
UNIVERSITÀ DEGLI STUDI DI PADOVA

FACOLTÀ DI SCIENZE MM. FF. NN.
CORSO DI LAUREA IN MATEMATICA

ELABORATO FINALE

ON SOME POLYNOMIAL-TIME

PRIMALITY ALGORITHMS
(ALCUNI ALGORITMI POLINOMIALI DI PRIMALITÀ)

RELATORE: PROF. ALESSANDRO LANGUASCO

DIPARTIMENTO DI MATEMATICA PURA E APPLICATA

LAUREANDA: VALÉRIE GAUTHIER UMAÑA

ANNO ACCADEMICO 2007/2008

Acknowledgments:

My most sincere gratitude to Professor Alessandro Languasco, advisor of this thesis, who
in addition to being a fundamental guide in the making of this thesis, was completely engaged
and helped me enormously during all the process. I also thank him for all the time that he
devoted to me and the great motivation that he transmitted me.
I would like to thank also my parents and my sister for their support and unconditional help.

Introduction

In 1801 Gauss said: “The problem of distinguishing prime numbers from composite numbers is

one of the most fundamental and important in arithmetic. It has remained as a central question

in our subject from ancient times to this day, and yet still fascinates and frustrates us all 1”.

This problem has been studied by a lot of great mathematicians and it was not until the last

century, that its importance was recognized in applied mathematics. This because of computer’s

science improvement and its application in cryptography.

We say that an algorithm is a deterministic algorithm if it will be correctly terminated. For

example, a primality test is deterministic, if for every integer n, given as an input, the output

will be prime if n is prime and composite otherwise. We say that an algorithm is a polynomial

time one, if there exists a polynomial g, such that, if the input has m digits, the algorithm

stops after O(g(m)) elementary operation. From the definition of primality, d(n) = 2, a simple

algorithm to check this property is to see whether any integer d between 2 and
√
n actually

divides n. The problem of this test is that if n is very big, the number of elementary operations,

would be very big, and we should wait for a long period of time to have a reply. The main

idea is to find a certain P such that: n is prime ⇔ n has the property P , and such that the

condition of P can be verified in a “short” time.

The goal of this work is to introduce the main polynomial time primality algorithm. In the

first chapter we introduce the Fermat pseudoprimes and the Miller-Rabin primality test which

computational cost is O(log5 n) bit operations and is deterministic if the Extended Riemann

Hypothesis (ERH) is true. Strictly speaking, this is not a primality test but a “compositeness

test”, since it without assuming ERH, does not prove the primality of a number. In the second

part of the first chapter we introduce the H. Lenstra version of the Adleman-Pomerance-Rumely

1from Article 329 of Gauss’s Disquisitiones Arithmeticae (1801)

primality test, based on Gauss sums. Its running time is bounded by (log n)c log log logn for some

positive constant c. This primality test is deterministic but it only has an “almost” polynomial

time. The main reference for this first chapter is Crandall-Pomerance [3].

In August 2002, Agrawal, Kayal and Saxena [1] presented the first deterministic, polynomial-

time primality test, called AKS. Even if this primality test is not used in practice, it is very

important from a theoretical point of view. In the second chapter we introduce the AKS

algorithm and calculate its computational cost. The computational cost of this algorithm is

O(log21/2+ε n). The main references for this second chapter are [1] and [7].

In the last chapter we introduce another primality test, based on the AKS one. This version

done by Lenstra and Pomerance is a deterministic and polynomial test with a computational

cost Õ((log n)6) (where the notation Õ(X) means a bound c1X(logX)c2 for suitable positive

constants c1, c2). We also compute its computational cost, and see the main differences between

the original AKS primality test and the Lenstra-Pomerance algorithm. The main reference for

this last chapter is [9]

Contents

1 Two primality tests 1

1.1 Pseudoprimes . 1

1.1.1 Fermat pseudoprimes and Carmichael numbers 1

1.1.2 Strong pseudoprimes and Miller-Rabin test 4

1.2 Gauss sums primality test . 7

2 The Agrawal-Kayal-Saxena primality test 15

3 Lenstra-Pomerance Algorithm 25

3.1 Lenstra-Pomerance Algorithm . 25

3.1.1 Proof of theorem 3.1 . 26

3.1.2 Gaussian periods and period systems . 29

3.1.3 Period polynomial . 33

3.1.4 The primality test . 38

3.2 Proof of Theorem 3.2 . 39

3.2.1 Some preliminar results . 39

3.2.2 Sieved primes . 42

3.2.3 The continuous Frobenius problem . 57

3.2.4 Proof of Theorem 3.2 . 62

A Computational cost 69

References 71

Chapter 1

Two primality tests

1.1 Pseudoprimes

Let P an easily checkable arithmetic property such that: n is prime ⇒ n has the property P .

If an integer n has the property P we say that n is P − pseudoprime. If n doesn’t check P we

can conclude that n is composite, otherwise, we are not able to conclude. The main idea is to

find such a property (easy to verify) such that the number of pseudoprimes is rare compared

to the number of primes, and so if n checks P , we can say that n has a big probability to be a

prime.

1.1.1 Fermat pseudoprimes and Carmichael numbers

Theorem 1.1 (Fermat’s little theorem). If n is prime, then for any integer a, we have

an ≡ a(mod n). (1.1)

Definition 1.1 (Fermat pseudoprimes). An odd composite number n, for which

an ≡ a(mod n)

are called pseudoprimes in base a. And they are denoted by psp(a).

For example, n = 91 = 7× 13 is psp(3) and 105 = 3× 5× 7 is psp(13).

Definition 1.2. Let x ∈ R, x > 0. We define Pa(x) to be the number of psp(a) not exceeding

x.

2 V. Gauthier - On some polynomial-time primality algorithms

x P2(x) π(x) P2(x)
π(x)

103 3 168 (1.79)(10−2)
104 22 1229 (1.79)(10−2)
105 78 9592 (8.13)(10−3)
106 245 78498 (3.12)(10−3)
107 750 664579 (1.12)(10−3)
108 2057 5761455 (3.57)(10−4)
109 5597 50847534 (1.1)(10−4)
1010 14884 455052511 (3.27)(10−5)
1011 38975 4118054813 (9.46)(10−6)
1012 101629 37607912018 (2.70)(10−6)
1013 264239 346065536839 (7.64)(10−7)

Table 1.1: Cardinality of the psp(2) set below x

This table (based on [11] and [8]), let us make the hypothesis that the number of pseudo-

primes in base 2 are significantly smaller than π(x). In fact in Crandall-Pomerance [3] we have

the following theorem.

Theorem 1.2. For each fixed integer a ≥ 2, the number of Fermat pseudoprimes in base a that

are less or equal to x is o(π(x)) as x → ∞. That is, Fermat pseudoprimes are rare compared

with primes.

Hence if for a pair n, a (where 1 < a < n − 1) the equation (1.1) holds, there is a big

probability that n is prime; in fact we call it a “probable prime base a”, and we denote it

prp(a). We also have that:

Theorem 1.3. For each integer a ≥ 2 there are infinitely many Fermat pseudoprimes base a.

Now let us see what’s happen for the integer who are pseudoprimes in more than one base,

for example 341 is a pseudoprime in base 2 but not in base 3. Testing the pseudoprimality in

different basis, we are going to have a bigger probability to be a prime, this idea motivate the

following definition:

Definition 1.3 (Carmichael number). A composite integer n who is psp(a) for every integer

a < n such that (a, n) = 1 is called a Carmichael number.

In 1899 Korselt proved the following result, but he did not exhibit an example of such

integer n.

Chapter 1. Two primality tests 3

Theorem 1.4 (Korselt criterion). An integer n is a Carmichael number if and only if n is

positive, composite, squarefree, and for each prime p dividing n we have p− 1 dividing n− 1.

In 1910 Robert Daniel Carmichael, gave the smallest example 561 = 3 × 11 × 17, and

from that moment on these numbers are called Carmichael numbers. Other examples are:

1105 = 5× 13× 17, 1729 = 7× 13× 19, 2465 = 5× 17× 29.

When a number is known to be pseudoprime to several bases, it has more chances to be a

Carmichael number, in fact in [11] the result of Pomerance, Selfridge and Wagstaff show us that

while only 10% of the psp(2) is below 25× 109 are Carmichael numbers, 89% of pseudoprimes

in bases 2, 3, 5 and 7 simultaneously are Carmichael numbers. Let’s see if the Carmichael

numbers are finite, in which case we will have an effective primality test.

Definition 1.4. Let C(x) be the number of Carmichael numbers not exceeding x.

In 1956 P. Erdös had given an heuristic argument that not only there are infinitely many

Carmichael numbers, but there are not as rare as one might expect. He conjectured that for

any fixed ε > 0, there is a number x0(ε) such that C(x) > x1−ε.

Theorem 1.5. [Harman] There are infinitely many Carmichael numbers. In particular, for x

sufficiently large, C(x) > x0.33

The “sufficiently large” in theorem 1.5 has not been calculated, but probably it is the 96th

Carmichael number, 8719309. Now we can ask if we have a “Carmichael number theorem” ana-

log to the “primes number theorem” that give us an asymptotic formula for C(x). Nevertheless

there is not even a conjecture of what this formula might be. However, there is a somewhat

weaker conjecture.

Conjecture 1.1 (Erdös, Pomerance). The number C(x) of Carmichael numbers not exceeding

x satisfies

C(x) = x1−(1+o(1)) log log log x/ log log x as x→∞

The Fermat’s theorem is a first criterion of selection in primality testing, nevertheless we

saw that is not so strong. We are going to introduce now an other criterion based on the same

idea but this one will allow us to have a better primality test.

4 V. Gauthier - On some polynomial-time primality algorithms

1.1.2 Strong pseudoprimes and Miller-Rabin test

Let p be an odd prime number, and a such that (a, p) = 1, then by Fermat’s little theorem we

have ap−1 ≡ 1(mod p). In particular, if p = 2m+ 1 we have that:

a2m − 1 = (am − 1)(am + 1) ≡ 0(mod p).

As p is prime, it must divide one of the two factors. It doesn’t divide both because, in this case,

it will divide the difference (am + 1) − (am − 1) = 2 and, since p is odd, this is not possible.

Thus am ≡ ±1(mod p).

Now let take the decomposition 2St+ 1 of p and consider

ap−1 − 1 = (at − 1)(at + 1)(a2t + 1)...(a2(S−1)t + 1),

we can do a similar reasoning and we found the following theorem.

Theorem 1.6 (Miller-Rabin). Suppose that n is an odd prime and n− 1 = 2st, where t is odd.

If a is not divisible by n then{
either at ≡ (1 mod n)

or a2it ≡ −1(mod n) for some i with 0 ≤ i ≤ s− 1.
(1.2)

Definition 1.5 (Strong pseudoprime). We say that n is a strong pseudoprime in base a if n

is an odd composite number, n− 1 = 2st, with t odd, and (1.2) holds. We denote this property

as spsp(a).

Lets consider some examples: 2047 = 23 × 89, 121 = 112 and 781 = 11 × 71, are strong

pseudoprimes in base 2, 3 and 5, respectively. The least strong pseudoprime simultaneously

on bases 2, 3 and 5 is 2315031751 = 151 × 751 × 28351, it is also a Carmichael number, and

strong pseudoprime in base 7. Nevertheless the cardinality of strong pseudoprimes in various

bases is “small”, in [11] we can see that 2315031751 is the only number with this property less

than 25× 109.

In analogy with the probably prime numbers, we can define a “strong probably prime base a”

(i.e. the natural numbers holding the equation (1.2)) and we denote it by sprp(a).

Algorithm 1.1 (Strong probable prime test). Input: An odd number n > 3, represented as

n = 1 + 2st, with t odd and an integer a with 1 < a < n− 1.

Output: The algorithm returns either “n is sprp(a)” or “n is composite”

Chapter 1. Two primality tests 5

1. [Odd part of n− 1] let b = at mod n; if (b = 1 or b = n− 1) return “n is sprp(a)”;

2. [Power of 2 in n− 1]

for (j ∈ [1, s− 1]){

b = b2 mod n;

if (b = n− 1) return “n is sprp(a)”;

}

return “n is composite”;

Definition 1.6. Let S(x) = {a(mod n) : n is a strong pseudoprime base a} and let

S(x) = #S(x).

Theorem 1.7. For each odd composite integer n > 9 we have S(n) ≤ 1
4
ϕ(n), where ϕ(n) is

Euler’s function evaluated at n.

See the prove of this theorem in [3].

Definition 1.7. Let n an odd composite number, we will call “witness” a base for which n is

not a strong pseudoprime.

Theorem 1.7 implies that at least 3/4 of all integers in [1, n− 1] are witness for n, when n

is an odd composite number. By the algorithm 1.1 we can test if n is spsp(a), so we can write

an algorithm who decide if the given number a is a witness for n. The following algorithm is

often referred as “the Miller-Rabin test”, it is a probabilistic test based in the algorithm 1.1

but with a random base a.

Algorithm 1.2 (Miller-Rabin Test). Input: An odd number n > 3.

Output: a witness for n, if a is a witness return (a, YES), otherwise (a, NO);

1. [Choose a possible witness] Choose random by an integer a ∈ [2, n− 2]; using algorithm

1.1 we decide whether n is strong probable prime base a;

2. [declaration] if (n is a sprp(a)) return (a,NO);

return (a,YES);

6 V. Gauthier - On some polynomial-time primality algorithms

By theorem 1.7, the probability that the Algorithm fails to produce a witness for n is < 1/4,

so if we repeat the algorithm 1.2 k independent times, the probability for it to fails is < 1/4k.

If the output of the k repetition of this algorithm doesn’t give a witness, we can only make a

conjecture that n is prime, with a probability bigger than 1− 1/4k.

Now, let W (n) be the least of the witnesses for n, we want to know if it exists a bound

B ∈ N not so large such that for all odd composite number N we have W (n) ≤ B. In this case,

we can make a primality test, repeating algorithm 1.1 for all 2 ≤ a ≤ B, and we will have a

polynomial, deterministic test. Unfortunately, such B doesn’t exist. In 1994 Alford, Granville

and Pomerance shown that:

Theorem 1.8. There are infinitely many odd composite numbers n with

W (n) > (log n)1/(3 log log logn).

In fact, the number of such composite numbers n up to x is at least x1/(35 log log log x) when x is

sufficiently large.

Nevertheless Bach, based on Miller’s work, proved that there exist a slowly growing function

of n which is always greater than W (n) if the Extended Riemann Hypothesis (ERH) is true:

Theorem 1.9. Assuming the ERH, W (n) < 2 log2 n for all odd composite numbers n.

For the proof, see [3].

Now we are going to introduce the Miller primality test, that is a polynomial deterministic

test if the Riemann hypothesis holds, in this case we say that the algorithm is conditioned.

Algorithm 1.3 (Miller primality test). Input: an odd number n > 1.

Output: The answer to the question: is n prime? The output is “NO” if n is composite, and

“YES” if either n is prime or the extended Riemann hypothesis is false.

1. [Witness bound] W= min{
⌊
2 log2 n, n− 1

⌋
};

2. [Strong probable prime test] for (2 ≤ a ≤ W) { By algorithm 1.1 decide whether n is

sprp(a), if it is return NO; }

return YES;

Chapter 1. Two primality tests 7

Using log instead of log2 to simplify the equation, we have that the running time of the

algorithm 1.1 is O(log3 n) and as we have to repeat it at most log2 n, the computational cost

of this primality test is O(log5 n) bit operations.

1.2 Gauss sums primality test

In this section, we are going to introduce the Adleman-Pomerance-Rumely primality test, based

on Gauss sums, whose running time is bounded by (log n)c log log logn for some positive constant

c. We are going to introduce the H. Lenstra version which is less practical, but simpler.

Definition 1.8 (Dirichlet Character to the modulus q). Suppose q a positive integer and χ is

a function from the integers to the complex numbers such that

1. For all integers m,n, χ(mn) = χ(m)χ(n).

2. χ is periodic modulo q.

3. χ(n) = 0 if and only if gcd(n, q) > 1.

Let q be a prime with primitive root g. If ζ is a complex number with ζq−1 = 1, then we

can build a character χ to the modulus q via χ(gk) = ζk for every integer k (and of course,

χ(m) = 0 if m is a multiple of q).

Definition 1.9. Let ζn = e2πi/n (a primitive n-th root of 1), we define τ(χ) the Gauss sum by

τ(χ) =

q−1∑
m=1

χ(m)ζmq .

We have that

τ(χ) =

q−1∑
k=1

χ(gk)ζg
k

q =

q−1∑
k=1

ζkζg
k

q

As τ(χ) is a character modulo q, we know that his order is a divisor of q− 1. Now suppose

that p is a prime factor of q− 1. We wish to build such a character χp,q modulus q and of order

p. Suppose g = gq is the least positive root for q, we can build such a character as follows:

χp,q(g
k
q) = ζkp for every integer k.

8 V. Gauthier - On some polynomial-time primality algorithms

χp,q is in fact defined to the modulus q since ζq−1
p = 1, and it has order p since χp,q(m)p = 1 for

every nonzero residue mmod q and χp,q(gq) 6= 1. Let

G(p, q) = τ(χp,q) =

q−1∑
m=1

χp,q(m)ζmq =

q−1∑
k=1

ζkp ζ
gkq
q =

q−1∑
k=1

ζkmod p
p ζ

gkq mod q
q .

The Gauss sum is an element of the ring Z [ζp, ζq]. The elements of this ring can be expressed

uniquely as sums
∑p−2

j=0

∑q−2
k=0 aj,kζ

j
pζ

k
q where each aj,k ∈ Z. Note that if α is in Z [ζp, ζq], then the

same happens for its complex conjugate α. We say that two element of this ring are congruent

modulo n if the coefficients are congruent modulo n. It’s important to note that ζp, ζq are

treated as symbols.

Lemma 1.1. If p,q are primes with p|q − 1, then G(p, q)G(p, q) = q.

For the proof of this lemma see [3]. The following result can be viewed as an analogue to

Fermat’s little theorem we have described in the previous section.

Lemma 1.2. Suppose p, q, n are primes with p|q − 1 and gcd(pq, n) = 1. Then

G(p, q)n
p−1−1 ≡ χp,q(n)(mod n).

Proof. Let χ = χp,q. Since n is prime, by the multinomial theorem we have that

G(p, q)n
p−1

=
(q−1∑
m=1

χ(m)ζmq

)np−1

≡
q−1∑
m=1

χ(m)n
p−1

ζmn
p−1

q (mod n).

By Fermat’s little theorem, np − 1 ≡ 1(mod p), so that χ(m)n
p−1

= χ(m). Letting n−1 denote

a multiplicative inverse of n modulo q, we have

q−1∑
m=1

χ(m)n
p−1

ζmn
p−1

q =

q−1∑
m=1

χ(m)ζmn
p−1

q =

q−1∑
m=1

χ(n−(p−1))χ(mnp−1)ζmn
p−1

q .

As χ(np) = χ(n)p = 1, and mnp−1 runs over a residue system (mod q) as m does, we have

q−1∑
m=1

χ(m)n
p−1

ζmn
p−1

q = χ(n)

q−1∑
m=1

χ(mnp−1)ζmn
p−1

q = χ(n)G(p, q).

Hence we have that

G(p, q)n
p−1 ≡ χ(n)G(p, q)(mod n).

