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6 HILBERT AND QUOT SCHEME

Introduction

Fix a base field k. Fix n ∈ N and a polynomial P (t) ∈ Q[t] of degree n
such that P (d) ∈ Z for all integers d � 0. Suppose that we want to clas-
sify closed sub-schemes of a projective space over k with a given Hilbert
polynomial P (d), and moreover suppose that we want to show that the set
of these classes can be endowed with the structure of an algebraic scheme.
As we will describe, to each closed sub-scheme X one can associate a k-
rational point [X]d of a Grassmannian scheme (see section 1.4). It is called
dth Hilbert point of X. It can be shown that one also could recover X from
[X]d, for d ≥ d0 := d0(X). The main obstacle which one faces through
this construction is actually to verify that if there exist a sufficiently large
integer d0 which uniformly works for all closed sub-schemes X, with given
Hilbert polynomial P (d).
To prevail over the problem, D.Mumford introduced the concept of m-
regularity. We will present his results in second chapter, which leads to an
important theorem, so called Uniform Vanishing Theorem (theorem 2.2.1).
On the other hand by regarding Properness Theorem (theorem 3.1.7), it
can be shown that it is in fact a proper scheme (see theorem 4.1.2). This
almost finishes the story of the construction of the Hilbert scheme and even
more, its generalization Quot scheme. However we should slightly modify
the proofs in order to work in the relative case, i.e. over a general base
scheme S, which makes some complications. We will close the chapter by
giving some applications. For instance we prove a generalization of a result
of Mori, and also other examples and applications will be given.

Since we are dealing with moduli spaces and in general one can not
write the equations of Hilbert or Quot schemes explicitly, we shall give
some criterions for testing smoothness, which are essentially based on the
theory of infinitesimal deformations of algebraic schemes. This will be done
in section 4.3, and will also make lots of explicit examples. For instance we
produce an example of a singular reducible Hilbert scheme 4.3.5.

In the last chapter we study the Hilbert scheme of n points on a quasi-
projective scheme X. We denote it by X [n]. As a remarkable results of this
chapter we discover a birational morphism ρ : X [n] → X(n), where X(n)

is the symmetric nth power of X (see section 5.3.3). Furthermore we will
prove that is in fact a resolution of singularities of X(n) when X is either
a curve or a surface (see theorems 5.4.1 and 5.4.2). Finally by producing a
counter example we will show that for sufficiently large n the irreducibility
of X [n] fails when the dimension of X is greater than equal 3.
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Chapter 1

Preliminaries

1.1 Fine Moduli Spaces

In all what follows we are particularly interested in certain kinds of moduli
spaces. Thus the functorial point of view is necessary. To this purpose let
us first establish the following well-known assertion.

Proposition 1.1.1 (Yoneda’s Lemma)Let C be a category, Sets be the
category of sets. Lets Funct(C, Sets) denote the category of contravariant
functors from C to sets. Then the following functor ( of points)

F : C → Funct(C, Sets)

Which takes X ∈ Ob(C) to X(−) := Hom(−, X), and φ : T → S to X(φ),
is fully faithful. (i.e. for every pair of X, Y of objects of C the map on
morphisms h : Hom(X, Y ) → Hom(X(−), Y (−)) is a bijection.)

Proof : To any natural transformation H : X(−) → Y (−) we associate
H(idX) ∈ Hom(X, Y ) and vice versa to a morphism f ∈ Hom(X, Y ) we as-
sociate X(f) : X(−) → Y (−) . One can check easily that the compositions
are identity.�

Corollary 1.1.2 the functors of points X(−) and Y (−) are isomorphic if
and only if X is isomorphic to Y .

Definition 1.1.3 An S-scheme X is said to represent a functor F from the
category of S-schemes to the category of Sets if F is isomorphic to X(−).
In this case X is called a fine moduli space for the moduli problem given
by F . Moreover if F is representable by the scheme X, then the object in
F(X) associated to the idX ∈ X(X) is called the universal object.

9
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We now give a sort of moduli problems, which we will be particularly
interested, in this thesis, to show that they are representable by some alge-
braic schemes.

Example 1.1.4 Fix a Noetherian base scheme S. Let T be an S-scheme.
Consider the following exact sequence of sheaves of OT -modules

0 → K → On
T → Q→ 0 (1.1)

where K and Q are locally free sheaves of rank m and n − m. we say
that 0 → K → On

T → Q→ 0 and 0 → K′ → On
T → Q→ 0 are equivalent if

there exist isomorphisms α : K → K′ and β : Q → Q′ such that the diagram

0 −−−→ K −−−→ On
T −−−→ Q −−−→ 0

α

y ∥∥∥ yβ

0 −−−→ K′ −−−→ On
T −−−→ Q′ −−−→ 0,

commutes.
the functor Grm,n is defined as follows

Grm,n(T ) := {equivalence classes of exact sequences of type(1.1)},

with Grm,n(f) = f ∗.
We can even define the Grassmannian functor more generally, replacing

On
s by any a locally free sheaf of rank n, E. Then we denote the correspond-

ing Grassmannian functor by Grm,E
Example 1.1.5 Let X be a projective S-scheme, let E be a coherent sheaf
on X and a polynomial P (d). Given a Noetherian S-scheme T , let ET be the
pull back of E to X ×S T . Consider the coherent sheaf quotients ET → Q,
modulo the relation f ∼ f ′ if and only if there exist

ET
f−−−→ Q∥∥∥ y

ET
f ′−−−→ Q′

Now we define a functor from Noetherian S-scheme to sets

QuotE,P (d) := {ET → Q;Q is flat over T and each Qt has Hilbert polynomial P (d)}/ ∼

With QuotE,P (d)(f : U → T ) = (id× f)∗

In particular we define HilbX,P (d) := QuotOX ,P (d), alternatively, this
functor can be defined as follows
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HilbX,P (d) =

{closed subschemes Z ⊂ X×ST that are flat over T with Hilbert polynomial P (d)},

via the identification of i : Z ↪→ XT with the quotient OXT
→ i∗OZ.

1.2 Cohomology of quasi-coherent sheaves

In this section we give a list of Definitions and Theorems which will be of
common use later on. We first state a well-known vanishing theorem of
Grothendieck.

Theorem 1.2.1 Let X be a Noetherian topological space of dimension n.
Then H i(X,F) = 0 for all i > n and all sheaves F of abelian groups on X.

Proof: c.f. [4], Theorem III.2.7.

Theorem 1.2.2 Let A be a Noetherian ring, B = A[x0, . . . , xn] and X =
Proj(B) = PnA with n ≥ 1. Then:

a) The natural map B → Γ∗(OProj(B)) := ⊕n∈ZH
0(X,OX(n)) is an iso-

morphism of graded B-modules.

b) H i(X,OX(r)) = 0, n > i > 0 and all r ∈ Z.

c) Hn(X,OX(−n− 1)) ∼= A.

d) the natural map

H0(X,OX(r))×Hn(X,OX(−n− r−1)) → Hn(X,OX(−n−1)) ∼= A,

is a perfect paring of finitely generated A-modules, for each r ∈ Z

Proof: [4], Theorem III.5.1.

Theorem 1.2.3 Let X be a projective scheme over a noetherian ring A,
and let OX(1) be a very ample sheaf on X over Spec(A). Let F be a coherent
sheaf on X. Then
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a) for each i ≥ 0, H i(X,F) is finitely generated A-module.

b) there is an integer n0, depending on F , such that H i(X,F(n)) = 0,
for each i ≥ 1 and each n > n0.

Proof : c.f. [4] Theorem III.5.2.

Theorem 1.2.4 If X is a projective scheme over a noetherian ring A, let
OX(1) denote a very ample invertible sheaf on X. Then there is a dF for
each coherent sheaf F on X so that F(d) := F ⊗OX

OX(d) is generated by
its global sections, whenever d ≥ dF .

Proof :[4], Theorem II.5.17.

Definition 1.2.5 Let (X,OX) be a ringed space, and let F be an OX-
module. We define the functors Exti(F , .) as the right derived functors of
Hom(F , .), and Exti(F , .) as the right derived functors of Hom(F , .).

Consequently, according to the general properties of derived functors, we
have Ext0 = Hom.

proposition 1.2.6 If 0 → F ′ → F → F ′′ → 0 is a short exact sequence
in the category of sheaves of modules, then for any G we have a long exact
sequence :

0 → Hom(F ′′,G) → Hom(F ,G) → Hom(F ′,G)

→ Ext1(F ′′,G) → Ext1(F ,G) → ...,

and similarly for the Ext sheaves.

Proof: c.f. [4], Proposition III, 6.4.

For a locally free OX-module L of finite rank, we define the dual of L,
denoted Ľ, to be the sheaf HomOX

(L,OX).

Lemma 1.2.7 Let L be a locally free sheaf, and let Ľ = Hom(L,OX) be
its dual. Then for any F , G in the category of sheaves of modules we have:

Exti(F ⊗ L,G) ' Exti(F , Ľ ⊗ G),

and for the sheaf Ext we have:

Exti(F ⊗ L,G) ' Exti(F , Ľ ⊗ G) ' Exti(F ,G)⊗ Ľ.

Proof:c.f. [4], Proposition III, 6.7.
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1.2.1 Higher Direct Images of sheaves

We must remark that our intent to present this subsection is only to recall
the reader some basic properties of the Higher Direct Image, and mainly
to state the Base-Change Theorem which shall be of common use in this
thesis. For the details and Proofs we refer to [4], section III.8.

The notion of the higher direct image provides strong tools to study the
cohomology of a family of schemes π : X → Y .

Definition 1.2.1.1 Let π : X → Y be a continues map of topological
spaces. Then we define the higher direct image functors Riπ∗ from the cate-
gory of sheaves of abelian groups on X to the category of sheaves of abelian
groups on Y to be the right derived functor of the functor π∗.

Proposition 1.2.1.2 For each i ≥ 0 and each sheaf of abelian groups F ,
Riπ∗(F) is the sheaf associated to the presheaf

V 7→ H i(π−1(V ),F|π−1(V )).

Proof: c.f. [4], Proposition III.8.1.

Proposition 1.2.1.3 Let X be a noetherian scheme over an affine Y =
Spec A, π : X → Y . Then for any quasi-coherent sheaf F on X, we have

Riπ∗F ∼= ˜H i(X,F).

Proof: [4], Proposition III.8.5.

Proposition 1.2.1.4 Let X be a noetherian scheme over Y , π : X → Y .
Then for any quasi-coherent sheaf F on X, the sheaves Riπ∗F are quasi-
coherent on Y .

The following theorem illustrate the relationship between higher direct
image and cohomology of the fibers.

Theorem 1.2.1.5 (Cohomology and Base Change). Let π : X → Y be a
projective morphism of noetherian schemes, and let F be a coherent sheaf
on X, flat over Y . Then: a)if the natural map

ϕiy : Riπ∗(F)⊗ k(y) → H i(Xy,Fy)

is surjective, then it is an isomorphism, and the same is true for all y′ in a
suitable neighborhood of y;
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b) Assume that ϕi(y) is surjective. then the following conditions are
equivalent:

i) ϕi−1 is also surjevtive.

ii) Riπ∗(F) is locally free in a neighborhood of y.

Proof: c.f. [4], Theorem III.12.11.

1.2.2 Hilbert polynomial and Euler characteristic

Let M be a finitely generated graded module over the polynomial ring
S := k[x0, . . . , xn]. The Hilbert function HM of M is given by

HM(l) = dimk(Ml)

for each l ∈ Z. Then there is a unique polynomial PM(z) ∈ Q[z] such that
HM(l) = PM(l) for all l � 0. Furthermore deg PM = dim V+(Ann M), for
the proof we refer either to [4], Theorem I.7.5, or [6] section 5.13.

