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Introduction

In 1801 Gauss said: “The problem of distinguishing prime numbers from composite numbers is
one of the most fundamental and important in arithmetic. It has remained as a central question
in our subject from ancient times to this day, and yet still fascinates and frustrates us all 17
This problem has been studied by a lot of great mathematicians and it was not until the last
century, that its importance was recognized in applied mathematics. This because of computer’s
science improvement and its application in cryptography.

We say that an algorithm is a deterministic algorithm if it will be correctly terminated. For
example, a primality test is deterministic, if for every integer n, given as an input, the output
will be prime if n is prime and composite otherwise. We say that an algorithm is a polynomial
time one, if there exists a polynomial g, such that, if the input has m digits, the algorithm
stops after O(g(m)) elementary operation. From the definition of primality, d(n) = 2, a simple
algorithm to check this property is to see whether any integer d between 2 and /n actually
divides n. The problem of this test is that if n is very big, the number of elementary operations,
would be very big, and we should wait for a long period of time to have a reply. The main
idea is to find a certain P such that: n is prime < n has the property P, and such that the
condition of P can be verified in a “short” time.

The goal of this work is to introduce the main polynomial time primality algorithm. In the
first chapter we introduce the Fermat pseudoprimes and the Miller-Rabin primality test which
computational cost is O(log® n) bit operations and is deterministic if the Extended Riemann
Hypothesis (ERH) is true. Strictly speaking, this is not a primality test but a “compositeness
test”, since it without assuming ERH, does not prove the primality of a number. In the second

part of the first chapter we introduce the H. Lenstra version of the Adleman-Pomerance-Rumely

Hrom Article 329 of Gauss’s Disquisitiones Arithmeticae (1801)



primality test, based on Gauss sums. Its running time is bounded by (log n)¢!°81°8log™ for some
positive constant c. This primality test is deterministic but it only has an “almost” polynomial
time. The main reference for this first chapter is Crandall-Pomerance [3].

In August 2002, Agrawal, Kayal and Saxena [1] presented the first deterministic, polynomial-
time primality test, called AKS. Even if this primality test is not used in practice, it is very
important from a theoretical point of view. In the second chapter we introduce the AKS
algorithm and calculate its computational cost. The computational cost of this algorithm is
O(log?/?"*n). The main references for this second chapter are [1] and [7].

In the last chapter we introduce another primality test, based on the AKS one. This version
done by Lenstra and Pomerance is a deterministic and polynomial test with a computational
cost O((logn)®) (where the notation @(X) means a bound ¢;X (log X)¢ for suitable positive
constants c1, ¢2). We also compute its computational cost, and see the main differences between
the original AKS primality test and the Lenstra-Pomerance algorithm. The main reference for

this last chapter is [9]
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Chapter 1

Two primality tests

1.1 Pseudoprimes

Let P an easily checkable arithmetic property such that: n is prime = n has the property P.
If an integer n has the property P we say that n is P — pseudoprime. If n doesn’t check P we
can conclude that n is composite, otherwise, we are not able to conclude. The main idea is to
find such a property (easy to verify) such that the number of pseudoprimes is rare compared
to the number of primes, and so if n checks P, we can say that n has a big probability to be a
prime.

1.1.1 Fermat pseudoprimes and Carmichael numbers

Theorem 1.1 (Fermat’s little theorem). If n is prime, then for any integer a, we have
a” = a(mod n). (1.1)
Definition 1.1 (Fermat pseudoprimes). An odd composite number n, for which
a” = a(mod n)

are called pseudoprimes in base a. And they are denoted by psp(a).

For example, n = 91 = 7 x 13 is psp(3) and 105 =3 x 5 x 7 is psp(13).

Definition 1.2. Let x € R, x > 0. We define P,(z) to be the number of psp(a) not exceeding

x.
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x| P(z) | 7(a) 20

10° |3 168 (1.79)(1072)
10* |22 1229 (1.79)(1072)
10° |78 9592 (8.13)(107%)
105 | 245 78498 (3.12)(107%)
107 | 750 664579 (1.12)(107%)
10% [ 2057 | 5761455 (3.57)(107%)
107 [ 5597 | 50847534 (1.1)(107%)
1010 [ 14884 | 455052511 (3.27)(1079)
10T [ 38975 | 4118054813 | (9.46)(1079)
10" | 101629 | 37607912018 | (2.70)(107)
1013 | 264239 | 346065536839 (7 64)(10‘7)

Table 1.1: Cardinality of the psp(2) set below x

This table (based on [11] and [8]), let us make the hypothesis that the number of pseudo-
primes in base 2 are significantly smaller than 7(x). In fact in Crandall-Pomerance [3] we have

the following theorem.

Theorem 1.2. For each fized integer a > 2, the number of Fermat pseudoprimes in base a that
are less or equal to x is o(m(x)) as x — oo. That is, Fermat pseudoprimes are rare compared

with primes.

Hence if for a pair n,a (where 1 < a < n — 1) the equation (1.1) holds, there is a big
probability that n is prime; in fact we call it a “probable prime base a”, and we denote it

prp(a). We also have that:
Theorem 1.3. For each integer a > 2 there are infinitely many Fermat pseudoprimes base a.

Now let us see what’s happen for the integer who are pseudoprimes in more than one base,
for example 341 is a pseudoprime in base 2 but not in base 3. Testing the pseudoprimality in
different basis, we are going to have a bigger probability to be a prime, this idea motivate the

following definition:

Definition 1.3 (Carmichael number). A composite integer n who is psp(a) for every integer

a < n such that (a,n) =1 is called a Carmichael number.

In 1899 Korselt proved the following result, but he did not exhibit an example of such

integer n.
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Theorem 1.4 (Korselt criterion). An integer n is a Carmichael number if and only if n is

positive, composite, squarefree, and for each prime p dividing n we have p — 1 dividing n — 1.

In 1910 Robert Daniel Carmichael, gave the smallest example 561 = 3 x 11 x 17, and
from that moment on these numbers are called Carmichael numbers. Other examples are:
1105 =5 x 13 x 17, 1729 =7 x 13 x 19, 2465 = 5 x 17 x 29.

When a number is known to be pseudoprime to several bases, it has more chances to be a
Carmichael number, in fact in [11] the result of Pomerance, Selfridge and Wagstaff show us that
while only 10% of the psp(2) is below 25 x 10° are Carmichael numbers, 89% of pseudoprimes
in bases 2, 3, 5 and 7 simultaneously are Carmichael numbers. Let’s see if the Carmichael

numbers are finite, in which case we will have an effective primality test.
Definition 1.4. Let C(z) be the number of Carmichael numbers not exceeding x.

In 1956 P. Erdos had given an heuristic argument that not only there are infinitely many
Carmichael numbers, but there are not as rare as one might expect. He conjectured that for

any fixed € > 0, there is a number z(¢) such that C(x) > '~

Theorem 1.5. [Harman] There are infinitely many Carmichael numbers. In particular, for x

sufficiently large, C'(z) > %33

The “sufficiently large” in theorem 1.5 has not been calculated, but probably it is the 96th
Carmichael number, 8719309. Now we can ask if we have a “Carmichael number theorem” ana-
log to the “primes number theorem” that give us an asymptotic formula for C'(z). Nevertheless
there is not even a conjecture of what this formula might be. However, there is a somewhat

weaker conjecture.

Conjecture 1.1 (Erdds, Pomerance). The number C(z) of Carmichael numbers not exceeding

T satisfies

C(I) — xl—(l—l—o(l)) log log log =/ log log as T — 00

The Fermat’s theorem is a first criterion of selection in primality testing, nevertheless we
saw that is not so strong. We are going to introduce now an other criterion based on the same

idea but this one will allow us to have a better primality test.
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1.1.2 Strong pseudoprimes and Miller-Rabin test

Let p be an odd prime number, and a such that (a,p) = 1, then by Fermat’s little theorem we

have a?~! = 1(mod p). In particular, if p = 2m + 1 we have that:
a® —1=(a™—1)(a™+ 1) = 0(mod p).

As p is prime, it must divide one of the two factors. It doesn’t divide both because, in this case,
it will divide the difference (a™ + 1) — (a™ — 1) = 2 and, since p is odd, this is not possible.
Thus ™ = +1(mod p).

Now let take the decomposition 25t 4 1 of p and consider
' —1=(a" = 1)(a" + 1)(a®+1)..(a>" "+ 1),
we can do a similar reasoning and we found the following theorem.

Theorem 1.6 (Miller-Rabin). Suppose that n is an odd prime and n— 1 = 2°t, where t is odd.

If a is not divisible by n then
{ either a* = (1 mod n)

i . . 1.2
or a®*' = —1(mod n) for some i with 0 <i < s— 1. (1.2)
Definition 1.5 (Strong pseudoprime). We say that n is a strong pseudoprime in base a if n

is an odd composite number, n — 1 = 2°t, with t odd, and (1.2) holds. We denote this property
as spsp(a).

Lets consider some examples: 2047 = 23 x 89, 121 = 112 and 781 = 11 x 71, are strong
pseudoprimes in base 2, 3 and 5, respectively. The least strong pseudoprime simultaneously
on bases 2, 3 and 5 is 2315031751 = 151 x 751 x 28351, it is also a Carmichael number, and
strong pseudoprime in base 7. Nevertheless the cardinality of strong pseudoprimes in various
bases is “small”, in [11] we can see that 2315031751 is the only number with this property less
than 25 x 10°.

In analogy with the probably prime numbers, we can define a “strong probably prime base a”

(i.e. the natural numbers holding the equation (1.2)) and we denote it by sprp(a).

Algorithm 1.1 (Strong probable prime test). Input: An odd number n > 3, represented as
n =14 2%, with t odd and an integer a with 1 < a < n — 1.

Output: The algorithm returns either “n is sprp(a)” or “n is composite”
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1. [Odd part of n — 1] let b=a'mod n; if (b=1 orb=n—1) return “n is sprp(a)”;

2. [Power of 2 inn — 1]
for (j e[l,s =1
b=b’mod n;
if (b=n—1) return “n is sprp(a)”;
}

return ‘n is composite”;

Definition 1.6. Let S(z) = {a(mod n) : n is a strong pseudoprime base a} and let
S(x) = #S(x).

Theorem 1.7. For each odd composite integer n > 9 we have S(n) < 1¢(n), where ¢(n) is

Euler’s function evaluated at n.
See the prove of this theorem in [3].

Definition 1.7. Let n an odd composite number, we will call “witness” a base for which n is

not a strong pseudoprime.

Theorem 1.7 implies that at least 3/4 of all integers in [1,n — 1] are witness for n, when n
is an odd composite number. By the algorithm 1.1 we can test if n is spsp(a), so we can write
an algorithm who decide if the given number «a is a witness for n. The following algorithm is
often referred as “the Miller-Rabin test”, it is a probabilistic test based in the algorithm 1.1

but with a random base a.

Algorithm 1.2 (Miller-Rabin Test). Input: An odd number n > 3.

Output: a witness for n, if a is a witness return (a, YES), otherwise (a, NO);

1. [Choose a possible witness] Choose random by an integer a € [2,n — 2|; using algorithm

1.1 we decide whether n is strong probable prime base a;

2. [declaration] if (n is a sprp(a)) return (a,NO);
return (a,YES);
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By theorem 1.7, the probability that the Algorithm fails to produce a witness for n is < 1/4,
so if we repeat the algorithm 1.2 k independent times, the probability for it to fails is < 1/4%.
If the output of the k repetition of this algorithm doesn’t give a witness, we can only make a

conjecture that n is prime, with a probability bigger than 1 — 1/4F.

Now, let W (n) be the least of the witnesses for n, we want to know if it exists a bound
B € N not so large such that for all odd composite number N we have W(n) < B. In this case,
we can make a primality test, repeating algorithm 1.1 for all 2 < a < B, and we will have a
polynomial, deterministic test. Unfortunately, such B doesn’t exist. In 1994 Alford, Granville

and Pomerance shown that:
Theorem 1.8. There are infinitely many odd composite numbers n with

W(TL) > (]-Og n)l/(3 log log log n) .

1/(35logloglog x

In fact, the number of such composite numbers n up to x is at least ) when x is

sufficiently large.

Nevertheless Bach, based on Miller’s work, proved that there exist a slowly growing function

of n which is always greater than W (n) if the Extended Riemann Hypothesis (ERH) is true:
Theorem 1.9. Assuming the ERH, W (n) < 2log®n for all odd composite numbers n.

For the proof, see [3].
Now we are going to introduce the Miller primality test, that is a polynomial deterministic

test if the Riemann hypothesis holds, in this case we say that the algorithm is conditioned.

Algorithm 1.3 (Miller primality test). Input: an odd number n > 1.
Output: The answer to the question: is n prime? The output is “NO” if n is composite, and

“YES” if either n is prime or the extended Riemann hypothesis is false.
1. [Witness bound | W= min{|2log>n,n —1]};
2. [Strong probable prime test] for (2 < a < W) { By algorithm 1.1 decide whether n is

sprp(a), if it is return NO; }
return YES;
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Using log instead of log, to simplify the equation, we have that the running time of the
algorithm 1.1 is O(log®n) and as we have to repeat it at most log” n, the computational cost

of this primality test is O(log® n) bit operations.

1.2 Gauss sums primality test

In this section, we are going to introduce the Adleman-Pomerance-Rumely primality test, based
on Gauss sums, whose running time is bounded by (logn)cl°el°glen for some positive constant

c. We are going to introduce the H. Lenstra version which is less practical, but simpler.

Definition 1.8 (Dirichlet Character to the modulus q). Suppose q a positive integer and x is

a function from the integers to the complexr numbers such that
1. For all integers m,n, x(mn) = x(m)x(n).
2. x 1s pertodic modulo q.
3. x(n) =0 if and only if gcd(n,q) > 1.

Let ¢ be a prime with primitive root g. If ¢ is a complex number with (¢~ = 1, then we
can build a character y to the modulus ¢ via x(¢*) = ¢* for every integer k (and of course,

x(m) = 0 if m is a multiple of ¢).

Definition 1.9. Let ¢, = €™/ (a primitive n-th oot of 1), we define 7(x) the Gauss sum by

q—1
() = ) x(m)¢"
m=1
We have that B B
(0 = D x(g")¢d =Y e
k=1 k=1

As 7(x) is a character modulo ¢, we know that his order is a divisor of ¢ — 1. Now suppose
that p is a prime factor of ¢ — 1. We wish to build such a character x,, modulus ¢ and of order
p. Suppose g = g, is the least positive root for ¢, we can build such a character as follows:

Xp,q(g(]; )= C;j for every integer k.
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Xp,q 18 in fact defined to the modulus ¢ since ng =1, and it has order p since x,,(m)? =1 for

every nonzero residue mmod ¢ and x,,(g,) # 1. Let

q—1 q—1
m k m k mod
G(p,(]) qu E qu q = § g;}f gq = E C;]f od ngq q~
k=1 k=1

The Gauss sum is an element of the ring Z [(y, ¢;]. The elements of this ring can be expressed
uniquely as sums ) 37~ Zk 0 aj,kggg}f where each a;, € Z. Note that if « is in Z [}, (,], then the
same happens for its complex conjugate &. We say that two element of this ring are congruent
modulo n if the coefficients are congruent modulo n. It’s important to note that (,,(, are

treated as symbols.
Lemma 1.1. If p,q are primes with p|q — 1, then G(p,q)G(p,q) = q.

For the proof of this lemma see [3]. The following result can be viewed as an analogue to

Fermat’s little theorem we have described in the previous section.
Lemma 1.2. Suppose p,q,n are primes with p|qg — 1 and ged(pg,n) = 1. Then

G(p, @)™ ™" = xpg(n)(mod n).

