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Abstract

Counting the number of solutions of a homogeneous polynomial is one of the fundamental

unity of mathematics. Studying them will lead to the studying of zeta functions (a special

case of L-functions). Indeed, let’s begin by a simple example. Consider the curve C of

genus 3 with equation X3Y +Y 3Z+Z3X = 0 defined over k = F2. Let Nd be the number

of points with coordinates in F2d . By direct computing, we have that Nd = 2d + 1 if

3 - d, and Nd = 2d + 1− ad if 3 | d, where the ai are found from a3 = −15, a6 = 27 and

a3k+6 + 5a3k+3 + 8a3k = 0(k ≥ 1).

Put

Z(C, t) = exp
(∑
i≥1

1

i
Nit

i
)
.

Then in this example, it is easy to see that

Z(C, t) =
1 + 5t3 + 8t6

(1− t)(1− 2t)
,

a simple rational function that encodes the values of all Ni. Conversely, if we know that

Z(C, t) =
1 + 5t3 + 8t6

(1− t)(1− 2t)
,

we can easily implies the values of Ni. In other words, the given expression of Z(C, t) is

equivalent to the given values of Ni.

We can easily see that the zeta functions defined in the example is a rational function

and all of roots of 1 + 5t3 + 8t6 have the norm 2−1/2. In general, let X be a complete

smooth curve over Fq with Ni points over Fqi and the zeta function of X be

Z(X, t) = exp
(∑
i≥1

1

i
Nit

i
)
.

Then Hasse (for genus g = 1) and Weil (for the general case) showed that this function

is a rational function of the form

P (t)

(1− t)(1− qt)

where P (t) is a polynomial in t of degree 2g. Moreover, by studying Weil cohomology,

he is also available to prove the the functional equation and the Riemann hypothesis

(see detail in the chapter 3). Besides, he gave the conjecture that they also hold for any

variety. The story of the Weil conjectures is really a marvelous example of mathematical

imagination, and one of the most striking instances exhibiting the fundamental unity of

mathematics. The essential ideas which led to their proof are due to six men: E. Artin,
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F.K.Schmidt, H. Hasse, A. Weil, A. Grothendieck, and P. Deligne, over a period of fifty

years (1923 - 1973). Firstly, Weil used the Weil cohomology to prove for the curves,

and Deligne used the étale cohomology defined the Grothendick to prove for the general

case.

The aim of this master thesis is to study the rationality of the Weil conjectures of Zeta

and L-functions of Algebraic Curves over finite fields by using the étale cohomology.

The development of étale cohomology was motivated by work of Weil. Grothendieck

had built the general theory of schemes that, following a remark of Serre, he was able to

generalize in a very original way both of concept ”topology” and the concept of ”sheaf”.

He also attached to every variety (or scheme) X a cohomology algebra H•(Xét,Ql),
where l is a prime different from the characteristic of X. More precisely, he defined

H•(Xét,Ql) = lim←−H
•(Xét,Z/lnZ)⊗Zl

Ql.

This cohomology satisfies:

• (Dimension) If X has dimension d, then H i(Xét,Ql) = 0 for every i > d.

• (Finiteness) H•(Xét,Ql) is a finite dimensional vector space over Ql.

• (Duality) There exists a perfect pairing H i ×H2d−i → Ql.

By using the étale cohomology, one can prove the Lefschetz trace formula which states

that if X is a complete nonsingular variety over an algebraically closed field k, and f :

X → X is a morphism of schemes which induces the linear morphism f• : H•(Xét,Ql)→
H•(Xét,Ql) of Ql-vector spaces, then

(Γf �∆) =
∑
r

(−1)rTr(f |Hr(X,Ql))

where Γf is the graph of f , and ∆ is the diagonal in X×X. Thus (Γf �∆) is the number

of fixed points of f counted with multiplicities. And finally, since the definition of zeta

and L-functions, one can prove the Weil conjectures by rewriting the formulas of zeta

functions and L-functions in the terms of étale cohomology.
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Chapter 1

Algebraic Curves over finite fields

In this chapter, we will recall some basic knowledge of finite fields, schemes theory and

Algebraic curves.

1.1 Finite fields

For a prime number p, the residue class ring Z/pZ of the ring Z of integers forms a field.

We also denote Z/pZ by Fp. It is a prime field in the sense that there are no proper

subfields of Fp. There are exactly p elements in this field. In general, a field is called a

finite field if it contains only a finite number of elements.

Proposition 1.1. Let k be a finite field with q elements. Then:

a. There exists a prime p such that Fp ⊂ k;

b. q = pn for some integer n ≥ 1;

c. αq = α for all α ∈ k.

Theorem 1.2. For every prime number p and every integer n ≥ 1, there exists a finite

field with pn elements. Any finite field with q = pn elements is isomorphic to the splitting

field of the polynomial xq − x over Fp.

The above theorem shows that for given q = pn, the finite field with q elements is unique

in a fixed algebraic closure Fp. We denote this field by Fq and call it the finite field of

order q. It follows from the the above theorem that [Fq : Fp] is a Galois extension of

degree n. The following theorem yields the structure of the Galois group Gal(Fq/Fp).

Theorem 1.3. Let q be a prime power. Then:

3



Chapter 1. Algebraic Curves over finite fields 4

a. Fq is a subfield of Fqn for every integer n ≥ 1.

b. Gal(Fqn/Fq) is a cyclic group of order n with generator σ : a 7→ aq.

c. Fqm is a subfield of Fqn if and only if m divides n.

d. The algebraic closure of Fq is the union
∞⋃
n=1

Fqn. Moreover, Gal(Fq/Fq) ∼= lim←−Gal(Fqi/Fq)
∼=

Ẑ.

1.2 Scheme theory

1.2.1 First properties of schemes

Definition 1.4. A scheme X is locally noetherian if it can be covered by open affine

subsets SpecAi, where each Ai is a noetherian ring. X is noetherian if it is locally

noetherian and quasi-compact. Equivalently, X is noetherian if it can be covered by a

finite number of open affine subsets SpecAi, with each Ai a noetherian ring.

Proposition 1.5. 1. An affine scheme Spec(A) is noetherian if and only if A is

noetherian. In particular, if X is a noetherian scheme then the local ring OX,x is

noetherian for any point x ∈ X.

2. Let X be a locally noetherian scheme (resp. noetherian scheme), then so is any

open subscheme of X.

3. For X a noetherian scheme, its underlying topological space is a noetherian topo-

logical space. In particular, any closed subset of X can be decomposed as a finite

union of its irreducible components.

Proof. 1. The latter condition is clearly sufficient. We show that it’s also necessary.

Let X = Spec(A) be an affine scheme which is noetherian. Since a localization of a

noetherian ring is again noetherian, X contains a topological basis B which consists

of open principal D(f) = Spec(Af ) with Af noetherian. In particular, X can be

covered by finitely many principal open in B: X =
⋃
i
Xi with Xi = Spec(Afi).

Now, as Afi is noetherian, afi ⊂ Afi is an ideal of finite type. Let {aij}j be a

family of generators of Ifi , we may assume that aij ∈ I. We claim that {aij : i, j}
gives then a family of generators of a. Indeed, for each a ∈ I, and for each i, there

exists λij ∈ A and eij ∈ Z≥1 such that

a =
∑
j

λij .aij

f
eij
i

∈ Afi .
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Up to replacement eij by some bigger integer, we may assume that eij = e is

independent of i, j. Moreover there exists mi ∈ Z≥0 such that

fmi+e
i a =

∑
j

fmi
i λijaij .

On the other hand, since X =
⋃
i
D(fi) =

⋃
i
D(fmi+e

i ), one can find µi ∈ A such

that 1 =
∑
i
µif

mi+e
i . So finally, we get

a =
∑
i

aµif
mi+e
i =

∑
i

∑
j

µif
mi
i λijaij .

This gives (1)

2. As the localization of a noetherian ring is again noetherian, X contains then an

open basis consisting of noetherian affine schemes. This shows that any open

subscheme of a locally noetherian scheme is locally noetherian. If moreover, X

is noetherian, any open subset of X is quasi-compact, in particular, any open

subscheme is noetherian.

3. The proof of (3) is similar.

Definition 1.6. (a) Let X be a scheme. X is called connected (resp. irreducible, resp.

quasi-compact) if its underlying topological space is connected (resp. irreducible,

resp. quasi-compact).

(b) A scheme X is reduced if for every open subset U of X, the ring OX(U) has

no nilpotent elements. Equivalently, X is reduced if and only if the local rings

OP (OX,P ) have no nilpotent elements for all P ∈ X.

(c) A scheme X is integral if X is irreducible and the local rings OP is integral for all

P ∈ X. Equivalently, X is integral if and only if the ring OX(U) is an integral

domain, for every open subset U of X.

Proposition 1.7. [Liu02] A scheme is integral if and only if it is both reduced and

irreducible.

Definition 1.8. Let X be a topological space. Let x, y ∈ X be points of X. We say

that y is a specialization of x, or that x specializes y if y ∈ {x}. We say that x ∈ X is a

generic point if x is the unique point of X that specializes to x.

Proposition 1.9. Let X be a scheme.
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1. Any irreducible closed subset of X contains a unique generic point.

2. For any generic point ξ ∈ X, {ξ} is an irreducible component of X, In particular,

if X is irreducible then there exists unique generic point ξ such that {ξ} = X.

Proof. When X = Spec(A) is affine, a closed subset V (I) ⊂ X is irreducible if and only

if
√
I = P with P ⊂ A a prime ideal. In this case, the point P is a generic point of

V (I) ⊂ X. Now, for X an arbitrary scheme, let Z ⊂ X be an irreducible subset. Let

x ∈ X be a point contained in X, then x has a affine neighborhood U ⊂ X. Since Z

is irreducible, U ∩ Z ⊂ Z is dense and irreducible. Moreover, U ∩ Z ⊂ U is closed and

irreducible with U an affine scheme, so it contains a generic point, which gives also a

generic point of Z. The uniqueness follows from the fact that the underlying topological

space of a scheme if a T0-space. This gives (1).

For (2), let Z ⊂ X be an irreducible component of X, and ξ ∈ Z be its generic point.

Then we claim that ξ is a generic point of X, that is, no point being different from ξ

can specialize to ξ: indeed, if η specializes to ξ, then ξ ∈ {η}, hence Z = {ξ} ⊂ {η}. As

Z is a maximal irreducible closed subset of X, we must have {ξ} = {η}, hence ξ = η.

This shows that ξ ∈ X is a generic point. The proposition is proved completely.

Proposition 1.10. Let X be an integral scheme with generic point ξ. The followings

are hold

1. Let V be an affine open subset of X, then OX(V )→ OX,ξ induces an isomorphism

Frac(OX(V )) ∼= OX,ξ.

2. For any open subset U of X, and any point x ∈ U . The canonical morphism

OX(U)→ OX,ξ and OX,x → OX,ξ are injective.

3. By identifying OX(U) and OX,x to subrings of OX,ξ, we have OX(U) =
⋂
x∈U
OX,x.

Proof. The first assertion (1) is clear. Indeed, if V = Spec(A), then OX,ξ is exactly the

fraction field Frac(A), and the canonical map OX(V )→ OX,ξ is then the natural map

A ↪→ Frac(A). Hence, the conclusion follows.

For (2), let f ∈ OX(U) be any element such that its image fx ∈ OX,x is zero. Then there

exists an affine open neighborhood V of x such that f |V = 0. In particular, the image

fξOX,ξ is zero. Now by applying the first assertion, we see that for any affine open V ′

of X, we have f |V ′ = 0. Hence, f = 0. This gives the injectivity of the first morphism.

For the second injectivity, we take any affine open neighborhood V = Spec(A) of x,

and suppose that x corresponds to the prime ideal p ⊂ A, then the canonical map

OX,x → OX,ξ is just the canonical inclusion Ap ↪→ Frac(A), where comes the desired

injectivity.
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For (3), we have clearly OX(U) ⊂
⋂
x∈U OX,x. Conversely, by the sheaf condition and

the injectivity proved in (2), we may assume that U = Spec(A) is affine. Then we

are reduced to show that A =
⋂

p∈Spec(A)

Ap, seen as subring of Frac(A). Indeed, for a

fraction f ∈ Frac(A) which is contained in
⋂

p∈Spec(A)Ap, then for each p ∈ Spec(A),

there exists sp ∈ A − p, and ap ∈ A such that f = ap/sp. As A is integral, we deduce

then f.sp ∈ A. Now, if we take the family {sp : p ∈ Spec(A)}, which generates the unit

ideals. Hence, one can find bp ∈ A, almost all zero, such that 1 =
∑
p
bpsp. From where,

we find f =
∑
p
bpspf =

∑
p
bpap ∈ A. This gives the result.

Definition 1.11. Let X be an integral scheme, with generic point ξ. We denote the

field OX,ξ by K(X). Sometimes, when X is an algebraic over a field k, we also denote

K(X) by k(X). An element of K(X) is called a rational function on X. We call K(X)

the field of rational functions or function field of X. We say that f ∈ K(X) is regular

at x ∈ X, if f ∈ OX,x. A rational f is regular at any point of x ∈ U is contained in

OX(U).

Definition 1.12. Let X be a topological space, we define the (Krull) dimension of

X, which we denote by dim(X), to be the supremum of the lengths of the chains of

irreducible closed subsets of X. Dimension of a scheme X is the dimension of the

underlying topological space.

From the definition of dimension of a topological space. It is easy to deduce the following

Proposition 1.13. [Liu02] Let X be a topological space.

1. For any subset Y of X endowed with the induced topology, then dimY ≤ dimX.

2. Suppose X is irreducible of finite dimension, and let Y ⊂ X be a closed subset.

Then Y = X if and only if dimY = dimX.

3. The dimension of X is the supremum of the dimensions of its irreducible compo-

nents.

4. Let’s denote dimxX = inf{dimU : U an open neighborhood of x} then dimX =

sup{dimxX : x ∈ X}

Theorem 1.14. (Noether normalization lemma) Let A be a finitely generated algebra

over a field k. Then there exists an integer d ≥ 0, and a finite injective homomorphism

k[T1, T2, · · · , Td] ↪→ A.

Corollary 1.15. Let X be an integral scheme of finite type over a field k. Then for any

non-empty open subset U ⊂ X, we have dim(U) = dim(X) = tr.deg(K(X)/k).
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Proposition 1.16. [Liu02] Let A be a finitely generated integral domain over a field k.

Let p ⊂ A be a prime ideal.

1. ht(p) + dim(A/p) = dim(A).

2. If p is maximal then dim(A) = dim(Ap).

Corollary 1.17. Let X be an irreducible finite type scheme over a field k. Let x ∈ X
be a closed point. Then dim(X) = dim(OX,x).

1.2.2 Some global properties of schemes

Definition 1.18. Let S be a scheme, and let X,Y be two schemes over S. We define the

fibred product of X,Y over S to be an S-scheme X ×S Y , together with two morphisms

of S-schemes p : X ×S Y → X, q : X ×S Y → Y (called the projections), verifying the

following universally property:

Let f : Z → X, g : Z → Y be two morphisms of S-schemes then there exists a unique

morphism of S-schemes γ = (f, g) : Z → X ×S Y making the following diagram com-

mutative:

Z

f

��

∃!γ

##

g

&&
X ×S Y

q

��

p
// X

α
��

Y
β // S

Proposition 1.19. Let S be a scheme, and let X,Y be two S-schemes. Then the fibred

product (X ×S Y, p, q) exists, and is unique up to isomorphism. If X,Y, S are affine,

then X ×S Y = Spec
(
Spec(OX(X)⊗OS(S) OY (Y ))

)
, and the projection morphisms are

induced by the canonical homomorphisms OX(X),OY (Y )→ OX(X)⊗OS(s) OY (Y )

Definition 1.20. Let S be a scheme, and X be an S-scheme. For any S-scheme S′, the

second projection q : X ×S S′ → S′ endows X ×S S′ with a structure of an S′-scheme.

Such a process is called the base change of X by S′ → S. We sometimes denote the

S′-scheme X ×S S′ by XS′ . For a morphism of S-schemes f : X → Y , its base change

by S′ → S is the morphism f ×S 1S′ : X ×S S′ → Y ×S S′, sometimes it is denoted by

fS′ .