Let X be a projective scheme over a field k and F be a coherent sheaf
on it. The Hilbert function of F is defined as follows:

Hk(X,F) : Z −→ N

d 7→ dimkΓ(X,F(d))

We also define the Euler Characteristic of F(d):

χ(X,F(d)) =
∑
i≥0

(−1)idimkH
i(X,F(d))

Remark 1.2.2.1 Euler Characteristic is a finite integer by theorem 1.2.3
and the fact that H i(X,F(d)) = 0 if i > dimX (Theorem 1.2.1). So we can
rewrite this formula as follows:

χ(X,F(d)) =
dimX∑
i=0

(−1)idimkH
i(X,F(d))

Example 1.2.2.2 Let X be the projective space Pdk over a field k. We get
χ(X,OX(n)) =

(
d+n
d

)
if n ≥ 0, in particularχ(X,OX) = 1

Remark 1.2.2.3 Euler Characteristic is additive on exact sequences, i.e.
if 0 → F ′ → F → F ′′ → 0 is a short exact sequence of Coherent sheaves
on X, then χ(X,F) = χ(X,F ′) + χ(X,F ′′)
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By theorem 1.2.1 there is a d0 such that for every d ≥ d0, χ(X,F(d)) =
dimkΓ(X,F(d)), therefore for sufficiently large d we have the following
equality:

χ(X,F(d)) = Hk(X,F)(d)

Lemma 1.2.2.4 Hilbert function is a polynomial for sufficiently large d.
We call it Hilbert polynomial.

Proof: Let f : X → Pnk be a closed immersion, F a coherent sheaf over X
and considerE = OPn

k
(d) over Pnk . By projection formula (see [4] ex. II.5.1)

we get the following isomorphism:

f∗(F ⊗OX
f ∗OPn

k
(d)) ' f∗F ⊗OPn

k
OPn

k
(d)

So:
dimkΓ(X,F(d)) = dimkΓ(Pnk , f∗F ⊗OPn

k
OPn

k
(d))

By the theorem 1.2.4, Γ∗f∗F is a finitely generated graded module over
k[x0, ..., xn], so we have reduced to the case of graded modules, hence we
may conclude by the discussion given in the beginning of the subsection.

Note. One can prove an stronger result than the above lemma which
asserts that Euler Characteristic can be given by a polynomial in d for all
d.
Let s ∈ Γ(X,OX(1)) and X1, ..., Xr ⊆ X be the irreducible components
of X with maximal dimension. We choose s such that it is nonzero on
each of these components. LetD ⊆ X be the zero scheme of s. We have
dimD = dimX − 1. Consider the following exact sequence associated to
the hyperplane intersection D:

0 → i∗N −−−→ F .s−−−→ F(1) −−−→ i∗Q → 0

Where N and Q are sheaves over D. We know that tensoring by OX(d) is
exact. Now to get the desired result, induction on dimension of X works.
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1.3 Grassmannian

In this section we will introduce a scheme which represents Grassmannian
functor, we call it naturally Grassmannian scheme. We will construct it
over base scheme Spec Z.

Suppose M is a m × n matrix and I ⊆ {1, ..., n} a set with cardinality
equal to m. Define the I-th minor MI of M , to be the m×m minor of M
whose columns are indexed by I.

Let XI be a matrix such that XI
I is identity matrix and the remaining

entries are independent variables xIp,q over Z.

Suppose the affine pieces of Grassmannian scheme are U I = SpecZ[XI ]
where I varies over subsets of {1, ..., n} with cardinality m, and Z[XI ] is
the polynomial ring in variables xIp,q over Z.

Now we should glue these pieces to construct desired scheme. Let J
be a subset of {1, ..., n} with cardinality m, P I

J = det(XI
J) ∈ Z[XI ] and

U I
J = SpecZ[XI , 1/P I

J ]. In fact U I
J is the open sub-scheme of U I where P I

J

is invertible (i.e. XI
J admits an inverse (XI

J)
−1 on U I

J ). Suppose

θI,J : Z[XJ , 1/P J
I ] → Z[XI , 1/P I

J ]

is a morphism such that the images of variables xJp,q are given by the entries
of the matrix formula θI,J(X

J) = (XI
J)
−1XI . In particular θI,J(P

J
I ) = 1/P I

J ,
so the map extends to Z[XJ , 1/P J

I ].

Note that θI,I is identity on U I
I = U I , moreover:

θK,IθI,J(X
J) = θK,I((X

I
J)
−1, XI) = (((XK

I )−1XK)J)
−1(XK

I )−1XK

= ((XK
I )−1XK

J )−1(XK
I )−1XK = (XK

J )−1(XK
I )(XK

I )−1XK

= (XK
J )−1XK = θK,J(X

J)

Therefore the schemes U I , as I varies over all
(
n
m

)
different subsets of

{1, ..., n} of cardinality m, can glued together by the cocycles θI,J to form

a finite type scheme Gr(m,n) over Z. Each U I is isomorphic to Am(n−m)
Z ,

so Gr(m,n) → Spec(Z) is smooth of relative dimension m(n−m).

Before going to prove the representibility of Grassmannian functor, by
this scheme, we want to study more, about this scheme and its basic prop-
erties.
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Gr(m,n) is a separated scheme: We know θI,J(X
J) = (XI

J)
−1XI , so we

have glued XJ
I and (XI

J)
−1 together, therefore the intersection of Gr(m,n)

with U I ×UJ can be seen as the closed subscheme ∆I,J ⊂ U I ×UJ defined
by entries of the matrix formula XJ

I X
I−XJ = 0. So Gr(m,n) is separated.

Gr(m,n) is proper: Consider the morphism π : Gr(m,n) → Spec(Z).
Let R be a discrete valuation ring, K its quotient field, and ϕ : Spec(K) →
Gr(m,n) a morphism of schemes.

We will show that the morphism ϕ extends to ψ : Spec(R) → Gr(m,n).
ϕ gives us a morphism of rings:

f : Z[XI ] → K

P I
I = 1 so ν(f(P I

I )) = 0, where ν : K → Z ∪ {∞} is the discrete valuation.
Now choose J such that ν(f(P I

J )) is minimum. Obviously ν(f(P I
J )) ≤ 0, so

f(P I
J ) 6= 0 and so the matrix f(XI

J) lies in GLm(K).

Let g : Z[XJ ] → K is defined by entries of the matrix formula:

g(XJ) = f((XI
J)
−1XI)

This morphism gives us a morphism of schemes from SpecK to Gr(m,n)
which is equal to ϕ. Moreover all m×m minors XJ

K satisfy ν(g(P J
K)) ≥ 0.

Now since XJ
J is identity, we get from the above that ν(g(xJp,q)) ≥ 0 for all

entries of XJ . Therefore g : Z[XJ ] → K factors uniquely via R ⊂ K. And
the resulting morphism of schemes gives us the desired morphism ψ:

SpecR→ UJ → Gr(m,n)

Now we conclude by using valuative criterion of properness for discrete
valuation rings.

Let us now define the universal quotient. We define a rank m locally free
sheafQ onGr(m,n) together with a surjective homomorphism⊕On

Gr(m,n) →
Q. On each U I we define a surjective homomorphism uI : ⊕nOUI → ⊕mOUI

by the matrix XI . Compatible with the co-cycle (θI,J) for gluing the affine
pieces U I , we give gluing data (gI,J) for gluing together the trivial bundles
⊕mOUI by putting

g(I,J) = (XI
J)
−1 ∈ GLm(U I

J ).

This is compatible with the homomorphisms uI , so we get a surjective
homomorphism u : ⊕nOGr(m,n) → Q.
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Theorem 1.3.1 The Grassmannian Gr(m, E) represents the following func-
tor

Grm,E := {equivalence class of exact sequence of type(1.1)}.

Proof: Let us assume that E = On
S. Let us first define a transformation

of functors f : Grm,n → Gr(m,n)(−). Let T be an S-scheme, and assume
that a sequence 0 → K → On

T → Q → 0 is given. Choose a trivialization
T =

⋃
i Spec Ai for the sequence, we may assume that T is affine, T =

Spec A. Now K|T ∼= Om
T → On

T , which is given by n×m matrix, and since
the cokernel of this map is also locally free of rank n−m, we see that is full
rank. Clearly this gives a T -valued point of Gr(m,n). On the other hand
the universal quotient described above inverts f .

Now for E a locally free sheaf of rank n on S, again we take a trivi-
alization for E over {Spec Ai}. Then the Grassmannian over the affines
patch together to give a twisted Grassmannian Gr(m, E) which represents
Gr(m, E).

�

Corollary 1.3.2 G(m,n) ∼= G(n−m,n)

Remark 1.3.3 if S is any scheme, take an affine cover {SpecAi}, then
the Grasssmannian G(m,n) over SpecAi patches together and gives the
Grassmannian over S. Even more for any locally free sheaf E of rank n on
S we may take a trivialization of E over SpecAi, and then the Grassmannian
over SpecAi patches together to give it as a twisted Grassmannian G(m, E)
which represents the functor Gr(m,E) : Schs → Sets

Gr(m,E)(T ) :={sequences 0 → K → ET → Q → 0 of loc. free sheaves
over T with rk(K) = m }/∼,

where the equivalence relation is defined as the above case.

1.4 A rough description of the construction

of Hilbert scheme

We work over a fixed base field k. Fix n ∈ N and P (t) ∈ Q[t] polynomial
of degree n such that P (d) ∈ Z for integer d� 0.

Suppose that we want to classify projective varieties with a given Hilbert
polynomial P (d). According this paragraph we would like to give an sketchy
description of the behind picture of the construction of Hilbert scheme.



1.4. A ROUGH DESCRIPTION OF THE CONSTRUCTION OF HILBERT SCHEME19

Consider all closed X ⊂ Pnk , defined by a homogeneous ideal J(X), with
Hilbert polynomial P (t). For this moment we denote the set of such sub-
schemes by Hilbp, however we will endow Hilbp with additional structure!

Choose d0(X) such that P (d) = dimk(k[x0, . . . , xn]/J(X))d for each
d ≥ d0(X). For each d ≥ d0(X), consider the linear subspace J(X)d ⊂
k[x0, ..., xn]d which has codimension P (d). The corresponding point in the
Grassmannian

[X]d ∈ Gr(
(
n+ d

d

)
−P (d), k[x0, ..., xn]d) ∼= Gr(

(
n+ d

d

)
−P (d),

(
n+ d

d

)
)

is called the dth Hilbert point of X.

Now suppose that J(X) is generated by polynomials of degree ≤ d0.
Then we claim that for each d ≥ d0, [X]d determines X uniquely. In-
deed each subspace Λ ⊆ k[x0, ..., xn]d defines a homogeneous ideal < Λ >⊆
k[x0, ..., xn] and thus a projective scheme V+(< Λ >) ⊆ Pn. One can read-
ily verify that V+(< J(X)d >) = X and thus X is determined by its dth
Hilbert point.

So the main obstacle which we face, through the construction of the
Hilbert scheme, is that we need to show that there exist a sufficiently big
integer d0 which uniformly works for all schemes X, with given Hilbert
polynomial P (d). To prevail over the problem, Mumford introduced the
concept of m-regularity. We shall present this result, in second chapter,
so called Uniform Vanishing Theorem. On the other hand there is still
another remarkable gap, that is to endow Hilbp with the proper scheme
structure. This gap will remove, by regarding a strong theorem which is
called Properness Theorem, this will be proven in third chapter. This fin-
ishes the story of the construction. Furthermore since in general we do not
have the equations of Hilbert scheme and its generalization Quot scheme,
we shall give some criterion for testing smoothness, essentially based on the
theory of infinitesimal deformations of algebraic schemes, and will make lots
of examples.
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Chapter 2

Castelnuovo-Mumford
Regularity

2.1 Castelnuovo-Mumford Regularity

For an A-module M let M̃ be the associated quasi coherent sheaf. This
assignment gives an equivalence of categories between A-modules and quasi
coherent sheaves over Spec(A).

Now suppose M is a graded R-module, where R = A[X0, ..., Xn]. There

is natural sheaf M̂ of OPn
A
-module, with the property that M̂ |D(f) = (̃M(f)),

for a principal open affine D(f). M̂ is coherent if A is noetherian and M is
finitely generated. The module M(d) is the sheafted graded R-module with

M(d)e = Md+e. Set OPn
A
(d) := R̂(d). We then have OPn

A
(d)|D(Xi) = Xd

i OPn
A
,

therefore OPn
A
(d) is an invertible sheaf. We also mention that M̂(d) =

M̂ ⊗OPn
A
OPn

A
(d).