Proof. Let x = Xp,q- Since n is prime, by the multinomial theorem we have that

! nP— 1 p—1
6.0y = (X xmy) " Zx P mod )
m=1

By Fermat’s little theorem, n? — 1 = 1(mod p), so that x(m)™ " = x(m). Letting n~"' denote

a multiplicative inverse of n modulo ¢, we have

q—1 q—1

np~1 mn 1 mn 1 (p— _ mnP—1
D oxm)" ZX =) x( )X (mn G
m=1 m=1

As x(n?) = x(n)? = 1, and mnP~! runs over a residue system (mod ¢) as m does, we have

—

q—

D xm)" T = x(n) > x(mrP T = x(n)G(p, q).

1

3
[

Hence we have that
G(p, )" =x(n)G(p,q)(mod n).

Letting ¢! be a multiplicative inverse of ¢ modulo n and multiplying this last displayed equation

by ¢ *G(p,q) (p,q), by lemma 1.1 we have the desired result. O]
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In some cases the congruence can be replaced by an equality, as we can see in the following

lemma.

Lemma 1.3. If m, n are natural numbers with m not divisible by n and ¢, = ¢* (mod n),

then ¢, = C%.
For the proof of this lemma see [3].

Definition 1.10. Suppose p, q are distinct primes. If o € Z[(,, (] \ {0}, where

p—2 q—2

o = ai,k‘Cpq7

1=0 k=0

denote by c(a) the greatest common divisor of the coefficients a; . Further, let ¢(0) = 0.
Let’s see now the deterministic Gauss sum primality test.

Algorithm 1.4 (Gauss sums primality test). Input: n € Z.
Output: The algorithm decide whether n is prime or composite, returning “n is prime” or “n

1s composite” in the appropriate case.
1. [ Initialize | I = —2;

2. [Preparation] I =1 +4;
Find the prime factors of I by trial division, if I is not squarefree, go to [Preparation);
Let F = H(q_l)u q, if F < n go to [Preparation|; note that F is squarefree and F > \/n;
If n is a prime factor of I - I, return “n is prime” ;
If ged(n, I - F) > 1, return “n is composite”;

For (prime q|F') find the least positive root g, for q.

3. [Probable prime computation |
For (prime p|I) factor n?~' — 1 = p*ru,, where p does not divide u,;
For (primes p,q with p|I,q|F,plqg —1)
{ Find the first positive integer w(p,q) < s, with

G(p, q)pw@’q)up = Cg(mod n) for some integer j,

If no such number is found, return “n is composite” .
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4. [Maximal order search]

For (prime p|I) set w(p) equal to the mazimum of w(p,q) over all primes q| fwith p|g—1,
and set qo(p) equal to the least such prime q with w(p) = w(p,q);

For (primes p,q with p|I, p|F, plg — 1) find an integer l(p,q) € [0,p — 1] with
G,y = G (mod )

. [Coprime check]

For (prime p with p|I)

{H = G(p.ao(p))”"" " mod n;

for (0<j <p—1){

if(ged(n, c(H — C{,)) > 1) (with notation from definition 1.10) return “n is composite”;
h

¥

. [Diwvisor search

1(2)=0;
For (odd prime q|F') use the Chinese Remainder Theorem to build an integer l(q) with

l(q) = U(p,q)(mod p) for each prime p|lq — 1.
Use the Chinese remainder theorem to construct an integer | with

l= gé(q) (mod q) for each prime q|F

For (i <j <), if mod F is a nontrivial factor of n, return “n is composite”;

Return “n is prime”;

Correctness :

Clearly the declaration of prime and composite in step [Preparation] is correct. By the lemma

1.2 the declaration in step [Probable prime computation | is also true. In step [Coprime check]

if the ged is not 1, it is clear that n is composite, so algorithm’s reply is correct. For sure in

step [Divisor search], the declaration of composite is true. What remains to prove is: if n is
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composite, it has to stop in one of these steps, if not it will be declared prime at the end of the
algorithm.
To prove this, suppose n is a composite number with least prime factor r, and suppose n has
survived steps 1-5. We will need two claims:
Claim 1:

p“@|(rP~1 — 1) for each prime p|[. (1.3)
For each prime p|I, (1.3) implies there are integers a,, b, with

p—1 __
T l_ap

pw(—P)up = E’ b, = 1(mod p). (1.4)
Let a be such that ¢ = a,(mod p) for each prime p|/.
Claim 2:
r ={*(mod F). (1.5)

Thus, if n is composite, and it has survived steps 1-5, since F' > \/n > r and F # r, we have
that 7 is equal to the least positive residue of {*(mod F'). So that the proper factor r of n will
be discovered in step [Divisor search] and the algorithm will declare n composite as desired.
We can conclude now that the algorithm is deterministic. Let’s now prove the two claims:

Proof of claim 1: is clear that (1.3) is true if w(p) = 1, so assume w(p) > 2. Suppose some

I(p,q) # 0. Then by lemma 1.3: G(p,q)?" """ = Chp) I(mod n), and the same is true

mod 7. Let h the multiplicative order of G(p,q) modulo 7, so that p*®+!|A. But lemma 1.2
implies that h|p(r?~' —1), so that p“®|r?~! — 1, as claimed. Now suppose that each I(p, q) = 0.

Then from the step [Coprime check] we have:
G(p, CJo)pw(p)“” = 1(mod r), G(p, QO)pw(pH“P * C]Z(mod r)

for all j. Moreover, letting h be the multiplicative order of G(p, ¢y) modulo 7, we have p*®)|h.
Also, since G(p,q)™ = (g(mod r) for some integers m,j we get Cg = 1. Lemma 1.2 then
implies that G(p, ¢o)™ = 1(mod r) so that h|rP~! — 1 and p®®)|h. This complete the proof of

claim 1.

Proof of claim 2: By definition of x,, and | we have

Gp, " = (100 = (9 = x4 () (mod 1)
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for every pair of primes p, ¢ with ¢|F,p|g — 1. Thus, from (1.4) and Lemma 1.2

rp—1_ WD)y an a a
Xpa(1) = Xpa(1)" = G(p, Q)( Do — Gp,@)" " = Xpq(1)™ = Xpq(l*)(mod 7).

Hence by Lemma 1.3 we have that x, () = xp4(%).
The product of characters x,, for p prime, and p|I and p|¢ — 1, is a character x, of order
Hp‘q_lp = q— 1, as ¢ — 1|1 and I is squarefree. Bur a character mod ¢ of order ¢ — 1 is
one-to-one on Z/qZ, so as
Xq(T) = H Xpya(T) = H Xpg (1Y) = xq(1%)-
plg—1 plg—1

This way we have that » = [*(mod ¢). Since this hold for each prime ¢|F and F' is square-

free, it follows that (1.5) holds.

Computational cost:
The running time is bounded by a fixed power of I, by the following result from Crandall-

Pomerance [3]

Theorem 1.10. Let I(x) be the least positive squarefree integer I such that the product of
the primes p with p — 1|I exceeds x. Then there is a positive number ¢ such that I(x) <

In(z)closlogloee for gl x> 16.

The reason for assuming = > 16 is to ensure that the triple-logarithm is positive.

Jelogloglogn for some positive constant c. Since

Thus the running time is bounded by (logn
the triple log function grows so slowly, this running-time bound is “almost” logo(l), and so is

“almost” polynomial time.

With some extra work we can extend the Gauss sums primality test to the case where [ is
not assumed squarefree. This extra degree of freedom allows for a faster test. There are several
ways to improve the running time of this test in practice, but the main one is to use Jacobi
sums instead of Gauss sums. In fact the Gauss sums G(p, ¢q) are in the ring Z[(,, (,]. Doing
arithmetic in this ring modulo n requires dealing with vectors with (p — 1)(¢ — 1) coordinates,

each one being a residue modulo n. Let’s define the Jacobi sum J(p, q) as follows
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J0.0) = 3 xpa(m(m — 1)),

This sum lies in the much smaller ring Z[(,|, and so doing arithmetic with this sums is
much faster that with the Gauss ones.

We have seen in this first chapter two different primality tests used in practice. The first
one is conditioned to the ERH, and the second one is deterministic, but its time is “almost”
polynomial. In August 2002, Agrawal, Kayal and Saxena [1] presented the first deterministic,
polynomial-time primality test, called AKS. Even if this primality test is not used in practice,
it is very important from a theoretical point of view. In the following chapter we are going to

introduce this primality test and calculate its computational cost.






Chapter 2

The Agrawal-Kayal-Saxena primality
test

In this chapter we will use log(z) to denote logarithm in base 2, to simplify the equations.
We saw in the introduction that the main idea is to find a certain property P of the prime

numbers such that:
n is prime < n has the property P.

And such that the condition of P can be verified in a “short” time. The AKS is based on the

following theorem:
Theorem 2.1. An integer n > 2 is prime < (x 4+ a)” = 2" + a (mod n).

Proof. Since (z+a)" — (2" +a) = 32 icp (?)Ija”_j, we have that (x+a)” = 2" +a (mod n)
if and only if n divides (?) a7 forall j=1,...,n— 1.

If n = p is prime, then p appears at the numerator of (?) but it is larger, and so does not divide
any term in the denominator. Hence p divides (?) for j=1,...,p—1, and so we have that the
congruence holds.

Now if n is composite, let p be a prime dividing n, and « such that p® is the largest power of

p dividing n. As

<n) ~nn—1)(n-2)...(n—(p—1))
p plp—1)...1 ’
is the largest power of p dividing (2), therefore n 1 (Z) and the congruence

doesn’t hold. n

we see that p~!
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The problem is that we have to compute (x + a)”, which can’t be done in a polynomial
time, one solution can be compute module some smaller polynomial as well as (mod n), so

that neither the coefficients or the degree get larger. For example:
(x+a)"=2"+a (mod n,z" — 1) Va € N. (2.1)

We have to check now if (2.1) is equivalent to the primality of n and which conditions are

needed for r.

Theorem 2.2 (AKS). For a given integer n > 2, let r be a positive integer such that r < n

and d := ord(nmod r) > log®n. Then n is prime <
1. n is not a perfect power,
2. n does not have any prime factor < r,
3. (x+a)"=12"+a mod (n,z" —1) for each integer a, 1 < a < \/rlogn.

Proof. (=) If n is a prime number, conditions 1. and 2. are trivial, and by theorem 2.1 the
condition 3. is verified.
(<) suppose 1. 2. and 3. and let show by contradiction that n is prime: suppose that n is

composite, p is a prime divisor of n and A = /rlogn. By the condition 3. we have
(x+a)" =2"+a mod (p,z" — 1) (2.2)

for each integer a, 1 < a < |A]. We can factor 2" — 1 into irreducible polynomials in Z[x],
as [, Pa(x), where ®4(z) is the d — th cyclotomic polynomial, whose roots are the primitive
d—th roots of unity. Each ®,(z) is irreducible in Z[z], but may not be irreducible in (Z/pZ)|x],
so let h(z) be an irreducible factor of ®,(z)(mod p). Then 2.2 implies that

(x +a)" =2" +a mod (p,h(z)) (2.3)

for each integer a, 1 < a < |A], since (p,h(x)) divides (p,z" — 1). The congruence classes

mod (p, h(z)) can be viewed as the elements of the ring F := Z[z]/(p, h(z)), which is isomorphic
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to the field of p™ elements (where m is the degree of h). In particular the non-zero element of
F form a cyclic group of order p™ — 1, moreover, F contains x, an element or order r, thus r
divides p™ — 1. Since F is isomorphic to a field, the congruences 2.3 are much more easier to
work with than 2.2, where the congruence do not correspond to a field. Let H the elements

mod (p, 2" — 1) generated multiplicatively by
{(w+a) :0<a<|A]}

and G the cyclic subgroup of ' (i.e mod (p, h(z))) generated multiplicatively by
{(x4+a) :0<a < [Al}

In other words G is the reduction of H mod(p, h(z)). All the elements of G are non-zero, in
factif 2" +a =01inF, then 2" +a = (z+a)” = 0in F by (2.3), so that 2" = —a = z in F, which
would imply that n = 1(modr) and so d = 1, contradicting the hypothesis that d > log®n.
Note that an element g € H can be written as g(z) = [[y<,< 4 (z + @)™, then by (2.2)

g(x)" = H((m +a)") = H(:U" +a)® = g(z") mod (p,z" — 1).

a a

Let define
S ={keN:gz") =g(x) mod (p,2" —1) Vge H}

note that n € S by the condition 3. and that p € S by Theorem 2.1.
Our aim now is to give upper and lower bounds on the size of G to establish a contradiction,

and so n must be prime. Let’s first found an upper bound of |G|:
Lemma 2.1. Ifa, b€ S, then ab € S.
Proof. If g(x) € H, then g(z)’ = g(x*) mod (p, 2" — 1), and so, replacing x by z%, we get
g((z)?) = g(z*)® mod (p, (z%)" — 1), and therefore mod (p, 2" — 1) since 2" — 1 divides 2% — 1.
Therefore

g9(2)™ = (9(2)*)" = 9((z*)") = g((2")") = g(**) mod (p, 2" — 1)

as desired. ]

Lemma 2.2. Ifa, b€ S, and a = b(modr), then a =b mod |G|.
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Proof. For any g(x) € Z[x] we have that u — v divides g(u) — g(v). Therefore 2" — 1 divides
227% — 1, which divides 2% — 2°, which divides g(z%) — g(«%); and so we deduce that if g(z) € H,
then g(x)* = g(2%) = g(2®) = g(z)® mod (p, 2" — 1). Thus if g(x) € G, then g(x)** =1 in F;

but G is a cyclic group, so taking g to be a generator of G we deduce that |G| divides a —b. [
Lemma 2.3. n/p € S.

Proof. Suppose that a € S and b = a mod (n? — 1) (where d = ord(nmod r)). Let show that
be S: as n? = 1 modr, we have that 2™ = z mod (z" — 1). Then 2" — 1|(z™ — z), which
divides 2’ — 2, which divides g(z%) — g(z%) for any g(z) € Z[z]. If g(z) € H, then g(z)* =
g(x"d) mod (p,z" — 1) by Lemma 2.1 since n € S, and g(az”d) = g(z) mod (p,z" — 1)(as 2" — 1
divides 2™ — ) so that g(z)" = g(x) mod (p, 2" — 1). But then g(z)? = g(x)* mod (p,z" — 1)

since n% — 1 divides b — a. Therefore

g(2") = g(2") = g(2)" = g(2)" mod (p,2" — 1)

since a € S, which implies that b € S. Therefore we have that a € S and b = a mod (n? — 1)
implies b € S.

Now let b = n/p and a = np?™ D=1 o that a € S by Lemma 2.1 since p,n € S. And
b=amod (n®—1) thusb=n/p € S. O

Let now R be the subgroup of (Z/rZ)* generated by n and p. Since n is not a power of p,

the integer n'p’ with 4,7 > 0 are distinct, and

{n'p’,0 <4, < VIR[} > |R|

and so two must be congruent modr, say n'p’ = n’p’ mod r. By Lemma 2.1 these integers are

both in S, and by Lemma 2.2 their difference is divisible by |G|, and therefore
6] < n'p’ —n'p’| < (np)VI =1 <2V,

Note that n'p’ — nfp”’ is non-zero since n is neither a prime nor a perfect power. By Lemma

2.3 we have n/p € S, replacing n by n/p in the argument above we get
G| < VIR 1. (2.4)

Let’s found now the lower bound of |G|:
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Lemma 2.4. Suppose that f(x),g9(x) € Z[x] with f(z) = g(x) mod (p, h(x)) and that the
reduction of f and g in F both belong to G. If f and g both have degree < |R|, then f(z) =

g(r) (mod p).

Proof. Consider A(y) := f(y) — g(y) € Z[y] as reduced in F. If k € S, then

A(z*) = f(a") = g(a") = f(2)" = g(x)" =0 mod (p, h(2)).