Letting q−1 be a multiplicative inverse of q modulo n and multiplying this last displayed equation

by q−1G(p, q), by lemma 1.1 we have the desired result.

Chapter 1. Two primality tests 9

In some cases the congruence can be replaced by an equality, as we can see in the following

lemma.

Lemma 1.3. If m, n are natural numbers with m not divisible by n and ζjm ≡ ζkm(mod n),

then ζjm = ζkm.

For the proof of this lemma see [3].

Definition 1.10. Suppose p, q are distinct primes. If α ∈ Z[ζp, ζq] \ {0}, where

α =

p−2∑
i=0

q−2∑
k=0

ai,kζ
i
pζ
k
q ,

denote by c(α) the greatest common divisor of the coefficients ai,k. Further, let c(0) = 0.

Let’s see now the deterministic Gauss sum primality test.

Algorithm 1.4 (Gauss sums primality test). Input: n ∈ Z.

Output: The algorithm decide whether n is prime or composite, returning “n is prime” or “n

is composite” in the appropriate case.

1. [Initialize] I = −2;

2. [Preparation] I = I + 4;

Find the prime factors of I by trial division, if I is not squarefree, go to [Preparation];

Let F =
∏

(q−1)|I q, if F ≤ n go to [Preparation]; note that F is squarefree and F >
√
n;

If n is a prime factor of I · F , return “n is prime” ;

If gcd(n, I · F) > 1, return “n is composite”;

For (prime q|F) find the least positive root gq for q.

3. [Probable prime computation]

For (prime p|I) factor np−1 − 1 = pspup where p does not divide up;

For (primes p, q with p|I, q|F, p|q − 1)

{ Find the first positive integer w(p, q) ≤ sp with

G(p, q)p
w(p,q)up ≡ ζjp(mod n) for some integer j,

If no such number is found, return “n is composite” .

}

10 V. Gauthier - On some polynomial-time primality algorithms

4. [Maximal order search]

For (prime p|I) set w(p) equal to the maximum of w(p, q) over all primes q|fwith p|q−1,

and set q0(p) equal to the least such prime q with w(p) = w(p, q);

For (primes p, q with p|I, p|F , p|q − 1) find an integer l(p, q) ∈ [0, p− 1] with

G(p, q)p
w(p)up ≡ ζ

l(p,q)
p (mod n);

5. [Coprime check]

For (prime p with p|I)

{H = G(p, q0(p))
pw(p)−1up mod n;

for (0 ≤ j ≤ p− 1){

if(gcd(n, c(H − ζjp)) > 1) (with notation from definition 1.10) return “n is composite”;

}

}

6. [Divisor search]

l(2)=0;

For (odd prime q|F) use the Chinese Remainder Theorem to build an integer l(q) with

l(q) ≡ l(p, q)(mod p) for each prime p|q − 1.

Use the Chinese remainder theorem to construct an integer l with

l ≡ gl(q)q (mod q) for each prime q|F

For (i ≤ j < I), if lj mod F is a nontrivial factor of n, return “n is composite”;

Return “n is prime”;

Correctness :

Clearly the declaration of prime and composite in step [Preparation] is correct. By the lemma

1.2 the declaration in step [Probable prime computation] is also true. In step [Coprime check]

if the gcd is not 1, it is clear that n is composite, so algorithm’s reply is correct. For sure in

step [Divisor search], the declaration of composite is true. What remains to prove is: if n is

Chapter 1. Two primality tests 11

composite, it has to stop in one of these steps, if not it will be declared prime at the end of the

algorithm.

To prove this, suppose n is a composite number with least prime factor r, and suppose n has

survived steps 1-5. We will need two claims:

Claim 1:

pw(p)|(rp−1 − 1) for each prime p|I. (1.3)

For each prime p|I, (1.3) implies there are integers ap, bp with

rp−1 − 1

pw(p)up
=
ap
bp
, bp ≡ 1(mod p). (1.4)

Let a be such that q ≡ ap(mod p) for each prime p|I.

Claim 2:

r ≡ la(mod F). (1.5)

Thus, if n is composite, and it has survived steps 1-5, since F ≥
√
n ≥ r and F 6= r, we have

that r is equal to the least positive residue of la(mod F). So that the proper factor r of n will

be discovered in step [Divisor search] and the algorithm will declare n composite as desired.

We can conclude now that the algorithm is deterministic. Let’s now prove the two claims:

Proof of claim 1: is clear that (1.3) is true if w(p) = 1, so assume w(p) ≥ 2. Suppose some

l(p, q) 6= 0. Then by lemma 1.3: G(p, q)p
w(p)up ≡ ζ

l(p,q)
p 6≡ 1(mod n), and the same is true

mod r. Let h the multiplicative order of G(p, q) modulo r, so that pw(p)+1|h. But lemma 1.2

implies that h|p(rp−1−1), so that pw(p)|rp−1−1, as claimed. Now suppose that each l(p, q) = 0.

Then from the step [Coprime check] we have:

G(p, q0)
pw(p)up ≡ 1(mod r), G(p, q0)

pw(p)−1up 6≡ ζjp(mod r)

for all j. Moreover, letting h be the multiplicative order of G(p, q0) modulo r, we have pw(p)|h.

Also, since G(p, q0)
m ≡ ζjp(mod r) for some integers m, j we get ζjp = 1. Lemma 1.2 then

implies that G(p, q0)
m ≡ 1(mod r) so that h|rp−1 − 1 and pw(p)|h. This complete the proof of

claim 1.

Proof of claim 2: By definition of χp,q and l we have

G(p, q)p
w(p)up ≡ ζ l(p,q) = ζ l(q) = χp,q(l)(mod r)

12 V. Gauthier - On some polynomial-time primality algorithms

for every pair of primes p, q with q|F, p|q − 1. Thus, from (1.4) and Lemma 1.2

χp,q(r) = χp,q(r)
bp ≡ G(p, q)(rp−1−1)bp = G(p, q)p

w(p)upap ≡ χp,q(l)
ap = χp,q(l

a)(mod r).

Hence by Lemma 1.3 we have that χp,q(r) = χp,q(l
a).

The product of characters χp,q for p prime, and p|I and p|q − 1, is a character χq of order∏
p|q−1 p = q − 1, as q − 1|I and I is squarefree. Bur a character mod q of order q − 1 is

one-to-one on Z/qZ, so as

χq(r) =
∏
p|q−1

χp,q(r) =
∏
p|q−1

χp,q(l
a) = χq(l

a).

This way we have that r ≡ la(mod q). Since this hold for each prime q|F and F is square-

free, it follows that (1.5) holds.

Computational cost:

The running time is bounded by a fixed power of I, by the following result from Crandall-

Pomerance [3]

Theorem 1.10. Let I(x) be the least positive squarefree integer I such that the product of

the primes p with p − 1|I exceeds x. Then there is a positive number c such that I(x) <

ln(x)c log log log x for all x > 16.

The reason for assuming x > 16 is to ensure that the triple-logarithm is positive.

Thus the running time is bounded by (log n)c log log logn for some positive constant c. Since

the triple log function grows so slowly, this running-time bound is “almost” logO(1), and so is

“almost” polynomial time.

With some extra work we can extend the Gauss sums primality test to the case where I is

not assumed squarefree. This extra degree of freedom allows for a faster test. There are several

ways to improve the running time of this test in practice, but the main one is to use Jacobi

sums instead of Gauss sums. In fact the Gauss sums G(p, q) are in the ring Z [ζp, ζq]. Doing

arithmetic in this ring modulo n requires dealing with vectors with (p− 1)(q − 1) coordinates,

each one being a residue modulo n. Let’s define the Jacobi sum J(p, q) as follows

Chapter 1. Two primality tests 13

J(p, q) =

q−2∑
m=1

χp,q(m
b(m− 1)).

This sum lies in the much smaller ring Z [ζp], and so doing arithmetic with this sums is

much faster that with the Gauss ones.

We have seen in this first chapter two different primality tests used in practice. The first

one is conditioned to the ERH, and the second one is deterministic, but its time is “almost”

polynomial. In August 2002, Agrawal, Kayal and Saxena [1] presented the first deterministic,

polynomial-time primality test, called AKS. Even if this primality test is not used in practice,

it is very important from a theoretical point of view. In the following chapter we are going to

introduce this primality test and calculate its computational cost.

Chapter 2

The Agrawal-Kayal-Saxena primality
test

In this chapter we will use log(x) to denote logarithm in base 2, to simplify the equations.

We saw in the introduction that the main idea is to find a certain property P of the prime

numbers such that:

n is prime ⇔ n has the property P .

And such that the condition of P can be verified in a “short” time. The AKS is based on the

following theorem:

Theorem 2.1. An integer n ≥ 2 is prime ⇔ (x+ a)n ≡ xn + a (mod n).

Proof. Since (x+a)n−(xn+a) =
∑

1≤j≤n−1

(
n
j

)
xjan−j, we have that (x+a)n ≡ xn+a (mod n)

if and only if n divides
(
n
j

)
xjan−j for all j = 1, . . . , n− 1.

If n = p is prime, then p appears at the numerator of
(
p
j

)
but it is larger, and so does not divide

any term in the denominator. Hence p divides
(
p
j

)
for j = 1, . . . , p− 1, and so we have that the

congruence holds.

Now if n is composite, let p be a prime dividing n, and α such that pα is the largest power of

p dividing n. As (
n

p

)
=
n(n− 1)(n− 2) . . . (n− (p− 1))

p(p− 1) . . . 1
,

we see that pα−1 is the largest power of p dividing
(
n
p

)
, therefore n -

(
n
p

)
and the congruence

doesn’t hold.

16 V. Gauthier - On some polynomial-time primality algorithms

The problem is that we have to compute (x + a)n, which can’t be done in a polynomial

time, one solution can be compute module some smaller polynomial as well as (mod n), so

that neither the coefficients or the degree get larger. For example:

(x+ a)n ≡ xn + a (mod n, xr − 1) ∀a ∈ N. (2.1)

We have to check now if (2.1) is equivalent to the primality of n and which conditions are

needed for r.

Theorem 2.2 (AKS). For a given integer n ≥ 2, let r be a positive integer such that r < n

and d := ord(nmod r) > log2 n. Then n is prime ⇔

1. n is not a perfect power,

2. n does not have any prime factor ≤ r,

3. (x+ a)n ≡ xn + a mod (n, xr − 1) for each integer a, 1 ≤ a ≤
√
r log n.

Proof. (⇒) If n is a prime number, conditions 1. and 2. are trivial, and by theorem 2.1 the

condition 3. is verified.

(⇐) suppose 1. 2. and 3. and let show by contradiction that n is prime: suppose that n is

composite, p is a prime divisor of n and A =
√
r log n. By the condition 3. we have

(x+ a)n ≡ xn + a mod (p, xr − 1) (2.2)

for each integer a, 1 ≤ a ≤ bAc. We can factor xr − 1 into irreducible polynomials in Z[x],

as
∏

d|r Φd(x), where Φd(x) is the d− th cyclotomic polynomial, whose roots are the primitive

d− th roots of unity. Each Φr(x) is irreducible in Z[x], but may not be irreducible in (Z/pZ)[x],

so let h(x) be an irreducible factor of Φr(x)(mod p). Then 2.2 implies that

(x+ a)n ≡ xn + a mod (p, h(x)) (2.3)

for each integer a, 1 ≤ a ≤ bAc, since (p, h(x)) divides (p, xr − 1). The congruence classes

mod (p, h(x)) can be viewed as the elements of the ring F :≡ Z[x]/(p, h(x)), which is isomorphic

Chapter 2. The Agrawal-Kayal-Saxena primality test 17

to the field of pm elements (where m is the degree of h). In particular the non-zero element of

F form a cyclic group of order pm − 1, moreover, F contains x, an element or order r, thus r

divides pm − 1. Since F is isomorphic to a field, the congruences 2.3 are much more easier to

work with than 2.2, where the congruence do not correspond to a field. Let H the elements

mod(p, xr − 1) generated multiplicatively by

{(x+ a) : 0 ≤ a ≤ bAc}

and G the cyclic subgroup of F (i.e mod(p, h(x))) generated multiplicatively by

{(x+ a) : 0 ≤ a ≤ bAc}.

In other words G is the reduction of H mod(p, h(x)). All the elements of G are non-zero, in

fact if xn+a = 0 in F, then xn+a = (x+a)n = 0 in F by (2.3), so that xn = −a = x in F, which

would imply that n ≡ 1(modr) and so d = 1, contradicting the hypothesis that d > log2 n.

Note that an element g ∈ H can be written as g(x) =
∏

0≤a≤bAc(x+ a)ea , then by (2.2)

g(x)n =
∏
a

((x+ a)n)ea ≡
∏
a

(xn + a)ea = g(xn) mod (p, xr − 1).

Let define

S = {k ∈ N : g(xk) ≡ g(x)k mod (p, xr − 1) ∀g ∈ H}

note that n ∈ S by the condition 3. and that p ∈ S by Theorem 2.1.

Our aim now is to give upper and lower bounds on the size of G to establish a contradiction,

and so n must be prime. Let’s first found an upper bound of |G|:

Lemma 2.1. If a, b ∈ S, then ab ∈ S.

Proof. If g(x) ∈ H, then g(x)b ≡ g(xb) mod (p, xr − 1), and so, replacing x by xa, we get

g((xa)b) ≡ g(xa)b mod (p, (xa)r − 1), and therefore mod(p, xr − 1) since xr − 1 divides xar − 1.

Therefore

g(x)ab = (g(x)a)b ≡ g((xa)b) ≡ g((xa)b) = g(xab) mod (p, xr − 1)

as desired.

Lemma 2.2. If a, b ∈ S, and a ≡ b(modr), then a ≡ b mod |G|.

18 V. Gauthier - On some polynomial-time primality algorithms

Proof. For any g(x) ∈ Z[x] we have that u − v divides g(u) − g(v). Therefore xr − 1 divides

xa−b−1, which divides xa−xb, which divides g(xa)−g(xb); and so we deduce that if g(x) ∈ H,

then g(x)a ≡ g(xa) ≡ g(xb) ≡ g(x)b mod (p, xr − 1). Thus if g(x) ∈ G, then g(x)a−b ≡ 1 in F;

but G is a cyclic group, so taking g to be a generator of G we deduce that |G| divides a− b.

Lemma 2.3. n/p ∈ S.

Proof. Suppose that a ∈ S and b ≡ a mod (nd − 1) (where d = ord(nmod r)). Let show that

b ∈ S: as nd ≡ 1 mod r, we have that xn
d ≡ x mod (xr − 1). Then xr − 1|(xnd − x), which

divides xb − xa, which divides g(xb) − g(xa) for any g(x) ∈ Z[x]. If g(x) ∈ H, then g(x)n
d ≡

g(xn
d
) mod (p, xr − 1) by Lemma 2.1 since n ∈ S, and g(xn

d
) ≡ g(x) mod (p, xr − 1)(as xr − 1

divides xn
d − x) so that g(x)n

d ≡ g(x) mod (p, xr − 1). But then g(x)b ≡ g(x)a mod (p, xr − 1)

since nd − 1 divides b− a. Therefore

g(xb) ≡ g(xa) ≡ g(x)a ≡ g(x)b mod (p, xr − 1)

since a ∈ S, which implies that b ∈ S. Therefore we have that a ∈ S and b ≡ a mod (nd − 1)

implies b ∈ S.

Now let b = n/p and a = npφ(nd−1)−1, so that a ∈ S by Lemma 2.1 since p, n ∈ S. And

b ≡ a mod (nd − 1) thus b = n/p ∈ S.

Let now R be the subgroup of (Z/rZ)∗ generated by n and p. Since n is not a power of p,

the integer nipj with i, j ≥ 0 are distinct, and

|{nipj, 0 ≤ i, j ≤
√
|R|}| > |R|

and so two must be congruent mod r, say nipj ≡ nIpJ mod r. By Lemma 2.1 these integers are

both in S, and by Lemma 2.2 their difference is divisible by |G|, and therefore

|G| ≤ |nipj − nIpJ | ≤ (np)
√
|R| − 1 < n2

√
|R| − 1.

Note that nipj − nIpJ is non-zero since n is neither a prime nor a perfect power. By Lemma

2.3 we have n/p ∈ S, replacing n by n/p in the argument above we get

|G| ≤ n
√
|R| − 1. (2.4)

Let’s found now the lower bound of |G|:

Chapter 2. The Agrawal-Kayal-Saxena primality test 19

Lemma 2.4. Suppose that f(x), g(x) ∈ Z[x] with f(x) ≡ g(x) mod (p, h(x)) and that the

reduction of f and g in F both belong to G. If f and g both have degree < |R|, then f(x) ≡

g(x) (mod p).

Proof. Consider ∆(y) := f(y)− g(y) ∈ Z[y] as reduced in F. If k ∈ S, then

∆(xk) = f(xk)− g(xk) ≡ f(x)k − g(x)k ≡ 0 mod (p, h(x)).

As x has order r in F, we have that {xk : k ∈ R} are all distinct roots of ∆(y) mod (p, h(x)).

Now, ∆(y) has degree < |R| (since f and g both have degree < |R|), but has ≥ |R| distinct

roots mod(p, h(x)), and so ∆(y) ≡ 0(modp) since its coefficients are independent of x.

By definition R contains all the elements generated by n mod r, and so R is at least as

large as d, the order of n mod r, which is > log2 n by assumption. Therefore taking B :=⌊√
|R| log n

⌋
we have A =

√
r log n > B (since |R| < r), and |R| > B. We can see that for

every proper subset T of {0, 1, 2, . . . , B}, the product
∏

a∈T (x + a) give distinct elements of

G. In fact if there exist two proper subset T1, T2 of {0, 1, 2, . . . , B} such that
∏

a∈T1
(x + a) =∏

b∈T2
(x+ b) in G, thus by the lemma 2.4 this two product will be identical also in Zp[x], and

so there will exist a pair a 6= b such that p|a − b. As a, b ≤ B <
√
r log n, we have that

p <
√
r log n. But by the condition 2. we know that p > r, hence r < log2 n, which contradict

the fact that d > log2 n. And so as the number un subset of a finite set U is 2|U | − 1 and

n = 2logn, we have:

|G| ≥ 2B+1 − 1 = 2

j√
|R| logn

k
+1 − 1 > 2

j√
|R| logn

k
− 1 > n

√
|R| − 1, (2.5)

which contradicts 2.4, hence the hypothesis that n is composite is false, and this completes the

proof of the theorem of AKS.

This theorem is based in the existence of this r, which exists by the following lemma:

Lemma 2.5. Let n ≥ 4, there is at least an integer r <
⌈
log5 n

⌉
such that d = ord(nmod r) >

log2 n.

To prove Lemma 2.5 we need this result:

20 V. Gauthier - On some polynomial-time primality algorithms

Lemma 2.6 (Nair). Let m ∈ N and m ≥ 7. Then lcm{1, . . . ,m} ≥ 2m

Proof. Of Lemma 2.5. Note that as n ≥ 4,
⌈
log5 n

⌉
≥ 32, thus we can apply Nair’s lemma. Let

V =
⌈
log5 n

⌉
,

V = {s ∈ {1, . . . , V } : s - nblog V c
blog2 nc∏
i=1

(ni − 1)}

and π1 = nblog V c∏blog2 nc
i=1 (ni − 1)

By contradiction, suppose V = ∅. In this case ∀s ∈ {1, . . . , V }, s | π1, thus lcm{1, . . . , V }

divide π1. But

π1 ≤ nblog V c+
Pblog2 nc
i=1 i = nblog V c+(1/2)blog2 nc(blog2 nc+1) < nblog4 nc < 2V

since nblog4 nc = (2blognc)blog4 nc < 2dlog5 ne = 2V .