Definition 1.21. Let f : X → Y be a morphism of schemes. For any point y ∈ Y ,

we set Xy = X ×Y Spec(k(y)), where Spec(k(y)) → Y is the canonical map associated

to the point y ∈ Y . We call Xy be the fiber of f over y. Remark that the second
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projection Xy = X ×Y Spec(k(y)) → Spec(k(y)) makes Xy into a scheme over k(y). If

Y is irreducible with the generic point ξ ∈ Y , we call the fiber product Xξ over ξ the

generic fibre of f .

Definition 1.22. Let P be a property of a morphism of schemes f : X → Y

1. The property P is said to be local on the base Y if the following assertions are

equivalent:

(a) f verifies P ;

(b) for any y ∈ Y , there exists an affine neighborhood V of y such that f |f−1(V )

verifies P .

2. The property P is said to be stable under the base change if for any morphism

f : X → Y verifying P , and for any morphism Y ′ → Y , the base change fY ′ :

XY ′ → Y ′ verifies again the property P .

Definition 1.23. An open subscheme of a scheme X is a scheme U , whose topological

space is an open subset of X, and whose structure sheaf OU is isomorphic to the restric-

tion OX |U of the structure of X. An open immersion is a morphism f : X → Y which

induces an isomorphism of X with an open subscheme of Y.

Definition 1.24. A morphism of schemes f : X → Y is called a closed immersion if for

any affine open U of Y , the inverse image f−1(U) ⊂ X is again affine, and the induced

map OY (U)→ OX(f−1(U)) is surjective.

Definition 1.25. A morphism of schemes f : X → Y is called separated if the diagonal

morphism δ : X → X ×Y X is a closed immersion. We say that X is a separated Y-

scheme or X is separated over Y. A scheme X is said to be separated if X is separated

over Spec(Z).

Proposition 1.26. [Liu02] Let f : Y → X be a morphism of schemes with X = Spec(A)

affine. The following conditions are equivalent:

1. f is separated.

2. For any two affine opens U, V ⊂ Y , their intersection U ∩ V ⊂ Y is again affine,

moreover, the canonical map OY (U)⊗A OY (V )→ OY (U ∩ V ) is surjective.

3. There exists an open affine covering Y =
⋃
i∈I

Ui such that Ui∩Uj is affine, and that

the canonical map OY (Ui)⊗OY (Uj)→ OY (Ui ∩ Uj) is surjective for any i, j ∈ I.

Proposition 1.27. [Liu02]
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1. Open and closed immersions are separated.

2. The composition of two separated morphisms is again separated. In particular,

immersions are separated.

3. Let f : X → Y, and g : Y → Z be two morphisms such that g ◦ f and f are both

separated, then f is separated.

4. Separated morphisms are stable under base change. i.e. any base change of a

separated morphism is again a separated morphism.

Definition 1.28. Let f : X → Y be a morphism of locally noetherian schemes.

1. f is said to be universally closed if for any morphism Y ′ → Y, the base change

fY ′ : X ′ = X ×Y Y ′ → Y ′

is a closed map between the underlying topological spaces.

2. f is said to be finite type if f is quasi-compact (that is, for any quasi-compact

open subset V ⊂ Y, the inverse image f−1(U) is quasi-compact) and locally of

finite-type (that is, for any affine opens U = Spec(A) ⊂ X and V = Spec(B) ⊂ Y
such that f(U) ⊂ V , then the induced map B = OY (V ) → OX(U) = A makes A

into a B-algebra of finite type).

3. f is said to be proper if f is separated, of finite type, and universally closed.

Proposition 1.29. [Liu02] We have the following properties:

1. Closed immersions are proper.

2. The composition of two proper morphisms is proper.

3. The base change of a proper morphism is still proper.

4. If the composition of X → Y and Y → Z is proper, and if the second morphism

Y → Z is separated. Then the first morphism X → Y is also proper.

5. Let f : X → Y be a surjective morphism of S-schemes. Let us suppose that Y is

separated and of finite type over S, and that X is proper over S, then Y is proper

over S.
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1.2.3 Some local properties of schemes

Definition 1.30. Let (A,m) be a noetherian local ring with residue field k. Recall

that dim(A) ≤ dimkm/m
2. We call a noetherian local ring (A,m) regular if dim(A) =

dimkm/m
2.

Theorem 1.31. Let (A,m) be a noetherian local ring of dimension d. The following

three statements are equivalent:

1. A is regular.

2. m ⊂ A can be generated by d elements.

3. grm(A) :=
∞⊕
n=0

mn/mn+1 is isomorphic, as k-algebra, to the ring of polynomials in

d variables.

Proposition 1.32. Let (A,m) be a regular noetherian local ring. Then A is an integral

domain.

Definition 1.33. Let X be a locally noetherian scheme, and let x ∈ X be a point. We

say that X is regular at x ∈ X, or x is regular point of X if OX,x is regular. We say

that X is regular if X is regular at all its points. A point x in X which is not regular is

called a singular point of X. A scheme that is not regular is said to be singular.

1.3 Algebraic Curves over finite fields

Definition 1.34. Let k be a field. An affine variety over k is the affine scheme associated

to a finitely generated algebra over k. An algebraic variety over k is a k-scheme X such

that there exists a covering by a finite number of affine open subschemes Xi which are

affine varieties over k. A projective variety over k is a projective scheme over k. Projective

varieties are algebraic varieties. By definition, a morphism of algebraic varieties over k

is a morphism of k-schemes.

Definition 1.35. Let k be a field. An algebraic variety over k whose irreducible com-

ponents are of dimension 1 is called an algebraic curve over k (or curve over k).

Definition 1.36. A curve Y is said to be smooth if and only if Y = Yk is regular.

Definition 1.37. A curve Y over a finite field k = Fq is called complete smooth curve

if Y is a k -scheme of finite type, dimY = 1, and Y is regular, proper, integral over k.

From now on, we assume all curves to be complete smooth curve (hence, projective).
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Proposition 1.38. [Liu02] Let Y be an algebraic variety over finite field Fq then:

1. If Y is smooth then Y is regular.

2. dimY = dimY , for every U open in Y then dimU = dimY . If V is a closed subset

of Y then V = Y if and only if dimV = dimY .

3. Closed subsets of an algebraic curve are ∅, Y or finite union of closed points.

Next, we will state the Jacobian criterion for a projective curve. Let C = V (I) ⊂ Pn be

a curve with generators f1, f2, · · · , fm ∈ I. Then C is smooth at P ∈ C if and only if

rank


δf1

δx0
(P ) . . . δf1

δxn
(P )

...
. . .

...
δfm
δx0

(P ) · · · δfm
δxn

(P )

 = n− 1

Example 1.1. The curves in P2

C1 : Xr
0 +Xr

1 +Xr
2 = 0

C2 : X3
0X1 +X3

1X2 +X3
2X0 = 0

C3 : Xq
1X2 +X1X

q
2 = Xq+1

0

are all smooth.

Proposition 1.39. Let X be a scheme of finite-type over Fq and let x ∈ X. The

following properties are equivalent:

a. {x} is closed in X.

b. The residue field k(x)is finite.

Proof. Use the Noether normalization lemma or Zariski’s theorem.



Chapter 2

Étale morphisms and Cohomology

This chapter covers some basic notions about étale cohomology so that we can use in

the next chapter. We will prove that the category of sheaves of abelian groups on Xét

is abelian and has enough injectives. Therefore, we can define the étale cohomology as

the right derived functor of global section. After considering a family of cohomology of

constant sheaf, we can give the definition of l-adic cohomology. The aim of this notion

is to state (without proof) of the Lefschetz fixed point formula which is the main tool

to study chapter 3.

2.1 Étale morphisms

2.1.1 Étale morphisms

Flat morphisms: A morphism ϕ : Y → X of schemes (or varieties) is said to be flat if

the local homomorphisms OX,ϕ(y) → OY,y are flat for all y ∈ Y .

We recall that a homomorphism of rings A→ B is flat if one of the following equivalent

conditions holds:

• The functorM 7→ B⊗AM from the A-modules category to the B-modules category

is exact.

• J ⊗A B → B is injective for every J ⊂ A ideal.

• The local homomorphism Af−1(m) → Bm is flat for every maximal ideal m in B.

Remark 2.1. If A is an integral domain, then any flat morphism A → B is injective.

Conversely, if A is a Dedekind domain then any injective morphism is flat.

13
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Theorem 2.2. [Mil80] Any flat morphism that is locally of finite-type is open. Moreover,

let f : Y → X be locally of finite type then the set of points y ∈ Y such that Oy is flat

over Of(y) is open in Y and it is non-empty if X is integral.

Unramified morphisms: A morphism ϕ : Y → X of schemes (or varieties) is said to be

unramified if it is of finite type and if the local homomorphisms OX,ϕ(y) → OY,y are

unramified for all y ∈ Y .

We recall that a local homomorphism A → B of local rings is unramified if one of the

following equivalent conditions holds:

• B/f(mA)B is a finite separable field extension of A/mA.

• f(mA)B = mB and the field B/mB is finite and separable over A/mA.

Remark 2.3. It suffices to check the condition of unramified morphism of schemes for

the closed points y in Y only.

Proposition 2.4. [Mil80] Let f : Y → X be a locally of finite-type. Then the following

are equivalent:

i. f is unramified

ii. ∀x ∈ X,Yx → Spec(k(x)) is unramified.

iii. All geometric fibres of f are unramified, that is, for every Spec(k) → X with k

separably closed, then Y ×X Spec(k)→ Spec(k) is unramified.

iv. For all x ∈ X, Yx has an open covering by spectra of finite separable k(x)-algebras.

v. For all x ∈ X, Yx is a disjoint sum of Spec(ki) where [ki : k(x)] is finite separable

extension.

Étale morphism: A morphism ϕ : Y → X of schemes is étale if it is flat and unramified

(hence, it is of finite type).

In particular, a homomorphism of rings f : A→ B is étale if the corresponding morphism

Spec(B)→ Spec(A) is étale. Equivalently, it is étale if

(a) B is a finitely generated A-algebra,

(b) B is a flat A-algebra,

(c) Bn/f(pBn) is a finite separable field extension of Ap/pAp for all maximal ideals

n ⊂ B and p = f−1(n).
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2.1.2 Properties of étale morphisms

In this section, we will study some basic properties of étale morphisms.

Proposition 2.5. 1. Any open immersion is étale.

2. Composition of two étale morphisms is an étale morphism.

3. Any base change of an étale morphism is an étale morphism.

4. If ϕ ◦ ψ and ϕ are étale, then so also is ψ.

Statement (1) says that if U is an open subscheme of X, then the inclusion U ↪→ X

is étale. The statements (2) and (3) also hold for flat morphisms and unramified mor-

phisms, hence, they do for étale morphisms.

Proposition 2.6. Let p : X → S and q : Y → S be morphisms of varieties over an

algebraically closed field. Assume that p is étale and that Y is connected. Let ϕ,ϕ′ be

morphisms Y → X such that p ◦ ϕ = q and p ◦ ϕ′ = q. If ϕ and ϕ′ agree at a single

point of Y , then they are equal on the whole of Y.

One of the important properties of étale morphisms is that if Y → X is étale, then Y

inherits many of the good properties of X. They comes from a ”nice” local property of

étale morphism which is called standard étale morphisms as follows

Theorem 2.7. [Mil80] A morphism f : Y → X is étale if and only if for every y ∈ Y ,

there exist open affine neighborhoods V = Spec(C) of y and U = Spec(A) of x = f(y)

such that

C = A[T1, T2, · · · , Tn]/(P1, · · · , Pn)

where det(δPi/δTj) is a unit in C.

An immediate property implied from the previous theorem is that Y → X étale and X

locally noetherian implies Y locally noetherian. Moreover, we can prove that

Proposition 2.8. If φ : Y → X is an étale morphism, then:

1. For all y ∈ Y , OY,y and OX,x have the same Krull dimension.

2. The morphism φ is quasi-finite.

3. The morphism φ is open on the underlying topological spaces (however, it is not

necessarily an open immersion).
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4. If X is reduced (respectively, normal, or regular), then so also is Y .

Remark 2.9. In general, if X is integral, it is not necessary that Y is also integral. More

precisely, if X is irreducible, Y is not necessarily irreducible.

2.2 Sheaf theory

2.2.1 Presheaves and sheaves

We shall be concerned with classes E of morphisms of schemes satisfying the following

conditions:

(e1) All isomorphism are in E.

(e2) The composite of two morphisms in E is in E.

(e3) Any base change of a morphism in E is in E.

A morphism in such a class E will be referred to as an E − morphism. The full

subcategory of the category of X − schemes Sch/X whose structure morphism is an

E −morphism will be written E/X.

Example 2.1. The following examples of such classes will be particularly important:

1. the class E = (Zar) of all open immersions;

2. the class E = (ét) of all étale morphisms of finite-type;

3. the class E = (fl) of all flat morphisms that are locally of finite-type;

Definition 2.10. Fix a base scheme X and a class E as above. Let C/X be a full sub-

category of Sch/X such that C/X is closed under fiber products and for any morphism

Y → X in C/X and any E−morphism U → Y , then the composite U → X is in C/X.

1. An E − covering of an object Y of C/X is a family (gi : Ui → Y )i∈I of E −
morphisms such that Y =

⋃
i∈I

gi(Ui). The class of all such objects is called an

E − topology on C/X.

2. The category C/X together with the E − topology is called an E − site over X

and we denote it by (C/X)E or simply as XE
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3. The étale site (respectively, Zariski site, or flat site) on X is the full subcategory

(ét)/X (respectively, (Zar)/X, or (fl)/X) of Sch/X together with the étale (re-

spectively, Zariski, or flat) topology, that is for every Y → X étale (respectively,

open immersion, or flat morphism that are locally of finite-type) then the étale

(respectively, Zariski, or flat) covering of Y is a family (Ui → Y )i∈Y of the class

(ét) (respectively, (Zar) or (fl)).

Remark 2.11. The étale site, (Zar)-site and (fl)-site sastify the following conditions:

1. if φ : U → U is an isomorphism in the corresponding site then it is a covering;

2. if (Ui → U)i is a covering, and (Vij → U)j is a covering for every i, then (Vij →
U)i,j is also a covering;

3. if (Ui → U)i is a covering then the family of base changes (Ui ⊗U V → V ) is also

a covering.

Definition 2.12. A presheaf P of abelian groups on a site (C/X)E is a contravariant

functor C/X → Ab.

Thus P associates with each U in C/X an abelian group P (U), which we shall sometimes

write as Γ(U,P ) and whose elements we shall sometimes refer to as sections of P over

U. A morphism of presheaves φ : P → P ′ is simply a morphism of functors P → P ′.

Since the category of abelian groups is abelian, so is the category of presheaves of abelian

groups on XE . We denote this category by PrS(XE) or P (XE).

Example 2.2. Let XE be an E-site.

1. Constant presheaf: for any abelian group M, the constant presheaf PM on XE is

defined to have PM (U) = M for every U 6= ∅, and PM (f) = 1M for all f.

2. The presheaf Ga satisfies Ga(U) = Γ(U,OU ) regarded as an additive group for all

U , and for any morphism U → U ′, Ga(f) is the map Γ(U ′,OU ′) → Γ(U,OU )

induced by f.

3. The presheaf Gm has Gm(U) = Γ(U,OU )∗ for all U and for any morphism U → U ′,

Gm(f) is the map Γ(U ′,OU ′)∗ → Γ(U,OU )∗ induced by f.

Definition 2.13. A presheaf P on XE is a sheaf if it satisfies:

(S1) For every s ∈ P (U), if there is a covering (Ui → U)i∈I of U such that ∀i :

resUi,U (s) = 0 then s = 0.
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(S2) For every covering (Ui → U)i∈I and every family (si)i∈I ∈ (P (Ui))i∈I with

resUi⊗UUj ,Ui(si) = resUi⊗UUj ,Uj (sj) for all i, j

then there exists an s ∈ P (U) such that resUi,U (s) = si for all i.

In other words, a presheaf P is a sheaf if a section is determined (uniquely) by its

restriction to a covering, and a compatible family of sections on a covering always arises

from a global section. This means that the sequence

(S) : P (U)→
∏
i

P (Ui)⇒
∏
i,j

P (Ui ⊗U Uj)

is exact for all coverings (Ui → U).

Remark 2.14. If P is a sheaf then P (∅) = O.

