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Preface

The initial aim of this thesis was to read and understand the paper “The Homogeneous
Coordinate Ring of a Toric Variety” (1995) by Cox [2]. But it resulted obvious from the
beginning that the article was impossible to approach without a clear understanding
of what a toric variety is. Hence the author referred to the good book by Cox [4] and
to presentation of Fulton [7]. These basics were able to furnish all the instruments in
order to understand the main ideas of the article, but had the limit of treating all
the theory from the point of view of classical varieties over C. The natural question
that arose was: what happens if one wants to define toric varieties not on the base
field C, but on other algebraically closed base fields k? And is it possible to extend
the theory to not necessarily algebraically closed fields, such as number fields? And,
since "appetite comes with eating" the final question was: how to extend the theory
on any base ring? Clearly this kind of questions needed to involve the language of
schemes. The first thing to do was to translate all the base objects used by Cox into
schemes terms. In particular it was necessary to understand what is a variety in
this new language, what is an object that is both a group and a variety, what is an
action of this objects and so on. After this study it was finally possible to extend
the definition of toric variety to the definition of toric schemes. Following the usual
presentation of the subject, but with a more general point of view, we introduced and
studied a particular class of toric schemes, coming from cones and lattices. These are
in fact the objects corresponding to the ones considered by Cox in his article. Much
time was devoted to understand the properties of toric schemes from fans, inherited
from the properties of the base ring R (totally absent in the classical approach) and
the properties of the original fan.
Future aims are to understand the theory of divisors on toric schemes with some
“good” properties and to apply it to prove Cox theorem in more generality.
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All rings will be intended to be commutative and with unity1.

1This is a typical requirement in Algebraic Geometry and in a certain sense, the traditional first
sentence of all the Algebraic Geometry books, EGA included.
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Introduction

It is common to think that Mathematics is divided (or, better, developed) in many
branches. Some of them have a reciprocal influence, some others seem to be so far
that it is often impossible for experts in different areas to communicate clearly. For
example, there is Combinatorics, whose theorems appear as simple statement about
simple objects. On the other side, there is Algebraic Geometry, whose theorems that
appear to be so difficult that often have a statement that requires a lot of time to be
understood. It seems that this two areas lie in a completely opposite direction in the
worldmap of mathematics. But, quite surprisingly, they have stronger connection
than one can imagine. A bridge between this two fields is represented by the theory
of toric varieties2.

It seems that the first ideas in the subject appeared in a paper by Demazure entitled
Sous-groupes algébriques de rang maximum du groupe de Cremona ([6], 1970). he
was able to construct a variety (in the sense of Algebraic Geometry) from the datum
of a lattice and of some subsets of generators of this lattice. After this paper, people
started developing new ideas and a rich literature bloomed. Among them it is worth
to mention Toroidal Embeddings I by Kempf, Knudsen, Mumford and Saint-Donat
([13], 1973) and Almost homogeneous algebraic varieties under algebraic torus action
by Miyake and Oda ([20], 1975). In the meanwhile the Russian school produced
remarkable papers such as Newton polyhedra and toroidal varieties by Khovanskii
([11], 1977) and Geometry of toric varieties by Danilov ([5], 1978)3. The subject
continued its growth and around the nineties some wonderful reference were written.
In particular Convex Bodies an Algebraic Geometry by Oda ([19], 1988), Newton
polyhedra of principal A-determinants by Gel’fand, Kapranov and Zelevinsky ([8],
1989), and Introduction to toric varieties by Fulton ([7], 1993).
Nowadays toric geometry has developed a wide influence and has applications in
Commutative Algebra, Combinatorics and Physics. A survey and a resume on the
recent developments in toric geometry can be found in [3].

For what concerns us, we will come back to the definition of toric varieties, trying to
present some different approaches that have been studied. The general definition
of affine toric variety that will inspire our generalization into scheme words is the
following. Here all the varieties studied are varieties over the field of complex numbers,

2A wonderful example of this interplay can be found in a short article of Stanley ([24], 1980),
who solved McMullen Conjecture using ideas from toric geometry.

3Remark that moreover the translation of the title of the paper of Danilov into English made by
Miles Reid represents the origin of the expression “toric varieties”.
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so a torus over C is simply the variety C∗ together will the usual componentwise
multiplication.

Definition 0.1. An affine toric variety is an irreducible affine variety V in some
affine space Cs that contains a torus (C∗)n as a Zariski open subset (and so as a
dense open set). Moreover one requires that the action of the torus over itself (by
componentwise multiplication) extends to an algebraic action over V , i.e. to a map
(C∗)n×V → V that is both an action of group and a morphism of algebraic varieties.

With this definition in mind, we immediately have some examples, like Cn and
(C∗)n.
A less trivial example is given by the zero set X = V (x3 − y2) in C2. It is classical
that this variety is nonnormal (it has a cusp at the origin). Looking to X ∩ (C∗)2 we
noticed that it is an open subset of X with the induced Zariski topology and that it
is isomorphic to C∗ via the map C∗ → X such that t 7→ (t2, t3). From this X can be
proved to be an affine toric variety; this is the easier example of a nonnormal toric
variety.

It is possible to give many other equivalent definitions of affine toric varieties, let’s
see some of them. Recall that a character of (C∗)n is a group homomorphism
(C∗)n → C∗. A first example of character is given by a monomial map, as explained
in the following example.

Example 0.2. Choose m ∈ Zn, m = (m1,m2, . . . ,mn) and define χm : (C∗)n → C∗
such that

χm(t1, t2, . . . , tn) := tm1
1 · tm2

2 · · · · · tmnn .

It is clearly a morphism of groups, hence it is by definition a character of (C∗)n.

One can show that show that in fact all the characters χ over (C∗)n are monomial
maps, i.e. they all have the form of the morphism in the previous example (see for
example [12]).
As a corollary, the characters of (C∗)n form (with the componentwise product) a
free abelian group of rank n, since it is sufficient to consider the isomorphism of
groups χm 7→ m (it satisfies χm · χl = χm+l). So, for any (C∗)n one can consider its
character lattice M, whose rank equals n. All this discussion is necessary in order to
give this alternative definition of affine toric variety.

Definition 0.3. Choose A = {χm1 , χm2 , . . . , χms} a finite subset of the character
lattice M of (C∗)n. An n-dimensional affine toric variety in Cs is the affine
variety in Cs given by the Zariski closure of the image of the map

φA : (C∗)n → Cs

φA : t 7→ (χm1(t), χm2(t), . . . , χms(t)).

This definition also underline the reason for which at the beginning of the seventies
toric varieties were mostly referred to as toroidal embeddings (see [13]).

Another way of introducing toric varieties in affine spaces is through toric ideals.
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Using the compact notation xm withm = (m1,m2, . . . ,ms) to denote xm1
1 xm2

2 . . . xmss ,
a toric ideal is a prime ideal of the form

〈xα − xβ : α, β ∈ Ns and α− β ∈ L〉

where L is a sublattice in Zs. Equivalently, a toric ideal is a prime ideal generated
by binomials in C[x1, x2, . . . , xs]. This gives another point of view.

Definition 0.4. An affine toric variety in Cs is the zero set of a toric ideal in
C[x1, x2, . . . , xs].

At the end, all these constructions define the same objects and some work proves
that the three definitions 0.1, 0.3 and 0.4 are equivalent for affine toric varieties (see
for example [4, Ch1.1]).
Extending the definition from affine varieties to “abstract” varieties (in a sense that
will be cleared out in 1.1.2) one easily obtains the following4.

Definition 0.5. A toric variety is an irreducible algebraic variety V containing a
torus (C∗)n as a Zariski open subset, with the property that the action of the torus
over itself extends to an algebraic action over V .

Among the class of toric varieties over C there is a special subset: some toric
varieties can be in fact obtained via a wonderful construction using cones and fans in
a certain vector space, as shown in practically all the text in literature and as we will
explain in detail in more general context in Chapter 2. Moreover Oda proved in [19]
that all the normal toric algebraic varieties over C are constructed from a fan. Since
many authors include in the definition of toric variety the requirement of normality,
the study of toric varieties is often reduced to the case of varieties constructed from
fans. Remarking that nonnormal toric varieties are not uncommon and even easy
to obtain (recall for example the already mentioned cusp in C2), we will anyway
focus on a generalization of toric varieties coming from fans. Our aim is in fact to
prove the structure theorem of toric varieties as quotients made in [2]. The proof
relies strongly on the theory of divisors on toric varieties. In order to define divisors
on a variety and the divisor class group on it, it is necessary to work with normal
irreducible varieties. For this reason we will be happy of treating the case of toric
varieties from fans. But our efforts will try to work out the construction in more
general terms: instead of defining a normal toric variety over C as commonly done,
we will be interested in making the same construction over any base ring R. In order
to do this, the language of schemes will be essential.
In the end the structure of the thesis is this:

• in Chapter 1 we will give the naive idea of how to think to varieties, through
classical algebraic geometry. All over the exposition, anyway we will prefer
to use all the machinery of schemes that will help us both to condense the

4This is not the only point of view anyway. For example Danilov, in [5], starts from a definition
that is closer to differential geometry (which is far from the point of view we will develop). In fact
he defines a smooth n-dimensional toric variety as an algebraic variety X together with a collection
of charts from open subsets of X to Cn such that the changement of charts are Laurent monomials.
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geometric and the algebraic properties in only one object (a topological space
together with a sheaf over it) and to treat all the topic in greater generalities.
For this reason it will be important to treat the way in which to interpret
varieties in the sense of schemes and to extend the concept of the torus to the
general setting. It will be important to understand what is a group scheme and
what is an action of a group scheme on a scheme. At the end we will extend
the definition of toric varieties over C to toric varieties over any ring R. We
will call them R-toric scheme.

• in Chapter 2 we will introduce a particular class of R-toric schemes deduced
from cones and fans in a vector space defined starting from a lattice. This part
of the study of toric varieties represents a beautiful link between combinatorics
and algebraic geometry. We will develop the construction of affine R-toric
schemes and then of R-toric schemes; the second ones will be obtained by
gluing from affine pieces. We will then pass to the study of some examples and
we will discover that many of the ambient spaces used in algebraic geometry,
such as affine spaces and projective spaces, are in fact toric varieties. The
last part of the chapter will be devoted to the proof of the fact that the fiber
products of R-toric schemes constructed from fans is again an R-toric scheme
coming from a fan, that we will explicitly determine.

• the aim of Chapter 3 is to study some properties of R-toric schemes constructed
from fans. We will discover that some properties are related to the properties
of the ring R we will choose and some others come from the properties of the
fan. The main focus will be to find conditions such that the R-toric variety
constructed from a fan is separated, integral, normal and noetherian, so that it
will be possible to define Weil divisors on it.

• in Chapter 4 a brief study of Weil divisors on toric schemes will be treated.
After recalling the definition of Weil divisors for a scheme that is separated,
integral, normal and noetherian (we will follow Hartshorne’s presentation, [10]),
we will introduce some particular closed subschemes of a toric scheme coming
from a fan. The construction presented will associate to every ray of a fan
a prime divisor of the toric scheme deduced from the fan. As a consequence
we will try to determine the principal divisor of certain rational function and
we will use this results to construct an exact sequence that will allow us to
compute some divisor class group for certain toric schemes. Unfortunately here
we will have to restrict to the case of toric schemes on an algebraically closed
ring.

• in Chapter 5 we will finally approach the article [2] by Cox (1995). We will
associate to a toric scheme constructed from a fan a ring, nowadays often called
Cox ring. The idea will be again to deal with rings instead of the field of
complex numbers C. This will be done with the definition of the Cox ring. We
will end up stating an interesting result of [2]: any C-toric scheme constructed
from a finite fan can be realized as a categorical quotient of some open subset
of the spectrum of its Cox ring by the action of a certain group.
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Chapter 1

From toric varieties to toric
schemes

The aim of this chapter is to present all the tools and the objects that will be
irrenunciable in the following, and especially in the definition of toric varieties. We
will recall the ideas of varieties in classical algebraic geometry, and we will introduce
tori on a field. Then, we will introduce a dictionary to translate these objets in the
schemes languages. Everything will be essential in order to give a definition that
extends the one of toric variety to toric schemes on any base ring R; this will be
done in section 1.5.

1.1 Varieties in classical Algebraic Geometry

We start by recalling some definitions and constructions coming from classical
Algebraic Geometry.

1.1.1 Affine varieties

Given a field k and a positive integer n, one can associate to every ideal I ⊆
k[x1, x2, . . . , xn] the subset

V (I) := {P ∈ kn : f(p) = 0 for all f ∈ I}

of kn. This is what we will call an affine variety1 in kn. As well-known the family
of all the affine varieties in kn satisfies the same properties of the family of closed
subsets of a topology; the topology on kn whose closed subsets are precisely the set
of the form V (I), is called the Zariski topology of kn.
Conversely for any subset X of kn one can define

I(X) := {f ∈ k[x1, x2, . . . , xn] : f(p) = 0 for all p ∈ X}

It is easily proved that I(X) is an ideal in k[x1, x2, . . . , xn] and that the following
properties are true.

1Remark that some authors, like Hartshorne, prefer to call affine variety a closed irreducible
(with respect to the Zariski topology) subset in kn of the form in the definition.
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Proposition 1.1. Let k be a field and n a positive integer number. Then:

(a) if X1 ⊆ X2 (subsets in kn), then I(X1) ⊇ I(X2).

(b) if I1 ⊆ I2 (ideals in k[x1, x2, . . . , xn]), then V (I1) ⊇ V (I2).

(c) for every X subset of kn, V (I(X)) = X (the Zariski closure of X).

(d) for every I ideal in k[x1, x2, . . . , xn], I(V (I)) ⊇ I. Moreover, if k is algebraically
closed, then I(V (I)) =

√
I .

Proof.
See any book of algebraic geometry, for example [10, ChI] or [15].

We now focus on the concept of morphism between varieties over an algebraically
closed field k. Since varieties are topological spaces, it will be clear that a morphism
between varieties will be asked to be a continuous map, but this will not be enough,
since a variety also carries a stronger structure. To understand well this let’s define
before what is a regular function over an affine variety.

Definition 1.2. Let V be an affine variety over a field k, living in the affine space kn.
A function f : V → k is a regular function at a point P ∈ V if there exists an
open neighborhood U of P and there exist two polynomials g, h in k[x1, x2, . . . , xn]
such that h is never zero in U and f = g

h on U . A function f : V → k is a regular
function in V if it is regular at any point of V .

With the componentwise addition and multiplication, the set of regular func-
tions over an affine variety V is a ring and it is isomorphic to the ring O(V ) :=
k[x1, x2, . . . , xn]/I(V ) (see for example [10, Th I.3.2]).

Definition 1.3. Let V1, V2 be two affine varieties over the field k. A morphism
of affine varieties is a continuous map (with respect to the Zariski topology)
ϕ : V1 → V2 such that for any open subset U of V2 and for any regular function f on
U (i.e. regular at any point of U), one has that ϕ∗f = f ◦ ϕ is regular on ϕ−1(U).

In this way we obtain a category whose objects are affine varieties over a fixed
algebraically closed field k and whose morphisms are the just defined morphisms
between affine varieties. We will call this category the category of affine variety over
k.

An important object associated to a variety V is the affine coordinate ring or
ring of regular functions of V , defined as

O(V ) := k[x1, x2, . . . , xn]/I(V )

It is easily seen that it is a k-algebra and that it is an integral domain if and only if
V is an irreducible variety. The most important fact is given by the following.

Theorem 1.4. O realizes a contravariant equivalence between the category of affine
varieties over k and the category of finitely generated k-algebras without nonzero
nilpotents.
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Proof.
This is the equivalent of [10, Cor I.3.8]. To be explicit, given A a finitely generated k-
algebra without nonzero nilpotents, surely A is isomorphic to some k[x1, x2, . . . , xn]/I,
for I ideal in k[x1, x2, . . . , xn] (it is not necessarely prime in our setting). Since the
algebra A ' k[x1, x2, . . . , xn]/I does not contain nonzero nilpotents, then we have
I =
√
I , so I is a radical ideal. Hence defining Φ(A) := V (I), one has that

(Φ ◦ O)(V ) = Φ(k[x1, x2, . . . , xn]/I(V )) = V (I(V )) = V = V

and

(O ◦ Φ)(A) = O(V (I)) = k[x1, x2, . . . , xn]/I(V (I)) = k[x1, x2, . . . , xn]/
√
I =

= k[x1, x2, . . . , xn]/I ' A

This proves that O and Φ are one inverse of the others between isomorphism classes
of affine varieties and k-algebras.

This fact allows us to move our attention from varieties to k-algebras, since it
immediately implies that two affine varieties are isomorphic if and only if they have
isomorphic coordinate rings. Moreover for any finitely generated k-algebra without
nonzero nilpotents, we can find an affine variety having it as coordinate ring; this
variety is unique up to isomorphisms of affine varieties.

1.1.2 The construction of abstract varieties

In this section we introduce briefly the way of defining abstract varieties, i.e. varieties
that are not naturally embedded in an affine or projective space. This idea will be
particularly important in the discussion about defining a toric variety.
The basic idea is to glue affine varieties in a compatible way in order to obtain
something that locally is an affine variety; if we think about it, we notice that this is
the way in which many objects in geometry are defined, for example differentiable
manifolds, projective varieties and schemes.
Consider a finite collection of affine varieties {Vα} over an algebraically closed field k
and suppose that for any pair α, β there exist:

• a Zariski open subset of Vα, call it Vβα ⊆ Vα
• a Zariski open subset of Vβ , call it Vαβ ⊆ Vβ
• an isomorphism of varieties gβα : Vβα → Vαβ

such that:

• if the two indices are the same, Vαα = Vα and gαα = idVα

• for every pair α, β one has gβα = g−1
αβ

• for every α, β, γ one has that gβα(Vβα ∩ Vγα) = Vαβ ∩ Vγβ and gγα = gγβ ◦ gβα
on Vβα ∩ Vγα ⊆ Vα

12



The requirements we ask for are made in order to ensure that the relation ∼ defined
on tαVα by setting, for every x ∈ Vα, y ∈ Vβ

x ∼ y ⇐⇒ x ∈ Vβα, y ∈ Vαβ and gβα(x) = y

is an equivalent relation. In fact, we have reflexivity from the first bullet (moreover, if
x, y belongs to the same variety, they are in relation if and only if x = y), symmetry
from the second one and transitivity from the third one2.
Now we can define the gluing of these varieties.

