theorem 3.2.1.2. Let g1, ..., gm ∈ R[x1, ..., xn]. Let deg(gi)= di ∀1 ≤ i ≤ m. Then f
= (p201 + ...p20k0) + g1(p

2
11 + ...p21k1) + .... + gm(p2m1 + .. + p2mkm) for some pij ∈ R[x1, .., xn] iff

S(g1, ...gm) 6= φ where

S(g1, ...gm) := {(X0, X1, ..Xm) |X0 ∈ SN
n
t , Xi ∈ SN

n
b(2t−di)/2c ∀1 ≤ i ≤ m,Xi � 0 ∀ 0 ≤ i ≤ m

and fα =
∑

β+γ=α

X0β,γ +
m∑
i=1

∑
δ≤di

giδ
∑

β+γ=α−δ

Xiβ,γ ∀ α ∈ Nn
2t}.

Proof. ⇒:
Let f = (p201 + ...p20k0) + g1(p

2
11 + ...p21k1) + ....+ gm(p2m1 + ..+ p2mkm). Similarly as before we can

write

[f ]T [x]2t = [x]Tt P0[x]t + [g1]
T [x][x]Tt−dd1/2eP1[x]t−dd1/2e + ...+ [gm]T [x][x]Tt−ddm/2ePm[x]t−ddm/2e

where Pi � 0 ∀ 0 ≤ i ≤ m. Equating the coefficients we get,

fα =
∑

β+γ=α

P0β,γ +
m∑
i=1

∑
δ≤di

giδ
∑

β+γ=α−δ

Piβ,γ (3.14)

∀ α. Therefore S(g1, ..., gm) 6= φ .

⇐ :
If S(g1, ..., gm) 6= φ,we get (X0, .., Xm) such that

fα =
∑

β+γ=α

X0β,γ +
m∑
i=1

∑
δ≤di

giδ
∑

β+γ=α−δ

Xiβ,γ ∀ α (3.15)

So we have

[f ]T [x] = [x]Tt X0[x]t + [g1]
T [x][x]TX1[x] + ...+ [gm]T [x][x]TXm[x]

As we saw before if Xi � 0 , we can write [x]TXi[x] = p2i1 + ...+p2iki for some ki ≥ 0. Therefore,

f = (p201 + ...+ p20k0) + g1(p
2
11 + ...+ p21k1) + ...+ gm(p2m1 + ...+ p2mkm) (3.16)

Remark 3.2. g(x1, .., xn) is a sum of squares implies g(x1, .., xn) ≥ 0.But g(x1, .., xn) ≥ 0 need
not imply that g(x1, .., xn)is a sum of squares.

If K is of the form described in preliminaries and if K is compact then we can use results
of Schmdgen and Putinar to characterize positivity of f over K. Let g = (g1, ..., gm) be used to
describe K.

Definition 3.2.1.3. Q(g) :

Q(g) := {σ0 + σ1g1 + ...+ σmgm|σi is sum of squares ∀ 0 ≤ i ≤ m} (3.17)

Definition 3.2.1.4. Qt(g) :

Qt(g) := {σ0 + σ1g1 + ...+ σmgm |σi is sum of squares ∀ 0 ≤ i ≤ m

and deg(σigi) ≤ 2t and deg(σ0) ≤ 2t}
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Definition 3.2.1.5. Γ(g): Γ(g) is defined as a quadratic module generated by ge := ge11 ...g
em
m

where e ∈ {0, 1}m

Archimedean Condition: ∃ R>0 such that R-x21 − ....− x2n ∈ Q(g)

Lemma 3.2.1.6. Archimedean condition holds implies K is compact.

Proof. K= {x ∈ Rn|g1(x) ≥ 0, ....., gm(x) ≥ 0}. So K is closed. And if Archimedean condition
holds, then K is bounded ( because (let a = (a1, ..., an) ∈ K Archimedean condition holds
=⇒ ∃ R > 0s.tR − x21 − .... − x2n = σ0 + σ1g1 + ... + σmgm for some σi sum of squares.
ThereforeR−a21−...−a2n = σ0(a)+σ1(a)g1(a)+...+σm(a)gm(a). So on K, R−(a21+....+a2n) ≥ 0.
Therefore |a| ≤ R)). So K is closed and bounded. Therefore K is compact.

Theorem 3.2.1.7. (Schmüdgen) :Let K be compact.f(x)>0 ∀ x ∈ K =⇒ f ∈ Γ(g).

Theorem 3.2.1.8. (Putinar) :Lets assume archimedean condition holds.Then f(x)>0 ∀ x ∈
K =⇒ f ∈ Q(g).

3.2.2 Lasserre Hierarchy

Let t≥ ddeg(f)/2e.Lasserre introduced relaxations to the polynomial optimization problem
based on Putinar’s result.

Consider
f sost = supλ ∈R{λ : f − λ ∈ Qt(g)} (3.18)

Lemma 3.2.2.1. f sost ≤ fmin

Proof. Let λ be such that f − λ ∈ Qt(g) ⊆ Q(g). So f − λ > 0 on K. fmin = infKf(x). So
fmin ≥ f sost .

Theorem 3.2.2.2. Lasserre Hierarchy :

f sost ≤ f sost+1 ≤ ..... ≤ fmin (3.19)

Proof. Now Qt+i(g) ⊆ Qt+i+1(g) ∀ i ∈ N. Therefore

{λ ∈ R|f − λ ∈ Qt+i(g)} ⊆ {λ ∈ R|f − λ ∈ Qt+i+1(g)} ∀ i ∈ N.

So f sost+i ≤ f sost+i+1 ∀ i ∈ N. Therefore we get f sost ≤ f sost+1 ≤ ..... ≤ fmin = infKf(x) by using
lemma 3.2.2.1.

We know that f − λ ∈ Qt(g) ⇐⇒ S(g1, ..., gm)f−λ 6= φ,where

S(g1, ..., gm)f−λ = {(X0, X1, ..Xm) |X0 ∈ SN
n
t , Xi ∈ SN

n
b(2t−di)/2c ∀ 1 ≤ i ≤ m,Xi � 0 ∀ 0 ≤ i ≤ m

and (f − λ)α =
∑

β+γ=α

X0β,γ +
m∑
i=1

∑
δ≤di

giδ
∑

β+γ=α−δ

Xiβ,γ

∀ α ∈ Nn
2t}
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So ,

S(g1, ..., gm)f−λ = {(X0, X1, ..Xm) |X0 ∈ SN
n
t , Xi ∈ SN

n
b(2t−di)/2c ∀ 1 ≤ i ≤ m,Xi � 0

∀ 0 ≤ i ≤ m and fα =
∑

β+γ=α

X0β,γ +
m∑
i=1

∑
δ≤di

giδ
∑

β+γ=α−δ

Xiβ,γ

∀ α ∈ Nn
2t − (0, ..., 0) and f(0,....,0) − λ = X000 +

m∑
i=1

gi0Xi00}

Therefore ,

{λ : f − λ ∈ Qt(g)} = {f(0,...,0) −X000 −
m∑
i=1

gi0Xi00 |X0 ∈ SN
n
t , Xi ∈ SN

n
b(2t−di)/2c ∀ 1 ≤ i ≤ m,Xi � 0

∀ 0 ≤ i ≤ m

and fα =
∑

β+γ=α

X0β,γ +
m∑
i=1

∑
δ≤di

giδ
∑

β+γ=α−δ

Xiβ,γ

∀ α ∈ Nn
2t − (0, ..., 0)}

Therefore ,

f sost = f(0,...,0) + sup{−X000 −
m∑
i=1

gi0Xi00 |X0 ∈ SN
n
t , Xi ∈ SN

n
b(2t−di)/2c

∀ 1 ≤ i ≤ m,Xi � 0 ∀ 0 ≤ i ≤ m

and fα =
∑

β+γ=α

X0β,γ +
m∑
i=1

∑
δ≤di

giδ
∑

β+γ=α−δ

Xiβ,γ

∀ α ∈ Nn
2t − (0, ..., 0)}

Let

X=


X0 0 0 . . .
0 X1 0 . . .
...