In general, a sheaf of XZar is not a sheaf of Xét. In the next theorem, we will give a

criterion for a sheaf of Xét

Theorem 2.15. Let P be a presheaf for the étale (or flat site) on X. Then P is a sheaf

if and only if it satisfies the following two conditions:

(a) for any U in the category then the restriction of P to the usual Zariski topology

on U is a sheaf;

(b) for any covering (U ′ → U) with U and U ′ both affine, then

(S) : P (U)→ P (U ′)⇒ P (U ′ ⊗U U ′)

is exact.

Corollary 2.16. On the flat and étale topologies, both presheaves Ga and Gm are

sheaves.

Remark 2.17. The constant presheaf defined as above is not a sheaf in general. We

define the constant sheaf as follows: let X be a variety or a quasi-compact scheme, and

for any abelian group M , define FM (U) = Mπ0(U) - the product of copies of M indexed

by the set π0(U) of connected components of U. with the restriction map, it is a sheaf,

called the constant sheaf (associated to the constant presheaf) on Xét defined by M .

2.2.2 The category of (étale) sheaves of abelian groups

In this section, we study the category of sheaves of abelian groups on Xét. In particular,

we will show that this category is an abelian category with enough injective. We start



Chapter 2. Étale morphisms and Cohomology 19

with the notion of stalks. Let x be a point in a scheme X and k be a separably closed

field of residue field k(x). The embedding k(x) ↪→ k induces a morphism of schemes

x : Spec(k)→ X. An étale neighborhood of x is a commutative diagram:

Spec(k) U

X

étale

Then étale neighborhoods of a geometric point x form a filtered category. Recall that a

category J is filtered if the following holds:

• it is not empty,

• for every two objects j and j′ in J then there exist an object k and two arrows

j → k, j′ → k in J ,

• for every two arrows u, v : i→ j in J then there exists k and an arrow w : j → k

such that wu = wv.

A filtered colimit is a limit of a functor F : J → C.

Definition 2.18. Definition of stalks: Let F be a presheaf on Xét. We define its stalk

at the geometric point x to be the direct limit

Fx = lim−→F(U).

where U runs through all étale neighborhoods of x.

Remark 2.19. With the above notions, we have:

1. The functor P 7→ Fx from the category of presheaves of abelian group on Xét to

the category of abelian groups is an exact functor.

2. Let U → X be an étale morphism such that the image of U contains the point

x. Then there are many different ways to make U become an étale neighborhood

of x. So, in general, there is no (unique) canonical map P (U) → Fx. Of course,

once U has been given a structure of étale neighborhood of x, we will have the

canonical map P (U)→ px which we often write as s 7→ sx.

3. Since all separably closure of k(x) are isomorphic, Fx only depends on x. Hence,

Fx is also denoted by Fx.

Proposition 2.20. Let F be a sheaf on Xét. If s ∈ F(U) is non-zero, then there is an

x ∈ X and an étale neighborhood U of x such that sx is non-zero.
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Proof. key property: Let (Ai, φij) be a direct system of abelian groups over a direct

category I. Let φi : A = lim−→Ai → Ai be the canonical morphism. If a ∈ Ai such that

φi(a) = 0 then there exists i→ k arrow in I such that φik(x) = 0.

Proof of the proposition By contradiction, assume that for all x ∈ X and for all étale

neighborhood U of x, we always have that sx = 0. For every u ∈ U mapping to x ∈ X,

then k(x) → k(u) is finite separable extension (since U → X is étale ). So k(u) must

be contained in the separably closed field k of k(x). So the étale neighborhood U of x

induces from the embeddings: k(x) ↪→ k(u) ↪→ k. By the key property, we have that

∃Vu → U étale such that s|Vu = 0 for every u ∈ U . The family (Vu → U)u∈U is a étale

covering. By the definition of sheaf, we have that s = 0.

Since the category of sheaves of abelian groups on Xét is an additive category, we require

that a morphism of two sheaves is always an additive morphism of sheaves. A morphism

of sheaves (or presheaves) α : F → F ′ is said to be locally surjective if, for every U

and s ∈ F ′(U), there exists a covering (Ui → U) such that s|Ui is in the image of

F(Ui)→ F ′(Ui) for each i.

Lemma 2.21. Let α : F → F ′ be a morphism of sheaves on Xét. The following are

equivalent:

1. the sequence of sheaves F → F ′ → 0 is exact,

2. the map α is locally surjective,

3. for each geometric point x→ X, the map αx : Fx → F ′x is surjective.

Proof. We will prove that (2)⇒ (1)⇒ (3)

(2)⇒ (1) Let β : F ′ → H be a morphism of sheaves such that βoα = 0. We need to prove

that β = 0.

Let U → X be étale morphism and s ∈ F ′(U). Since α is locally surjective, there

exists a covering (Ui → U)i such that s|Ui is in the image of F(Ui)→ F ′(Ui). This

implies β(Ui)(s|Ui) = 0.

Moreover, the diagram:

F(Ui) F ′(Ui) H(Ui)

F(U) F ′(U) H(U)

-

?

-

? ?
- -

is commutative. So β(U)(s)|Ui = 0 for very i, hence β(U)(s) = 0.



Chapter 2. Étale morphisms and Cohomology 21

(1)⇒ (3) By contradiction, assume that αx is not surjective for some x ∈ X. Let Λ =

coker(Fx → F ′x). For U → X étale, we define a presheaf Λx(U) =
⊕

HomX(x,U)

Λ.

Then Λx is a sheaf and

Hom(G,Λx) ∼= Hom(Gx,Λ) for every sheaf G.

In particular, Hom(F ′,Λx) ∼= Hom(F ′x,Λ), so the coker morphism F ′x → Λ cor-

responds to a non-zero morphism β : F ′ → Λx. In the equivalence Hom(F ,Λx) ∼=
Hom(Fx,Λ), β ◦ α correspond to the morphism 0, so βoα = 0, but β 6= 0. Hence,

α is not surjective. (!!!)

(3)⇒ (2) Let U → X be étale, and let u→ U be a geometric point of U , then u→ U → X

is a geometric point of X. Let’s denote it by x. A étale neighborhood of u gives a

étale neighborhood of x.

V U X

u

- -

6

�
�
���

��
��

��
��*

Moreover, the étale neighborhood of x arising in this fashion are cofinal. Indeed,

let W be a neighborhood of x, then W ⊗X U is an étale neighborhood of u:

W ×X U U X

u

- -

6

�
�
�
�
��

��
��

�
��

�
��
�*

Therefore, Fu ∼= Fx for every sheaf F on Xét. Thus, the hypothesis implies that

Fu → F ′u is surjective for every geometric point u→ U of U.

Let s ∈ F ′(U), for each u ∈ U , we have u → U is a geometric point of U with

image u. Since Fu → F ′u is surjective, then there exists V → U étale whose image

contains u and which is such that s|V is in the image of F(V )→ F ′(V ) (We know

that Fu =
⊔
F(V )/ v where v is a certain relation, so if Fu → F ′u then there

exist tu 7→ sx, s ∈ F(W ), t ∈ F(E), let V = W ×U E). Apply this for all u ∈ U ,

we have that affine is locally surjective.

Proposition 2.22. Let

0→ F ′ → F → F ′′
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be a sequence of sheaves on Xét. The following are equivalent:

1. the sequence is exact in the category of sheaves;

2. the sequence:

0→ F ′(U)→ F(U)→ F ′′(U)

is exact for all étale U → X;

3. the sequence

0→ F ′x → Fx → F ′′x

is exact for every geometric point x→ X of X.

Proof. We know that direct limit is an exact functor in the category of abelian groups. So

we have that (2)⇒ (3). (3)⇒ (2) comes from the proposition 2.20. For the equivalence

between (1), and (2), we will prove (later) that the functor i : Sh(Xét )→ PreSh(Xét)

has a left adjoint a, - the associated sheaf functor, hence i is left exact.

From two previous propositions, we easily deduce the following

Proposition 2.23. Let

0→ F ′ → F → F ′′ → 0

be a sequence of sheaves on Xét. The following are equivalent:

1. the sequence is exact in the category of sheaves;

2. the map F → F ′′ is locally surjective and the sequence:

0→ F ′(U)→ F(U)→ F ′′(U)

is exact for all étale U → X;

3. the sequence

0→ F ′x → Fx → F ′′x → 0

is exact for every geometric point x→ X of X.

To finish the proof of proposition 2.22, we need to construct a functor associating a

presheaf to a sheaf which is exact. If so, we can define the kernel, cokernel, image,

coimage... of a morphism by taking the corresponding associated sheaf.

The sheaf associated with a presheaf
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Definition 2.24. Let P → aP be a morphism from a presheaf P to a sheaf; then

aP is said to be the sheaf associated with P (or to be the sheafification of P) if all

other morphism from P to a sheaf factor uniquely through P → aP, i.e. Hom(P,F) ∼=
Hom(aP,F) for all sheaves F , i.e. the functor a : PreSh(Xét ) → Sh(Xét) is the left

adjoint of the functor i : Sh(Xét )→ PreSh(Xét).

Clearly, aP endowed with the map P → aP, is unique up to isomorphism if it exists. In

the following, we will construct explicitly aP for a given presheaf P.

Lemma 2.25. (key lemma) Let P be a presheaf of abelian groups on Xét. If i :

Sh(Xét )→ PreSh(Xét) exists then the sections of P to have the same image in F(U)

are those that are locally equal, i.e. for all U → X étale and for all s1, s2 ∈ P(U) such

that i(s1) = i(s2) then s1 and s2 are locally equal, i.e. such s1, s2 satisfies s1|Ui = s2|Ui

for some covering (Ui → U)i∈I .

Proof. For each x ∈ X, let i : x → X be a geometric point of X. For any étale map

φ : U → X, we define

Λx(U) =
⊕

HomX(x,U)

Λ

where Λ is the constant sheaf of the abelian group Λ. Then it is easy to prove that Λx

is a sheaf and satisfies Hom(F ,Λx) ∼= Hom(Fx,Λ). For P a presheaf on Xét , define

P∗ =
∏
x∈X

(Px)x. Then P∗ is a sheaf and the natural map P → P∗ satisfies the condition

of lemma. Since P → P∗ can be factored through P → aP, we are done.

Lemma 2.26. Let i : P → F be a morphism from presheaf P to a sheaf F . Assume

that:

1. the only sections of P to have the same image in F(U) are those that are locally

equal,

2. i is locally surjective.

Then (F , i) is the sheaf associated with P.

Proof. Let i′ : P → F ′ be any morphism from P into a sheaf F ′. Let s ∈ F(U) with

U → X étale. We must construct an image of s in i′(P(U)).

Since i is locally surjective, ∃si ∈ P(Ui) such that i(si) = s|Ui for some covering (Ui →
U)i∈I of U. Because of (1), and property of sheaf F ′ then i′(si) ∈ F ′(Ui) is independent

of the choice of si, and moreover that the restrictions of i′(si) and i′(sj) to F ′(Ui⊗U Uj)
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agree. We define α(s) to be the unique element of F ′(U) that restricts to i′(si) for all i.

Then we have the commutative diagram:

P F

F ′

i

i′ ∃!α

Lemma 2.27. Let P be a subpresheaf of a sheaf F . For each U , let P ′(U) be the set

of s ∈ F(U) that are locally in P in the sense that there exists a covering (Ui → U)i∈I

such that s|Ui ∈ P(Ui) for each i, i.e.

P ′(U) = {s ∈ F(U)|∃a covering (Ui → U)i∈I s.t. s|Ui ∈ P(Ui)∀i ∈ I}.

Then P ′ is a subsheaf of F , and P → P ′ is locally surjective. We call P ′ the subsheaf

of F generated by P.

Proof. The locally surjective property of P → P ′ is clear from the definition of P ′(U).

It suffices to prove that P ′ is a sheaf. Let (Ui → U)i∈I be a covering of U → X étale,

we need to prove that the sequence

P ′(U) ↪→
∏
i

P ′(Ui)⇒
∏
i,j

P ′(Ui ⊗U Uj)

is exact. Since P ′ is a subpresheaf of F , it suffices to prove that

∀(si) ∈
∏
P ′(Ui) s.t si|Ui⊗UUj = sj |Ui⊗UUj then ∃s ∈ P ′(U) such that s|ui = si.

Because F is a sheaf then

∃s ∈ F(U) such that s|ui = si.

We need to prove that s ∈ P ′(U) Indeed, by definition of P ′, we know that there exists

a covering (Vij → Ui)j such that si|Vij ∈ P(Vij) for each i. So s|Vij = si|Vij ∈ P(Vij) and

(Vij → U) is an étale covering of U . Hence, s ∈ P ′(U).

Lemma 2.28. If i : P → F satisfies conditions (1) and (2) of lemma 3, then

ix : Px → Fx

is an isomorphism for all geometric points x of X.
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Proof. It suffices to prove that ix is injective and surjective for all geometric points

x of X.

• Fix a geometric point x of X, we will prove that

ix : Px → Fx

is injective.

Indeed, let sx in Px be such that ix(sx) = 0 where s ∈ P(U) for some étale

neighborhood U of x. Consider the diagram

P(U) F(U)

Px Fx

-i

? ?
-ix

This implies that i(s)x = 0, so there is V such that

V U X

x

-étale -

6

�
�
���

��
�
��

�
��*

commutes and i(s)|V = 0

Since i is locally equal (in the sense of lemma 2.25 ), there exists W such that

∃W V

x

-étale

6

�
�
�
��

commutes and s|W = 0. Hence sx = 0 or ix is injective.

• Similarly, we will prove that ix : Px → Fx is surjective.

Indeed, let tx ∈ Fx where t ∈ P(U) for some étale neighborhood U of x. Consider

the diagram

P(U) F(U)

Px Fx

-i

? ?
-ix
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Since i is locally surjective, there exists a covering (Ui → U)i such that tUi is in

the image of PUi → FUi . Consider the diagram

P(U) F(U)

P(Ui) F(Ui)

-i

? ?
-

⇒ ∃s ∈ P(U) : s|Ui = si

⇒ t|Ui = i(s|Ui) = i(s)|Ui

⇒ t|x = i(s)x = ix(sx).

This means that ix is surjective.

Theorem 2.29. For any presheaf P on Xét, there exists an associated sheaf i : P → aP.
Moreover, the map i induces isomorphisms Px → (aPx) on the stalks. The functor

a : PreSh(Xét )→ Sh(Xét) is exact.

Proof. Define the sheaf P∗ as in lemma 2.2.19 (key lemma). Then P∗ is a sheaf and

the natural map P → P∗ satisfies conditions (1) and (2) of lemma 3. Take aP to be the

subsheaf of P∗ generated by i(P). Then i : P → aP satisfies the conditions (1) and (2)

of Lemma 3. So i : P → aP is the sheafification of P.
For the second statement, let

P ′ → P → P ′′

is an exact sequence of abelian groups, then

P ′x → Px → P ′′x

is exact for all x ∈ X (because direct limit is an exact functor).

=⇒ (aP ′)x → (aP)x → (aP)′′x

is also an exact sequence. Which shows that

aP ′ → aP → aP ′′

is exact.
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Finally, by considering the sheafification of a presheaf we have that the category of

sheaves of abelian groups on Xét is abelian.

Theorem 2.30. Since the functor i : PreSh(Xét )→ Sh(Xét) is left exact, and its left

adjoint functor a : PreSh(Xét ) → Sh(Xét) is exact, the kernel (resp., cokernel, image

and co-image) of a morphism in the category of sheaf Sh(Xét) is the associated sheaves

of the kernel (resp., cokernel, image and co-image) of the morphism in the category of

presheaf PreSh(Xét). In particular, the map from the co-image of a morphism to its

image is an isomorphism because it is on stalks. Hence, the category of sheaves of abelian

groups Sh(Xét) is abelian.

Example 2.3. A group Λ defines a constant presheaf PΛ such that PΛ(U) = Λ for all

U 6= ∅. Then the sheaf associated with PΛ is FΛ defined by FΛ(U) = Λπ0(U) where π0(U)

is the number of connected components of U.

In the proof of the above theorems, we see that if (Fi)i∈I is a family of sheaves of abelian

groups on Xét. Then the presheaf defined by P(U) =
∏
i∈I
Fi(U) for all U → X étale and

the obvious restriction maps is a sheaf. Moreover, it is the product of (Fi)i∈I in the

category. But, in general, the presheaf defined by P(U) =
⊕
i∈I
Fi(U) is not a sheaf.