Hence lcm{1, . . . , V } < 2V , but, by Lemma 2.6, we get lcm{1, . . . , V } ≥ 2V , thus we have a

contradiction and V is not empty.

Let r = min V and q a prime divisor of r. We have that

max{α ∈ N : qα|r} ≤ blog V c

then r|
∏

q|r q
blog V c. Note that if every prime p|r divides n, we will have r|

∏
q|r q

blog V c|nblog V c

thus r|π1 and r /∈ V . Therefore not all the prime divisor of r divide n, thus (r, n) < r. Let

s = r
(r,n)

, by the previous result s 6= 1. s ∈ V , in fact if s /∈ V , taking r =
∏

p|r p
αr , for each p|r

and p - n we will have that pαr |
∏blog2 nc

i=1 (ni− 1), and for each p|r and p|n, as αr ≤ blog V c, we

will have pαr |nblog V c and so r|π1, which contradict the definition of r. Since r = min V , and as

s ≤ r and s ∈ V we must have that r = s i.e. (r, n) = 1. Therefore as r - π1 and r - n we have

that r -
∏blog2 nc

i=1 (ni − 1) and so we have that ord(nmod r) > log2 n.

Algorithm 2.1. AKS primality test

1. If n = αβ, with α, β ∈ N and β > 1, return “n is composite”;

2. Find the least integer r with d (the order of n in Z∗r) ≥
⌈
log2 n

⌉
;

Chapter 2. The Agrawal-Kayal-Saxena primality test 21

3. If 1 < (b, n) < n for some b ≤ r, return “n is composite”;

4. If n ≤ r, return “n is prime”;

5. For all integer b, 1 ≤ b ≤
√
r log n we check if

(x+ b)n 6≡ xn + b(mod xr − 1, n);

in this case return “n is composite”;

6. return “n is prime”.

Correctness:

If n is prime: is clear that the algorithm can’t stop in steps 1 or 3 and by Theorem 2.1, it can’t

neither stop in step 5. Hence the algorithm must stop in steps 4 or 6, and in this cases the

algorithm returns “n is prime” as desired.

Let’s show that if the algorithm stops in steps 4 or 6, the input is really a prime number.

Therefore, if the input is a composite number, it will stop in the other steps and the output

will be “n is composite” as desired.

If the algorithm stops in the step 4, it means that: n ≤ r, and that it didn’t stop in the step

3, thus ∀b < n we have (b, n) = 1 and clearly n is prime.

If the algorithm stops in the step 6: conditions 1) and 2) from the AKS theorem are verified,

since in the step 1 we saw n is not a perfect power and in step 3 that it doesn’t have any prime

factor ≤ r. In the step 5 we verified condition 3) and in the step 2, we verified the hypothesis

of the order on n (mod r). Hence, by the AKS theorem, n is in fact a prime number.

Therefore the AKS primality test is a deterministic algorithm.

Computational complexity:

The following table presents the computational cost of the operation we will need to calculate

the computational cost of the AKS algorithm, for the proof of this result see appendix A and

Crandall-Pomerance [3]. We supposed a ≤ n.
Step 1: “If n = αβ, with α, β ∈ N and β > 1”. Let L = dlog ne. For every k ∈ N such

that 1 ≤ k ≤ L we take a =
⌊
n1/k

⌋
and then we verify if ak = n. For each k we need to

compute one square root with a cost of O(log2+ε n), and one exponentiation into k which has

22 V. Gauthier - On some polynomial-time primality algorithms

Method Complexity
n± a O(log n)
n.a O(log2 n)
(n, a) Euclidean Algorithm O(log2 n)
nk Repeated squaring method O(log2 n log k)√

n Newton method O(log2+ε n)
nk (mod r) Repeated squaring method O(log k log2 r)
(x + a)n (mod n, xr − 1) O(r2 log3 n)

Table 2.1: Some computational cost.

a cost of O(log2+ε n) (is O(log2 n log k) with k < dlog ne), we do this L times. Thus the
computational complexity of this step is O

(
log3+ε n

)
.

Step 2: “Find the least integer r with d (the order of n in Z∗r) ≥
⌈
log2 n

⌉
”: by the lemma 2.5

we know that r ≤
⌈
log5 n

⌉
. For a fix r we can compute nk(mod r) ∀k ≤ log2 n.

Each step takes O(log k log2 r log2 n). Since k ≤ log2 n, the total cost is O(log2+ε n).
Therefore the computational complexity of step 2 is: O(log7+ε n).
Step 3: “Compute (b, n) for all b ≤ r”: we have to compute r gcd’s with cost O(log2 max(r, n)).
Therefore the computational complexity of step 3 is: O(r log2 max(r, n)). As r ≤

⌈
log5 n

⌉
, for

a sufficiently large 1 n the computational complexity of step 3 is: O(log7 n).
Step 5: “For all integer b, 1 ≤ b ≤

√
r log n we compute (x + b)n − (xn + b)(mod Xr −

1, n)”. For a fixed b each of these operations has a complexity O(r2 log3 n) since to compute
xn mod (xr − 1) we can just remark that, if n = qr+ `, where q, ` ∈ N∗, ` < r, we immediately
have xn = (xr− 1)(xn−r +xn−2r + . . .+xn−qr) +x` ≡ x` mod (xr − 1). Thus the computational
complexity of step 5 is: O(r5/2 log4 n). As r ≤

⌈
log5 n

⌉
, we have: O(log33/2 n).

We have:

Step Complexity

1 O(log4 n)

2 O(log7+ε n)

3 O(log7 n)

5 O(log33/2 n)

Remark 2.1. Fact: letting n = qr + l, q, l ∈ N∗, l < r, xn = (xr − 1)(xn−r + xn−2r + · · · +
nn − qr) + xl ≡ xl(modxr − 1). So to compute xn(modxr − 1, n) it is enough to compute one
euclidean division.

Therefore the computational complexity of the algorithm is: O(log33/2 n), we can conclude
that the AKS is solvable in a polynomial time.

Remark 2.2. There exists a method to multiply two polynomial in a faster way called FFT
(Fast Fourier transformation), see ch.9.5 of Crandall-Pomerance [3]. Using it, the step 5 is
computed in O(r3/2 log3+ε n) elementary operations. Therefore the total cost of the algorithm
will be O(log21/2+ε n).

1n ≥
⌈
log5 n

⌉
i.e n ≥ 5690034

Chapter 2. The Agrawal-Kayal-Saxena primality test 23

We have prove that the AKS is a deterministic and polynomial primality test. It’s compu-
tational cost is greater than the Miller-Rabin’s one, thus in practice it is not used. Nevertheless
it is a big step from a theoretical point of view, since the second one is conditioned to the GRH,
and the AKS one is not. In the next chapter we will see a variation of this algorithm, which
will give a better computational cost, and it is still not conditioned.

Chapter 3

Lenstra-Pomerance Algorithm

Let’s now introduce another primality test, based on the AKS one. This version done by Lenstra
and Pomerance is a deterministic and polynomial test with a computational cost Õ((log n)6)

(the notation Õ(X) means a bound c1X(logX)c2 for suitable positive constants c1, c2). The
main difference here is that the auxiliary polynomial that we use is allowed to be any monic
polynomial in Z[x] that “behaves” as if it is irreducible over the “finite field” Z/nZ. This
chapter is divided in two parts, the first one introduces the primality test, and the second is
the proof of a theorem assumed in the first one. The reason of this is that the proof needs some
preliminary results.

3.1 Lenstra-Pomerance Algorithm

We say that a positive integer is B-smooth if it is not divisible by any prime exceeding B. The
following is the main theorem behind the primality test:

Theorem 3.1. Let f ∈ Z [x] be a monic polynomial of degree d, let n > 1 be an integer, let
A = Z [x] /(n, f), and let α = x+ (n, f) ∈ A. Assume that

f(αn) = 0, (3.1)

αn
d

= α, (3.2)

αn
d/l − α ∈ A∗ for all primes l|d, (3.3)

d > (log2 n)2, (3.4)

(α + a)n = αn + a for each integer a, 1 ≤ a ≤ B :=
⌊√

d log2 n
⌋
. (3.5)

Then n is a B-smooth number or a prime power.

First we are going to prove this theorem and then we will see an algorithm to build such
polynomials.

26 V. Gauthier - On some polynomial-time primality algorithms

3.1.1 Proof of theorem 3.1

Suppose f ∈ Z[x] is monic of degree d > 0, n is an integer with n > 1, and A = Z[x]/(n, f).
Let α = x+ (n, f) ∈ A. Note that if n is prime, then (3.1) holds. And that if n is prime, then
(3.2) and (3.3) hold if and only if f is irreducible modulo n.

Note that A is a free Z/nZ−module with basis 1, α, . . . , αd−1. Let σ the ring homomorphism
from A to A which take α to αn, induced by the ring homomorphism from Z[x] to Z[x] which
takes x to xn. By (3.2) σd is the identity map on A, so that σ is an automorphism of A and by
(3.2) and (3.3) it has order d. Let’s consider some preliminary results that we need to prove
Theorem 3.1.

Lemma 3.1. Suppose that R is a commutative ring with unit, f ∈ R[x], β1, . . . , βk ∈ R with
f(βi) = 0 for 1 ≤ i ≤ k and βj − βi ∈ R∗ for 1 ≤ i < j ≤ k. Then

∏
(x− βi)|f(x).

Proof. We are going to prove it by induction:
For k = 1: there exist q ∈ R[x] and ρ ∈ R such that f(x) = (x − β1)q(x) + ρ. If x = β1 we
have 0 = f(β1) = ρ, thus (x− β1)|f(x).
The induction step: we assume the thesis for k = j − 1; let’s prove it for k = j. By hypothesis
we have that f(x) = h(x)(x − β1) · · · (x − βj−1); putting x = βj we have (βi − βj) 6= 0 for
all i < j. Hence we have that (βj − β1) · · · (βj − βj−1) is invertible and, using 0 = f(βj) =
h(βj)(βj − β1) · · · (βj − βj−1), it follows that h(βj) = 0. By the first case (x− βj)|h(x), and the
lemma is proved.

Lemma 3.2. In A[y] we have f(y) =
∏d−1

i=0 (y − σiα).

Proof. If we show the two following assertions

1. f(σiα) = 0 and that

2. σiα− σjα ∈ A∗, for 0 ≤ j < i < d,

by Lemma 3.1, we obtain
∏d−1

i=0 (y − σiα)|f(y) and, since they are both monic of degree d, the
equality holds.
Let’s prove the assertions 1 and 2:
Since σ is an automorphism of A, f(σiα) = 0.
To prove 2. as σ is an automorphism, it suffices to consider the case j = 0, i.e. σiα− α ∈ A∗,
for 0 < i < d. As d - i, there is some prime l|d with (i, d)|(d/l). Since there are integers u, v
with ui + vd = d/l, and σ has order d, we have σuiα = σd/lα. Hence by (3.3), σuiα − α ∈ A∗.
But ni − 1|nui − 1 so that αn

i−1 − 1|αnui−1 − 1, and we finally get

σiα− α = αn
i − α|αnui − α = σuiα− α.

Hence (σiα− α) is a divisor of a unit, thus it is a unit.

Let p be a prime factor of n, and R = A/pA ∼= Z[x]/(p, f). We identify members of A with
their image in R, so in particular the coset x + (p, f) is denoted by α. The ring R is a vector
space over Z/pZ with basis 1, α, . . . , αd−1. The automorphism σ of A induces an automorphism
of R, which we will continue to denote σ. By (3.3) σ has order d as well when considered as
an R-automorphism.
Let φ be the Frobenius automorphism in R, that sends every element to its p-th power.

Chapter 3. Lenstra-Pomerance Algorithm 27

Lemma 3.3. Viewing σ as an automorphism of R, there is some integer i with σi = φ.

Proof. It is sufficient to show that for some integer i we have σiα = αp, since if two auto-
morphisms agree on a generator of the ring, they are the same automorphism. As φ is an
automorphism of R it follows that f(φα) = 0, thus by Lemma 3.2 taken over R we have

f(αp) =
d−1∏
i=0

(αp − σiα) = 0.

To see that a factor in this product must be 0, let’s assume the following claim, that we will
prove at the end of the proof.
Claim: for β ∈ R,

if σβ ∈ βR⇒ β = 0 or β ∈ R∗. (3.6)

For any integer i, j we have

σ(αj − αi) = αjn − αin = (αj − αi)(αj(n−1) + αj(n−2)+i + · · ·+ αi(n−1)) ∈ (αj − αi)R.

By (3.6) we have (αi−αj) = 0 or σ(αi−αj) ∈ R∗. This is true for all i, j thus in particular for
j = p and all i. But, as

∏d−1
i=0 (αp − σiα) = 0 not all can be units, it exists at least one i such

that σ(αp − αni) = 0. Thus we have an i such that σi = φ.

Proof of the claim: assume σβ ∈ βR and that β is not 0 and not an unit. Write β = g(α)
where g ∈ (Z/pZ)[y], deg g < d. Since β is not an unit, we get βR 6= R and whence the
projection R → R/βR takes units to units. The ring R/βR also contains Z/pZ so that, if we
use an overbar to denote the image of an R-element in R/βR, then g(γ) = g(γ) for all γ ∈ R.
By assumption we know that σβ ∈ βR and so σiβ ∈ βR. So we obtain

0 = σiβ = g(σiα) = g(σiα).

In the proof of Lemma 3.2 we shown that σiα−σjα ∈ A∗, for 0 ≤ j < i < d, thus we have that
σiα− σjα ∈ (R/βR)∗, for 0 ≤ j < i < d. And we just have to prove that g(σiα) = 0, therefore
by Lemma 3.1 we know that the degree of g is at least d, a contradiction.

Let G = {β ∈ R : β 6= 0, σβ = βn}. Note that 1, α ∈ G and σG ⊂ G.

Lemma 3.4. G is a cyclic subgroup of R∗.

Proof. It is clear from the definition of G and (3.6) that G is a subgroup of R∗; so it remains
to show that it is cyclic. Let f1 be an irreducible factor of f considered over Z/pZ, and
K = Z[x]/(p, f1). Let ψ be the natural projection form R to K. Let’s prove that the restriction
of ψ to G is injective, in that case, G will be isomorphic to a subgroup of K∗; since K∗ is itself
cyclic, the lemma will be proved.
Let β ∈ G and ψβ = 1, write β = g(α) where g ∈ (Z/pZ)[y] has degree < d. Since β ∈ G we
have σiβ = βn

i
for each i, so that

g(ψσiα) = ψσig(α) = ψσiβ = ψ(βn
i

) = (ψβ)n
i

= 1.

28 V. Gauthier - On some polynomial-time primality algorithms

In the proof of Lemma 3.2 we shown that σiα− σjα ∈ A∗, for 0 ≤ j < i < d, thus we have
it in K∗. Hence we have ψσiα−ψσjα ∈ K∗, for 0 ≤ j < i < d. And we just have to prove that
g(ψσiα)− 1 = 0, therefore by Lemma 3.1 we know that the degree of g(y)− 1 is at least d, or
it is the 0-polynomial. Hence it is 0, and so 1 = g(α) = β. Therefore we have that ψβ = 1
implies β = 1, thus ψ|G is injective, and this completes the proof of the lemma.

Lemma 3.5. Among the ordered pairs of integers (i, j) with 0 ≤ i, j ≤
√
d there are two

different pairs (i0, j0), (i1, j1) such that

pi0(n/p)j0 ≡ pi1(n/p)j1(mod #G).

Proof. We consider the automorphism group of G. For any finite cyclic group G under mul-
tiplication, the automorphism group is naturally isomorphic to (Z/(#G)Z)∗ where a residue
m correspond to πm : x → xm, for all elements x ∈ G. By the definition of G, the ring auto-
morphism σ acts as well as a group automorphism of G and is identified with πn. We consider
the subgroup 〈σ〉 = 〈πn〉 of Aut G, of order d. By Lemma 3.3, the Frobenius map φ is in this
subgroup and it is identified by πp. Therefore σφ−1, identified by πn/p, is in the subgroup as
well.

Now, we consider the automorphism πipπ
j
n/p for integers i, j with 0 ≤ i, j ≤

√
d. There are

more than d of these expressions, and they lie in a subgroup of order d, so at least two of them
must be equal: say

πi0p π
j0
n/p = πi1p π

j1
n/p

where (i0, j0), (i1, j1) are different pairs. Then

pi0(n/p)j0 ≡ pi1(n/p)j1(mod #G).

This completes the proof.

Note that for (i, j) with 0 ≤ i, j ≤
√
d, we have pi(n/p)j ≤ p

√
d(n/p)

√
d = n

√
d. So, if under

some hypotheses, we have #G > n
√
d−1, then the congruence in Lemma 3.5 will be an equality.

We can now start the proof of Theorem 3.1 whose statement we rewrite here:
Theorem 3.1 Let f ∈ Z [x] be a monic polynomial of degree d, let n > 1 be an integer, let
A = Z [x] /(n, f), and let α = x+ (n, f) ∈ A. Assume that

f(αn) = 0, (3.7)

αn
d

= α, (3.8)

αn
d/l − α ∈ A∗ for all primes l|d, (3.9)

d > (log2 n)2, (3.10)

(α + a)n = αn + a for each integer a, 1 ≤ a ≤ B :=
⌊√

d log2 n
⌋
. (3.11)

Then n is a B-smooth number or a prime power.

Chapter 3. Lenstra-Pomerance Algorithm 29

Proof. Suppose that n is not B-smooth, so that n has prime factor p > B. Recall that
R ∼= Z[x]/(p, f), σ : α→ αn is an automorphism of R and G = {β ∈ R : β 6= 0, σβ = βn}.
Claim: for each proper subset S of {0, 1, . . . , B},

1.
(∏

a∈S(α + a)
)
∈ G.

2. Different choices for S give rise to different members of G.

Proof of the claim:

1. by (3.5), σ(α + a) = αn + a = (α + a)n for 1 ≤ a ≤ B, the same is true for a = 0. Thus
each product is in fact in G ∪ {0}.

2. Consider gS =
∏

a∈S(x + a), since d > B, and p > B it follows that these polynomials
over Z/pZ are distinct, nonzero and have degree < d. Evaluating this gS in α we obtain
distinct, nonzero members of R.

By the previous claim we have that #G is greater than the number of such sets S, that is

#G ≥ 2B+1 − 1 > 2
√
d log2 n − 1 = n

√
d − 1. (3.12)

As we noted before, for 0 ≤ i, j ≤
√
d, we have pi(n/p)j ≤ p

√
d(n/p)

√
d = n

√
d. Thus if we have

two different pairs (i, j) in this range, the gap between the two expressions pi(n/p)j is at most

n
√
d − 1. Considering the two different pairs (i0, j0) and (i1, j1) we obtained in Lemma 3.5 and

using (3.12), we have

pi0(n/p)j0 = pi1(n/p)j1 . (3.13)

If j0 = j1, equation (3.13) will imply that pi0 = pj0 , thus that i0 = i1 which is a contradiction,
since (i0, j0) and (i1, j1) are different. Thus we have j0 6= j1 and by unique factorization we will
have that n is a power of p. This completes the proof of the theorem.