As z has order r in F, we have that {z* : k € R} are all distinct roots of A(y) mod (p, h(x)).
Now, A(y) has degree < |R| (since f and g both have degree < |R|), but has > |R| distinct

roots mod(p, h(z)), and so A(y) = 0(modp) since its coefficients are independent of . O

By definition R contains all the elements generated by n mod r, and so R is at least as
large as d, the order of n mod r, which is > log?n by assumption. Therefore taking B :=
b/@log nJ we have A = /rlog n > B (since |R| < r), and |R| > B. We can see that for
every proper subset 7" of {0,1,2,..., B}, the product [[,.,(z + a) give distinct elements of
G. In fact if there exist two proper subset 73,73 of {0,1,2,..., B} such that [] ., (z +a) =
[Tyer, (* +0) in G, thus by the lemma 2.4 this two product will be identical also in Z,[z], and
so there will exist a pair a # b such that pla —b. As a,b < B < /rlog n, we have that
p < /rlog n. But by the condition 2. we know that p > r, hence r < log? n, which contradict
the fact that d > logZ n. And so as the number un subset of a finite set U is 2!Vl — 1 and

n = 2'°8" we have:

G > 28+ 1 = ol VIFsn] 1 _q o VIRIeen| _y o VIRI (2.5)

which contradicts 2.4, hence the hypothesis that n is composite is false, and this completes the

proof of the theorem of AKS. O]

This theorem is based in the existence of this r, which exists by the following lemma:

Lemma 2.5. Let n > 4, there is at least an integer r < ﬂog‘r’ nw such that d = ord(nmod r) >

log®n.

To prove Lemma 2.5 we need this result:
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Lemma 2.6 (Nair). Let m € N and m > 7. Then lem{1,...,m} > 2™

Proof. Of Lemma 2.5. Note that as n > 4, ﬂog5 nw > 32, thus we can apply Nair’s lemma. Let
V= ’—log‘:’ n-‘,
I‘log2 nJ
V=_{se{l,....V}:stnlsVl T (' —1)}

i=1
(0] 271 .

and 7, = nllosV] Hitilg J (n* —1)

By contradiction, suppose V = (). In this case Vs € {1,...,V}, s | m, thus lem{1,...,V}

divide ;. But

O, 2”
m < n[log Vj—l-zil-:llg J i nI_logVJ-l—(l/Q) Llog2 nJ(Llog2 nJ—i—l) < nLlog“ nJ < 2V

since n s "] = (2Ll n]) [loa®n|  g[lea™n] _ oV,
Hence lem{1,...,V} < 2V but, by Lemma 2.6, we get lem{1,...,V} > 2" thus we have a
contradiction and V is not empty.

Let » = min V and ¢ a prime divisor of ». We have that

max{a € N: ¢%|r} < |logV|

then r[]],, qU°8V]. Note that if every prime p|r divides n, we will have r|[] dlr qlos V] plee V]

thus r|m and r ¢ V. Therefore not all the prime divisor of r divide n, thus (r,n) < r. Let
s = (T’"—n), by the previous result s # 1. s € V, in fact if s ¢ V, taking r = ler pr, for each p|r
log?n

will have p® |nl°8V] and so 7|71, which contradict the definition of 7. Since 7 = min V, and as

i

and p { n we will have that p*r — 1), and for each p|r and p|n, as o, < |logV'|, we

s <rand s € V we must have that r = s i.e. (r,n) = 1. Therefore as r { m; and r { n we have

O, 2n .
that r 1 Hitilg J (n’ — 1) and so we have that ord(nmod 7) > log®n.

Algorithm 2.1. AKS primality test
1. If n = aoP, with a, 3 € N and 3 > 1, return “n is composite”;

2. Find the least integer r with d (the order of n in Z) > [log2 n] ;
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3. If 1 < (b,n) < n for some b < r, return “n is composite”;
4. If n <r, return “n is prime”;
5. For all integer b, 1 < b < \/r logn we check if
(x +b)" # 2" + b(mod 2" — 1,n);
i this case return “n is composite”;
6. return “n is prime”.

Correctness:
If n is prime: is clear that the algorithm can’t stop in steps 1 or 3 and by Theorem 2.1, it can’t
neither stop in step 5. Hence the algorithm must stop in steps 4 or 6, and in this cases the
algorithm returns “n is prime” as desired.
Let’s show that if the algorithm stops in steps 4 or 6, the input is really a prime number.
Therefore, if the input is a composite number, it will stop in the other steps and the output
will be “n is composite” as desired.
If the algorithm stops in the step 4, it means that: n < r, and that it didn’t stop in the step
3, thus Vb < n we have (b,n) = 1 and clearly n is prime.
If the algorithm stops in the step 6: conditions 1) and 2) from the AKS theorem are verified,
since in the step 1 we saw n is not a perfect power and in step 3 that it doesn’t have any prime
factor < r. In the step 5 we verified condition 3) and in the step 2, we verified the hypothesis
of the order on n (mod r). Hence, by the AKS theorem, n is in fact a prime number.

Therefore the AKS primality test is a deterministic algorithm.

Computational complexity:
The following table presents the computational cost of the operation we will need to calculate
the computational cost of the AKS algorithm, for the proof of this result see appendix A and

Crandall-Pomerance [3]. We supposed a < n.
Step 1: “If n = o, with a,3 € Nand 3 > 17. Let L = [log n]. For every k € N such

that 1 < k£ < L we take a = Lnl/kj and then we verify if a* = n. For each k we need to

2+e€

compute one square root with a cost of O(log“™® n), and one exponentiation into k& which has



22 V. Gauthier - On some polynomial-time primality algorithms

Method Complexity
nta O(logn)
n.a O(log? n)
(n,a) Euclidean Algorithm O(log® n)
n Repeated squaring method | O(log® nlog k)
f Newton method O(log*™ < n)
n* (mod 7) Repeated squaring method | O(log k log® 7)
(x4 a)” (mod n,z" —1) O(r?log>n)

Table 2.1: Some computational cost.

a cost of O(log*™ n) (is O(log® n log k) with k < [log n]), we do this L times. Thus the
computational complexity of this step is 0(10g3+e )
Step 2: “Find the least integer r with d (the order of n in Z}) > ﬂog2 nw ”: by the lemma 2.5
we know that r < ﬂog‘r’ ”W For a fix » we can compute nk(mod r) Yk < log? n.
Each step takes O(log k log® r log”n). Since k < log® n, the total cost is O(log** n).
Therefore the computational complexity of step 2 is: (’)(log”6 n).
Step 3: “Compute (b, n) for all b < r”: we have to compute r ged’s with cost O(log® max(r, n)).
Therefore the computational complexity of step 3 is: O(rlog? max(r,n)). Asr < [log® n], for
a sufficiently large ! n the computational complexity of step 3 is: O(log” n).
Step 5: “For all integer b, 1 < b < /r log n we compute (x + b)" — (2™ + b)(mod X" —
1,n)”. For a fixed b each of these operations has a complexity O(r?log®n) since to compute
2" mod (2" — 1) we can just remark that, if n = gr —|—€ where ¢, ¢ € N*, { < r, we immediately
have 2" = (z" — 1) (2™ "+ 2" 2 + ...+ 2" ) + ' = 2 mod (2" — 1). Thus the computational
complexity of step 5 is: O(r%2log* n). Asr < [log® n|, we have: O(log®™/? n).
We have:

Step | Complexity
1 O(log” n)
2 [ O(log™n)
3 O(log’ n)
5 O(log®/? n)

Remark 2.1. Fact: lettingn = qr +1, ¢, e N*, [ <r, 2" = (2" — )(2" " + 2" + -+ +
n" — qr) + 2! = 2'(modx” — 1). So to compute z"(modz" — 1,n) it is enough to compute one
euclidean division.

Therefore the computational complexity of the algorithm is: (’)(log33/ 2

that the AKS is solvable in a polynomial time.

n), we can conclude

Remark 2.2. There exists a method to multiply two polynomial in a faster way called FF'T
(Fast Fourier transformation), see ch.9.5 of Crandall-Pomerance [3]. Using it, the step 5 is
computed in O(r*?log*"¢ n) elementary operations. Therefore the total cost of the algorithm
will be O(log? /< n).

In > [log” n] i.e n > 5690034
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We have prove that the AKS is a deterministic and polynomial primality test. It’s compu-
tational cost is greater than the Miller-Rabin’s one, thus in practice it is not used. Nevertheless
it is a big step from a theoretical point of view, since the second one is conditioned to the GRH,
and the AKS one is not. In the next chapter we will see a variation of this algorithm, which
will give a better computational cost, and it is still not conditioned.






Chapter 3

Lenstra-Pomerance Algorithm

Let’s now introduce another primality test, based on the AKS one. This version done by Lenstra
and Pomerance is a deterministic and polynomial test with a computational cost O((logn)®)
(the notation O(X) means a bound ¢; X (log X ) for suitable positive constants ¢i,¢5). The
main difference here is that the auxiliary polynomial that we use is allowed to be any monic
polynomial in Z[x] that “behaves” as if it is irreducible over the “finite field” Z/nZ. This
chapter is divided in two parts, the first one introduces the primality test, and the second is
the proof of a theorem assumed in the first one. The reason of this is that the proof needs some
preliminary results.

3.1 Lenstra-Pomerance Algorithm

We say that a positive integer is B-smooth if it is not divisible by any prime exceeding B. The
following is the main theorem behind the primality test:

Theorem 3.1. Let f € Z[x] be a monic polynomial of degree d, let n > 1 be an integer, let
A=ZIz|/(n,f), and let « =z + (n, f) € A. Assume that

f(a™) =0, (3.1)

™ = a, (3.2)

o™ — o € A* for all primes l|d, (3.3)

d > (logyn)?, (3.4)

(o +a)" = a" + a for each integer a, 1 < a < B := L\/C_ZlogQ nJ : (3.5)

Then n 1s a B-smooth number or a prime power.

First we are going to prove this theorem and then we will see an algorithm to build such
polynomials.
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3.1.1 Proof of theorem 3.1

Suppose f € Z[x] is monic of degree d > 0, n is an integer with n > 1, and A = Z[x]/(n, f).
Let a =z + (n, f) € A. Note that if n is prime, then (3.1) holds. And that if n is prime, then
(3.2) and (3.3) hold if and only if f is irreducible modulo n.

Note that A is a free Z/nZ—module with basis 1, a, ...,a?"!. Let o the ring homomorphism
from A to A which take a to o™, induced by the ring homomorphism from Z[z] to Z[x] which
takes z to 2™. By (3.2) o? is the identity map on A, so that ¢ is an automorphism of A and by
(3.2) and (3.3) it has order d. Let’s consider some preliminary results that we need to prove
Theorem 3.1.

Lemma 3.1. Suppose that R is a commutative ring with unit, f € Rlx|, B1,...,0k € R with
f(Bi)=0for1<i<kandB;— 0 € R* for1 <i<j<k. Then [[(z — 3)|f(z).

Proof. We are going to prove it by induction:

For k = 1: there exist ¢ € R[z| and p € R such that f(z) = (z — [1)q(z) + p. If x = [ we
have 0 = f(61) = p, thus (z — 61)|f(x).

The induction step: we assume the thesis for £k = j — 1; let’s prove it for £ = j. By hypothesis
we have that f(x) = h(z)(x — £1)--- (x — Bj-1); putting z = ; we have (8; — ;) # 0 for
all ¢ < j. Hence we have that (8; — 81)---(8; — §j—1) is invertible and, using 0 = f(5;) =
h(B;)(B; — B1) - - - (B — Bj—1), it follows that h(8;) = 0. By the first case (z — 3;)|h(z), and the

lemma is proved. O
Lemma 3.2. In Aly] we have f(y) = [[\=g (y — o'a).
Proof. 1f we show the two following assertions

1. f(o'a) =0 and that

2. ola—odla € A* for 0 < j <i<d,

by Lemma 3.1, we obtain Hf;&(y —o'a)|f(y) and, since they are both monic of degree d, the
equality holds.

Let’s prove the assertions 1 and 2:

Since o is an automorphism of A, f(o'a) = 0.

To prove 2. as o is an automorphism, it suffices to consider the case j = 0, i.e. o'a — a € A*,
for 0 < i < d. As d 11, there is some prime [|d with (i,d)|(d/l). Since there are integers u,v
with ui + vd = d/I, and o has order d, we have 0o = 0%/!a. Hence by (3.3), c%a — a € A*.
But n' — 1|n* — 1 so that ™ ™1 — 1|]a™"~! — 1, and we finally get

ui

cla—a=a" —ala" —a=c"a—a.

Hence (o'a — «) is a divisor of a unit, thus it is a unit. O

Let p be a prime factor of n, and R = A/pA = Z[z]/(p, f). We identify members of A with
their image in R, so in particular the coset x + (p, f) is denoted by a. The ring R is a vector
space over Z/pZ with basis 1, , ..., a?!. The automorphism o of A induces an automorphism
of R, which we will continue to denote o. By (3.3) ¢ has order d as well when considered as
an R-automorphism.

Let ¢ be the Frobenius automorphism in R, that sends every element to its p-th power.
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Lemma 3.3. Viewing o as an automorphism of R, there is some integer i with o = ¢.

Proof. Tt is sufficient to show that for some integer i we have o’ar = o, since if two auto-
morphisms agree on a generator of the ring, they are the same automorphism. As ¢ is an
automorphism of R it follows that f(¢a) = 0, thus by Lemma 3.2 taken over R we have

d—1

fla?) = H(ap —o'a) =0.

=0

To see that a factor in this product must be 0, let’s assume the following claim, that we will
prove at the end of the proof.
Claim: for § € R,

ifopepR=0=0o0rpecR". (3.6)

For any integer ¢, 7 we have
O'(Oéj . ai) _ ajn . ain _ (Oéj . ai)(aj(n—l) + O[j(n—2)+i T ai(n—l)) c (Oéj . Oél)R

By (3.6) we have (o' —a?) = 0 or o(a’ —a?) € R*. This is true for all 4, j thus in particular for
j =p and all i. But, as H?;Ol(ap — o'a) = 0 not all can be units, it exists at least one ¢ such

that o(a? — a™') = 0. Thus we have an i such that o = ¢.

Proof of the claim: assume o € SR and that ( is not 0 and not an unit. Write 5 = g(«)
where g € (Z/pZ)]y], degg < d. Since (3 is not an unit, we get SR # R and whence the
projection R — R/ R takes units to units. The ring R/SR also contains Z/pZ so that, if we
use an overbar to denote the image of an R-element in R/BR, then g(v) = ¢(¥) for all v € R.
By assumption we know that o3 € 3R and so ¢'3 € BR. So we obtain

0= 05 = g{7'a) = g(o7a).

In the proof of Lemma 3.2 we shown that cla—oclae A* for 0 < j <i< d, thus we have that
ola—ola € (R/BR)*, for 0 < j < i < d. And we just have to prove that g(cia) = 0, therefore
by Lemma 3.1 we know that the degree of g is at least d, a contradiction. O]

Let G={f € R:0+#0,00=p"}. Note that 1, « € G and oG C G.
Lemma 3.4. G is a cyclic subgroup of R*.

Proof. 1t is clear from the definition of G and (3.6) that G is a subgroup of R*; so it remains
to show that it is cyclic. Let f; be an irreducible factor of f considered over Z/pZ, and
K =7Z[z]/(p, f1). Let ¢ be the natural projection form R to K. Let’s prove that the restriction
of 1 to G is injective, in that case, G will be isomorphic to a subgroup of K*; since K* is itself
cyclic, the lemma will be proved.

Let € G and ¥ = 1, write 3 = g(a) where g € (Z/pZ)[y] has degree < d. Since 3 € G we
have o3 = 3" for each 1, so that

g(oia) = pa'g(a) = Yo'f = p(B™) = (YB)™ =1,
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In the proof of Lemma 3.2 we shown that o'a — 0/a € A*, for 0 < j < i < d, thus we have
it in K*. Hence we have yoia —oia € K*, for 0 < j < i < d. And we just have to prove that
g(voia) — 1 = 0, therefore by Lemma 3.1 we know that the degree of g(y) — 1 is at least d, or
it is the 0-polynomial. Hence it is 0, and so 1 = g(«) = 5. Therefore we have that 5 = 1
implies 3 = 1, thus ¢|g is injective, and this completes the proof of the lemma.