Direct and inverse images of sheaves

Direct images: Let π : Y → X be a morphism of schemes, and let P be a presheaf on

Yét. For U → X étale, define

π∗P(U) = P(U ⊗X Y ).

With the obvious restriction maps, π∗P becomes a presheaf on Xét. Moreover, we can

easily obtain that if we have the diagram of morphisms Z Y X-π -π
′

then

(π′ ◦ π)∗ = π′∗ ◦ π∗.

Lemma 2.31. If F is a sheaf then so also is π∗F . Moreover, since the functor π∗ :

PreSh(Yét ) → PreSh(Xét ) defined as above is exact, the functor π∗ : Sh(Yét ) →
Sh(Xét ) is left exact.

Proof. For a morphism V → X, we denote VY the fibre product V ⊗X Y over Y . Then

V → VY is a functor taking the étale maps to étale maps, sujective families of maps to

sujective families, and the fibre products over Y .

Let (Ui → U)i be a surjective family of étale maps in Xét. Then UiY → UY is a surjective

family of étale maps in Yét, and so

F(UY )→
∏
i

F(UiY )→
∏
i,j

F(UiY ⊗Y UjY )
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is exact. Hence,

(π∗F)(U)→
∏
i

(π∗F)(Ui)→
∏
i,j

(π∗F)(Ui ⊗X Uj)

is exact. This means that π∗F is a sheaf.

The functor the functor π∗ : PreSh(Yét )→ PreSh(Xét ) is exact by definition.

Let 0→ F ′ → F → F ′′ → 0 be an exact sequence of sheaf. Then

0→ F ′(UY )→ F(UY )→ F ′′(UY )

is exact for every U → X étale. Hence

0→ (π∗F ′)(U)→ (π∗F)(U)→ (π∗F ′′)(U)

is exact for every U . Hence,

0→ π∗F ′ → π∗F → π∗F ′′

is exact.

Proposition 2.32. [Mil80]

1. Let π : V ↪→ X be an open immersion,i.e. the inclusion of an open subscheme into

X. Then

(π∗F)x = Fx if x ∈ V

2. Let π : V ↪→ X be an open immersion,i.e. the inclusion of a closed subscheme into

X. Then

(π∗F)x =

{
Fx x ∈ V
0 x /∈ V

3. Let π : Y → X be a finite map. Then

(π∗F)x =
⊕
y 7→x
Fd(y)
x

where d(y) is the separable degree of k(y) over k(x). For example, if π is a finite

étale map of degree d of varieties over an algebraically closed field, then

(π∗F)x = Fd(y)
x

Corollary 2.33. The functor π∗ is exact if π is finite or closed immersion.
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Next, we will prove that there exists a left adjoint functor to the functor direct image,

and we call it inverse image functor

Inverse images: Again, let π : Y → X be a morphism of schemes on Xét. For V → Y

étale, define

P ′(V ) = lim−→P(U)

where the direct limit is over the commutative diagrams

V U

Y X

-

? ?
étale

-

It’s easy to prove that the category of such objects U and the morphism defined by the

étale morphism is a filtered category, and so, we can take the direct limit.

Moreover, since the universal property of the fibre product, one can see easily that, for

any presheaf Q on Yét, there are natural one-to-one correspondences between

• morphisms P ′ → Q,

• families of maps {P ′(V )→ Q(V )}V→Y étale indexed by V → Y étale,

• families of maps {lim−→P(U) → Q(V )}V→Y étale where the limit is taken over the

above commutative diagrams,

• families of maps {{P(U)→ Q(V )}U→X étale, commutative, compatible,}V→Y étale , where

the families P ′(U) → Q(V ) is indexed by commutative diagrams as above such

that they are compatible with restriction maps,

• families of maps {{P(U)→ Q(V )}V→Y étale, commutative, compatible}U→X étale , where

the families {P ′(U) → Q(V )}V→Y is indexed by commutative diagrams as above

such that they are compatible with restriction maps,

• {P(U)→ Q(U ⊗X Y )}U→X étale .

This means that there is natural one-to-one correspondences between

• morphisms P ′ → Q,

• morphisms P → π∗Q.

Thus,

HomYét
(P ′,Q) ∼= HomXét

(P, π∗Q),
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functorially in P and Q.
Unfortunately, P ′ need not be a sheaf even when P is. Therefore, for F a sheaf on Xét,

we define

π∗F = a(F ′) the associated sheaf of F ′.

Then, for any sheaf G on Yét, we have that

HomYét
(π∗F ,G) ∼= HomYét

(F ′, π∗G) ∼= HomXét
(F , π∗G).

This means that π∗ is a left adjoint to π∗ : Sh(Yét)→ Sh(Xét).

We know that for a diagram of morphisms Z Y X-π -π
′

then (π′ ◦ π)∗ =

π′∗ ◦ π∗. Since π∗ is a left adjoint to π∗, it is easy to prove that (π′ ◦ π)∗ = π∗ ◦ π′∗.

Example 2.4. Inverse images of étale constant sheaves are étale constant sheaves. That

means f∗(Λ) = Λ for every abelian group Λ.

We have proved some properties of exactness of some special functors. In the next

proposition, we will state again the exactness of some special functors. Moreover, in

category theory, we know that if a functor R admits an exact left adjoint then it preserves

injectives (if they exist).

Proposition 2.34. Let X be a scheme, and π : Y → X a morphism of schemes. Then

1. The functor i : Sh(Xét)→ PreSh(Xét) has a left adjoint functor a : PreSh(Xét)→
Sh(Xét), hence i is left exact and a is right exact. Moreover, the functor a :

PreSh(Xét)→ Sh(Xét) is exact. So, the functor i preserves injectives.

2. The functor π∗ : Sh(Yét) → Sh(Xét) has left adjoint functor π∗ : Sh(Xét) →
Sh(Yét), hence, π∗ is left exact, and π∗ is right exact. Moreover, the functor

π∗ : Sh(Xét)→ Sh(Yét) is exact. So, the functor π∗ preserves injectives.

3. Let j : U → X be an étale morphism, and F be a sheaf on Uét. For any φ : V → X

étale, define

F!(V ) =
⊕
α

F(V )

where the sum is over the morphism α : V → U such that j ◦ α = φ. Denote j!F
the sheaf associated with the presheaf F!.

Then the functor j! is a left adjoint to j∗ : Sh(Xét) → Sh(Uét). Moreover the

functor j! is exact; hence, j∗ is exact and preserves injectives.

Proof. The assertion (1) is proved in the previous propositions.

For (2), let i : x → X be a geometric point of X and F be any sheaf on Xét, then
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by definition (i∗F)(x) = aF ′(x) = F ′(x) = lim−→F(U) where the direct limit is over the

commutative diagrams:

x U

x X

-

? ?
étale

-

This means that the direct limit is over the étale neighborhood of x. So (i∗F)(x) = Fx.

Therefore, for any geometric point i : y → Y of Y , we have that

(π∗F)y = i∗(π∗F)(y) = Fx

where x is the geometric point y → Y → X of X.

Since this is true for all geometric point of Y , we see that π∗ is exact and therefore that

π∗ preserves injectives.

For (3), we need to prove that HomXét
(j!F ,G) ∼= HomUét

(F , j∗G). Indeed, by the defini-

tion of sheafification, we have HomXét
(j!F ,G) ∼= HomXét

(F!,G) and HomUét
(F , j∗G) ∼=

HomUét
(F ,G|U ). By the universal property of direct sum, there are one to one corre-

spondence between:

• morphisms ϕ : F! → G,

• families of maps {ϕ(V ) : F!(V )→ G(V )}V→X étale ,

• families of maps {ϕ(V ) :
⊕
α
F(V )→ G(V )}V→X étale , where the sum is taken over

all of α : V → U such that j ◦ α = V → X,

• families of maps {ϕ(V ) : F(V )→ G(V )}V→U→X étale ,

• families of maps {ϕ(V ) : F(V )→ G(V )}V→U étale ,

• ϕ : F → G|U .

To prove the second statement, it suffices to prove that

(j!F)x =

{
Fx if x ∈ j(U)

0 otherwise.

Indeed,

(j!F)x = lim−→(j!F(V )) = lim−→
⊕
α

F(V ) =
⊕
α

lim−→F(V ) =
⊕
x∈j(U)

Fx =

{
Fx if x ∈ j(U)

0 otherwise.
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Remark 2.35. In particular, if ϕ : U ↪→ X is an open immersion, then j!F is the

associated sheaf of the presheaf

F!(V ) =

{
F(V ) if ϕ(V ) ⊂ U
0 otherwise.

Theorem 2.36. Let X be a scheme, then every sheaf F on Sh(Xét) can be embedded

into an injective sheaf.

Proof. For each point x ∈ X, choose a geometric point ix : x→ X with image x . Since

the category of abelian groups has enough injective, we can choose an injective group

I(x) such that Fx ↪→ I(x). Since ix∗ preserves injectives, Ix := ix∗(I(x)) is injective.

On the other hand, a product of injective objects is injective, so I :=
∏
Ix will be an

injective sheaf. Let F∗ =
∏
x∈X

(Fx)x be the sheaf defined as before, then we have the

canonical embedding

F ↪→ F∗ ↪→ I.

(the second canonical embedding comes from the fact that πx∗ is left exact). This proves

the theorem.

Theorem 2.37. Some important exact sequences of sheaves:

1. Let j : U ↪→ X be an open immersion, Z be the complement of U in X and

denote the inclusion Z ↪→ X by i. Let F be any sheaf on Xét, there is a canonical

morphism j!j
∗F → F , corresponding by adjointness to the identity map on j∗F

and a canonical morphism F → i∗i
∗F , corresponding by adjointness to the identity

map on i∗F . Then the sequence

0→ j!j
∗F → F → i∗i

∗F → 0

is exact.

2. (Kummer sequence) Let n be an integer that is not divisible by the characteristic

of any residue field of X (if so, we say that n is invertible in X.) For example,

if X is a variety over a field k of characteristic p 6= 0, then we require that p not

divide n. Then the sequence of sheaves:

0 µn Gm Gm 0- - -t7→tn -

is exact.
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Proof. 1. It suffices to prove the exact sequences on stalks. For x ∈ U , the sequence

of stalks is

0 Fx Fx 0 0- -id - - ,

and for x /∈ U , the sequence of stalks is

0 0 Fx Fx 0- - -id - .

Both are exact.

2. Firstly, I remark that n is invertible in X if and only if n is invertible in OX(X).

Indeed, by the property of sheaf, it suffices to prove the statement for X = Spec(A)

affine. From the assumption, we have n /∈ pAp for allp ⊂ A prime ⇒ n 6 inp∀p ⇒
n is invertible in A. The converse is clear.

For the proof of exactness of the Kummer sequence, it is easy to see that

0 µn Gm Gm- - -t7→tn

is exact. So, it suffices to prove that Gm Gm O-t7→tn - is exact. We will

prove that the morphism t 7→ tn is locally surjective.

Let U → X étale, a ∈ Gm(U) = OU (U)×. Assume that U =
⋃
i∈I

Spec(Ai). Let

Ui = Spec
(
Ai[T ]/(Tn − a|Spec(Ai))

)
,

Since n is invertible inX, n is also invertible in U (hence, in Ai), then Tn−a is sepa-

rable. Therefore, (Ui → U)i∈I is an étale covering of U. The map Gm Gm-t7→tn

becomes

Spec
(
Ai[T ]/(Tn − a|Spec(Ai))

)
Spec

(
Ai[T ]/(Tn − a|Spec(Ai))

)
-t7→tn

And so a|Spec(Ai) is in the image of the map t 7→ tn above.

Remark 2.38. 1. If ϕ : j!j
∗F → F is the canonical morphism corresponding by ad-

jointness to the identity map on j∗F then, for every x ∈ U , for every étale neighbor-

hood V of x, we can choose V small such that V → X factors through U . And so,

the mapping ϕx = idx. And similarly, let f : X → Y be a morphism of scheme and

α : f∗f∗F → F ∈ HomXét
(f∗f∗F ,F) corresponding by adjointness to the identity

map f∗F → f∗F then for every x ∈ X such that OY,f(x)/mf(x) → OX,x/mx is a

separable extension (hence, the geometric point x → X is also a geometric point

of Y ), we have αx = idx. Similarly, if β : F → f∗f
∗F is the canonical morphism
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corresponding to the identity f∗F → f∗F then for every y ∈ Y such that y → Y

factors through X then βy = idy.

2. In fact, to define j! and have the exact sequence, we don’t need U ↪→ X open

immersion, we just need U → X étale, and so we can take Z = X\j(U). Moreover,

in the situation of the exact sequence, we only need that j satisfies the following

condition: if ϕ = j ◦ α is étale then α is étale. Hence, we only need to assume j

is unramified, and the stalk doesn’t change (note that an unramified morphism is

not an open map, in general, so we must change the situation of Z in the exact

sequence).

2.3 Étale Cohomology

In the last section, we showed that the category of sheaves of abelian groups Sh(Xét) is

an abelian category with enough injectives.

The functor of global section

Γ(X,−) : Sh(Xét)→ Ab

is left exact, and so we can define Hr(Xét,−) to be its r-th right derived functor. Ex-

plicitly, for a sheaf F , choose an injective resolution

0→ F → I0 → I1 → I2 → · · · ,

and apply the functor Γ(X,−) to obtain a complex

0→ Γ(X, I0)→ Γ(X, I1)→ Γ(X, I2)→ · · ·

This is no longer exact in general, and Hr(Xét,−) is defined to be its r-th cohomology

group.

The theory of derived functors shows that:

• for any sheaf F , then H0(Xét,F) ∼= Γ(X,F),

• if I is injective, then Hr(Xét, I) = 0 for every r > 0,

• a short exact sequence of sheaves

0→ F ′ → F → F ′′ → 0
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gives rise to long exact sequence

0→ H0(Xét,F ′)→ H0(Xét,F)→ H0(Xét,F ′′)→ H1(Xét,F ′)→ · · · ,

and the association of the long exact sequence with the short exact sequence is

functorial.

Remark 2.39. The functors Hr(Xét,−) are uniquely determined (up to a unique isomor-

phism) by above properties (universal property of derived functors).

Example 2.5. Some basic examples of étale cohomology.

1. Let ϕ : U → X be an étale morphism. Then ϕ∗ : Sh(Xét)→ Sh(Uét) is exact and

preserves injectives (propsition 2.2.22). Moreover ϕ∗ is just the restriction, we see

that the composite

Sh(Xét) Sh(Uét) Ab-ϕ
∗

-
Γ(U,−)

is Γ(U,−). So the right derived functors of F → F(U) : Sh(Xét) → Ab are F →
Hr(Uét,F|U ). We often denote Hr(Uét,F|U ) by Hr(Uét,F).

2. Let ϕ : Y → X be a morphism. We know that ϕ∗ is exact, and therefore a short

exact sequence

0→ F ′ → F → F ′′ → 0

of sheaves on X gives rise to a long exact sequence

0→ H0(Yét, ϕ
∗F ′)→ · · · →→ Hr(Yét, ϕ

∗F ′)→ H0(Yét, ϕ
∗F)→ H0(Yét, ϕ

∗F ′′)→ · · ·

of cohomology groups.

By the universal property of derived functors, the natural map H0(Xét,F) →
H0(Yét, ϕ

∗F) extends uniquely to a family of natural maps Hr(Xét,F)→ Hr(Yét, ϕ
∗F)

compatible with the boundary maps.

3. (Cohomology of a geometric point) Let x be a geometric point of X then Hr(x,F) =

0 for r > 0

4. For a fixed sheaf F0, the functor F 7→ HomX(F0,F) is left exact, and we denote its

r−th right derived functor by Extr(F0,−). Because HomX(F0,−) is functorial in

F0, so also is ExtrX(F0,−). In particular, if Z is denoted the constant sheaf on X.

Then for any sheaf F on X, the map α 7→ α(1) is an isomorphism HomX(Z,F)→
F(X). Thus HomX(Z,−) ∼= Γ(X,−), and so ExtrX(Z,−) ∼= Hr(Xét,−). Beside
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the normal long exact sequence of cohomology, we also have that: a short exact

sequence

0→ F ′0 → F0 → F ′′0 → 0

of sheaves on Xétgives rise to a long exact sequence

· · · → ExtrX(F ′′0 ,F)→ ExtrX(F0,F)→ ExtrX(F ′0,F)→ · · ·

for any sheaf F .