So from the above discussion we see that taking hat

̂ : M 7→ M̂

gives a functor from the category of graded R-modules to the quasi coherent
sheaves on PnA. Notice that the above functor is not an equivalence of
categories, in fact this functor takes the modules which become isomorphic
after sufficiently high degree to the same sheaf. However the twisted global
sections

Γ∗ : F 7→
⊕
d∈Z

H0(PnA,F(d))

21
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gives somehow a semi-inverse to this map, i.e. Γ̂∗(F) ' F and Γ∗(M̂)
becomes isomorphic to M in sufficiently high degrees.

To construct the Quot scheme we essentially need to know that when

Γ̂∗(F) can be generated by elements of degree less than g. This is the basic
idea behind the strange definition of Castelnuovo-Mummford regularity. In
fact the idea is to give a cohomological criteria for this property of a coherent
sheaf F on Pn. So we start with a hyperplane H ⊂ Pn, and we assume that
the intersection with hyperplane H is sharp, i.e. H does not contain any
associated point of F , then we have the short exact sequence

0 → F(m− i− 1)
h−−−→ F(m− i) −−−→ FH(m− i) → 0

where h is given by multiplication with a defining equation of H. This
gives rise to the exact sequence

. . .→ H i(Pn,F(m−i)) → H i(Pn,FH(m−i)) → H i+1(Pn,F(m−i−1)) → . . .

If for an integer m, H i(Pnk ,F(m−i)) vanishes for each i ≥ 1 then so is its
restriction to H ∼= Pn−1, FH . Due to this motivation we give the following
definition.

Definition 2.1.1 A coherent sheaf F on Pnk is called m-regular if

H i(Pnk ,F(m− i)) = 0,

for all i > 0.

As we have already seen, we have restricted ourselves to the coherent
sheaves, in fact this implies that the set of associated points of F is finite
which guarantees the existence of such a hyperplane H, when k is infinite.
Notice that when k is finite the m-regularity of F would preserve, when we
base-change with an infinite extension.

We Claim that F is m-regular then it is m + 1-regular. We prove by
induction. The claim is obvious for n = 0. Consider the exact sequence

H i(Pn,F(m− i)) → H i(Pn,F(m+ 1− i)) → H i(H,FH(m+ 1− i))

The first term vanishes by our hypothesis, on the other hand the last term
also vanishes because FH is m-regular and by the inductive hypothesis also
m+ 1-regular. Therefore H i(Pn,F(m+ 1− i)) vanishes.
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Suppose F is m-regular. We are now going to prove that the following
natural morphism

H0(Pnk ,O(1))⊗H0(Pnk ,F(m)) → H0(Pnk ,F(m+ 1)),

is surjective, again by induction on n. We come back to the following
exact sequence

0 → H0(Pn,F(m− 1)) → H0(Pn,F(m)) → H0(H,FH(m))

→ H1(Pn,F(m− 1))

Since F is m-regular, therefore the last term vanishes i.e.

H0(Pn,F(m− 1)) → H0(H,FH(m− 1))

is surjective.

Notice that the canonical morphism H0(Pn,OPn(1)) → H0(H,OH(1))
is surjective, therefore H0(Pn,OPn(d)) → H0(H,OH(d)) is surjective. Thus
the top map in the following commutative diagram

H0(Pn,F(r))⊗H0(Pn,OPn(1))
α−−−→ H0(H,FH(r))⊗H0(H,OH(1))

µ

y γ

y
H0(Pn,F(r + 1))

β−−−→ H0(H,FH(r + 1))

is surjective. The vertical map γ is surjective by induction hypothesis.
Therefore γ◦α is surjective, so the composition β◦µ is surjective too. Hence
α, β and γ are surjective, and since im(h : H0(Pn,F(r)) → H0(Pn,F(r +
1))) which is given by multiplication with a certain section h ∈ OPn(1) is
inside im(µ), thus we conclude that µ is surjective.

Let us summarize these results in the following theorem.

Theorem 2.1.2 Let F be a coherent sheaf on Pnk . If F is m-regular then:

i) F is m′-regular for all m′ ≥ m.

ii) the multiplication map:

H0(Pnk ,O(1))⊗H0(Pnk ,F(r)) → H0(Pnk ,F(r + 1))

is surjective for r ≥ m.
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Corollary 2.1.3 Let F be a coherent sheaf. If F is m-regular then:

i) H i(Pnk ,F(d)) = 0 for all i > 0and d ≥ m− 1,

ii) F(d) is generated by the global sections for all d ≥ m.

Proof :
i) Part a) of the above theorem implies that H i(Pn,F(r)) = 0 for i ≥ 1

when r ≥ m.

ii) By the above theorem we know that

H0(Pnk ,OPn
k
(p))⊗H0(Pnk ,F(r)) → H0(Pnk ,F(r + p)),

is surjective, for r ≥ m and p ≥ 0. We know from theorem 1.2.4 that for
sufficiently large p, F(r+ p) is generated by its global sections. Hence F(r)
is also generated by its global sections for r ≥ m.

�

Remark 2.1.4 Note that 2.1.1 .ii) tells us that if F is m-regular then the
graded k[X0, . . . , Xn]-module Γ∗F can be generated by elements of degree
less ≤ m. In particular, if an ideal sheaf I ⊂ OPk

n is m-regular then the
homogeneous ideal

I := Γ∗(I) ⊂ k[X0, . . . , Xn]

is generated by elements of degree ≤ m.

2.2 Uniform Vanishing Theorem

Recall the description we gave in section 1.4. Due to the inspiration we got
from the description, we will try to attack to the problem, in the general
case, i.e. when our projective scheme X is over a general base scheme S.

Let X = PnS, take an element Z ∈ QuotX/S(T ), assume that is corre-
spond to the following short exact sequence of sheaves

Z : 0 → K → ⊕pOPn
T
→ F → 0.

From the Theorem 1.2.4 for a sufficiently big number d0 we get the
following short exact sequence

0 → π∗K(d0) → π∗ ⊕p OPn
T
(d0) → π∗F(d0) → 0.

where π : PnT → T is the porjection morphism. So the above short exact
sequence gives an element [Z]d0 in the relative Grassmannian scheme, as
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we described in 1.4 . Therefore we would be very glad if we could find
an integer d0 which works for each coherent sub-sheaf K of OPn

T
with fixed

Hilbert polynomial P (d), because this fact guarantees the existence of a
morphism from the Quot scheme to the Grassmannian! To this purpose we
establish the following theorem. We will actually follow Mumford’s proof
[5].

Theorem 2.2.1 Let k be any field. There exist a polynomial Fp,n in n+ 1
variables with integral coefficients, such that any coherent sub-sheaf K of
⊕pOPn, with Hilbert polynomial

χ(K(d)) =
n∑
i=0

ai

(
d

i

)
is Fp,n(a0, . . . , an)-regular.

Proof: We prove by induction on n. The statement is clear for n = 0.
Let n ≥ 1. Note that we may assume that k is infinite, thus there ex-
ist a hyperplane H ⊂ Pn which does not contain any associated point of
⊕pOPn/K.

Tensoring the short exact sequence

0 → OPn(−1)
h−−−→ OPn −−−→ OH → 0

with K(d) we get

0 → K(d− 1)
h−−−→ K(d) −−−→ KH(d) → 0 (?)

Thus we get

χ(KH(d)) = χ(K(d))− χ(K(d− 1)) =
i=n∑
i=0

ai

(
d

i

)
−

i=n∑
i=0

ai

(
d− 1

i− 1

)

=
n∑
i=0

ai

(
d− 1

i− 1

)
.

Note that the torsion sheaf TorOPn

1 (OH ,⊕pOPn/K) vanishes therefore
the short exact sequence

0 → K → ⊕pOPn → ⊕pOPn/K → 0,

restricts to a short exact sequence

0 → KH → ⊕pOH → ⊕pOH/K → 0,
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i.e. KH can be identified with a sub-sheaf of OPn−1 , with Hilbert polynomial

χ(KH(d)) =
∑n−1

j=0 bj
(
d
j

)
So by the inductive hypothesis, there exist a polynomial Fp,n−1(x0, . . . , xn−1)

such thatKH ism0 := Fp,n−1(b0, . . . bn−1)-regular. Substituting bj = gj(a0, . . . , an)
we get m0 = G(a0, . . . , an), where G is a polynomial with integral coeffi-
cients independent of the field k and the sheaf K. Thus from (?) we get a
long exact cohomology sequence for m ≥ m0 − 1

0 → H0(K(m− 1)) → H0(K(m)) → H0(KH(m))

→ H1(K(m− 1)) → H1(K(m)) → 0 → . . .

→ 0 → H i(K(m− 1))
∼−−−→ H i(K(m)) → 0 → . . .

Notice that by theorem 1.2.3 H i(K(m)) = 0 for m� 0, hence

H i(K(m)) = 0 for all i ≥ 2 and m ≥ m0 − 2

The surjection H1(K(m − 1)) → H1(K(m)) shows that h1(K(d)) ≤
h1(K(d − 1)), where h1(K(d)) is the function h1(K(d)) := dimH1(K(d)).
Now notice that the equality holds for d ≥ d0 if and only if the restric-
tion map rH : H0(K(d)) → H0(KH(d)) is surjective. As KH is m-regular,
it follows from Theorem 2.1.2 the restriction morphism r : H0(K(j)) →
H0(KH(j)) is surjective for all j ≥ d0, so h1(K(j − 1)) = h1(K(j)) for all
j ≥ d0. As h1(K(j)) vanishes for j � 0, thus the function h1(K(d)) is
strictly decreasing for d ≥ d0 until its value reaches zero. Therefore

H1(K(d)) = 0 for d ≥ d0 + h1(K(d0)) (??)

We are now going to find a bound on h1(K(d0)). As K ⊂ ⊕pOPn we
have

h0(K(r)) ≤ ph0(OPn(r)) = p

(
n

n+ r

)
.

So we get

h1(K(d0)) = h0(K(d0))−χ(K(d0)) ≤ p

(
n+ d0

n

)
−

n∑
i=0

ai

(
d0

i

)
= P (a0, . . . , an)

where P (a0, . . . an) is a polynomial expression in a0, . . . an, obtained by
substituting d0 = G(a0, . . . , an) in the last term of the above inequality.
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Thus we see that the coefficient of the polynomial P (x0, . . . , xn) are again
independent of the field k and the sheaf K. Hence from (??) we get

H1(K(d)) = 0 for d ≥ G(a0, . . . , an) + P (a0, . . . an)

Note that P (a0, . . . an) ≥ h1(K(d0)) ≥ 0. Let Fp,n(x0, . . . , xn) := G(x0, . . . , xn)+
P (x0, . . . xn), then K is Fp,n(a0, . . . , an)-regular.

�
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Chapter 3

Flatness and Stratification

3.1 Constancy of Hilbert polynomial

Let X be an S-scheme via π : X → S and F be a sheaf of OX-modules. We
say that F is flat over S at x ∈ X if the stalk Fx be a flat Os,π(x)-module.
If F is flat over S at each point of X, we say simply F is flat over S. A
morphism g : X → Y of schemes is called flat if OX be flat over Y .

Example 3.1.1 Classical smooth families are flat, i.e. Let f : X → Y is a
morphism of nonsingular varieties over an algebraically closed field k such
that dimX − dimY = n and ΩX/Y is locally free of rank n, then f is flat.

Lemma 3.1.2 The following statements are true:
i.Open immersions are flat morphisms.
ii.Flat morphisms are stable under base change.
iii.Let f : X → Y and g : Y → Z be flat morphisms, then g ◦ f is a flat
morphism
iv.The ring homomorphism A → B is flat if and only if the morphism of
schemes SpecB → SpecA is flat.

Proof: It is an easy consequence of general properties of flat modules.