... . . .
0 0 0 Xm

.
Define C0 = (C0β,γ )β,γ ∈Nn

t
where C000 = −1 and everywhere else 0. Define Ci = (Ciβ,γ )β,γ ∈Nn

t−ddi/2e

where Ci00 = −gi0 and everywhere else 0 ∀ 1 ≤ i ≤ m. Define

C=


C0 0 0 . . .
0 C1 0 . . .
...

... . . .
0 0 0 Cm


∀ α ∈ Nn

t \(0, ..., 0) define Aα0 = (Aα0β,γ )β,γ ∈Nn
t
where Aα0β,γ = 1 if β + γ = α and otherwise

0. Define Aαi = (Aαiβ,γ )β,γ ∈Nn
t−d(di)/2e

where Aαiβ,γ = giδ where β + γ = α− δ and otherwise 0.
Define

Aα =


Aα0 0 0 . . .

0 Aα1 0 . . .
...

... . . .
0 0 0 Aαm


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Now one can check that

f sost = f(0,....,0) + sup{〈C,X〉|X � 0 and 〈Aα, X〉 = fα ∀ α ∈ Nn
t \(0, ..., 0)} (3.20)

The dual program can be expressed as

fmomt = f(0,..,0) + inf{
∑

α ∈Nn
t \(0,...,0)

fαyα|
∑

α ∈Nn
t \(0,...,0)

yαAα − C � 0} (3.21)

Therefore ,fmomt = f(0,..,0) + inf{
∑

α ∈Nn
t
fαyα|

∑
α ∈Nn

t \(0,...,0)
yαAα − C � 0 and y(0,...,0) = 1}

∑
α ∈Nn

t \(0,...,0)

yαAα − C =


M(y) 0 0 . . .

0 M(g1 ∗ y) 0 . . .
...

... . . .
0 0 0 M(gm ∗ y)


when y(0,...,0) = 1,M(y) and M(gi ∗ y) are moment matrices described in preliminaries.

Therefore ,
∑

α ∈Nn
t \(0,...,0)

yαAα − C � 0 ⇐⇒ M(y) � 0 and M(gi ∗ y) � 0 ∀ 1 ≤ i ≤
m and y(0,...,0) = 1.By result from preliminaries, M(y) � 0 ⇐⇒ L(p) ≥ 0 ∀ p :a sum of
squares and M(gi ∗ y) � 0 ⇐⇒ L(p) ≥ 0 ∀ p ∈ gi× (a sum of squares) where L corresponds
to Linear functional associated to yα.And y(0,...,0) = 1 ⇐⇒ L(1) = 1.Therefore,

fmomt = infL ∈R[x]∗2t{L(f)|L(1) = 1 and L(p) ≥ 0 ∀ Qt(g)}..........................(MOMt) (3.22)

where R[x]∗2t is a set of linear functionals on R[x]2t.fmin = infKf(x) := fmin.

Theorem 3.2.2.3. Lasserre: Assume that the Archimedean condition holds.then fmin =
lim
t→∞

f sost

Proof. So we have to prove that given any ε > 0 ∃ t0 such that f sost0
≥ fmin − ε .( Because f sost

is a non decreasing sequence such that f sost ≤ fmin ∀ t).fmin = infKf(x). So f − fmin ≥ 0 on
K. Therefore for any ε > 0, f − fmin + ε > 0 on K.So by Putinar’s result f − fmin + ε ∈ Q(g).
Therefore f − fmin + ε ∈ Qt0(g) for some t0. So f sost ≥ fmin − ε.(By definition of f sost .) So
fmin = lim

t→∞
f sost

3.3 Moments
Let µ be a measure on K.Define linear functional Lµ by

Lµ(f) =

∫
K

f(x)dµ =
∑
α

fα

∫
K

xαdµ (3.23)

From calculations in the previous section we see that f sost ≤ fmomt (by weak duality).

Lemma 3.3.0.4. fmin = inf{Lµ(f)|µ is a probability measure }.
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Proof. Consider inf{Lµ(f)|µ is a probability measure}. We have that fmin = inf{f(x)|g1(x) ≥
0, ...., gm(x) ≥ 0}.If we fix any x in K and consider Dirac measure associated to x ,then

Lµ(f) =

∫
y ∈K

f(y)dµ =

∫
y ∈K

f(y)dδx(y) = f(x). (3.24)

And Dirac measure is a probability measure. So inf{Lµ(f)|µ is a probability measure} ≤ fmin
and

Lµ(f) =

∫
y ∈K

f(y)dµ.Lµ(f) ≥ fmin

∫
y ∈K

dµ = fmin (3.25)

whenever µ is a probability measure.

Definition 3.3.0.5. fmomt :

fmomt = inf{L(f)|L(1) = 1 and L(p) ≥ 0 ∀ p ∈ Qt(g)} (3.26)

Theorem 3.3.0.6. Haviland : L = Lµ for some measure µ on K iff L is nonnegative on
P(K) where P(K)= {p ∈ R[x1, ..., xn]|p ≥ 0 on K}

Qt(g) ⊆ P (K) and µ is a probability measure implies Lµ(1) = 1.Therefore

{Lµ(f)|µ is a probability measure} ⊆ {L(f)|L(1) = 1 and L(p) ≥ 0 ∀ p ∈ Qt(g)}

So fmomt ≤ fmin. So we have

f sost ≤ fmomt ≤ fmin (3.27)

So [Lasserre thm] implies that if archimedean condition holds then

lim
t→∞

f sost = lim
t→∞

fmomt = fmin (3.28)

If for some t optimal value of fmomt is Lµ(f) (where µ is a probability measure),then fmin =
infµ{Lµ(f)|µ is a probability measure on K} ≥ fmomt .Therefore fmin = fmomt for that t.

Let L be a linear functional.Then M(L):= (L(xαxβ))α,β. Ker M(L) = {p ∈ R[x1, ...xn]|pTM(L) =
0} = {p ∈ R[x1, ..xn]|L(pq) = pTM(L)q = 0 ∀ q ∈ R[x1, ..xn]}.Ker M(L) is an ideal in
R[x1, .., xn].If M(L) � 0,then L(p2) = 0 =⇒ p ∈Ker M(L)..(∵ L(p2) = 0 =⇒ pTM(L)p =
0 =⇒ pTNNTp = 0(∵ M(L) � 0) =⇒ (NTp)TNTp = 0 =⇒ NTp = 0 =⇒ pTNNT =
0 =⇒ p ∈ Ker M(L)).

Theorem 3.3.0.7. (Curto and Fialkow) :Let L be a linear functional.If M(L) � 0 and
rank M(L) = r <∞,then L has a unique representing measure µ.