Definition 1.5. Let {Vα} be a finite collection of affine varieties over a field k, such
that for any pair of indices α and β there exist two open subsets and an isomorphism
satisfying the same properties as above. We call abstract variety determined by
the data

(
{Vα}, {Vαβ, }, gαβ

)
the quotient

X =
⊔
α

Vα/ ∼

with ∼ as above. We consider this space endowed with the quotient topology.

Remark 1.1. The name “abstract varieties” comes from the fact that these varieties are
not naturally embedded in any affine or projective spaces, but they are constructed
by gluing a finite number of affine varieties according to a certain equivalent relation.

Remark 1.2. One easily remarks that an abstract variety is locally an affine variety,
since for any point P of the topological space X, i.e. an equivalence class, one can
consider one of its representative x ∈ tVα. It is surely contained in some Vα, that is an
open set in tVα. Then, by definition of quotient topology, Vα = {[y] : y ∈ Vα} = π(Vα)
is an open subset of X. Resuming, for every P ∈ X, there exists an open subset of
X containing P and homeomorphic (through the map πα = π|Vα) to Vα, namely Vα:
the map is injective since, as stated, two elements in Vα are equivalent if and only if
they are the same.
We can put a sheaf of rings on this space X simply defining the sheaf of regular
functions; for any open subset U of X, take:

OX(U) = {f : U → k such that f ◦ πα : π−1
α (U ∩ Vα)→ k is regular for all α}

This is well defined from the conditions required on gαβ , in particular the fact that
it is an isomorphism of varieties.
In the end this clarifies that X is covered by finitely many open subset Vα each of
which is isomorphic to an affine variety (in fact one puts on it the sheaf of regular
functions coming from Vα).

Example 1.6. The simplest nontrivial example of a variety obtained by gluing is
the projective space. Let’s look at the case P1

k for a certain algebraically closed field
k. One way to obtain it is to consider two affine lines k and to glue them along
k∗, with transition maps given by inversion. To be more precise it means that we
consider the two varieties V1 = V2 = A1

k and we take V12 = V21 = A1
k − {0} (they are

2Here one needs both the fact that there is equality between the two sets and that the isomor-
phisms well behaves under composition.
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Zariski open subsets of the two varieties). As isomorphisms, take the identities on
each open and the map g21 : V21 → V12 given by g21(z) := 1/z and g12 : V12 → V21

given by g12(z) := 1/z (they are bijective maps, they can be seen to be isomorphism
of varieties). All the requirement are easily satisfied and one can glue. The result of
the gluing is exactly P1

k.

1.2 The n-dimensional k-torus

Consider an algebraically closed field k. Observe that some open sets in the affine
space Ank can also be seen as varieties. In fact, they could a priori be isomorphic
to some affine variety. For example consider X = (k∗)n. It is an open subset of the
affine n-dimensional space since it can be written as X = kn − V (x1 · x2 · · · · · xn).
Moreover take Y = V (x1 · x2 · · · · · xn · xn+1 − 1) in kn+1 (here we consider a new
coordinate xn+1). The projection map Y → X that forgets the last coordinate gives
a bijection with inverse (x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn, x

−1
1 · x−1

2 . . . x−1
n ) that is

well defined since each coordinate of the element in X is non zero by definition.
Explicitly:

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn, x
−1
1 · x−1

2 · · · · · x−1
n ) 7→ (x1, x2, . . . , xn)

and

(x1, x2, . . . , xn, xn+1) 7→ (x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn, x
−1
1 · x−1

2 · · · · · x−1
n )

= (x1, x2, . . . , xn, xn+1)

(the key point is that any point in Y satisfies x1 · x2 · · · · · xn · xn+1 = 1 by definition).
The situation is well visible in R2, as shown in Figure 1.1.

Figure 1.1: The isomorphism between R∗ and the variety V (xy − 1) in R2.

Anyway the map between Y and X described above is polynomial, hence algebraic
and moreover bijective, so it gives X the structure of an affine variety. Its coordinate
ring is the same as the one of Y , so:

O((k∗)n) ' k[x1, x2, . . . , xn, xn+1]/V (x1 · x2 · · · · · xn+1 − 1)

' k[x1, x2, . . . , xn, x
−1
1 · x−1

2 . . . x−1
n ] =

= k[x±1
1 , x±1

2 , . . . , x±1
n ]
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where the last equality is easily checked by double inclusion.
But the interesting property of the variety (k∗)n is that one can endow it with a
group structure, given by the obvious componentwise multiplication:

(k∗)n × (k∗)n → (k∗)n

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn)

This operation is straightforwardly a morphism of varieties, hence the object we
described is in fact an algebraic group. Due to its importance we give it a name.

Definition 1.7. Let k be a field. One calls n-dimensional k-torus any affine
variety that is isomorphic to the affine variety (k∗)n together with the multiplication
inherited by the isomorphism.

For example, C∗ is a torus. If k is a finite field, then any k-torus has finitely
many elements; a strange case is given by the F2-tori: they all have only one element!

Definition 1.8. Let T1, T2 be two k-tori. A morphism of tori is a map T1 → T2

that is both a morphism of algebraic varieties and a morphism of groups.

They satisfy some interesting properties as follows.

Proposition 1.9. Let k be a field and let T1, T2 and T be three k-tori. Let also
ϕ : T1 → T2 be a morphism of tori. Then:

(a) the image of ϕ is a torus and it is closed in T1.

(b) if U is both an irreducible subvariety and a subgroup of T , then U is a torus.

Proof.
Refer for example to [1].

1.3 Varieties from the schemes point of view

In the language of schemes one can define an affine variety and all the objects defined
above in a compact way. The definition of scheme, in fact, allow us to put in an
unique object both the topological space and the ring of regular functions over that
space. Recall in fact, following for example [10, Ch II] or [9] that for every ring A we
can define the topological space SpecA, which is the set of all the prime ideals of
A endowed with the Zariski topology whose closed subsets are the set of the form
V (a) = {p ∈ SpecA : p ⊇ a}. Moreover this topological space can be given a sheaf
of rings defined as follows; for every open subset U of SpecA define

O(U) :=
{
s : U →

⊔
p∈U

Ap : s(p) ∈ Ap and for all p ∈ U there exists V ⊆ U open,

a, f ∈ A such that ∀q ∈ V one has f /∈ q and s(q) = a/f ∈ Ap

}
where Ap denote the localization of A with respect to the prime ideal p. Another
way to introduce this sheaf is to consider the collection of principal open subset of
SpecA made by {D(f)}f∈A where D(f) = SpecA − V (〈f〉); they are a basis for
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the topology on SpecA and hence it is enough to define a sheaf on them to obtain
a unique sheaf on SpecA. The sheaf obtained by setting O(D(〈f〉)) = Af (the
localization of A in f) gives the same sheaf as before. Hence we obtain a ringed
space (SpecA,O). Moreover recall that the stalk of a scheme SpecA at a point p is
defined as Op = lim−→p∈U O(U). One has that the stalks of (SpecA,O) are local rings.
We say that (SpecA,O) is a locally ringed space.

Definition 1.10. An affine scheme is a locally ringed space (i.e. a topological
space together with a sheaf of ring with local stalks) that is isomorphic as a locally
ringed space to SpecA for some ring A. Moreover a scheme is a locally ringed space
(X,OX) such that for any point p ∈ X there exists an open neighborhood U of X
such that (U,OX|U ) is an affine scheme.

This gives us the possibility of defining varieties over arbitrary base rings. Recall
that an R-scheme is by definition a scheme X together with a morphism of schemes
X → SpecR.

Definition 1.11. Let R be a ring. An affine variety over R is an R-scheme that
is isomorphic to the spectrum of a finitely generated R-algebra.

Remark 1.3. In this way an affine variety over an algebraically closed field k is of the
form Spec(k[x1, x2, . . . , xn]/J) for a certain ideal J , since all the finitely generated k-
algebra have the form of the ring in parenthesis. This means that with this definition
we are extending a little bit also the idea of affine variety over a field k. In fact in
this way we are obtaining all the varieties over k in the previous sense, but we are
adding also schemes as Spec(k[x]/(x2)) for example. Even if this is not considered as
an affine variety in classical algebraic geometry, the functor O of Theorem 1.4 would
associate to the finitely generated k-algebra k[x]/(x2) the zero set V (x2) that is the
same of V (x). According to classic algebraic geometry the two sets are the same,
but in the new point of view the two k-varieties are different as schemes! In this way
we extend the correspondance of Theorem 1.4 to a correspondance between finitely
generated k-algebras and affine k-varieties.

Now we can give the definition of a variety over R.

Definition 1.12. A variety over R is a R-scheme that can be covered by a finite
number of open subschemes3 that are affine varieties over R.

Remark 1.4. One sees that the previous definition transfers the concept of abstract
variety from classical terms to schemes terms. In fact let’s consider a variety over a
field k. It is a locally ringed space (X,OX) that is a k-scheme covered by a finite
number of subschemes (Uα,OUα) = (Uα,OX|Uα) each of which is isomorphic to an
affine variety over k. This means that locally a variety over R is an affine variety
over R, that is exactly the way we constructed an abstract variety.
Conversely, let’s take a finite number of affine varieties over k, (Xα,OXα) and suppose
that for any pair of indices α, β there exist two open subschemes Uβα and Uαβ of
Xα and Xβ respectively that are isomorphic as locally ringed spaces. Following [10,

3Recall that an open subscheme of a scheme (X,OX) is a scheme of the form (U,OX|U ), where
U is an open subset of the topological space X.
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Ex II.3.5]4 one can glue the schemes along these subschemes and get another scheme:
the construction is basically the same as the one made in classical terms, but it
results to be more natural, since the gluing conditions are contained in the existence
of the isomorphism of locally ringed spaces among the subschemes.

Example 1.13. Using the language of schemes, we can define the projective space
on any base ring R. In order to do this, let’s recall the alternative construction of
the projective line as abstract variety, as seen in Example 1.6. We will define the
projective scheme P1

R as a gluing. The construction generalizes the one for varieties
and goes like this: consider two copies of the affine line X1 = X2 = A1

R, so that
X1 = Spec(R[x]) and X2 = Spec(R[y]). Consider also two open subschemes X21 and
X12 of X1 and X2 respectively, defined via localizations: X21 = Spec(R[x]x) and
X12 = Spec(R[y]y). Take the isomorphism X21 → X12 coming from the isomorphism
of R-algebras y 7→ x−1 (recall that this automatically induces an isomorphism
between the corresponding affine schemes). In analogy with the case treated for
varieties, we will call P1

R the scheme obtained by this gluing5. It results to be the
same as the one obtained with the Proj construction (see [10, Ex II.2.5.1]); moreover
this definition can be extended to higher dimensions.

We will prefer to use the scheme notation to introduce the object we will play
with; in fact not only it gives the possibility to treat the topic in greater generality,
but it also makes some constructions and definitions more “self raising”.
For example, the idea of morphism between affine varieties, that doesn’t appear
to be so natural in definition 1.3, is easier in schemes terms. In fact the classical
definition of morphism between two varieties V1 = V (J1) and V2 = V (J2) is simply
the requirement that for any open subset U of V2 one has a ring homomorphism:

OV2(U)→ OV1(φ−1(U))

f 7→ f ◦ ϕ
where OVi is the sheaf of regular functions on open subsets of Vi, i = 1, 2. This can
be restated simply asking that there exist a sheaf morphism between the structure
sheaves (i.e. sheaf of regular functions) of the two varieties, hence a morphisms of
schemes between Spec(k[x1, x2, . . . , xn]/J1) and Spec(k[x1, x2, . . . , xn]/J2). In this
way the classical definition of morphism of affine varieties comes from the definition
of morphism of schemes. In the same way for abstract varieties.

1.3.1 Normal integral noetherian varieties

In order to define the class of Weil divisors over a variety, a classical requirement is
the fact that the variety is normal. generalizing to schemes, one should require (as
we will see in Chapter 4) that the scheme is normal, integral and noetherian. In this
paragraph we then try to recall this definitions.

4Here the computations are carried out for two schemes, but the construction is extended to the
general case.

5Remark that if one chooses the isomorphism of schemes coming from the isomorphism of
R-algebras y 7→ x one obtains the double origin affine line, the simplest example of non separated
scheme.
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Definition 1.14. A schemeX is called irreducible if it is irreducible as a topological
space.

Definition 1.15. A scheme X is called an integral scheme if it is irreducible and
every stalk OX,p is an integral domain.

Definition 1.16. A scheme X is called locally noetherian if X admits an affine open
covering X = ∪Xi such that OX(Xi) is a noetherian ring for all i. A noetherian
scheme is a scheme X that is quasi-compact in the Zariski topology (any open
covering of X admit a finite subcovering) and locally noetherian.

Remark 1.5. Equivalently, a scheme is noetherian if it admits a finite open cover by
open affine subsets SpecAi with all the Ai noetherian rings.

Definition 1.17. A scheme X over a ring R is called normal if for any point P ∈ X
the stalk OX,p is an integrally closed ring.

To have better understanding of the definitions, let’s state, without proving, some
results and immediate consequences of them for a variety X over a ring R. One can
see, referring to Tong for example, that:

• a scheme is normal if and only if for each non empty open subscheme U , the
ring OX(U) is a normal integral domain. Hence if X is an normal variety over
R, then its affine pieces are SpecAi with any Ai normal integral domain.

• a scheme is integral if and only if for each non empty open subscheme U , the
ring OX(U) is integral. Hence if X is an integral variety, then its affine pieces
are SpecAi with any Ai integral domains.

• if a scheme is noetherian, then so is any open subscheme of it, and moreover
SpecA is noetherian if and only if A is noetherian. So asking that a variety X is
noetherian implies that its affine pieces are SpecAi with any Ai noetherian ring.
Conversely, by definition, if all the affine pieces of the variety have noetherian
rings of coordinates, then the variety is locally noetherian.

Now let’s present the situation we will have: suppose that the variety X is connected
and quasi compact. By definition, it is covered by finitely many affine pieces, X = ∪Xi

where each Xi is an affine R-variety with coordinate ring Ai. Suppose moreover that
every Ai is a noetherian integral domain. Then we have that X is locally noetherian
(simply applying the definition) and hence6 X is an integral noetherian scheme. This
is a typical way of reasoning we will use in Chapter 3.

1.4 The torus from the schemes point of view

In order to extend the definition of toric variety to any base ring R, one have to
introduce the n-dimensional torus over a ring R. To do this it is essential to use the
language of schemes, as done in the previous section to define varieties over a ring.
From the observation that O((k∗)n) = k[x±1

1 , x±1
2 , . . . , x±1

n ], the most natural way to
6For locally noetherian schemes, being integral is equivalent to being a connected scheme covered

by spectra of integral domains.
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extend the definition to a generic ring is to call n-dimensional R-torus the R-scheme
Spec(R[x±1

1 , x±1
2 , . . . , x±1

n ]). We would like to continue considering the torus both
as a variety and a group; to pursue this aim it is necessary to present the theory of
group schemes.

1.4.1 Group schemes

Recall that a scheme over S is a scheme X with a morphism π : X → S. From a
simple observation on the universal property of the fiber product one could see that
X ×S S and S ×S X are both isomorphic to X, call j1 and j2 the two isomorphisms.
Recall also that if X,Y,X ′, Y ′ are S-schemes and f : X → X ′, g : Y → Y ′ are
morphism of S-schemes, by the universal property of the fiber product one defines
f × g : X ×S Y → X ′ ×S Y ′.
Moreover, if X is an S-scheme, the same universal property gives a morphism
∆X : X → X ×S X, the so called diagonal embedding.
Finally, for every S-scheme X call sX : X ×S X → X ×S X the morphism swapping
the factors of the fiber product7.
We are now ready to define a group scheme.

Definition 1.18. Let S be a scheme and let G be a scheme over S. The scheme G
together with three morphisms of S-schemes

m : G×S G→ G

i : G→ G

e : S → G

is called a group scheme over S if the following properties are satisfied:

• (associativity) m ◦ (m× idG) = m ◦ (idG ×m)

G×S G×S G
m×idG //

idG×m
��

G×S G
m

��

G×S G m // G

• (neutral element) m ◦ (idG × e) = j1 and m ◦ (e× idG) = j2

G×S S
idG×e //

j1
''

G×S G
m
��

G

• (inverse element) m ◦ (idG × i) ◦∆G = e ◦ π and m ◦ (i× idG) ◦∆G = e ◦ π

G
∆G //

π
��

G×S G
idG×i // G×S G

m
��

S
e // G

7This is obtained by the universal property of fiber products swapping the morphism from
X ×S X to each one of the two factors X.
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Moreover G is called a commutative group scheme over S is also the following
property is true:

• (commutativity) m ◦ sG = m

G×S G
sG //

m
&&

G×S G
m
��

G

Then, it is not difficult to prove that if G and H are two group schemes over S,
then also G×S H is a group scheme over S.
As usual, one can introduce the concept of morphism between group schemes.

Definition 1.19. Let S be a scheme and let G,H be two group schemes over S,
with multiplication law m1 and m2 respectively. A morphism of group schemes
is a morphism of S-schemes f : G→ H such that f ◦m1 = m2 ◦ (f × f).

G×S G
f×f
//

m1

��

H ×S H
m2

��

G
f

// H

1.4.2 The n-dimensional R-torus

Using the terminology developed in the previous paragraph we can now extend the
definition of the torus given in Section 1.2 to a larger meaning.

Definition 1.20. Let R be a ring. A 1-dimensional R-torus is a R-scheme
isomorphic (as a group scheme) to Spec(R[x±1]) endowed with the morphisms:

m : Spec(R[x±1])×R Spec(R[x±1])→ Spec(R[x±1])

coming from the morphism x 7→ x⊗ x,
i : Spec(R[x±1])→ Spec(R[x±1])

coming from the morphism x 7→ x−1 and

e : SpecR→ Spec(R[x±1])

coming from the morphism x 7→ 1.

It is common to denote the group scheme Spec(R[x±1]) introduced above as
Gm,R.

Definition 1.21. Let R be a ring. A n-dimensional split R-torus is an R-scheme
isomorphic (as a group scheme) to the group schemeGn

m,R = Spec(R[x±1
1 , x±1

2 , . . . , x±1
n ])

(the power n is a fiber product power, the group laws are inherited from the ones of
Gm,R).

Following definition 1.11 one has that the n-dimensional R-torus is an affine
variety over R, since it is the spectrum of a finitely generated R-algebra, moreover
we endowed it with a group structure. This will be a key point in the definition of a
toric scheme. It will be usual to denote the torus Gn

m,R = Spec(R[x±1
1 , x±1

2 , . . . , x±1
n ])

also with the notation Tn,R, in order to underline is structure as group scheme.
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1.4.3 The action of a group scheme

Since a classical toric variety involves the action of a torus that it contains as an
open subset, it will be essential to understand how the definition of group action
translates in the schemes language. Recall that if X is an S-scheme the fiber product
S ×S X is canonically isomorphic to X, call j2 the isomorphism.