Our first goal in this chapter is to prove the Properness theorem.
Let X be an S-scheme with associated morphism f : X → S. {Xs :=
X ×S Spec(k(s))|s ∈ S} is the family of fibers of X which parametrized by
S. Here Spec(k(s)) → S is the inclusion of the point s ∈ S. In a similar
way we can get a family of sheaves from a given sheaf F of OX-modules.In
fact this family is: {Fs := F|Xs |s ∈ S}.
Now for the closed immersion X ⊆ PnS, we have Xs ⊆ Pnk(s). In this case we

29
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can compute the Hilbert polynomial of Fs, but it depends upon s. We will
see that under suitable conditions for a flat sheaf F these Hilbert polyno-
mials are independent of point s !
Let F be a coherent sheaf on X := PnA where A is a local noetherian domain.
Let us write the Cech Complex C ·(U ,F(m)), for standard open affine cover
U and integer number m:

0 → H0(X,F(m)) → C0(U ,F(m)) → C1(U ,F(m)) → ...→ Cn(U ,F(m)) → 0

But for sufficiently large m, H i(X,F(m)) = 0 (for i > 0), and therefore the
complex is a resolution forH0(X,F(m)). Now if F be flat then Ci(U ,F(m))
is flat for every i, so we we see that H0(X,F(m)) is flat. On the other hand
by 1.2.3 it is finitely generated. Thus H0(X,F(m)) is flat and finitely
generated, and so free of finite rank. Therefore we have proved if F is
flat then H0(X,F(m)) is free of finite rank for sufficiently large m. Now

we want to verify that whether the inverse implication also holds or not !
Suppose H0(X,F(m)) is free of finite rank for m ≥ m0. Let us define the

graded A[x0, ..., xn]-module M as follow:

M =
⊕
m≥m0

H0(X,F(m))

Clearly M is free and hence flat. M and Γ∗F have the same terms in degrees
m ≥ m0, so M̂ = Γ̂∗F , but Γ̂∗F = F , hence F is flat.
Therefore F is flat if and only if H0(X,F(m)) is free of finite rank.
Let F be flat over SpecA. We will show that the Hilbert polynomial of
Fsis independent of the chosen point s ∈ SpecA. Set Ptbe the Hilbert
polynomial of Ft for the point t ∈ SpecA. It is enough to show

Pt(m) = rankAH
0(X,F(m))

for m >> 0.

Fix t ∈ T := SpecA and let T ′ := SpecAp where p is the prime ideal
corresponding to t. Each Cech complex on X, localizes to a Cech complex
on X ′, where X ′ := X ×T T

′.
Moreover localizingis exact, therefore we get the following isomorphism:

H i(X,F)⊗A Ap
'−−−→ H i(X ′,F ′)
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Here F ′ is the pull back of F to X ′. So we may reduced to the case where
t is a closed point.
Take a presentation of k(t) over A:

Aq → A→ k := k(t) → 0 (∗)

F is flat, therefore we get the following exact sequence:

F q → F → Ft → 0

Thus by 1.2.3 we get another exact sequence:

H0(X,F(m)q) → H0(X,F(m)) → H0(Xt,Ft(m)) → 0

On the other hand if we tensor the sequence (∗) with H0(X,F(m)), we will
have the exact sequence:

H0(X,F(m))⊗ Aq → H0(X,F(m))⊗ A→ H0(X,F(m))⊗ k → 0

F is flat so H0(X,F(m)) is free of finite rank for enough large m, Thus:

H0(X,F(m))⊗A A
q ' H0(X,F(m)q)

Moreover
H0(X,F(m))⊗A A ' H0(X,F(m))

Therefore by comparing these two exact sequences, we see that:

H0(Xt,Ft(m)) ' H0(X,F(m))⊗A k(t)

for all m ≥ 0
So we see that under our assumptions, If F is flat then Pt does not depend
upon t. It is interesting to know that whether the inverse implication is
true or not.

We may assume in the above discussion that T is an integral noetherian
scheme, because we have the following fiber product:

Xp −−−→ Xy y
Spec(Ap) −−−→ Spec(A)

And moreover flatness is a local property.Now letX ⊆ PnT be an arbitrary
closed subscheme.
Considering the inclusion i : X → PnT , we can push forward the sheaf F on
X to a sheaf f∗F on PnT and use the fact that F is flat if and only if f∗F is
flat.
So let us summerize the above discussion:
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Theorem 3.1.3 (Constancy of Hilbert polynomial) Let T be an integral
noetherian scheme and X ⊆ PnT be a closed subscheme. Let F be a coherent
sheaf on X. Consider the Hilbert polynomial Pt ∈ Q[z] of the fiber Xt

considered as a closed subscheme of Pnk(t), then the following are equivalent:

i) F is flat over SpecA.
ii) H0(X,F(m)) is locally free, for all m >> 0.
iii) The Hilbert polynomial χ(Xt,Ft(m)) is independent of t ∈ T .

Using the fact that any two points on a connected scheme can be joined
by a sequence of integral subschemes, we get the following corollary:

Corollary 3.1.4 Let S be a noetherian connected scheme and X ⊆ PnS be
a projective S-scheme, flat over S. Then the following holds:

i)The fiber dimensions, dim(Xs) are constant.
ii)The Euler Characterisric, χ(Xs,OXs) is constant.
iii)The degree of Xs ∈ Pns is constant.

Let f : X → S be a morphism of schemes, where S is irreducible and
regular of dimension one. Set F be a sheaf of OX-modules.
For a moment suppose F is flat and x is a point of X with closed image
s = f(x) ∈ S. Here OS,s is DVR and ms, the maximal ideal of OS,s has a
uniformizing parameter t. The local parameter t is not a zero divisor so its
image f ]t can not be a zero divisor in the flat module Fx. So x is not an
associated point. Therefore if f is flat then every associated point of F go
to the generic point via f .

Vice versa, let f take every associated point of F to the generic point of
S. Let x ∈ X be such that f(x) = s is generic point of OS,s. OS,s is a field,
so Fx is a vector field over OS,s and in particular a flat OS,s-module. So F is
flat at each point which map to the generic point of S. If f(x) = s is closed
and {x} does not contain an associated point of F , then multiplication by
the uniformizing parameter f ](t) is injective on Fx, and since < t >= ms,
it follows that Fx is flat over OS,s.

Let us summarize this discussion in the following theorem:

Theorem 3.1.5 If f : X → S and S is irreducible and regular of dimension
one, then a sheaf F of OX-modules is flat over S if and only if f maps each
associated point of F to the generic point of S.
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Let S and X be as above, s ∈ S be a closed point and U = S − {s0}.
Consider a coherent sheaf E on X and define EU := E|XU , where XU =
f−1(U). Suppose that EU → Q is a surjection, where Q a coherent sheaf
flat over U . We want to extend this flat surjection to X. To get this
goal, in the first step we will show that there is a universal extension for
EU → Q ( i.e. if EU → Q′ is another surjection extending EU → Q, then
there is a unique factorization E → Q′ → Q). Afterward we will prove that
this extension is necessarily flat over S, and moreover such an extension is
unique.

Clearly it is sufficient to prove for affine base scheme S = SpecB.
Moreover it is enough to show the existence of the extension for the case
U = SpecBg. Here g is an element of B. Notice that we may letX = SpecA,
because if we could get the desired result in this case, then extensions
over the affines will patch by the universal property. Therefore we have
XU = SpecAg. We can set E = M̃ and Q = Ñ (since E and Q are coher-
ent).
Consider the A-module map M → Mg → N and set N to be the image

of this map. now Ñ is the universal extension. Let E → Q′ be another
extension of EU → Q and Q′ = K̃ over SpecA for some A-module K. We
have the following diagram:

M
f−−−→ Ky yg

M ⊗ Ag −−−→ K ⊗ Ag

∼=
y yh

Mg −−−→ N

Thus we get the desired morphism α:

α = h ◦ g.

The commutativity of the large square and surjectivity of f , shows that the
image of α is equal to N .

We will show that this universal extension is the unique flat extension
of EU → Q.

If Q is not flat, then there is an associated point of Q like x, which goes
to a closed point like s1 ∈ S via f . (i.e. ∃s ∈ S s.t. {x} = Supp(s),
moreover ∃s1 ∈ S s.t. f(x) = s1 and s1 is closed)
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We claim s1 = s0, otherwise x ∈ XU and the closure of {x} in XU is
equal to Supp(s⊗ 1), where s⊗ 1 is the section of Q, induced by s. (Note
that Q⊗ Ag = Q)
So x is an associated point of Q which goes to a closed point, and this is in
contradiction with flatness of Q (see ??)
So f takes x to s0. Now the qoutient of Q by the subsheaf generated by
sections, is obviously an extension of EU → Q which violate universality of
Q. So the assumption that tell Q is not flat, is false ! And Q is flat over S.

Let Q′ be an extension of EU → Q, by universality of Q we get a
morphism of sheaves:

f : Q′ → Q.
Its kernel is nontrivial, so set of associated points of kerf is nonempty. We
have:

x ∈ XU ⇒ (Kerf)x = 0 ⇔ x /∈
⋃

s∈kerf

Supp(s)

Now let x be an associated point of kerf , we conclude x is not in XU .
So associated points of kerf are over s0. But the set of these points is
nonempty (since kerf is not trivial) and moreover:

Ass(kerf) ⊆ Ass(Q′),

which means that Q′ can not be flat. So we have proved the following
theorem:

Theorem 3.1.6 If S is irreducible and regular of dimension one and U ⊆ S
is the complement of a closed point s0 ∈ S, then flat quotients uniquely
extend across s0. That is, given f : X → S and a coherent sheaf E on X,
let XU = f−1(U) and EU = E|XU

. Then a surjection EU → Q to a coherent
sheaf Q that is flat over U extends uniquely to a surjection E → Q where
Q is coherent and flat over S.

�

Now by using the above theorems, we can prove an important theorem
which will play an essential role in the rest of story.

Theorem 3.1.7 (Properness) Let S be a nonsingular curve, and U := S−
{s0} ⊂ S for a point s0 of S. Every family of projective schemes XU ⊆ PnU
with constant Hilbert polynomial P (d), extends uniquely to a family XS ⊆ PnS
such that the Hilbert polynomial of the limit Xs0 ⊆ Pnk(s0) is also P (d).
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Proof: Consider the morphism PnS → S and the coherent sheaf OPn
S

on
PnS. Let Q be the sheaf i∗OXU

on PnU induced by the closed immersion
i : XU ↪→ PnU .
We have the surjection OPn

S
|Pn

U
→ Q and moreover Q is flat over U . By

flatness over nonsingular curves, there is a unique extension OPn
S
→ Q such

that Q is flat over S. We get the result.

Theorem 3.1.8 (Generic Flatness Theorem)Let S be a reduced noetherian
scheme and f : X → S a morphism of finite type. Consider a coherent
sheaf F on X. There is a nonempty open subset U ⊂ S such that FU is flat
over U . Here FU is F|XU

and XU is defined to be f−1(U) = X ×S U .

To prove this theorem we need the following lemma:

Lemma 3.1.9 A and B are integral domain, A is noetherian and B is a
finitely generated A-algebra. There is an element f ∈ A such that Bf is a
free Af -algebra.

Proof: We will prove this lemma by induction on n, the transcendence de-
gree of B over A. Let k be the field of fraction of A. Suppose b1, ..., br are
the generators of B as an A-algebra.

B ⊗A k is a finitely generated k-algebra, so by noether normalization
B ⊗A k is integral over k[f1, ..., fn] with f1, ..., fn ∈ B. Let f denote the
product of denominators appearing in the minimal polynomials of bi ’s.
Then Bf is integral over Af [f1, ..., fn] and therefore it is of finite rank as
an Af [f1, ..., fn]-module. Let rank(Bf ) = m. Consider the following exact
sequence of Af [f1, ..., fn]-modules:

0 → Af [f1, ..., fn]
m → Bf → Q→ 0.

Here Q is a torsion module. There is a filtration for Q:

0 ⊂ Q1 ⊂ Q2 ⊂ ... ⊂ Qn = Q, where Qi+1/Qi ' Af [f1, ..., fn]/Pi

Let us turn to the case where B′ is an integral domain and A-algebra of
smaller transcendence degree. By induction the result follows.

We are now going to prove theorem 3.1.8.