Proof. Let J = KerM(L). p ∈ R
√
J =⇒ ∃k, p1, ..., ps such that p2k +

∑s
i=1 p

2
i ∈ J .Therefore

L(p2k +
∑s

i=1 p
2
i ) = 0.As M(L) � 0, L(p2i ) ≥ 0 ∀ 1 ≤ i ≤ s and L(p2k) ≥ 0.Therefore,L(p2k) =

0.So M(L) � 0 implies pk ∈ J .If k is even we can again derive pk1 ∈ J for k1 = k/2. if k is
odd pk+1 ∈ J then again we get p(k+1)/2 ∈ J .Continuing in this way we get p ∈ J .Therefore
R
√
J = J .So J is real radical ideal.M(L) has finite rank r.Let columns indexed by xα1 , ...., xαγ be

maximal linearly independent set of columns.Then λ1x̄α1+....+λrx̄αr = 0 ∈ R[x1, ...xn]/J =⇒
λ1x

α1 + .... + λrx
αr ∈ J .Therefore L((λ1x

α1 + .... + λrx
αr).xγ) = 0 ∀ γ ∈ Nn.Therefore

λ1L(xα1+γ) + .... + λrL(xαr+γ) = 0 ∀ γ ∈ Nn.This implies λi = 0 ∀1 ≤ i ≤ r..(∵ columns
corresponding to xαi ∈ M(L) are linearly independent.Therefore dimR[x1, ....xn]/J ≥ r.And
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if ∃ any β such that xα1 , ...., xαr , xβ are linearly independent ,then columns in M(L) correspond-
ing to (xα1 , ..., xαr , xβ) are also linearly independent.(∵ if not ∃λ1, ..., λr+1such that λ1(column
corres toxα1 )+........+λr+1(column corres toxβ ) = 0 =⇒ L(λ1x

α1 + ... + λrx
r + λr+1x

β) =
0 =⇒ λ1x

α1 + ... + λrx
r + λr+1x

β ∈ J contradicting xα1 , ..., xαr , xβ linearly independent
∈ R[x1, ...xn]/J over R).Therefore dimR[x1, ....xn]/J ≥ r.Therefore dimR[x1, ....xn]/J = r. J is
a real radical ideal.Therefore a radical ideal.So by proposition in preliminaries VC(J) = VR(J)
and |VC(J)| = |VR(J)| = r.Let VC(J) = {v1, ...., vr} ⊆ Rn.Let pvi ∈ R[x1, ..., xn]be inter-
polation polynomials at points of VR(J).(Interpolation polynomials are described explicitly in
preliminaries)pvi(vj) = δi,j.(p2vi − pvi)(vj) = p2vi(vj) − pvi(vj) = 0.Therefore p2vi − pvi(vj) =
0 ∀ 1 ≤ j ≤ r, 1 ≤ i ≤ r..So p2vi − pvi ∈ I(VC(J)) ∀ 1 ≤ i ≤ r .But I(VC(J)) =
J(∵ J is radical).Therefore p2vi − pvi ∈ J ∀ 1 ≤ i ≤ r.Therefore L(p2vi) − L(pvi) =
0 ∀ 1 ≤ i(≤ r.L(p2vi) > 0 ∀ 1 ≤ i ≤ r.(∵ M(L) � 0 =⇒ L(p2vi) ≥ 0 ∀ 1 ≤ i ≤ r and
L(p2vi) = 0 =⇒ pvi ∈ J(as M(L) � 0)giving contradiction as pvi(vi) 6= 0). Consider
µ =

∑r
i=1 L(pvi)δvi(δvi dirac measure with respect to vi).Then for any f∈ R[x1, ...xn].Lµ(f) =∫

K
f(x)dµ =

∑r
i=1 L(pvi)

∫
K
f(x)dδvi =

∑r
i=1 L(pvi)f(vi).By lemma f −

∑
vi ∈ VC(J)

f(vi)pvi ∈
I(VC(J)) = J.Therefore L(f) =

∑
vi ∈ VC(J)

f(vi)L(pvi).So Lµ(f) = L(f) ∀ f ∈ R[x1, ..., xn]..So
L = Lµ.

Definition 3.3.0.8. Truncated moment matrix of L : L ∈ R[x1, ..., xn]∗2t

Mt(L) := (L(xαxβ))α,β ∈ Nn
t

(3.29)

Definition 3.3.0.9. Flat Extenstion :Mt(L) is a flat extension ofMt−1(L) if rankMt(L) =rank
Mt−1(L).

Theorem 3.3.0.10. Let L ∈ R[x1, ..., xn]∗2t..If Mt(L) is a flat extension of Mt−1(L) then ∃L̃ ∈
R[x1, ..., xn]∗ such that L̃ = L on R[x1, ..., xn]2t and such that rank M(L̃) = rankMt(L).

Proof. Consider I ideal generated by KerMt(L) ∈ R[x1, ..., xn],Mt(L) is a flat extension of
Mt−1(L).Therefore rank Mt(L) =rank Mt−1(L).So columns corresponding to xα where |α| = t
can be expressed in terms of columns corresponding to xβ with |β| ≤ t− 1.Therefore x̄α with
|α| = t can be expressed in terms of x̄β with |β| ≤ t−1 ∈ R[x1, ..., xn]/I.So any f ∈ R[x1, ..., xn]
can be expressed in terms of xα with|α| ≤ t(modulo I).Now define L̃(f) such that if f̄ = ḡ for
some g in R[x1, ..., xn]2t,then L̃(f) = L(g).(well defined because if ḡ = h̄, g, hinR[x1, ..., xn]2t
then g − h ∈ Ker Mt(L).Therefore L(g) = L(h)).And rank M(L̃) = rank Mt(L).(because
f̄ ∈ R[x1, .., xn]/I can be expressed in terms of x̄α; |α| ≤ t)

Theorem 3.3.0.11. Let L ∈ R[x1, ..., xn]∗2t such that Mt(L) � 0,Mt−ddj/2e(gjL) � 0 ∀ 1 ≤
j ≤ m and rankMt(L) =rank Mt−dK (L) where dK = max{ddj/2 : 1 ≤ j ≤ mrceil}.Then L has
a representing measure µ such that supp(µ) ⊆ K

Proof. Similarly as in previous theorem,rankMt(L) = rankMt−dk(L) =⇒ ∃ L̃ ∈ R[x1, ..., xn]∗

such that L̃ = L on R[x1, .., xn]2t and such that rank M(L̃) = rank Mt(L).By proposition in
preliminaries M(L̃) � 0 iff L̃(σ) ≥ 0 ∀ σ sum of squares.L̃(σ) = L(σ′) for some σ′ sum
of squares and Mt(L) � 0.Therefore L(σ′) ≥ 0.So M(L̃) � 0.So by theorem of Curto and
Fialkow L̃ and so L has a representing measure µ such that L =

∑r
i=1 L(pvi)Lvi where supp(µ)

= {v1, ...., vr} ⊆ Rn with r= rank M(L̃) = rank Mt(L).Now to show that vi ∈ K ∀ 1 ≤ i ≤ r.
Rank Mt(L) = rank Mt−dK (L).Therefore every pvi can be written in terms of polynomials of
deg atmost t − dK(modulo I= ideal generated by Ker Mt(L).Say pvi = hi(modulo I)∀ 1 ≤
i ≤ r.Therefore pvi − hi ∈ I ∀ 1 ≤ i ≤ r.For any 1 ≤ j ≤ m,Mt−ddi/2e(gjL) � 0. and deg
hi ≤ t − dK ≤ t − ddj/2e.Therefore (gjL)(h2i ) ≥ 0.So L(gjh

2
i ) ≥ 0.p2vi − h

2
i ∈ I ∀ 1 ≤ i ≤

r.Therefore L(gjh
2
i ) = L(gjp

2
vi

) ≥ 0 ∀ 1 ≤ i ≤ r. and ∀ 1 ≤ j ≤ m.Therefore L(gjp
2
vi

) =∑r
i=1 L(pvi)Lvi(gjp

2
vi

) = gj(vi) ≥ 0 ∀ 1 ≤ i ≤ r and ∀ 1 ≤ j ≤ m.So vi ∈ K ∀ 1 ≤ i ≤
r.Therefore supp(µ) ⊆ K.
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Theorem 3.3.0.12. Let L ∈ R[x1, ..., xn]∗2t be an optimal solution of (MOMt).Assume L
satisfies rank Mt(L) = rank Mt−dK .Then fmomt = fmin

Proof. L is optimal solution of (MOMt).Therefore L(p) ≥ 0 ∀ p ∈ Qt(g).So Mt(L) � 0
and Mt−ddj/2e � 0 ∀ 1 ≤ j ≤ m.rank Mt(L) = rank Mt−dK .So by previous theorem L has
a representing measure µ with supp(µ) ⊆ K.Let supp(µ) = {v1, ..., vr} ⊆ Rn.Then L =∑r

i=1 L(pvi)Lvi .Therefore fmomt = L(f) =
∑r

i=1 L(pvi)f(vi)(vi ∈ supp(µ) ⊆ K ∀ 1 ≤ i ≤ r and
L(pvi) = L(p2vi) ≥ 0 =⇒ f(vi) ≥ fmin ∀ 1 ≤ i ≤ r).So fmomt ≥ (

∑r
i=1 L(pvi))fmin..L(1) = 1

.So
∑r

i=1 L(pvi) = 1.∴ fmomt ≥ fmin.Therefore fmomt = fmin.