5. Let Z be a closed subscheme of X, and let U = X \ Z. For any sheaf F on Xét ,

define

ΓZ(X,F) = Ker
(
Γ(X,F)→ Γ(U,F)

)
.

Then the functor F 7→ ΓZ(X,F) is obviously left exact, and we denote its r − th
right derived functor by Hr

Z(X,−) (cohomology of F with support on Z). Then

for any sheaf F on Xétand closed Z ↪→ X, there is a long exact sequence

· · · → Hr
Z(X,F)→ Hr(X,F)→ Hr(U,F)→ Hr+1

Z (X,F)→ · · ·

And the sequence is functorial in the pair (X,X \ Z) and F .

Next, we would like to compute the cohomology Hr(Xét, µn). For this, by Kummer

sequence, it suffices to compute the cohomology Hr(Xét, Gm). Let X be an integral

and quasi-compact scheme (hence, U → X étale implies U integral and quasi-compact),

g : Spec(K) ↪→ x be the inclusion of the generic point. Denote Gm,K the sheaf Gm on

Spec(K)étale, i.e. Gm,K(U) = Γ(OU , U)× for every U → Spec(K) étale.

Claim: For U → X étale, then g∗Gm,K(U) = Γ(U ⊗X Spec(K), Gm) = k(U)× where

k(U) is the rational field of U.

For every U → X étale, we define morphism

ϕ(U) : Gm(U)→ g∗Gm,K(U)

as the injective morphism OU (U) ↪→ k(U)×. Then we obtain an injective morphism of

sheaves: ϕ : Gm → g∗Gm,K .

Assume in addition, X is regular. We can define the Weil divisor sheaf as follows: let X1

be the set of points x in X of codimension 1 (i.e. codimension of {x} is 1, equivalently,

OX,x has dimension 1, hence OX,x is a discrete valuation ring). The sheaf DivX of Weil

divisors on Xétis defined as the sum of direct image of constant sheaves on {x}:

DivX =
⊕
x∈X1

ix∗Z,
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where ix : {x} ↪→ X the closed immersion. Remark that this sheaf is the associated sheaf

of the presheaf defined by
⊕
x∈X1

(ix,∗Z(U)), more precisely, DivX(U) is the free abelian

group generated by prime divisors of U (a prime divisors of U is a closed integral

subscheme Z of codimension 1).

Moreover, we have the following 1-1 correspondence:

{X1 = set of points x ∈ X of codimension 1} {prime divisors of X}- .

This correspondence comes from the correspondence between a closed integral subscheme

and its generic point.

Similarly, for every non-empty ϕ : U → X étale, a prime divisor Z of X is said to meet

U if intersection of Z and image of U is non-empty. Then the map Z → ϕ−1(Z) define

a bijection:

{set of prime divisors of X meeting U} {set of prime divisors of U}-

where the inverse map sends a prime divisor of U to closure of ϕ(U).

If U is an open affine subscheme of X, with Γ(U,OX) = A say, then the map p→ V (p)

is a bijection:

{set of prime ideals of A of height one} {set of prime divisors of U}-

where the inverse map sends a prime divisor Z of U to the ideal I(Z).

In particular, every prime divisor Z on X defines a discrete valuation ordZ on K, namely,

that corresponding the ideal I(Z) ⊂ Γ(U,OU ) where U is an open affine meeting Z.

So, for if f ∈ k(U)× we can associate a map f →
∑
ordZ(f) where the sum is taken

over all prime divisors of U. From a well-know result, we know that there are only finite

prime divisors Z of U such that ordZ(f) 6= 0, hence
∑
ordZ(f) ∈ DivX(U).

Theorem 2.40. Then the sequence of sheaves

0→ Gm → g∗Gm,K → DivX → 0

is exact.

Proof. It suffices to prove that for every x ∈ X, the corresponding sequence of stalks

at the geometric point x is exact. Since X is regular (hence, U → X étale implies U

regular), we have that the sequence

0→ OX,x → Frac(OX,x)→
⊕

ht(p)=1

Z→ 0
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where the sum is taken over all prime ideal of OX,x of height 1. So, it suffices to calculus

the stalks of all sheaves in the sequence at any geometric point y ∈ X.

• The stalk of Gm at y is OX,y := lim−→OU (U) where the direct limit is taken over all

étale neighborhood of y.

• The stalk of g∗Gm,K at y is
(
FracOX,y

)×
. Indeed,

(g∗Gm,K)y = lim−→Gm(U ⊗X {y}) = lim−→k(U)× = lim−→
(
FracOU (U)

)×
=
(
Frac

(
lim−→OU (U)

))×
=
(
FracOX,y

)×
.

• The stalk of DivX at y: Since ix : {x} ↪→ X is a closed immersion,

DivX,y =
∑
x∈X1

(
ix,∗Z

)
y

=
∑

x∈X1:y∈{x}

Z.

Let Spec(A) ⊂ X be an open neighborhood of y, then from the third correspon-

dence, we have that

{x ∈ X1 : y ∈ {x}} {p ⊂ OX,y : ht(p) = 1}- .

Hence, DivX,y =
⊕

ht(p)=1

Z.

2.3.1 Cohomology of curves

In this subsection, we will compute explicitly some cohomology groups of curves. More

precisely, we will compute Hr(Xét, Gn) and Hr(Xét, µn).

Theorem 2.41. For a connected nonsingular curve X over an algebraically closed field,

Hr(Xét, Gm) =


Γ(X,O×X) if r = 0

Pic(X) if r = 1

0 if r ≥ 2.
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Theorem 2.42. Let X be a complete connected nonsingular curve over an algebraically

closed field k. For any n prime to the characteristic of k, we have

Hr(Xét, µn) =


µn(k) if r = 0

(Z/nZ)2g if r = 1

Z/nZ if r = 2

0 if r > 2.

where g is the genus of X.

By considering the long exact sequence of Kummer sequence, and use the first theorem,

we can easily prove the second theorem from the following lemma

Lemma 2.43. Let X be a complete connected nonsingular curve over an algebraically

closed field k. Then the sequence

0→ Pic0(X)→ Pic(X)→ Z→ 0

is exact where the morphism Pic(X) → Z is the degree morphism and Pic0(X) is the

quotient of the group of divisors of degree 0 Div0(X) by the subgroup of principal divisors.

Moreover, for any integer n relatively prime to the characteristic of k, then the morphism

Pic0(X)→ Pic0(X)

defined by z 7→ nz is surjective such that its kernel equals to a free Z/nZ-module of rank

2g with g genus of X.

Proof. The first point of the lemma is easy. The proof of the second statement is more

difficult. And so, we just consider an easy case g = 1 (i.e. elliptic curve over C). For

this, let E be an elliptic curve over C then Pic0(X) ∼= E ∼= C/L where L is the lattice

corresponding to E. So, the kernel is isomorphic to

1

n
L/L ∼= Z/nZ.

For an arbitrary algebraic closed field, the proof is similar (see [Mil80]).

For curve, we only need the second theorem, but for general variety of dimension d, we

also have that Hr(Xét,∆) = 0 for every r ≥ 2d and ∆ the constant sheaf. (see [Mil80]).
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2.3.2 l-adic Cohomology

In the previous section, we have computed the cohomology of Z/lnZ. However, it will

be important for us to consider

H1(Xét,Zl) := lim←−H
1(Xét,Z/lnZ).

Definition 2.44. A sheaf of Zl - modules onX (or an l-adic sheaf) is a family (Mn, fn+1 :

Mn+1 →Mn) such that

(a) for each n, Mn is a constructible sheaf of Z/lnZ - modules,

(b) for each n, the map fn+1 :Mn+1 →Mn induces an isomorphismMn+1/l
nMn+1 →

Mn whereMn+1/l
nMn+1 is the sheafification of the presheaf defined byMn+1/l

nMn+1(U) =

Mn+1(U)/lnMn+1(U). Remark that Mn+1/l
nMn+1 =Mn+1 ⊗ Z/lnZ.

Let (Mn, fn)n∈N be a sheaf of Zl- modules on X. By induction, we obtain a canonical

isomorphism Mn+s/l
nMn+s

∼=Mn.

On the other hand, we have a sequence of constant sheaves:

0 Z/lsZ Z/ln+sZ Z/lnZ 0- -l
n

- -

(it is exact since the correspondent sequence of stalks is exact). On tensoring this

sequence with Mn+s, we obtain a sequence:

0 Ms Mn+s Mn 0- -l
n

- -

We say thatM is flat if this sequence is exact for all n and s. Remark that by definition

of associated sheaf, we imply that the morphism ln is the scalar multiplication with ln

for every U → X étale.

For a sheafM = (Mn) of Zl-modules, we have a canonical morphism Hr(Xét,Mn+1)→
Hr(Xét,Mn) induced by the morphismm fn+1. So, we can define the l-adic cohomology

by

Hr(Xét,M) = lim←−H
r(Xét,Mn).

For example, if we let Zldenote the sheaf of Zl-modules with Mn the constant sheaf

Z/lnZ and the obvious fn, then

Hr(Xét,Zl) = lim←−H
r(Xét,Z/lnZ).

In module theory, we know that to give a finitely generated Zl-module M is the same as

to give a family (Mn, fn+1 : Mn+1 →Mn)n∈N such that
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(a) for all n, Mn is a finite Z/lnZ- module,

(b) for all n, the map fn+1 : Mn+1 → Mn induces an isomorphism Mn+1/l
nMn+1 →

Mn

We recall the finiteness theorem

Theorem 2.45. Let X be a variety over a separably closed field k, and let F be a

constructible sheaf on Xét. The groups Hr(Xét,F) are finite in each of the following two

cases:

(a) X is complete, or

(b) F has no p-torsion, where p is the characteristic of k.

Hence, we can prove that the l − adic cohomology is a finitely generated Zl-module.

Theorem 2.46. Let M = (Mn) be a flat sheaf of Zl-modules on a variety X over a

field k. Assume k is separably closed, and that either X is complete of that l 6= char(k).

Then each Hr(Xét,M) is finitely generated, and there is an exact sequence of cohomology

groups

· · · → Hr(Xét,M)→ Hr(Xét,M)→ Hr(Xét,Mn)→ Hr+1(Xét,M)→ · · ·

Proof. For each s ≥ 0, we ge an exact sequence

0→Mn →Mn+s →Mn → 0.

These are compatible in the sense that

0 Ms+1 Mn+s+1 Mn 0

0 Ms Mn+s Mn 0

- -ln

?

-

?

-

?
id

- -ln - -

commutes. On forming the cohomology sequence for each n and passing to the inverse

limit over all n, we obtain an exact sequence

· · · → Hr(M)→ Hr(M)→ Hr(Mn)→ Hr+1(M)→ · · ·

where the first morphism is the ln morphism.

This gives an exact sequence

0→ Hr(M)/lnHr(M)→ Hr(Mn)→ Hr+1(M)ln → 0.
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Since Hr(M) is an inverse limit of finite groups killed by some ln, lim←−H
r+1(M)ln = 0,

hence

lim←−H
r(M)/lnHr(M) ∼= Hr(M).

Therefore, Hr(M) is finitely generated as Zl - module.

Sheaves of Ql-modules

A sheaf of Ql-vector spaces is just a Zl-sheaf M = (Mn), except that we define

Hr(Xét,M) =
(
lim←−H

r(Xét,Mn)
)
⊗Zl

Ql.

For example,

Hr(Xét,Ql) =
(
lim←−H

r(Xét,Z/lnZ)
)
⊗Zl

Ql = Hr(Xét,Zl)⊗Zl
Ql.

By the previous theorem, we have that Hr(Xét,M) is a Ql-vector spaces of finite di-

mension.

2.3.3 Action of a morphism on cohomology

Let f : X → Y be a morphism of schemes. Then it induces the direct image f∗ :

Sh(Xét) −→ Sh(Yét) and inverse image f∗ : Sh(Yét) −→ Sh(Xét) where f∗(F)(U) =

F(U ×Y X) for every U → X étale, F sheaf on Xét, and f∗(F) is the associated sheaf

of presheaf U 7→ −→F (V ) defined in the previous chapter.

Proposition 2.47. Let f : X → Y be a morphism of schemes. Then for any sheaf F
on Y , we get a natural map

f• : H•(Y,F)→ H•(X, f∗F).

Proof. Choose an injective resolution 0→ F → I• of F . Applying the functor f∗, which

is exact, we obtain a resolution (not necessary injective) of f∗F . Let 0→ f∗F → j• be

an injective resolution of f∗F , then we have the diagram

0 f∗F f∗I•

0 f∗F J •

- -

?

id

?
- -

By the definition of f∗, we induce morphisms

Γ(Y, I•)→ Γ(X, f∗I•)→ Γ(X,J •)
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which give rise to the desired map in cohomology.

Remark 2.48. 1. Similarly, if F is a sheaf of X there is a map

H•(Y, f∗F)→ H•(X,F)

obtained as the composition

H•(Y, f∗F)→ H•(X, f∗f∗F)→ H•(X,F)

where the second map comes from the adjunction map f∗f∗F → F .

2. If f : X → Y is a morphism of schemes and Λ is a constant sheaf, since f∗Λ = Λ,

we get a map

f• : H•(Yét,Λ)→ H•(Xét,Λ)

in cohomology. In particular, if Λ = Z/lnZ, we obtain a compatible families of

maps

f• : H•(Yét,Z/lnZ)→ H•(Xét,Z/lnZ).

They induce a map of l − adic cohomology

f• : H•(Yét,Ql)→ H•(Xét,Ql)

2.4 Frobenius morphism and Lefschetz formula in étale

cohomology

In this section, I will discuss some more or less related issues revolving around the

main idea relating (étale) cohomology via the Lefschetz trace formula, studying the zeta

and L-function amounts to studying the representation of the Frobenius on morphism

cohomology. Let’s start by studying the Frobenius morphism in some generality.

2.4.1 The Frobeniuses on X

Definition 2.49. A scheme X is said to be of characteristic p if pOX = O.

Of course, a non-trivial scheme cannot have two distinct prime characteristics. Remark

that saying that X is of characteristic p is the same thing as saying that it may be

viewed as a scheme over Fp.
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Definition 2.50. Let X be a scheme of characteristic p. We define the (absolute)

Frobenius endomorphism of X

FX/Fp : X −→ X

as the morphism which is the identity on the underlying topological space |X| and the

pth-power map onOX . (we also can drop the Fp from the notation of Frobenius morphism

when this causes no ambiguity)

Remark 2.51. Let’s keep the notations as the above definition.

1. The morphism defined in the definition is really a morphism of sheaves of rings

since pOX = 0.

2. If X is a scheme over Fq , where q = pn, then it may also be viewed as a scheme

over Fp , so it has a Frobenius morphism FX/Fp and FX/Fq (or FnX) (which raises

functions to the qth-power) is a morphism of X as a scheme over Fq .

3. The Frobenius morphism behaves functionally, in the sense that for each morphism

Y → X (which automatically makes Y into a scheme over Fp provided X is one),

the following diagram commutes:

Y X

X X

-FY

? ?
-

FX

In order to simplify the notation, let k denote the field Fq of q elements and fix an

algebraic closure k ↪→ k of k. If X is a scheme over k, we can extend the scalars to get

a scheme X over k,

X := X ×k k.

It appears that on X, there coexists four different Frobenius morphisms:

1. The absolute Frobenius morphism

F = FX : X −→ X

which we discussed in the previous section.

2. The relative Frobenius morphism

Fr := FX ×k 1k

obtained by base change of the Frobenius morphism of X (it is also sometimes

called the k-linear Frobenius morphism of X).
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3. The arithmetic Frobenius morphism

Fa := 1X ×k FSpeck

obtained by base change the Frobenius morphism of Speck.

4. The geometrical Frobenius morphism

Fg := 1X ×k F−1
Speck

which is the inverse of the arithmetical Frobenius morphism.

Example 2.6. In the case X = Spec(A) where A = k[t1, t2, · · · , tn] is a finitely gener-

ated k -algebra, then

X = Spec(k ⊗k A) = Spec(k[t1, · · · , tn]).

Then on an element of k[t1, · · · , tn], which is a polynomial in the ti’s with coefficient in

k:

1. The relative Frobenius morphism Fr corresponds to raising the ti’s to the power of

p.