3.1.2 Gaussian periods and period systems

Definition 3.1. • Let G be a group. A character of G is an homomorphism χ : G → C,
χ 6= 0.

• The trivial character χ0(g) = 1∀g ∈ G is called the principal character.

• A Dirichlet character (mod r) is the extension of a (Z/rZ)∗ character.

• If r′|r and χ 6= χ0 mod r, it is possible that

χ(n) =

{
χ′(n) if (n, q) = 1
0 if (n, q) > 1

where χ′ is a suitable character mod r′. In this case we say that χmod r is induced by
χ′mod r′.

30 V. Gauthier - On some polynomial-time primality algorithms

• A Dirichlet character χ(mod r), χ 6= χ0, is primitive if it is not induced by any Dirichlet
character (mod r′) for every proper divisor r′ of r.

Lettingm be a positive integer and a be an integer coprime tom, we denote by ord(amod m)
the multiplicative order of a modulo m.

Definition 3.2 (Gaussian period ηr,q). Let r be a prime, ζr = e2πi/r, q a positive integer such
that q|r − 1 and S = {smod r : s(r−1)/q ≡ 1(mod r)} the subgroup of q-th powers in (Z/rZ)∗.
We define the Gaussian period by

ηr,q =
∑
s∈S

ζsr .

Let w be a residue modulo r such that ord(w(r−1)/q mod r) = q (note that any primitive root
modulo r has this property). Then the q cosets of S in (Z/rZ)∗ are wjS for j = 0, 1, . . . , q− 1.
Let gr,q be the minimum polynomial for ηr,q over Q, so that

gr,q =

q−1∏
j=0

(
x−

∑
s∈S

ζw
js

r

)
.

This polynomial is monic and irreducible in Q[x]. For a prime p we may ask if it is irreducible
in Z/pZ[x].

Lemma 3.6 (Kummer). Let p and r be two primes, and q a positive divisor of r − 1. The
polynomial gr,q(x) is irreducible when considered in Z/pZ[x] provided that ord(p(r−1)/q mod r) =
q.

Proof. Suppose that q > 1 and that ord(p(r−1)/q mod r) = q. Let’s prove that gr,q(x) is
irreducible when considered in Z/pZ[x]. Let K be the field of rq− th roots of unity over Z/pZ
and ψ the natural projection of Z[ζr, ζq] to K, such that η = ψ(ηr,q). Since gr,q(η) = 0, and
the degree of gr,q(x) is q, if the degree d of η over Z/pZ is q, we have that gr,q(x) is irreducible
when considered in Z/pZ[x].
Let φ be the Frobenius p-th power automorphism of K, so that the degree d of an element α
of K over Z/pZ is the least positive integer d such that φd(α) = α. Let ζ = ψ(ζr), we have

φj(η) = ηp
j

=
∑
s∈S

ζp
js,

where S = {smod r : s(r−1)/q ≡ 1(mod r)} as previously. By Fermat’s little theorem pr−1 ≡
1 mod r, pq mod r is a member of S. It follows that φq(η) = ηp

q
=
∑

s∈S ζ
pqs; as pq ∈ S we

have that φq(η) = η and so we obtain that d|q.
Let χ be the Dirichlet character modulo r which sends S to 1 and p to ζq. Since S, pS, . . . , pq−1S
are the cosets of S in (Z/rZ)∗, the two conditions are sufficient to define χ. Since q > 1 and
q is the order of χ, we have that χ is non principal, and since r is prime, it follows that χ is
primitive. Thus if τ(χ) is the Gauss sum, by Lemma 1.1 we have τ(χ)τ(χ) = r, in particular
ψ(τ(χ)) 6= 0 (if it is 0, we will have ψ(τ(χ)τ(χ)) = 0 therefore ψ(r) = 0, and we will have a
contradiction). Let w = ψ(ζq); we have

ψ(τ(χ)) =
r−1∑
j=1

ψ(χ(j))ζj =

q−1∑
i=0

wi
∑
j∈piS

ζj =

q−1∑
i=0

wiηp
i

(3.14)

Chapter 3. Lenstra-Pomerance Algorithm 31

the last equality holds, since we are doing the sum in each coset. In the the i-th one we have:∑
j∈piS

ψ(χ(j))ζj =
∑
j∈piS

ψ(ζ i)ζj =
∑
j∈piS

wiζj = wi
∑
j∈piS

ζj.

We reorganize the sum (3.14) by writing i = m + ld, with 0 ≤ m ≤ d − 1, 0 ≤ l ≤ (q/d) − 1,
getting

ψ(τ(χ)) =
d−1∑
m=0

ηp
m

q/d−1∑
l=0

wm+ld =
d−1∑
m=0

ηp
m

wm
q/d−1∑
l=0

wld. (3.15)

Since
q−1∑
i=0

wiηp
i

=
d−1∑
m=0

q/d−1∑
l=0

wm+ldηp
m+ld

and ηp
m+ld

= ηp
m

ηp
ld

= ηp
m

,

we have

ψ(τ(χ)) =
d−1∑
m=0

ηp
m

q/d−1∑
l=0

wm+ld.

But if d is a proper divisor of q, letting t = q/d we have:

t−1∑
l=0

wld =
t−1∑
l=0

(ψ(ζq))
ld = ψ

(t−1∑
l=0

ζ ldq

)
= ψ

(t−1∑
l=0

ζ lt

)
= 0.

Therefore by (3.15) we get ψ(τ(χ)) = 0 and so we have a contradiction. Hence d = q, which
proves the lemma.

Corollary 3.1. Suppose r1, . . . , rk are primes, q1, . . . , qk are pairwise coprime positive integers,
with each qi|ri− 1, and p is a prime with each ord(p(ri−1)/qi mod ri) = qi. If η is the product of
the Gaussian periods ηri,qi and f is the minimum polynomial for η over Q, then f is irreducible
when considered in Z/pZ[x].

Proof. By Lemma 3.6, each ηri,qi , when considered in an appropriate extension of Z/pZ, has
degree qi over Z/pZ. But in general, if α1, α2, . . . , αk all lie in an extension of Z/pZ and
have pairwise coprime degrees, their product α has degree q = q1q2 · · · qk over Z/pZ. Indeed,
if φ is the Frobenius p-th power automorphism, and l is a prime factor of q, say l|qi, then
φq/l(αj) = αj for j 6= i and φq/l(αi) 6= αi, so that φq/l(α) 6= α. Thus f has at least order q,
hence it is irreducible.

Now we are ready to define a period system.

Definition 3.3 (Period system for n). Let n a positive integer, we say that a sequence (r1, q1), . . . ,
(rk, qk) of ordered pairs of positive integers is a period system for n if

• r1, . . . , rk are primes,

• for i = 1, 2, . . . , k, we have qi|ri − 1, qi > 1, and ord(n(ri−1)/qi mod ri) = qi,

32 V. Gauthier - On some polynomial-time primality algorithms

• q1, . . . , qk are pairwise coprime.

Now we see that we can build “easily” such a period system.

Theorem 3.2. There is a deterministic algorithm such that for each integer m > 0 the al-
gorithm produce an integer Dm and further, for each integer n > 1, and each integer D with
D > Dm and D > (log n)11/6+1/m, the algorithm finds a period system (r1, q1), . . . , (rk, qk)
for n with each ri < D6/11 and each qi < D3/11, with D ≤ q1q2 · · · qk < 4D, and with
k = O((log logD)2). The running time of this algorithm is Õ(D12/11). The implied constant
may depend on the choice of m.

Remark 3.1. We will apply this theorem in the case D = (log2 n)2 so that m must be taken as
6. There is nothing special about the number 4 in the theorem, it is only a convenient choice
that can be replaced with any other number greater than 1.

By now we are going to assume Theorem 3.2 that we will prove in the next section, in fact
we are going to prove it with q1, q2, . . . , qk being distinct primes. In the following we will denote
1/m by ε.

Let’s consider the following algorithm for the construction of a period system:

Algorithm 3.1. Input: an integer n > 1, D > (log n)11/6.
Output: the algorithm produces a period system (r1, q1), . . . , (rk, qk) for n.

1. Using a modified sieve of Eratosthenes, compute the prime factorizations of every integer
in [1, 4D].

2. For each prime r < D6/11 and prime q|r− 1 with exp
(

logD
(log log(2D))2

)
< q < D3/11, compute

n(r−1)/q mod r.

3. Compute the set S of ordered pairs (r, q) where r, q are as in step 2 and n(r−1)/q 6≡ 1 mod r.

4. Compute the set Q of primes q such that (r, q) ∈ S for some r.

5. If there is some integer in [D, 4D] which is squarefree and composed solely of primes from
Q, let d be the last one. If not, replace D with 4D and go to step 1.

6. Using the prime factorization q1q2 . . . qk of d, find for each qi some ri with (ri, qi) ∈ S.

7. Return the pairs (r1, q1), . . . , (rk, qk).

Computational cost of Algorithm 3.1:

Step 1: The computational cost of this step is Õ(D).
Step 2: In each iteration we have to compute n(r−1)/q mod r, for this we first need to compute
n = nmod r that has a computational cost of Õ(log n), then n(r−1)/q mod r which has a com-

putational cost of Õ((log r)2)(using FFT the cost of computing nk mod r is Õ(log k log r)). As
we have to do it q times and q is less than the number of divisor of r−1 which is less than log r

Chapter 3. Lenstra-Pomerance Algorithm 33

we have that the computational cost is Õ(log n). Now we have to compute this r < D6/11 times,

the total computational cost is Õ(D6/11 log n). As D > (log n)11/6 we have log n = O(D6/11).

Thus the total cost of this step is Õ(D12/11).
We can see that the computational costs of steps 3 and 4 are embedded in the cost in step
2, and the computational cost of step 6 is negligible by the cost of step 2. Now we have to
compute how many times the step 2 has to be repeated.
If step 5 sends us back to step 1 at least

⌈
1

100
log log(2n)

⌉
times, our D will be greater than

(log n)11/6+1/100. In fact each time that we come back to the step 2, D is multiplied by 4,
thus if we repeat this step T =

⌈
1

100
log log(2n)

⌉
times, calling D′ this new D, we will ob-

tain: D′ = 4TD > 4log(log(2n)
1

100)D > elog(log(2n)
1

100)D = log(2n)
1

100D > log(n)
1

100 log(n)11/6 =
log(n)1/100+11/6. Therefore as T =

⌈
1

100
log log(2n)

⌉
= OD(1), with at most OD(1) iteration,

will ensure that D > D100 (using the notation in Theorem 3.2). Putting OD(1) in the constant,

we have that the running time is Õ(D12/11). The O-constant being computable in principle.
The correctness of this algorithm follows immediately of the computational cost of step 5.

Since we are sure that the algorithm will stop at most in the OD(1) iteration.

3.1.3 Period polynomial

In this section we are going to look for a given natural number n > 1, a deterministic procedure
that either proves that n is composite or construct a monic polynomial f ∈ (Z/nZ)[x] of degree
d = q1q2 · · · qk for which (3.1), (3.2) and (3.3) holds.

If ηi = ηri,qi is the Gaussian period discussed before, and if η = η1η2 · · · ηk, then the poly-
nomial f that we hope to produce is the reduction modulo n of the minimal polynomial for η
over Q.

We are going to build it in 3 stages: in the first one, we are going to compute monic polyno-
mials gi ∈ (Z/nZ)[x] for i = 1, 2, . . . , k with deg gi = qi. If n is prime, gi is irreducible modulo
n. In the second stage we verify (3.1), (3.2) and (3.3) for g1, g2, . . . , gk, and where qi plays the
role of d in these equations. If one of these properties fails, we can declare n composite. Finally
in the third stage we assemble the polynomial f of degree d.

The first stage:

We suppose that we have a pair (r, q) with r prime, q|(r − 1), ord(n(r−1)/q mod r) = q and
q > 1.

1. Let z be a primitive root for r, for j = 0, 1, . . . , q − 1, and

Sj = {zj+lq mod r : l = 0, 1, . . . ,
r − 1

q
− 1}.

2. Compute the period polynomial g(x) for the degree q subfield of the r-th cyclotomic field.
Note that we will reduce modulo n in each intermediate calculation. Let ζr = e2πi/r,

g(x) :=

q−1∏
j=0

(
x−

∑
m∈Sj

ζmr

)
∈
(
Z[ζr]/(n)]

)
[x].

34 V. Gauthier - On some polynomial-time primality algorithms

Computational cost:

Step 1 can be done by running through z0 mod r, z1 mod r, . . . placing each residue in its
proper set. Or can build each Sj, computing zj mod r and zq mod r, and build zj+lq mod r

from zj+(l−1)q mod r. The time to build this Sj is Õ(r). The time to obtain a prime factoriza-

tion of r via trial division is Õ(r1/2). And the time to check each z to see if it is a primitive

root is (log r)O(1). Thus the cost of step 1 is Õ(r).

A multiplication in Z[ζr]/(n) can be done in Õ(r(log n)2) (since it is a multiplication of two
polynomials of degree r in Z/nZ with r is much smaller than n, hence the computational cost
follows from A.3). We take the q polynomials by pairs, (if q is odd it remains one alone), the

product of the pairs can be computed in time Õ(qr(log n)2). We do again the same procedure,
i.e. we form again pairs with the polynomials we have, such that at most we have one polynomial
alone. As they are O(log q) pair-assembly, the total cost of this multiplication is Õ(qr(log n)2).

Now we have to repeat this for each pair (ri, qi) with i = 1, . . . , k. Therefore the total cost
of this stage is

Õ((
k∑
i=1

qiri)(log n)2).

The second stage:

For (r, q) one of the pairs in the first stage, and with g the polynomial in (Z/nZ)[x] we have
construct, let A = Z[x]/(n, g), and let α = x+ (n, g).

The time for a multiplication in A is Õ(q(log n)2) (since it is a multiplication of two polynomials
of degree q in Z/nZ with q is much smaller than n, hence the computational cost follows from

A.3). Then the time to compute αn is Õ(q(log n)3).

• We want to verify if the equation (3.1) hold, (i.e. if g(αn) = 0), since the time to compute

g(αn) is Õ(q2(log n)2) (q operation of cost Õ(q(log n)2)), this is the time to check (3.1).

• Now to verify (3.2), i.e. αn
q

= α, we have to compute αn
q

= α

q times︷ ︸︸ ︷
nn · · ·n = (αn)

q − 1 times︷ ︸︸ ︷
nn · · ·n.

Thus we have to compute q times αn which has a computational cost of Õ(q(log n)3),

thus the total cost to verify (3.2) is Õ(q2(log n)3). Not that in this step we also computed
(αn)q/s for each prime s|q.

• To verify (3.3) (i.e. αn
q/s − α ∈ A∗ for all primes s|q), let β = αn

q/s − α for one of the
primes s|q. As A is a free Z/nZ-module with basis 1, α, . . . , αq−1, we have β = h(α) for
some h ∈ (Z/nZ)[x] with either h = 0 or deg h < q. If h = 0, then β = 0 and condi-
tion (3.3) fails, thus n is composite and stop. So, assume h 6= 0. We perform Euclid’s
algorithm on h(x), g(x) in (Z/nZ)[x]. After each division with a nonzero remainder we
multiply by the inverse in Z/nZ of its leading coefficient so as to make it monic. If one
of this leading coefficient is not a unit in Z/nZ, we declare n is composite, and stop.
Assuming we have not stopped, Euclid’s algorithm will stop at a non zero monic polyno-
mial h0 ∈ (Z/nZ)[x]. If deg h0 > 0, then β is not a unit in A, declare n composite and

Chapter 3. Lenstra-Pomerance Algorithm 35

stop. Otherwise β ∈ A∗, that is, property (3.3) holds. The total cost to verify (3.3) is

Õ(q2(log n)3).

Therefore the total time to verify (3.1), (3.2) and (3.3) for g1, g2, . . . , gk is:

Õ((
k∑
i=1

q2
i)(log n)3).

The third stage:

First we are going to see the case k = 2: suppose f1, f2 are two monic polynomials in
(Z/nZ)[x] of degree d1, d2 respectively, where d1, d2 > 1 and (d1, d2) = 1. For i = 1, 2 let
Ai = Z[x]/(n, fi) and let αi = x+ (n, fi). Assume that (3.1), (3.2) and (3.3) hold for fi, αi for
i = 1, 2. By (3.3) α1 ∈ A∗1, thus we can write α−1

1 . Let

M(f1, f2)(t) =

d1−1∏
j=0

αd2n
j

1 f2(tα
−nj
1),

so that M(f1, f2) is a polynomial in A1[t].

Proposition 3.1. With the above assumptions, M(f1, f2) is a polynomial in (Z/nZ)[t], monic
of degree d1d2, and satisfying properties (3.1), (3.2) and (3.3).

Proof. Let f = M(f1, f2), d = d1d2. It is clear that f is monic and has degree d. Let’s see if f
is in fact a polynomial in (Z/nZ)[t].
Let σ1 the automorphism of A1 that takes α1 to αn1 discussed before, to simplify the notation
let σ = σ1. Note that σ let the coefficients of f invariant. Let β 6= 0 one of these coefficients,
β = h(α1), where h ∈ (Z/nZ)[x] is 0 or has degree less than d1. Now consider the polynomial
H(x) = h(x) − β ∈ A1[x]; it has the d1 roots σjα1 for j = 0, 1, . . . , d1 − 1. In the proof of
Lemma 3.2 we shown that σiα − σjα ∈ A∗, for 0 ≤ j < i < d, thus, by Lemma 3.1, h(x) − β
is either 0, or has degree at least d1, but this cannot occurs, thus β = h(0) ∈ Z/nZ. Therefore
f ∈ (Z/nZ)[t] as wished.

Let A′ = Z[t]/(n, f) and α = t+ (n, f). In order to show that (3.1), (3.2) and (3.3) hold for
the pair f, α, let’s prove it first in a similar situation.
Let A = Z[x1, x2]/(n, f1(x), f2(x)), note that there is a natural embedding of A1, A2 into A such
that αi is sent to xi + (n, f1(x1), f2(x2)) for i = 1, 2. Let σ the endomorphism on A such that
αi is sent to αni for i = 1, 2, note that σ restricted to each Ai is the automorphism considered
before. Let’s prove that the three equations hold for f, α1, α2.

• By Lemma 3.2 we have

f(t) =

d1−1∏
j=0

d2−1∏
l=0

(t− σj(α1)σ
l(α2)),

hence f(α1α2) = 0, and f(σ(α1α2)) = f((α1α2)
n) = 0, thus (3.1) holds.

36 V. Gauthier - On some polynomial-time primality algorithms

•
(α1α2)

nd = σd(α1α2) = σd1d2(α1)σ
d2d1(α2) = α1α2

thus (3.2) holds.

• Letting q be a positive integer such that q | d1, we have

(α1α2)
nd/q − α1α2 = (αn

d/q

1 − α1)α2. (3.16)

For any positive integer u we have αn
d/q

1 − α1|αn
ud/q

1 − α1 in A1; choosing u ≡ d−1
2 ,

we have αn
d/q

1 − α1|αn
d1/q

1 − α1, or αn
d1/q

1 − α1 ∈ A∗1 (by (3.3) applied to α1) hence

αn
d/q

1 − α1 ∈ A∗1 ⊂ A∗. Or using (3.3) for α2 we see that α2 ∈ A∗2 ⊂ A∗. Therefore

by (3.16) we have (α1α2)
nd/q − α1α2 ∈ A∗ thus (3.3) holds for α1α2. We have also that σ

is then an automorphism for A with order d.