Chapter 4

Kissing Number

4.1 Spherical Harmonics
Here we go through concepts of spherical harmonics, needed to derive the addition theorem.
This chapter contains description of gegenbauer polynomials . It discusses the ’ kissing number
problem ’ and how to give a bound for it.

Laplace equation in n variables.

n∑
i=1

∂2u

∂x2i
= 0 (4.1)

Definition 4.1.0.13. Harmonic polynomial: Homogeneous polynomials which satisfy Laplace
equation are called harmonic.

Definition 4.1.0.14. Spherical harmonic: Spherical harmonic in n variables is restriction
of homogeneous polynomial (say u) in n variables satisfying the Laplace equation to unit sphere
Sn−1 in Rn

Definition 4.1.0.15. Vk,n : Homogeneous polynomials of deg k in n variables form a vector
place over R.We denote this space by Vk,n.

Now to calculate the dimension of Vk,n .

Lemma 4.1.0.16. dim Vk,n =
(
n−1+k
n−1

)
=
(
n−1+k

k

)
Proof. Let x = (x1, .., xn). (xα)|α|=kspanVk,n. And they are linearly independent. dimVk,n = |S|
where S = {α = (α1, ..., αn) ∈ Zn≥0 | |α| = α1 + ...+ αn = k} . Now consider any arrangement
of n-1 lines and k dots .Each arrangement gives rise to a distinct α. And each α gives us a
unique arrangement. Therefore |S| is the number of arrangements of n-1 lines and k dots i.e(
n−1+k
n−1

)
=
(
n−1+k

k

)
Denote dim of Vk,n by dk,n. So dk,n =

(
n−1+k
n−1

)
. All homogeneous polynomials are not har-

monic.Let ∆ =
∑
∂2/∂x2i be Laplace operator. ∆ is a linear operator. Harmonic polynomials

of deg k in n- variables also form a vector space over R Let us denote it by Wk,n. Let p(x) be
a homogeneous polynomial of deg k in n variables. We can write p(x) as

p(x) =
k∑
j=0

Ak−j(x1, ..., xn−1)x
j
n (4.2)

21
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where Am(x1, .., xn−1) is homogeneous polynomial of degree m in n-1 variables.p(x) harmonic
implies ∆p(x) = 0. So ,

∆p(x) =
k∑
j=0

∆(Ak−j(x1, ..., xn−1)x
j
n)

=
k∑
j=0

(
n−1∑
i=1

(∂2(Ak−j(x1, ..., xn−1)x
j
n)/∂x2i ) + (∂2(Ak−j(x1, ..., xn−1)x

j
n)/∂x2n))

=
k−2∑
j=0

∆(Ak−j(x1, ..., xn−1))x
j
n +

k∑
j=2

j(j − 1)(Ak−j(x1, ..., xn−1))x
j−2
n

∴ 0 =
k−2∑
j=0

(Ak−j(x1, ..., xn−1) + (j + 2)(j + 1)Ak−j−2(x1, ..., xn−1))x
j
n

So
∆Ak−j(x1, .., xn) = −(j + 2)(j + 1)Ak−j−2(x1, .., xn) ∀ 0 ≤ j ≤ k − 2 (4.3)

If we have Ak and Ak−1 then we can compute Aj ∀ 0 ≤ j ≤ k − 2.So we have p.We can
define φ : Vk,n−1 × Vk−1,n−1 → Wk,n by φ(Ak, Ak − 1) = the corresponding harmonic polyno-
mial computed using (3.3).φ is linear and bijective.So by null rank theorem dimWk,n = dim
(Vk,n−1 × Vk−1,n−1) = dk,n−1 + dk−1,n−1.Therefore dim Wk,n =

(
n−2+k

k

)
+
(
n+k−3
k−1

)
.

Polar coordinates in n-dimensions(r, θ1, ...., θn−2, φ)

x1 = rcos(θ1) (4.4)
x2 = rsin(θ1)cos(θ2) (4.5)
... (4.6)

xn−1 = rsin(θ1)sin(θ2) . . . sin(θn−2)cos(φ) (4.7)
xn = rsin(θ1)sin(θ2) . . . sin(θn−2)sin(φ) (4.8)

with 0 ≤ θi ≤ π and 0 ≤ φ ≤ 2π.
We can define inner product on the space of real continuous functions on Sn−1 by

Definition 4.1.0.17. 〈f, g〉 :

〈f, g〉 =

∫
Sn−1

f(ξ)g(ξ)dw(ξ) (4.9)

Let Hk(x1, ..., xn) be harmonic homogeneous polynomial of degree k and Hj(x1, ..., xn) be har-
monic homogeneous polynomial of degree j.

Theorem 4.1.0.18. Harmonic homogeneous polynomials of different degrees are orthogonal.

Proof. Hk, Hj harmonic implies ∆Hk = 0 = ∆Hj.So∫
x21+....+x

2
n≤1

(Hj(x1, ...., xn)∆Hk(x1, ..., xn)−Hk(x1, ..., xn)∆Hj(x1, ..., xn))dx1dx2....dxn = 0
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By Gauss-Green’s theorem, we get

LHS =

∫
|ξ|=1

(Hj(ξ)∂/∂rHk(rξ)|r=1 −Hk(ξ)∂/∂rHj(rξ)|r=1)dw(ξ)

Hk, Hjare homogeneous of deg k ,deg j respectively.Therefore

∂/∂rHk(rξ)|r=1 = ∂/∂r(rkHk(ξ))|r=1 = krk−1Hk(ξ)|r=1 = kHk(ξ)

∂/∂rHj(rξ)|r=1 = ∂/∂r(rjHj(ξ))|r=1 = jrj−1Hj(ξ)|r=1 = jHj(ξ)

So LHS=
∫
Sn−1(k − j)Hj(ξ)Hk(ξ)dw(ξ) = 0. dw(ξ) is invariant measure on surface of Sn−1.

So if k 6= j then 〈Hj(ξ), Hk(ξ)〉 = 0.Therefore homogeneous harmonic polynomials of different
degrees are orthogonal.

Denote dim Wk,n by ck,n =
(
n+k−2

k

)
+
(
n+k−3
k−1

)
.

With respect to the above inner product we can use Grahm-Schmidt orthogonalization to
obtain an orthonormal basis of Wk,n.Let Sk,j for j= 1, ..., ck,n be the orthonormal basis thus
obtained.

Let O be an orthogonal n× n matrix i.e

OTO = Id = OOT .

Then we have a map from Rn to Rn given by x 7→ Ox. Then scalar product

(Ox,Oy) = (Ox)T (Ox)

= xTOTOy

= xTy

= (x, y)

Lemma 4.1.0.19. Sk,j(Ox) ∈ Wk,n

Proof. Consider ∆(Sk,j(Ox))),

∆(Sk,j(Ox))) = (∂/∂x1, ...., ∂/∂xn)

∂/∂x1...
∂/∂xn

 Sk,j(Ox)

Let y = Ox then (∂/∂x1, ...., ∂/∂xn) = (∂/∂y1, ...., ∂/∂yn)O. Therefore
∆with respect to x1,...,xn(Sk,j(Ox)) = ∆with respect to O(x1,...,xn)(Sk,j(Ox)) = 0

So each Sk,j(Ox) can be written in terms of Sk,j(x); j = 1, ..., ck,n uniquely.Let Sk,j(Ox) =∑ck,n
l=1 A

k
jlSk,l(x) for j = 1, ..., ck,n.Let Ak = (Akj,l)jl be a ck,n × ck,n matrix.Then

((Ak)TAk)jl =

ck,n∑
i=1

AkijA
k
il

=

∫
Sn−1

Sk,j(Ox)Sk,l(Ox)dw(x)

=

∫
Sn−1

Sk,j(x)Sk,l(x)dw(x) = δjl (asdwisinvariant.).
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Therefore Ak is orthogonal.