Definition 1.22. Let S be a ring, let X be a scheme over S and G a group scheme
over S with multiplication law m and neutral element e. An action of the group
scheme G over X is a morphism of schemes

a : G×s X → X

such that the following holds:

• (associativity) a ◦ (m× idX) = a ◦ (idG × a)

G×S G×S X
m×idX //

idG×a
��

G×S X
a

��

G×S X a // X

• (action of the neutral element) a ◦ (e× idX) = j2

S ×S X
e×idX //

j2
&&

G×S X
a
��

X

1.5 Toric schemes

We are now ready to give the definition of a toric scheme. This is clearly inspired by
Definition 0.5.

Definition 1.23. Let R be a ring. A toric scheme over the ring R is a scheme X
over R together with an n-dimensional R-torus as an open subscheme such that the
multiplication m of the torus extends to an action of the torus on the scheme X.

To be explicit, we mean that an R-scheme is a toric scheme if there exists

i : Tn,R → X

such that i is an open immersion and there exists an action a of the group scheme
Tn,R over X such that the following diagram commutes (call S = Spec(R)):

Tn,R ×S Tn,R
m //

idT×i
��

Tn,R

i

��

Tn,R ×S X a // X
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Remark 1.6. When one considers a field k, one recovers that all the toric varieties
over k can be seen as toric schemes.

Example 1.24. Let k be an algebraically closed field and consider the k-schemes
X = Spec(k[x, y]/(x2 − y3)) and T = T1,k. It is clear that, set theoretically the two
schemes appear as (with abuse of notation):

X = Spec(k[x, y]/(x2 − y3))

= {classes of prime ideals of k[x, y] containing (x2 − y3)}
= {(0), (x− a3, y − a2) : a ∈ k}

T = Spec(k[z±1]) = Spec(k[z, w]/(zw − 1))

= {classes of prime ideals of k[z, w] containing (zw − 1)}
= {(0), (z − a,w − a−1) : a ∈ k∗}

Consider now the morphism of schemes i : T → X coming from the R-algebras
morphism

ϕ : k[x, y]/(x2 − y3)→ k[z±1]

ϕ : x 7→ z3

ϕ : y 7→ z2

It is clear that ϕ is well defined. Moreover set theoretically it can be seen that:

i(T) = {(0), i((z − a,w − a−1)) : a ∈ k∗}
= {(0), (x− a3, y − a2) : a ∈ k∗}
= X − {(x, y)}

and so i is an open embedding of schemes. We now define an action of T on
X simply by defining a : T ×S X = Spec(k[z±1] ⊗k k[x, y]/(x2 − y3)) → X =
Spec(k[x, y]/(x2 − y3)) coming from the morphism of k-algebras

α 7→ ϕ(α)⊗ α
One can check that this is an action in the sense of Definition 1.22, moreover the
commutativity of the diagram of Definiton 1.23 comes from the commutativity of
the corresponding diagram on the rings of coordinates:

k[z±1]⊗ k[z±1] k[z±1]oo

k[z±1]⊗ k[x, y]/(x2 − y3)

OO

k[x, y]/(x2 − y3)oo

OO

ϕ(α)⊗ ϕ(α) ϕ(α)�oo

ϕ(α)⊗ α
_

OO

α�oo
_

OO

This proves that the scheme X = Spec(k[x, y]/(x2−y3)) is a k-toric scheme. We also
know that this scheme is not normal, so we constructed an example of a nonnormal
k-toric scheme. This will be an important example in the following.
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Chapter 2

A particular class of toric schemes

In this chapter we present a relevant class of toric schemes over a ring R. The
ideas we will present are the ones which relate the theory of toric varieties with
combinatorics.

2.1 Affine semigroup algebras

A very interesting aspect of the theory of toric varieties is the fact that a wide class of
them can be constructed as the spectrum of some special ring, namely of R-semigroup
algebras. This is also the starting point of the link between the combinatoric part of
toric varieties and the definition from algebraic geometry.
We recall that a lattice is a free abelian group of finite rank. Hence, as a group, it is
always isomorphic to Zn for some positive integer n.

Definition 2.1. An affine semigroup is the datum of a set S and an operation +
satisfying:

1. the operation is commutative, associative and it admits a neutral element 0S .

2. there exists a finite set of elements generating S as a semigroup.

3. there exists an injective morphism of semigroups (i.e. a morphism respecting
the operation) from S to a lattice M .

In other words, an affine semigroup is a finitely generated commutative monoid
that can be embedded in a lattice. Notice that a subset A of an affine semigroup S
generates, as a semigroup, the set

〈A〉 =
{∑
a∈A

naa : na ∈ N, almost all zeros
}

hence, by point two in the definition, all the affine semigroups are of the form NA
for some finite set A.
Now we want to define an R-algebra structure from the an affine semigroup, where
R is a ring. The most natural way consists in building a polynomial R-algebra. In
order to do this, let’s consider an affine semigroup (S, ∗) and a field k; we will use
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the symbol ∗ for the operation in the semigroup to avoid confusion with the additive
operation in k. Then, we define the set:

R[S] =
{∑
s∈S

csT
s : cs ∈ R, almost all zeros

}
and we endow it with the operations:∑

s∈S
csT

s +
∑
t∈S

dtT
t =

∑
s∈S

(cs + ds)T
s

(∑
s∈S

csT
s
)(∑

t∈S
dtT

t
)

=
∑
u∈S

∑
s∗t=u

(cs · dt)T u.

This simply results to be a R-algebra with 1-element 1RT
0S .

Remark 2.1. If the semigroup S is generated by the set A, then R[S] is generated
(as an R-algebra) by the set of symbols {T a : a ∈ A}.

Example 2.2. Let’s consider a lattice M . It is true that it is an affine semigroup:
in fact, by definition, it is generated, as a group, by a finite set {e1, e2, . . . , en}. As a
consequence it is a semigroup generated (as a semigroup) byA = {±e1,±e2, . . . ,±en};
moreover it is a commutative monoid that can be embedded in itself. By the
previous remark, for any ring R, R[M ] = R[T±e1 , T±e2 , . . . , T±en ]. The map R[M ]→
R[x±1

1 , x±1
2 , . . . , x±1

n ] obtained extending the function on the generators T ei 7−→ xi
and T−ei 7−→ x−1

i for every i = 1, 2, . . . , n is easily verified to be an isomorphism of
R-algebras. Hence for any lattice M of rank n

R[M ] ' R[x±1
1 , x±1

2 , . . . , x±1
n ].

This simple example will be the key one to prove that the schemes we will construct
are toric schemes and that they satisfies certain properties.

2.2 Convex polyhedral cones

This paragraph, in which we introduce the basic objects of the combinatorial point
of view on toric schemes, will be studied following the presentation by Fulton done
in [7, Ch 1.2]. We also refer to it for all the proves.

Definition 2.3. Let V be a R-vector space and choose a finite number of vectors
v1, v2, . . . , vs in V . The convex polyhedral cone generated by v1, v2, . . . , vs is
defined as the set

σ =

{ s∑
i=1

λivi : λi ≥ 0

}
.

Remark 2.2. A convex polyhedral cone σ defined as above is a convex set (in the
sense that for any x, y ∈ σ and for any 0 ≤ t ≤ 1, one has tx + (1 − t)y ∈ σ) and
also a cone (in the sense that for any x ∈ σ and for any t ≥ 0, tx ∈ σ).
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Figure 2.1: A cone in R2.

A strongly convex polyhedral cone is a convex polyhedral cone not containing
any linear subspace of the vector space in which it is lying. This is equivalent to the
fact that it σ ∩ (−σ) = {0}.
Observe that different sets of vectors can generate the same cone. For example the
cone in figure 1.1 can be generated by {(1, 0), (1, 1)} and also by {(2, 0), (3, 3)}. The
generators of the cone can be then changed by scalar multiplication. When we will
treat cones and lattices, we will add the fact that a basis of the cone can be chosen
in some "minimal" way.

Definition 2.4. Let σ be a convex polyhedral cone in V generated by the vectors
v1, v2, . . . , vs. The dimension of σ is the dimension of the V -subvector space
σ + (−1)σ = span(v1, v2, . . . , vs).

Denote with V ∗ the dual vector space of V , i.e. V ∗ := Hom(V,R). There exist a
natural pairing 〈 , 〉 : V ∗ × V → R, given by 〈u, v〉 := u(v). This allows us to define
the following fundamental object.

Definition 2.5. Let σ be a convex polyhedral cone in V . The dual of σ is the set

σ∨ := {u ∈ V ∗ : 〈u, v〉 ≥ 0 for all v ∈ σ}.

Example 2.6. Take the first quadrant in the plane. It is the cone generated by the
vectors {(1, 0), (0, 1)}. We already know that the pairing in R2 is given by the usual
dot product, hence:

σ∨ = {(a, b) ∈ R2 : ax+ by ≥ 0 for all x, y ≥ 0} = {(a, b) ∈ R2 : a, b ≥ 0} = σ

since clearly we have one inclusion and conversely it is enough to fix x = 0 (or y = 0)
and take the other variable different from zero.

As seen in the previous example, the dual of a certain cone is again a cone. This
is a general fact.

Proposition 2.7. The dual σ∨ of a convex polyhedral cone σ is a convex polyhedral
cone and moreover (σ∨)∨ = σ.
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σ σv

Figure 2.2: The cone of example 2.6 and its dual.

Proof.
Refer to Fulton, [7].

We now define another object that will be crucial in the theory of toric varieties.

Definition 2.8. Let σ be a convex polyhedral cone in the vector space V . For any
u ∈ V ∗ denote u⊥ := {v ∈ V : 〈u, v〉 = 0}. A face of the cone σ is a subset of σ of
the form {v ∈ σ : 〈u, v〉 = 0} = σ ∩u⊥ for some u ∈ σ∨. We will denote the fact that
τ is a face of σ writing τ � σ.

Remark 2.3. Consider a cone σ and the corresponding dual cone σ∨. Taking u = 0
one has that σ = σ ∩ u⊥ is a face of σ, hence any cone is a face of itself. it is
customary to call proper all the other faces of σ.

Remark 2.4. With this definition one can prove that a cone is strongly convex if and
only if {0} is a face of the cone.

Figure 2.3 shows that in fact the definition gives rise to the natural idea of face
of a cone.

σ

Figure 2.3: The faces of the cone are marked thicker.

In effect, also some other natural and not so difficult results about faces of a cone
are true.
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Proposition 2.9. Let σ be a cone in a vector space V . Then:

(a) every face of σ is a convex polyhedral cone.

(b) any intersection of faces of σ is again a face of σ.

(c) any face of a face of σ (this is meaningful from point (a)) is again a face of σ.

Proof.
Refer again to Fulton, [7].

Since the faces of a cone are again cones, one can speak about their dimension.
In such a way, one can remark two classes of faces.

Definition 2.10. Let σ be a convex polyhedral cone in the vector space V . A ray
(or edge) of σ is a face of dimension 1. A facet of σ is a face of codimension 1.

We will see in the future how important is the fact that we always consider the
couple of (dual) vector spaces (V ;V ∗), as well as the couple of convex polyhedral
cones (σ;σ∨). For example this have already allowed us to define the faces of the
cone in a simple way.

2.2.1 Cones and lattices

The nice part about cones comes into play when we consider a lattice in the vector
space V .
Given a lattice N one can of course gets a R-vector space from it; the simplest way
to do it is to consider the tensor product NR := N ⊗Z R. Moreover, the lattice N
comes together with a dual lattice M , that is by definition M = Hom(N,Z) (as
group homomorphisms). Of course we can define the R-vector space MR := M ⊗Z R;
it is true that

MR = M ⊗Z R = HomZ-mod(N,Z)⊗Z R = HomR-mod(N,R) = N∗R

so the vector space MR is the dual of NR. From now on it will be unforgettable to
consider the pair of (dual) vector spaces (NR;MR).

Definition 2.11. Take a lattice N and the corresponding R-vector space NR. A
convex polyhedral cone in NR is said to be rational (with respect to N) if it can be
generated by a set of vectors in N .

Proposition 2.12. Let N be a lattice and σ a rational convex polyhedral cone in
NR. Then:

(a) the dual σ∨ is a rational convex polyhedral cone in MR.

(b) all the faces of σ are rational convex polyhedral cone in NR.

Proof.
Refer to Fulton, [7].
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σ

Figure 2.4: A cone in NR with a marked ray generator.

The typical example we will always draw is N = Zn for some n ≥ 1. As a
consequence M = Hom(N,Z) ' Zn, NR = N ⊗Z R ' Rn and in the same way
MR ' Rn.
If we consider a strongly convex rational polyhedral cone in a vector space deduced
from a lattice, it is possible to choose for any ray ρ a unique minimal generator. In
fact a ray will be a half line that is still a rational cone, so it is generated by an
element of N . Considering the set ρ ∩N one obtains a semigroup of dimension one.
The generator can be chosen in a unique way. We will call it the ray generator of ρ.
It is possible to show that a strongly convex rational polyhedral cone is generated by
the ray generators of its rays.

2.3 Affine toric varieties from convex polyhedral cones

Suppose to have the usual pair of dual lattices (N,M) and so of dual vector spaces
(NR,MR).
Consider a convex polyhedral cone σ in the vector space NR. From now on we will
always denote with Sσ the set

Sσ = σ∨ ∩M.

Proposition 2.13 (Gordon’s lemma). If σ is a rational polyhedral cone, then the
set Sσ is an affine semigroup with the natural operation over M .

Proof.
The first remark is that if m, l ∈ Sσ then we can sum them (they are in M) and the
sum is in σ∨ since σ∨ is a convex polyhedral cone1. Hence, since the operation in M
already satisfies all the right properties, Sσ has a natural structure of semigroup.
Secondly, there exists a natural injective morphism of semigroups from Sσ to a lattice;
in fact, it is enough to consider the embedding of Sσ into M .
So, the only thing that is left to prove is the fact that Sσ is finitely generated as
a semigroup. This is the heart of the proposition. From Proposition 2.12 the fact
that σ is a rational polyhedral cone in NR implies that σ∨ is a rational convex

1To be very formal one could say that from convexity 1
2
(m+ l) ∈ σ∨ and from the fact that σ is

a cone, the double of the previous element is still in the cone.
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polyhedral cone in MR, hence there exists a generating set of σ∨ in M , call it
S = {m1,m2, . . . ,ms}. Call

K :=

{
s∑
i=1

timi : ti ∈ [0; 1]

}

and consider the set K ∩M ; this set is a discrete subset of a compact, hence it is
finite. Now the aim is to prove that Sσ is generated by the set S ∪ (K ∩M) as a
semigroup; this set is included in Sσ (by definition of S and construction of K). So,
let w be an element of Sσ: since Sσ is a linear combination of elements in S with
real nonnegative coefficients, one has that:

w =
s∑
i=1

λimi =
s∑
i=1

bλicmi +
s∑
i=1

(
λi − bλic

)
mi

so calling:

w1 :=

s∑
i=1

bλicmi

w2 :=

s∑
i=1

(
λi − bλic

)
mi

one has that w = w1 + w2; moreover by definition w2 ∈ K and w1 is in the
subsemigroup of Sσ generated by S (recall that all the λi’s are nonnegative). The
proof is now completed by remarking the fact that w ∈M , so also w2 = w−w1 is in
M so w2 ∈ K ∩M .

Having proved this fundamental result, we can use one of the definitions given in
the previous chapter to define an affine toric variety from a cone.

Definition 2.14. Let R be a ring and let σ be a strongly convex rational polyhedral
cone in the vector space NR (N is a lattice). We call R-affine toric variety
associated to the cone σ the affine toric variety Uσ := Spec(R[Sσ]).

Remark 2.5. Taking the cone σ to be strongly convex is crucial for our aim. We will
understand better the sense of this requirement in Proposition 2.18.

Remark 2.6. By definition, the scheme Uσ := Spec(R[Sσ]) is an R-scheme and also
an affine variety over R; in fact the R-algebra R[Sσ] is finitely generated since Sσ is
finitely generated by Gordon’s lemma. It is not clear a priori that it is a toric variety
in the standard sense. We will arrive to the proof of this at the end of the section.

Example 2.15. Consider the cone σ = {0} in the vector space NR with dimension,
say, n. It is immediate that σ∨ = MR so Sσ = M . This implies that (recall the
isomorphism of R-algebras R[M ] ' R[x±1

1 , x±1
2 , . . . , x±1

n ] of Example 2.2):

U{0} = Spec(R[M ]) = Spec(R[x±1
1 , x±1

2 , . . . , x±1
n ])

that is the n-dimensional R-torus. So the n-dimensional R-torus is a R-affine toric
variety.
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A natural question is to understand in which way the fact that a cone is a face of
another one translates to the geometry of the associated toric varieties. A simple
observation is the following: since τ ⊆ σ, it is immediate that σ∨ ⊆ τ∨, hence one
obtains Sσ ⊆ Sτ , so an injective R-algebras morphism R[Sσ]→ R[Sτ ] that, passing
to Spec becomes a morphism of schemes Uτ → Uσ. Anyway, proceeding like this, we
cannot say anything more precise about the form of this morphism. To get more
information will be necessary to pass from a result on faces of convex cones.

Lemma 2.16. Let σ be a convex rational polyhedral cone in the vector space NR.
All the faces of σ can be written as τ = σ ∩ u⊥ for an element u ∈ Sσ = σ∨ ∩M .
Moreover Sτ = Sσ + N(−u).

Proof.
See [7, Prop 2, Ch 1.2].

Proposition 2.17. Suppose that σ is a strongly convex rational polyhedral cone in
the vector space NR and that τ is a face of σ; τ is again a strongly convex rational
polyhedral cone. Then the toric variety Uτ is isomorphic to a principal open subset2

of Uσ.

Proof.
From the lemma one can write Sτ = Sσ + N(−u). Our aim is to show that

R[Sτ ] = R[Sσ]Tu .

One inclusion comes from the fact that T u is multiplicatively invertible in R[Sτ ] since
T−u ∈ R[Sτ ] from the lemma (0 ∈ Sσ), so localizing the inclusion R[Sσ] ⊆ R[Sτ ]:

R[Sσ]Tu ⊆ R[Sτ ]Tu = R[Sτ ].