]

Lemma 3.5. Among the ordered pairs of integers (i,7) with 0 < i, j < Vd there are two
different pairs (io, jo), (i1, j1) such that

p°(n/p)”* = p"(n/p)(mod #G).

Proof. We consider the automorphism group of G. For any finite cyclic group G under mul-
tiplication, the automorphism group is naturally isomorphic to (Z/(#G)Z)* where a residue
m correspond to 7, : © — x™, for all elements x € G. By the definition of G, the ring auto-
morphism ¢ acts as well as a group automorphism of G and is identified with 7,,. We consider
the subgroup (o) = (m,) of Aut G, of order d. By Lemma 3.3, the Frobenius map ¢ is in this
subgroup and it is identified by 7,. Therefore ¢!, identified by 7,/,, is in the subgroup as
well.

Now, we consider the automorphism W;Wi Ip for integers i, j with 0 < i,j < v/d. There are
more than d of these expressions, and they lie in a subgroup of order d, so at least two of them
must be equal: say ’ ’

20 +JO 11 ,-J1

P "n/p = Tp Tnyp

where (ig, Jo), (i1, j1) are different pairs. Then
p°(n/p)* = p*(n/p)" (mod #G).
This completes the proof. O
Note that for (,j) with 0 <, j < v/d, we have pi(n/p) < p¥¥(n/p)¥V® = nVe. So, if under

some hypotheses, we have #G > nVd_— 1, then the congruence in Lemma 3.5 will be an equality.

We can now start the proof of Theorem 3.1 whose statement we rewrite here:
Theorem 3.1 Let f € Z|x] be a monic polynomial of degree d, let n > 1 be an integer, let
A=ZIx|/(n,f), and let « =z + (n, f) € A. Assume that

fla) =0, (3.7
d

a" =, (3.8)

o' — o€ A* for all primes l|d, (3.9)

d > (logyn)?, (3.10)

(a+a)" =a" + a for each integer a, 1 < a < B := L\/alog2 nJ . (3.11)

Then n is a B-smooth number or a prime power.
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Proof. Suppose that n is not B-smooth, so that n has prime factor p > B. Recall that
R Z[z|/(p, f), 0 : @« — a™ is an automorphism of R and G ={3 € R: 3 # 0,05 = 3"}.
Claim: for each proper subset S of {0,1,..., B},

1. <Haes(a + a)) e

2. Different choices for S give rise to different members of G.
Proof of the claim:

1. by (3.5), oc(a+a) =a"+a= (a+a)" for 1 <a < B, the same is true for a = 0. Thus
each product is in fact in G U {0}.

2. Consider gg = [],cq(z + a), since d > B, and p > B it follows that these polynomials
over Z/pZ are distinct, nonzero and have degree < d. Evaluating this gs in o we obtain
distinct, nonzero members of R.

By the previous claim we have that #G is greater than the number of such sets S, that is
#G > 28T 1 > gVdlsn _ = pVid_ (3.12)

As we noted before, for 0 < i, < v/d, we have pi(n/p)? < p¥4(n/p)V* = nVe. Thus if we have
two different pairs (7,7) in this range, the gap between the two expressions p’(n/p)’ is at most
nVd — 1. Considering the two different pairs (40, jo) and (i1, j1) we obtained in Lemma 3.5 and
using (3.12), we have

p(n/p)® = p"(n/p)". (3.13)

If jo = j1, equation (3.13) will imply that p® = p/, thus that iy = 4; which is a contradiction,
since (ig, jo) and (i1, j1) are different. Thus we have jy # j; and by unique factorization we will
have that n is a power of p. This completes the proof of the theorem. O

3.1.2 Gaussian periods and period systems

Definition 3.1. e Let G be a group. A character of G is an homomorphism x : G — C,
x # 0.

e The trivial character xo(g) = 1¥g € G is called the principal character.
e A Dirichlet character (mod r) is the extension of a (Z/rZ)* character.

o [fr'|r and x # xomod r, it is possible that

_ [ X(n) f (n,g) =1
X(n)_{ 0 if (n,q) > 1

where x' is a suitable character mod r'. In this case we say that x mod r is induced by
X mod 7.
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e A Dirichlet character x(mod 1), x # Xo, @s primitive if it is not induced by any Dirichlet
character (mod 1') for every proper divisor v’ of r.

Letting m be a positive integer and a be an integer coprime to m, we denote by ord(a mod m)
the multiplicative order of a modulo m.

Definition 3.2 (Gaussian period n,,). Let r be a prime, ¢, = e>™/" ¢ a positive integer such

that q|r — 1 and S = {smod r: s"~Y/7 = 1(mod r)} the subgroup of q-th powers in (Z/rZ)*.
We define the Gaussian period by
nnq::jz:gj'

seSs

Let w be a residue modulo r such that ord(w™"/9mod r) = ¢ (note that any primitive root
modulo r has this property). Then the ¢ cosets of S in (Z/rZ)* are w’S for j =0,1,...,q— 1.
Let g,, be the minimum polynomial for 7, , over Q, so that

q—1

gra =] (== _¢).

7=0 ses

This polynomial is monic and irreducible in Q[z]. For a prime p we may ask if it is irreducible
in Z/pZx].

Lemma 3.6 (Kummer). Let p and r be two primes, and q a positive divisor of r — 1. The
polynomial g, ,(x) is irreducible when considered in Z/pZ[z] provided that ord(p"~Y/9mod r) =
q.

Proof. Suppose that ¢ > 1 and that ord(p"~Y/9mod r) = ¢. Let’s prove that g,,(x) is
irreducible when considered in Z/pZ|x]. Let K be the field of rq — th roots of unity over Z/pZ
and ¢ the natural projection of Z[(., (,] to K, such that n = v(n,,). Since g,,(n) = 0, and
the degree of g, ,(x) is ¢, if the degree d of n over Z/pZ is ¢, we have that g, ,(x) is irreducible
when considered in Z/pZ|x].

Let ¢ be the Frobenius p-th power automorphism of K, so that the degree d of an element «
of K over Z/pZ is the least positive integer d such that ¢%(a) = a. Let ¢ = 1((,), we have

G = =3¢,
ses

where S = {smod 7 : s"~1/% = I(mod r)} as previously. By Fermat’s little theorem p"~' =
1mod r, p?mod r is a member of S. It follows that ¢?(n) = n?* = > 4 (P"%; as p? € S we
have that ¢%(n) = n and so we obtain that d|q.

Let x be the Dirichlet character modulo r which sends S to 1 and p to (,. Since S,pS,...,p?" 1S
are the cosets of S in (Z/rZ)*, the two conditions are sufficient to define x. Since ¢ > 1 and
q is the order of x, we have that y is non principal, and since r is prime, it follows that y is
primitive. Thus if 7(x) is the Gauss sum, by Lemma 1.1 we have 7(x)7(x) = r, in particular
U(1(x)) # 0 (if it is 0, we will have ¥ (7(x)7(x)) = 0 therefore ¢ (r) = 0, and we will have a

contradiction). Let w = 1((,); we have

r—1

() = ) _v(x() = Zw Y = Zwinpi (3.14)

j=1 jeptS
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the last equality holds, since we are doing the sum in each coset. In the the i-th one we have:
D vGNE = > e =Y w'd =wt Y (.
jEPLS jEPLS jep'S jEPLS

We reorganize the sum (3.14) by writing i = m + Id, with 0 < m <d—1,0 <[ < (¢/d) — 1,
getting

d—1 q/d—1 d—1 q/d—1
() =D 0" Y wr =" Y ' (3.15)
m=0 1= m=0 =0
Since
q—1 d—1 q/d—1
winpi _ Z Z wm—i—ldnpm'Hd and T]pm-Hd _ npmnpld _ npm7
=0 m=0 [=0
we have

d—1 q/d—1

) =Y " > wrte

=0 =

But if d is a proper divisor of ¢, letting ¢t = ¢/d we have:
t—1
S
1=0

Therefore by (3.15) we get (7(x)) = 0 and so we have a contradiction. Hence d = ¢, which
proves the lemma. O

t t

i) = o( X ) v () o

=0 1=

Corollary 3.1. Suppose r1,...,ry are primes, qi, . .., are pairwise coprime positive integers,
with each q;|r; — 1, and p is a prime with each ord(p™ /% mod r;) = q;. If n is the product of
the Gaussian periods 1, ., and f is the minimum polynomial for n over Q, then f is irreducible
when considered in 7/ pZ|x].

Proof. By Lemma 3.6, each 7, ,,, when considered in an appropriate extension of Z/pZ, has
degree ¢; over Z/pZ. But in general, if oy, s,...,q all lie in an extension of Z/pZ and
have pairwise coprime degrees, their product a has degree ¢ = q1q2 - - - qx over Z/pZ. Indeed,
if ¢ is the Frobenius p-th power automorphism, and [ is a prime factor of ¢, say l|¢;, then
¢! () = aj for j # i and ¢¥! () # a, so that ¢7/!(a) # a. Thus f has at least order g,
hence it is irreducible.

]

Now we are ready to define a period system.

Definition 3.3 (Period system for n). Letn a positive integer, we say that a sequence (ri,q), - . .,
(rk, qx) of ordered pairs of positive integers is a period system for n if

® 7, ..., T are primes,

o fori=1,2,...,k, we have ¢;|r; — 1, ¢; > 1, and ord(n~"/% mod r;) = ¢,
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® (1,...,Qr GTE PAITWISE COPTIME.
Now we see that we can build “easily” such a period system.

Theorem 3.2. There is a deterministic algorithm such that for each integer m > 0 the al-
gorithm produce an integer D,, and further, for each integer n > 1, and each integer D with
D > D,, and D > (logn)"/StV™ the algorithm finds a period system (ri,q1),..., (%, qx)
for n with each r; < DSV and each q¢; < D3, with D < quqp---qp < 4D, and with
k = O((loglog D)?). The running time of this algorithm is O(D'*'Y). The implied constant
may depend on the choice of m.

Remark 3.1. We will apply this theorem in the case D = (logyn)? so that m must be taken as
6. There is nothing special about the number 4 in the theorem, it is only a convenient choice
that can be replaced with any other number greater than 1.

By now we are going to assume Theorem 3.2 that we will prove in the next section, in fact

we are going to prove it with ¢q, gs, . . ., gx being distinct primes. In the following we will denote
1/m by e.

Let’s consider the following algorithm for the construction of a period system:

Algorithm 3.1. Input: an integer n > 1, D > (logn)''/S.
Output: the algorithm produces a period system (r1,q1), ..., (rk, qx) for n.

1. Using a modified sieve of Eratosthenes, compute the prime factorizations of every integer
in [1,4D].

2. For each prime r < D' and prime q|r — 1 with e:):p<( log D

W) < q < D3, compute
nr=D/4mod 7.

3. Compute the set S of ordered pairs (r,q) wherer,q are as in step 2 and n"~9/9 £ 1 mod r.
4. Compute the set Q of primes q such that (r,q) € S for some r.

5. If there is some integer in [D,4D] which is squarefree and composed solely of primes from
Q, let d be the last one. If not, replace D with 4D and go to step 1.

6. Using the prime factorization qiqs . . .q, of d, find for each q; some r; with (r;,q;) € S.
7. Return the pairs (r1,q1), -, (Tk, qx)-

Computational cost of Algorithm 3.1:

Step 1: The computational cost of this step is O(D).
Step 2: In each iteration we have to compute n(:_l)/ 2mod r, for this we first need to compute

7 =nmod r that has a computational cost of O(logn), then 7"~Y/¢mod r which has a com-

putational cost of O((logr)?)(using FFT the cost of computing n* mod r is O(log klogr)). As
we have to do it ¢ times and ¢ is less than the number of divisor of r — 1 which is less than log r
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we have that the computational cost is 6(10g n). Now we have to compute this r < D% times,
the total computational cost is O(D% logn). As D > (logn)"/6 we have logn = O(D%).
Thus the total cost of this step is O(D'2/11),

We can see that the computational costs of steps 3 and 4 are embedded in the cost in step
2, and the computational cost of step 6 is negligible by the cost of step 2. Now we have to
compute how many times the step 2 has to be repeated.

If step 5 sends us back to step 1 at least [1—(1)0 log log(2nﬂ times, our D will be greater than
(logn)'/6+1/100 " Tn fact each time that we come back to the step 2, D is multiplied by 4,
thus if we repeat this step T = {

155 log log(2n)] times, calling D' this new D, we will ob-

tain: D/ = ATD > 4loglog@n)T0) 1y~ log(log(2n) T00) ) _ log(2n)10 D > log(n) o log(n)'/¢ =
log(n)t/100T1/6 " Therefore as T = [55 loglog(2n)] = Op(1), with at most Op(1) iteration,
will ensure that D > Dy (using the notation in Theorem 3.2). Putting Op(1) in the constant,
we have that the running time is O(D'?11). The O-constant being computable in principle.
The correctness of this algorithm follows immediately of the computational cost of step 5.

Since we are sure that the algorithm will stop at most in the Op(1) iteration.

3.1.3 Period polynomial

In this section we are going to look for a given natural number n > 1, a deterministic procedure
that either proves that n is composite or construct a monic polynomial f € (Z/nZ)[x] of degree
d = q1¢z - - - g for which (3.1), (3.2) and (3.3) holds.

If n; = Ny, 1s the Gaussian period discussed before, and if 7 = nim2 - - - mx, then the poly-
nomial f that we hope to produce is the reduction modulo n of the minimal polynomial for 7
over Q.

We are going to build it in 3 stages: in the first one, we are going to compute monic polyno-
mials g; € (Z/nZ)[z] for i = 1,2,... k with degg; = ¢;. If n is prime, g; is irreducible modulo
n. In the second stage we verify (3.1), (3.2) and (3.3) for ¢1, go, - . ., g, and where ¢; plays the
role of d in these equations. If one of these properties fails, we can declare n composite. Finally
in the third stage we assemble the polynomial f of degree d.

The first stage:
We suppose that we have a pair (r, q) with r prime, ¢|(r — 1), ord(n"""/9mod r) = ¢ and

q> 1

1. Let z be a primitive root for r, for j =0,1,...,¢ — 1, and

4 —1
S; = {z" """ mod r:l:(),l,...,r —1}.
q

2. Compute the period polynomial g(x) for the degree ¢ subfield of the r-th cyclotomic field.
Note that we will reduce modulo n in each intermediate calculation. Let ¢, = e*™/7,

qg—1

g@) =] (v = > ¢) e @)/ ) lal.

7=0 mes;
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Computational cost:

Step 1 can be done by running through 2°mod 7, z! mod r,... placing each residue in its
proper set. Or can build each S;, computing 2/ mod r and 29mod r, and build 2/t mod r
from z/*(=D7mod 7. The time to build this S; is (5(7“) The time to obtain a prime factoriza-
tion of r via trial division is 6(r1/2). And the time to check each z to see if it is a primitive
root is (logr)®®. Thus the cost of step 1 is O(r).

A multiplication in Z[¢,]/(n) can be done in O(r(logn)?) (since it is a multiplication of two
polynomials of degree r in Z/nZ with r is much smaller than n, hence the computational cost
follows from A.3). We take the ¢ polynomials by pairs, (if ¢ is odd it remains one alone), the
product of the pairs can be computed in time 6(qr(log n)?). We do again the same procedure,
i.e. we form again pairs with the polynomials we have, such that at most we have one polynomial
alone. As they are O(log q) pair-assembly, the total cost of this multiplication is O(gr(logn)?).