Let η ∈ Sn−1.Then η can be expressed in such form: η = t(1, 0, ..., 0) +
√

1− t2η′
where |η′| = 1 and η′ is of the form (0, ∗, ∗, ..., ∗).(η, (1, 0, .., 0)) = t = cosθ1 where η =
(1, θ1, ..., θn−2, φ) in polar coordinates.By relations given by (*) we get
dx1...dxn = rn−1sinn−2θ1 . . . sin

2 θn−3sinθn−2drdθ1...dθn−2dφ
So dwn = rsinn−2θ1dθ1dwn−1.Therefore on Sn−1 i.e when r = 1 we have

dwn = sinn−2θ1dθ1dwn−1 = (
√

1− t2
n−2

/
√

1− t2)dtdwn−1 =
√

1− t2
n−3

dtdwn−1 (4.10)

Consider

Fk(x, η̃) =
[
Sk,1(x), . . . , Sk,ck,n(x)

]  Sk,1(η̃)
...

Sk,ck,n(η̃)

 . (4.11)

If we consider Fk as a function of x then it is a homogeneous polynomial of degree k. And it
will be harmonic as each Sk,j(x) is harmonic for j = 1, .., ck,n. Let O be an orthogonal matrix
which fixes η. Then

Fk(Ox,Oη) =
[
Sk,1(Ox), . . . , Sk,ck,n(Ox)

]  Sk,1(Oη̃)
...

Sk,ck,n()η̃)


So Fk(Ox, η) =

[
Sk,1(Ox), . . . , Sk,ck,n(Ox)

]
(AK)TAK

 Sk,1(Oη̃)
...

Sk,ck,n()η̃)

 .........................(Because Oη = η)

So Fk(Ox, η) = Fk(x, η) ..........(Because AK is orthogonal)

Therefore Fk as a function of x is invariant under all orthogonal transformations that fix η.
Fk only depends on scalar product (x, η̃). So we can write Fk(x, η̃) = bkPk((x, η̃)).....(***) for
some constant bk. We can normalize it by taking Pk((η, η)) = Pk(1) = 1.
So
∑ck,n

j=1(Sk,j(η))2 = Fk(η, η) = bk. Therefore
∫
Sn−1 bkdw(η) =

∑
j=1

∫
Sn−1(Sk,j(η))2dw(η).∴

bkwn =
∫
Sn−1 bkdw(η) = ck,n......(∵ Sk,j : j = 1, ..., ck,n is an orthonormal basis for Wk,n with

respect to(3.4) ......(II)where wn is surface area of Sn−1. So bk = ck,n/wn.

Fk(x, η) =
∑ck,n

j=1 Sk,j(x)Sk,j(η) = ck,n/wnPk((x, η)).

c2k,n/w
2
nP

2
k ((x, η)) =

ck,n∑
j=1

ck,n∑
i=1

Sk,j(x)Sk,j(η)Sk,i(x)Sk,i(η).

c2k,n/w
2
n

∫
Sn−1

P 2
k ((x, η))dw(η) =

ck,n∑
j=1

ck,n∑
i=1

Sk,j(x)Sk,i(x)

∫
Sn−1

Sk,j(η)Sk,i(η)dw(η)

=

ck,n∑
j=1

(Sk,j(x))2.....(by(II))

= Fk(x, x) = bkPk((x, x))

= ck,n/wnPk(1) = ck,n/wn
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So
∫
Sn−1 P

2
k ((x, η))dw(η) = wn/ck,n

Fk(x, η) = bkPk((x, η)) =
∑ck,n

j=1 Sk,j(x)Sk,j(η)

F ′k(x, η) = b′kP
′
k((x, η)) =

∑ck′,n
j=1 Sk′,j(x)Sk′,j(η)

Therefore bkb′k
∫
Sn−1 Pk((x, η))P ′k((x, η))dw(η) =

∑ck,n
j=1

∑ck′,n
i=1 Sk,j(x)Sk′,i(x)

∫
Sn−1 Sk,j(η)Sk′,i(η)dw(η) =

0 (if k 6= k′) ......(by (3.5))∫
Sn−1

Pk((x, η))P ′k((x, η))dw(η) = (wn/ck,n)δk,k′ (4.12)

Now let x = (1, 0, .., 0)..Let t = (x, η).Therefore using (3.6) we get
∫
Sn−1 Pk((x, η))P ′k((x, η)) =∫ 1

−1 Pk(t)P
′
k(t)(
√

1− t2)n−3dt
∫
dwn−1....(because as η varies on Sn−1,t varies from -1 to 1)

= wn−1
∫ 1

−1 Pk(t)P
′
k(t)(
√

1− t2)n−3dt

(wn/(wn−1ck,n))δk,k′ =

∫ 1

−1
Pk(t)P

′
k(t)(
√

1− t2)n−3dt (4.13)

4.2 Gegenbauer Polynomials
Ultraspherical polynomials are defined in terms of their generating function.For a given α,Cα

n

are coefficients of tn in 1/(1− 2xt+ t2)α. i.e

∞∑
n=0

Cα
n (x)tn = 1/(1− 2xt+ t2)α

The above equation (3.8) implies Pk(t) = C.C
n−2/2
k (t) for some constant C. (For this impli-

cation refer to [4] or [5]). But we have normalized so that Pk(1) = 1. Therefore C = 1/C
n−2/2
k ..

Therefore Pk(t) = C
n−2/2
k (t)/C

n−2/2
k (1)

Definition 4.2.0.20. Gegenbauer Polynomial (of deg k in n variables) :
Gn
k(t) := C

n−2/2
k (t)/C

n−2/2
k (1)

So Pk(t) = Gn
k(t).Gn

0 (t) = P0(t). But P0(t) is constant as it is homogeneous polynomial of
deg 0.But P0(1) = 1. So Gn

0 (t) = 1 ∀ n.

By (***)we see that Fk(x, η̃) = bkPk((x, η̃))
We know bk = Ck,n/wn

Therefore Fk(x, η̃) =
∑Ck,n

j=1 Sk,j(x)Sk,j(η̃) = Ck,n/wnG
n
k((x, η̃)).

So we have proved the addition theorem.

Theorem 4.2.0.21. Addition Theorem :

Gn
k((x, η̃)) = wn/Ck,n

Ck,n∑
j=1

Sk,j(x)Sk,j(η̃) (4.14)

Theorem 4.2.0.22. (Schoenberg):If X = (Xij)i,j is a N × N matrix on R s.t X � 0 with
rank atmost n, then Gn

k(X) � 0.
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Proof. X � 0 implies X = LLt. rank(X) = rank(L) ≤ n.Therefore we can choose L s.t L is
an N× n matrics. Therefore each row is a vector in Rn. Let ith row be ri
Then

X = [


r1
r2
...
rN

](r1 r2 ... rN)

ThereforeXij = (ri, rj)∀1 ≤ i, j ≤ N . SoGn
k(Xij) = Gn

k((ri, rj))....(As ri, rj ∈ Rn well defined)

Addition theorem implies

Gn
k(Xij) = wn/Ck,n

Ck,n∑
l=1

Sk,l(ri)Sk,l(rj) ∀1 ≤ i, j ≤ N

Therefore matrix Gn
k(X) = wn/Ck,nMMT where M = (Sk,j(ri))i,j So Gn

k(X) � 0 .