We may assume f is dominant, because otherwise U = S − f(X) is
nonempty and this is the desired open subset of S. We can replace the base
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scheme by an open subset of this scheme. So we can suppose S = SpecA
where A is an integral domain.
Now coverX by a finite number of open affines, SpecB. Write F|SpecB = M̃ .
It is enough to prove the claim for those SpecB that dominates SpecA. Now
by existence of a filtration for M it is enough to prove the statement for
M = B/p. We can finish the proof by using the lemma.

3.2 Flattening Stratification

Keep the setting of the theorem 3.1.8. By induction and using Generic
Flatness (3.1.8), we can find, reduced and locally closed subschemes Vi of S
such that FVi

is flat and S is the distinct union of these Vi:

S =
∐

Vi.

This is called week stratification. Moreover the Hilbert polynomials of the
Fs for s ∈ S vary in a finite set, if f : X → S be a projective morphism
with closed immersion X ⊆ PnS.

Theorem 3.2.1 (Flattening Stratification) Given a projective mor-
phism f : X → S over a noetherian scheme S and a coherent sheaf F
on X, there is a (unique) stratification:

S =
∐

Si

of S by locally closed subschemes Si such that FSi
is flat over each Si and

more generally, given a morphism g : T → S and hence g̃ : X ×S T → X,
then g̃∗F is flat over T if and only if g factors through:

g : T →
∐

Si → S

We may assume S = SpecA, because we can glue the flattening stratifi-
cations for an open cover by their universal property. Also we may assume
T = SpecB. For a given morphism g : T → S we have the following
diagram:

XB
g̃−−−→ XA

f̃

y f

y
SpecB

g−−−→ SpecA
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For a sheaf E on XA, there are always maps:

H i(XA, EA)⊗A B → H i(XB, EB) (∗)

because:
First, Any Cech complex of A-modules like :

0 → H0(XA, EA) → C0(U , EA) → ...→ Cn(U , EA) → 0

becomes a Cech complex for EA := g̃∗E , by tensoring with B.
Second, tensor product is right exact.
Morphisms (∗) are isomorphism if B be flat over A.

Consider a weak stratification S =
∐
Vi of S by previous corollary of

Generic Flatness. Let SpecAi be an affine open subset of Vi, so by theorem
1.2.3 we get the following Cech complex which is an exact sequence of flat
Ai modules for large d (for d ≥ d0):

0 → H0(XAi
,FAi

(d)) → C0(U ,FAi
(d)) → ...→ Cn(U ,FAi

(d)) → 0

Tensoring by k(s) gives us a Cech complex for Fs(d) which is exact because
of flatness. Note that here s ∈ SpecAi. We can choose d0 large enough to
work for every Ai. Therefore we have:

(i) H i(Xs,Fs(d)) = 0 for all s ∈ S and d ≥ d0

We can increase d0 if it is necessary to get the following result (By use
of Stable base change result):

H0(XA,FA(d))
∼−−−→ H0(XAi

,FAi
(d)) for all Ai and d ≥ d0

Moreover by a little bit work on the above exact sequence, we get the
following isomorphism:

(ii) H0(XA,FA(d))⊗A k(s)
∼−−−→ H0(Xs,Fs(d)) for all s ∈

S and d ≥ d0

Let E be a coherent sheaf on S such that its fiber E(s) at s ∈ S has rank
e . Consider the following presentation of E|U :

Of
U

ψij−−−→ Oe
U −−−→ E|U → 0

Where U is a neighborhood of s. Note that this presentation exists, by the
Nakayama lemma.
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Consider the locally closed subset Ve of S, where Ehas constant rank e.
we can put a scheme structure on it, by patching via the equations ψij = 0.
It is not difficult to prove the following:

g∗E is locally free of rank e

m

g(T ) ⊂ Ve (as sets) and g∗ψij = 0 for all ψij

m

g : T → S factors through Se

When e varies over local ranks of E , we get a locally free stratification
S =

∐
Se associated to E .

Now choose n + 1 to exceed the degree of the Hilbert polynomial of each
Fs in the family. So by (i) the ranks of H0(Xs,Fs(d0)), H

0(Xs,Fs(d0 +
1)), ..., H0(Xs,Fs(d0 + n)) give us the value of the Hilbert polynomial of F
in n+1 points: d0, d0+1, ..., d0+n. Thus if we have these ranks we can then
compute the corresponded Hilbert polynomial. Since f∗F(d0), f∗F(d0 +
1), ..., f∗F(d0 + n) are the sheafifications of

H0(XA,FA(d0)), H
0(XA,FA(d0 + 1)), ..., H0(XA,FA(d0 + n))

, by (ii) we see that H0(Xs,Fs(d0)), H
0(Xs,Fs(d0 + 1)), ..., H0(Xs,Fs(d0 +

n)) are the fibers of f∗F(d0), f∗F(d0 + 1), ..., f∗F(d0 + n).

Now take a locally free stratification for each of the sheaves f∗F(d0), f∗F(d0+
1), ..., f∗F(d0+n), and intersect the locally closed sub-schemes that we have
gotten above. This gives us a locally free stratification indexed by (distinct)
Hilbert polynomials, with the property that

g∗f∗F(d0), g
∗f∗F(d0 + 1), ..., g∗f∗F(d0 + n)

are simultaneously locally free if and only if g : T → S factors through∐
SP (d). Further intersecting with the schemes obtained from the locally

free stratifications of the rest of the sheaves f∗F(d0 + n+ 1), ... only serves
to shrink the scheme structure on SP (d) leaving the same underlying reduced
scheme VP (d). Since S is noetherian, it follows that after finitely many such
intersections, we obtain the limit scheme structure with the property that:
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g : T → S factors through
∐

SP (d)

m

g∗f∗F(d) is locally free for all d ≥ d0

Suppose g∗f∗F(d) is locally free for all d ≥ d0. by stable base change result
the following maps are isomorphism for sufficiently large d:

g∗f∗F(d) = H0(X,F(d))⊗A B → H0(XB,FB(d)) = f̃∗g̃
∗F(d)

Thus f̃∗g̃
∗F(d) is locally free for enough large d. Therefore by constancy of

the Hilbert polynomial, g̃∗F(d) is flat over T .

Conversely Consider g̃∗F(d) is flat over T . Let t ∈ Spec(B) maps to
s ∈ Spec(A), so Spec(k(t)) is flat over Spec(k(s)) therefore by (i) we have:

0 = H i(Xs,Fs(d))⊗k(s) k(t)
∼−−−→ H i(Xt,Ft(d))

for d ≥ d0 and all i > 0. Now by flatness of g̃∗F(d), f̃∗g̃
∗F(d) is locally

free for all d ≥ d0. The map g∗f∗F(d) → f̃∗g̃
∗F(d) induces the following

isomorphisms fibers:

H0(Xs,Fs(d))⊗k(s) k(t)
∼−−−→ H0(Xt,Ft(d))

using (ii) and cohomology and base change. By Nakayama every map from
a coherent sheaf to a locally free sheaf, which is isomorphism on fibers is
itself an isomorphism. So we conclude.
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Chapter 4

Construction of Hilbert and
Quot Schemes

4.1 Constructions

Let us indicate that in the subsection 1.3 of the first chapter we have dis-
cussed about the Grassmannian scheme and we have shown that this scheme
is indeed a fine moduli space for the moduli problem G(m,E). In this chapter
we will focus on a more sophisticated cases.

In order to define the Quot functor, let us fix a base scheme S, a pro-
jective S-scheme X, a coherent sheaf E on X and a polynomial P (d). Let
us denote the coherent quotient q : ET → Q→ 0 by the pair < ET , q >. We
say that two such pairs < ET , q > and < ET , q′ > are equivalent if there is
a commuting diagram:

ET −−−→ Q −−−→ 0∥∥∥ y
ET −−−→ Q′ −−−→ 0,

Definition 4.1.1 The quot functor is defined as follows QuotE,P (d):

QuotE,P (d)(T ) = {< E , q >; Q is flat over T with Hilbert polynomial
P(d)}/∼

QuotE,P (d)(f : W → T ) = f ∗X

Theorem 4.1.2 We keep the above notation. The functor QuotE,P (d) is
always represented by a projective scheme Quot(E , P (d)).

41
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Proof : Let us first prove the theorem for X = PmA and E = On
Pm

A
(l), for some

integer l and m. We proceed in 4 steps
Step1: We plan first to show that for sufficiently large d0 there is a

transformation of functors QuotE,P (d) → G(·), where

G := Gr(n

(
m+ l + d0

l + d0

)
− P (d), H0(PmA , E(d0)))

and G(·) is its functor of points.

Let q : ET → Q ∈ QuotE,P (d)(T ), and let K be its kernel. Notice that
ET and Q are flat over T , hence K is flat over T , with constant Hilbert
polynomial P ′(d) := n

(
m+l+d
l+d

)
− P (d) on the fibers.

Now for each such K we have Kt ↪→ Et. Since they are subsheaves
of a fixed locally free sheaf for each t, we may apply the uniform vanishing
theorem, to deduce that there is d0 independent of t and the chosen element
q such that

H i(Pmk(t),Kt(d)) = 0forall t ∈ T, i > 0, and d ≥ d0

By flatness the sequences

0 → Kt → Et → Qt → 0

are all exact, and uniform vanishing for Kt and Et implies uniform vanishing
forQt. These vanishing together with cohomology and base-change theorem
(Theorem 1.2.1.5) tells us that the sequence

0 → π∗K(d0) → π∗ET (d0) → π∗Q(d0) → 0

is exact, where π : PnT → T is the projection. Hence this sequence gives a
T -valued point of G. Notice that π∗Q(d0) and π∗K(d0) of rank P (d0) and
P ′(d0) respectively. This completes the proof of the first step.

Step2 We have already constructed the map to the Grassmannian. As
the second step we shall discover the image.
Let K be the universal subbundle on the Grassmannian. Let Quot(E , P (d))
be the term in the flattening stratification of G with respect to F over which
F is flat with Hilbert polynomial P (d0 + d).

Consider the cokernel

π∗K → EG(d0) → F → 0
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where the first map is the composition π∗K → π∗π∗EG(d0) → EG(d0).
From the uniform vanishing we know that Kt(d0) is generated by its

global sections, therefore by the cohomology and base change the natural
map ψ : π∗π∗K(d0) → K(d0) is surjective. Thus if T → G is a morphism
associated to the quotient EQuot(E,P (d)) → F(−d0)|Pm

Quot
, then (∗) pulls back

to
π∗π∗K(d0) → ET (d0) → Q(d0) → 0

where the first map factors through ψ. This proves that the transformation
factors through Quot(.) and moreover the universal quotient inverse the
transformation.

Step3 By the prior two steps Quot(E , P (d)) is constructed as a quasi-
projective sub-scheme of G. Now we want to show that is in fact projective.
But actually this is the content of the Theorem 3.1.6 together with the
Valuative Criterion.

Step4 In this step we complete the proof for the general case. Let E be
a coherent sheaf on a projective scheme i : X ⊂ PmA . Let T be an S-scheme.
Flat quotients of ET push forward under iT to flat quotients of On

Pm
T

which

determines a T -valued point of Quot(On
Pm

T
, P (d)). Let G be the kernel on

0 → G → On
Pm

Quot
(l) → iQuot∗EQuot → 0

and choose d1 ≥ d0 so that π∗π∗G(d1) → G(d1) is surjective. We have
already seen that π∗Q(d1) is locally free on Quot by cohomology and base
change. It follows that the zero locus of π∗G(d1) → π∗Q(d1) is a closed
subscheme Z ⊂ Quot(On

Pm
A
(l), P (d)). Over this subscheme,the universal

quotient lifts to a quotient: iZ∗EZ → Q|Pm
Z

and it follows that Q|Pm
Z

is the
push-forward of a sheaf on XZ which is the universal quotient for EZ . In
other words, Quot(E , P (d)) := Z represents Quot(E , P (d)).

�

Definition 4.1.3 The Hilbert functor is defined as follows

HilbX,P (d)(T ) ={closed sub-schemes Z ⊆ X ×S T which are flat over T
with Hilbert polynomial P (d)}

the correspondence of morphisms is clear.