2. The arithmetical Frobenius morphism Fa corresponds to raising the coefficients to

the power of p.

3. The geometrical Frobenius morphism Fg corresponds to taking pth roots of the

coefficients.

4. The absolute Frobenius morphism F corresponds to raising both the ti’s and the

coefficients to the power of p, which is the same thing as raising the element to the

power of p.

Remark 2.52. 1. By universal property of base change, we have F = Fr◦Fa = Fa◦Fr.

2. Since F is the identity on |X|, the continuous maps Fr, Fa induce on the étale site

of X are inverse one to the other. This means that Fr is an homeomorphism of

X ét with inverse Fa, i.e. the relative Frobenius Fr and the geometrical Frobenius

Fg = F−1
a induce the same continuous function

F : X ét −→ X ét

which we may call the geometrical Frobenius correspondence on X ét.



Chapter 2. Étale morphisms and Cohomology 46

3. Since the continuous map F : Xét → Xét induced by the absolute Frobenius

morphism F : X → X is identity, the relative Frobenius morphism and arithmetic

Frobenius morphism induce the same map in cohomology.

2.4.2 The Lefschetz trace formula

One of the most important results in étale cohomology is the so called Lefschetz trace

formula (or Lefschetz fixed point formula). With this formula applying to Frobenius

morphism we can give a formula for the number of rational points of a variety. So, it is

very important tool to prove the Weil conjectures.

Theorem 2.53. Let X be a complete nonsingular variety over an algebraically closed

field k, and let f : X → X be a morphism of schemes which a linear morphism f• :

H•(Xét,Ql)→ H•(Xét,Ql) of Ql-vector spaces, then

(Γf �∆) =
∑
r

(−1)rTr(f |Hr(X,Ql))

where Γf is the graph of f , and ∆ is the diagonal in X×X. Thus (Γf �∆) is the number

of fixed points of f counted with multiplicities.

Let consider a very basic example.

Example 2.7. (Lefschetz trace formula for 0-dimensional scheme)

Let X be a scheme of dimension 0. We know that Hr(Xét,Λ) = 0 for every r > 0

and H0(Xét,Λ) = Λπ0(X) where π0(X) is the set of its connected components. The

morphism f induces the linear morphism f0 : H0(Xét,Λ) → H0(Xét,Λ) where π0(f) :

π0(X)→ π0(X) sends the connected component of a point x to the connected component

of f(x). So its trace is the number of connected components stabilized by f , i.e. the

number of fixed points of π0(f) : π0(X) → π0(X). In particular, the trace of f0 :

H0(X,Ql) → H0(X,Ql) is the number of connected components of X stabilized by f

(since trace(f ⊗g) = trace(f) · trace(g)). On the other hand, because X is of dimension

0, we have the connected components of X are just its points, so that Number of fixed

points of f L(f,X) is the number of fixed points of π0(f) and so

L(f,X) = Tr(f0|H0(X,Ql)).

We obtain the Lefschetz fixed point formula for 0-dimensional scheme (remark that in

this case every fixed point of f has multiplicity 1).
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Zeta functions and L-functions

according to Grothendieck

In this chapter, I would like to define the zeta functions and L - functions of any varieties,

for instance, curves over finite fields. By using the Lefschetz fixed point formula, we are

able to prove the rationality of the functions. In some examples, we will also discuss a

little bit about the Riemann hypothesis.

3.1 Zeta functions and Weil conjectures

Suppose that X is a variety over a finite field k = Fq. For every m ≥ 1, let Nm =

|X(Fqm)| be the number of points on X with coordinates in Fqm , i.e. the cardinality of

X(Fqm) := HomSpec k(SpecFqm , X)

=
⊔
x∈X

Homk−alg(k(x),Fqm) =
⊔

deg(x)|m

Homk−alg(k(x),Fqm).

It is also equal to the number of points of X ×k Fqm of degree 1. We define the (Hasse-

Weil) zeta function of X to be

Z(X, t) = exp
(∑
m≥1

Nm
tm

m

)
:= 1 +

∑
m≥1

Nm
tm

m
+

1

2!

(∑
m≥1

Nm
tm

m

)2
+ · · · ∈ Q[[t]].

Note that
d

dt
logZ(X, t) =

∑
m≥1

Nmt
m−1

Remark 3.1. If X is a scheme over SpecZ, then for any prime number p, we are able

to compute the zeta function Z(Xp, t) of Xp := X ×Z SpecFp as a scheme over Fp and

47
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then multiply them all together to obtain

ζ(X, s) =
∏
p

Z(Xp, p
−s)

- the global zeta function of X.

3.1.1 The statements of the Weil conjectures

Suppose that X is a smooth, geometrically connected, projective variety of dimension n

over a finite field k = Fq.

Conjecture 3.2. (Rationality). Z(X, t) is a rational function, i.e. it lies in Q(t).

Conjecture 3.3. (Functional equation). If E = (∆ • ∆) is the self-intersection of the

diagonal ∆ ↪→ X ×X, then

Z(X,
1

qnt
) = ±qnE/2tEZ(X, t).

Especially, if X is a curve of genus g then

Z(X,
1

qt
) = q1−gt2−2gZ(X, t).

Conjecture 3.4. (Analogue of the Riemann hypothesis). One can write

Z(X, t) =
P1(t) · P3(t) · · ·P2n−1(t)

P0(t) · P2(t) · · ·P2n(t)

with P0(t) = 1− t, P2n(t) = 1−qnt and for 1 ≤ i ≤ 2n−1, we have Pi(t) ∈ Z[t] : Pi(t) =∏
j

(1−αijt) with αij algebraic integers satisfying |αij | = qi/2. Especially, if X is a curve

of genus g then

Z(X, t) =
P (t)

(1− t)(1− qt)

where P (t) is a polynomial satisfying that

P (t) =

2g∏
i=0

(1− αit)

with |αi| = q
1
2 .

Example 3.1. Since, Pn(Fqr) = qrn + qr(n−1) + · · · + qr + 1, the zeta function of the

projective space is

Z(Pnk , t) = exp
(∑
r≥1

T r

r

n∑
j=0

qrj
)

=
1

(1− t)(1− qt) · · · (1− qnt)
.
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3.1.2 Some properties of the zeta functions

Theorem 3.5. The zeta function

Z(X, t) = exp
(∑
m≥1

Nm
tm

m

)
:= 1 +

∑
m≥1

Nm
tm

m
+

1

2!

(∑
m≥1

Nm
tm

m

)2
+ · · ·

converges for |t| < q−dimX .

Proof. First, assume that X = SpecFq[T1, T2, · · · , Tr] to be the spectrum of a polyno-

mial ring. By the definition of the zeta function, we have

logZ(X, t) =
∞∑
m=1

Nmt
m

m
.

Since Nm = |X(Fqm)| is the number of points in X with coordinates in Fqm , Nm ≤ qdimX .

If |t| < q−dimX , there exists ε > 0 such that |t| ≤ q−dimXqε

⇒
∣∣Nmt

m

m

∣∣ ≤ qεm

m
≤ 1

mqεm

⇒ Z(X, t) converges since
∞∑
m=1

. For the general case, we will reduce to the first case by

the following lemma.

Lemma 3.6. Let X be the finite union of subschemes Xi. If the theorem holds for all

Xi then so it does for X. Moreover, if f : X → Y is finite and the theorem is valid for

Y then it is valid for X.

Proof. Indeed, by the definition of X(K) we have that |X(K)| ≤
∑

finite

Xi(K). Since

logZ(X, t) =
∞∑
m=1

Nmt
m

m

and dim(X) ≥ dim(Xi) for every i, we obtain the first statement. For the second, we

remark that a finite morphism is a closed map of underlying topological spaces.

Proposition 3.7. For every variety X over Fq, we have

Z(X, t) =
∏
x∈Xcl

(
1− tdeg(x)

)−1
.

Proof. By definition,

log(1 + t) =
∑
m≥1

(−1)m+1tm

m
,
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so

log(1− tdeg(x)) = −
∑
m≥1

tmdeg(x)

m
.

Hence,

log
( ∏
x∈Xcl

(
1− tdeg(x)

)−1)
=
∑
x∈xcl

∑
m≥1

tmdeg(x)

m
=
∑
m≥1

∑
deg(x)|m

deg(x)tm

m
.

To prove the above proposition, it suffices to prove the following lemma.

Lemma 3.8. If X is a variety over the finite field Fq, then

X(Fqm) =
∑
e|r

e · |{x ∈ Xcl : deg(x) = e}|.

Proof.

X(Fqm) =
⊔

deg(x)|m

HomFq−alg(Fq(x),Fqm).

If deg(x) = e|m, then G(Fq(x),Fq) ∼= Z/eZ and G(Fqm ,Fq) are Galois. So Fq(x) = Fq(α)

where α is a root of an minimal irreducible polynomial in Fq[T ] of degree e. Since the

extensions are separable,

X(Fqm) =
∑

deg(x)|m

deg(x) =
∑
e|r

e · |{x ∈ Xcl : deg(x) = e}|.

Corollary 3.9. If X is a disjoint union (which may be infinite) of subschemes Xi, then

Z(X, t) =
∏
i

Z(Xi, t).

3.1.3 Rationality

Theorem 3.10. For any complete nonsingular variety X of dimension d over Fq, we

have

Z(X, t) =
P1(X, t) · · ·P2d−1(X, t)

P0(X, t) · · ·P2d(X, t)

where Pr(X, t) = det(1− Ft|Hr(Xét,Ql)).

In particular, if X is an algebraic curve of genus g then

Z(X, t) =
P1(X, t)

P0(X, t) · P2(X, t)
=

P1(X, t)

(1− t)(1− qt)

where P1(t) is a polynomial of degree 2g.
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Proof. Firstly, we will prove that Nm is the number of fixed points of Fm on X = Xk.

Indeed, for m = 1, X(Fq) = {x ∈ X : deg(x) = 1}. Then for each x ∈ X(Fq),
we can consider an affine neighbourhood of the form SpecFq[X1, · · · , Xn]. Assume

x = (X1 − a1, X2 − a2, · · · , Xn − an) where ai ∈ Fq. On the other hand, the Frobenius

morphism at locally is (X1, · · · , Xn) 7→ (Xq
1 , · · · , X

q
n). So,

deg(x) = 1 iff aq1 = a1, · · · , aqn = aqn iff x ∈ XF .

Similarly for arbitrary m.

Hence, by the Lefschetz trace formula, we have

Nm =

2d∑
r=0

(−1)rTr(Fm|Hr(X,Ql)).

Therefore,

Z(X, t) = exp
(∑
m

Nm
tm

m

)
= exp

(∑
m

2d∑
r=0

(−1)rTr(Fm|Hr(X,Ql))
tm

m

)

=

2d∏
r=0

(
exp(

∑
m

Tr(Fm|Hr(X,Ql)))
tm

m

)(−1)r
=

2d∏
r=0

Pr(t)
(−1)r+1

Corollary 3.11. The power series Z(X, t) is a rational function with coefficients in Q,

i.e. it lies in Q(t).

This corollary is proved easily from the fact that if k ⊂ K are fields, and f(t) ∈ k[[t]]

such that f(t) ∈ K(t) then f(t) ∈ k(t).

Remark 3.12. The corollary doesn’t imply that the polynomial Pr(X, t) must have ratio-

nal coefficients. It says that, once any common factors have been removed, the numerator

and denominator of the expression will be polynomials with coefficients in Q, and will

be independent of l.

Theorem 3.13. Let

Z(X, t) =
P (t)

Q(t)

where P (t), Q(t) ∈ Q[t] are relatively prime. When P and Q are chosen to have constant

terms 1, they have coefficients in Z.

Proof. By proposition 3.1.7, we have

Z(X, t) =
∏
x∈Xcl

1

1− tdeg x
,
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hence Z(X, t) ∈ 1 + tZ[[t]]. So, to prove the theorem, it suffices to prove that if

f(t) =
g(t)

h(t)
∈ 1 + tZ[[t]] where g(t), h(t) ∈ 1 + tQl[t] relative prime,

then g, h both have coefficients in Zl. For this, after possibly replacing Ql with a finite

extension field, we may assume h(t) splits, say h(t) =
∏

(1 − cit). If |ci|l > 1 then

|ci|l < 1, and the power series f(c−1
i ) converges. But then

f(t) · h(t) = g(t)⇒ f(c−1
i ) · h(c−1

i ) = g(c−1
i ).

Since h(c−1
i ) = 0, g(c−1

i ) = 0,⇒ f and g are not relative prime (contradiction). There-

fore, for all i: |ci|l < 1 i.e. h(t) ∈ Zl[t]. Similarly, since f(t)−1 ∈ 1 + t · Z[[t]], we have

g(t) ∈ Zl[t].

3.2 L-functions and Weil conjectures

3.2.1 Quotients by finite group actions

Definition 3.14. Let X be a scheme, G a finite group acting (on the right) on X

by algebraic automorphism corresponding to g ∈ G (i.e. G is endowed with a group

homomorphism G→ Aut(X)). A quotient of X by G consists of a scheme (Y,OY ) and

a morphism (of schemes) π : X → Y (called quotient morphism), verifying the following

universal property:

i. π is G -invariant, that is π ◦ σg = π for every σg ∈ G. (sometimes, we can denote

σg by g).

ii. π is universal with this property: for every scheme Z , and every G -invariant

morphism f : X → Z, there exists a unique morphism h : Y → Z such that

h ◦ π = f.

The quotient scheme of X by the action of G is denoted by X/G.

Remark 3.15. 1. We can define the quotient space of a ringed topological space

(X,OX) by the same universal property.

2. In the case of category of ringed spaces, the quotient space always exists. If

(X,OX) is a ringed space, then the quotient space of X over a finite group G

is the ringed space (Y,OY ) consisting of Y = X/G as the quotient set with the

quotient topology, π the canonical projection and OY (V ) = OX(π−1(V ))G for

every open subset V of Y .
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3. In the category of schemes, the quotient scheme does not, in general, exist. Even

if the quotient scheme exists, it does not always coincide with the quotient as a

ringed topological space.

Proposition 3.16. Let A be a ring, G be a finite group of automorphisms of A , and

AG the subring of elements of A which are invariant under G . Then π : SpecA →
SpecAG is the quotient scheme of SpecA over G and this is also the quotient as a

ringed topological space. Moreover, if U is an open subscheme of SpecA that is stable

under G then G acts on U and the quotient scheme U/G is isomorphic to π(U).

Proof. 1. Firstly, it is easy to see that the ring extension AG ↪→ A is a integral ex-

tension. Indeed, for every a ∈ A, put P (T ) =
∏
σ∈G

(T − g(a)) then T (a) = 0.

Moreover, the group G acts transitively on the set of prime ideals of A above

a given prime ideal p ∈ SpecAG. i.e. for every q1, q2 ⊂ A primes such that

q1 ∩ AG = q2 ∩ AG then ∃σ ∈ G such that q1 = σq2. Indeed, let x ∈ q1 then∏
σ∈G

σx ∈ q1 ∩AG =⇒
∏
σ ∈ Gσx ∈ q2 =⇒ ∃σ ∈ G : σx ∈ q2, hence q1 ⊆

⋃
σ∈G

σq2.

By the prime avoidance lemma, we have ∃σ ∈ G : q1 ⊆ σq2; similarly, we have

∃σ′ ∈ G : q2 ⊆ σ′q2, so q1 = σq2.

2. Consider the following diagram:

SpecA SpecAG

Y

π

p f

where p is any G-invariant morphism of schemes. And f = (f, f ]) is defined as

follows

f : SpecA −→ Y

such that p 7→ f(p) := p(q) where q is above p.

This map is well-defined and continuous. Let U ⊆ Y closed then p−1(U) = V (I)

for some ideal I ⊆ A. It suffices to show that f−1(U) = V (I ∩ AG). f−1(U) ⊆
V (I ∩ AG) is clear, and the converse V (I ∩ AG) ⊆ f−1(U) comes from the fact

that the extension AG/I ∩AG ↪→ A/I is also integral.

Let any U ⊆ Y open, then the map f ](U) : OY (U) −→ OSpecAG(f−1(U)) where

p−1(U) = SpecA− V (I) and f−1(U) = SepcAG − V (I ∩AG) is canonical induced
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from the diagram:

OY (U) OSpecA(SpecA− V (I))

OSpecAG(SpecAG − V (I ∩AG))

π

p f

(remark that π−1(SpecAG − V (I ∩AG) = SpecA− V (I)).