4.3 Kissing Number
Given a sphere A in dim n. Kissing number k(n) is the maximum number of spheres of same
size as A that can touch A simultaneously without overlapping each other.
For the case n =2,it is easy to show that k(2)=6 using the diagram below.

Figure 4.1: Kissing Number for n = 2

There is no space for a 7th circle can be shown using contradiction. Kissing numbers are
known for n=1,2,3,4,8 and 24.For n=3 regular icosahedron gives us a configuration where 12
spheres touch given sphere without overlapping.(Icosahedron has 20 faces and 12 vertices such
that five faces meet at each vertex.If we consider spheres touching the sphere at these 12 vertices
we get the desired configuration ).But a lot of space is left even after placing 12 spheres touching
the center one.Therefore its hard to know if the above is the unique configuration.

For n=4 24-cell provides a configuration.Therefore k(4)≥ 24. Musin proved in 2003 that
k(4) =24 . For n=8 root latice E8 provides a configuration.It is known that k(8)=240.Leech
latice gives a configuration for n=24. k(24) is known to be 196560.
Delsarte, Goethals and Seidel method can be used to find good bounds on the kissing numbers.
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Figure 4.2: Icosahedron

Theorem 4.3.0.23. Delsarte, Goethals and Seidel: If f(t)=
∑d

k=0 ckG
n
k(t) where Gn

k(t) are
GegenBauer Polynomial with c0 > 0 and ck ≥ 0 ∀ k = 1...d and f(t) ≤ 0 ∀ t ∈ [−1, 1/2] then
k(n) 6 f(1)/c0

Consider the following : Let A be unit sphere centered at origin in Rn. Lets say its possible
that N unit spheres touch A without overlapping .Let x1, ..., xN denote the points where they
touch A. No two spheres overlap. Therefore 〈xi,i 〉 = 1 ∀ 1 ≤ i ≤ N . So 〈xi, xj〉 ≤ 1/2 ∀ i 6= j
(Because θ between lines joining centers should be ≥ 60 if they don’t overlap. Therefore
cosθ ≤ cos60 = 1/2. So 〈xi, xj〉 ≤ 1/2)

Consider the matrix X such that

Xij = 〈xi, xj〉 ∴ X = [


x1
x2
...
xN

](x1 x2 ... xN)

Therefore X is positive semidefinite. And as xi ∈ Rn ∀ 1 ≤ i ≤ n rank x ≤ n.
Consider the set

S = {X ∈ SN |X � 0, xii = 1 ∀ 1 ≤ i ≤ N, xij ≤ 1/2 ∀ i 6= j rank x ≤ n} (4.15)

If S 6= φ then ∃ x ∈ SNs.t.X � 0, xii = 1 & xij ≤ 1/2 and rank x ⊆ n.
So X = LLT for some L a N × n matrix.
So we can consider rows of L as points on A and so we get a configuration for N points.

Returning to the proof

Proof. According to the explanation above k(n) corresponds to a matrix X � 0 with xii =
1∀1 6 i 6 k(n) and xij 6 1/2 ∀i 6= j and rank x ≤ n.So applying Schoenberg’s theorem we
get Gn

k(X) � 0.Therefore sum of all entries of Gn
k(X) ≥ 0.

k(n)∑
j=1

k(n)∑
i=1

Gn
k(Xij) ≥ 0 (4.16)
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k(n)∑
j=1

k(n)∑
i=1

f(Xij) =

k(n)∑
i=1

f(Xii) +
∑
i 6=j

f(Xij)

= k(n)f(1) +
∑
i 6=j

f(Xij)

Xij ≤ 1/2 if i 6= j and f ≤ 0 on [-1,1/2]. Therefore
∑

i 6=j f(Xij) ≤ 0.So,
k(n)∑
j=1

k(n)∑
i=1

f(Xij) ≤ k(n)f(1) (4.17)

Now calculating again we get
k(n)∑
j=1

k(n)∑
i=1

f(Xij) =

k(n)∑
j=1

k(n)∑
i=1

d∑
k=0

ckG
n
k(Xij)

=
d∑

k=0

ck

k(n)∑
j=1

k(n)∑
i=1

Gn
k(Xij)

≥ c0

k(n)∑
j=1

k(n)∑
i=1

Gn
0 (Xij)...(because we have(1.2) and ck ≥ 0)

We have Gn
0 (Xij) = 1 ∀ i, j. Therefore

k(n)∑
i−1

k(n)∑
j=1

f(Xij) ≥ c0(k(n))2 (4.18)

So k(n)f(1) ≥ c0(k(n))2.So
k(n) ≤ f(1)/c0 (4.19)

Now lets try to find bound on k(n) using Delsarte’s method and semidefinite optimiza-
tion.Consider the following program for some fixed D.

minn = minF{F (1)|F =
D∑
k=0

λkG
n
k , λk ≥ 0, λ0 = 1 and F (t) ≤ 0 ∀ t ∈ [−1, 1/2]} (4.20)

Then by Delsarte’s theorem F (1)/λ0 = F (1) ≥ k(n) ∀ F satisfying the condition.Therefore
minn ≥ k(n)

As we increase D we will get better bounds.Now we have to convert this problem to a
semidefinite optimization problem.

F (t) ≤ 0 ∀ t ∈ [−1, 1/2] ⇐⇒ −F (t) ≥ 0 on [-1,1/2].[-1,1/2] can be reformulated as
K = {t ∈ R|g1(t) := (1/2 − t)(t + 1) ≥ 0}.If we can show that archimedean condition
holds for Q(g) where g = (g1).Then by Putinar’s theorem we get that −F (t) > 0 on [-1,1/2]
⇐⇒ −F ∈ Q(g).Then we can replace the program by

minn = minF{F (1)|F =
D∑
k=0

λkG
n
k , λk ≥ 0, λ0 = 1 and − F ∈ Q(g)} (4.21)

In chapter 2 section 2 we saw that the condition −F ∈ Qr(g) for some r can be replaced
by a semidefinite program.By varying r and D and using semidefinite optimization we can get
bounds on k(n).Refer appendix for the program.



Chapter 5

Triangle Packing

Problem Statement : What is the maximum number of regular tetrahedron that we can
pack in unit sphere S2 having a common vertex origin so that none of them overlap?

This problem corresponds to finding the maximum number of equilateral spherical triangles
with edge length π/3 that cover the sphere without overlapping.It is known that this number
T(3) satisfies 20 ≤ T (3) ≤ 22. The upperbound can be found by dividing the surface area
of sphere by area of a spherical equilateral triangle of edge π/3.Surface area of sphere is 4π
and area of spherical triangle can be calculated using Girard’s theorem.Icosahedron gives us a
configuration for packing 20 tetrahedrons in a sphere.(∴ T (3) ≥20)As we reformulated ’kissing
number problem’ in terms of points on the sphere,we try to reformulate this problem. We can
denote vertices of spherical triangle as (x1, x2, x3) with certain conditions so that they form
equilateral spherical triangle.So we have to find maximum number of triples (x1, x2, x3) on
sphere such that they form equilateral triangle and no two overlap.So we need to find condition
in terms of (x1, x2, x3) and (y1, y2, y3) that will imply that the 2 triangles donot overlap. So we
need to find conditions depending on scalar products (xi, yj) such that the 2 triangles donot
overlap.

Definition 5.0.0.24. Let Ω be the set of nine tuples (a11, a12, a13, ..., a33) such that if

aij = (xi, yj) ∀ i, j for 2 triangles (x1, x2, x3) and (y1, y2, y3)

then (x1, x2, x3) and (y1, y2, y3) donot overlap.