To complete the proof it will suffice to show that A′ ∼= A with α ∈ A corresponding to
α1α2 ∈ A. Consider the map φ : A′ → A where φ(α) = α1α2, let’s show that φ is an
isomorphism. It is well defined since for g, h ∈ (Z/nZ)[t] with g(α) = h(α), we know that
g(t) = h(t) + u(t)f(t) for some u ∈ (Z/nZ)[t]. Thus φg(α) = g(α1α2) = h(α1α2) = φh(α).
Let’s show that it is an isomorphism: it is clearly an homomorphism, let’s see that it is injective.
Suppose φg(α) = 0 where g is 0 or has degree less than d, then g(α1α2) = 0. As σ is an
automorphism for A, we have g(σj(α1α2)) = 0 for j = 0, 1, . . . , d− 1. As (3.3) holds for α1α2,
we have that σiα1α2 − σjα1α2 ∈ A∗, for 0 ≤ j < i < d, thus by Lemma 3.1 that f(t)|g(t) in
A[t]. Therefore g can not have a degree less than d, so that g = 0 and φ is injective. As A,A′

have nd elements it follows that φ is also surjective. Thus A′ ∼= A as claimed.

Let’s generate now the polynomial of degree q1q2 · · · qk for an arbitrary k > 1, using the M -
operator for g1, g2, . . . gk. As the M -operator has only two entrances, we have several choices; we
will choose the one with minimal computational cost. For this we compute the computational
cost of M(f1, f2) with the above assumption. We have

M(f1, f2)(t) =

d1−1∏
j=0

αd2n
j

1 f2(tα
−nj
1).

We saw in Appendix A that, α−1
1 is computed in Õ(d1(log n)2). Compute (α−1

1)n
j

from

(α−1
1)n

(j−1) is Õ(d1(log n)3), thus the total cost for computing (α−1
1)n

j
from (α−1

1) is Õ(d2
1(log n)3).

We use Corollary 10.8 of [13] to evaluate f2 at the set of points tα−n
j

1 . If d1 > d2 this takes Õ(d1)

operation in A1[t] with polynomials of degree at most d2, thus the total cost is Õ(d2
1d2(log n)2).

If d1 < d2, the cost is Õ(d1d
2
2(log n)2). Using the previous results, the time to compute αd2n

j

1

for each j and multiply it into f2(tα
−nj
1) is Õ(d1d2(log n)2).

Thus, the total time to assemble M(f1, f2) is

Õ(d2
1(log n)3 + d1d2(d1 + d2)(log n)2). (3.17)

As the cost increases significantly with the degree of the polynomials, the strategy to have the
lowest possible cost is:

Chapter 3. Lenstra-Pomerance Algorithm 37

Among all sets S ⊂ {1, 2 . . . , k} with
∏

s∈S qs < d1/2 choose the one, call it S1, with this
product maximal, and let this product be denoted by d1. Let d2 = d/d1. Say S1 = {s1, . . . , sl}
and let f1 = M(gs1 , . . . , gsl) built up two at time. By (3.17) the computational cost of this is

Õ(d2
1(log n)3 + d3

1(log n)2) (since in this case d2 < d1). Let

S2 = {1, 2, . . . , k} \ S1 = {t1, t2, . . . , tk−l}.

We build f2 = M(gt1 , gt2 , . . . , gtk−l) in the same way as f1. As d2/qti < d1, the computational
cost of the construction of f2 will be dominated by (3.17). Finally we compute M(f1, f2) and
the total time is (3.17).

It remains now to estimate d1 and d2: for this we shall assume that the period system
(r1, q1), (r2, q2), . . . , (rk, qk) was produced by the Algorithm 3.1. Thus we are assuming that
d > (log n)11/6, each qi ≤ d3/11 and each ri ≤ d6/11. Let’s show that d1 ≥ d2/5, d2 ≤ d3/5.
If the product of the largest two qi’s is at least d2/5 then we choose d1 as this product, or
the complementary product of the remaining qi’s, whichever is smaller. Since qi ≤ d3/11, the
maximum value of qiqj for i 6= j is d6/11, thus the complementary product must be at least
d5/11. Now, assuming that the product of the largest two qi’s is smaller than d2/5, then every
remaining qi is smaller than d1/5. If we multiply, one at a time, to our product we will have a
result between d2/5 and d3/5. And we will take d1 as the minimum between this product and
the complementary one.
Using d2/5 ≤ d1 < d1/2 < d2 ≤ d3/5 and that d > (log n)11/6, the complexity time for the third

stage is: Õ(d8/5(log n)2). Since

Õ(d2
1(log n)3 + d1d2(d1 + d2)(log n)2) = Õ(d(log n)3 + d(d1/2 + d3/5)(log n)2)

or d > (log n)11/6 implies that d6/11 > log n thus we have

Õ(d2
1(log n)3 + d1d2(d1 + d2)(log n)2) = Õ(dd6/11(log n)2 + dd1/2(log n)2 + dd3/5(log n)2)

Õ(d2
1(log n)3 + d1d2(d1 + d2)(log n)2) = Õ(d17/11(log n)2 + d3/2(log n)2 + d8/5(log n)2)

Hence
Õ(d2

1(log n)2 + d1d2(d1 + d2)(log n)2) = Õ(d8/5(log n)2).

Computational complexity:

As ri ≤ d6/11 and qi ≤ d3/11 the time of the first stage is:

Õ((
k∑
i=1

qiri)(log n)2) = Õ(d9/11(log n)2).

For the second stage it is:

Õ((
k∑
i=1

q2
i)(log n)2) = Õ(d6/11(log n)3).

38 V. Gauthier - On some polynomial-time primality algorithms

Thus the computational cost is dominated by the third stage, hence it is: Õ(d8/5(log n)2).
In the particular case, when we choose d of order of magnitude (log n)2, the time complexity

for this procedure is Õ(log n)26/5.
In the particular case, when we have n prime, we have the following algorithm:

Algorithm 3.2. Input: a prime p, and D an integer with D > (log p)1.84.
Output: An irreducible polynomial f(x) ∈ Fp[x] of degree d, where D ≤ d = O(D). Moreover,
if p is larger than an effectively computable bound, we have d ≤ 4D.

1. Using Algorithm 3.1, find a period system (r1, q1), . . . , (rk, qk) for n = p with d :=
q1q2 · · · qk ≥ D and d = O(D). (For p beyond an effectively computable bound, this
algorithm finds such a number d with d ≤ 4D.)

2. With the the stage 1 and 3 of this section, construct a monic polynomial f(x) ∈ Fp[x] of
degree d.

3. Return f(x).

And so we proved the following theorem.

Theorem 3.3. There is a deterministic algorithm and an effectively computable number B,
such that, given a prime p > B and an integer d > (log p)1.84, it produces an irreducible poly-

nomial over Fp of degree d′, where d ≤ d′ ≤ 4d. Moreover the running time is Õ(d1.6(log p)2),
with effective constants.

3.1.4 The primality test

Algorithm 3.3. Input: an integer n > 1.
Output: The algorithm determines whether n is prime or composite.

1. Check if n is a power other than a first power. If it is, declare n composite and stop.

2. Let D = d(log2 n)2e, using Algorithm 3.1, find a period system (r1, q1), . . . , (rk, qk), for n
with d := q1q2 · · · qk ≥ D and d = O(D). (For n beyond an effectively computable bound,
we will have d ≤ 4D as discussed before.)

3. Let B =
⌊
d1/2 log2 n

⌋
. Check to see if n has a prime factor in [1, B]. If n has such a

factor that is not equal to n, declare n composite and stop. If n itself is this prime factor
then declare n is prime and stop.

4. Using the Algorithm 3.2, we try to find a monic polynomial f in (Z/nZ)[x] of degree d
and for which (3.1), (3.2) and (3.3) hold. This algorithm gives us a polynomial satisfying
properties (3.1), (3.2) and (3.3), or conclude that n is composite, in which case we can
conclude the same and stop.

5. For each integer a, 1 ≤ a ≤ B, check if (x + a)n ≡ xn + amod (n, f(x)). If one of
these congruences fail, we conclude n is composite and the algorithm stops. Otherwise we
declare n is prime and stop.

Chapter 3. Lenstra-Pomerance Algorithm 39

Computational complexity:

Step 1: as in the first step of the original AKS method this computational cost is Õ(log n)3.

Step 2: as we saw previously, the algorithm 3.1 has a computational cost of Õ(D12/11), as

D = O((log2 n)2), we have that the cost of step 2 is Õ((log n)24/11).
Step 3: as in step 3 of the AKS algorithm, we have to do B = O(d1/2 log2 n) operation, each
one of cost O(log n). With d = O(D) = O((log n)2) thus the computational cost is O((log n)3).

Step 4: we saw in the previous subsection that this step has a computational cost of Õ((log n)26/5).

Step 5: each congruence can be verified in Õ(d(log n)2), as we have to verify B = O(d1/2 log2 n)

of this, the total cost is Õ(d3/2(log n)3). And since d = O(D) = O((log n)2), the total compu-

tational cost is Õ((log n)6).

Therefore the computational cost of this algorithm is Õ((log n)6).
By Theorem 3.1 and Lemma 3.6 this algorithm is correct, hence we have a deterministic pri-
mality algorithm, which runs in polynomial time Õ((log n)6).

We can see that the main difference between the original AKS primality test and the Lenstra-
Pomerance algorithm, is the fact that we are not constrained to use the cyclotomic polynomial.
In this case we have more freedom to choose the polynomials which give us a lower compu-
tational cost. The first of two main sources of this diminishment of the computational cost
is that r ≤ log5

2 n for the original AKS while in this version, the degree of the polynomial is
d = O((log2 n)2). The second reason, is that in the AKS we have to repeat the most expensive
step
√
r log n times, while in this new version, the equivalent step is repeated

⌊
d1/2 log2 n

⌋
times.

It remains to prove Theorem 3.2, that is the purpose of the following section.

3.2 Proof of Theorem 3.2

The goal of this section is to prove the following theorem:

Theorem 3.4. There is a deterministic algorithm A such that, for each integer m > 0, A
produces an integer Dm and further, for each integer n > 1, and each integer D with D > Dm

and D > (log n)11/6+1/m, the algorithm finds a period system (r1, q1), . . . , (rk, qk) for n with each
ri < D6/11 and each qi < D3/11, with D ≤ q1q2 · · · qk < 4D, and with k = O((log logD)2). The

running time of this algorithm is Õ(D12/11). The implied constant may depend on the choice
of m.

For this we need some lemmas that we are going to introduce in the first three subsections.
In the last one we will prove Theorem 3.4.

3.2.1 Some preliminar results

Definition 3.4 (Dickman-de Brujin function). Let ρ(u) be a continuous function on [0,∞)
that satisfies

• ρ(u) = 1 for 0 ≤ u ≤ 1,

40 V. Gauthier - On some polynomial-time primality algorithms

• uρ′(u) = −ρ(u− 1) for u > 1 and

• log ρ(u) = −u log(u log u) +O(u) for u ≥ 2.

Let π(x) denote the number of primes in the interval [1, x].

Lemma 3.7. There is an absolute and effectively computable positive number c0 with the fol-
lowing property. Let α be a number with 0 < α < 1, and let x be so large that log x

log log x
> 1

α4 .
The number of primes r ≤ x such that r − 1 has a divisor m with m > xα and with m being
xα

2
- smooth is at most D(α)π(x), where

D(α) =
c0
α2

(ρ(1/α)

log(2/α)
+ ρ(1/α2)

)
.

For the proof, see [12].

Proposition 3.2. Let n > 20 be a natural number, let x be a number such that x ≥ (log n)1+3/ log log logn,
and let α = α(x) = 1/ log log x. Let R(x, n) denote the number of primes r ≤ x such that r− 1
has a prime divisor q > xα

2
with ord(n(r−1)/q) mod r) = q. For n larger than an effectively

computable bound, we have

R(x, n) ≥ (1−D(α))π(x)− x1−α2 − x1−α/4.

Proof. Let A be the number of primes r which divides n or some nj − 1 for j ≤ xα. We have

A < log2 n+
∑
j≤xα

j log2 n = log2 n(1 +
∑
j≤xα

j) < x2α log2 n < x1−α/4

if n is so large that log2 n < x1−9α/4. Thus, there are at least π(x) − x1−α/4 primes r ≤ x not
dividing n, and not dividing any nj−1 for all j ≤ xα. Such a prime r has ord(nmod r) > xα. Let
qr denote the greatest prime factor of ord(nmod r). If x is so large that log / log log x > 1/α4,
we can apply Lemma 3.7, and we thus get that qr > xα

2
, but for at most D(α)π(x) exceptional

primes r ≤ x. Note that the number of integers r ≤ x with r − 1 divisible by some l2 with l
prime and l > xα

2
is at most∑
l prime

l>xα
2

x

l2
= x

∑
l prime

l>xα
2

1

l2
≤ x

∫ x

xα2

dt

t2
= x(

−1

x
+

1

xα2) < x1−α2

.

Hence, there are at least

π(x)− (x1−α/4) +D(α)π(α)− x1−α2

= (1−D(α))π(α)− x1−α2 − x1−α/4

primes r ≤ x with qr > xα
2

and q2
r does not divide r − 1. For such a prime we have

ord(n(r−1)/qr mod r) = qr. This complete the proof of the proposition.

Remark: Proposition 3.2 implies that for n, x as given, we have

π(x)−R(x, n) = O(x/(log x)log log log x).

Chapter 3. Lenstra-Pomerance Algorithm 41

In fact, it is clear that R(x, n) ≤ π(x) and by the previous proposition we have that

π(x)−R(x, n) = D(α)π(α) + x1−α2

+ (x1−α/4).

Now note that

x/(log x)log log log x = exp(log x− log log log x log log x).

Since

x1−α/4 =
x

x1/4 log log x
= exp(log x− 1

4 log log x
log x)

and for a sufficient large x
log x

log log x
> log log log x log log x

we have that
(x1−α/4) = O(x/(log x)log log log x).

We also have that

x1−α2

=
x

x(1/ log log x)2
= exp(log x− 1

(log log x)2
log x),

since for a sufficient large x

log x

(log log x)2
> log log log x log log x

we have that
(x1−α2

) = O(x/(log x)log log log x).

Now lets see if
D(α)π(α) = O(x/(log x)log log log x).

and we will prove the remark.

D(α) =
c0
α2

(ρ(1/α)

log(2/α)
+ ρ(1/α2)

)
.

And
log ρ(u) = −u log(u log u) +O(u),

thus
ρ(u) = exp(−u log(u log u) +O(u)) = O(exp(−u log u− u log log u)).

Then
ρ(1/α) = O(exp(− log log x log log log x− log log x log log log log x))

and

ρ(1/α)

log(2/α)
= O(exp(− log log x log log log x− log log x log log log log x− log log log log x)).

42 V. Gauthier - On some polynomial-time primality algorithms

We also have

ρ(1/α2) = O(exp(−2(log log x)2 log log log x− (log log x)2 log log log log x)).

Then

D(α) =
c0
α2
O(exp(− log log x log log log x− log log x log log log log x− log 2 log log x))

D(α) = O(exp(− log log x log log log x− log log x log log log log x− log log log x+ log log x)).

Then

D(α)π(x) = O(exp(log x−log log x−log log x log log log x−log log x log log log log x−log log log log x))

hence we have

D(α)π(α) = O(x/(log x)log log log x).

3.2.2 Sieved primes

The goal of this subsection is to prove the following result about the distribution of primes r
with r − 1 free of prime factors in some given set.

Proposition 3.3. There are effectively computable positive functions Xε, δε of the positive
variable ε satisfying the following property. If x ≥ Xε and Q is a set of primes in the interval
(1, x1/2] with ∑

q∈Q

1

q − 1
≤ 3

11
− ε.

Let B the number of primes r ≤ x such that every factor q of r−1 satisfies q ≤ x1/2 and q /∈ Q.
Then B ≥ δεx/(log x)2.

Before proving this, we give some preliminary facts we will need.

Definition 3.5. Let q ∈ N, and a ∈ N such that (a, q) = 1, x ∈ R, let

• π(x, q, a) denote the number of primes p ≤ x with p ≡ amod p;

•
ψ(x, q, a) =

∑
n≤x

n≡amod q

Λ(n);

•
θ(x, q, a) =

∑
p≤x,p prime
p≡amod q

log p;

• li(x) =
∫ x

2
dt

log t
,

Chapter 3. Lenstra-Pomerance Algorithm 43

where Λ(n) is the von Mangoldt’s function

Λ(n) =

{
log p if n = pj for some prime p and some positive integer j
0 if n is not the power of a prime,

and ϕ(n) will represent the Euler totient function.

Lemma 3.8. [Brun-Titchmarsh inequality] If x > q we have

π(x, q, a) ≤ 2x

ϕ(q) log(x/q)
.

For the proof, see [10].

Lemma 3.9. [effective Bombieri-Vinogradov inequality] There are absolute, effectively com-
putable numbers c1, c2 such that for all numbers x ≥ 3, there is an integer set S(x) of cardinality
0 or 1 with S(x) ⊂ (log x)1/2, exp((log x)1/2)] , such that for each number Q ∈ [x1/3 log x, x1/2],∑

q∈Q

′ max
2≤y≤x

max
gcd(a,q)=1

|ψ(y, q, a)− y

ϕ(q)
| ≤ c1x

1/2Q(log x)5 + c1x exp(−c2(log x)1/2),

where the dash indicates that if S(x) = {s1}, then no q in the sum is divisible by s1.

For the proof, see [4].

Lemma 3.10. With the same notation and hypotheses as Lemma 3.9, we have∑
q∈Q

′ max
gcd(a,q)=1

|π(x, q, a)− li(x)

ϕ(q)
| ≤ c4x

1/2Q(log x)5 + c4x exp(−c2(log x)1/2),

where c2 is as in Lemma 3.9, and c4 is an absolute, effectively number.

Proof. First note than we can replace the expressions ψ(y, q, a) in Lemma 3.9 with θ(y, q, a),
since

|ψ(y, q, a)− θ(y, q, a)| ≤
∑
n≤y

n is a prime power

log y = O(y1/2 log y).

We have by the partial summation formula that

π(x, q, a) =
θ(x, q, a)

log x
+

∫ x

2

θ(y, q, a)

y(log y)2
dy. (3.18)

This identity let’s show that

|π(x, q, a)− li(x)

ϕ(q)
| ≤ |θ(x, q, a)− x

ϕ(q)
|.

In fact

|π(x, q, a)− li(x)

ϕ(q)
| ≤ |θ(x, q, a)

log x
+

∫ x

2

θ(y, q, a)

y(log y)2
dy − 1

ϕ(q)

∫ x

2

1

log y
dy|

44 V. Gauthier - On some polynomial-time primality algorithms

≤ |θ(x, q, a)
(1

log x
+

x− 2

x(log x)2

)
− 1

ϕ(q)

x

log x
|

≤ 1

log x
|θ(x, q, a)− x

ϕ(q)
| ≤ |θ(x, q, a)− x

ϕ(q)
|.

Thus, the result follows directly from Lemma 3.9 and the identity (3.18).