To prove the converse inclusion, take aR basis ofR[Sτ ]. It is of the form T s1 , T s2 , . . . , T sl

for s1, s2, . . . , sl a basis of the affine semigroup Sτ . But from Lemma 2.16, writing
Sτ = Sσ + N(−u) for a certain u ∈ Sσ, one has that every element of the basis can
be written in the form si = wi − pi · u, with wi ∈ Sσ and pi ∈ N. This means that a
basis of Sτ is {Twi−pi·u}li=1, i.e. a finite number of elements of the form

Twi

(T u)pi
.

These are elements in the localization R[Sσ]Tu since Twi ∈ R[Sσ]. Hence all the
R-basis of R[Sτ ] is contained in this localization, so R[Sτ ] ⊆ R[Sσ]Tu .
In the end, passing to the spectra one has

Uτ = Spec(R[Sτ ]) = Spec(R[Sσ]Tu) = D(T u)

so Uτ is a principal open subscheme of Uσ.
2A principal open subset of an affine scheme X = Spec(A) is D(f) = {p ∈ Spec(A) : f /∈ p} for

an element f ∈ A. If the structure sheaf of the scheme is OX , then OX(D(f)) = Af .
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Remark 2.7. The proposition just proved is strongly depending on the fact that the
definition of the toric variety associated to a cone passes through the dual cone of
σ and does not involve directly the cone σ itself. This ensures then that there is a
face-subvariety correspondance in the sense of the proposition above.

What we proved has an important consequence, that is the fact that the schemes
we defined are really affine toric varieties.

Proposition 2.18. Let σ be a strongly convex rational polyhedral cone in the vector
space NR. Then Uσ contains an R-torus as an open subscheme, whose multiplication
extends to an action on Uσ. In other words, Uσ is a toric scheme.

Proof.
Since the cone is strongly convex, then {0} is a face of the cone σ, hence by the
previous proposition the toric variety U{0} is a principal open subset of Uσ. But from
example 2.15, U{0} is the n-dimensional R-torus, where n is the rank of N . Hence
referring to the torus as T instead of Tn,R for simplicity, one has that it is an open
subscheme of the variety Uσ.
We would now like to prove that the multiplication of the torus extends to an action
of the torus on Uσ. Recalling Definition 1.23, we then want to find an action a of T
on Uσ making the following diagram commutative:

Tn,R ×S Tn,R
m //

idT×i
��

Tn,R

i

��

Tn,R ×S Uσ a // Uσ

All the schemes involved in the diagram are affine, so the problem is to find a map
a] : R[Sσ]→ R[M ]⊗R[Sσ] (recall that T = U{0} = R[M ]) such that it gives rise to
an action of T on Uσ and such that the following diagram commute:

R[M ]⊗R R[M ] R[M ]
m]oo

R[M ]⊗R R[Sσ]

id⊗i]
OO

R[Sσ]
a]oo

i]

OO

We make two remarks. The first one is the fact that all the morphism are morphisms
of R-algebras, so the commutativity of the diagram, and even the definition of the
morphism a] will be checked only on an R-algebras basis of R[Sσ], namely T u, for
certain u ∈M . As a second observation, one remarks that i] is the morphism that
gives the open immersion of the torus T into the scheme Uσ, hence it is by proposition
2.17 the morphism of a certain localization, T u 7→ T u/1 that we will prefer to denote,
with abuse of notation, by T u 7→ T u.
Moreover, let’s look of the way in which the morphism m] acts on elements of the
form T u:

m](T u) = m](T λ1e
∗
1+λ2e∗2+···+λne∗n) = m]

( n∏
i=1

T λie
∗
1

)
=

n∏
i=1

m](T e
∗
i )λi .
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Recalling the canonical isomorphism R[M ] ' R[x±1
1 , x±1

2 , . . . , x±1
n ] (obtained by

setting T e∗i into xi and T−e
∗
i into x−1

i for every i = 1, 2, . . . , n), the definition of
m] and the fact that the tensor product of two R-algebras A and B is naturally an
R-algebra with product law (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ we obtain:

m](T u) =
n∏
i=1

m](T e
∗
i )λi =

n∏
i=1

(T e
∗
i ⊗ T e∗i )λi =

n∏
i=1

((T e
∗
i )λi ⊗ (T e

∗
i )λi)

=
( n∏
i=1

T λie
∗
i

)
⊗
( n∏
i=1

T λie
∗
i

)
= T u ⊗ T u.

Hence, it is natural to define a] : R[Sσ] → R[M ]⊗ R[Sσ] putting on an R-algebra
basis of R[Sσ]

a](T u) = T u ⊗ T u.
In fact in this way one has:

T u ⊗ T u T u�m]oo

T u ⊗ T u
_
id⊗i]
OO

T u�a]oo
_
i]

OO

hence an obviously commutative diagram.
It remains to prove that a] give rise to an action of T on Uσ. To do this, let’s
remember Definition 1.22. Since all the schemes are affine, we can check that the
corresponding diagrams on the section rings are commutative (and moreover only on
the generators of R[Sσ] as an R-algebra). In particular, for the associativity:

R[M ]⊗R R[M ]⊗R R[Sσ] R[M ]⊗R R[Sσ]oo

R[M ]⊗S R[Sσ]

OO

R[Sσ]oo

OO

T u ⊗ T u ⊗ T u T u ⊗ T u�oo

T u ⊗ T u
_

OO

T u�oo
_

OO

and for the action of the neutral element (recall the definition of the map e for the
torus, this maps all the elements of the form T u in 1):

R⊗R R[Sσ] R[M ]⊗R R[Sσ]oo

R[Sσ]

hh OO

1R ⊗ T u T u ⊗ T u�oo

T u



ff

_

OO
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The diagrams are really commutative, so the morphism coming from the map of
rings is an action. From the definition, its restriction is the multiplication of the
torus. Hence we have the result.

Remark 2.8. This remarks the fact that the construction we made from cones really
gives us a toric scheme, in the sense of definition 1.23. Anyway, to obtain this result
the requirement that σ is strongly convex is essential. Moreover the result of the
construction is clearly a variety over R, so we obtained a toric variety over R.

2.4 Fans

Definition 2.19. A fan in a R-vector space NR is a non-empty collection of cones
∆ = {σ : cone in V } such that:

1. each cone is a strongly convex rational polyhedral cone in V .

2. for every cone σ ∈ ∆, each face of σ is in ∆ (this is meaningful, since every
face of a convex polyhedral cone in V is again a convex polyhedral cone in V ).

3. the intersection of two cones σ1, σ2 in ∆ is a face of both cones, and hence, by
2., is in ∆.

In particular, a fan in V is a not necessarily finite collection of convex polyhedral
cones that is closed under considering faces and under intersection. It will be typical
(and it is common in literature) to denote with ∆(r) the set of cones in ∆ with
dimension r. Moreover we will call support of the fan |∆| the set of points lying in
one of the cones of ∆, |∆| = ∪σ∈∆σ.

Other terminology we will use for a fan are listed in the following definition.

Definition 2.20. Let N be a lattice and let ∆ be a fan in the R-vector space NR.
We say that ∆ is:

• smooth if every cone in ∆ is smooth (i.e. the minimal generators of the cone
are part of a Z-basis of N).

• simplicial if every cone in ∆ is simplicial (i.e. the minimal generators of the
cone are R-linearly independent).

• complete if the support of the fan is the whole NR.

2.5 Toric schemes from fans

Let’s consider a (not necessarely finite) fan ∆ in NR. For every cone σ ∈ ∆ we can
proceed as in the previous paragraphs and construct an affine toric variety over some
ring R, more explicitely:

Uσ = Spec(R[Sσ]).

Now we consider the set of this affine varieties Uσ and we proceed constructing the
abstract variety as described in Chapter 1. Let’s see that it is meaningful: from a
fan ∆ we automatically obtain a family of R-schemes {Uσ}σ∈∆. Moreover, take two
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of these schemes, say Uσ1 and Uσ1 . From the definition of fan, to the cones σ1 and
σ2 we can associate a cone σ1 ∩ σ2 that is a face of both the cones and it is still
in ∆. Then from Proposition 2.17, we have that Uσ1∩σ2 is a principal open subset
of both Uσ1 and Uσ1 . Summarizing, we have a collection of R-schemes such that
for any couple there exists an open subscheme of both of them (hence there exist
open subschemes of the first and of the second that are isomorphic as locally ringed
spaces). As stated in Chapter 1 (in particular in Remark ?? and referring to [10, Ex
II.2.12]) we have a collection of schemes Uσ with open subschemes that are pairwise
isomorphic via the identity map and moreover the compatibility condition is satisfied.
This means that we can coherently define an R-scheme as the glue of all these pieces.

Definition 2.21. Let ∆ be a fan in NR. The R-toric scheme associated to the
fan ∆ is the R-scheme obtained gluing the affine R-toric varieties of the cones of the
fan along the principal open subsets coming from the faces of the cones, as described
above. We will denote it as X(R,∆).

Remark 2.9. This definition is a generalization of the one for affine R-toric variety,
since for any cone σ one can consider the fan consisting of σ and of all its faces.
The R-toric variety obtained from it is just the affine R-toric variety Uσ, since the
definition essentially requires to glue Uσ with open subschemes of itself.

Remark 2.10. If we ask the fan ∆ to be finite (i.e. consisting of finitely many cones),
the R-toric scheme associated to the fan ∆ gives in a variety over R in the sense of
Definition ??; in fact the result of the gluing is an R-scheme that as a topological
space is a quotient of the union of the topological spaces of Uσ, σ ∈ ∆. Moreover,
as a scheme, X(R,∆) is covered by all the Xσ, that are both open subschemes of it
and affine R-toric variety. In the end, a R-toric variety X(R,∆) is simply the gluing
of a finite number of R-affine toric variety, hence it is by definition a variety over R.
It will be common in the following to call Uσ’s the affine pieces of the toric variety
X(R,∆).

Moreover X(R,∆) is a toric scheme according to Definition 1.23. In fact the torus
U{0} admits an open immersion in X(R,∆) (this can be easily proved by considering
that the torus is embeddable in any of its affine pieces and hence in the scheme X
itself); moreover, the action of the torus can be seen to extend from all the affine
pieces to the R-scheme X(R,∆) (this is just a question of compatibility of maps,
and can be checked).

2.6 Examples

We have already seen in the previous sections that the n-dimensional R-torus is an
affine R-toric variety. The aim of this section is to give more interesting examples.
In particular we will see that the affine spaces and the projective spaces are toric
schemes. This will mean that the concept of toric variety extends the idea of many
of the usual ambient spaces used in algebraic geometry.
We will suppose as usual that N is a lattice of rank n, with basis {e1, e2, . . . , en},
that M is its dual lattices with dual basis {e∗1, e∗2, . . . , e∗n} and we will call NR and
MR the corresponding R-vector spaces.
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2.6.1 Toric schemes in dimension one

Suppose that N has rank 1, so NR is isomorphic to R. The only possible strongly
convex rational polyhedral cones in this vector spaces are {0}, the right half line
R+ · e1 and the left half line −R+ · e1 (since NR itself is not strongly convex). The
corresponding affine R-toric varieties are the following:

• σ = {0}: this gives, as a particular case of what already seen, the 1-dimensional
R-torus T1,R = Spec(R[x±1]).

• σ = 〈e1〉: one easily sees that σ∨ = 〈e∗1〉, so Sσ = M ∩ σ∨ = Ne∗1, but clearly

R[Sσ] = R[Ne∗1] = R[T e
∗
1 ] ' R[x]

hence
Uσ = Spec(R[Sσ]) = Spec(R[x]) = A1

R.

• σ = 〈−e1〉: in the same way as before, one obtains Uσ = Spec(R[x−1]), that
isomorphic to the affine linex.

Hence, the only possible affine R-toric varieties coming from fans in dimension 1
(and so containing the torus Spec(R[x±1]) as an open subset) are the torus itself and
the affine space of dimension 1 over R.

f0g f0gh−e1i

f0g he1i f0gh−e1i he1i

Figure 2.5: All the possible fans in dimension 1.

In order to describe all the R-toric varieties coming from fans in dimension 1, we
should glue affine varieties of the list above. More precisely, it is clear that all
the possible fans in NR are cones (with their faces) and the collection of cones
{origin, right half line, left half line}. Since the cones give affine R-toric varieties, the
only interesting case that is left to study is the one in which the fan consist of two half
lines and the origin. In this case, calling x := T e

∗
1 to simplify the notation, we have

to consider the two schemes X1 = Uσ1 = Spec(R[x]) and X2 = Uσ2 = Spec(R[x−1])
(two affine lines) and glue them along U{0} = Spec(R[x±1]). The torus U{0} is a
principal open subscheme of both the schemes, more precisely it is

U{0} ' X21 = Spec(R[x]x) = D(x) ⊆ Uσ1

U{0} ' X12 = Spec(R[x−1]x−1) = D(x−1) ⊆ Uσ2
and determines an isomorphism X12 ' X21 coming from R[x]x → R[x−1]x−1 such
that x 7→ x−1. Referring to the construction made in 1.13, this is the definition of
the projective space P1

R. In this way we obtained the 1-dimensional projective space
over the ring R as a non-affine R-toric scheme.
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2.6.2 Affine spaces

Let’s consider the cone σ generated by the vectors e1, e2, . . . , en. Hence it is (for
n = 2):

σ

Figure 2.6: The fan in NR for the affine space.

The dual cone is given by itself (recall the example 2.6). Hence

Sσ = M ∩ σ∨ = Ne∗1 + Ne∗2 + · · ·+ Ne∗n

so

R[Sσ] = R[Ne∗1 + Ne∗2 + · · ·+ Ne∗n] = R[T e
∗
1 , T e

∗
2 , . . . , T e

∗
n ] ' R[x1, x2, . . . , xn]

so one concludes that

Uσ = Spec(R[Sσ]) = Spec(R[x1, x2, . . . , xn]) = AnR

that means that for every n the R-affine space AnR isn affine R-toric variety. This is
very believable, since it clearly contains the torus as an open subset. In particular it
is evident in the case of fields, with the naive idea of varieties over a field, in which
the group law of the torus is simply the componentwise multiplication.

2.6.3 Projective spaces

Let’s consider the lattice Zn and put e0 := −e1 − e2 − · · · − en. Consider all the
cones generated by a subset of {e0, e1, e2, . . . , en}; all together they form a fan. The
R-toric variety constructed from this fan is the R-projective space of dimension n.
For simplicity, we show this result only in the case n = 2.
The cones of the fan are σ0 = 〈e1, e2〉, σ1 = 〈e0, e2〉, σ2 = 〈e0, e1〉 and their faces.
The corresponding R-algebras are:

R[Sσ0 ] = R[M ∩ σ∨0 ] = R[T e
∗
1 , T e

∗
2 ] ' R[x1, x2]

R[Sσ1 ] = R[M ∩ σ∨1 ] = R[−Ne∗1 +N(−e∗1 + e∗2)] = R[T−e
∗
1 , T−e

∗
1+e∗2 ] ' R[x−1

1 , x−1
1 x2]

R[Sσ2 ] = R[M ∩ σ∨2 ] = R[−Ne∗2 + N(e∗1 − e∗2)] = R[T−e
∗
2 , T e

∗
1−e∗2 ] ' R[x−1

2 , x1x
−1
2 ]

so
Uσ0 = Spec(R[Sσ0 ]) = Spec(R[x1, x2])
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σ0

σ1

σ2

Figure 2.7: The fan in NR for the projective space.

Uσ1 = Spec(R[Sσ1 ]) = Spec(R[x−1
1 , x−1

1 x2])

Uσ2 = Spec(R[Sσ2 ]) = Spec(R[x−1
2 , x1x

−1
2 ]).

Moreover the three one dimensional cones determines R-algebras:

R[Sτ0 ] = R[M ∩ τ∨0 ] = R[N(−e∗1 − e∗2) + Z(e∗1 − e∗2)] ' R[x−1
1 x−1

2 , x1x
−1
2 , x−1

1 x2]

R[Sτ1 ] = R[M ∩ τ∨1 ] = R[Ne∗1 + Ze∗2] ' R[x1, x
±1
2 ]

R[Sτ2 ] = R[M ∩ τ∨2 ] = R[Ze∗1 + Ne∗2] ' R[x±1
1 , x2]

giving:
Uτ0 = Spec(R[Sτ0 ]) = Spec(R[x−1

1 x−1
2 , x1x

−1
2 , x−1

1 x2])

Uτ1 = Spec(R[Sσ1 ]) = Spec(R[x1, x
±1
2 ])

Uτ2 = Spec(R[Sσ2 ]) = Spec(R[x±1
1 , x2]).

Moreover, remembering how we defined the embedding of the varieties coming from
faces (we study only the case τ1):

Uτ1 = Spec(R[x1, x
±1
2 ]) = Spec(R[x1, x2]x2) = D(x2) ⊆ Uσ0

Uτ1 = Spec(R[x1, x
±1
2 ]) = Spec(R[x1x

−1
2 , x−1

2 ]x−1
2

) = D(x−1
2 ) ⊆ Uσ2 .

This gives an isomorphism along which we want to glue Uσ0 and Uσ2 ; remember that
their intersection is exactly Uσ0 ∩ Uσ2 = Uτ1 . So we are gluing three affine spaces in
which the change of coordinates on the intersection is the inversion: this is exactly
the way in which the projective space is defined! The conclusion is that for the fan
∆ considered, X(R,∆) = P2

R. In general any projective space is a toric variety.

2.6.4 Hirzebruch surface

Let N be Z2 and NR = R2. Let’s consider the fan ∆ consisting of the cones
σ1, σ2, σ3, σ4 in Figure 2.8 and of their faces for a certain r ∈ N.
We already know two of the dual cones, by previous examples: σ∨1 is generated by
(1, 0) and (0, 1) in MR, while σ∨2 is generated by the vectors (1, 0) and (−1, 0) of the
same space.
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(−1;r)

σ1

σ4

σ3

σ2

Figure 2.8: The fan for Hirzebruch surface.

σ1 σ1
v

Figure 2.9: The cone σ1 and its dual.

σ2 σ2
v

Figure 2.10: The cone σ2 and its dual.
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Let’s try to find out the dual cone of σ4, that is the cone generated by (−1, r) and
(0, 1). One sees that:

σ∨4 = {v ∈ R2 : 〈v; (−λ, rλ+ µ)〉 ≥ 0 for all λ, µ ≥ 0}
= {(v1, v2) ∈ R2 : −λv1 + rλv2 + µv2 ≥ 0 for all λ, µ ≥ 0}.