Now we have to repeat this for each pair (r;,¢;) with i = 1,... k. Therefore the total cost
of this stage is

k
O((>_ qiri)(logn)?).
i=1
The second stage:

For (r, q) one of the pairs in the first stage, and with g the polynomial in (Z/nZ)[z] we have
construct, let A = Z[z|/(n,g), and let & = = + (n, g).
The time for a multiplication in A is O(¢(logn)?) (since it is a multiplication of two polynomials
of degree ¢ in Z/nZ with ¢ is much smaller than n, hence the computational cost follows from

A.3). Then the time to compute a” is O(g(logn)?).

e We want to verify if the equation (3.1) hold, (i.e. if g(a™) = 0), since the time to compute

g(a™) is O(q*(logn)?) (¢ operation of cost O(q(logn)?)), this is the time to check (3.1).

— —
e Now to verify (3.2), i.e. ™ = a, we have to compute o™ = """ 10 = (qm)- -1,

Thus we have to compute ¢ times o™ which has a computational cost of 6(q(log n)3),

thus the total cost to verify (3.2) is O(¢2(logn)?). Not that in this step we also computed
(a)9/* for each prime s|q.

e To verify (3.3) (i.e. o™ —«a € A* for all primes s|q), let 3 = ™" — & for one of the
primes s|q. As A is a free Z/nZ-module with basis 1,a,...,a? ! we have 8 = h(a) for
some h € (Z/nZ)[x] with either h = 0 or degh < ¢q. If h = 0, then = 0 and condi-
tion (3.3) fails, thus n is composite and stop. So, assume h # 0. We perform Euclid’s
algorithm on h(x), g(x) in (Z/nZ)[x]. After each division with a nonzero remainder we
multiply by the inverse in Z/nZ of its leading coefficient so as to make it monic. If one
of this leading coefficient is not a unit in Z/nZ, we declare n is composite, and stop.
Assuming we have not stopped, Euclid’s algorithm will stop at a non zero monic polyno-
mial hg € (Z/nZ)[z]. If deghy > 0, then (3 is not a unit in A, declare n composite and
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stop. Otherwise § € A*, that is, property (3.3) holds. The total cost to verify (3.3) is
O(q*(logn)?).

Therefore the total time to verify (3.1), (3.2) and (3.3) for g1, g2, ..., gk is:

k
O((>_ q?)(logn)?).
i=1
The third stage:

First we are going to see the case k = 2: suppose fi, fo are two monic polynomials in
(Z/nZ)|x] of degree dy,ds respectively, where dy,dy > 1 and (dy,d2) = 1. For i = 1,2 let
A; = Zx]/(n, f;) and let oy = = + (n, f;). Assume that (3.1), (3.2) and (3.3) hold for f;, a; for
i=1,2. By (3.3) ay € A%, thus we can write a;'. Let

di—1

f17f2 H adQn ta;nj)v

so that M(f1, f2) is a polynomial in A;[t].

Proposition 3.1. With the above assumptions, M(f1, f2) is a polynomial in (Z/nZ)[t], monic
of degree dydy, and satisfying properties (3.1), (3.2) and (3.3).

Proof. Let f = M(fi, f2), d = didy. 1t is clear that f is monic and has degree d. Let’s see if f
is in fact a polynomial in (Z/nZ)[t].

Let oy the automorphism of A; that takes a; to of discussed before, to simplify the notation
let 0 = o;. Note that o let the coefficients of f invariant. Let § # 0 one of these coefficients,
B = h(a), where h € (Z/nZ)[z] is 0 or has degree less than d;. Now consider the polynomial
H(x) = h(x) — 3 € Aj[z]; it has the d; roots a7y for j = 0,1,...,d; — 1. In the proof of
Lemma 3.2 we shown that o'a — o/a € A*, for 0 < j < i < d, thus, by Lemma 3.1, h(z) — 3
is either 0, or has degree at least dy, but this cannot occurs, thus § = h(0) € Z/nZ. Therefore
f € (Z/nZ)[t] as wished.

Let A =Z[t]/(n, f) and o =t + (n, f). In order to show that (3.1), (3.2) and (3.3) hold for
the pair f, «, let’s prove it first in a similar situation.
Let A = Z[xy, x2]/(n, fi(z), fa(x)), note that there is a natural embedding of A;, A, into A such
that a; is sent to x; + (n, fi(z1), fo(xs)) for i = 1,2. Let o the endomorphism on A such that
a; is sent to o for ¢ = 1,2, note that o restricted to each A; is the automorphism considered
before. Let’s prove that the three equations hold for f,aq, as.

e By Lemma 3.2 we have

di—1d2—1

£ =TT TT ¢ = o’ (n)a'(0a)),

=0

hence f(ayaz) =0, and f(o(araz)) = f((a1ae)™) = 0, thus (3.1) holds.



36 V. Gauthier - On some polynomial-time primality algorithms

[ ]
(aran)™ = ol (aran) = M2 ()0 (ay) = aray
thus (3.2) holds.
e Letting ¢ be a positive integer such that ¢ | d;, we have
(alag)”d/q — g = (o/fd/q — aq)ae. (3.16)
For any positive integer u we have o’ — aq]a®”* — oy in A;y; choosing u = dj ',
we have o”" — ay|a®™" — ay, or a7 —ay € A} (by (3.3) applied to a;) hence

o' — oy € At C A*. Or using (3.3) for ay we see that ay € A C A*. Therefore
by (3.16) we have (alag)"d/q — ajag € A* thus (3.3) holds for ajas. We have also that o
is then an automorphism for A with order d.

[

To complete the proof it will suffice to show that A" =2 A with a € A corresponding to
ajae € A. Consider the map ¢ : A” — A where ¢(a) = ajay, let’s show that ¢ is an
isomorphism. It is well defined since for g,h € (Z/nZ)[t] with g(a) = h(a), we know that
g(t) = h(t) +u(t)f(t) for some u € (Z/nZ)[t]. Thus ¢g(a) = g(araz) = h(a1as) = dh(a).
Let’s show that it is an isomorphism: it is clearly an homomorphism, let’s see that it is injective.
Suppose ¢g(a) = 0 where g is 0 or has degree less than d, then g(ajas) = 0. As o is an
automorphism for A, we have g(07(ajas)) =0 for 5 =0,1,...,d — 1. As (3.3) holds for a;jas,
we have that o'ajas — c/ajae € A*, for 0 < j < i < d, thus by Lemma 3.1 that f(¢)|g(t) in
A[t]. Therefore g can not have a degree less than d, so that g = 0 and ¢ is injective. As A, A’
have n? elements it follows that ¢ is also surjective. Thus A’ = A as claimed. O

Let’s generate now the polynomial of degree q1qs - - - g for an arbitrary k > 1, using the M-
operator for g1, ga, ... gr. Asthe M-operator has only two entrances, we have several choices; we
will choose the one with minimal computational cost. For this we compute the computational
cost of M(f1, fo) with the above assumption. We have

di—1

M(fy, f2)(t H Oédm fo(tar™ )

We saw in Appendix A that, a;' is computed in (’)(dl(log n) ). Compute (o7 D7 from
(a;")"97V is O(d, (log n)?), thus the total cost for computing (a; " ) from (a7) is O(d2(log n)?).
We use Corollary 10.8 of [13] to evaluate f; at the set of points ta;™ . If dy > ds this takes O(d; )
operation in A, [t] with polynomials of degree at most d, thus the total cost is O(d2dy(logn)? )-
If di < ds, the cost is O(d1d2(log n)?). Using the previous results, the time to compute Ozd”
for each j and multiply it into fo(ta;™) is O(dyds(logn)?).

Thus, the total time to assemble M (f1, f2) is

O(d?(logn)? + dyds(dy + ds)(log n)?). (3.17)

As the cost increases significantly with the degree of the polynomials, the strategy to have the
lowest possible cost is:
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Among all sets S C {1,2...,k} with J] .qqs < d'/? choose the one, call it Sy, with this
product maximal, and let this product be denoted by d;. Let do = d/d;. Say Sy = {s1,...,s}
and let f; = M(gs,,-.-,gs) built up two at time. By (3.17) the computational cost of this is

O(d?(logn)? + d3(logn)?) (since in this case dy < dy). Let
SQ - {1,2,,]{7}\51 == {tl,tz,...,tk,l}.

We build fo = M(gt,, 9tys - - -5 Gt,_,) in the same way as fi. As do/qi, < dy, the computational
cost of the construction of fs will be dominated by (3.17). Finally we compute M(f1, fo) and
the total time is (3.17).

It remains now to estimate d; and dsy: for this we shall assume that the period system
(ri,q1), (r2,G2), - .., (T, @) was produced by the Algorithm 3.1. Thus we are assuming that
d > (logn)'/6 each ¢; < d*" and each r; < d%/. Let’s show that d; > d*°,dy < d®/°.

If the product of the largest two ¢;’s is at least d?/° then we choose d; as this product, or
the complementary product of the remaining ¢;’s, whichever is smaller. Since ¢; < d*/!', the
maximum value of g;q; for i # j is d*/!1, thus the complementary product must be at least
d®/"*. Now, assuming that the product of the largest two ¢;’s is smaller than d?/°, then every
remaining ¢; is smaller than d'/°. If we multiply, one at a time, to our product we will have a
result between d?/® and d*/°. And we will take d; as the minimum between this product and
the complementary one.

Using d?° < d; < d'/? < dy < d®/° and that d > (logn)'/%, the complexity time for the third
stage is: O(d%5(logn)?). Since

O(d?(log n)? + dids(dy + ds)(logn)?) = O(d(log n)® + d(d*? + d*)(log n)?)
or d > (logn)"/% implies that d%" > logn thus we have
O(d?(logn)® + dids(dy + do)(logn)?) = O(dd%" (logn)? + dd'/*(log n)? + dd*(log n)?)

O(d?(logn)® + dyds(dy + dy)(logn)?) = O(d™ M (logn)? + d*?(logn)? + d*/*(log n)?)

Hence B B
O(d%(log n)2 + dyds(dy + do)(log n)2) = O(d8/5(log n)2)

Computational complexity:

As r; < d9™ and ¢; < d*/'! the time of the first stage is:

5((2 qiri)(logn)?) = O(d*** (logn)?).

For the second stage it is:

k

O((Y_ a})(logn)?) = O(d*/M (logn)*).

=1
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Thus the computational cost is dominated by the third stage, hence it is: O(d®?(logn)?).
In the particular case, when we choose d of order of magnitude (logn)?, the time complexity
for this procedure is O(logn)?/°.

In the particular case, when we have n prime, we have the following algorithm:

Algorithm 3.2. Input: a prime p, and D an integer with D > (log p)'-%.

Output: An irreducible polynomial f(x) € Fylx] of degree d, where D < d = O(D). Moreover,
if p is larger than an effectively computable bound, we have d < 4D.

1. Using Algorithm 8.1, find a period system (ri,q1),...,(Tk,qx) for n = p with d =
G1q2---qr > D and d = O(D). (For p beyond an effectively computable bound, this
algorithm finds such a number d with d < 4D.)

2. With the the stage 1 and 3 of this section, construct a monic polynomial f(x) € F,[z] of
degree d.

3. Return f(x).
And so we proved the following theorem.

Theorem 3.3. There is a deterministic algorithm and an effectively computable number B,
such that, given a prime p > B and an integer d > (log p)'84, it produces an irreducible poly-
nomial over F), of degree d’', where d < d' < 4d. Moreover the running time is O(d*$(logp)?),
with effective constants.

3.1.4 The primality test

Algorithm 3.3. Input: an integer n > 1.
Output: The algorithm determines whether n is prime or composite.

1. Check if n is a power other than a first power. If it is, declare n composite and stop.

2. Let D = [(logyn)?|, using Algorithm 3.1, find a period system (r1,q1), ..., (rk,qx), for n
with d :== q1q2 -+~ qr. > D and d = O(D). (For n beyond an effectively computable bound,
we will have d < 4D as discussed before.)

3. Let B = Ldl/z log, nJ Check to see if n has a prime factor in [1, B]. If n has such a
factor that is not equal to n, declare n composite and stop. If n itself is this prime factor
then declare n is prime and stop.

4. Using the Algorithm 3.2, we try to find a monic polynomial f in (Z/nZ)[x] of degree d
and for which (3.1), (3.2) and (3.3) hold. This algorithm gives us a polynomial satisfying
properties (3.1), (3.2) and (3.3), or conclude that n is composite, in which case we can
conclude the same and stop.

5. For each integer a, 1 < a < B, check if (v + a)" = 2" + amod (n, f(z)). If one of
these congruences fail, we conclude n is composite and the algorithm stops. Otherwise we
declare n 1s prime and stop.
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Computational complexity:

Step 1: as in the first step of the original AKS method this computational cost is O(log n)?.
Step 2: as we saw previously, the algorithm 3.1 has a computational cost of O(D'?/11), as
D = O((log, n)?), we have that the cost of step 2 is O((logn)2*/1).

Step 3: as in step 3 of the AKS algorithm, we have to do B = O(d'/?log, n) operation, each
one of cost O(logn). With d = O(D) = O((logn)?) thus the computational cost is O((logn)?).
Step 4: we saw in the previous subsection that this step has a computational cost of (5((10g n)%6/%).
Step 5: each congruence can be verified in O(d(logn)?), as we have to verify B = O(d"/2log, n)
of this, the total cost is O(d*2(logn)?). And since d = O(D) = O((logn)?), the total compu-
tational cost is O((logn)S).

Therefore the computational cost of this algorithm is O((logn)®).

By Theorem 3.1 and Lemma 3.6 this algorithm is correct, hence we have a deterministic pri-
mality algorithm, which runs in polynomial time O ((logn)").

We can see that the main difference between the original AKS primality test and the Lenstra-
Pomerance algorithm, is the fact that we are not constrained to use the cyclotomic polynomial.
In this case we have more freedom to choose the polynomials which give us a lower compu-
tational cost. The first of two main sources of this diminishment of the computational cost
is that 7 < login for the original AKS while in this version, the degree of the polynomial is
d = O((logy n)?). The second reason, is that in the AKS we have to repeat the most expensive
step v/ log n times, while in this new version, the equivalent step is repeated Ldl/ 2log, nJ times.

It remains to prove Theorem 3.2, that is the purpose of the following section.

3.2 Proof of Theorem 3.2

The goal of this section is to prove the following theorem:

Theorem 3.4. There is a deterministic algorithm A such that, for each integer m > 0, A
produces an integer D,, and further, for each integer n > 1, and each integer D with D > D,,
and D > (logn)'Y/S+Y/™ “the algorithm finds a period system (r1,q1), ..., (7%, qx) for n with each
r; < D and each q¢; < D*/11, with D < qiqs - - - q < 4D, and with k = O((loglog D)?). The
running time of this algorithm is O(D2/'Y). The implied constant may depend on the choice
of m.

For this we need some lemmas that we are going to introduce in the first three subsections.
In the last one we will prove Theorem 3.4.

3.2.1 Some preliminar results

Definition 3.4 (Dickman-de Brujin function ). Let p(u) be a continuous function on [0, 00)
that satisfies

o p(u)=1for0<u<l,
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o up'(u) =—p(u—1) foru>1 and
o log p(u) = —ulog(ulogu) + O(u) for u > 2.
Let m(z) denote the number of primes in the interval [1, z].

Lemma 3.7. There is an absolute and effectively computable positive number cq with the fol-
lowing property. Let a be a number with 0 < o < 1, and let = be so large that 10?5323: > %
The number of primes v < x such that r — 1 has a divisor m with m > x and with m being

**_ smooth is at most D(a)m(x), where

co ( p(l/a) 2
Dle) = ?<1og(2/a) +ol1fa?))

For the proof, see [12].