Lemma 3.11. [Deshouillers-Iwaniec] There is an effectively computable function xε, defined
for positive numbers ε, and absolute and effectively computable positive numbers c5, c6 with the
following property. For arbitrary numbers ε, x,Q with ε > 0, x ≥ xε, and x1/2 ≤ Q ≤ x1−ε, and
for an arbitrary integer a with 0 ≤ |a| < xε, we have for almost all integers q ∈ [Q, 2Q] with
gcd(q, a) = 1, the number of exceptions being less thaN Qx−εc6,

π(x, q, a) ≤ (4/3 + εc5)x

ϕ(q) log(x/q)
.

For the proof, see [5].

Definition 3.6 (The Möbius function). For n = pα1
1 p

α2
2 · · · p

αk
k , we define µ(n) by

µ(n) =


1 if n=1
(−1)k if αi = 1 for i = 1, . . . , k,
0 otherwise

Proposition 3.4. Let f be a multiplicative function (i.e. f(a · b) = f(a) · f(b)) we have∑
d|n

µ(d)f(d) =
∏
p|n

(1− f(p)).

Proof. (From [2] chapter 2.) Let

g(n) =
∑
d|n

µ(d)f(d).

Then g is multiplicative, so to determine g(n) it suffices to compute g(pα). But

g(pα) =
∑
d|pα

µ(d)f(d) = µ(1)f(1) + µ(p)f(p) = 1− f(p).

Hence
g(n) =

∏
p|n

g(pα) =
∏
p|n

(1− f(p)).

Definition 3.7 (The Riemann zeta function). Let s ∈ C such that <s > 1. We will call
Riemann zeta function the following

ζ(s) =
∞∑
n=1

1

ns
.

Chapter 3. Lenstra-Pomerance Algorithm 45

Theorem 3.5 (Euler identity). For Re(s) > 1 and P the set of primes,

ζ(s) =
∏
p∈P

1

(1− p−s)
.

For the proof, see [3]

Definition 3.8 (Euler-Mascheroni constant). We define

γ = lim
t→∞

t∑
n=1

(
1

n
− log t).

We have the following result about this constant:

γ =
n∑
k=1

1

k
− log(n)−O(1/n). (3.19)

Definition 3.9 (Divisor function). For a real or complex α and any integer n ≥ 1 we define

σα(n) =
∑
d|n

dα,

the sum of the α-th powers of the divisors of n.
When α = 0, σ0(n) is the number of divisors of n; this is often denoted by d(n).
When α = 1, σ1(n) is the sum of divisors of n; this is often denoted by σ(n).

Proposition 3.5. For n ≥ 2
n

ϕ(n)
< ζ(2)

σ(n)

n
.

Proof.
n

ϕ(n)
=

1∏
p|n(1− 1

p
)

=
∏
p|n

p

p− 1
=
∏
p|n

p+ 1

p

p2

p2 − 1
=
∏
p|n

(p+ 1)/p

(p2 − 1)/p2

=

∏
p|n(p+ 1)/p∏
p|n(p2 − 1)/p2

<

∏
p|n(p+ 1)/p∏
p(p

2 − 1)/p2
,

by Euler identity we have
n

ϕ(n)
<
∏
p|n

(1 +
1

p
)ζ(2).

Now

σ(n) =
∏
pα|n

pα+1 − 1

p− 1
,

then
σ(n)

n
=
∏
pα|n

pα+1 − 1

pα(p− 1)
.

46 V. Gauthier - On some polynomial-time primality algorithms

But ∀p|n and α ≥ 1 as p(pα+1 − p) ≥ pα(p2 − 1) we have

pα+1 − 1

pα(p− 1)
≥ p+ 1

p
.

Then we have that

σ(n)

n
≥
∏
pα|n

p+ 1

p
>
∏
p|n

p+ 1

p
.

And we conclude as desired that

n

ϕ(n)
< ζ(2)

σ(n)

n
.

Proposition 3.6. For n ≥ 2 ∑
n≤x

1

ϕ(n)
= O(log x).

Proof. By Proposition 3.5 we have that

1

ϕ(n)
< ζ(2)

σ(n)

n2
.

Then ∑
n≤x

1

ϕ(n)
<<

∑
n≤x

σ(n)

n2
=
∑
n≤x

∑
d|n

d

n2
=
∑
qd≤x

d

q2d2
=
∑
d≤x

1

d

∑
d≤x/d

1

q2

=
∑
d≤x

1

d

(
ζ(2)−

∑
q>x/d

1

q2

)
=
∑
d≤x

ζ(2)

d
+O(

∑
d≤x

1

d

∫ +∞

x/d

dt

t2
)

=
∑
d≤x

1

d
+O(

∑
d≤x

1

d

d

x
) = log x+O(1).

Therefore ∑
n≤x

1

ϕ(n)
= O(log x).

Lemma 3.12. For any number t > 1, we have that∑
d<t

1

ϕ(d)
=
ζ(2)ζ(3)

ζ(6)
log t+ ν +O

(log(2t)

t

)
,

where ζ is the Riemann zeta-function and where ν is a constant we will describe below.

Chapter 3. Lenstra-Pomerance Algorithm 47

Proof. Let’s assume the following claim (we are going to prove it at the end of the proof).
Claim 1:

1

ϕ(d)
=

1

d

∑
u|d

µ2(u)

ϕ(u)
.

Hence putting k ∈ N such that d = ku < t, we have∑
d<t

1

ϕ(d)
=
∑
d<t

∑
u|d

1

d

µ2(u)

ϕ(u)
=
∑
u<t

∑
d<t
u|d

µ2(u)

ϕ(u)

1

d
=
∑
u<t

µ2(u)

ϕ(u)

∑
d<t
u|d

1

d
.

Since ∑
d<t
u|d

1

d
=
∑
d<t
u|d

1

ku
=
∑
k≤t/u

1

ku
=

1

u

∑
k≤t/u

1

k
,

by (3.19) we have ∑
d<t
u|d

1

d
=

1

u
(γ + log

(t
u

)
+O(u/t)).

Therefore ∑
d<t

1

ϕ(d)
=
∑
u<t

µ2(u)

ϕ(u)

1

u
(γ + log

(t
u

)
+O(u/t))

∑
d<t

1

ϕ(d)
= log t

∑
u<t

µ2(u)

uϕ(u)
+
∑
u<t

µ2(u)(γ − log u)

uϕ(u)
+O(

1

t

∑
u<t

µ2(u)

ϕ(u)
). (3.20)

We define ν =
∑

u<t
µ2(u)(γ−log u)

uϕ(u)
and assume the following claim that we will prove at the

end:
Claim 2:

log t
∑
u<t

µ2(u)

uϕ(u)
+O(

1

t

∑
u<t

µ2(u)

ϕ(u)
) = log t

∏
p prime

(
1 +

1

p(p+ 1)

)
+O

(log(2t)

t

)
.

Hence (3.20) becomes∑
d<t

1

ϕ(d)
= log t

∏
p prime

(
1 +

1

p(p+ 1)

)
+ ν +O

(log(2t)

t

)
. (3.21)

Using Theorem 3.5 we get

ζ(2)ζ(3)

ζ(6)
=
∏

p prime

(1

1− 1
p2

)(1

1− 1
p3

)(
1− 1

p6

)
,

ζ(2)ζ(3)

ζ(6)
=
∏

p prime

(p2

p2 − 1

)(p3

p3 − 1

)(p6 − 1

p6

)
=

p2p3(p6 − 1)

(p2 − 1)(p3 − 1)p6
,

48 V. Gauthier - On some polynomial-time primality algorithms

ζ(2)ζ(3)

ζ(6)
=
∏

p prime

p2p3(p3 − 1)(p+ 1)(p2 − p+ 1)

(p− 1)(p+ 1)(p3 − 1)p2p3p
=
∏

p prime

p2 − p+ 1

p(p− 1)
=
∏

p prime

(
1 +

1

p(p+ 1)

)
.

Thus from (3.21) we have∑
d<t

1

ϕ(d)
=
ζ(2)ζ(3)

ζ(6)
log t+ ν +O

(log(2t)

t

)
and the lemma is proved. It remains to prove the two claims:

Proof of claim 1:
1

ϕ(d)
=

1

d

∑
u|d

µ2(u)

ϕ(u)
.

Let n = pα1
1 p

α2
2 · · · pαss , let’s do the proof by induction:

Case s = 1: (i.e n = pα). We have ϕ(n)−1 = ϕ(pα)−1 = (pα − pα−1)−1 = ((p− 1)pα−1)−1 and

1

d

∑
u|d

µ2(u)

ϕ(u)
=

1

pα
(1 +

1

ϕ(p)
) =

1

(p− 1)pα−1
.

Inductive step: suppose the claim is true for d = pα1
1 p

α2
2 · · · p

αs−1

s−1 , to simplify the equations let

Bd =
∑

u|d
µ2(u)
ϕ(u)

and D = pαpα2
2 · · · pαss where p = ps and α = αs. Let’s show that BD = D

ϕ(D)
:

D

ϕ(D)
=

dpα

ϕ(dpα)
=

d

ϕ(d)

pα

ϕ(pα)
=

pα

pα − pα−1
Bd =

1

1− (1/p)
Bd =

p

(p− 1)
Bd.

Now BD =
∑

u|D
µ2(u)
ϕ(u)

= Bd +
∑

u|d
1

ϕ(up)
= Bd + 1

ϕ(p)
Bd = Bd(

p
p−1

). And the claim is proved.
Proof of claim 2:

log t
∑
u<t

µ2(u)

uϕ(u)
+O(

1

t

∑
u<t

µ2(u)

ϕ(u)
) = log t

∏
p prime

(
1 +

1

p(p+ 1)

)
+O

(log(2t)

t

)
Let

A = log t
∑
u<t

µ2(u)

uϕ(u)
+O(

1

t

∑
u<t

µ2(u)

ϕ(u)
),

A = log t
∑
u

µ2(u)

uϕ(u)
− log t

∑
u≥t

µ2(u)

uϕ(u)
+O(

1

t

∑
u<t

µ2(u)

ϕ(u)
),

since µ(n)
nϕ(n)

is a multiplicative function we can use Proposition 3.4:

A = log t
∏

p prime

(1− µ(p)

pϕ(p)
)− log t

∑
u≥t

µ2(u)

uϕ(u)
+O(

1

t

∑
u<t

µ2(u)

ϕ(u)
),

Chapter 3. Lenstra-Pomerance Algorithm 49

A = log t
∏

p prime

(1 +
1

p(p− 1)
)− log t

∑
u≥t

µ2(u)

uϕ(u)
+O(

1

t

∑
u<t

µ2(u)

ϕ(u)
).

By Proposition 3.6 we have that

∑
u<t

µ2(u)

ϕ(u)
≤
∑
u<2t

1

ϕ(u)
= O(log(2t)).

Hence

A = log t
∏

p prime

(1 +
1

p(p− 1)
) +O

(log(2t)

t

)
.

We can now prove Proposition 3.3 (that we rewrite here the statement):
Proposition 3.3
There are effectively computable positive functions Xε, δε of the positive variable ε satisfying the
following property. If x ≥ Xε and Q is a set of primes in the interval (1, x1/2] with∑

q∈Q

1

q − 1
≤ 3

11
− ε. (3.22)

Let B the number of primes r ≤ x such that every factor q of r−1 satisfies q ≤ x1/2 and q /∈ Q.
Then B ≥ δεx/(log x)2.

Proof. Let 0 < ε < 3/11, x a large number, Q a set of primes satisfying (3.3). For a prime
r ≤ x, let g(r) denote the number of factorizations of r − 1 as lh, where

1. x1/2−2β < l < x1/2−β, and x1/2+β < l < x1/2+2β,

2. lh is not divisible by any member of Q,

3. l is not divisible by any member of S(x),

4. h is not divisible by any prime larger than x1/2,

where S(x) is defined in Lemma 3.9. Note that g(r) can be 0, let N denote the number of primes
r ≤ x with g(r) > 0. Our goal is to get a good lower bound A for N , in fact if A = δεx/(log x)2

we have B ≥ N ≥ A = δεx/(log x)2 and the proposition is proved.
From Cauchy’s inequality, we obtain(∑

r≤x

g(r)
)2

≤
(∑
r≤x

g(r)2
)(∑

r≤x

1
)
,

hence we have that

N ≥
(∑
r≤x

g(r)
)2(∑

r≤x

g(r)2
)−1

.

50 V. Gauthier - On some polynomial-time primality algorithms

Now we are going to found an upper bound for
∑

r≤x g(r)2 and a lower bound for
(∑

r≤x g(r)
)2

in order to found A.

In order to found the upper bound for
∑

r≤x g(r)2 we ignore the non-divisibility requirements
in the definition of g(r). We denote [a, b] for the least common multiple of a, b,

∑
r≤x

g(r)2 ≤
∑
r≤x

∑
l1,l2|r−1

x1/2−2β<l1,l2<x1/2−β

1 =
∑

x1/2−2β<l1,l2<x1/2−β

∑
l1,l2|r−1
r≤x

1 =
∑

x1/2−2β<l1,l2<x1/2−β

π(x, [l1, l2], 1).

By Lemma 3.8 we have that∑
r≤x

g(r)2 ≤
∑

x1/2−2β<l1,l2<x1/2−β

2x

ϕ([l1, l2]) log(x/[l1, l2])
.

We know that [l1, l2] < x1/2−βx1/2−β = x1−2β, hence 1
log(x/[l1,l2])

< 1
log(x/x1−2β)

and we have

∑
r≤x

g(r)2 ≤ 2x

log(x2β)

∑
x1/2−2β<l1,l2<x1/2−β

1

ϕ([l1, l2])
=

x

β log x

∑
x1/2−2β<l1,l2<x1/2−β

1

ϕ([l1, l2])
.

Since ∑
x1/2−2β<l1,l2<x1/2−β

1

ϕ([l1, l2])
=

∑
d<x1/2−β

∑
gcd(l1,l2)=d

x1/2−2β<l1,l2<x1/2−β

1

ϕ(l1l2/d)

we get ∑
x1/2−2β<l1,l2<x1/2−β

1

ϕ([l1, l2])
≤

∑
d<x1/2−β

∑
a,b<(x1/2−β)/d

1

ϕ(abd)
≤
(∑
d<x

1

ϕ(d)

)3

.

The last inequality holds since
∑

d<x1/2−β
∑

a,b<(x1/2−β)/d
1

ϕ(abd)
≤
∑

d≤x
∑

a,b<x/d
1

ϕ(abd)
≤∑

d≤x
1

ϕ(d)

∑
a<x/d

1
ϕ(a)

∑
b<x/d

1
ϕ(b)
≤
(∑

d<x
1

ϕ(d)

)3

.

Therefore we have that ∑
r≤x

g(r)2 ≤ x

β log x

(∑
d<x

1

ϕ(d)

)3

.

Using Lemma 3.12 we have∑
r≤x

g(r)2 ≤ x

β log x

(ζ(2)ζ(3)

ζ(6)
log x+ ν +O

(log(2x)

x

))3

.

Recalling that ν =
∑

u<t
µ2(u)(γ−log u)

uϕ(u)
, we have

∑
r≤x

g(r)2 ≤ x

β log x

(ζ(2)ζ(3)

ζ(6)
log x

)3

+ ν3 +O
(log(2x)

x

)3

,

Chapter 3. Lenstra-Pomerance Algorithm 51

∑
r≤x

g(r)2 = O
(x(log x)2

β

)
. (3.23)

This is the desired upper bound. Now let’s found a lower bound for
∑

r≤x g(r):

Let L denote the set of integers l with x1/2−2β < l < x1/2−β, and l is not divisible by any member
of S(x). And H denote the set of integers h with x1/2+β < h < x1/2+2β. By the definition of
g(r) we have that ∑

r≤x

g(r) ≥
∑
l∈L

π(x, l, 1)−
∑
l∈L

q|l for some q∈Q

π(x, l, 1)−

∑
h∈H

q|h for some q∈Q

π(x, h, 1)−
∑
h∈H

q|h for some prime q>x1/2

π(x, h, 1).

= S1 − S2 − S3 − S4.

Let’s give an estimation for S1, S2, S3 and S4:

• For S1 we use Lemma 3.10 we have

∑
l∈L

|π(x, l, 1)− li(x)

ϕ(l)
| = O(x1/2x1/2−β(log x)5) = O(x1−β/2).

Hence, ∑
l∈L

(π(x, l, 1)− li(x)

ϕ(l)
) ≤

∑
l∈L

|π(x, l, 1)− li(x)

ϕ(l)
| = O(x1−β/2).

Then

S1 = li(x)
∑
l∈L

1

ϕ(l)
+O

(x

(log x)2

)
. (3.24)

Using Lemma 3.12 to estimate the sum of 1
ϕ(l)

and letting τ = ζ(2)ζ(3)
ζ(6)

and ξ = τβ, we
have that

∑
d<t

1

ϕ(d)
= τ log t+ ν +O

(log(2t)

t

)
,

thus ∑
l∈L

1

ϕ(l)
=

∑
l≤x1/2−β

1

ϕ(l)
−

∑
l≤x1/2−2β

1

ϕ(l)
−

∑
l such that q|l

where S(x)={q}

1

ϕ(l)
,

∑
l∈L

1

ϕ(l)
= τ log

(x1/2−β

x1/2−2β

)
+O

(log(2x1/2−β)

x1/2−β

)
+

∑
l such that q|l

where S(x)={q}

1

ϕ(l)
.

52 V. Gauthier - On some polynomial-time primality algorithms

Now ϕ(l) > l
(log log l)A

for a positive constant A, and l >
√

log x by the definition of S(x).

So ϕ(l) >
√

log x
(log log x)A

> (log x)1/4. Hence

∑
l such that q|l

where S(x)={q}

1

ϕ(l)
= O

(x1/2−β

(log x)1/4

)

and we have ∑
l∈L

1

ϕ(l)
= ξ log x+O

(x

(log x)1/4

)
.

Thus
S1 = ξx+O

(x

(log x)1/4

)
.

• For
S2 =

∑
l∈L

q|l for some q∈Q

π(x, l, 1) =
∑
q∈Q

∑
l∈L,q|l

π(x, l, 1)

using (3.24) we get

S2 =
∑
q∈Q

∑
l∈L,q|l

li(x)
∑
l∈L

1

ϕ(l)
+O

(x

(log x)2

)
,

S2 ≤ li(x)
∑
q∈Q

∑
qd∈L

1

ϕ(qd)
+O

(x

(log x)2

)

S2 ≤ li(x)
∑
q∈Q

1

q − 1

∑
x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
+O

(x

(log x)2

)
.

Using now Lemma 3.12 we have

∑
x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)


= ξ log x+O(q log(2x)x2β−1/2), for q < x1/2−2β

≤ ξ log x+O(q log(2x)xβ−1/2), for x1/2−2β ≤ q ≤ x1/2−β

= 0, for q > x1/2−β.

This is clear for q > x1/2−β. Now for x1/2−2β ≤ q ≤ x1/2−β, since x1/2−2β/q ≤ 1 we have
that ∑

x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
=

∑
1<l<x1/2−β/q

1

ϕ(l)
≤

∑
l<x1/2−β/q

1

ϕ(l)
.

By Lemma 3.12 we have that∑
x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
≤ τ log(

x1/2−β

q
) +O

(log(2x1/2−β)/q

x1/2−β/q

)

Chapter 3. Lenstra-Pomerance Algorithm 53

since 1
x1/2−β ≤ 1

q
≤ 1

x1/2−2β we have that

log(
x1/2−β

q
) ≤ log(

x1/2−β

x1/2−2β
) = β log x.