Notice that via the identification i : Z ↪→ XT with the quotient OXT
→

i∗OZ we have HilbX,P (d) = QuotOX ,P (d), therefore we in particular deduce
the following corollary.
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Corollary 4.1.4 The functor HilbX,P (d) is representable by a projective
scheme Hilb(X,P (d)).

4.2 Some examples and applications

Example-Theorem 4.2.1 Let A be a Dedekind domain and S = Spec A.
Let X be a projective scheme over S. Assume that for infinitely many s ∈ S,
the fiber Xs contains a closed variety with Hilbert polynomial P (d) ( we say a
solution of type P (d)). Then the fiber over the generic point η also contains
a solution of the same type over a finite field extension of k(η).

Proof:Consider the Hilbert scheme H := HilbX,P (d). By the theorem
4.1.2, H is projective. Therefore it consists only finitely many components,
this together with our assumption implies that it has a component whose
image contains infinitely many primes. On the other hand by properness of
H the image must be closed, thus the component dominate S.

Now any L-rational point in the fiber of the component over S gives
the desired solution, where L is a finite field extension of k(η). Notice that
Hη(L) is non-empty for some finite extension L (c.f. [3], Proposition 3.2.20).

�

Example 4.2.2 Suppose X is a projective k-scheme for a field k and let
P (d) be the Hilbert polynomial of a locally free sheaf Q of rank n − m
which is a quotient of a trivial bundle via g : On

X → Q. The morphism
g gives us a k-rational point q ∈ Quot(On

X , P (d)) and a morphism fq :
X → Gr(m,n). Note that the universal quotient OX×Quot → Q is locally
free in a neighborhood of X × {q}. By properness theorem there is an open
neighborhood q ∈ U in the Quot scheme such that Q|X×Quot is locally free
of rank n−m. Therefore all the points in U parametrize morphisms X →
Gr(m,n). Thus components of the Quot scheme containing U could be seen
as a compactification of a space of maps from X to the Grassmannian.

Example 4.2.3 Let P (d) be the Hilbert polynomil of a linear subspace
V ⊂ Pn−1

k of dimension m − 1. We have an inclusion of projective bun-
dles P (K) ⊂ Pn−1

k × G, which is flat over G and we have gotten it from
the universal subbundle K ↪→ On

G. This gives us a morphism Gr(n,m) →
HPn−1

k ,P (d). Moreover one can show that the only projective subschemes of

Pn−1
k with Hilbert polynomial P (d) are linear subspaces. Therefore we have

an isomorphism Gr(n,m) ' HPn−1
k ,P (d).
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4.3 Infinitesimal deformations of the Quot

scheme

In this section we study local properties of Quot and therefore in particular
Hilb scheme by studying infinitesimal deformations. We will derive to a
criterion for smoothness of Quot scheme in terms of the vanishing of Ext.
Our discussions also leads to a dimension estimate for the Quot scheme.

In this chapter byX we mean a nonsingular projective variety over a field
k. Consider the projective scheme Y := Quot(On

X , P (d)). Let q : On
X → Q

be a k-rational point of the Quot scheme, and let K be its kernel. Giving a
vector v in Zariski tangant space to Y at y is equivalent to giving a section
v̄ which makes the diagram

Spec(k) −−−→ Yy ∥∥∥
Spec(k[ε])

v−−−→ Y

commutative, i.e. giving v is equivalent to giving a k[ε]-valued point v̄ :
On
Xk[ε]

→ Q which extends the quotient q : On
X → Q. As an example of

such a flat extension, we have the trivial one q ⊗ 1.

Lemma 4.3.1 Let B be a finitely generated k-algebra, and A is a Noethe-
rian local k-algebra with residue field k. Now suppose that Bn

A → Q is a
quotient of BA-modules with kernel K. Then Q is flat over A if and only if
mAK = K ∩mAB

n
A

Proof: Consider the following commutative diagram

mAK −−−→ mAB
n
A

v̄−−−→ mAQy y y
K −−−→ Bn

A

q−−−→ Qy y y
K β−−−→ Bn −−−→ Q,

where the lower two rows and all the columns are exact. Now Q is flat if and
only if β is injective, if and only if mAK = K ∩mAB

n
A. Note that k = A/m

is a test module for flatness (i.e. a finitely generated module M over BA is
flat over A if and only if TorA1 (k,M) vanishes).
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Proposition 4.3.2 Let q ∈ Quot(On
X , P (d)), corresponds to a quotient

On
X → Q with kernel K. The tangent space to Quot(On

X , P (d)) at q is
isomorphic to HomOX

(K,Q) as a vector space over k.

Proof : First we prove the Theorem for the affine case. So let B := k[X]
and suppose that (A,m) is a local ring with residue field k. Now v̄ : Bn

A → Q
is a flat extension of q : Bn → Q (i.e v reduces to q mod mA).

Consider the short exact sequence K → Bn → Q and let us write a
presentation of K inside Bn

F ′ r−−−→ F
g−−−→ Bn

Where F and F ′ are free k-modules. Since v̄ : Bn
A → Q is an extension

of q : Bn → Q, the Nakayama’s Lemma implies that the above presentation
extends to the following presentation of K

F ′
A

r−−−→ FA
g−−−→ Bn

A

For a given lifts r and g, since r ◦ g is zero modulo ε, the following
composition of morphisms

F ′
A

r−−−→ FA
g−−−→ Bn

A

q⊗1−−−→ QA

descends to a morphism F ′ → εQ. Since q ⊗ 1 ◦ g is already zero mod ε
therefore the morphism F ′ → εQ does not depend upon the lift r, and thus
we can simply denote it by ϕg.

Our strategy to work out the theorem, is simply to breaks down the
correspondence to the following one to one correspondences

TqQuot(X,P (d))

m

{v : Bn
A → Q; v is a flat extension of q : Bn → Q}

m

{g : FA → Bn
A; g is a lift of g s.t. ϕg = 0}/ ∼

(g ∼ g′ ⇔ Im(g) = Im(g′))

m

Hom(K, εQ),

here A = k[ε].
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The top correspondence has already described. The second one from up
to down, as we mentioned earlier is given by taking a presentation for K.
Vise versa, to an arbitrary lift g, we associate its coker(g) : Bn

A → Bn
A/K,

where K := Im(g). We need also to verify that coker(g) is flat. For each
r, the image of g ◦ r is in K ∩ εBn

A on the other hand since ϕg = 0 thus it
is also in εK = εK. Take x ∈ K ∩ εBn

A. Choose y ∈ FA such that g(y) = x.
Then the image of y in F is in the image of F ′, so we can find a z ∈ F ′

A with
the same image in F , therefore r(z)− y ∈ εF , and hence g ◦ r(z)− x ∈ εK.
Therefore εK = K ∩ εBn

A, so that from the previous lemma we deduce that
coker(g) is flat.

To prove the last correspondence assume that a lift g with ϕg = 0 is
given, then (q ⊗ 1) ◦ g descends to a morphism F → εQ as above, and
further to

ψg : K → εQ

We should point out that the above correspondence only depends to the
image of g, and if ϕg = ϕg′ then Im(g − g′) ⊆ εK, so they have the same
image and thus define the same class.

Finally, any morphism ψ : K → εQ gives rise to a morphism FA → QA

which factors through a g such that ψg = ψ. This completes the proof for
the local case. To globalize the result choose an affine cover {Ui} where
Ui = Spec(Bi). Over each Ui we know that v : On

XA
→ Q gives ϕi ∈

HomBi
(Ki, Qi) from the above local version.Since these local data are agree

on the overlaps they patch together to define an element in HomOX
(K,Q).

Vise versa an element of HomOX
(K,Q) gives local quotients, which patch

to a global extention of q.

�

Using the above theorem and more advance techniques of deformation
theorey one has proved the following theorem.

Theorem 4.3.3 Let X → S be a projective morphism of algebraic schemes,
F a coherent sheaf, flat over S, and π : Q := Quot(F , X) → S the asso-
ciated Quot scheme over S. Let s ∈ S be a k-rational point and q ∈ Qs

corresponding to a coherent quotient f : F → Q with kernel K. Let

fs : Fs → Qs

be the restriction of f to the fiber Xs, whose kernel is Ks = K⊗OXs(by
the flatness of F). Then there is an exact sequence

0 → Hom(Ks,Qs) → TqQ
dπq−−−→ TsS → Ext1OXs

(Ks,Qs)



48CHAPTER 4. CONSTRUCTION OF HILBERT AND QUOT SCHEMES

Moreover π is smooth at q if Ext1OXs
(Ks,Qs) = 0.

Proof: c.f. [9], Proposition 4.4.4.

Now we have enough tools to treat a wide domain of various applications.
So let us back to the earth, and give a sort of examples which will give us of
course this comprehension that theorems would have something to do with
reality. The first part of the following example will in particular illustrate
some local properties of the Hilbert scheme of points on a smooth curve,
the Hilbert scheme of points will be studied in full generality in the next
chapter.

Example 4.3.4 Let C be a nonsingular projective curve, then the associ-
ated Hilbert polynomial P (d) is either linear or constant. So we will first
consider the Quot scheme Quot(On

C , P (d)) with constant Hilbert polynomial
P (d).

i) Let P (d) = a, and q be a k-valued point of Quot(On
C , a), q : On

C → QZ,
where QZ is supported on a zero dimensional sub-scheme Z ⊂ C and the
kernel K is locally free of rank n. By theorem 4.3.3, the tangent space to
Quot(On

C , a) at q is:

dimkTqQuot(On
C , a) = Hom(K,QZ) = dimkHom(OC , Ǩ ⊗ QZ)

= dimkΓ(X, Ǩ ⊗ QZ) = na,

on the other hand by the lemma1.2.7

Ext1(K,Q) = H1(X, Ǩ ⊗ QZ)

but since Ǩ ⊗ QZ is supported on a zero dimensional locus the last term
vanishes, and therefore Quot(On

C , a) is non singular by the above theorem.

ii) Let P (d) = (n−m)d + b, where n ≥ m ≥ 0. Consider the following
short exact sequence correspond to the point q ∈ Quot(On

C , P (d))

0 → K −−−→ On
C

q−−−→ Q → 0

Tensoring with Ǩ and taking long exact cohomology sequence

H1(C, Ǩ ⊗ On
C) → H1(C, Ǩ ⊗ Q) → 0
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But the right hand side is isomorphic to Ext1(K,Q), by the lemma 1.2.7.
Therefore the vanishing of H1(C, Ǩ) implies the vanishing of Ext1(K,Q)
and thus the Theorem 4.3.3 implies the smoothness of Quot(On

C , P (d)) at
q. The Quot scheme is not in general connected, but this can be proven for
the lower dimensional case, namely for curves and surfaces (for instance
see [2], section 7.2).

Let us make a more concrete example.

Example 4.3.5 Let X = (X0, ..., X3) be the homogeneous coordinates of
P3 consider the following family of curves over A1 with parameter u

Cu = Proj(
k[X]

(X2, X3)
) ∪ Proj( K[X]

(X1, X3 − uX0)
)

If u 6= 0 then Cu consists of two disjoint lines, while C0 is a degenerated
conic. A simple computation shows that

Pu(d) =

{
2d+ 2 u 6= 0
2d+ 1 u = 0,

So from Theorem 3.1.3 we see that {Cu} can not be a the set of fibers of
a flat family of closed subschemes of P3.

We now try to construct a morphism whose fibers are the Cu’s. Consider
the closed subscheme χ := Proj(k[u][X]

J
) ⊂ P3 × A1 where

J = (X2, X3)∩(X1, X3−uX0) = (X1X2, X1X3, X2(X3−uX0), X3(X3−uX0)).

Since locally on k[u][X]
J

, any non constant polynomial g(u) is not a zero
divisor, therefore by the Theorem 3.1.5 the above scheme is flat over A1.
The fibers of χ are

χu =

{
Cu u 6= 0

C0 ∪ Proj( k[X]

(X1,X2,X2
3 )

) u = 0,

Thus we see that χ0 has obtained from C0 by adjoining an embedded
point in (1, 0, 0, 0). Notice that Theorem 3.1.7 ensures us that χ is uniquely
determined by the fibers over A1\{0}.

We use this family to show that HilbP3,2(d+1) is singular at [X], where
X := χ0.