Similarly for subscheme U ⊆ SpecA which is stable under G, we have that U/G

exists and is isomorphic to π(U).

Remark 3.17. π : SpecA −→ SpecAG defined as above is an open map of underlying

topological spaces.

Proof. It suffices to prove that ∀a ∈ A then π(D(a)) =
n⋃
i
D(bi) where bi are the coeffi-

cients of ∏
σ∈G

(T − σa) = Tn + b1T
n−1 + · · ·+ bn.

Firstly, we will prove that π(D(a)) ⊆
n⋃
i
D(bi). Indeed, let x ∈ π(D(a)) then there exists

y ∈ D(a) such that x = π(y). i.e. there exists a /∈ y such that x = π(y) = y ∩ AG.

Assume that x /∈
n⋃
i=1

D(bi),then

x /∈ D(bi) ∀i⇒ bi ∈ x ∀i⇒ bi ∈ Y ∀i.

On the other hand, an + b1a
n−1 + · · ·+ bn = 0, so an ∈ y or a ∈ Y (!!!)

Secondly, let x ∈ D(bi) for some i, then bi /∈ x. By contradiction, assume that x /∈
π(D(a)) then ∀y s.t. y ∩ AG = x i.e. x = π(y) we have y /∈ D(a) or a ∈ Y. So, a ∈
y∀y above x, from the proof of the theorem, we know that G acts transitively on {y :

y|x}; hence, σ(a) ∈ Y ∀σ ∈ G. This implies that b1 =
∑
σ∈G

σa ∈ Y, · · · , bn =
∏
σ∈G

σa ∈ Y

(!!!).

This contradiction implies that π is an open map.

By gluing schemes, we can easily see that:

Proposition 3.18. Let G be a finite group acting on a scheme X. We suppose that

every point x ∈ X has an affine open neighborhood that is stable under G then the

quotient scheme X/G exists.
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For example, if Y is quasi-projective scheme, then for each point y ∈ Y , the finite

point {σ(y) : σ ∈ G} lie in a finite number of affine open subschemes of Y . Hence,

{σ(y) : σ ∈ G} is contained in the intersection of a finite number of affine schemes,

which is also affine, since Y is separable.

Corollary 3.19. Let X be a quasi-projective scheme over a scheme S, and let G be a

finite group acting on the S-scheme X. Then the quotient scheme X/G exits and G acts

transitively on the fibres of X → X/G. Moreover, the canonical morphism X → X/G

is a finite morphism if S is locally noetherian.

Proposition 3.20. Let X be a quasi-projective scheme over a locally noetherian scheme

S. Let G be a finite group acting on X. Then the quotient morphism π : X → Y

commutes with flat base change.

Proof. We can deduce to the affine case. Let A be a ring, B an A -algebra and C be a

flat A -algebra. Suppose that G is a finite group acting on B (i.e. G is endowed with

a homomorphism G → AutA(B)) then each element in G induces an automorphisms

B ⊗A C → B ⊗A C:

B B

B ⊗A C B ⊗A C

-g

? ?
-g⊗IdC

It suffices to prove that if SpecB → SpecA is quotient of scheme then (B⊗A C)G = C.

In general, we will prove that (B ⊗A C)G = BG ⊗A C. For every σ ∈ G, consider

ασ : B −→ B

defined by ασ(b) = σb− b for every b ∈ B. Since C is flat and the sequence

O −→ kerαg −→ B −→ Imαg −→ O

is exact,

O −→ kerαg ⊗A C −→ B ⊗A C −→ Imαg ⊗A C −→ O

is also exact. This implies that ker ασ ⊗A C = ker(ασ ⊗ IdC). Since G is finite, we

only need to prove that ∀σ, σ′ ∈ G then ker(ασ ⊗ IdC)
⋂
ker(ασ′ ⊗ IdC) = (ker ασ ∩

ker ασ′)⊗ C. Once again, it comes from the fact that if C is flat then the sequence

O −→ (ker ασ ∩ ker ασ′)⊗A C −→ B ⊗A C −→ Im(ασ, ασ′)⊗A C −→ O

is exact and (ασ, ασ′)⊗A IdC = (ασ ⊗ IdC , ασ′ ⊗ IdC).
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By [Har92], we will give a more precise description of the quotient scheme of a projective

scheme over finite group. To begin with, observe that any action of a finite group on

a projective variety X ⊂ Pn can be made projective, i.e. after embedding X into a

suitable projective scheme PN , we may assume that G acts on PN carrying X into

itself. Now let S(X) be the homogeneous coordinate ring of X in Pn and consider the

subring B = S(X)G ⊂ S(X) invariant under the action of G. B is again a graded ring,

though it may not be generated by its first graded piece B1 (since B1 may be zero or

not homogeneous). Put

B(i) =

∞⊕
n=0

Bni

where Bni are the homogeneous ring. Since B is finitely generated, for some i, S(Y ) =

B(i) will be generated by its first graded piece. Thus we can write

S(Y ) = K[Z0, Z1, · · · , Zm]/(F1(Z), · · · , Fl(Z))

where the Fj are homogeneous polynomials. Finally, we claim that Y = V (F1, · · · , Fl) ⊂
Pm is the quotient of X by G. Remark that m, l may be different from n, but dimX =

dim (X/G). For detail examples, see the examples of L - functions.

Definition 3.21. Let X be a quasi-projective scheme over a the finite field Fq and G a

finite group acting on X. We know that the quotient scheme Y = X/G exists.

1. Fix a point x ∈ X then the subgroup Gx = {gσ ∈ G|σx = x} is called the

decomposition group of x.

2. By definition, the decomposition group Gx acts canonically on OX,x. Hence, this

induces a group homomorphism Gx → Gal(k(y)/k(x)) where y = f(x). The

inertia group Ix of x is the kernel of this homomorphism. (remark that [k(y) : k(x)]

is finite since AG ↪→ A is integral and finitely generated.)

Proposition 3.22. [Liu02] Let X be a complete smooth variety over the finite field Fq
and G a finite subgroup of automorphism of Fq -scheme X. Put Y = X/G the quotient

scheme of X over G, then for every x ∈ X the sequence of groups

1→ Ix → Gx → Gal(k(x)/k(y))→ 1

is exact where y = π(x).

Proof. Since X is complete smooth variety, there exists an affine neighborhood of x

which is fixed by Gx. So, we may choose x ∈ SpecA ↪→ Y affine open neighborhood

of x. Assume first that G = Gx, Y := X/G = SpecAG = SpecAGx . Since k(x), k(y)



Chapter 3. Zeta functions and L-functions according to Grothendieck 57

are finite extension of Fq, k(x) = k(y)(θ) with θ ∈ A (remark that for x closed point,

OX,x/mx = A/x).

Since Gx = G, we can consider f(T ) :=
∏
σ∈G

(T − σ(θ)) ∈ k(y)[T ]. Let g(T ) ∈ k(y)[T ] be

the minimal polynomial of θ then g(T )|f(T ).

Hence, for every δ ∈ Gal(k(x)/k(y)), we have f(δ θ) = 0. This means that there exists

σ ∈ G such that σ(θ) = δ(θ), i.e. σ = δ.

For the general case, we need to prove that the residue field of each closed point u ∈
SpecAGy 7→ x ∈ SpecAG then their residue fields are equal, i.e. AGy/u = AG/x. And

so, we deduce to the first case.

3.2.2 L-functions

Definition 3.23. Let Y be a complete smooth curve (or more general, variety) over the

finite field k = Fq; let G be a finite group of k-automorphisms of Y , and X = Y/G. For

any y ∈ Y 0 (i.e. y is a closed point of Y ), Denote Gy, Iy to be the decomposition and

inertia groups at y respectively, so there is an exact sequence:

1 −→ Iy −→ Gy −→ Gal(k(y)/k(x)) −→ 1.

Write Y := Y ⊗k k where k is the algebraic closure of k, Then G acts on Y and

Y /G = X = X⊗kk. Let Ω be a field containingQl where (l, q) = 1, and ρ : G→ AutΩ(V )

be a finite-dimensional representation of G. Write fy for the canonical generator of

Gal(k(y)/k(x)), that is, fy(a) = aq
deg(x)

; we may identify fy with an element of Gy/Iy.

Then the Artin L-series of ρ is the formal power series

L(Y, ρ, t) =
∏
x∈X0

1

det(1− tdeg(x)ρ(fy)|V Iy)

where, for each x ∈ X0, a choice is made of a y ∈ Y 0 mapping to x.

Remark 3.24. The term corresponding to x in L(Y, ρ, t) is independent of the choice

of y. Indeed, let another y′ above x then there exists σ in G such that y′ = σy, so

Gy′ = σGyσ
−1 and Iy′ = σIyσ

−1. This implies that Gy′/Iy′ = σ(Gy/Iy)σ
−1; moreover fy

is the canonical generator of Gal(k(y)/k(x)) ∼= Gy/Iy and fy′ is the canonical generator

of Gal(k(y′)/k(x)) ∼= Gy′/Iy′ . Hence fy′ = σfyσ
−1, so det(1 − tdeg(x)ρ(fy)|V Iy) =

det(1− tdeg(x)ρ(fy′)|V Iy′ ).

In the next proposition, we will give some basic properties of L-functions

Proposition 3.25. Let ρ : G → AutΩ(V ), ρ1 : G → AutΩ(V ) and ρ2 : G → AutΩ(V )

be finite-dimensional representations of G then:
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1. L(Y, ρ1 ⊕ ρ2, t) = L(Y, ρ1, t)L(Y, ρ2, t);

2. L(Y, ρ, t) = Z(X, t) the zeta-function of X if ρ is trivial representation;

3. L(Y, ρ, t) = Z(Y, t) the zeta-function of Y if ρ is regular representation;

4. Z(Y, t) = Z(X, t)
(∏

L(Y, ρ, t)dimρ
)

where the product is over the non-trivial, irre-

ducible representations ρ of G.

Proof. (1), (2) are clear from the definition of L(Y, ρ, t). For (3), let

ρ : G→ GLΩ(V )

be the regular representation where V = ΩG. Then ρ induces ρ : Gy/Iy → GLΩ(V Iy).

Firstly, we will prove that

(dimV Iy).|Iy| = dimV = |G| = |π−1(x)| · |Gy|.

Indeed, by the transitivity of the actions of G on the set π−1(x), we have the canonical

bijective morphism of sets G/Gy → π−1(x) defined by g ·Gy 7→ g · y ⇒ |G| = |π−1(x)| ·
|Gy|. To prove (dimV Iy).|Iy| = dimV = |G|, we can prove that V Iy is a Ω - vector

space generated by |G|/|Iy| vectors. For example, if G = Z/8Z and Iy = 0, 2, 4, 6 then

V Iy is generated by {1 · 0 + 1 · 2 + 1 · 4 + 1 · 6, 1 · 1 + 1 · 3 + 1 · 5 + 1 · 7}.
Put m to be the order of Gal(k(y)/k(x)), since Gy/Iy ∼= Gal(k(y)/k(x)) = 〈fy〉 then we

can choose a suitable base of V Iy as follows: {g1, fy · g1, · · · , fm−1
y · g1, g2, · · · } so that

gi /∈ {gj , fy · gj , · · · , fm−1
y · gj} ∀ i 6= j and the matrix of ρ has the form


A 0 · · · 0

0 A · · · 0
...

...
. . .

...

0 0 · · · A

 .

where A is the following matrix of order m
0 · · · 0 1

1 · · · 0 0
...

...
. . .

...

0 · · · 1 0

 .

On the other hand, for each x ∈ X0, det(1 − tdeg x · A) = (1 − tdeg y). Hence, we have

L(Y, ρ, t) = Z(Y, t).
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(4) comes from the decomposition of the regular representation to irreducible represen-

tations.

Theorem 3.26. If Y is a curve and ρ is irreducible, non-trivial; then

L(Y, ρ, t) = det(1− Ft|H1(Y , V ∗)G) := det(1− Ft|(H1(Y ,Ql)⊗ V ∗)G)

where F : Y → Y is the relative Frobenius morphism obtained by base change of the

Frobenius morphism of X , F : X → X. and (V ∗, ρ∗) is the contragredient representation,

that is, ρ∗(g) = ρ(g−1)t as matrices. In particular, L(Y, ρ, t) is a polynomial in t that

divides the numerator of Z(Y, t).

In order to prove this theorem, we need some lemmas:

Lemma 3.27. We keep the notations and hypotheses of the previous definition, let

ρav(fy) =
1

|fy|
∑

g∈Gy 7→fy

ρ(g),

then

L(Y, ρ, t) =
∏
x∈X0

1

det(1− tdeg(x)ρav(fy)|V )
.

Proof. It suffices to show that

det(1− tdeg(x)ρav(fy)|V ) = det(1− tdeg(x)ρ(fy)|V Iy)

Indeed, we have

ρav(fy) =
1

|Iy|
∑

g∈Gy 7→fy

ρ(g) =
1

|Iy|
∑
g∈Iy

ρ(g)ρ(fy) =
1

|Iy|
ρ(fy)

∑
g∈Iy

ρ(g)

Let

P =
1

|Iy|
∑
g∈Iy

ρ(g)

then P is the projection V → V Iy and

ρ(g)P = Pρ(g) = ρav(fy).

So the matrix of ρav(fy) is (
A B

O O

)
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where A is the matrix of ρ(fy)|V Iy . Hence

det(1− tdeg(x)ρav(fy)|V ) = det(1− tdeg(x)ρ(fy)|V Iy).

Let α be an endomorphism of a finite-dimensional vector space V , then

log(det(1− αt|V )−1) =
∑
n≥

Tr(αn|V )
tn

n
.

Indeed, if V is vector space of dimension 1 and α acts as multiplication by a, then the

formula is simply the identity

log(1− at) = −
∑ antn

n
.

In the general case, we choose a suitable basis of V such that the matrix of α is triangular,

then the general formula is a sum of dim(V ) such above identities.

Therefore, we have that

logL(Y, ρ, t) =
∑
x∈X0

∑
n≥1

Tr(ρ(fny )|V )
tndeg(x)

n
=
∑
m≥1

∑
deg(x)|m

Tr(ρav(f
m

deg(x)
y )|V )deg(x).

Let χ be the character of ρ, and for any x ∈ X(Fqn) (that is, point of X ⊗Fqn of degree

1), write

χ(x) =
1

|Iy|
∑

g∈Gy 7→fy

χ(g)

where y ∈ Y ⊗ Fqn maps to x. Then it is easy to see that χ(x) = Tr(ρav(fy)|V ). We

will show that

L(Y, ρ, t) = exp
(∑
n≥1

νn(Y, χ)tn

n

)
where νn(Y, χ) =

∑
x∈X(Fqn )

χ(x).

We also know that ∀x′ ∈ X(Fqn) mapping to x then f
m/deg(x)
y = fy′ and Iy = Iy′ , Gy =

Gy′ . So, it suffices to prove the corresponding between X(Fqn) and {x ∈ X0 : degx|n}.

Lemma 3.28. Let X ⊗ Fqn be the fibre product of X and SpecFqn over SpecFq

X ⊗ Fqn SpecFqn

X SpecFq

-

?

α

?
β

-
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Then

1. For all x ∈ X0 such that deg(x)|n then α−1(x) ⊂ X(Fqn),

2. For all x′ ∈ X(Fqn) then α(x′) ∈ X0 and deg α(x′)|n,

3. For all x ∈ X0 such that deg(x)|n then |α−1(x)| = deg(x)

Proof. Before proving this lemma, I remark that α is closed map since β is universally

closed and we can reduce to the affine case X = SpecA

1. Let x be in X0, and x′ be an inverse image of x in X ⊗ Fqn then x′ is a closed

point. So

k(x′) =
(
(A⊗Fq Fqn)x′�x′(A⊗Fq Fqn)x′

) ∼= A⊗Fq Fqn�x′ ∼= [A/x⊗Fq Fqn ]�x′.

Moreover A/x = Fqm with m a divisor of n. Since every finite extension of a finite

field is Galois extension. Therefore, A/x = Fq/(f(T )) where deg(f) = m

⇒ k(x′) ∼=
(
Fqn [T ]/(f(T ))

)
�g

where g is a irreducible factor of f in Fqn [T ]. On the other hand, Fqm ⊂ Fqn ,

hence g is a linear factor of f ⇒ k(x′) ∼=
(
Fqn [T ]/(f(T ))

)
�g ∼= Fqn , this means

that deg(x′) = 1 or x′ ∈ X(Fqn).