In particular for λ = 0 one obtains v2 ≥ 0, while for λ 6= 0 we can rewrite the
condition as

−v1 + rv2 +
µ

λ
v2 ≥ 0

for any positive value of µ and λ. But it is clear that it is sufficient to ask that

−v1 + rv2 ≥ 0,

so the cone we obtain is given by the two conditions{
v2 ≥ 0

−v1 + rv2 ≥ 0

that give the cone generated by (−1, 0) and (r, 1). One proceeds in a similar way for
σ3 and so obtains that σ∨3 is generated by the vectors (−1, 0) and (−r,−1).

σ3
σ3

v

Figure 2.11: The cone σ3 and its dual.

σ4

σ4
v

Figure 2.12: The cone σ4 and its dual.

The four affine R-toric varieties one obtains are all isomorphic to an affine R-plane.

Uσ1 = Spec(R[x, y])
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Uσ2 = Spec(R[Sσ2 ]) = Spec(R[T e
∗
1 , T−e

∗
2 ]) = Spec(R[x, y−1])

Uσ3 = Spec(R[Sσ3 ]) = Spec(R[T−e
∗
1 , T−re

∗
1−e∗2 ]) = Spec(R[x−1, x−ry−1])

Uσ4 = Spec(R[Sσ4 ]) = Spec(R[T−e
∗
1 , T re

∗
1+e∗2 ]) ' Spec(R[x−1, xry]).

Gluing these four copies of the affine space along the open subschemes coming from
faces we get what is called the Hirzebruch surface.

2.6.5 Fiber product of two toric schemes

The aim of this subsection is to prove that the fiber product of two R-toric schemes
constructed from fans is again an R-toric scheme. We will also explicitly construct
the fan of the fiber product.
To begin, let’s consider two lattices N1 and N2 with respectively dual lattices M1

and M2 and let’s build the corresponding vector spaces (N1)R, (N2)R, (M1)R and
(M2)R.
Moreover we define the product of two cones in two different vector spaces.

Definition 2.22. Let

σ = R+v1 + R+v2 + · · ·+ R+vn

be a cone in a vector space V and

τ = R+w1 + R+w2 + · · ·+ R+wm

be a cone in the vector space W . The product (or the direct sum) of the two
cones is defined as the subset of V ⊕W given by

σ ⊕ τ = R+v1 + R+v2 + · · ·+ R+vn + R+w1 + R+w2 + · · ·+ R+wm.

Remark 2.11. It is clear from definition that the product of two cones in two different
vector spaces is a cone in the direct sum of the two vector spaces.

Lemma 2.23. Let ∆1 = {σi}i be a fan in (N1)R and ∆2 = {τj}j be a fan in (N2)R.
Then ∆1 ⊕∆2 = {σi ⊕ τj}i,j is a fan in (N1)R ⊕ (N2)R.

Proof.
Let σ be a cone in (N1)R and τ be a cone in (N2)R; then a face of σ ⊕ τ is obtained
“forgetting” some generators of the cone. But this means that the face is the product
of two cones, one in (N1)R and the other in (N2)R, obtained from σ and τ respectively
“forgetting” some generators. Hence a face of σ ⊕ τ is the direct sum of faces of σ
and τ . This proves that the faces of the product of two cones are exactly all the
possible products of faces of the two cones.
Now we can prove that ∆1 ⊕∆2 is a fan in (N1)R ⊕ (N2)R. In fact:

• it is a collection of rational cones in (N1)R ⊕ (N2)R (use Remark 2.11 and the
fact that the generators of the two cones are in N1 and N2 respectively).

• since every cone in ∆1 is strongly convex, {0N1} is a face of it; in the same way
{0N2} is a face of every cone in ∆2. Hence each cone in ∆1⊕∆2 has {0N1⊕N2}
as a face and so it is strongly convex.
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• for every cone σ ⊕ τ in ∆1 ⊕∆2, each face of it is a product of two faces µ
of σ and ν of τ . Since ∆1 and ∆2 are fans, µ ∈ ∆1 and ν ∈ ∆2, so also the
product µ⊕ ν ∈ ∆1⊕∆2. This proves that faces of cones in ∆1⊕∆2 are again
in ∆1 ⊕∆2.

• take σ1 ⊕ τ1 and σ2 ⊕ τ2 in ∆1 ⊕∆2 and consider their intersection Clearly

(σ1 ⊕ τ1) ∩ (σ2 ⊕ τ2) = (σ1 ∩ σ2)⊕ (τ1 ∩ τ2)

and each of the two intersection is a face of both the cones by definition of fan,
so the direct sum is a face of both σ1 ⊕ τ1 and σ2 ⊕ τ2.

Hence ∆1 ⊕∆2 satisfies all the properties of a fan.

Lemma 2.24. Let R be a ring and consider two semigroups S1 and S2. Then
R[S1 ⊕ S2] = R[S1]⊗R R[S2].

Proof.
Recall the definition of the tensor product of two R-modules X and Y via universal
property. It is defined as an R-algebra X ⊗R Y together with an R-bilinear map
ϕ : X × Y → X ⊗R Y (i.e. a map that is linear in both the arguments and satisfies
ϕ(r · x, y) = ϕ(x, r · y) for any r ∈ R) such that for any other R-algebra Z with an
R-bilinear map ψ : X × Y → Z there exists a unique homomorphism of R-algebras
θ : X ⊗R Y → Z such that the following diagram commutes:

X × Y ϕ
//

ψ
&&

X ⊗R Y
θ
��

Z

Moreover we know that if it exists, the tensor product is unique up to a unique
homomorphism of R-algebras. So, let’s check that R[S1 ⊕ S2] satisfies the universal
property. Consider the R-bilinear map ϕ : R[S1]×R[S2]→ R[S1⊕S2] defined on the
R-basis of R[S1]×R[S2] as ϕ(T s1 , T s2) = T (s1,s2). Suppose now there exists another
R-algebra Z with a bilinear map ψ : R[S1]×R[S2]→ Z. Define θ : R[S1 × S2]→ Z
on an R-basis of R[S1 × S2] putting θ

(
T (s1,s2)

)
= ψ(T s1 , T s2). By construction,

one has that θ ◦ ϕ = ψ and it is also the only morphism that makes the diagram
commutative. Hence one recovers the definition of tensor product.

Lemma 2.25. Let R be a ring, call S = SpecR. Let Uσ and Uτ be affine R-toric
schemes, constructed from the convex polyhedral rational cones σ and τ . Then
Uσ ×S Uτ = Uσ⊕τ .

Proof.
This is an easy consequence of Lemma 2.24 and the fact that the dual respect the
direct sum. Indeed:

Uσ⊕τ = Spec(R[Sσ⊕τ ]) = Spec(R[(σ ⊕ τ)∨ ∩ (M1 ⊕M2)])

= Spec(R[(σ∨ ∩M1)⊕ (τ∨ ∩M2)]) = Spec(R[σ∨ ∩M1]⊗R R[τ∨ ∩M2])

= Spec(R[σ∨ ∩M1])×S Spec(R[τ∨ ∩M2]) = Uσ ×S Uτ .
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Remark 2.12. This lemma proves that the product of two affine R-toric schemes
constructed from cones is an affine R-toric scheme constructed from a cone.

We want now to generalize the result for R-toric schemes coming from fans. Of
course, Lemma 2.23 will be fundamental.

Lemma 2.26. Let {Ui}i be a collection of affine schemes over S = SpecR with
some gluing conditions satisfied and {Vj}j be another collection of affine schemes
over S with some gluing conditions satisfied. Construct the gluing X from the first
collection and Y from the second collection. Also the affine schemes {Ui ×S Vj}i,j
satisfy the gluing condition and their gluing is X ×S Y .

Proof.
This is in fact the way in which Hartshorne proves the existence of the fiber product
of two schemes. For a more detailed proof see [10, Ch II, Thm 3.3].

Proposition 2.27. Let R be a ring, ∆1 = {σi}i be a fan in (N1)R and ∆2 = {τj}j
be a fan in (N2)R. Then, calling S = Spec(R) one has that X(R,∆1)×SX(R,∆2) =
X(R,∆1 ⊕∆2) where ∆1 ⊕∆2 is the fan constructed as in Lemma 2.23.

Proof.
We know by definition that X(R,∆1) is the scheme constructed from the gluing
of the affine schemes {Uσ}σ∈∆1 and X(R,∆2) is the scheme constructed from the
gluing of the affine schemes {Uτ}τ∈∆2 . All the affine schemes involved are schemes
over S = SpecR. Using Lemma 2.26, we know that X(R,∆1)×S X(R,∆2) is equal
to the gluing of all the affine pieces Uσ ×S Uτ , so by Lemma 2.25, we deduce that it
is the gluing of the affine pieces {Uσ⊕τ}σ∈∆1,τ∈∆2 . But, from definition of ∆1 ⊕∆2

we have that X(R,∆1) ×S X(R,∆2) is obtained by glui ng from the affine pieces
{Uσ⊕τ}σ⊕τ∈∆1⊕∆2 , that means by definition that it is X(R,∆1 ⊕∆2).

Remark 2.13. Finally we proved that the product of two R-toric schemes coming
from a fan is an R-toric scheme coming from a fan.

Example 2.28. As an immediate construction one has that all the finite fiber
products of affine and projective spaces and tori still are toric schemes. This
constructions provide a lot of examples since excluding the product of affine spaces
(that gives affine spaces of higher dimension), all the other combinations give new
schemes. For example P1

R × P1
R (that is not a projective space, but it can be sent

to P3
R via Segre embedding3) is an R-toric scheme coming from a fan. From the

previous construction it is also easy to construct its fan: remembering what was
studied in subsection 2.6.1, the fan of the R-toric scheme P1

R is a collection of two
half lines and the origin, so:

P1
R × P1

R = X(∆, R)×X(∆, R) = X(∆×∆, R)

where ∆ = {origin, right half line, left half line} is a fan in R2. So the fan for the
product of two projective lines is simply the fan in R2 made as in figure 2.13.

3Recall that the Segre embedding P1
R × P1

R → P3
R comes from the graded R-algebras morphism

R[z00, z01, z10, z11]→ R[x0, x1]⊗R R[y0, y1], zij 7→ xi ⊗ yj .
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σ0σ1

σ2 σ3

Figure 2.13: The fan in R2 for P1
R × P1

R.
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Chapter 3

Properties of toric schemes
coming from fans

In the next chapters we will deal with divisors on toric schemes. We will see in
Chapter 4.1 that in order to define divisors on a scheme it is needed that the scheme
is integral, normal and noetherian. For this reason the aim of this chapter is to find
sufficient condition on R and on ∆ such that the toric scheme X(R,∆) is an integral
normal noetherian scheme.

3.1 Properties of affine toric varieties

We will begin studying properties of affine R-toric varieties.

3.1.1 Integrality

Proposition 3.1. If R is an integral domain, any affine R-toric variety associated
to a strongly convex polyhedral cone is an integral scheme.

Proof.
Let σ be a strongly convex polyhedral cone in some vector space. Since the scheme
Uσ is an affine scheme, it is sufficient to prove that its coordinate ring R[Sσ] is an
integral domain. But the fact that Sσ is an affine semigroup implies that it can be
embedded in a lattice M , hence surely we have an injective morphisms of R-algebras

R[Sσ]→ R[M ] ' R[x±1
1 , x±1

2 , . . . , x±1
n ].

But the second ring is an integral domain: in fact, R is an integral domain, hence

R[x±1
1 , x±1

2 , . . . , x±1
n ] = R[x1, x2, . . . , xn]x1·x2...xn

is a localization of an integral domain, so an integral domain. So R[Sσ] is injectable
in an integral domain, it is an integral ring.

3.1.2 Normality

Lemma 3.2. Let R be an integrally closed domain. Then:
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(a) R[x1, x2, . . . , xn] is an integrally closed domain.

(b) any localization Rp with respect to a prime ideal p is an integrally closed domain.

(c) the intersection of two integrally closed domains with the same field of fractions
is again integrally closed.

Proof.

(a) Refer to [23, Lem 10.34.8].

(b) Refer to [23, Lem 10.34.9].

(c) Consider an element x in the common fraction field K of two domains A and B.
Suppose it is integral over A∩B. Then it satisfies an integral relation over A∩B.
In particular it satisfies an integral relation over A and an integral relation over
B, so it is contained in the integral closure of A in K and in the one of B in K.
But the rdomains are integrally closed in their field of fractions, so this implies
x ∈ A and x ∈ B.

Lemma 3.3. Let R be an integrally closed domain and let τ be a strongly convex
1-dimensional polyhedral cone in NR. Then R[Sτ ] is an integrally closed domain.

Proof.
Call n the dimension of the lattice N . Take the unique minimal generator of τ in N ,
call it uτ . It can be completed to a Z-basis of the lattice N ; let it be {u,w2, . . . , wn};
compactly we will say {w1, w2, . . . , wn} with u = w1. The dual lattice is M and it is
generated by the dual basis {w∗1, w∗2, . . . , w∗n}.
By definition:

τ∨ = {v ∈MR : 〈v, u〉 ≥ 0 for all u ∈ τ}
=
{
v ∈MR :

〈∑
i

aiw
∗
i , λuτ

〉
≥ 0 for all λ ≥ 0

}
= {v ∈MR : λai ≥ 0 for all λ ≥ 0}
=
{
v ∈MR : v =

∑
i

aiw
∗
i with ai ≥ 0

}
= R+w∗1 + Rw∗2 + · · ·+ Rw∗n

so
τ∨ ∩N = Nw∗1 + Zw∗2 + · · ·+ Ze∗n = 〈w∗1,±w∗2, · · · ± w∗n〉

from which

R[Sτ ] = R[Tw
∗
1 , T±w

∗
2 , . . . ,±w

∗
n ] ' R[x1, x

±1
2 , . . . , x±1

n ] = R[x1, x2, . . . , xn]x2x3...xn .

Now, using Lemma 3.2 (b) one deduces that R[Sτ ] is isomorphic to a localization
of the ring R[x1, x2, . . . , xn], that is integrally closed by Lemma 3.2 (a). Hence it is
normal itself.
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Proposition 3.4. Suppose that R is an integrally closed domain. Then any affine
R-toric variety associated to a strongly convex polyhedral cone is a normal scheme.

Proof.
Recall that an affine scheme SpecA with A an integral domain is normal if and only
if A is an integrally closed domain. So it is sufficient to show that R[Sσ] is integrally
closed, since the fact that R is a domain already implies that R[Sσ] is a domain (see
Proposition 3.1).
From the theory of convex polyhedral cone one can prove that (see for example [4,
Prop 1.2.8]):

σ∨ =
⋂

τ 1−dimensional facesof σ

τ∨

from which

R[Sσ] = R[σ∨∩M ] = R
[(⋂

τ∨
)
∩M

]
= R

[⋂
(τ∨∩M)

]
=
⋂
R[τ∨∩M ] =

⋂
R[Sτ ].

Now, using Lemma 3.3 and the hypothesis, one deduces that R[Sσ] is the intersection
of finitely many integrally closed domains (since a cone in a finite dimensional vector
space has finitely many faces). But these rings all have the same fraction field, since
by the proof of Lemma 3.3 one has, just changing the name of variables:

Frac(R[Sτi ]) = Frac(R[x±1
1 , . . . , xi, . . . , x

±1
n ]) = Frac(R)(x1, x2, . . . , xn).

Now, from Lemma 3.2 (c), the intersection of finitely many integrally closed domains
with the same field of fractions is again an integrally closed domain.

3.1.3 Noetherianity

Proposition 3.5. If R is a noetherian ring, any affine R-toric variety associated to
a strongly convex polyhedral cone is a noetherian scheme.

Proof.
By the equivalent definition of noetherian scheme (remark 1.5), one has that an affine
scheme is noetherian if and only its section ring is noetherian. So, if σ is a strongly
convex polyhedral cone in some vector space, the scheme Uσ is a noetherian if and only
if its coordinate ring R[Sσ] is a noetherian ring. Now, we recall that R[Sσ] is a finitely
generated R-algebra by 2.13, so it is isomorphic to a quotient of R[x1, x2, . . . , xl] for
a certain integer l. But from Hilbert basis theorem the noetherianity of R implies
the one of R[x1, x2, . . . , xl] and this one implies the one of the quotient, hence the
one of R[Sσ].

3.2 Properties of toric schemes defined from fans

The first two properties for toric schemes constructed from fans we want to prove
will be used to justify some of the other ones.

Proposition 3.6. If R is an noetherian ring, any R-toric scheme associated to a
fan is a locally noetherian scheme.
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Proof.
Just recall that a scheme is said to be locally noetherian if it is covered by spectra of
noetherian ring. But it is immediate from the construction that any scheme X(R,∆)
is covered by schemes isomorphic to Uσ, for σ running in the set of cones in the fan.
Since each of this schemes is the spectrum of a noetherian ring by Proposition 3.5
(the ring R is supposed to be noetherian), one gets the result.

Proposition 3.7. If the ring R has no idempotents different from 1R and 0R, then
any R-toric scheme associated to a fan is connected.

Proof.
A scheme is said to be connected if its underlying topological space is such. Observe
now that X(R,∆) is constructed as the gluing of affine schemes Uσ, each of which
is connected by hypothesis (recall that an affine scheme SpecA is connected if and
only if the ring A possesses no idempotents other than 0 and 1). Moreover, all the
cones in ∆ intersects in the origin, hence, recalling the correspondance of Proposition
2.17, U{0} is a subscheme of all the schemes Uσ coming from the faces. When one
glues, this subscheme turns to be an open subset of all the pieces that have to be
patched. From the topological point of view, this implies that X(R,∆) is the union
of connected sets with nonempty intersection. An easy lemma from topology assures
that their union is a connected topological space.

3.2.1 Integrality

Proposition 3.8. If R is an integral domain, any R-toric scheme associated to a
fan is an integral scheme.

Proof.
Recall that one of the possible definition for an integral scheme X is requiring that the
scheme is irreducible and reduced (i.e. every stalk OX,p has no nonzero nilpotents).
Using [23, Lemmas 27.3.2 and 27.3.3] one can see that it is sufficient to prove that
the scheme admits an affine open covering X = ∪Ui such that every Ui is irreducible
and OX(Ui) are reduced rings; moreover it should be verified that each pair of such
affine open has nonempty intersection. In other words, it is enough to write the
scheme X as the union of integral affine open subsets (see also [23, Lemma 25.12.3])
with intersection pairwise nonempty.
Considered a fan ∆ and an integral doman R, let’s take the R-toric scheme X(R,∆).
It can be covered by affine open subsets isomorphic to Uσ, where σ runs over the set
of cones in the fan. These open subsets all intersect in the nonempty set U{0} since
all the cones in the fan have {0} as a face. Moreover, since R is supposed to be an
integral domain, all the affine pieces result to be integral from Proposition 3.1.