Then in this case we have∑
x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
≤ ξ log x+O(q log(2x)xβ−1/2)

as desired.

Now in the first case when q < x1/2−2β we have that∑
x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
=

∑
l<x1/2−β/q

1

ϕ(l)
−

∑
l≤x1/2−2β/q

1

ϕ(l)
.

By Lemma 3.12 we have∑
l<x1/2−β/q

1

ϕ(l)
= τ log(

x1/2−β

q
) + ν +O

(log(2x1/2−β)/q

x1/2−β/q

)
and ∑

l≤x1/2−2β/q

1

ϕ(l)
= τ log(

x1/2−2β

q
) + ν +O

(log(2x1/2−2β)/q

x1/2−2β/q

)
.

But in this case
log(2x1/2−β)/q

x1/2−β/q
� log(2x1/2−2β)/q

x1/2−2β/q
,

then we have that ∑
x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
= τ log(xβ) +O

(log(2x1/2−2β)/q

x1/2−2β/q

)
.

Hence ∑
x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
= ξ log x+O(q log(2x)x2β−1/2).

We have from before that

S2 ≤ li(x)
∑
q∈Q

1

q − 1

∑
x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
+O

(x

(log x)2

)
.

Then, we have

S2 ≤ ξx
∑
q∈Q

1

q − 1
+O

(x

log x

)
.

54 V. Gauthier - On some polynomial-time primality algorithms

• For S3 we use Lemma 3.11 with “ε” chosen as β and with “Q” being various power of
2 so that the intervals [Q, 2Q] cover the interval (x1/2+β, x1/2+2β). If h is an exceptional
modulus in Lemma 3.11, we use the trivial estimate π(x, h, 1) ≤ x/h. We thus get

S3 =
∑
h∈H

q|h for some q∈Q

π(x, h, 1) ≤ (4/3 +O(β))x
∑
h∈H

q|h for some q∈Q

1

ϕ(h) log(x/h)
+

∑
h exeption

x

h
.

Since

∑
h exeption

x

h
= x

O(log x)∑
i=1

∑
h∈(Qi,2Qi)

exeption

1

h
≤ x

O(log x)∑
i=1

Qix
O(β)

Qi

= x1−O(β)O(log x) = O(
x

log x
)

we have

S3 ≤ (4/3 +O(β))x
∑
h∈H

q|h for some q∈Q

1

ϕ(h) log(x/h)
+O(

x

log x
),

S3 ≤ (8/3 +O(β))
x

log x

∑
h∈H

q|h for some q∈Q

1

ϕ(h)
+O(

x

log x
),

S3 ≤ (8/3 +O(β))
x

log x

∑
q∈Q

1

q − 1

∑
x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)
+O(

x

log x
).

Thus

S3 = (8/3 +O(β))ξx
∑
q∈Q

1

q − 1
+O(

x

log x
).

Since using Lemma 3.12 we have

∑
x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)


= ξ log x+O(q log(2x)x−β−1/2), for q < x1/2+β

≤ ξ log x+O(q log(2x)x−2β−1/2), for x1/2+β ≤ q ≤ x1/2+2β

= 0, for q > x1/2+2β.

This is clear for q > x1/2+2β. Now for x1/2+β ≤ q ≤ x1/2+2β, since x1/2+β/q ≤ 1 we have
that ∑

x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)
=

∑
1<h<x1/2+2β/q

1

ϕ(h)
≤

∑
h<x1/2+2β/q

1

ϕ(h)
.

By Lemma 3.12 we have that∑
x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)
≤ τ log(

x1/2+2β

q
) +O

(log(2x1/2+2β)/q

x1/2+2β/q

)

Chapter 3. Lenstra-Pomerance Algorithm 55

since 1
x1/2+2β ≤ 1

q
≤ 1

x1/2+β we have that

log(
x1/2+2β

q
) ≤ log(

x1/2+2β

x1/2+β
) = β log x.

Then in this case we have∑
x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)
≤ ξ log x+O(q log(2x)x−2β−1/2)

as desired.

Now in the first case when q < x1/2+β we have that∑
x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)
=

∑
h<x1/2+2β/q

1

ϕ(h)
−

∑
h≤x1/2+β/q

1

ϕ(h)
.

By Lemma 3.12 we have∑
h<x1/2+2β/q

1

ϕ(h)
= τ log(

x1/2+2β

q
) + ν +O

(log(2x1/2+2β)/q

x1/2+2β/q

)
and ∑

h≤x1/2+β/q

1

ϕ(h)
= τ log(

x1/2+β

q
) + ν +O

(log(2x1/2+β)/q

x1/2+β/q

)
.

But in this case
log(2x1/2+2β)/q

x1/2+2β/q
� log(2x1/2+β)/q

x1/2+β/q
,

then we have that ∑
x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)
= τ log(xβ) +O

(log(2x1/2+β)/q

x1/2+2β/q

)
.

Hence ∑
x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)
= ξ log x+O(q log(2x)x−β−1/2).

• For
S4 =

∑
h∈H

q|h for some prime q>x1/2

π(x, h, 1)

we use the Lemma 3.8 and we thus get

S4 ≤ 2x
∑
h∈H

q|h for some prime q>x1/2

1

ϕ(h) log(x/h)
,

56 V. Gauthier - On some polynomial-time primality algorithms

S4 ≤
2x

log(x1/2−β)

∑
h∈H

q|h for some prime q>x1/2

1

ϕ(h)
,

S4 = O
(x

log x

∑
h∈H

q|h for some prime q>x1/2

1

ϕ(h)

)
.

Now ∑
h∈H

q|h for some prime q>x1/2

1

ϕ(h)
≤

∑
x1/2<q<x1/2+2β

q prime

1

q − 1

∑
h≤x2β

1

ϕ(h)
.

By Lemma 3.12 we have∑
t≤x2β

1

ϕ(h)
= τ log(x2β) +O(

log(2x2β)

log(x2β)
) = O(β log x).

And by Mertens’s theorem we have that∑
p≤U

1

p
∼ log logU, U →∞.

For q ≥ 2 we have 1
q−1
≤ c

q
then we have that

∑
x1/2<q<x1/2+2β

q prime

1

q − 1
∼ log log(x1/2+2β)− log log(x1/2) = O(β).

Thus ∑
h∈H

q|h for some prime q>x1/2

1

ϕ(h)
= O(β2 log x).

And so we get
S4 = O(β2x).

Now putting together the estimates for S1, S2, S3 and S4, we have that∑
r≤x

g(r) ≥ ξx
(

1− (11/3 +O(β))
∑
q∈Q

1

q − 1

)
+O(β2x) +O

(x

(log x)1/4

)
.

Using
∑

q∈Q
1
q−1
≤ 3/11− ε we obtain∑
r≤x

g(r) ≥ ξx
(

1− (11/3 +O(β))(
3

11
− ε)

)
+O

(x

(log x)1/4

)
,

and hence ∑
r≤x

g(r) ≥ ξx
(11

3
ε+O(β)

)
+O

(x

(log x)1/4

)
.

Chapter 3. Lenstra-Pomerance Algorithm 57

Thus if β is chosen as a small absolute constant times ε, we have∑
r≤x

g(r) ≥ εξx.

Now we have ∑
r≤x

g(r) ≥ εξx and
∑
r≤x

(g(r))2 = O
(1

ε
x(log x)2

)
,

and

N ≥
(∑
r≤x

g(r)
)2(∑

r≤x

(g(r))2
)−1

.

Hence

N ≥ (εξx)2
(
O
(1

ε
x(log x)2

))−1

= (εξx)2O
(ε

x(log x)2

)
= O

(ε5τx

(log x)2

)
= O

(ε5x

(log x)2

)
so, we may choose δε as a small constant time ε5, and the theorem is proved.

3.2.3 The continuous Frobenius problem

Given a finite set of positive coprime integers, every sufficiently large integer may be written as
a nonnegative integral linear combination of the given set. The problem known as the Frobenius
postage problem is to find the largest integer which cannot be so represented.
The goal of this subsection is to prove the following result that might be viewed as a continuous
analogue of the Frobenius postage problem.

Proposition 3.7. [Daniel Bleichenbacher] Suppose S is an open subset of the positive reals
that is closed under addition, and such that 1 /∈ S. Then for any number t ∈ (0, 1], the dx/x
measure of S ∩ (0, t) is less than t.

Proof. Let M be a positive differentiable measure on the positive reals, with derivative m. Thus
if S is any measurable subset of the positive reals with characteristic function χS , we have

M(S) =

∫ ∞
0

χS(x)m(x)dx.

Let S be as in the hypothesis of the theorem, and St = S ∩ (0, t). Let suppose that St is a
finite union of open intervals; that is

St =
n⋃
i=1

(ai, bi),

where
t ≥ b1 ≥ a1 ≥ · · · ≥ bn ≥ an ≥ 0. (3.25)

58 V. Gauthier - On some polynomial-time primality algorithms

Let a = (a1, . . . , an), b = (b1, . . . , bn). The condition that 1 is not in the additive semigroup
generated by St is equivalent to the assertion that for all vectors h ∈ (N≥0)

n,

either h · a ≥ 1 or h · b ≤ 1. (3.26)

That is, it is not the case that h · a < 1 < h · b.

Suppose now that we fix the vector b and assume that

t ≥ b1 > b2 > · · · > bn > 0. (3.27)

If j > 1/bn is an integer, taking h = (0, . . . , 0, j) we have h · b = jbn > 1, then (3.26) implies
that jan = h · a ≥ 1 thus that an ≥ 1/j. In particular, we must have an ≥ bn/2 (taking for
example j = d1/bne + 1). Hence, the set of vectors a which, with the fixed vector b, satisfy
(3.25) and (3.26) form a compact subset of (R>0)

n. Thus there is a choice of the vector a which
maximizes M(St) for the given vector b. We will call this maximum Mb and assume that a is
fixed at a choice which produces this maximum.

Note that as we allow empty intervals, it’s possible that we have the case ai = bi. It is clear
that if we delete some coordinates from b to form a shorter vector b’ we will have Mb’ ≤Mb.
Then by possibly replacing b with a shorter vector, we may assume that each ai < bi.
If we can assume that ai−1 > bi for 2 ≤ i ≤ n we may assume that the vector a satisfies

1 ≥ b1 > a1 > · · · > bn > an > 0. (3.28)

Let’s show that we can assume that ai−1 > bi for 2 ≤ i ≤ n. Suppose that ai−1 = bi, we may
consolidate the two intervals (ai, bi), (ai−1, bi−1) into an interval (ai, bi−1). In fact, if 1 is not in
the additive semigroup generated by St∪ bi, we can consolidate it; if not 1 is representable by a
sum of members of St ∪ bi, so that bi must be involved in the sum, say with a positive integral
coefficient c. If c = 1, for a suitable small ε we can replace in the sum bi by bi + ε and then
replace another member x ∈ St of the sum with x − ε (there must be another number in the
sum since bi < 1). If ε is small enough, bi + ε and x − ε are in St, and we have represented 1
as a sum of members of St, a contradiction. Now if c ≥ 2, then since bi + ε

c−1
and bi − ε are

both in St for ε a small enough, we can replace cbi in the sum by (c − 1)(bi + ε
c−1

) + (bi − ε),
and so 1 is represented as a sum of members of St, a contradiction. Hence we may assume that
ai−1 > bi for 2 ≤ i ≤ n and then that a satisfies (3.28).
Now let

Ho = {h ∈ (N≥0)
n : h · a < 1},

H1 = {h ∈ (N≥0)
n : h · a = 1},

H2 = {h ∈ (N≥0)
n : h · a > 1}.

Since the ai are fixed positive natural numbers, it follows that H0, H1 are finite sets. We
now show that by contradiction that H1 is not empty. Suppose that H1 is empty and let
u = (1, 1, . . . , 1).

Chapter 3. Lenstra-Pomerance Algorithm 59

Claim: if ε > 0 is small enough, then the pair a− εu,b still satisfies (3.26) and (3.28).
Assuming this claim, we will have a choice for St with strictly larger M(St), a contradiction,
thus H1 is non empty.

Let’s now prove the claim: it is clear that we may choose ε > 0 small enough so as to
preserve the condition (3.28). For h ∈ H0 we have h · b ≤ 1, so the vectors in H0 do not pose
a problem for condition (3.26). Since H1 is assumed empty, H1 also does not pose a problem.
Now there are only finitely many h ∈ H2 with h · a ≤ 2. In this case, we can found an ε > 0
small enough so that h · (a− εu) ≥ 1 for all such h. Now if h ·a > 2 and if we choose ε < an/2,
then h · (a− εu) > 1

2
h · a > 1. Hence a− εu,b still satisfy (3.26) and (3.28). Hence the claim

is proved and H1 is non empty.

Let h ∈ H1, and for notational convenience, let an+1 = bn+1 = 0, and ek be the k-th
standard basis vector in Rn. For any k, since h · a = 1 and ak > ak+1, we have

h · a− ak + ak+1 < 1.

Suppose that hk > 0. Let h′ = h− ek + ek+1 in the case that k < n and let h′ = h− ek in the
case that k = n. Then h′ ∈ H0. Hence, from (3.26), we have that h′ · b ≤ 1. That is,

h · b− bk + bk+1 ≤ 1.

Since h ∈ H1 we get that

h · (b− a) = h · b− 1 ≤ bk − bk+1 ≤ 1.

Thus we have
hkh · (b− a) ≤ hk(bk − bk+1). (3.29)

Let v ∈ Rn and let

fv(x) = M
(n⋃
i=1

(ai + xvi, bi)
)
.

For m(a) = (m(a1), . . . ,m(an)), we have that

f ′v(0) = −vm(a).

In fact let U =
⋃n
i=1(ai + xvi, bi) with characteristic function χU , we have

fv(x) =

∫ ∞
0

χU(u)m(u)du,

then

f ′v(x) =
d

dx

n∑
i=1

∫ ∞
0

χ(ai+xvi,bi)(u)m(u)du,

f ′v(x) =
n∑
i=1

d

dx

∫ bi

ai+xvi

m(u)du = −
n∑
i=1

d

dx

∫ ai+xvi

bi

m(u)du,

60 V. Gauthier - On some polynomial-time primality algorithms

f ′v(x) = −
n∑
i=1

m(ai + xvi) · vi,

thus

f ′v(0) = −
n∑
i=1

m(ai) · vi = −v ·m(a).

Note that by the maximality of a, if a + xv satisfies (3.26) and (3.28) for all x in some
interval [0, ε) with ε > 0, then f ′v(0) ≤ 0, that is v ·m(a) ≥ 0. Let’s see that this occurs when
h · v ≥ 0 ∀h ∈ H1. Indeed suppose that

h · v ≥ 0 ∀h ∈ H1 and (3.30)

h′ · (a + xv) < 1 < h′ · b for some h′ ∈ (N≥0)
n. (3.31)

Since h · b ≤ 1 for all h ∈ H0 we have h′ /∈ H0. If h′ ∈ H1 h′ · (a + xv) = 1 + xh′ · v, then
by (3.30), h′ · (a + xv) ≥ 1 for all x ≥ 0 so that h′ /∈ H1. For any given ε > 0, there are only
finitely many h′ ∈ H2 with h′ · (a + εv) < 1 < h′ · a. Reducing the size of ε to a small enough
positive quantity makes this set of h′ empty, and so h′ /∈ H2.
It follows that for ε > 0 small enough, if (3.30) hold, then ax + v satisfy (3.26) and (3.28) for
0 ≤ x < ε, and so v.m(a) ≥ 0.

We now apply a theorem of Farkas [6]:

Lemma 3.13 (J. Farkas). Suppose A is an n×k real matrix and m ∈ Rn. Then the inequalities
Av ≥ 0, m · v < 0 are unsolvable for a vector v ∈ Rn if and only if there is a vector p ∈ Rk

with p ≥ 0 and pTA = m.

(We say that a vector is ≥ 0 when each entry of the vector is ≥ 0). Say H1 = {h1, . . . ,hu},
and let each hj = (hj1, . . . , hjn). We apply this lemma to the matrix A whose rows are the u
vectors in H1 and to the vector m = m(a). Since we have already shown that Av ≥ 0 implies
m ·v ≥ 0, the lemma implies that there is a vector p ∈ Ru with p ≥ 0 and pTA = m. We have

u∑
j=1

pjhji = m(ai) for 1 ≤ i ≤ n.

Multiplying (3.29) applied to hj by pj and summing over j we have for 1 ≤ k ≤ n

u∑
j=1

pjhjk

n∑
i=1

hji(bi − ai) ≤
u∑
j=1

pjhjk(bk − bk+1) = m(ak)(bk − bk+1).

Multiplying by ak and summing over k, we get

n∑
k=1

ak

u∑
j=1

pjhjk

n∑
i=1

hji(bi − ai) ≤
n∑
k=1

akm(ak)(bk − bk+1). (3.32)

Chapter 3. Lenstra-Pomerance Algorithm 61

The left side of (3.32) is

u∑
j=1

pj

n∑
k=1

akhjk

n∑
i=1

hji(bi − ai) =
u∑
j=1

pj

n∑
i=1

hji(bi − ai)

=
n∑
i=1

(bi − ai)
u∑
j=1

pjhji

=
n∑
i=1

(bi − ai)m(ai).

Thus,
n∑
i=1

(bi − ai)m(ai) ≤
n∑
k=1

akm(ak)(bk − bk+1). (3.33)

Now, taking the measure M being dx/x, each m(ai) = 1/ai, thus we have

n∑
i=1

(bi/ai − 1) ≤
n∑
k=1

(bk − bk+1) ≤ t. (3.34)

However, M((ai, bi)) = log(bi/ai) < bi/ai − 1. hence, by (3.34)

Mb =
n∑
i=1

log(bi/ai) < t.

Thus the proposition holds for St being a finite union of disjoint intervals; it remains to
handle the case of St being the union of infinitely many disjoint open intervals. Suppose
St =

⋃∞
i=1(ai, bi), where the intervals are non-empty and disjoint. For each n, (3.34) implies

that
∑n

i=1(bi/ai − 1) ≤ t. Thus,
∞∑
i=1

(bi/ai − 1) ≤ t.

But

M(St) =
∞∑
i=1

log(bi/ai) <
∞∑
i=1

(bi/ai − 1) ≤ t,

so M(St) < t. This concludes the proof of the theorem.

Remark: The inequality of the theorem is the best possible. Indeed, suppose Sn is the
additive semigroup generated by (1/(n+ 1), 1/n), where n is a positive integer. Then 1 is not
in Sn and we have

M(Snt) ≥
btnc∑
j=1

log(1 + 1/n) = btnc (1/n+O(1/n2)) ∼ t as n→∞.

62 V. Gauthier - On some polynomial-time primality algorithms

3.2.4 Proof of Theorem 3.2

We are now ready to prove Theorem 3.2 whose statement is

Theorem 3.2 There is a deterministic algorithm such that for each integer m > 0 the
algorithm produce an integer Dm and further, for each integer n > 1, and each integer D
with D > Dm and D > (log n)11/6+1/m, the algorithm finds a period system (r1, q1), . . . , (rk, qk)
for n with each ri < D6/11 and each qi < D3/11, with D ≤ q1q2 · · · qk < 4D, and with k =

O((log logD)2). The running time of this algorithm is Õ(D12/11). The implied constant may
depend on the choice of m.