Proposition 3.2. Letn > 20 be a natural number, let x be a number such that x > (logn)!+3/losloglogn
and let « = a(x) = 1/loglogz. Let R(x,n) denote the number of primes r < x such that r — 1

has a prime divisor q¢ > = with ord(n"=Y/%Ymod r) = q. For n larger than an effectively
computable bound, we have

R(z,n) > (1 — D(a))w(z) — z'7" — 1=/,

Proof. Let A be the number of primes r which divides n or some n? — 1 for j < 2*. We have

A <logyn + Z jlogyn = logyn(1+ Z §) < 2% logyn < gt~/
Jj<z® Jj<z*

1-9a/4 1-a/4

if n is so large that logy,n < z Thus, there are at least w(x) — x primes r < x not
dividing n, and not dividing any n’ —1 for all ; < x®. Such a prime r has ord(nmod r) > x®. Let
¢, denote the greatest prime factor of ord(nmod r). If x is so large that log /loglogx > 1/a*,
we can apply Lemma 3.7, and we thus get that ¢, > z®°, but for at most D(a)7(z) exceptional
primes r < x. Note that the number of integers » < x with r — 1 divisible by some [? with [
prime and > 2 is at most

2 pr ) ﬁém/az§:$(7+xa2)<x |
[ prime | prime z

2 2
>z~ 1>z

Hence, there are at least
() — (') + D(a)m(a) — 2" = (1 — D(a))m(a) — '~ —z' -/

primes r < x with ¢, > 2 and q? does not divide 7 — 1. For such a prime we have
ord(n"=Y/% mod r) = g,. This complete the proof of the proposition. O

Remark: Proposition 3.2 implies that for n, x as given, we have

m(z) — R(x,n) = O(z/(log x)\°8'els ),
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In fact, it is clear that R(x,n) < w(x) and by the previous proposition we have that

m(x) — R(z,n) = D(a)m(a) + z'~ + (x4
Now note that

z/(log 2)'°81°81°8* — cap(log z — logloglog x log log ).

Since
l1-a/4 __ x 1 1

B 1 _
¢ expllog v 4loglogx

ogxr
p1/4loglogz g )

and for a sufficient large x
log x

> logloglog x log log x
log log

we have that
({L‘l_a/4) — O(m/(log m)loglogloga:)'
We also have that

2 xz

- 1 (1/ loglog z)? log IL‘),

~ IR Toglogay

since for a sufficient large x

1
ﬁ > log log log = log log x

we have that
(xl—OlQ) — O(x/(log x)logloglogx)'

Now lets see if
D(Oé)ﬂ(oz) = O(Z‘/(log x)log 1Oglogx)‘

and we will prove the remark.

D(a) =2 (M +p(1/a%)).

~ a2 \log(2/a)
And
log p(u) = —ulog(ulogu) + O(u),

thus

p(u) = exp(—ulog(ulogu) + O(u)) = O(exp(—ulogu — uloglogu)).
Then

p(1/a) = O(exp(—loglog x log log log x — log log x log log log log x))
and

p(1/a)

———— = O(exp(—loglog z log log log x — log log x log log log log  — log log log log x)).
log(2/a)
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We also have

p(1/a?) = O(exp(—2(loglog z)? log loglog x — (loglog x)* loglog log log z)).

C

D(a) = a—gO(exp(— log log z log log log x — log log x log log log log  — log 2 log log z))

D(«a) = O(exp(—loglog x log log log x — log log x log log log log  — log log log x + loglog x)).
Then
D(a)n(z) = O(exp(log z—log log x—log log x log log log z—log log x log log log log z—log log log log x))

hence we have
D(Oé)ﬂ_(a) = O($/(10g :L»)bg IOglog:p).

3.2.2 Sieved primes

The goal of this subsection is to prove the following result about the distribution of primes r
with r — 1 free of prime factors in some given set.

Proposition 3.3. There are effectively computable positive functions X, 0. of the positive
variable € satisfying the following property. If x > X, and Q is a set of primes in the interval
(1, 2'/2] with

Let B the number of primes r < x such that every factor q of r —1 satisfies ¢ < x'/? and q ¢ Q.
Then B > 6.z /(log x)>.

Before proving this, we give some preliminary facts we will need.
Definition 3.5. Let ¢ € N, and a € N such that (a,q) =1, x € R, let
e 7(x,q,a) denote the number of primes p < x with p = amod p;

Ywq.a) = Y An);

n<x
n=amod ¢

0(x,q,a) = Y logp;

p<z,p prime
p=amod ¢q
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where A(n) is the von Mangoldt’s function

A(n) = logp ifn =9’ for some prime p and some positive integer j
10 if n is not the power of a prime,

and p(n) will represent the Euler totient function.

Lemma 3.8. [Brun-Titchmarsh inequality] If x > q we have

2z
(@ q.0) < ©(q)log(z/q)

For the proof, see [10].

Lemma 3.9. [effective Bombieri-Vinogradov inequality] There are absolute, effectively com-
putable numbers ¢y, ¢y such that for all numbers x > 3, there is an integer set S(z) of cardinality
0 or 1 with S(x) C (logx)'/?, exp((log x)/?)] , such that for each number Q € [z'/3logx, 2'/?],

‘max  max [(y,q,0) — —| < az/2Qlogx)’ + ez exp(—ex(log )2,

poerd 2<y<z ged(a,q)=1 ¢(Q)

where the dash indicates that if S(x) = {s1}, then no q in the sum is divisible by s;.
For the proof, see [4].

Lemma 3.10. With the same notation and hypotheses as Lemma 3.9, we have

Z " max |m(x,q,a)— litz)

< c42'?Qlog )° + cyx exp(—co(log 2)?),
25 o ol < 1w *Qoga)” + earexp(—exllog ) ")

where ¢y is as in Lemma 3.9, and c4 1s an absolute, effectively number.

Proof. First note than we can replace the expressions ¥(y, ¢, a) in Lemma 3.9 with 0(y, ¢, a),
since

Wy, q,0) = 0(y.q.a) < D logy=0O(y'*logy).

ny
n is a prime power

We have by the partial summation formula that
0(z,q,a) /”” 0(y. g, a)
m(r,q,a) = —— + ————dy. 3.18
(@:,0) logx 2 y(logy)? (818
This identity let’s show that

_h(:C) . a _i
|W($7Q7a) SD(Q)| < |9( , 4, ) SO(q) .

li(z) 0(z,q,a) 0y, qoa) 1 [T 1
(0.0~ S0 <| [ Sy - [

log x y(logy)? ©(q) Jo logy

In fact
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§|9($,C],a)< 1 r— 2 )_901 T

log x * z(log z)? (q) log x
1 x x

< —10(x,q,0) — ——| < |0(x,q,a) — —]|.
logz /00 w(q)’ o, 4,9) s@(q)l

Thus, the result follows directly from Lemma 3.9 and the identity (3.18). O]
Lemma 3.11. [Deshouillers-Twaniec] There is an effectively computable function x., defined
for positive numbers €, and absolute and effectively computable positive numbers cs, cg with the
following property. For arbitrary numbers €, x,Q with € > 0,2 > ., and '/? < Q < 2'~¢, and
for an arbitrary integer a with 0 < |a| < x¢, we have for almost all integers q € [Q,2Q)] with
gcd(q,a) = 1, the number of exceptions being less thalN Qz ¢,
4/3

(2, q,a) < M

v(q)log(x/q)

For the proof, see [5].
Definition 3.6 (The Mdbius function). Forn = pi'p5* - - p*, we define p(n) by

1 if n=1
pn) =< (=DF ifay=1fori=1,... k,
0 otherwise

Proposition 3.4. Let f be a multiplicative function (i.e. f(a-b) = f(a)- f(b)) we have
> oud) fd)y=T]0 - ro).
din p|n

Proof. (From [2] chapter 2.) Let

g(n) = u(d)f(d).
din

Then ¢ is multiplicative, so to determine g(n) it suffices to compute g(p*). But
g(™) =Y u(d)f(d) = p(1)f(1) + p(p) f(p) = 1 — f(p).
dlp®

Hence
g(n) =T o™ =] - ).
pln pln

]

Definition 3.7 (The Riemann zeta function). Let s € C such that Rs > 1. We will call
Riemann zeta function the following
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Theorem 3.5 (Euler identity). For Re(s) > 1 and P the set of primes,

For the proof, see [3]

Definition 3.8 (Euler-Mascheroni constant). We define
1
v=lim » (= —logt).
n

t—o0
n=1

We have the following result about this constant:

v = Z——log —O(1/n). (3.19)
Definition 3.9 (Divisor function). For a real or complexr av and any integer n > 1 we define
-
din

the sum of the a-th powers of the divisors of n.
When a =0, a¢(n) is the number of divisors of n; this is often denoted by d(n).
When a = 1, 1(n) is the sum of divisors of n; this is often denoted by o(n).

Proposition 3.5. Forn > 2

Proof.

no_ 1 p+ 1 p (p+1)/p
pn) L0 - %) a =1~ =11 (p*—1)/p?

_ L+ 1)/p _ [Ln.(p+1)/p
[L,.*=1/p* " IL,p*—-1)/p*

pln pln pln

by Euler identity we have

Emhl G 1)

Now o 1
o =15

then o(n) ot _ 1
n pe(p—1)
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But Vpln and o > 1 as p(p*™ — p) > p*(p? — 1) we have

a+1l
P 12p—|-1.
p(p—1) p

Then we have that

p*|n pln
And we conclude as desired that
n a(n)
— < ((2)—/=.
¢(n) &=

Proposition 3.6. Forn > 2
n<zx

Proof. By Proposition 3.5 we have that

1 o(n)
Then | |
Z (n) << n2 ZZ Z dezz_ o)
n<x ¥ n<x n<z d|n qd<a: d<z  d<z/ q

1 ¢(2 +mcﬁ
DIFCCEDIIE DRSO il,
d<z q>ac/d
1 d
= E+O( dx) logz + O(1).
d<z d<z
Therefore )
—— = O(logz).
2 Gy ~ Othos)

Lemma 3.12. For any number t > 1, we have that

%@»7

1 ¢(2)63) I
Z = logt+1/+(9< "

p(d) — ((6)

d<t

where ( is the Riemann zeta-function and where v is a constant we will describe below.
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Proof. Let’s assume the following claim (we are going to prove it at the end of the proof).

Claim 1:
1 1%
o(d) T d UZM

Hence putting k£ € N such that d = ku < t, we have

OIS FTRE

Since

by (3.19) we have

Therefore

d<t (P(d) u<t gO(U)
1 p (u) p*(u)(y — log u) 1 1 (w)
O logty wow) > oD +0(; o ). (3.20)
d<t ¥ u<t ® u<t ¥ u<t ¢
We define v =3 _, %&g’g“) and assume the following claim that we will prove at the
end:
Claim 2:
2
1 (u) 1 (U) log(2t)
1ogtzw(u) +(9(tz (u) =logt |] ( )> +(9< . )
u<t u<t p prime

Hence (3.20) becomes

Z ( =logt H < )>+V—i—(’)<10g§2t>>. (3.21)

d<t p prime

Using Theorem 3.5 we get
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C(2)C(3) P —-Dp+1)p*—p+1) pP—p+1 1
¢6) 1l (p—1)(p+1)(p*—Dp*p’p 11 plp—1) 11 <1+p(p+1)>'

p prime p prime p prime

Thus from (3.21) we have

1 ¢(2)¢B3) log(2t)
;ﬂd} =) logt+l/+(’)( " )

and the lemma is proved. It remains to prove the two claims:

Proof of claim 1:

L _ 1
_d_d%;

Let n = p{'p3? - - - p, let’s do the proof by induction:
Case s = 1: (i.e n = p®). We have ¢p(n)™' = p(p)t = (p* —p*H = ((p—1)p*1)~! and

L) 1L
12w~ )

o) (—1)p*!

Inductive step suppose the claim is true for d = p{'ps? - - - pi*7", to simplify the equations let
By = Zu|d ea(u ) and D = p*ps? -+ - p¥s where p = ps, and a = «s. Let’s show that Bp = 20

S

D:dpa:d pa: p* B, 1 B:p
e(D) — o(dp*)  pd) ()  pr—pt T 1—(1/p) T (p—1)

Now Bp = Y, p o™ = Ba+ 3
Proof of claim 2:

loth’u Z Z” st [T (14 ))w(log;%))

= By+ 7Ba = Ba(;%). And the claim is proved.

uld ¢ up) @(p)

u<t u<t p prime
- *(u) 2(u)
W (u 1 W (u
A=logt —=+0(= —),
;t up(u) t UZQ p(u)
12 ( 11 (u) 1 1 (w)
A =logt gt + O(- )
; 2 up(u) t i o(u)
since n’g% is a multiplicative function we can use Proposition 3.4:
=logt H ) loth'u “ —i—(’)lZ'u(u))
p prime p u>t UQ‘O U t QO(U’) ,
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A =logt H (1+—)—10gtz ) +O(%Zu2(u)).

1
p(p—1) o up(u) “—~ p(u)

p prime

By Proposition 3.6 we have that

Hence

1 log(2t)
A =logt H(l—i——))—i—(’)( )

p prime

We can now prove Proposition 3.3 (that we rewrite here the statement):
Proposition 3.3
There are effectively computable positive functions X, d. of the positive variable € satisfying the
following property. If x > X. and Q is a set of primes in the interval (1, /%] with

Ll < 1—31 e (3.22)
qeQ 1=

Let B the number of primes r < x such that every factor q of r —1 satisfies ¢ < x'/? and q ¢ Q.
Then B > .x/(log x)?.

Proof. Let 0 < e < 3/11, x a large number, Q a set of primes satisfying (3.3). For a prime
r < x, let g(r) denote the number of factorizations of r — 1 as lh, where

1. 212728 < | < 2278 and zV/?HP < | < 2!/2128
2. lh is not divisible by any member of Q,

3. [ is not divisible by any member of S(x),

4. his not divisible by any prime larger than z'/2,

where S(z) is defined in Lemma 3.9. Note that g(r) can be 0, let N denote the number of primes
r <z with g(r) > 0. Our goal is to get a good lower bound A for N, in fact if A = d.z/(log x)?
we have B > N > A = §.z/(logz)? and the proposition is proved.

From Cauchy’s inequality, we obtain

(ggm)? < (;w%)(g),

hence we have that

N2 (S am) (7).

r<z r<z
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2
Now we are going to found an upper bound for Y __¢(r)? and a lower bound for (ngm g(r))

7'<a7
in order to found A.

In order to found the upper bound for ) <29 g(r)? we ignore the non-divisibility requirements
in the definition of g(r). We denote [a, b] for the least common multiple of a, b,

g <y 3 1= 3 Y11= 3 (z, [l o], 1).

r<z r<z l1,la|r—1 x1/2=2B <]y lo<a1/2-B 11,la|r—1 x1/2-28 <]y lo<al/2-B
x1/2726<l1712<x1/27ﬁ r<zx

By Lemma 3.8 we have that

, 2z
Zg(r) < Z (1, 1o]) log(x/[l1, 1))

r<wz x1/2=20 <]y lo<al/2-8 ¥

We know that [I;, ly] < 21/27#21/270 = 2128 hence

1 1
Toa (e /L) < Tog(z/aT=2F) and we have

1 T 1
Zg log xw) Z (1, 1)) B [logx Z ([, L))

r<z xl/2=2B <]y lo<al/2-8 ¥ x1/2-20 <]y lo<al/2-8 ¥

Since . 1
w1/2-28 <0y lo <z /20 SO(UI, 12]) d<xl/2-8 1/2 %%d(llvlz):(ﬁh B So(lll2/d>
x Pyl -
we get

1 1 \3
2 (hJQ < 2 2 ¢@a055<§:;15)'

@1/2-26<y ly<at/2-0 d<.1‘1/2 B ab<(azl/2=P)/d d<w
1
The last inequality holds since Zd@m 5 b<(1/2-B) /d p(abd) < ngx > b<z/d (abd) <

3
ngm o(d) Za<r/d o(a) Zb<m/d o) = (Zd<z W) :

Therefore we have that |\
D_9(r)? 5ng<§:;zﬁ>'

r<z d<x

Using Lemma 3.12 we have

Zg ﬁlogx<q?((§§3) 1ng+y+@<10g;2z)>)3.

r<z

Recalling that v =) wOlogu) e have

u<t up(u)

Salr) < o (S oes) +0 + o)

r<z
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3 g(r)? (—%ﬁg. (3.23)

r<z

This is the desired upper bound. Now let’s found a lower bound for »_ _ g(r):

Let £ denote the set of integers [ with 2'/272% < | < 2/27 and [ is not divisible by any member
of S(z). And H denote the set of integers h with z'/2*8 < h < z'/2*28_ By the definition of

g(r) we have that

Zg(r) ZZW(%,Z,l)— 7T(£C,l,1)—
r<z lel lel
g|l for some g€Q
> wlwh1) - m(z, b, 1),

heH
g|h for some g€Q

=5 — Sy — S5 —

Let’s give an estimation for Sy, S5, S5 and Sy:

e For S; we use Lemma 3.10 we have

g|h for some prime ¢>z

1/2

Si.