3.2.2 Normality

Proposition 3.9. Let R be an integrally closed domain. Then, any R-toric scheme
associated to a fan is a normal scheme.

Proof.
Recall that a scheme X is normal if for any point P ∈ X the stalk OX,p is an
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integrally closed ring. This means that normality is a local property; but so for any
point of a toric scheme coming from a fan we can take the affine piece containing it.
It is a normal R-toric schemes by Proposition 3.4, so the point has integrally closed
stalk. This proves normality.

Remark 3.1. Let k be an algebraically closed field. By what we have just proved,
every k-toric scheme from a fan is a normal scheme. But recall that in Example 1.24
we proved the existence of a nonnormal k-toric scheme. Hence, not all toric schemes
can be obtained from fans.

3.2.3 Quasi-compactness

Recall that a scheme X is said to be quasi-compact if it is quasi-compact as a
topological space (in the Zariski topology), that is for any open cover of X it is
possible to extract from it a finite open subcover.

Proposition 3.10. Let R be a ring and let ∆ be a fan in the vector space NR
consisting of finitely many cones. Then the toric scheme X(R,∆) over R is of finite
type; in particular it is quasi-compact.

Proof.
Recall that a scheme of finite type over a base scheme is in particular quasi compact.
So it is sufficient to show that the scheme X(R,∆) is of finite type.
A scheme Y is of finite type over SpecR if there exists a finite open covering of X of
affine subschemes of the form SpecAi with each Ai a finitely generated R-algebra.
For R-toric schemes constructed by fans this is immediate from the definition by
gluing and from Gordon’s lemma.

Remark 3.2. If we don’t require the fan ∆ to be a collection of only finitely many
cones, we only have that the toric scheme X(R,∆) is locally of finite type, meaning
that there is an affine open cover of X made by affine SpecAi with Ai is finitely
generated for any i (in this we don’t require the affine open cover to be finite).

3.2.4 Noetherianity

Proposition 3.11. If R is a noetherian ring, any R-toric scheme associated to a
finite fan is a noetherian scheme.

Proof.
Recall that a noetherian scheme is a scheme that is both locally noetherian and
quasi-compact. Using Proposition 3.6 and to Proposition 3.10, one immediately
deduces that if R is a noetherian ring and the fan ∆ consists of finitely many cones,
the toric scheme X(R,∆) is noetherian.

3.2.5 Separatedness and properness

Let X be an R-scheme. Recall that X is said to be separated (over R) if the
diagonal morphism coming from the fiber product

∆X : X ×R X → X
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is a closed immersion1.
Moreover, the R-scheme X is said to be proper (over R) if it is separated, of finite
type and universally closed2.
The idea of separatedness corresponds to the classical definition of Hausdorff topo-
logical space, while the one of completeness corresponds to the classical definition
of compact topological space. It is possible to show that, if R = C, considering the
R-schemes as complex analytic spaces in the ordinary topology, these categorical
definitions give in fact the corresponding topological ones (see the famous paper
GAGA by Serre, [22]).
We will now study this scheme properties for R-toric schemes deduced from a fan.

Proposition 3.12. Any R-toric scheme associated to a fan is a separated scheme.

Proposition 3.13. For any base ring R, the R-toric scheme associated to a fan ∆
is proper if and only if the fan is complete (i.e. its support covers the entire vector
space).

Example 3.14. A good example of Proposition 3.13 is given by the examples seen
in Chapter 2. Looking at the fan in 2.6.3, one sees that it is complete, since it covers
all the vector space R2. Taking R = C we then expect that the C-toric scheme
constructed from it is proper, i.e. compact in the classical topology (it is considered
as a complex analytic space): and in fact the C-toric scheme constructed from it is
the projective space PnC. On the contrary, the fan in 2.6.2 is not complete and in fact
the corresponding C-toric scheme is the affine space A2

C, that is not compact in the
usual topology, i.e. it is not proper as a C-scheme.

3.2.6 Smoothness

The most immediate definition of smoothness for schemes requires that the scheme
is of finite type over a field k. So, for this paragraph let’s consider only k-schemes,
with k a field; we will call k the algebraic closure of the field k. A k-scheme of finite
type X is said to be smooth if the base change X ×k Spec k is a regular scheme, i.e.
the stalk of every point is a regular ring3.
Recall that a fan ∆ is said t be smooth if every cone in ∆ is smooth, i.e. the minimal
generators of the cone are part of a Z-basis of the lattice N .

Proposition 3.15. Let k be a field. The k-toric scheme associated to a finite fan is
smooth if and only if the fan is smooth.

Proof.
First of all the statement is well posed since the fact that the fan is finite implies

1Recall that a closed immersion of schemes is a morphism of schemes such that the function
between topological spaces induces a homeomorphism between the first one and a closed subset of
the second one and furthermore the morphism of sheaves is surjective.

2Recall that an R-scheme X is universally closed over R if for every other R-scheme Y one has
that X ×R Y → Y is a closed map on topological spaces.

3A noetherian local ring A with unique maximal ideal m and residue field k is said to be regular
if dim(A) = dim(m/m2), where the first dimension is the Krull dimension of a ring and the second
dimension is as a k-vector space. Observe that the definition is well posed, since each stalk is a
local ring by definition of scheme and it is a noetherian ring since the scheme is noetherian (it is a
scheme of finite type over a field).
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that the k-toric scheme constructed from it is of finite type over k.
We will prove for simplicity only one direction. From the definition, it is clear that
smoothness is a local property, hence it will be enough to verify the property on affine
k-toric schemes. So, suppose Uσ to be the affine k-toric scheme constructed from
the cone σ. Suppose also that the cone σ is smooth. This means that its generators
v1, v2, . . . , vl can be taken as part of a Z-basis of N . So we can complete this set to
a basis w1 = v1, . . . , wl = vl, wl+1, . . . , wn of N . The dual lattice M has dual basis
w∗1, w

∗
2, . . . , w

∗
n, so

Sσ = σ∨ ∩M =
{
u =

n∑
i=1

aiw
∗
i : ai ∈ N and u(v) ≥ 0 for all v ∈ σ

}
= Nw∗1 + · · ·+ Nw∗l + Zw∗l+1 + · · ·+ Zw∗n

hence

k[Sσ] ' k[x1, . . . , xl, x
±1
l+1, . . . , x

±1
n ] = k[x1, . . . , xl]⊗ k[y±1

1 , . . . , y±1
n−l].

This implies of course

Uσ = Spec(k[x1, . . . , xl])×k Spec(k[y±1
1 , . . . , y±1

n−l]) = Alk ×k Tn−l,k

and so it is a smooth k-scheme.

Remark 3.3. The statement in the proposition can be extended to any base ring R
once one has defined smoothness for schemes over arbitrary base rings.

Remark 3.4. Asking that a fan is smooth in the case N = Z2 is equivalent to the
following requirement: for any two dimensional cone in the fan, the determinant of
the matrix having as columns the minimal generators for its two rays must have
determinant ±1.

Remark 3.5. Using the previous remark one could define a way to solve singularities
on a toric scheme constructed starting from the lattice N = Z2. Let’s consider a
toric scheme constructed from a fan ∆ in the vector space NR = R2 and suppose
that X(R,∆) is not smooth. This means that the scheme has a singular point P or,
equivalently, that the fan has at least one cone whose minimal generators are not
part of a Z-basis of N . In this case one could refine the fan to a fan ∆′; this means
that one can introduce new one dimensional cones in the fan in such a way that the
fan results to consist in more cones than before (we are splitting some of the cones).
This operation can be done in such a way that every cone in the new fan has minimal
generators which are part of a basis of the lattice (this can be done for example
following [7, Ch 2.6]). From a geometric point of view, the scheme obtained from ∆′

will be, using Proposition 3.15, a smooth R-toric scheme; moreover it can be proved
that there exists a proper morphism X(R,∆′)→ X(R,∆) that is an isomorphism
outside the locus of singularities. This is what is called a resolution of singularities
for the R-toric scheme X(R,∆).

Clearly the same resolution of singularities can be extended to higher dimensional
cases.
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(2;−1)

σ

Figure 3.1: A non smooth fan.

Example 3.16. As an example of Remark 3.5 we can consider a field k and the
cone σ in R2 generated by the vectors (0, 1) and (2,−1). This cone is not smooth
since the two minimal generators are not part of a Z-basis of Z2 (for example their
determinant is −2). So the corresponding affine k-toric scheme Uσ is not smooth by
the proposition. Anyway, we can introduce the ray generated by the vector (1, 0), as
in Figure 3.2. The fan we constructing by adding this ray is smooth, since both the

σ1

σ2

Figure 3.2: A smooth fan refining the one in Figure 3.1.

cones σ1 and σ2 are smooth; in fact the determinants of their minimal generators
are both 1 up to a signum. Then the k-toric scheme constructed from this fan is a
smooth scheme. We say to have “solved the singularities” of Uσ.

3.2.7 Conclusions

The results of this chapter underline the strong connection between the combinatorial
data and the toric variety constructed from them. In particular it is evident that the
properties of the scheme X(R,∆) depends both on algebraic properties of the ring R
(such as the fact that it is an integral domain, noetherian or integrally closed) both
on the combinatorial properties of the fan (such as the fact that it is a complete fan
or a smooth fan). At last, there are properties coming from the construction of the
R-scheme itself, such as quasi compactness and separatedness.
What it is worth to remember for future studies is the following result, that resume
what has been proved.

Theorem 3.17. Let R be a noetherian integrally closed domain and let ∆ be a fan
in the vector space NR, consisting of finitely many cones. Then the toric scheme
X(R,∆) is a separated normal integral noetherian scheme.
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Example 3.18. Consider a Dedekind domain R. It is a noetherian integrally closed
domain of Krull dimension1. This means in particular that if ∆ is a fan consisting of
finitely many cones, then the toric scheme X(R,∆) is a separated normal integral
noetherian scheme. In particular for any number field K, its ring of integers satisfies
this property: any OK-toric scheme coming from a finite fan is a separated normal
integral noetherian scheme.
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Chapter 4

Weil divisors on toric schemes

The definition of the main object of the thesis is contained in the following chapter.
To give it, it is necessary to use the machinery of Weil divisors. In this chapter we
will develop the theory needed in the following.

4.1 Divisors on schemes

To begin, recall what is the function field of an integral scheme.

Definition 4.1. Let (X,OX) be an integral scheme. The function field of X is
defined as the ring of fraction of the ring of coordinates O(U) of one1 affine Zariski
open subset U of X.

We now follow the presentation of Hartshorne [10], for which we refer for all the
proofs.

Definition 4.2. A prime divisor on a separated normal integral noetherian scheme
X is an integral closed subscheme of codimension 1 in X. A Weil divisor on a
variety is a linear combination of prime divisors, i.e. a finite formal sum of prime
divisors with integer coefficients.

Remark 4.1. The naive interpretation for classical abstract varieties is then the
following: a prime divisor on an irreducible varietyX is a closed irreducible subvariety
of codimension 1. And a Weil divisor on a variety is a linear combination of prime
divisors. This will be the way in which we will naively think to Weil divisors.

In this way a divisor on a scheme X is a formal sum D =
∑
nY Y , where nY ∈ Z

for every integral closed subscheme Y of codimension 1 and nY almost always zero.
A divisor is called effective if all the coefficients are nonnegative. The support of a
divisor D is the set theoretically union of the subschemes whose coefficient is nonzero.
The set of divisors over the scheme X is a group (it is the free abelian group generated
by the prime divisors), denoted by Div(X).
Depending from the fact that the scheme X is also normal, one has that for any

1For integral schemes, the definition is well posed since all the affine Zariski open subsets of X
are seen to give the same fraction field.
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prime divisor Y of X, the local ring of the2 generic point of Y is a discrete valuation
ring whose quotient field is the function field of X. The valuation vY on the stalk of
the generic point can be extended to a valuation on the function field, that we keep
calling vY with abuse of notation. For any f nonzero element of the function field of
X one has an integer vY (f); one can prove that this integer is zero for almost all
the choices of Y . One calls (f) =

∑
Y vY (f)Y the principal divisor associated to

the function f . Any divisor which is equal to the divisor of a function is called a
principal divisor; the set of principal divisors on X is denoted by Div0(X) and it
is a subgroup of Div(X).

Definition 4.3. Two divisors D1, D2 on X are said to be linearly equivalent,
D1 ∼ D2, if the divisor D1 −D2 ∈ Div0(X). The group of all the divisors over X
modulo linear equivalence is called the divisor class group of X,

Cl(X) = Div(X)/ ∼= Div(X)/Div0(X).

4.2 Star construction: Weil divisors from rays of the fan

We introduce in this section a nice construction of closed subschemes of a toric
scheme.
First of all we consider as usual the two dual lattices N and M . Let n be the rank of
N . Let ∆ be a fan in the vector space NR. Consider a ray (i.e. a 1-dimensional cone)
ρ in the fan ∆. Call Nρ the sublattice of N generated by ρ ∩N , as in figure 4.1. It
is clearly a lattice of rank 1, namely Nρ = Z · nρ if nρ is the minimal generator of
the ray.

Figure 4.1: The sublattice associated to the highligthed ray.

To this ray we associate the quotient lattice

N(ρ) = N/Nρ.

2Any integral scheme is irreducible. Moreover, there is a one to one correspondence between
irreducible components of a scheme S and the generic points of S. Hence here the construction is
well posed, since Y is supposed to be irreducible and so has only one generic point.
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It is again a lattice and of rank n−1; this is because the sublattice is one dimensional
and the quotient is still a free group3. Since Nρ = Z · nρ, the dual lattice of N(ρ) is

M(ρ) := Hom(N(ρ),Z) ' {ϕ ∈ Hom(N,Z) : ϕ(Nρ) = {0}}
= {m ∈M : 〈m,n〉 = 0 for all n ∈ Nρ} = {m ∈M : 〈m,nρ〉 = 0}
= M ∩ ρ⊥.

The isomorphism is given in the following way: construct a basis {nρ, v2, . . . , vn} of N,
thenN(ρ) is generated by {v2, v3, . . . , vn} in the quotient, see that any homomorphism
of groups from N(ρ) to Z sends each vi to a certain integer number mi. The
corresponding homomorphism between N and Z sends nρ to 0 and each vi to mi.
Conversely any morphism N → Z that is zero restricted to Nρ gives a morphism
N(ρ)→ Z by projection. The two constructions are one the inverse of the other.
Proceeding as usual we can also associate to this lattices the vector spaces N(ρ)R
and M(ρ)R.
We are now ready to define the star construction.

Definition 4.4. Let ∆ be a fan in the vector space NR and let ρ be a 1-dimensional
face of ∆. We call star of the ray ρ the collection of σ ∈ N(ρ) with σ a cone in ∆
containing ρ as a face.

Explicitly it is

Star(ρ) = {σ : σ ∈ ∆, ρ � σ} ⊆ N(ρ)R.

Lemma 4.5. Let ∆ be a fan in the vector space NR and let ρ be a 1-dimensional
face of ∆. Then Star(ρ) is a fan in N(ρ)R.

Proof.
Consider any set in the collection Star(ρ). It is the projection of a strongly convex
polyhedral rational cone σ in NR that contains ρ as a face. But the generators of σ
can be chosen to be the ray generators of its rays, so they are {nρ, v2, . . . , vl}. Its
projection is generated by {nρ, v2, . . . , vl} and hence by {v2, v3, . . . , vl}. Immediately
one sees that it is still a strongly convex rational polyhedral cone, but in the new
vector space N(ρ)R: in fact it is still a cone and it is rational since the generators
are v2, v3, . . . , vl ∈ N(ρ); finally since ρ is a face of σ, {0} is a face of σ.
Moreover if σ is a cone in Star(ρ), each face of σ is the projection of a face of σ
containing ρ. This claim is enough in order to verify easily that the remaining two
properties of a fan are satisfied.

By the previous Lemma one obtains that the following definition is coherent.

Definition 4.6. Let R be a ring, ∆ be a fan in the vector space NR and let
ρ be a 1-dimensional face of ∆. Then the toric divisor associated to ρ is
Dρ := X(R, Star(ρ)).

3To see this, notice that nρ is a vector with coprime entries (gcd(x1, x2, . . . , xn) = 1) since it is
a minimal generator of a ray; as stated in [17] it is a “primitive” vector and can be extended to a
basis of the lattice, hence the quotient gives again a free group.
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We know verify that it is effectively a prime divisor for the scheme X(R,∆).
Recall that a prime divisor of a separated normal integral noetherian scheme X is
an integral closed subscheme of codimension 1 in X. Let’s start checking the fact
that it is a closed subscheme of X(R,∆).

Proposition 4.7. Let R be a ring, ∆ be a fan in the vector space NR and let ρ be a
1-dimensional face of ∆. Then Dρ is a closed subscheme of X(R,∆).

Proof.
Let’s understand what happens in the affine case, i.e. when ∆ consists of a cone σ.
For any 1-dimensional face ρ of σ we have that:

Star(ρ) = {τ : ρ � τ � σ} ⊆ N(ρ)R

and so all the affine pieces of X(R, Star(ρ)) are Uτ , so open subschemes of Uσ. Hence:

Dρ = X(R, Star(ρ)) ' Uσ = Spec(R[M(ρ) ∩ σ∨]) ' Spec(R[M ∩ ρ⊥ ∩ σ∨])

since σ∨ = {w ∈ M(ρ) : w(v) ≥ 0 for all v ∈ σ} is isomorphic (under the isomor-
phism of vector spaces M(ρ) ' M ∩ ρ⊥) to {m ∈ M ∩ ρ⊥ : 〈m, v〉 ≥ 0 for all v ∈
σ} = M ∩ ρ⊥ ∩ σ∨.
Now, consider the morphism of R-algebras ψ : R[σ∨∩M ]→ R[M ∩ρ⊥∩σ∨] obtained
by defining the image of every generator T u as:

ψ(T u) =

{
T u if u ∈ ρ⊥
0 if u /∈ ρ⊥

.

Then, one has

R[M ∩ ρ⊥ ∩ σ∨] ' R[σ∨ ∩M ]/Ker(ψ) = R[σ∨ ∩M ]/〈T u : u /∈ ρ⊥〉

where 〈T u : u /∈ ρ⊥〉 denotes the ideal generated by these elements. Hence:

Dρ ' Spec(R[M ∩ ρ⊥ ∩ σ∨]) ' Spec(R[σ∨ ∩M ]/〈T u : u /∈ ρ⊥〉) ' V (T u : u /∈ ρ⊥)

so Dρ = Uσ can be seen as a closed subscheme of Spec(R[σ∨ ∩M ]).
In the general case (for ∆ a general fan), the scheme Dρ is covered by affine pieces
of the type Uσ where σ ranges over the family of cones of ∆ containing ρ as a face.
Each Uσ is a closed subscheme of Uσ. Compatibility conditions guarantee the fact
that Uσ can be glued together to give a closed subscheme of the glue of Uσ. But the
glue of the first is Dρ = X(R, Star(ρ)) while the glue of the second give X(R,∆),
hence Dρ is a closed subscheme of X(R,∆).