Proof. We have that D > (log n)(11/6)+ε. Let x = D(6/11)−ε/4, so that if n is sufficiently large,
we have that x ≥ (log n)1+3/ log log logn. Let α = α(x) = 1/ log log x. For a prime r ≤ x, let

Q(r) = {q prime : q|(r − 1) with xα
2

< q ≤ x1/2 and ord(n(r−1)/q mod r) = q}.

We suppose that Q(r) have been computed for each prime r ≤ x, and we denote

Q =
⋃
r≤x

Q(r).

For each q ∈ Q, find the least prime rq with q ∈ Q(rq).
We use a modified sieve of Eratosthenes to find the prime factorization of every integer up to
x; the cost of this is Õ(x log n) = Õ(D12/11).

For a bounded interval I, let |I| denote the length of I. Let N = d3α−2 log xe.

Definition 3.10. For each i = 1, 2, . . . , N, let

• Ii = [x(i−1)/N , xi/N)

Note that the intervals Ii are a partition of [1, x), and that the “expected” number of primes in
Ii is about |Ii|/ log(xi/N).

• k0
i = min{#(Ii ∩Q),

⌊
|Ii|/ log(xi/N)

⌋
};

• ki =

{
0, if k0

i ≤ 2α−2

k0
i , otherwise;

• Qi the set of the least ki primes in Q∩ Ii;

• Ji = (x(i−1)/N , x(i−1)/N + ki log(xi/N));

• Si =
(

log
(
x(i−1)/N

)
, log

(
x(i−1)/N + ki log(xi/N)

))
;

• S is the additive subgroup generated by
⋃
i

1
log(2D)

Si.

Chapter 3. Lenstra-Pomerance Algorithm 63

Note that each Ji ⊂ Ii, the sets Qi are disjoint with their union contained in Q, and that
Ji = ∅ for i < α2N . Since for i < α2N , Ii = [x(α2N−1)/N , xα

2
), or all the q ∈ Q are such that

xα
2
< q ≤ x1/2, hence Ii ∩Q = ∅ and we have Ji = ∅ as desired.

To prove the theorem we need the following three claims we will prove at the end of this
section.

Claim 1: For n sufficiently large, we have∑
q∈Q

1

q
>

3− ε
11

. (3.35)

Claim 2: For n sufficiently large, we have∑
i

∑
q∈Qi

1

q
>

3

11
− ε

10
. (3.36)

Claim 3: For n sufficiently large, we have∑
i

∫
Si

du

u
>

3

11
− ε

10
. (3.37)

Note that if Si 6= ∅ we have x(i−1)/N ≤ x1/2, thus xi/N ≤ x1/2+1/N ; hence we have

log xi/N

log(2D)
≤ log(x1/2+1/N)

log 2D
≤
(1

2
+

1

N

)(log x

log 2D

)
.

As x = D(6/11)−ε/4 we have log x
logD

= 6
11
− ε

4
hence

log xi/N

log(2D)
≤
(1

2
+

1

N

)(6

11
− ε

4

)
≤
(1

2

)(6

11
− ε

4

)
<
(3

11
− ε

9

)
.

Thus from Claim 3 we have, for n sufficiently large, that∫ 3/11−ε/9

0

χS(u)

u
du =

∑
i

∫
Si

du

u
>

3

11
− ε

9
.

Thus, from Proposition 3.7, we know that 1 ∈ S. Hence there is a finite subset F of ∪iSi
and a positive integer κf for each f ∈ F , such that∑

f∈F

κff = log(2D).

Let Fi = F ∩ Si and κi =
∑

f∈Fi κf . Then, for sufficiently large n, we obtain

∑
i

κi =
∑
i

∑
f∈Fi

κf ≤
∑
i

1

log(x(i−1)/N)

∑
f∈Fi

κff.

64 V. Gauthier - On some polynomial-time primality algorithms

As α = α(x) = 1/ log log x, N = d3α−2 log xe, for sufficiently large n, we have∑
i

κi <
1

log(xα2−N−1)

∑
i

∑
f∈Fi

κff =
log(2D)

log(xα2−N−1)
< 2α−2. (3.38)

The last inequality holds since we have x = D6/11−ε/4, let’s call A = 6/11− ε/4, we have
that 2Ax = (2D)A, hence we have that A log(2D) = A log 2 + log x thus

log(2D)

(α2 − 1/N) log x
=

log 2

(α2 − 1/N) log x
+

1

(α2 − 1/N)A

Recalling 1/N ≤ α2

3 log x
, for a sufficiently large x and ε < 2/11, we have α2 − 1/N ≥ α2(1 −

1
3 log x

) > 0 and (1− 1
3 log x

)A > 2. Hence

log(2D)

(α2 − 1/N) log x
<

1

(α2 − 1/N)A
≤ 1

α2(1− 1
3 log x

)A
<

2

α2
.

Since, for each i with Si 6= ∅, we have ki > 2α−2, it follows that for each i with κi > 0 there
are more than κi distinct primes in Qi, because there are ki primes and we have ki > 2α−2 >∑

i κi. We will call such primes q1,i, q2,i, . . . , qκi,i.
Since log(x(i−1)/N) ≤ f ≤ log(xi/N) and κi =

∑
f∈Fi κf , we have∑

f∈F

κff =
∑
i

∑
f∈Fi

κff <
∑
i

log(xi/N)
∑
f∈Fi

κf =
∑
i

κi log(xi/N).

On the other hand, since ql,i > log(x(i−N)/N), we have

∑
i

κi∑
j

log(qi,j) >
∑
i

κi log(x(i−1)/N).

Hence we have

|
∑
f∈F

κff −
∑
i

κi∑
j

log(qi,j)| <
∑
i

κi

(
log(xi/N)− log(x(i−1)/N)

)
= log(x1/N)

∑
i

κi.

Therefore by (3.38), and N = d3α−2 log xe, we have

|
∑
f∈F

κff −
∑
i

κi∑
j

log(qi,j)| <
log(x)

N
2α−2 ≤ 2

3
.

Hence, recalling that
∑

f∈F κff = log(2D), we have that

0 ≤ | log(2D)−
∑
i

κi∑
j

log(qi,j)| = | − log(2D) + log
(∏

i

κi∏
j

(qi,j)
)
| < 2

3
,

Chapter 3. Lenstra-Pomerance Algorithm 65

−2

3
≤ log

(∏
i

κi∏
j

(qi,j)

2D

)
<

2

3
.

Since 1 < e
2
3 < 2, it follows that

1

2
< e−

2
3 ≤

∏
i

κi∏
j

(qi,j)

2D
< e

2
3 < 2.

Thus

D <
∏
i

κi∏
j

(qi,j) < 4D.

We conclude that there is a squarefree integer Q in the interval (D, 4D) supported solely
on primes from Q. By sieving this interval with a modified version of the sieve of Eratosthenes
that produces a complete prime factorisation for each integer in this interval, we may find such
an integer Q, and with a running time of at most Õ(D). Once we had found Q, the pairs (rq, q)
with q running over the prime factors of Q, form a period system for n. This completes the
proof of the theorem. It remains to prove the three claims:

Proof of Claim 1: for n sufficiently large, we have∑
q∈Q

1

q
>

3− ε
11

.

By contradiction, suppose not. We apply proposition 3.3 to Q, with the “ε” of the proposition
equal to ε/11. Thus, there is some δ > 0 such that for n sufficiently large we have at least
δx/(log x)2 primes r ≤ x such that every prime factor of r − 1 is below x1/2 and not in Q.
As in proposition 3.2 let

R(x, n) = {r primes : (r − 1) has a prime divisor q > xα
2

and ord((n(r−1)/q) mod r) = q}.

By the Remark of proposition 3.2 we get |{r primes : r ≤ x, r /∈ R(x, n)}| = O
(

x
(log x)log log log x

)
.

Thus, for n sufficiently large, there is a prime r ≤ x counted by R(x, n) such that (r − 1) has
every prime factor below x1/2 and not in Q.
But if r is in R(x, n) for all q|(r − 1), xα

2
< q < x1/2 and ord((n(r−1)/q) mod r) = q, we obtain

q ∈ Q and hence we have a contradiction. This complete the proof of Claim 1.

Proof of Claim 2: if n is sufficiently large we have∑
i

∑
q∈Qi

1

q
>

3

11
− ε

10
.

The difference between
∑

i

∑
q∈Qi

1
q

and
∑

q∈Q
1
q

comes from two sources:

66 V. Gauthier - On some polynomial-time primality algorithms

1. intervals Ii with k0
i ≤ 2α−2 and

2. intervals Ii with #(Ii ∩Q) >
⌊
|Ii|/ log(xi/N)

⌋
.

Let’s see what is the contribution by each one of this sources to the final sum. For the first
one, note that ∑

q∈Ii:ki≤2α−2

1

q
< 2α−2

∑
i≥α2N

1

x(i−1)/N

since k0
i ≤ 2α−2, thus we know that there is no more than 2α−2 primes in this sum, and that

each one of this primes is in Ii thus q > x(i−1)/N . The sum is over the nonempty intervals, i.e.,
over i ≥ α2N . For n sufficiently large

2α−2
∑
i≥α2N

1

x(i−1)/N
<

2x2/N

α2xα2(x1/N − 1)
� 1

α4xα2 . (3.39)

The first inequality holds since

∑
i≥α2N

1

x(i−1)/N
=
∞∑
i=0

1

x(i−1)/N
−
∑
i<α2N

1

x(i−1)/N
= x1/N

(∞∑
i=0

1

x(1/N)i
−
∑
i<α2N

1

x(1/N)i

)
.

We have a geometric series, thus∑
i≥α2N

1

x(i−1)/N
<
(1

x1/N − 1

)
− x1/N(α2N − 1)

1

xα2−1/N
=

1

x1/N − 1
− (α2N − 1)x2N

xα2

and finally we have

∑
i≥α2N

1

x(i−1)/N
<

x2N

xα2(x1/N − 1)
.

In the second inequality (3.39), we use the notation “a � b” for “there exist a positive
constant c such that a < cb”. In order to prove this inequality we see that

2x2/N

(x1/N − 1)
< τ

1

α2
(3.40)

where τ is a suitable positive constant, that we will determinate. As we are interested in large
values of x, to prove this inequality is equivalent to prove

2x2/M

(x1/M − 1)
< τ

1

α2

where M = 3(log x)α−2. The following inequalities are equivalent to the previous one:

2x2/M < τα−2(x1/M − 1),

Chapter 3. Lenstra-Pomerance Algorithm 67

2(exp(
2

M
log x)) < τα−2

((
exp(

1

M
log x)

)
− 1
)
,

2 exp
(α2

3

)
< τα−2

((
exp

(α2

3

))
− 1
)
.

Letting u = α2

3
, we have to see for which τ we get

2eu <
τ

3

(eu − 1

u

)
.

But since limx→∞ u = 0, limu→0 e
u = 1 and limu→0

eu−1
u

= limu→0 e
u = 1, we have that for

τ > 6, the inequality (3.40) holds.
Thus, if n is sufficiently large, the contribution coming from the first source is negligible.

Now, let’s calculate the contribution of the second source, i.e. we are in the case where the
intervals Ii are such that #(Ii ∩Q) >

⌊
|Ii|/ log(xi/N)

⌋
. Let

A = { the largest #(Ii ∩Q)−
⌊
|Ii|/ log(xi/N)

⌋
primes q ∈ Ii}.

By the prime number theorem, the total number of primes in Ii is at most

⌊
|Ii|/ log(xi/N)

⌋
+O

(xi/N

(log(xi/N))2

)
.

Then, we have that ∑
q∈A

1

q
� 1

xi/N

∑
q∈A

1� 1

(log(xi/N))2
.

Hence the contribution for each i is

O
(1

(log(xi/N))2

)
= O

(N2

i2(log(x))2

)
.

As in the previous case, we sum over 1 ≥ α2N , and the total contribution is

O
(N

α2(log x)2

)
= O

(1

α4 log x

)
.

Since
N∑

i=α2N

i−2 <

∫ N

α2N

v−2dv =
1− α2

α2N
� 1

α2N
,

even this contribution is negligible as well. This proves Claim 2.

Proof of Claim 3: if n is sufficiently large we have∑
i

∫
Si

du

u
>

3

11
− ε

10
.

68 V. Gauthier - On some polynomial-time primality algorithms

We have by Claim 2 that∑
i

1

x(i−1)/N
ki >

∑
i

∑
q∈Qi

1

q
>

3

11
− ε

10
. (3.41)

We know that, if Si 6= ∅, that is, if ki > 0, then∫
Si

du

u
= log

(log
(
x(i−1)/N + ki log(xi/N)

)
log(x(i−1)/N)

)
.

To simplify the equation we are going to define ai and bi as follows:

ai = x(i−1)/N , bi = ki log(xi/N).

Hence, we have ∫
Si

du

u
= log

(log
(
ai + bi

)
log ai

)
.

Now,

log(ai + bi) > log ai +
bi
ai
−
(bi
ai

)2

and so we can write∫
Si

du

u
>

bi
ai log ai

− 2

log ai

(bi
ai

)2

=
bi

ai log ai

(
1− 2bi

ai

)
>
ki
ai

(
1− 2bi

ai

)
.

Then, putting the values of ai and bi we have:∫
Si

du

u
>

ki
x(i−1)/N

(
1− 2ki log(xi/N)

x(i−1)/N

)
.

Since ki > 0 and it is defined to be less or equal than |Ii|/ log(xi/N), we have that

ki log(xi/N) ≤ x(i−1)/N − xi/N = x(i−1)/N(x1/N − 1) <
α2

2
x(i−1)/N

The last inequality holds since N > 3α−2 log x, thus 1
N
< α2

3 log x
. Hence

x1/N < x
α2

3 log x = elog(x
α2

3 log x) = e
α2

3 log x
log x = e

α2

3 ,

therefore we have

x1/N − 1 < e
α2

3 − 1 ≈ α2

3
<
α2

2
.

Thus, ∫
Si

du

u
>

ki
x(i−1)/N

(1− α2).

Then by (3.41) we have∑
i

∫
Si

du

u
>
∑
i

ki
x(i−1)/N

(1− α2) > (1− α2)
(3

11
− ε

10

)
>

3

11
− ε

9
,

since limx→∞ α = limx→∞ 1/ log log x = 0. This concludes the proof of Claim 3, and hence
Theorem 3.2 holds.

Appendix A

Computational cost

We said that a polynomial f has order g or f(x) = O(g(x)) if ∃C > 0 and x0 > 0 such that for
every x ≥ x0, |f(x)| ≤ C|g(x)| .

Repeated Squaring method:

The goal is to compute nk (mod r), where k ∈ N∗. For this let’s write nk as a product of
powers, which base is n, and the exponent is a power of 2.
For example if k = 23 = 1 + 2 + 4 + 16, thus nk = nn2n4n16, and we just have to compute in
this case 4 element to the power 2, for a total of 7 operations and not 22.
In general we can see that we have to do O(log2 k) squares modulo r, each one has O(log2

2 r).
Hence, the total cost of nk (mod r) is O(log2 k log2

2 r)

Let f be a polynomial in Z/nZ[x] of degree r−1. Let’s prove that the cost of f(x)n (mod xr−
1, n) is O(r2 log3

2 n): using the same idea of the repeated squaring method, we have to know
the binary representation of n, and the problem is reduced to multiply at most (log2 n) times
f(x)2 (mod xr − 1, n).
Now let’s show that the cost of computing this square is O(r2log2

2n). In this case the cost of
f(x)n(mod xr − 1, n) will be O(r2 log3

2 n). For this we have to:

• compute the square of f(x)(mod n): this means to do O(r2) products (mod n) therefore
the cost is O(r2log2

2n)

• reduce it (mod xr − 1): Let h(x) = f 2(x)(mod n) =
∑2r−2

i=0 hix
i with hi (mod n).

h(x) = h0x
0 + h1x

1 + · · ·+ hr−1x
r−1 + hrx

r + hr+1x
r+1 + · · ·+ h2r−2x

2r−2

To reduce (mod xr − 1) we need O(r) sums, each one of cost O(log2 n), in fact:

h(x) = (
r−2∑
i=0

(hi + hi+rx
i)) + hr−1x

r−1 mod (xr−1, n).

Therefore this second step costs O(r log2 n). Hence the total cost of f(x)2 (mod xr − 1, n) is
in fact O(r2 log2 n).

70 V. Gauthier - On some polynomial-time primality algorithms

We have now prove the cost assumed in table 2.1 at the end of Chapter 2. Now let’s see
the cost we used in Chapter 3.

Using fast Fourier transform (FFT):

The notation Õ(X) means a bound c1X(logX)c2 for suitable positive constants c1, c2.
In chapter 9.5 of [3] we can see that the bit complexity of multiply two size-N numbers using
FFT is

O(logN(log logN)(log log logN))

By chapter 9.6 of [3] we know that multiplying two degree-D polynomials in Z/mZ[x], that is,
all coefficients are reduced mod m is

O(M(D log(Dm2))), (A.1)

where M(n) is the bit complexity for multiplying two integers of n bits each. With the FFT
we have:

O(logm(log logm)(log log logm)(D log(Dm2))),

using the Õ notation, we have that the total cost is

Õ(D log(m)(logD + logm)). (A.2)

Where D is much smaller than m we have that the bit complexity for multiplying two
polynomials of degree D in Z/mZ is

Õ(D(logm)2). (A.3)

We know that the inverse of a polynomial of degree D in Z/mZ is Õ(D(logm)2), and that
the computational cost to perform Euclid’s algorithm on h(x) and g(x), two polynomial of

degree D on Z/mZ is Õ(D(logm)3).

References

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics, 160:781–
793, 2004.

[2] T. Apostol. Introduction to Analytic Number Theory. UTM. Springer Verlag, 1975.

[3] R. Crandall and C. Pomerance. Prime numbers. A computational perspective. Springer-
Verlag, Berlin, Heidelberg, New York, second edition, 2005.

[4] H. Davenport. Multiplicative number theory. Spring-Verlag, New-York-Berlin, second
edition, 1980.

[5] J. M. Deshouillers and H. Iwaniec. Kloosterman sums and Fourier coefficients of cusp
forms. Invent. Math., 70:219–288, 1982/83.

[6] J. B. Friedlander. Shifted primes without large prime factors. Number theory and appli-
cations (R.A. Mollin, ed.), Kluwer Academic Publisher, Dodrecht, pages 393–401, 1989.

[7] A. Granville. It is easy to determine whether a given integer is prime. Bulletin of the
American Mathematical Society, 42:3–38, 2004.

[8] A. Granville and C. Pomerance. Two contradictory conjectures concerning Carmichael
numbers. Mathematics of Computation, 71:873–881, 2002.

[9] Jr. H.W. Lenstra and C. Pomerance. Primality testing with gaussian periods. 2005.

[10] H.L. Montgomery and R.C. Vaughan. The large sieve. Mathematika, 20:119–134, 1973.

[11] C. Pomerance, J.L. Selfridge, and S.S. Wagstaff. “The pseudoprimes to 25 · 109”. Math.
Comp., 35:1003–1026, 1980.

[12] C. Pomerance and I.E. Shparlinski. Smooth orders and cryptographic applications. Algo-
rithmic Number Theory, Proceeding of ANTS-V, Sydney,Australia, 2002.

[13] J. von zur Gathen and J. Gerhard. Modern computer algebra. 1999.