If u 6= 0 then χu = Cu is a pair of disjoint lines. Thus we have
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dim HomOP3 (Iχu ,Oχu) = dim HomOχu
(Iχu/I2

χu
,Oχu) = h0(χu,Nχu) = 8

On the other hand Ext1(Iχu ,Oχu) = H1(χu,Nχu) = 0, therefore by the
Theorem 4.3.3 c(u) is a nonsingular point and the above computation shows
that the tangent space has dimension 8.

Notice that the family χ over A1 defines the classifying map

c : A1 → HilbP3,2(d+1).

This shows that c(0) and c(u) belong to the same irreducible component
of HilbP3,2(d+1). Thus to prove that [X] is singular, it is sufficient to show
that h0(X,NX) > 8.

X is defined by J0 := (X1X2, X1X3, X2X3, X
2
3 ). We have the following

surjective morphism of graded k[X0, . . . X3]-modules

k[X0, . . . , X3](−2)⊕4 e−−−→ Jo → 0,

the left hand side is shifted in order to get a morphism of degree zero.
Let us extend e to a resolution of J0. Let e1, . . . , e4 be the canonical basis

for k[X0, . . . , X3](−2)⊕4. The kernel consists of four relations

ker(e) :=< X3e1 −X2e2, X3e2 −X1e3, X3e2 −X1e4, X3e3 −X2e4 > .

So we get
r : k[X](−3)⊕4 → ker(e) → 0

by sending e′1 7→ X3e1 − X2e2, e
′
2 7→ X3e2 − X1e3, e

′
3 7→ X3e2 − X1e4 and

e′4 7→ X3e3 −X2e4.
The kernel of the above morphism is generated only by one element

X3e1 −X3e2 +X2e3 −X1e4.
So we get the following resolution for J0

0 → k[X](−4)
B−−−→ k[X](−3)⊕4 A−−−→ k[X](−2)⊕4 e−−−→ J0 → 0 (?)

Where A and B are given by the following matrices

A =


X3 X3 0 0

−X2 0 X3 0
0 −X1 0 X3

0 0 −X1 −X2
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B =


X3

−X3

X2

−X1


Taking hat from the above resolution (?), we get

0 → OP3(−4)
B−−−→ OP3(−3)⊕4 A−−−→ OP3(−2)⊕4 e−−−→ IX → 0

By taking Hom(−,OX) we obtain the following exact sequence

0 → NX −−−→ OP3(2)⊕4 AT

−−−→ OP3(3)⊕4

Since the global section functor is left exact we get

0 → H0(X,NX) −−−→ H0(X,OP3(2)⊕4)
AT

−−−→ H0(X,OP3(3)⊕4).

Therefore H0(X,NX) can be identified with

ker[AT : H0(X,OP3(2)⊕4) → H0(X,OP3(3)⊕4)].

So we see that the the column vectors of the following matrix


X2

1 X1X0 X2
2 X2X0 X3X0 0 0 0 0 0 0 0

0 0 0 0 0 X2
1 X1X0 X3X0 0 0 0 0

0 0 0 0 0 0 0 0 X2
2 X2X0 X3X0 0

0 0 0 0 0 0 0 0 0 0 0 X3X0


give a basis for H0(X,NX), and therefore h0(X,NX) = 12 > 8. So we have

shown that [X] is a singular.

Now, we construct another flat family Y over A1.

Y := Proj(k[v][X0, X1, X2, X3]/I)

where

I = (X1X2, X1X3 + vX1X0, X2X3 + vX2X0, X
2
3 − v2X2

0 )
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= (X1, X2, X3−vX0)∩(X3+vX0, X1X2).

Thus we see that for v 6= 0, Yv is the disjoint union of a conic and a
point. Notice that the Theorem 3.1.6 guarantees the flatness of the family
Y over A1.

As we mentioned for all v 6= 0, Yv = Qv ∪ {pv}, where Q is a conic and
pv is a point. So we have

h0(Yv,NYv) = h0(Qv,NQv) + h0(Qpv ,Npv) = 8 + 3 = 11

and h1(Yv,NYv) = 0. Hence for all v 6= 0, Yv is a nonsingular point of
a component of dimension 11 of Hilb(P3, 2(d + 1)). So we realize that [X]
belongs to two irreducible components of Hilb(P3, 2(d+ 1)) of dimensions 8
and 11. Let us indicate that this example illustrates that the Hilbert schemes
are not necessarily irreducible and even equidimensional.



Chapter 5

Hilbert scheme of points

5.1 Introduction

In this chapter we will actually try to study the Example 4.3.4, in more
general case, namely when X is a quasi-projective scheme.

Fix an algebraically closed field k. Let X be a quasi-projective scheme
over k with an ample line bundle O(1). The Hilbert scheme Hilb(X,P (d))
of X parametrizes all closed, proper sub-schemes of X, with Hilbert poly-
nomial P (d). Set P (d) = n, where n is an integer, and set X [n] :=
Hilb(X,P (d)). As the degree of Hilbert polynomial is 0, thusX [n] parametrizes
the zero dimentional sub-schemes of length n of X, i.e.

dimH0(Z,OZ) =
∑

p∈Supp(Z)

dimk(OZ,p) = n

Recall that we have already seen in Example for the simplest case, when
X := C is a nonsingular curve, X [n] is also nonsingular. In order to get
some impression let us have a look to the simplest case, namely when X =
Spec k[x] or more generally X = Spec k[x]S, where S is a multiplicatively
closed subset of k[x].

Example 5.1.1 Let t1, . . . , tn be independent variables over a commuta-
tive ring A. Let s1, . . . , sn denote the elementary symmetric functions in
t1, . . . , tn. Denote the polynomial ring of symmetric functions as Symn

A =
A[s1, . . . , sn]. Let S denote the multiplicatively closed subset of A[x]. It
can be shown in elementary fashion that the Hilbert functor of n-points on
Spec k[x]S is represented by the spectrum of fraction ring H := (Symn

A)S(n),
where S(n) = {f(t1) . . . f(tn); f ∈ S} and the universal family is the ideal
generated by ∆n(x) ∈ H ⊗A A[x]S, where ∆n(x) =

∏n
i=1(x − ti) ( for the

53
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details we refer to [11]). As an application we consider the following cases:

i) Let S = {f i} where f ∈ k[x]. Then Spec(k[x]S) = D(f) is
a basic open subscheme of A1

k, the affine line over k. The Hilbert scheme
of n-points on D(f) is then the spectrum of (Symn

k)S(n), where S(n) =
{(f(t1) . . . f(tn))

m}. Hence the Hilbert functor of n- points on a basic open
subscheme D(f) of the line is represented by a basic open subscheme D(f(t1) . . . f(tn))
of the Hilbert scheme of n-points on the line.

ii) We produce a Hilbert scheme without rational points. Assume
that the base ring A is an integral domain and k its field of fractions. Let
S = A[x]× be the set of non-zero polynomials. We then have A[X]S = k(X)
is the function field of the line. Clearly, since k(X) is a field, the Hilbert
scheme of n-points on Spec(k(X)) has no k-valued points. The coordinate
ring of the Hilbert scheme is the fraction ring of the symmetric functions
Symn

k with respect to the set S(n) of products f(t1) . . . f(tn), for any non-
zero f ∈ k[x].

The symmetric nth power of X quotiented by the action of Sn, given by
the permuting the factors X(n), parametrizes effective 0-cocycles of degree
n on X. As a remarkable results of this chapter we will discover a morphism
ρ : X [n] → X(n) and moreover we will prove that is in fact the resolution of
singularities of X(n) when X is either a curve or a surface.

5.2 Preliminaries

Definition 5.2.1 Suppose X is a quasi-projective variety over k and G is
a group acting on X(by automorphism).A quotient of X by G is a variety Y
together with a surjective morphism π : X → Y which satisfy the following
conditions:
(a)The fibers of π are the orbits of G.
(b)Any G-invariant morphism ϕ : X → Z to a scheme Z factors through π.

If the quotient exists, is unique up to isomorphism. We denote it by X/G.
If G is finite and X is quasi-projective, there exists the quotient of X by G:

Theorem 5.2.2 If X is a quasi-projective variety with an action of a finite
group G then the quotient X/G exists as a variety.
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Proof: We just explain the sketch of the proof. First we consider that X
is affine. Denote the affine coordinate ring of X by k[X] Condition (b)
tells us that if X/G exists then k[X/G] should be the ring of invariants
k[X]G ⊂ k[X]. As k[X]G is finitely generated k-algebra, it is natural to
define:

X/G := Spec(k[X]G)

Now k[X]G ↪→ k[X] induces a morphism from X to the affine variety
Spec k[X]G:

π : X → X/G

One can prove easily that π is surjective and its fibers are the orbits of the
action G on X. So we have the result for affine X.

If (Ui) is an affine cover, then we can make another affine cover such
that every orbit is contained in one of the Ui. Make Wi in this way:

Wi =
⋂
g∈G

g(Ui)

Now (Wi) is the desired cover which is G-invariant. This is really an open
affine cover, because X is quasi-projective and therefore separated, so the
intersection of affines is affine. It is not difficult to show that Wi/G glue to
give the quotient X/G.

In general case it is not easy to say if there is a quotient of X by G or
not.

As a special case of the above theorem, if Sn is the symmetric group
which acts on a quasi-projective variety Xn, by permutation of the factors,
then the symmetric power X(n) := Xn/Sn exists.

Example 5.2.3 (a) By using fundamental theorem on symmetric function
k[x1, ..., xn]

Sn = k[s1, ..., sn] where si are the elementary symmetric func-
tions in the xi. Therefore (A1)(n) = An. Similarly (P1)(n) = Pn.

(b) We want to calculate (A2)(2). Let x1, y1 and x2, y2 be the coordinates
on the two factors. Now put x := x1−x2, y := y1−y2, x

′ = x1+x2, y
′ = y1+

y2. Obviously x, y, x′, y′ are also coordinates on (A2)(2). But transposition
τ of S2 acts on (A2)2 as follows:

τ(x) = −x, τ(y) = −y, τ(x′) = x′, τ(y′) = y′

Therefore k[x, y, x′, y′]τ = k[x, y]τ [x′, y′]. Now we have: τ(xiY j) = (−1)i+jxiyj(i.e.
every monomial in x, y is an eigenvector for τ). So k[x, y] has a basis of
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eigenvectors for τ . Therefore k[x, y]τ has the basis of all eigenvectors with
eigenvalue 1 for τ , i.e. the eigenvectors xiyj with i+ j even. Put:

u = x2, v = xy, w = y2

Therefore k[x, y, x′, y′]S2 is the subalgebra generated by u, v, w, x′, y′,
which is isomorphic to k[u, v, w, x′, y′]/(uw− v2). Moreover we see that the
singular locus of (A2)(2) is the image of the diagonal in (A2)2.

5.3 Hilbert-Chow morphism

5.3.1 A Rough Description of The Idea

In this sub-section we would like to evolve the ideas behind the construction
of Hilbert-chow morphism. In this description we avoid to work over general
base scheme, so fix an algebraically closed field k. Let H ⊂ Pd × P̌d be the
incidence correspondence, i.e. {(x, l);x ∈ l}. H is a fiber bundle over Pd
with fiber Pd−1. Let Z be a closed sub-scheme, flat, of degree n. Consider
the following diagram

Z∗ := p−1Z ↪→ H
p̌−−−→ P̌d

p

y
Z ↪→ Pd,

where p and p̌ are the projections. The main idea is to transmit a zero
dimensional scheme Z of degree n inside Pn to a divisor in P̌n via the above
projections, more precisely Hq := p̌(p−1(q)) is a divisor in Div1(P̌d), sending
[Z] 7→

∑
q∈supp(Z) len(OZ,q)Hq, defines a morphism

ρ : (Pd)[n] → Divn(P̌d).

On the other hand sending (q1, . . . , qn) to
∑

qi
Hqi defines a morphism

ch : (Pd)(n) → Divn(P̌d),

which is called chern morphism. Now clearly ρ factors through ch

(Pd)[n]

↙ ↓

(Pd)(n) → Divn(P̌d).
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Over a general base scheme S, this situation is much harder. Our next
task is to plow this ahead!