Hence Dρ is a closed subscheme of X(R,∆). Moreover if R is taken to be an
integral domain, by 3.8 the scheme X(R, Star(ρ)) is an integral scheme.
At last, let’s look at the dimension. We suppose R to be noetherian. It follows from
the study of R-toric schemes that the scheme X(R, Star(ρ)) contains as a Zariski
open subset the torus U{0} = Spec(R[M(ρ)]): if N has rank n then N(ρ) has been
seen to be of rank n − 1. Hence also the dual M(ρ) has rank n − 1, so the torus
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is Spec(R[M(ρ)]) = Spec(R[x±1
1 , x±1

2 , . . . , x±1
n−1]). This is a scheme of dimension4

dim(R)+n−1 and it is a dense open subscheme of X(R, Star(ρ)); since the dimension
of a topological space is the same as the dimension of any of its open dense subset,
one concludes that the dimension of Dρ = X(R, Star(ρ)) is dim(R) + n − 1. This
means that Dρ has codimension 1 in X(R,∆). Indeed this last scheme has dimension
dim(R) + n since it contains the torus Spec(R[M ]) = Spec(R[x±1

1 , x±1
2 , . . . , x±1

n ]) as
a dense open subset.

To resume, one has the following.

Theorem 4.8. Let R be a noetherian integrally closed domain and let ∆ be a fan in
the vector space NR, consisting of finitely many cones. For every 1-dimensional face
ρ of ∆ the toric divisor Dρ := X(R,Star(ρ)) is a prime divisor of X(R,∆).

4.3 Topological structure of a toric scheme coming from
a fan

The aim of this paragraph is to understand the topological composition of a toric
scheme. This will be essential for the development of the theory of Weil divisors on
toric schemes.

Lemma 4.9. Let ρ be a ray of the cone σ. Then Dρ = V (Tn
∗
ρ) in Uσ and its generic

point is the prime ideal 〈Tn∗ρ〉.

Proof.
Since nρ is the minimal generator of the ray, we can extend it to a base of N ,
{e1, e2, . . . , en}, with e1 = nρ. Consider the dual basis {e∗1, e∗2, . . . , e∗n} of M . Recall
the fact that Dρ can be seen in Uσ as Dρ = V (T u : u /∈ ρ⊥) (see the proof of 4.7).
Remarking that v = α1e

∗
1 +α2e

∗
2 + · · ·+αne

∗
n is in ρ⊥ if and only if α1 = 0, it is easily

seen that T v is in 〈T u : u /∈ ρ⊥〉 if and only if it is divided by T e∗1 = Tn
∗
ρ (recall that

necessarily αi ≥ 0 since the vector must lie in σ∨). Hence, 〈T u : u /∈ ρ⊥〉 ⊆ 〈Tn∗ρ〉.
The converse is evident, so one concludes that

〈T u : u /∈ ρ⊥〉 = 〈Tn∗ρ〉

that means that Dρ = V (Tn
∗
ρ).

The generic point of Dρ is then the minimal prime ideal containing 〈Tn∗ρ〉. But this
ideal is already prime. Indeed it is equal to 〈T u : u /∈ ρ⊥〉 and this last one is prime:
if T uT v lies in it, u + v /∈ ρ⊥, so 〈u + v, nρ〉 = 〈u, nρ〉 + 〈v, nρ〉 > 0; since the two
vectors u and v are in σ∨ it must be that at least one of the terms in the sum is
strictly positive, say 〈u, nρ〉 > 0. In this case u /∈ ρ⊥ and so T u lies in the ideal.

Now we state without proving a proposition on the structure of the toric scheme
X = X(k,∆) in the case in which k is a field.

4This can be proved by induction; prove that dim(R[x±1]) = dim(R) + 1; in fact R[x±1] is a
localization of R[x], which has dimension dim(R) + 1 since R is noetherian (see [25, Prop 2.4.3.12]);
now the dimension of this localization cannot be greater than the dimension of the original ring.
But it is at least dim(R) + 1 since for example the ideal generated by x+ 1 is prime.
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Proposition 4.10. Let k be a field and let ∆ be a fan in the vector space NR. Calling
T the torus in X(k,∆), set theoretically one has that

T = X(k,∆)−
⋃

ρ∈∆(1)

Dρ

where each Dρ is the toric divisors associated to the ray ρ, as explained in Section
4.2.

Proof.
See [16, Thm 6.4(3)], [7, §3.1 page 55] or [4, Thm 3.2.6].

Remark 4.2. This proposition is true also for the ring Z as proved in [6, §4, Prop 2].
We did not check it for any base ring R, even if this should be a good starting point
for extending the theory of next chapter to general base rings.

4.4 Weil divisors on toric schemes

Let N be a lattice, M its dual, NR and MR the corresponding vector spaces. In the
first subsection we will understand some peculiar Weil divisors; we will suppose R to
be a noetherian integrally closed domain, ∆ a fan consisting of finitely many cones
in NR. In this way the scheme X := X(R,∆) is separated, normal, integral and
noetherian. We can in this way deal with Weil divisors on X. We will denote with
∆(1) the collection of rays in the fan and for every ray ρ we will denote with nρ its
minimal generator, with Dρ the prime divisors associated to it via star construction,
with νρ the valuation of the DVR Ox,η (here η is the generic point of the prime
divisor Dρ).
With the same notation we will find a short exact sequence involving the divisor
class group of X(k,∆) in the case in which k is an algebraically closed field.

4.4.1 Some principal divisors on a toric scheme

One already knows that the cone {0} is in the fan (and in fact this implies that a
torus is an open subscheme of the toric variety); moreover U{0} is an affine subset of
X(R,∆) and

OX(U{0}) = OX(Spec(R[M ])) = R[M ].

So the function field of X is K(X) = Frac(R[M ]) ' Frac(R)(x1, x2, . . . xn). In any
case it is clear that for every m ∈M the monomial Tm is an element of K(X), hence
one can define the Weil divisor associated to the function Tm.

Lemma 4.11. For any element m ∈M , the order of Tm along the toric divisor Dρ

is νρ(Tm) = 〈m,nρ〉.

Proof.
The order of a function in the function field can be checked locally, so it is sufficient to
verify it on an affine piece of X containing the divisor, let it be Uσ = Spec(R[M ∩σ∨])
with σ containing ρ as a face.
Since nρ is the minimal generator of the ray, it is a primitive vector and so we can
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extend it to a base of N , {e1, e2, . . . , en}, with e1 = nρ. Consider the dual basis
{e∗1, e∗2, . . . , e∗n} of M . The local ring of Dρ in its generic point is then (refer to
Lemma 4.9 and to [10, Prop II.2.2]):

R[Sσ]〈T e
∗
1 〉

with only maximal ideal
M = 〈T e∗1〉R[Sσ]〈T e

∗
1 〉.

The valuation νρ(Tm) on this stalk is so the maximal integer l for which Tm lies in
Ml. Hence, writing m = α1e

∗
1 + α2e

∗
2 + · · ·+ αne

∗
n (it is a basis of M):

νρ(T
m) = max

l
{Tm ∈Ml} = max

l

{
Tm ∈ 〈T le∗1〉R[Sσ]〈T e

∗
1 〉

}
= max

l

{
Tm/T le

∗
1 ∈ R[Sσ]〈T e

∗
1 〉

}
= max

l

{
Tm−le

∗
1 ∈ R[Sσ]〈T e

∗
1 〉

}
= max

l

{
T (α1−l)e∗1+α2e∗2+···+αne∗n ∈ R[Sσ]〈T e

∗
1 〉

}
= max

l
{α1 − l ≥ 0} = α1 = 〈m, e1〉 = 〈m,nρ〉

where we just used the fact that, by definition, in R[Sσ]〈T e
∗
1 〉, all the elements of

R[Sσ] are inverted except the ones in 〈T e∗1〉, so T (α1−l)e∗1Tα2e∗2 . . . Tαne
∗
n is in the

localization if and only if the exponent of T e∗1 is nonnegative.

Proposition 4.12. Suppose that R is a ring such that it satisfies the statement of
Proposition 4.10. Then, for any element m ∈M , the principal divisor associated to
Tm is

(Tm) =
∑

ρ∈∆(1)

〈m, vρ〉Dρ.

Proof.
By definition of principal divisor:

div(Tm) =
∑

Y prime divisors
νY (Tm)Y.

We just have to check that on the torus T contained in the toric scheme X the
function Tm has order zero. By definition of order, we should look at the valuation
of the DVR of the stalk at some generic point. Supposing the point P is in the torus,
its stalk is OX,P = OT,P and so a localization of the section ring of the torus, which
is R[M ]. Call this localization R[M ]p; it is a local ring with maximal ideal pR[M ]p.
We also know that from the fact that this point is chosen as the generic point of a
prime divisor, it will be a DVR. Moreover, the valuation of Tm in this ring will be
given by the biggest integer l such that Tm ∈ plR[M ]p. The point now is that Tm is
already invertible in R[M ] (with inverse T−m), so it will be invertible also in R[M ]p
and so it cannot be contained in any proper ideal of this localization. So necessarily
the integer l must be zero, so νP (Tm) = 0 for every point P in the torus T. Hence
for every prime divisor Y with generic point lying inside the torus, νY (Tm) = 0.
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Now, since the toric scheme is X = T t ⋃Dρ by hypothesis (we suppose Proposition
4.10 to be true), one immediately concludes that, using also Lemma 4.11:

div(Tm) =
∑

ρ∈∆(1)

νρ(T
m)Dρ +

∑
Y other prime divisors

νY (Tm)

=
∑

ρ∈∆(1)

νρ(T
m)Dρ =

∑
ρ∈∆(1)

〈m,nρ〉Dρ.

Remark 4.3. As seen in Proposition 4.10 and in Remark 4.2, the previous proposition
holds surely for fields and for the ring Z.

4.4.2 An exact sequence

In this paragraph we prove that for toric schemes over an algebraically closed field
one has a nice exact sequence. Before stating and proving the result, we need to
review a result. Recall that if X is a noetherian topological space, every closed subset
Z of X can be written in a unique way as union of finitely many irreducible closed
subsets Z = Z1 ∪Z2 ∪ · · · ∪Zn with Zi * Zj for any i 6= j (see for example [10, Prop
I.1.5]).

Lemma 4.13. Let X be a noetherian integral normal separated scheme. Let Z 6= X
be a closed subset of the topological space underlying X and let U = X − Z. Call
D1, D2, . . . , Ds the irreducible components of Z that are prime divisors (since a
noetherian scheme is a noetherian topological space they are in finite number). Then
there exists an exact sequence of groups

s⊕
i=1

ZDi
// Cl(X) // Cl(U) // 0.

Proof.
Good reference for this proof are [10, Prop II.6.5] and [4, Thm 4.0.20]. We will
describe the general idea without checking all the details.
Let’s start proving exactness in Cl(U). Consider a divisor D in X; it is of the form
D =

∑
nY Y with Y ranging on prime divisors of X. The map that send D to∑

nY (Y ∩U) (ignoring the sum whenever Y ∩U = ∅) is well defined between Div(X)
and Div(U). In fact if Y is an integral closed subscheme of X with codimension 1,
then Y ∩ U is the empty set or an integral closed subscheme of U with codimension
1 (notice that it is a closed subset of U with the induced topology, integrality comes
from the fact that reduceness is a local property and the set remains irreducible,
dimension statements come from the density of U in X). This map is moreover
surjective, since for every divisor

∑
nY ′Y

′ in U one can consider
∑
nY ′Y ′, where Y ′

denotes the Zariski closure of Y ′ in X. This is a divisor on X since it can be verified
that every Y ′ is an integral closed subscheme of X with codimension 1.
Once we constructed the surjective morphism Div(X) → Div(U), we see that any
principal divisor is sent to another principal divisor, since for every element f in
the function field of X, (f) 7→ (f|U ). So the previous morphism induces a surjective
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group morphisms on the quotients Cl(X)→ Cl(U).
What is left is to study the kernel of this morphism. Surely the kernel contains the
image of the projection, π(

⊕
ZDi). Indeed∑

niDi 7→
∑

ni[Di] 7→
∑

ni[Di ∩ U ] = 0

since by definition Di ∩ U = ∅ for every i = 1, 2, . . . , s. Conversely, if
∑
nY [Y ] in

Cl(X) is sent to zero, then it means that
∑
nY [Y ∩ U ] = 0, so nY = 0 for every

prime divisor Y intersecting U , i.e. not contained in Z = X − U . It easily implies
that the only prime divisors that can appear with a nonzero coefficient are the
ones lying inside Z, that are D1, D2, . . . , Ds by definition. So

∑
nY [Y ] must be the

projection of some divisor of the form
∑
niDi. Hence we have proved exactness also

in Cl(X).

We need also a little fact about the divisor class group of an affine scheme.

Lemma 4.14. Let A be a noetherian integral domain and let X = Spec(A). If A is
a unique factorization domain then Cl(X) = {0}.
Proof.
See a stronger form in [10, Prop II.6.2].

From the lemma one obtains the following.

Theorem 4.15. Let k be an algebraically closed field and let ∆ be a fan in NR
consisting of finitely many cones. Call X = X(k,∆) the k-toric scheme associated
to the fan ∆, M the dual of the lattice N and vρ the minimal generator of the ray ρ.
Then there exists an exact sequence:

M //
⊕

ρ∈∆(1)

ZDρ
// Cl(X) // 0

where the first arrow is give by the map α : m 7→∑
ρ∈∆(1)〈m, vρ〉Dρ and the second

one is the canonical projection π to the divisor class group.
Moreover if the minimal generators of the rays in the fan span NR, one has an exact
sequence

0 //M //
⊕

ρ∈∆(1)

ZDρ
// Cl(X) // 0.

Proof.
First of all, since k is an algebraically closed field and ∆ consists in finitely many
cones the scheme X is a noetherian integral normal separated scheme. So we can
speak without problems about Weil divisors and we can apply the previous lemma.
Let’s take U to be the torus U{0} contained as an open subset of X. Applying
Lemma 4.13 and Proposition 4.10 (that can be applied in the case of fields) we get
immediately the exact sequence⊕

ρ∈∆(1)

ZDρ
// Cl(X) // Cl(U) // 0.

But now U = Spec(k[x±1
1 , x±1

2 , . . . , x±1
n ]). Since k is a field, then k[x1, x2, . . . , xn]

is a UFD and, since localizations of UFD are still UFD, k[x±1
1 , x±1

2 , . . . , x±1
n ] =
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k[x1, x2, . . . , xn]x1x2...xn is a UFD. By Lemma 4.14 one has that Cl(U) = {0}. As a
consequence, the previous sequence gives:⊕

ρ∈∆(1)

ZDρ
// Cl(X) // 0

that proves the exactness of the left part of the sequence in the statement.
Then, the map α : M →⊕

ZDρ can be easily seen to be the map m 7→ div(Tm) (it
is enough to apply Proposition 4.12). In this way it is obvious that π ◦ α = 0 so
Im(α) ⊆ Ker(π). So it is left to prove that the other inclusion holds. Then, let’s
consider an element in the kernel of π: it is obviously of the form (f) for some
element of the function field; moreover, it has the property that the element f has
order zero everywhere outside the torus, from Proposition 4.10. It can be seen 5 that
necessarily f is of the form cTm where c ∈ k∗ and m ∈M . Since

α(m) = div(Tm) = div(cTm) = div(f),

this implies that (f) lies in the image of α. So, also the inclusion Ker(π) ⊆ Im(α)
holds and then the sequence is also exact in

⊕
ZDρ.

At last, it remains to prove what happens if the minimal generators of the rays in the
fan span NR. In this case, suppose that α(m) = 0. Then 〈m, vρ〉 = 0 for every ρ and
so, since they span the vector space, 〈m, v〉 = 0 for every v ∈ NR and in particular
for each vector of the canonical basis ei. Hence each component of m is zero, so
m = 0. This proves the injectivity of α and so the exactness of the sequence

0 //M //
⊕

ρ∈∆(1)

ZDρ
// Cl(X) // 0.

4.5 Computing the divisor class group of certain toric
schemes

In this section we will use the exact sequence worked out in 4.4.2 to compute the
class group of some toric schemes. We will assume k to be an algebraically closed
field. Moreover we will always suppose the lattice M to be Zn, with action on N
given by the dot product.
So, let’s consider a fan ∆ in NR and let X be the toric scheme X(k,∆). The general
strategy for computing the divisor class group is the following. Consider all the rays
of the fan, ρ1, ρ2, . . . , ρl and call their minimal generators η1 = ηρ1 , η2 = ηρ2 , . . . , ηl =

5The intuitive idea is more or less this: f is a nonzero function in the function field of X, that is
isomorphic to Frac(k[x±1

1 , x±1
2 , . . . , x±1

n ]) (think to the torus embedded in the scheme). So f = g/h
where g and h are two coprime nonzero Laurent polynomials with coefficients in k (coprimality
is meaningful since k[M ] is isomorphic to the localization of a UFD). It must be true that g/h
has no zero nor poles on the torus (k∗)n and this forces the zeros and poles of g and h to be at 0
(otherwise f would have a pole or a zero outside 0 from coprimality). Since k is algebraically closed,
the polynomial g has a zero or pole only in 0 if and only if g = c1T

m1 . The polynomial is nonzero,
so c1 6= 0. The same must be true for h and so f = g/h will have the form cTm.
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ηρl ; for each i = 1, 2, . . . , l let moreover Dρi = Di be the toric divisor associated to
the ray ρi. We have a short exact sequence:

Zn // ZD1 ⊕ ZD2 ⊕ · · · ⊕ ZDl
// Cl(X) // 0.

Here the first map is α : Zn →⊕
ZDi, sending m to

∑〈m, ηi〉Di, while the second
map is the canonical projection π. The fact that the projection π is surjective means
that Cl(X) is generated (as an additive group) by the classes [D1], [D1], . . . , [Dl]
(every element in fact must come from a linear integer combination of Di, so it is a
linear combination, with the same coefficients of the [Di]’s). Moreover the fact that
the sequence is exact requires that the image of α is equal to the kernel of π. Now:

Im(α) = {α(m1, . . . ,mn) : m ∈ Zn} =
{∑

〈m, ηi〉Di : m ∈ Zn
}

=
{∑
i,j

mjηi,jDi : m ∈ Zn
}

=
{∑

j

mj

∑
i

ηi,jDi : mj ∈ Z
}

= Z
(∑

i

ηi,1Di

)
+ Z

(∑
i

ηi,2Di

)
+ · · ·+ Z

(∑
i

ηi,nDi

)
.