2. Let x′ ∈ X(Fqn) be such that deg(x′) = 1, i.e.

A⊗Fq Fqn/x′ ∼= Fqn .

Assume that A/x = Fqm then

A/x = Fq[T ]/(f(T )) with deg(f) = m

⇒ (A⊗Fq Fqn)�x′ ∼= (A/x⊗Fq Fqn)�x′ ∼= Fqn .

⇒
[
Fqn [T ]/(f(T ))

]
�(g(T )) ∼= Fqn

⇒
[
Fqn [T ]/(g(T )) ∼= Fqn

where g(T ) is the irreducible factor of f corresponding to the maximal ideal x′.

This implies that g is a linear factor of f in Fqn [T ] for every x′ above x. So, every

irreducible factor of f is linear in Fqn [T ]. In the other words, Fqm ⊂ Fqn =⇒ m|n.
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3. We have α−1(x) is finite set of closed points. Moreover,

A/x⊗Fq Fqn ∼= Fqn [T ]/(f(T )) ∼= Fqn ⊕ Fqn ⊕ · · · ⊕ Fqn(deg(x) times).

So, |{close points of A/x⊗ Fqn}| = deg(x).

Therefore, it suffices to prove that the cardinality of α−1(x) = the cardinality

of {close points of A/x ⊗ Fqn}. We will prove a general result as following: Let

A and B be two k - algebras (k is any field), denote P1 ⊂ A,P2 ⊂ B prime

ideals, T = A ⊗ B, Γ = {Q ∈ SpecT : Q ∩ A = P1, Q ∩ B = P2}, k(P1) =

AP1/P1AP1 , k(P2) = BP2/P2BP2 , T
′ = k(P1)⊗k k(P2). Then ]Γ = ]Spec(T ′).

Indeed, denote

A = A/P1B = B/P2, T = A⊗k B

and

Γ = {J ∈ Spec(T ) : J ∩A = (O), J ∩B = (O)}.

Since A � A/P1 and B � B/P2 then we have the surjective map T � T with

kernel P1⊗B+A⊗P2 = P1T +P2T. Hence, we have the canonical injective map:

f ]Spec(T ) ↪→ SpecT and f ](Γ) = Γ.

Moreover, we also have that

A/P1 −→ AP1/P1AP1 and B/P2 −→ B/P2/P2BP2

induces the canonical map T −→ T ′. Since T ′ ∼= TS where

S = {r1 ⊗ r2|r1 ∈ A− {0}, r2 ∈ B − {0}}.

=⇒ g] : Spec(T ′) −→ SpecT is injective and =(g]) = Γ.

=⇒ f ]og
] is injective and Im(f ]og

]) = Γ.

Return to the our case, I remark that we only need the morphism f ] and more-

over the mapping A ⊗ Fqn −→ (A/x) ⊗ Fqn is surjective (hence integral). Hence,

|α−1(x)| = |{close points of A/x⊗ Fqn}|.

From these lemmas, we are able to express the L - functions in the terms of the fixed

points formula. Let’s study the following lemma
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Lemma 3.29.

νn(Y, χ) =
1

|G|
∑
σ∈G

χ(σ−1)L(σFn)

where L(σFn) is the number of fixed points of σFn on Y .

Proof. Let

Lx(σF ) := |{y ∈ Y : y 7→ x and σF (y) = y}|.

Since every points y 7→ x have the same degree, we have

Lx(σF ) = |{y ∈ Y : y 7→ π−1(x) and σF (y) = y}|
= |π−1(x)| · |{y ∈ Y : y 7→ y 7→ x and σF (y) = y}| (for some y 7→ x)

= |π−1(x)| · deg(y)

.

Indeed, since k is separable, there are deg(y) distinct points y mapping to y for each

y 7→ x. So, we only need to prove that, for each point y 7→ x, if |{y ∈ Y : y 7→
y and σF (y) = y}| 6= 0, i.e. ∃y 7→ y : σF (y) 7→ y then all of points y 7→ y are in

{y ∈ Y : y 7→ y and σF (y) = y}. On the other hand, we may assume that F (y) 6= y (if

not, then y = y, and there is nothing to prove). Put u = σ−1(y) then u 7→ y. Since σ

and F commutes, σF (u) = u. Similarly, for v = σ−1(u), then σF (v) = v · · · Remark

that σy = y, hence all of points y 7→ are {y, σ−1(y), · · · }. Therefore,

|{y ∈ Y : y 7→ y 7→ x and σF (y) = y}| = deg(y).

Moreover, to have |{y ∈ Y : y 7→ y 7→ x and σF (y) = y}| different from 0 is equivalent

to have σ · fy ∈ Iy. So,

Lx(σF ) =

{
|π−1(x)| · |deg(y)| if σ · fy ∈ Iy
0 otherwise

From the proof of above proposition, we have

|G| = |π−1(x)| · |Gy| = |π−1(x)| · |Iy| · deg(y)/deg(x).

This implies that

χ(x) =
1

|G|
∑
σ∈G

χ(σ−1)Lx(σF ).

Hence,

νn(Y, χ) =
1

|G|
∑
σ∈G

χ(σ−1)L(σFn).
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Proof of the theorem By the Lefschetz fixed point formula for σFn, we have

νn(Y, χ) = 1
|G|
∑
σ∈G

Tr(ρ(σ−1)|V )
∑
r

(−1)rTr(σFn|Hr(Ql))

=
∑
r

(−1)rTr
[(

1
|G|
∑
σ∈G

ρ∗(σ)⊗ σ
)
◦ (1⊗ Fn)|V ∗⊗Ql

Hr(Ql)

] .
Moreover 1

|G|
∑
σ
ρ∗(σ)⊗ σ is a projection V ∗ ⊗Hr → (V ∗ ⊗Hr)G. But ρ is irreducible

and H0(X,Ql) ∼= H2(X,Ql) ∼= Ql then (V ∗)G = 0. Hence

L(Y, ρ, t) = det(1− Ft|H1(Y , V ∗)G) = det(1− Ft|(H1(Y ,Ql)⊗ V ∗)G).

Remark 3.30. Similarly to the properties of zeta functions, we can prove some properties

of L-functions easily. For example, the L-function L(X, ρ, t) converges absolutely when

|t| < q−dimX .

3.3 Some examples

3.3.1 Zeta functions of Grassmannians

Definition 3.31. The Grassmannian G(d, n): Let V be a vector space of dimension

n ≥ 2 over the field k = Fq. Let 1 ≤ d ≤ n be any integer. Then the Grassmannian

G(d, n) is defined to be the set of all d-dimensional subspaces of V , i.e.

G(d, n) = {W : W ⊂ V as subspace of dimension d}.

Theorem 3.32. The Grassmannian G(d, n) is a smooth projective variety of dimG(d, n) =

d(n− d) which can be considered as a variety over any finite field Fq.

In order to compute the zeta function of the Grassmannian G(d, n), we need to compute

the number of points of G(d, n) over any finite extension of Fq. For this, we consider

the action of Gal(k/k) on G(d, n)(k) ⊂ PN (k). For each σ ∈ Γ = Gal(k/k) and (a0 :

a1 : · · · : aN ) ∈ PN (k), we define

σ(a0 : a1 : · · · : aN ) = (σ(a0) : σ(a1) : · · · : σ(aN )).

It is easy to see that this action is well defined and σ1σ2(a0 : · · · : aN ) = σ1(σ2(a0 : · · · :
aN )).

Moreover one can prove the following lemma:
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Lemma 3.33. The Galois group Γ = Gal(k/k) acts on PN (k) and the fixed points are

precisely the points in PN (k), i.e.

{u = (a0 : · · · : aN ) ∈ PN (k)|σ(u) = u ∀σ ∈ Γ} = PN (k).

Hence, we can consider the action of Galois group Γ = Gal(k/k) on G(d, n) and we have

|G(d, n)(k)| = |[G(d, n)(k)]Γ|

which is the number of d - dimensional subspaces of k
n

which are Γ invariant.

Without loss of generality, suppose that the n-dimensional vector space V is k
n

and

G(d, n) is the collection of all d dimensional subspaces of k
n

and Γ acts on it as follows:

for U ∈ G(d, n) and σ ∈ Γ, the action of σ induces

σ(U) = {σ(x1, x2, · · · , xn) = (σ(x1), · · · , σ(x)n)) : (x1, · · · , xn) ∈ U}.

It is easy to see that if U has a basis {w1, w2, · · · , wd} such that wi ∈ kn then U is Γ

invariant, i.e. σ(U) = U ∀σ ∈ Γ. In fact the converse is also hold. And this gives a

way to calculate |[G(d, n)(k)]Γ|.

Lemma 3.34. U ∈ G(d, n) is Γ invariant if and only if U has a basis {w1, w2, · · · , wd}
with each wi ∈ kn.

By the lemma, we have that G(d, n)(Fq) is the number of vector spaces with bases

{v1, v2, · · · , vd} such that vi ∈ kn. Let J denote the collection of all bases {v1, v2, · · · , vd}
such that vi ∈ kn, then

G(d, n)(Fq) =
|J |

|GL(d)(Fq)|
.

For calculating J , we choose the base as follows: v1 ∈ Fnq \ {0}, then v2 ∈ Fnq \ Fqv1 and

v3 ∈ Fnq \ Fqv1 + Fqv2 · · · So there are

(qn − 1)(qn − q) · · · (qn − qd−1)

such vector bases {v1, v2, · · · , vd}. Similarly, the number of invertible matrices of GL(d)

is also the number of linearly independent vector spaces in Fdq . Hence

G(d, n)(Fl) =
|J |

|GL(d)(Fl)|
=

(ln − 1)(ln−1 − 1) · · · (ln−d+1 − 1)

(ld − 1)(ld−1 − 1) · · · (l − 1)
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where l = qr.

This is the usual Gaussian Binomial coefficient(
n

d

)
l

:=
(ln − 1)(ln−1 − 1) · · · (ln−d+1 − 1)

(ld − 1)(ld−1 − 1) · · · (l − 1)
.

By [And98], we know that it can be interpreted as a polynomial in l. More precisely,

(
n

d

)
l

=

d(n−d)∑
i=0

bi · li.

For example (
4

2

)
l

= 1 + l + 2l2 + l3 + l4.

Hence

Z(G(d, n), t) =
1

(1− t)b0(1− qt)b1 · · · (1− qd(n−d))bd(n−d)
.

3.3.2 L - functions with group of order 2

Weighted Projective Spaces: Probably the most basic examples of quotients of

projective varieties by finite groups are quotients of projective space by the action of

abelian groups acting diagonally, weighted projective spaces. To have a finite abelian

subgroup of the group of automorphisms of schemes, we can find the group of order 2.

For example, consider the group G = {1, σ} where σ : P1 → P1 is the morphism defined

by

σ(z0 : z1) = (z0 : −z1).

Remark that if f(z0, z1) is a homogeneous polynomial then f(z0, z1) is a product of linear

factors in k then σ(u) is the product of σ of the linear factors. It is easy to see that σ is

really a morphism of schemes P1(k) over any field k. The subring of the homogeneous

coordinate ring of P1 invariant under the action of G, say X is thus generated by the

monomials z0, z
2
1 . Put w0 = z2

0 , w1 = z2
1 with no relation among them. So, we have that

X = Projk[w0, w1] ∼= P1(k).

Consider the L-function of the regular action of G:

ρ : G→ GL(QlG).

It is easy to see that ρ is decomposed to ρ1 = id and ρ2 such that ρ1, ρ2 are representation

of dimension 1 and ρ2(σ) = −1. We have:

Z(P1, t) = L(P1, ρ, t) = Z(X, t)L(P1, ρ2, t).
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Since

Z(P1, t) =
1

(1− t)(1− qt)
, Z(X, t) =

1

(1− t)(1− qt)

and L(P1, ρ2, t) is a polynomial, hence we should have L(P1, ρ2, t) = 1. Since |Gy| ≤ 2

then [k(y) : k(x)] ≤ 2. If [k(y) : k(x)] = 1 and |G2| = 2 then χ(P1, x) = 0. If

[k(y) : k(x)] = 1 and |G2| = 1 then χ(P1, x) = 1 and if [k(y) : k(x)] = 2 and |G2| = 2

then χ(P1, x) = −1. So, we should have the number of points x in X such that deg(y) =

deg(x) is equal to the number of points x in X such that deg(y) = 2deg(x).

Klein Quartic: Consider the curve C := X3Y + Y 3Z + Z3X of genus 3 over k = F2.

We know that

Z(C) =
1 + 5t3 + 8t6

(1− t)(1− 2t)
.

Consider group G = {1, σ} where σ(X,Y, Z) = (−X,−Y,−Z) then G acts on C. More-

over the coordinate ring of C is

S(C) = k[X,Y, Z]/(X3Y + Y 3Z + Z3X).

Hence S(X)G is generated by {X2, Y 2, Z2, XY,XZ, Y Z}.
Therefore, C/G is generated by

(T1T4 + T2T5 + T3T6, T1T2 − T 2
4 , T1T3 − T 2

6 , T2T3 − T 2
5 , T1T5 − T4T6, T2T6 − T4T5,

T3T4 − T5T6, T1T5 − T4T6, T2T6 − T4T5, T3T4 − T5T6)

- a projective curve in P5.

Hence its zeta functions is of the form

Z(C/G, t) =
f(t)

(1− t)(1− 2t)
.

Consider the regular representation ρ : G→ GL(QlG) then

Z(C, t) = Z(C/G, t)L(C, ρ2, t).

Since 1 + 5t3 + 8t6 is irreducible. Then C/G is a curve of genus 3, L(C, ρ2, t) =

1, Z(C/G, t) = Z(C, t). By taking the derivative of the same zeta function, we have

that Ni(C) = Ni(C/G).

3.4 Application of zeta and L-functions

For an application of Weil conjectures, we want to use the Weil conjectures to describe

more explicit about the zeta functions of an elliptic curve. Precisely, we would like to
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under stand P (t) in

Z(C, t) =
P (t)

(1− t)(1− qt)

where C ⊂ P2(k) is an elliptic curve over k = Fq, finite field.

Recall that elliptic curve is curve of genus 1, hence, by the Riemann hypothesis, we have

that

P (t) = 1 + at+ bt2.

By the functional equation, we have that

(qt2) · P (
1

qt
) = P (t).

Hence, b = q, P (t) = 1 + at+ qt2. Since

N1 =
d

dt
Z(C, t)|t=0

then

a1 + q + 1 = N1,

so a1 = N1 − q − 1.

Theorem 3.35. If C ⊂ P2(Fq) is an elliptic curve then

Z(C, t) =
1 + (N1 − q − 1)t+ qt

(1− t)(1− qt)
= 1 +

N1t

(1− t)(1− qt)

where N1 = C(Fq) the number of points of X with coordinates in Fq.

Let us consider a special case when q = p a prime number. By using the Riemann

hypothesis we have that

Theorem 3.36. If C ⊂ P2(Fp) is an elliptic curve then

N1 = 2a+ p+ 1

with |a| ≤ 2
√
p.

Proof. Put λ = N1 − p− 1, we know that P (t) = 1 + λ t+ pt2 = (1− αt)(1− βt) where

|α|2 = |β|2 = p. This implies that
α · β = p

α+ β = λ

|α|2 = |β|2 = p
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Let α = a+ bi, β = c+ di then

a+ c = λ

b+ d = 0

ac− bd = p

ad+ bc = 0

a2 + b2 = c2 + d2 = p

Since p is prime then:

⇒


a = c = λ/2

b = −d 6= 0

a2 + b2 = p

The theorem is proved completely.

Remark 3.37. In the small case of this theorem - elliptic curve, then it is easy to see

that P (t) = 1 + aT + pt2 has two roots of absolute values p1/2, i.e. for every root α, β

of P (t) then |α|2 = |β|2 = p, if and only if |a| = |N1 − p − 1| ≤ 2
√
p. This is one way

to prove the Riemann hypothesis on curve. In fact, one can prove that if p 6= 2, 3, then

there is an elliptic curve over Fp with N1 = p+ 1 + 2a if and only if a = 0 (see [Xin07])
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