Let us say we can arrange N non overlapping tetrahedrons with common vertex in R3.
Let origin be the common vertex. Let T1, ...., TN be the corresponding spherical equilateral
triangles on S2, where Ti = {xi1, xi2, xi3} ∀ 1 ≤ i ≤ N . So

(xij, x
i
j) = 1 ∀ 1 ≤ i ≤ N and ∀ 1 ≤ j ≤ 3 (5.1)

(xij, x
i
j′) = 1/2 ∀ 1 ≤ i ≤ N and j 6= j′. (5.2)

Definition 5.0.0.25. Denote

Xk,l
i,j = (xki , x

l
j)

X = (Akl)k,l

where Akl is itself a matrix given by

Akl = (Xk,l
i,j )i,j.

29
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One can check that ∀ 1 ≤ k ≤ N

Akk =

1 1
2

1
2

1
2

1 1
2

1
2

1
2

1


By definition of matrix X it is evident that X � 0. As each xij ∈ R3 ,rank X ≤ 3. For any
Akl , let akl be point (Xkl

11, X
kl
12, ..., X

kl
33) in R9.

Definition 5.0.0.26.

P n
k (z) = P n

k (z1, z2, z3, z4, z5, z6, z7, z8, z9) :=
9∑
i=1

Gn
k(zi) (5.3)

where z = (z1, z2, z3, z4, z5, z6, z7, z8, z9)

Theorem 5.0.0.27. If P =
∑D

s=0 fsP
3
s with f0 = 1 and fs ≥ 0 ∀1 ≤ s ≤ D and if P(z)

≤ 0 ∀ z ∈ Ω, then

N ≤ P (all)

9
(5.4)

(N and All are as mentioned above)

Proof. X � 0 implies G3
s(X) � 0 by Schoenberg’s theorem for all s = 0, ..., D. So sum of

entries is greater than or equal to 0. So∑
i,j,k,l

G3
s(X

k,l
i,j ) ≥ 0 (5.5)

Consider

∑
k,l

P (akl) =
∑
k,l

D∑
s=0

fsP
3
s (akl)

=
∑
k,l

D∑
s=0

fs
∑
i,j

G3
s(X

k,l
i,j )

=
D∑
s=0

fs
∑
i,j,k,l

G3
s(X

k,l
i,j )

≥
∑
i,j,k,l

G3
0(X

k,l
i,j )

Because fk ≥ 0 and (5.12). Therefore ∑
k,l

P (akl) ≥ 9N2 (5.6)

Again calculating
∑

k,l P (akl) we get,

∑
k,l

P (akl) = NP (all) +
∑
k 6=l

P (akl)

≤ NP (all)
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Because P is less than or equal to 0 on Ω. So we get∑
k,l

P (akl) ≤ NP (all) (5.7)

So (5.13) and (5.14) imply

N ≤ P (all)

9
(5.8)

Now to express Ω in terms of algebraic inequalities.

Let {x, y, z} be a spherical equilateral triangle of edge length π/3 on S2. These 3 points
lie on a plane. Centre of this planar triangle is given by (x+y+z)/3 . Centre of the spherical
triangle {x, y, z} lies on the line through origin and (x+y+z)/3 and on S2. So spherical centre
is given by

Cx,y,z = k(x+ y + z)/3

For some scalar k. But Cx,y,z lies on S2 so

k2((x+ y + z), (x+ y + z))/9 = 1

k2(
2

3
) = 1

Because (x, x) = 1 = (y, y) = (z, z) and (x, y) = (y, z) = (x, z). So k =
√

3
2
. So

Cx,y,z =
(x+ y + z)√

6
(5.9)

Let X = {x1, x2, x3}, Y = {y1, y2, y3} be 2 spherical equilateral triangles of edge length π/3 on
S2. Let r be the angular distance between Cx1,x2,x3 , x1. Denote it by θ(Cx1,x2,x3 , x1)

Proposition 5.0.0.28. If θ(Cx1,x2,x3 , Cy1,y2,y3) ≥ 2r , then spherical triangles X and Y donot
overlap.(Note that θ(Cy1,y2,y3 , y1)= θ(Cx1,x2,x3 , x1) = θ(Cx1,x2,x3 , x2) = θ(Cx1,x2,x3 , x1). Same for
Y. )

Figure 5.1: spherical caps

Lemma 5.0.0.29. The condition that θ(Cx1,x2,x3 , Cy1,y2,y3) ≥ 2r can be rewritten in terms of
scalar product , which is given by ∑

i,j ∈{1,2,3}

(xi, yj) ≤ 2 (5.10)
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Proof. θ(Cx1,x2,x3 , Cy1,y2,y3) ≥ 2r implies

θ(Cx1,x2,x3 , Cy1,y2,y3) ≥ 2θ(Cx1,x2,x3 , x1) (5.11)

So

cos(θ(Cx1,x2,x3 , Cy1,y2,y3)) ≤ cos(2θ(Cx1,x2,x3 , x1))

cos(θ(Cx1,x2,x3 , Cy1,y2,y3)) ≤ 2cos(θ(Cx1,x2,x3 , x1))
2 − 1

As Cx1,x2,x3 , Cy1,y2,y3 , Cx1,x2,x3 , x1 lie on S2, we have

(Cx1,x2,x3 , Cy1,y2,y3) ≤ 2(Cx1,x2,x3 , x1)
2 − 1

But by (5.9)

(Cx1,x2,x3 , Cy1,y2,y3) =

∑
i,j ∈{1,2,3}(xi, yj)

6

(Cx1,x2,x3 , x1) =
2√
6

So, ∑
i,j ∈{1,2,3}

(xi, yj) ≤ 2

So we know that X and Y donot overlap if (5.6) is satisfied.

Now we have to consider the case when
∑

i,j ∈{1,2,3}(xi, yj) > 2.

For any u 6= v points on S2 forming an edge of a spherical equilateral triangle with edge
π/3, {u, v, u ∧ v} form a basis for R3. ((u ∧ v) is point on S2 such that ,that vector is normal
to plane spanned by u and v) . So for any point h in R3 we can write

h = au+ bv + c(u ∧ v) (5.12)

So as (u, u) = 1 = (v, v) and ((u ∧ v), u) = 0 = ((u ∧ v), v)

(h, u) = a(u, u) + b(v, u) + c((u ∧ v), u) = a+
b

2

(h, v) = a(u, v) + b(v, v) + c((u ∧ v), v) =
a

2
+ b

Solving these equations we get

a =
4

3
(h, u)− 2

3
(h, v) (5.13)

b =
4

3
(h, v)− 2

3
(h, u) (5.14)

Now let h1, h2 be 2 points in R3. So again we can write

h1 = a1u+ b1v + c1(u ∧ v)

h2 = a2u+ b2v + c2(u ∧ v)
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So

(h1, h2) = ((h1 = a1u+ b1v + c1(u ∧ v)), (h2 = a2u+ b2v + c2(u ∧ v)))

= ((a1u+ b1v), (a2u+ b2v)) + c1c2

= (a1a2 + b1b2 +
a1b2 + a2b1

2
) + c1c2

(h1, u ∧ v) = c1 and (h2, u ∧ v) = c2. So h1, h2 belong to different halfspaces created by plane
spanned by u,v iff c1c2 ≤ 0. i.e iff

(h1, h2)− (a1a2 + b1b2 +
a1b2 + a2b1

2
) ≤ 0 (5.15)

Definition 5.0.0.30. H̄(x, y; z): Vector x and vector y span a plane. This plane creates 2
halfspaces. H̄(x, y; z) is the halfspace different from halfspace containing z.