So this must be also the kernel of π. This means that an element of the sum
⊕

ZDi

is sent to zero in the divisor class group if and only if it lies in the previous subgroup.
But the subgroup is generated by

∑
i ηi,2Di, so it is necessary and sufficient to ask

that this generators are sent to zero. In other words, one asks that
∑

i ηi,j [Di] = 0
for every j = 1, 2, . . . , n.
We then obtain a presentation of the group Cl(X) in the sense of the following
definition.

Definition 4.16. A group G is said to have the presentation 〈S|R〉 if it is isomor-
phic to the quotient of a free group with set of generators S by the normal subgroup
generated by the relations R.

Every group admits a presentation. The case we study naturally gives rise to
such a presentation. In fact, proceeding as above one easily concludes that:

Cl(X) has presentation 〈[Di]
∣∣∣∑

i

ηi,j [Di] = 0〉. (4.1)

We will now study some examples, in order to deduce the divisor class group of
particular toric schemes.

4.5.1 The affine space

Recall that the fan from which one obtains the affine plane is the one in Figure 4.2,
in which for every i = 1, 2, . . . , n we call ρi the ray generated by the canonical vector
of the basis ei.
Hence the group Cl(Ank) is generated by {[Di]}i, while the relations are given by the
fact that

α(m1,m2, . . . ,mn) =
∑
〈m, ei〉Di =

∑
miDi
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ρ1

ρ2

Figure 4.2: The fan in NR for the affine space.

so the kernel of π is the group generated by all the Di. In this way it is obvious that
since the presentation is

〈[D1], [D2], . . . , [Dn]
∣∣∣[D1], [D2], . . . , [Dn]〉

then the group is trivial, so Cl(Ank) = {0}. This agrees with Lemma 4.14, since
Ank = Spec(k[x1, x2, . . . , xn]), that is the spectrum of a unique factorization domain.

4.5.2 The projective space

Recall that the fan for the projective plane is the one in Figure 4.3, in which the rays
are ρi generated by the canonical vector ei for every i = 1, 2, . . . , n and ρ0 generated
by −e1 − e2 − · · · − en.

ρ0

ρ1

ρ2

Figure 4.3: The fan in NR for the projective space.

Using the general proceeding as above, from Equation 4.1 we obtain the presentation:

〈[D0], [D1], . . . , [Dn]
∣∣∣[Di]− [D0] for all i = 1, 2, . . . , n〉

so the group generators must all coincide, hence Cl(Pnk) ' Z.

4.5.3 P1 × P1

Recall that the fan for the scheme P1
k × P1

k is the one in Figure 4.4, in which the rays
are ρ1, ρ2, ρ3, ρ4 generated by the canonical vectors e1, e2,−e1,−e2 respectively.
From Equation 4.1 one has the presentation:

〈[D1], [D2], [D3], [D4]
∣∣∣[D1]− [D3], [D2]− [D4]〉
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ρ1

ρ2

ρ3

ρ4

Figure 4.4: The fan in R2 for P1 × P1.

so the group generators are pairwise the same, from which Cl(P1
k × P1

k) ' Z2.

4.5.4 Hirzebruch surface

Recall that the Hirzebruch surface is defined as the toric scheme constructed from
the fan in Figure 4.5.

(−1;r)

ρ1

ρ2ρ3

ρ4

Figure 4.5: The fan in R2 for the Hirzebruch surface.

This fan has four rays: ρ1, ρ2, ρ3, ρ4 generated by the vectors (1, 0), (0, 1), (−1, r), (0,−1)
respectively.
The map α acts sending m = (a, b) to:

α(a, b) = (a, b) · (1, 0)D1 + (a, b) · (0, 1)D2 + (a, b) · (−1, r)D3 + (a, b) · (0,−1)D4

= a(D1 −D3) + b(D2 + rD3 −D4).

Hence Equation 4.1 gives us the presentation:

〈[D1], [D2], [D3], [D4]
∣∣∣[D1]− [D3], [D2] + r[D3]− [D4]〉

from which [D1] = [D3] and so the group is presented as:

〈x, y, z
∣∣∣x+ ry − z〉.

This is the divisor class group of the Hirzebruch surface, expressed via presentation
theory.
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4.5.5 A affine example with torsion

As last, illustrative example, we consider the cone σ in Figure 4.6, generated by the
two vectors v1 = (d,−1) and v2 = (0, 1) for a certain positive integer d ∈ N. The
two rays are ρ1 generated by v1 and ρ2 generated by v2. The corresponding toric
scheme is the affine toric scheme Uσ.

ρ1

ρ2

Figure 4.6: A cone in R2.

The map α sends m = (a, b) to:

α(a, b) = (a, b) ·(d,−1)D1 +(a, b) ·(0, 1)D2 = (da−b)D1 +bD2 = adD1 +b(D2−D1).

Hence Equation 4.1 gives us the presentation:

〈[D1], [D2]
∣∣∣d[D1], [D2]− [D1]〉.

This means that in particular [D1] = [D2] and so we have only one generator.
Moreover d[D1] = 0 so the (only) generator [D1] has order d. Hence:

Cl(Uσ) ' Z/d.Z

so we have an affine toric scheme with a non-free divisor class group.
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Chapter 5

The Cox ring for a toric scheme
associated to a fan

We want to reinterpret one of the definition and results of [2] in the language of
schemes. As usual we will deal with a lattice N and its dual M , hence with the two
dual R-vector spaces NR := N ⊗Z R and MR := M ⊗Z R. Since we are going to use
the theory of Weil divisors, we will restrict to the case in which R is a noetherian
integrally closed domain, and ∆ is a finite fan in the vector space NR.

5.1 Motivation

We saw in Chapter 2 that a projective space is a toric variety. We also know that the
projective space can be obtained as a quotient of some affine space minus a closed
subset by the action of a group. This is indeed one of the traditional construction of
Pnk for an algebraically closed field k:

Pnk =
kn+1 − {0}

∼
where ∼ is the equivalence relation given by x ∼ y if and only if x = λy for some
λ 6= 0 in k. In other words, if the action of k∗ on kn+1 is defined by λ.x = λx, then:

Pnk =
An+1
k − {0}
k∗

.

The idea is that this construction is possible for any toric variety. In order to do this
it will be important to understand what is a quotient in the category of schemes. For
this purpose we study categorical quotients in section 5.2.

5.2 Categorical quotients

There are in fact many different possible definition for the quotient of a scheme by a
group. As far as we will be interested in the subject, a quotient of an object by the
action of a group on it can be defined in any category. In particular, we need the
concept of quotient in the category of schemes. First of all we should introduce what
is a G-invariant morphism.
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Definition 5.1. Let X and Y be two S-schemes and let G be a group scheme over
S with an action a of G on X. Calling pr2 the canonical map G×S X → X coming
from the definition of fiber product, then a morphism of schemes f : X → Y is called
a G-invariant morphism if

f ◦ a = f ◦ pr2.

In terms of diagrams, it is required that the following one commutes:

G×S X a //

pr2
��

X

f
��

X
f

// Y

We are now ready to define categorical quotients, through a universal property.

Definition 5.2. Let X be an S-schemes and let G be a group scheme over S, with
an action a of G on X. A categorical quotient of X by the action of G is a
G-invariant morphism π : X → Y such that for any S-scheme Z with a G-invariant
morphism f : X → Z there exists a unique morphism g : Y → Z such that g ◦ π = f .

X
π //

f
  

Y

g

��

Z

If a categorical quotient exists, it is unique up to a unique isomorphism.
A basic and useful result in Geometric Invariant Theory is the following.

Theorem 5.3. Let k be a field and let X = SpecA be an affine scheme over k, and
let G = SpecB be a reductive group scheme over k acting on X by the action a
(with corresponding map a] : A→ B ⊗A). Then the categorical quotient of X by the
action of G exists and it is (unique up to a unique homomorphism) the scheme

SpecA/G = SpecAB = Spec({x ∈ A : a](x) = x⊗ 1}).

Proof.
See [18, Thm 1.1].

5.3 Definition of the Cox ring

The aim of this paragraph is to present the construction of the homogeneous coordi-
nate ring (or Cox ring) of a toric scheme defined on a base ring.
Let R be a noetherian integrally closed domain, and ∆ a finite fan in the vector
space NR. Let X = X(R,∆). Now, consider the set of all edges (i.e. one dimensional
cones) of ∆, call this collection ∆(1). For every ρ ∈ ∆(1) one can introduce a formal
symbol xρ. The graded ring we are looking for will be the polynomial ring over these
variables.

Definition 5.4. Let R be a noetherian integrally closed domain, ∆ a finite fan in
the vector space NR and let X be the R-toric scheme constructed from the fan ∆.
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The homogeneous coordinate ring (or Cox ring) of the toric variety X is
defined as

Cox(X) = R[xρ : ρ ∈ ∆(1)]

together with the degree map on monomials

deg
∏

ρ∈∆(1)

x
aρ
ρ =

[ ∑
ρ∈∆(1)

aρDρ

]
∈ Cl(X)

where Dρ is the toric divisor associated to the ray ρ, constructed as in Section 4.2.

Remark 5.1. Note that
∑

ρ∈∆(1) aρDρ is a formal finite sum of prime divisor with
integer coefficient. It is hence a divisor, so it is meaningful to take its projection into
the divisor class group of X.

Remark 5.2. Recall that a graded ring A is a ring that can be written as direct sum
of abelian groups Ai with product satisfying Ai · Aj ⊆ Ai+j where the indices are
taken in an abelian group I. In our case, we choose as set of indices the abelian group
Cl(X). Moreover, we already know that a polynomial ring is direct sum of (infinitely
many) abelian groups isomorphic to (R,+) as in the following decomposition:

R[xρ : ρ ∈ ∆(1)] = R⊕Rxρ1 ⊕ · · · ⊕Rxρl ⊕Rxρ1xρ2 ⊕ . . . .

It is possible that some monomials have the same degree (see Remark 5.3 for a nec-
essary and sufficient condition). Putting them all together, one gets a decomposition

Cox(X) =
⊕

[D]∈Cl(X)

( ⊕
deg(xm)=[D]

Rxm

)
.

Calling
Cox(X)[D] =

⊕
deg(xm)=[D]

Rxm

one effectively obtains a decomposition

Cox(X) =
⊕

[D]∈Cl(X)

Cox(X)[D].

These are abelian groups, moreover if we consider two monomials xa =
∏
ρ∈∆(1) x

aρ
ρ

and xb =
∏
ρ∈∆(1) x

bρ
ρ , then:

deg
(
xa · xb

)
= deg

(
xa+b

)
=

[ ∑
ρ∈∆(1)

(a+ b)ρDρ

]
=

[ ∑
ρ∈∆(1)

(aρ + bρ)Dρ

]

=

[ ∑
ρ∈∆(1)

aρDρ

]
+

[ ∑
ρ∈∆(1)

bρDρ

]
= deg

(
xa
)

+ deg
(
xb
)
.

Hence Cox(X)[D1] · Cox(X)[D2] ⊆ Cox(X)[D1]+[D2]; we have really a graduation on
the ring Cox(X).
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Remark 5.3. Two monomials can have the same degree. It is in fact possible that[ ∑
ρ∈∆(1)

aρDρ

]
=

[ ∑
ρ∈∆(1)

bρDρ

]
.

This happens if and only if ∑
ρ∈∆(1)

(aρ − bρ)Dρ ∈ Div0(X).

Recalling the exact sequence in Theorem 4.15 (at least for algebraically closed fields)
one has that the previous divisor is principal if and only if it is in the image of the
morphism α, i.e. if and only if there exists m ∈M such that 〈m, vρ〉 = aρ − bρ for
every ρ ∈ ∆(1) (here vρ is the minimal generator of the ray ρ).

In the following, to simplify the notation, we will avoid to put the symbol of the
equivalence classes for divisors.
We will now define an interesting ideal of Cox(X), that will play a crucial role in the
theory. Let’s consider a cone σ (of any dimension) in the fan ∆. To this cone we can
associate an element of Cox(X), that is

xσ̂ =
∏

ρ∈∆(1)−σ(1)

xρ

So, for any σ ∈ ∆ we define a monomial in the ring Cox(X), taking the product of
all the rays of the fan not being faces of σ. It has degree

σ̂ := deg xσ̂ = deg
∏

ρ∈∆(1)−σ(1)

xρ =
∑

ρ∈∆(1)−σ(1)

Dρ

These elements generate an ideal in Cox(X), that will turn out to be very important
later.

Definition 5.5. Let X be a toric variety over R coming fro the fan ∆. The
irrelevant ideal of the Cox ring Cox(X) is the ideal generated by the previous
monomial, i.e.

B := 〈xσ̂ : σ ∈ ∆〉

Remark 5.4. We can see immediately that it is sufficient to consider the maximal
cones in the fan to get the irrelevant ideal. In fact if τ is not a maximal cone of ∆, it
is contained in some other cone σ. Now, by definition of fan, τ = τ ∩ σ is a face of σ.
Then the generators of τ are a subset of the generators of σ and all the rays in τ are
rays in σ. By definition of the monomial associated to a cone, clearly xσ̂ divides xτ̂ ,
hence xτ̂ can be forgotten among the generators of the ideal B.

Example 5.6. As seen in section 2.6.3, we can see the projective space PnR as
X(R,∆), where ∆ is the fan whose cones are generated by the possible subsets of
{e0, e1, . . . , en}, with the notation e0 = −e1 − e2 − · · · − en. This means that ∆(1)
consists of all the ray generated by one of the vectors e0, e1, . . . , en (see Figure 5.1).
By definition ∆(1) has cardinality n+ 1, so Cox(PnR) = R[x0, x1, . . . , xn]. When the
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ρ0

ρ1

ρ2

Figure 5.1: The fan in NR for the projective space.

base ring is an algebraically closed field, by the study made in Subsection 4.5.2, one
knows that Cl(Pnk) ' Z and that [Dρ0 ] = [Dρ1 ] = · · · = [Dρn ]. So the grading is
easily given by

deg
(
xa00 x

a1
1 . . . xann

)
=

n∑
i=0

ai[Dρi ] =

( n∑
i=0

ai

)
[Dρ0 ]

so it is the natural grading by the isomorphism Cl(X)→ Z, m[D0] 7→ m.
To work out the irrelevant ideal, we can consider for any i = 1, 2, . . . , n+ 1 the cone
in ∆ made as follows:

σi = cone(e0, . . . , êi, . . . , en)

where ŷ means that we forget the generator y. Each of these cones is by definition in
the fan and has corresponding monomial

xσ̂i =
∏

ρ∈∆(1)−σ(1)

xρ = xρi .

Since they are the monomials coming from the maximal cones in the fan, they
generate the ideal

B = 〈x0, x1, . . . , xn〉
that is the usual irrelevant ideal for the projective space.
To resume, in the case of the projective spaces over an algebraically closed field, the
cox ring is the usual homogeneous coordinate ring (with the usual graduation) and
the irrelevant ideal is the usual irrelevant ideal.

5.4 Toric schemes as categorical quotients

The nice part about the Cox ring is that it comes into play when we want to express
a toric scheme as a quotient. For example, we know that the projective space can
be written as the quotient of an open subset of the affine space over a group. More
precisely:

Pnk = Spec(k[x0, x1, . . . , xn])−V (〈x0, x1, . . . , xn〉) / k∗ = Spec(Cox(Pnk))−V (B) / k∗.

This is in fact a property that is shared by all toric schemes coming from fans. This is
one of the most interesting result of [2]; we restate it using the language of schemes.
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Theorem 5.7. Let k be an algebraically closed field. The toric scheme X = X(k,∆)
is the categorical quotient of the open set Spec(Cox(X))− V (B) by the action of the
group G = Hom(Cl(X), k∗).

Proof.
The original proof deals with the field C and the language of varieties. It can be
found in [2, §2]. The “general” version of the statement and of the proof is readable
in [14, Thm 1.2].
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Conclusions

The original aim of this thesis, as already said, was to read and understand the paper
[2] by Cox. The need of understanding better and in a deeper way the theory of
toric varieties required a lot of time and guided the author to a wider theory, whose
first appearances are, as far as he knows, the Phd thesis of F. Rohrer (2010) and
some successive papers of his (such as [21])(2013). This more general point of view
has been also adopted by Q. Liu in [16].
Much has been done in this direction, but it seems that the extension of the theory
of Cox rings to general base rings (and fan with not necessarily finitely many cones)
requires heavier techniques, such as Geometric Invariant Theory (see the classical
book by Mumford, [18]) and Sheaf Theory. In front of this lack of tools and time,
the author had to surrender. In this sense he can say to have failed its original aim.
But it was that same aim, that standing out far far away, brighting as a lighthouse,
led him through the understanding of the subject; as somebody says, “sometimes the
path is more important than the destination”.
But mainly, this study concludes with some open questions for the author. The first,
obvious one is: at the end, is it possible to generalize Cox’s construction to any base
ring? In chapter 5 we introduced the Cox ring on any base ring. The question is to
understand if it is possible to work out the same quotient construction. It seems that
following the proof of Cox ([2, §2] the strategy can be mimed for any algebraically
closed field (with any characteristic); for general base rings the idea requires stronger
efforts.
Another interesting question is the following. In Example 1.24 we saw an example of
a toric scheme that cannot be realized from a fan. The reason for this lies in the
fact that the scheme is not normal. So the problem is: is it true that any normal
toric scheme over R is constructed from a fan? In the case we take C as base ring
the answer is yes, as shown by Oda in [19, Thm 1.5] using Sumihiro’s theorem on
action of connected linear algebraic groups.
The subject requires a lot of time to be studied, and probably during its deeper
studying new questions would arise. There is in principle no amount of time for
which this thesis could be claimed to be finished; but, as everybody knows:

The worst thing you can do is to completely solve a problem.
Dan Kleitman
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[8] I. M. Gel′fand, A. V. Zelevinskĭı, and M. M. Kapranov. Newton polyhedra of
principal A-determinants. Dokl. Akad. Nauk SSSR, 308(1):20–23, 1989.

[9] A. Grothendieck. Éléments de géométrie algébrique. I. Le langage des schémas.
Inst. Hautes Études Sci. Publ. Math., (4):228, 1960.

[10] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg,
1977. Graduate Texts in Mathematics, No. 52.
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