I
Z |7T(£L‘7l, ]_) _ 1(33)| _ O($1/2$1/2_6<10g$)5) _ O($1_6/2).
leL (1)
Hence,
! 1
D> (a1, 1) 1@; <3 Ir(e 1)~ By oo,
leL 90( el 90( )
Then
55 0l o2
2)" .
165 20 \{loga)
Using Lemma 3.12 to estimate the sum of and letting 7 = C(zzgg?’) and ¢ = 73, we
have that
1 log (2t
> :rlogt+u+(’)< o8 )>,
= o(d) t
thus

1/2—28

1
o) 2 o) 2

[<zl/2-28

1 1
T 2

p1/2-8 oo (2:1/2-8
) o () Y

1 such that g|l
where S(z)={gq}

1 such that g|l
where S(z)={q}
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Now (1) > (10ngz for a positive constant A, and [ > /Iogx by the definition of S(z).

So (1) > (k;g—viggz)A > (log 7)'/4. Hence

1 such that g|l
where S(z)={g}

and we have

1 T
ZGZL m =¢logx + O<—(logm)1/4)'
Thus .
=¢r+ O(—(loga:)l/‘l)'
For
Sy = Z m(x, 1, 1) ZZ (x,0,1)
lel qeQ IeLg|l

g|l for some geQ

using (3.24) we get

: 1 x
52 = Z Z h(x)Zm +O<(log$)2>’

qeQ leLq|l leL

Sy < li(x Z Z (%x)?)

qeQ qdeL

Z— S ﬁm(m).

qu x1/2-28 Jq<i<z1/2-B /q

Using now Lemma 3.12 we have

¢log z + O(qlog(22)2?P~1/2), for q < z'/*%
¢logz + O(qlog(2z)xP~1/2),  for z1/2-28 < g < x1/2-F
0 for q> xl/Q_ﬁ.

1
2 L0

x1/2-26 Jq<i<al/2-8 /q

Al

This is clear for ¢ > 2'/27%. Now for 2'/2720 < ¢ < £'/277, since £'/2728 /¢ < 1 we have

that
> Wt X W
1/2—2 1/2— gO(l) 1/2— QO(Z) B 1/2—
x1/2-20 [q<i<zl/2-8 /q 1<i<zl/2-8 /q l<z1/2-6/q

By Lemma 3.12 we have that

(]
B

1 /28 log(2x1/2*ﬁ)/q
Z mgﬂog( . )+(9< Ry )

11/2*25/q<l<x1/2*ﬂ/q
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. 1
since ——5 <

< ;151/2;—26 we have that

Q=

£1/2-8 £1/2-8
) < log(—37555) = Blogz.

log(
Then in this case we have

1
> — < Eloga + Oglog(20)a” )
x1/2-20 /q<i<al/2-8 /q SO( )

as desired.

Now in the first case when ¢ < /22 we have that

1 1 1
) TR = R R s

21/2-28 [q<l<al/2~8 q 1<z1/2-8 /q 1<a1/2-26 /q
By Lemma 3.12 we have
D s NG (el
e, B
and 1 xt/2-26 log(22'/%2728) /q
Z m:ﬂog( )+V—|—O< YR )

1<z1/2-28 /q

But in this case
log(22'/27) /q < log(22'/22%) /q

2128 Jq 21228 g
then we have that
1 log(2x'/*~%8
Z _:Tlog(xﬁ)—l—0< 0g(2z )/q>
e(l) x1/2728 [q
21/2-28 [q<i<z1/26 /q
Hence 1
Z —— = €logz + O(qlog(2x)x*~1/?).

o(1)

11/2*25/q<l<x1/2*3/q

We have from before that

: 1 1 x
SQSII(:C)ZF Z W+O((logx)2>'

qeQ x1/2-20 Jg<i<al/2-B /q

Then, we have

52 Sgmzqil +O<lo§x>'

qeQ
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e For S5 we use Lemma 3.11 with “€” chosen as (§ and with “Q)” being various power of

2 so that the intervals [@Q,2Q] cover the interval (z'/2*8 1/2¥28) If h is an exceptional
modulus in Lemma 3.11, we use the trivial estimate 7(z, h,1) < x/h. We thus get

1 T
Ss= > wah1)<@AB+O0B)z Y SosTiy > -

heH heH h exeption
glh for some g€Q g|h for some g€Q
Since
O(log ) 1 O(log ) QZ o) 1 o) "
S ETE M S T Sl L
hexeptlon i=1  he(Qi,2Q;)
exeption
we have
1 T
S3 < (4/3+0O ——— + O(——
3< (4/3+0(9)) heZH w(h)log(z/h) + (logx)’
g|h for some q€Q
T 1 T
S3 < (8/3+0 —+ 0
g|h for some q€Q
< (8/3+0(9), xz i1 2 (1h) +O( )
& €Q q z1/248 Jq<h<zl/2+28 /g g
Thus

Sy = (8/34+ O fo—

qEQ

)-

log x

Since using Lemma 3.12 we have

Elogz + O(qlog(2x)x=P~1/2),  for q < x'/>*8
¢logx 4 O(qlog(2x)x=21/2) for 2/2+8 < ¢ < g1/2+28
0, for ¢ > x1/2+28,

1
)

21/248 [ q<h<zl/2+28 /g

Al

This is clear for ¢ > x'/2¥28, Now for z'/?*# < ¢ < 21/2728 since 2'/?*7/q < 1 we have

that . . X
S PRI M=
@l/2+6 [q<h<al/2+20 /g #(h) 1<h<al/2+28 /g #(h) h<al/2+28 /g #(h)
By Lemma 3.12 we have that
1 $1/2+2B log(2x1/2+2ﬂ>/q
<7l o )
2 o) =" o8l q )+ a2 /g

21/2+8 Jq<h<zl/2+28 /q
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95

. 1 1 1
since —535 < p < —7z55 We have that

£1/2+28 £1/2+28
) < log( 1’1/2+’8 ) = ﬂlng‘

log(

Then in this case we have

Z L < Elogx + O(qlog(2z)z~28-1/2)

o(h)

x1/24B Jq<h<al/2+26 /¢

as desired.

Now in the first case when ¢ < /2% we have that

1 1
D= = R S )

21248 Jq<h<al/2+28 /q h<xl/2+28 /¢ B/q

By Lemma 3.12 we have

1 1.1/2-1-26 lo 2x1/2+25
Z _(h) = 7 log( )+I/+O< g;1/2+2ﬁ/ )/q
h<axl/2+28 /¢ ¥y 4
and
L1/2+8 10g(2:z:1/2+5)/q

1
Z W:Tlog( )—f—u—l—@(

1/2+8
h<zl/2+6 /q r /q

But in this case
log(22'/2120) /q - log(22'/%17) /q

xl/226 /g ZV2B g
then we have that
1 log(221/215) /q
S ) o2
x1/248 Jq<h<al/2+28 /q QO(h) rl/2+ 5/(]
Hence X
> —— = ¢logz + O(qlog(2x)zP~1/?).
1/2 1/242 (,O(h)
@1/2+68 Jq<h<al/2+28 /g
e Lor

Sy = > 7(x, h,1)

heH

g|h for some prime g>xz'/2

we use the Lemma 3.8 and we thus get

1
Sy < 22 ]; (h)log(x/h)’

g|h for some prime g>zl/?
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2x 1
Si S —,
w@T 2w
g|h for some prime ¢>z

seo(l X )

heH
g|h for some prime ¢>z

1 1 1
> S X T2
heH v z/2<q<at/2426 1 7
g|h for some prime ¢>z q prime

1/2

1/2

Now

1/2

By Lemma 3.12 we have

og (2227
;ﬁ ﬁ _ Tlog($2ﬁ) + @(%) = O(Blogz).

And by Mertens’s theorem we have that

1
Z— ~loglogU, U — oo.

p<U

For ¢ > 2 we have q+1 < € then we have that

<
q

1
Y. o ~loglog(a"*) —loglog(s'/?) = O(8).

2/2<qazl/2+28 q
q prime

Thus

heZH ﬁ = O(3*log x).

gq|h for some prime g>z1/2

And so we get
= O(p%z).

Now putting together the estimates for Sp, .55, 53 and S4, we have that

Zg(r) > 530(1 — (11/3+ O(B)) Z q_%) + O(B%*r) + O(ﬁ).

r<z qeQ

Using qug - < 3/11 — € we obtain

> atr) = (1= (11/3+ 0 (57— 9) + (G577

r<z

and hence

> glr) > £x<E€+O(ﬂ)) +O<(1og$W)'

r<z
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Thus if 5 is chosen as a small absolute constant times €, we have

> g(r) = e,

r<z

Now we have

Zg(r) > e€x and Z(g(r))2 = O(%x(log :1:')2>,

and : -
N () (Seen?)
Hence 7 7
N 2 (& (0(attona”)) = (€0 () = (o) = Oogaye)

so, we may choose d. as a small constant time €°, and the theorem is proved.

3.2.3 The continuous Frobenius problem

Given a finite set of positive coprime integers, every sufficiently large integer may be written as
a nonnegative integral linear combination of the given set. The problem known as the Frobenius
postage problem is to find the largest integer which cannot be so represented.

The goal of this subsection is to prove the following result that might be viewed as a continuous
analogue of the Frobenius postage problem.

Proposition 3.7. [Daniel Bleichenbacher] Suppose S is an open subset of the positive reals
that is closed under addition, and such that 1 ¢ S. Then for any number t € (0,1], the dz/x
measure of SN (0,t) is less than t.

Proof. Let M be a positive differentiable measure on the positive reals, with derivative m. Thus
if § is any measurable subset of the positive reals with characteristic function ygs, we have

M(S) = /000 xs(z)m(x)dx.

Let S be as in the hypothesis of the theorem, and S; = SN (0,¢). Let suppose that S; is a
finite union of open intervals; that is

where
t>by>a1>--->b,>a,>0. (3.25)
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Let a = (ay,...,a,), b = (by,...,b,). The condition that 1 is not in the additive semigroup
generated by S; is equivalent to the assertion that for all vectors h € (N>)",

eitherh-a>1orh-b<1. (3.26)

That is, it is not the case that h-a <1 < h-b.

Suppose now that we fix the vector b and assume that
t>by >by>--->0b,>0. (3.27)

If 5 > 1/b, is an integer, taking h = (0,...,0,7) we have h-b = jb, > 1, then (3.26) implies
that ja, = h-a > 1 thus that a, > 1/j. In particular, we must have a, > b,/2 (taking for
example j = [1/b,] + 1). Hence, the set of vectors a which, with the fixed vector b, satisfy
(3.25) and (3.26) form a compact subset of (R5()™. Thus there is a choice of the vector a which
maximizes M (S;) for the given vector b. We will call this maximum M;, and assume that a is
fixed at a choice which produces this maximum.

Note that as we allow empty intervals, it’s possible that we have the case a; = b;. It is clear
that if we delete some coordinates from b to form a shorter vector b’ we will have My, < M.
Then by possibly replacing b with a shorter vector, we may assume that each a; < b;.

If we can assume that a;_1 > b; for 2 < i < n we may assume that the vector a satisfies

1>by>a;>--->b,>a,>0. (3.28)

Let’s show that we can assume that a;_; > b; for 2 < ¢ < n. Suppose that a; 1 = b;, we may
consolidate the two intervals (a;, b;), (a;_1,b;—1) into an interval (a;,b;_1). In fact, if 1 is not in
the additive semigroup generated by S; Ub;, we can consolidate it; if not 1 is representable by a
sum of members of S; U b;, so that b; must be involved in the sum, say with a positive integral
coefficient ¢. If ¢ = 1, for a suitable small ¢ we can replace in the sum b; by b; + € and then
replace another member x € S; of the sum with  — € (there must be another number in the
sum since b; < 1). If € is small enough, b; + € and = — € are in S, and we have represented 1
as a sum of members of S, a contradiction. Now if ¢ > 2, then since b; + -5 and b; — € are
both in S; for € a small enough, we can replace cb; in the sum by (c — 1)(b; + -5) + (b — €),
and so 1 is represented as a sum of members of S, a contradiction. Hence we may assume that
a;—1 > b; for 2 <i < n and then that a satisfies (3.28).

Now let

ng{he(NZO)":h-a<1},
le{hE(Nzo)nih'azl},
ng{hE(NZO)":h-a>1}.

Since the a; are fixed positive natural numbers, it follows that Hy, H; are finite sets. We
now show that by contradiction that H; is not empty. Suppose that H; is empty and let
u=(1,1,...,1).
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Claim: if € > 0 is small enough, then the pair a — eu, b still satisfies (3.26) and (3.28).
Assuming this claim, we will have a choice for S; with strictly larger M (S;), a contradiction,
thus H; is non empty.

Let’s now prove the claim: it is clear that we may choose ¢ > 0 small enough so as to
preserve the condition (3.28). For h € Hy we have h - b < 1, so the vectors in Hy do not pose
a problem for condition (3.26). Since H; is assumed empty, H; also does not pose a problem.
Now there are only finitely many h € Hy with h-a < 2. In this case, we can found an ¢ > 0
small enough so that h- (a—eu) > 1 for all such h. Now if h-a > 2 and if we choose € < a,/2,
then h- (a—eu) > th-a > 1. Hence a — eu, b still satisfy (3.26) and (3.28). Hence the claim
is proved and H; is non empty.

Let h € H;, and for notational convenience, let a,.1 = b,.1 = 0, and e, be the k-th
standard basis vector in R"™. For any k, since h-a =1 and a; > axy1, we have

h-a—ap+ap <1.

Suppose that h, > 0. Let h" = h — e;, + e;4 in the case that £ < n and let h" = h — e}, in the
case that K =n. Then h’' € Hy. Hence, from (3.26), we have that h’ - b < 1. That is,

h-b—b,+ by < 1.
Since h € H; we get that
h-(b—a)=h-b—1<b,—bp1 <1.

Thus we have

Let v € R" and let

n

fu(z) = M( U(ai + zv;, bl)>

=1

For m(a) = (m(ay),...,m(a,)), we have that
£(0) = —vm(a).
In fact let U = |J_, (a; + zv;, b;) with characteristic function x;, we have
fle) = [ xomwdn
0

then
d < [
fl) = 23 [ N (wm(w
i Jo

, n d b; n d a; +xv;
) =35 [ mae= =32 [
j= @ i=1 i

itxv;
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thus
f1(0) = — Zm(ai) -v; = —v-m(a).

Note that by the maximality of a, if a + v satisfies (3.26) and (3.28) for all z in some
interval [0, €) with € > 0, then f!(0) <0, that is v-m(a) > 0. Let’s see that this occurs when
h-v >0 Vh € H,. Indeed suppose that

h-v>0Vhe€ H; and (3.30)

h'-(a+a2v) <1<h' bfor some h' € (Nsg)™ (3.31)

Since h-b < 1 for all h € Hy we have h' ¢ Hy. If h" € Hy h'- (a+ 2v) = 1 + zh’ - v, then
by (3.30), h' - (a+ av) > 1 for all z > 0 so that h’ ¢ H,. For any given ¢ > 0, there are only
finitely many h’ € Hy with h’- (a + ev) < 1 < h'-a. Reducing the size of € to a small enough
positive quantity makes this set of h’ empty, and so h’' ¢ Hy.