X ⊂ H̄(y1, y2; y3) (5.16)
⇐⇒ {xi, y3} satisfy (5.15) ∀ i ∈ {1, 2, 3} (5.17)

Let h1 = xi and h2 = y3. So by (5.13) and (5.14) we have

a1 =
4

3
(h1, y1)−

2

3
(h1, y2) =

4

3
(xi, y1)−

2

3
(xi, y2)

b1 =
4

3
(h1, y2)−

2

3
(h1, y1) =

4

3
(xi, y2)−

2

3
(xi, y1)

a2 =
4

3
(h2, y1)−

2

3
(h2, y2) =

4

3
(y3, y1)−

2

3
(y3, y2) =

1

3

b2 =
4

3
(h2, y2)−

2

3
(h2, y1) =

4

3
(y3, y2)−

2

3
(y3, y1) =

1

3

So by (5.15)

X ⊂ H̄(y1, y2; y3) ⇐⇒

(xi, y3)− (
4

9
(xi, y1)−

2

9
(xi, y2) +

4

9
(xi, y2)−

2

9
(xi, y1) +

4
9
(xi, y1)− 2

9
(xi, y2)

2
+

4
9
(xi, y2)− 2

9
(xi, y1)

2
)

≤ 0

So

X ⊂ H̄(y1, y2; y3) ⇐⇒

(xi, y3)−
(xi, y1) + (xi, y2)

3
≤ 0

∀ i ∈ {1, 2, 3}. Similarly

Y ⊂ H̄(x1, x2;x3) ⇐⇒
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(yi, x3)−
(yi, x1) + (yi, x2)

3
≤ 0

Claim 5.0.0.31. If
∑

i,j ∈{1,2,3}(xi, yj) > 2 then X and Y donot overlap iff atleast one of the
following is true.

X ⊂ H̄(y1, y2; y3) i.e (xi, y3)−
(xi, y1) + (xi, y2)

3
≤ 0 ∀ i ∈ {1, 2, 3}

X ⊂ H̄(y2, y3; y1) i.e (xi, y1)−
(xi, y2) + (xi, y3)

3
≤ 0 ∀ i ∈ {1, 2, 3}

X ⊂ H̄(y1, y3; y2) i.e (xi, y2)−
(xi, y1) + (xi, y3)

3
≤ 0 ∀ i ∈ {1, 2, 3}

Y ⊂ H̄(x1, x2;x3) i.e (yi, x3)−
(yi, x1) + (yi, x2)

3
≤ 0 ∀ i ∈ {1, 2, 3}

Y ⊂ H̄(x2, x3;x1) i.e (yi, x1)−
(yi, x2) + (yi, x3)

3
≤ 0 ∀ i ∈ {1, 2, 3}

Y ⊂ H̄(x1, x3;x2) i.e (yi, x2)−
(yi, x1) + (yi, x3)

3
≤ 0 ∀ i ∈ {1, 2, 3}

Proof. ⇐ is clear.
⇒:
Consider this diagram. Let the spherical triangle in the diagram be X .

Figure 5.2: spherical caps

Let Y be any other spherical equilateral triangle.If Y ⊂ H̄(x1, x3;x2) then we are done. If
not there are 3 cases.If we consider each case we get atleast one of the above conditions.

Figure 5.3: Kissing Number for n = 2

1. 2 points in H̄(x1, x3;x2) and 1 in other halfspace. wlg call those 2 points y1 and y2

(a) y1, y2 in H2 : Atleast one edge y3, y1 or y3, y2 of spherical equilateral triangle passes
through interior of X so X and Y overlap.

(b) y1 in H12 and y2 in H23 not possible because we want equilateral triangle.

(c) y1 in H12 and y2 in H2.Then we can have
from figure we can see that X subset of H̄(y2, y3; y2).



CHAPTER 5. TRIANGLE PACKING 35

Figure 5.4: Kissing Number for n = 2

2. 1 point in H̄(x1, x3;x2) and 2 in other.

3. All 3 in halfspace different from H̄(x1, x3;x2) .

Now as we did in kissing number problem we can express Ω in a semidefinite program with
the help of polynomial optimization.
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5.1 Appendix
Here I am adding the code for kissing number problem.
load("/Applications/sage/build/pkgs/SDP/SDP.py")
load("/Users/satishjoshi/Desktop/documents/Gegenbauerpoly.sage")
load("/Applications/sage/gcoeff.sage")
load("/Applications/sage/sos.sage")
load("/Applications/sage/soskiss.sage")

c = matrix(RR, 2 ∗D + 1, 1, lambdai, j : G_coeff(n, j, i))

G = matrix(RR, 2 ∗D + 1, 2 ∗D, lambdai, j : G_coeff(n, j + 1, i))

G0 = transpose(G)

G1 = transpose(matrix(RR, 2 ∗D + 1, (D + 1)2, lambdai, j : sos(D, i, j)))

G2 = transpose(matrix(RR, 2 ∗D + 1, D2, lambdai, j : soskiss(D, i, j)))

h0 = transpose(matrix([1for i in [0..(2 ∗D − 1)]]))

h1 = matrix(RR,D + 1, D + 1, lambdai, j : 0)

h2 = matrix(RR,D,D, lambdai, j : 0)

c = matrixconverter(c,
′ cvxopt′)

G0 = matrixconverter(G0,
′ cvxopt′)

G1 = matrixconverter(G1,
′ cvxopt′)

G2 = matrixconverter(G2,
′ cvxopt′)

h0 = matrixconverter(h0,
′ cvxopt′)

h1 = matrixconverter(h1,
′ cvxopt′)

h2 = matrixconverter(h2,
′ cvxopt′)

hs = [h1, h2]

Gs = [G1, G2]

import cvxopt from cvxopt import matrix, solvers

sol = solvers.sdp(c,G0, h0, Gs = Gs, hs = hs)
print sol[’x’]

Gegenbauerpoly.sage

def G(n,k) :
R.<x>=CC[ ]
a=(n-2)/2
c=sage.functions.orthogonal_polys.gegenbauer(k, a, 1)
b=sage.functions.orthogonal_polys.gegenbauer(k, a, x)
if k>0:
return b/c
else:
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return 0*x + b/c

gcoeff.sage

defG_coeff(n, k, d) :
if d<k+1 :
R.<x>=CC[]
load("/Users/satishjoshi/Desktop/documents/Gegenbauerpoly.sage")
p=G(n,k)
v=p.coefficients(sparse=False)
return v[d]
else :
return 0

sos.sage

def sos(D,i,j):
a=j%(D + 1)
b=int(j/(D+1))
if a+b==i:
return 1
else:
return 0

soskiss.sage

def soskiss(D,i,j):
v=[1/2, -1/2, -1]
a=j%D
b=int(j/D)
c=i-(a+b)
if 0 ≤ c ≤ 2 :
return v[c]
else:
return 0



Bibliography

[1] Monique Laurent : Semidefinite Optimization

[2] Chudnovsky,Robertson,Seymour,Thomas ; The strong perfect graph theorem; Annals of
mathematics,164(2006)

[3] Henri Lombardi ; Effective real Nullstellensatz and variants

[4] Andrews -Askey-Roy - Special - functions - 1999

[5] Feng Dai and Yuan Xu : Spherical Harmonics

38



Bibliography

[1] Monique Laurent ;Semidefinite Optimization; May 22, 2012

[2] Maria Chudnovsky, Neil Robertson,Paul Seymour, Robin Thomas ;The strong
perfect graph theorem ; Annals of mathematics ;164(2006),51-229

[3] Henri Lombardi ; Effective real Nullstellensatz and variants

[4] Andrews ,Askey,Roy ;Special functions Cambridge University Press;(1999)

[5] Feng Dai ,Yuan Xu ; Spherical Harmonics ; arXiv:1304.2585

39


	Introduction
	Preliminaries
	Measure theory
	Algebraic Geometry
	Linear Functionals


	Polynomial Optimization
	Semidefinite Optimization
	Semidefinite Program
	Applications of Semidefinite Programs to Combinatorial Problems
	Lovász sandwich inequalities

	Sum of squares
	Relation between sum of squares and being positive
	Lasserre Hierarchy

	Moments

	Kissing Number
	Spherical Harmonics
	Gegenbauer Polynomials
	Kissing Number

	Triangle Packing
	Appendix