To this goal we first introduce a construction of Mumford which asso-
ciates to a coherent sheaf F on a scheme Y an effective Cartier divisor divF
on Y .

5.3.2 Some homological stuff

Lemma 5.3.2.1 If (A,m) is a regular local ring, then:
a) for every M , pd(M) ≤ dimA.

b) if k = A/m, then pd(k) = dimA.

Proof : c.f. [6], p. 131.�

Lemma 5.3.2.2 Let A be a regular local ring of dimension n and let M be
a finitely generated A-module. Then we have

pd(M) + depth(M) = n

Proof: c.f. [6], p. 113.�

Lemma 5.3.2.3 Let A be a regular local ring and M an A-module that
admits a resolution

0 → An
r−−−→ An

g−−−→ M → 0.

Then the class of det(r) ∈ A/A× depends only on M and not on the reso-
lution chosen, moreover det r ∈ A/A× is not a zero divisor.

Proof: Fix a surjective map g : An → M . The possible r′ are obtained
from r by composing with an automorphism α of An. Thus det(r′) =
det(α)det(r), with det(α) ∈ A×.

Let g : An → M be given by the choice of a set {g1, . . . , gn} of gen-
erators of M . We obtain any other choice of generators by successively
adding removing generators. Assume that g′ : An+1 → M be given by
g1, . . . , gn, x ∈M . Write x =

∑
aigi. Thus from a given resolution

0 → An
r−−−→ An

g−−−→ M → 0.

we get a resolution

0 → An+1 r′−−−→ An+1 g′−−−→ M → 0.

where r′ =

[
[r] 0

a1 . . . an 1

]
, thus det(r′) = det(r). �
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Lemma 5.3.2.4 Let 0 → En → En−1 → . . .→ E0 → 0 be an exact sequence
of locally free sheaves on a scheme Y . then there is a canonical isomorphism⊗

(det Ei)−1i → OY .

Proof: c.f. [2], Lemma 7.1.12.

Lemma 5.3.2.5 Let X be a smooth projective variety of dimension n. let
F be a coherent sheaf on X × S which is flat over S. Then F admits a
locally free resolution of length n.

0 → En → En−1 → . . .→ E0 → F → 0

Proof: c.f. [2], Lemma 7.1.7.

5.3.3 Construction of div(F)

Let X be a smooth connected variety over k and Let F be a coherent sheaf
on X with Supp(F) 6= X. For an irreducible hypersurface V ⊂ X let [V ] be
its generic point. Then F[V ] is an A := OX,[V ]-module. Since A is a DV R,
by Lemma 5.3.2.1 and Lemma 5.3.2.2 the projective dimension of F[V ] is
equal to one. Thus there exist a free resolution

0 → An
r−−−→ An

g−−−→ M → 0.

Let mV be the order of vanishing of det(r). Note that the Lemma
5.3.2.3 guarantees that this order mV is not depend upon the choice of the
resolution. So we may define

div(F) =
∑
V

mV [V ].

Note that the sum is finite becausemV can only be nonzero if V ⊂ Supp(F).
Our goal is to construct such a divisor in a relative situation. So assume

that F is a coherent sheaf on X ×S, flat over S. This is not as good as the
above case, but at least we know from 5.3.2.5 that F admits a locally free
resolution of length n

0 → En → En−1 → . . .→ E0 → F → 0.

Now let U ⊂ X × S be an open subset such that all Eis are free on U ,
and V := U \ Supp(F). Note that by our assumption V is not empty. We
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restrict the above resolution to V then the Lemma tells that we have an
isomorphism

OX×S|V ∼=
n⊗
i=0

det(Ei)(−1)i|V

On the other hand det(Ei) is isomorphic to OX×S over U ; the isomorphism
is unique up to a unit. So we have the following isomorphism

n⊗
i=0

det(Ei)(−1)i|U ∼= OX×S|U

which is unique up to a unit. The composition of the above isomorphism
gives a section f ∈ OX×S(V )∗ unique up to a section of OX×S(U)∗. Since
V is an open dense subset of U , any section of OX×S(V )∗ defines a section
of K∗(U). Therefore we may associate to our choice of the resolution and of
the open subset U a Cartier divisor on U . It can be shown that the Cartier
divisor we have just constructed locally does not depend upon the choice
of resolution, and thus glue to give an effective Cartier divisor div(F) on
X × S.

Notice that this construction of div(F) is compatible with base change.
Indeed for a given morphism g : T → S the pullback of a resolution of F
0 → En → En−1 → . . .→ E0 → F → 0. on X × S

0 → (En)T → (En−1)T → . . .→ (E0)T → FT → 0.

is a resolution of FT . Hence the pullback of div(F) is div(FT ).
So finally we may counstract the Hilbert-Chow morphism ρ : X [n] →

X(n).Just we have only to modify the situation in subsection 5.2.1 for the
relative case. Let H be the incidence correspondence as before. Let Z ⊂ PnS
be a closed subscheme, flat of degree n over S. Let F := (p̌S)∗(OZ∗).
Then F is a coherent sheaf on P̌nS, flat over S. Clearly Supp(Fs) 6= P̌n.
Thus div(F) is a relative Cartier divisor on P̌nS, and we have constructed
ρ : X [n] → Divn(P̌d). Since div(Fs) =

∑
q∈supp(Zs)

len(OZ,q)Hq, thus we see

that the support of the image of X [n] is X(n), so if we give X [n] the reduced
structure, the morphism factors through X(n). Thus we have proven the
following Theorem

Theorem 5.3.3.1 Let X be a smooth projective variety. There is a sur-
jective morphism ρ : X

[n]
red → X(n), given on the level of points by Z 7→∑

p∈Supp(Z) leg(OZ,p)[p].
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5.4 Curves and Surfaces

Let X be a nonsingular quasi-projective scheme of dimension d. Let Xn
0 ⊆

Xn be the open set of (p0, ..., pn) with the (pi) distinct. The open subscheme

Xn
0 ⊆ Xn is clearly dense. Let X

(n)
0 is given by passing to the quotient via

the action of Sn. Since Sn acts freely on Xn
0 , thus X

(n)
0 is nonsingular of

dimension nd.
For a given point [Z] in the pre-image of (p0, ..., pn), pi 6= pj via ρ : X [n] →
X(n) we have leg(OZ,pi

) = 1 and therefore hom(IZ ,OZ) = nd. Thus by
the theorem 4.3.3 we see that the dimension of the tangent space in the
X

[n]
0 := ρ−1(X

(n)
0 ) is also nd.

Moreover ρ|
X

[n]
0

is an isomorphism. Hence X [n] contains a nonsingular open

subset, which is isomorphic to an open subset of X(n).

The Hilbert scheme of points is almost singular, but there are two re-
markable exceptions, namely the case of curves and surfaces.

Theorem 5.4.1 (smoothness of Hilb (X,n) for curves) Let C be an irre-
ducible nonsingular quasi projective curve and n ≥ 0. Then C [n] is nonsin-
gular and irreducible of dimension n.

Proof: We have already shown (see example 4.3.4) that C [n] is smooth. Now
by the connectedness (see 4.3.4), C [n] can not be reducible (otherwise the
irreducible components would have to intersect, which violate the smooth-
ness).

Theorem 5.4.2 (smoothness of Hilb(X,n) for surfaces) Let S be an irre-
ducible nonsingular quasi-projective surface and n ≥ 0. Then S[n] is non-
singular and irreducible of dimension 2n.

Proof: By the previous discussion we know that S[n] is connected and
contains an open subset of dimension 2n. We will prove that the dimension

of the tangent space T[Z]X
[n] is 2n for all [Z] ∈ X [n]. This implies that X

[n]
0

is nonsingular, moreover the connectedness tells us that there is no more
irreducible components.
Applying Hom(−,OZ) to 0 → IZ → OX → OZ → 0 we get:

H0(Z,OZ)
∼−−−→ H0(Z,OZ) −−−→ HomOX

(IZ ,OZ) −−−→ Ext1OX
(OZ ,OZ)

Thus we see that the tangent space T[Z]X = HomOX
(IZ ,OZ) sits inside

Ext1OX
(OZ ,OZ). So it suffices to prove that ext1(OZ ,OZ) ≤ 2n. By the

Serre duality we have:

Ext2(OZ ,OZ) = H0(OZ ⊗Ks)
ˇ = kn



5.4. CURVES AND SURFACES 61

Now write a locally free resolution of OZ on S:

0 → El → ...→ E0 → OZ → 0

Now we have:

χ(OZ ,OZ) =
l∑

i=0

(−1)i χ(Ei,OZ) = n
l∑

i=0

(−1)i rk(Ei)

But since 0 → El → ...→ E0 → OZ → 0 is a locally free resolution, the last
term vanishes, and hence:

0 = χ(OZ ,OZ) = ext0(OZ ,OZ)− ext1(OZ ,OZ) + ext2(OZ ,OZ)

= n−ext1(OZ ,OZ)+n,

i.e. ext1(OZ ,OZ) = 2n. �

Example 5.4.3 Let X be a nonsingular variety of dimension 3. Let [Z] ∈
X [4] corresponds to the quotient OZ = Op/m

2, then:

T[Z]X
[4] = HomOX

(IZ ,OZ) = Homk(m
2/m3,m/m2) ' k18

Therefore the dimension of the tangent space is > dn = 12 hence X [4] is
singular.

Theorem 5.4.4 Let C be a nonsingular quasi projective curve, then ρ :
C [n] → C(n) is an isomorphism.

Proof: As the stalks of OC at a closed point p is a discrete valuation ring,
all ideals in OC,p are powers of maximal ideal mp. Hence for all [Z] ∈ C [n]

we have:
OZ =

⊕
i

OC,pi
/mni

pi
,

∑
ni = n

and then ρ sends Z 7→
∑
ni[pi].

Then ρ is bijective, since ρ is also birational. The theorem [3], 4.4.6 (Zariski’s
Main Theorem) implies that ρ is an isomorphism.

�
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Let us finish the chapter by giving an example which shows that the
above theorems are no longer true, when the dimension of X becomes higher
than three, in fact we will show that the irreduciblity may fail when the
dimension growths.

Example 5.4.5 Let X be a nonsingular variety with dimension d ≥ 3.
Let p ∈ X be a closed point and mp the maximal ideal of OX,p. Let ϕr :
OX,p → OX,p/m

r+1 be the quotient morphism. Take a sub-vector space V
in mr

p/m
r+1
p of codimension l. We now produce an element Z ∈ ρ−1(n[p]),

which is defined by the ideal I = ϕ−1
r (V ). Notice that since X is nonsingular

thus mp can be generated by a regular sequence of length d. Let us compute
the length of OZ,p.

leg(OZ,p) = l +
r−1∑
i=0

(
i+ d− 1

d− 1

)
= l +

(
d

d

)
+

r−1∑
i=1

(
i+ d− 1

d− 1

)

= l+

(
d+ 1

d

)
+
r−1∑
i=2

(
i+ d− 1

d− 1

)
= ... = l+

(
r + d− 2

d− 1

)
+

r−1∑
i=r−1

(
r + d− 1

d− 1

)

= l +

(
r + d− 1

d

)
.

Set n := l +
(
r+d−1
d

)
. Thus we get a closed sub-scheme of ρ−1(n[p]),

which is isomorphic to Gr(l,
(
n+d−1
d−1

)
). It has the dimension l.(s− l), where

s :=
(
r+d−1
d−1

)
. So if d ≥ 3 and r is sufficiently large and l is near s/2 then it

is easy to see that dim(ρ−1(n[P ])) > l(s− l) ≥ nd. On the other hand X
[n]
0

has dimension nd, thus its closure is an irreducible component of dimension
nd which can not contain (ρ−1(n[P ]). Therefore X [n] is reducible.

For instance if dim X = 4 and r = 8 we have s = 165 and n = 1683.
Set l = 78 then l.(s − l) = 78.78 = 6786 > 1683.4 = 6732. Thus X [1683] is
reducible.



Bibliography

[1] A. Grothendieck, Fondements de la Géométrie Algébrique, Extraits
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