It follows that for € > 0 small enough, if (3.30) hold, then ax + v satisfy (3.26) and (3.28) for
0 <z <e and so v.m(a) > 0.

We now apply a theorem of Farkas [6]:

Lemma 3.13 (J. Farkas). Suppose A is an nx k real matriz and m € R". Then the inequalities
Av >0, m-v < 0 are unsolvable for a vector v € R™ if and only if there is a vector p € R¥
with p > 0 and p' A = m.

(We say that a vector is > 0 when each entry of the vector is > 0). Say H; = {hy,...,h,},
and let each h; = (hj1,...,hj,). We apply this lemma to the matrix A whose rows are the u
vectors in H; and to the vector m = m(a). Since we have already shown that Av > 0 implies
m-v > 0, the lemma implies that there is a vector p € R* with p > 0 and p? A = m. We have

ijhji =m(a;) for 1 <i <n.
j=1
Multiplying (3.29) applied to h; by p; and summing over j we have for 1 <k <n
D by hilbi = ai) < pihy(br = b)) = m(ar) (bx = bpia).
j=1 i=1 j=1

Multiplying by a; and summing over k, we get

n

> ard ik > hilbi —a;) < agm(ag) (b — bes)- (3.32)
k=1 j=1 i=1

k=1
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The left side of (3.32) is

S arhi > hiilbi—a) =Y p; Y b — a;)
1 i=1 =1 =1

j=1 k=

= Z(bz — a;) ijhji
i=1 j=1

= Z(bi — a;)m(a;).

Thus,

n n

> (b = aiym(a;) <Y agm(ar) (b — brga)- (3.33)

i=1 k

Il
—

Now, taking the measure M being dx/x, each m(a;) = 1/a;, thus we have

n

> (bifai—1) < (b — b)) <t (3.34)

i=1 k=1

3

However, M ((a;,b;)) = log(b;/a;) < b;/a; — 1. hence, by (3.34)

My = Zlog(bz/al) < t.
=1

Thus the proposition holds for S; being a finite union of disjoint intervals; it remains to
handle the case of S; being the union of infinitely many disjoint open intervals. Suppose
Sy = U2, (a;,b;), where the intervals are non-empty and disjoint. For each n, (3.34) implies
that Y ,(b;/a; — 1) < t. Thus,

Z(bi/ai —-1) <t
i=1
But
M(S) = log(bi/a;) <> (bifa; —1) <,
1=1 i=1
so M(S;) < t. This concludes the proof of the theorem. ]

Remark: The inequality of the theorem is the best possible. Indeed, suppose S, is the
additive semigroup generated by (1/(n + 1),1/n), where n is a positive integer. Then 1 is not
in S and we have

|tn]
M(Sp) =) log(1+1/n) = [tn] (1/n+ O(1/n’)) ~ t as n — 0.

Jj=1
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3.2.4 Proof of Theorem 3.2

We are now ready to prove Theorem 3.2 whose statement is

Theorem 3.2 There is a deterministic algorithm such that for each integer m > 0 the
algorithm produce an integer D,, and further, for each integer n > 1, and each integer D
with D > D,, and D > (logn)'Y/$*Y/™ the algorithm finds a period system (ri,q1), ..., ("%, qx)
for n with each r; < DS and each q; < D3/11, with D < quqz---qx < 4D, and with k =
O((loglog D)?). The running time of this algorithm is O(D*¥1). The implied constant may
depend on the choice of m.

Proof. We have that D > (logn)1Y/0+¢, Let x = D®/M=¢/1 5o that if n is sufficiently large,
we have that o > (logn)!*3/108loglosn [et o = a(x) = 1/loglogz. For a prime r < x, let

Q(r) = {q prime : ¢|(r — 1) with 2*° < ¢ < z"/? and ord(n"""/9mod r) = ¢}.

We suppose that Q(r) have been computed for each prime r < z, and we denote

Q=[Jam).

r<z

For each ¢ € Q, find the least prime 7, with ¢ € Q(r,).
We use a modified sieve of Eratosthenes to find the prime factorization of every integer up to
7; the cost of this is O(xlogn) = O(D2?/11).

For a bounded interval I, let |I| denote the length of I. Let N = [3a~?logz].
Definition 3.10. For eachi=1,2,..., N, let
o I = [2l-D/N gi/N)

Note that the intervals I; are a partition of [1,x), and that the “expected” number of primes in
I; is about |I;]/log(z*/™).

o kY =min{#(;NQ), ||L;|/log(z/")|};

b 0, ifk)<2a?
YL KY, otherwise;

Q; the set of the least k; primes in Q N I;;

Ji = (20D DN 4k log(a'/Y)) ;

S; = <1og (2D Nog (2N 4k, log(xi/N))> ;

S is the additive subgroup generated by | J, m&.
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Note that each J; C I;, the sets Q; are disjoint with their union contained in Q, and that
J; = 0 for i < a®N. Since for i < a®N, I; = [z(®*N=D/N 20%) or all the ¢ € Q are such that
2 < ¢ < 22, hence I; N Q = P and we have J; = () as desired.

To prove the theorem we need the following three claims we will prove at the end of this
section.
Claim 1: For n sufficiently large, we have

1 3—¢€
Z§> —

qeQ

(3.35)

Claim 2: For n sufficiently large, we have

1 3 €
I I (3.36)

i qeEQ;

Claim 3: For n sufficiently large, we have
du 3 €
— > — - —. 3.37
zz:/sl U 11 10 ( )

Note that if S; # () we have 20~D/N < 21/2 thus /N < 2'/2+1/N: hence we have

log z*/N < log(x!/2H1/N) < (1 1 )( log © )

log(2D) —  log2D 2 + N/ \log2D

As 2 = DO/1D=€/4 e have 18Z — 6 _ < hapce
log D 11 4

log /N 1 1\/6 € IN/76 € 3 €
st < )G~ < G- <G -5)
log(2D) 2 NJ/\11 4 2/\11 4 11 9

Thus from Claim 3 we have, for n sufficiently large, that

3/11—¢/9
Xs(u) /du 3 €
XS gy = w2 _f
/0 u Z o u 119

Thus, from Proposition 3.7, we know that 1 € S. Hence there is a finite subset F' of U,S5;
and a positive integer r; for each f € I, such that

Z krf =log(2D).

fer

Let F; = FNS; and k; = ZfeFi ky. Then, for sufficiently large n, we obtain

1
Zni:ZZﬁfSZWZﬁff.

i feF; i TEF;
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As a=a(x) =1/loglogz, N = [3a~2logz], for sufficiently large n, we have
log(2D) 5
i — s < 2077 3.38
ZK/ log xa2 N-1 ;erF f log xa2 N— ) « ( )

The last inequality holds since we have z = D%11=¢/% let’s call A = 6/11 — ¢/4, we have
that 24z = (2D)%, hence we have that Alog(2D) = Alog?2 + log z thus

log(2D) B log 2 n 1
(a2—1/N)10gx_ (2 —1/N)logz (o> —1/N)A
Recalling 1/N < =2 for a sufficiently large  and € < 2/11, we have a? — 1/N > o?(1 —
3logx) > 0 and ( OgI)A > 2. Hence
log(2D) 1 1 2
T 1/N)logz (@2 — I/N)A = a2(1 AT
(0 =1/N)logz = (a®> =1/N)A = (1 = 55)A ~ «a

Since, for each i with S; # (), we have k; > 2a~2, it follows that for each ¢ with x; > 0 there
are more than k; distinct primes in Q;, because there are k; primes and we have k; > 2a72 >
> ki We will call such primes g1, ga, - - - ; @y i-

Since log(z(~Y/N) < f < log(z"/N) and k; = > fer iy, We have

Z/’fff Zanf<Zlog i/N) Z/{f_z&log i/Ny,

feF i fer; fEF;

On the other hand, since g; > log(x="/") we have

Z i: log(gi,j) > Z ki log (= D/NY,
v i

Hence we have

> nsf - ZZlog (4:)] < Zm<10g( ) = log(@ M) = log (M) Y i

fer

Therefore by (3.38), and N = [3a~2logz]|, we have

> e - zzlogq”|< ) g0 <2

fer

Hence, recalling that >, . rpf = log(?D), we have that

0 < |log(2D) — ZZlogq”|—|—log2D +log<Hqu> —,
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S=ee(ITM1Y92) <5

Since 1 < €5 < 2, it follows that

Thus

We conclude that there is a squarefree integer ) in the interval (D,4D) supported solely
on primes from Q. By sieving this interval with a modified version of the sieve of Eratosthenes
that produces a complete prime factorisation for each integer in this interval, we may find such
an integer ), and with a running time of at most O(D). Once we had found @, the pairs (1, ¢)
with ¢ running over the prime factors of (), form a period system for n. This completes the
proof of the theorem. It remains to prove the three claims:

Proof of Claim 1: for n sufficiently large, we have

1 3—e€

qeQ

[

By contradiction, suppose not. We apply proposition 3.3 to Q, with the “¢” of the proposition
equal to €/11. Thus, there is some § > 0 such that for n sufficiently large we have at least
6x/(log z)? primes r < x such that every prime factor of 7 — 1 is below '/ and not in Q.

As in proposition 3.2 let

R(z,n) = {r primes : (r — 1) has a prime divisor ¢ > z*" and ord((n" /%) mod ) = ¢}.

By the Remark of proposition 3.2 we get [{r primes : r < x,r ¢ R(z,n)}| = O(W).
Thus, for n sufficiently large, there is a prime r < z counted by R(z,n) such that (r — 1) has
every prime factor below z'/? and not in Q.

But if r is in R(x,n) for all ¢|(r — 1), 2*° < ¢ < 2"/? and ord((n"~Y/7) mod r) = ¢, we obtain
q € Q and hence we have a contradiction. This complete the proof of Claim 1.

Proof of Claim 2: if n is sufficiently large we have

The difference between 3, > o % and qu% comes from two sources:
1
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1. intervals I; with k) < 2a72 and
2. intervals I; with #(I; N Q) > ||L;|/log(z"/M)].
Let’s see what is the contribution by each one of this sources to the final sum. For the first
one, note that
S % <22y ﬁ

q€l;:k;<2a~2 i>a?2N

since kY < 2a72, thus we know that there is no more than 2a~2 primes in this sum, and that
each one of this primes is in I; thus ¢ > 2¢~Y/N. The sum is over the nonempty intervals, i.e.,
over i > o?N. For n sufficiently large

1 2%/ 1
2077 . < < : 3.39
@ ga;N 2D/ S Qg (ZUN 1) S gige? (3.39)
The first inequality holds since
1 1 IR T 1
Z 2(—1/N — Z 2(—1D/N Z 2(—1/N r (Z 2(/N) Z x(l/N)i>'
i>a?N 1=0 i<a?2N =0 i<a?N
We have a geometric series, thus
2 2N
- 2(i—1/N N 1 202—1/N — LI/N _ | 1702
i>a
and finally we have
1 $2N
> = < — .
p(i—1)/N e (;Ul/N _ 1)
i>a?N

In the second inequality (3.39), we use the notation “a < b” for “there exist a positive
constant ¢ such that a < ¢b”. In order to prove this inequality we see that

222N 1
_ — 4
(/N —1) ST 2 (3.40)

where 7 is a suitable positive constant, that we will determinate. As we are interested in large
values of x, to prove this inequality is equivalent to prove

222/M 1
@M 1) oz

where M = 3(logz)a2. The following inequalities are equivalent to the previous one:

20M < 7o 2 (2VM — 1),



Chapter 3. Lenstra-Pomerance Algorithm 67

2(exp(%logm)) < Ta_2<(exp(%logx)) — 1),

2 2

2exp <%) < Toz_z((exp (%)) — 1).

we have to see for which 7 we get

Tre* —1
2“<—( >
¢ 3 U

But since lim, ..o u = 0, lim,_ge* =
T > 6, the inequality (3.40) holds.
Thus, if n is sufficiently large, the contribution coming from the first source is negligible.

a

Letting u = <,

L — lim,_e* = 1, we have that for

Now, let’s calculate the contribution of the second source, i.e. we are in the case where the
intervals I; are such that #(; N Q) > ||I;]/log(z"/")|. Let

A = { the largest #(; N Q) — U[ﬂ/log(xi/N)J primes q € I;}.
By the prime number theorem, the total number of primes in [; is at most

Li/N

1/ 108(e")) + O (o=

Then, we have that

Z < Z/N21<< long/N»

qGA

Hence the contribution for each 7 is

1 N?2
(eaemye) = O (Poair)

As in the previous case, we sum over 1 > a?N, and the total contribution is

O(@) - O(a‘lli)gx)

Since

1—a? 1
-2
Z / =N <an

i=a?N

even this contribution is negligible as well. This proves Claim 2.

Proof of Claim 3: if n is sufficiently large we have

JERS
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We have by Claim 2 that
1 1 3 €
DF LRI I LS R (3.41)

We know that, if S; # 0, that is, if k; > 0, then

d log (z0=Y/N 4 k; log(z/N
B _ g ( g ( - Ng( )))
log(z(=1/N)

5; U
To simplify the equation we are going to define a; and b; as follows:
a; = x"IAN b; = k;log(z'/™).

Hence, we have
du = log (—log (a: + bl))

5, U log a;
Now,
b; bi\ 2
log(a; + b;) > loga; + — — <—>
a; a;

and so we can write

e () i (-2 502
s, U a;loga; loga; \a; a; log a; a; a; a;

Then, putting the values of a; and b; we have:

5 U p(=1)/N 2 (i—=1)/N ’

Since k; > 0 and it is defined to be less or equal than |I;|/log(z*/"), we have that

2
k; log<xz/N) < x(i—l)/N _ xi/N — m(i*l)/N(évl/N N 1) < %x(ifl)/]\f

a2

The last inequality holds since N > 3a~?log z, thus + < 71 Hence
a? Qiz a2 0‘2
xl/N < p3lgr = elog(xBIng) — g3logz log = 6?7
therefore we have 2 2
1/N « o
x l<es — 1 — < —.
3 2

Thus,

Then by (3.41) we have

du ki 3 € 3 €
ZoY s> (- (G- ) > -k
Z/s“ ;x“—”ﬂv( ==l )70y

since lim, . a = lim, .o, 1/loglogz = 0. This concludes the proof of Claim 3, and hence
Theorem 3.2 holds. O



Appendix A

Computational cost

We said that a polynomial f has order g or f(x) = O(g(x)) if 3C' > 0 and xy > 0 such that for
every x 2 o, |f(z)] < Clg(z)] .

Repeated Squaring method:

The goal is to compute n* (mod r), where k € N*. For this let’s write n* as a product of
powers, which base is n, and the exponent is a power of 2.
For example if k = 23 = 1 + 2 + 4 + 16, thus n* = nn?n*n'6, and we just have to compute in
this case 4 element to the power 2, for a total of 7 operations and not 22.
In general we can see that we have to do O(log, k) squares modulo 7, each one has O(log 7).
Hence, the total cost of n* (mod r) is O(log, klogs )

Let f be a polynomial in Z/nZ[z| of degree r—1. Let’s prove that the cost of f(x)" (mod z"—
1,n) is O(r?login): using the same idea of the repeated squaring method, we have to know
the binary representation of n, and the problem is reduced to multiply at most (log,n) times
f(x)? (mod z" — 1,n).

Now let’s show that the cost of computing this square is O(r?logan). In this case the cost of
f(z)*(mod 2" — 1,n) will be O(r?login). For this we have to:

e compute the square of f(x)(mod n): this means to do O(r?) products (mod n) therefore
the cost is O(r?login)

e reduce it (mod z" — 1): Let h(z) = f*(x)(mod n) = Z?LEQ h;x® with h; (mod n).

h(z) = hox + hyz' + -+ hp_g2™ 4 hpa” + R 4 Ry g2 2
To reduce (mod z" — 1) we need O(r) sums, each one of cost O(log, n), in fact:

r—2
h(xz) = <Z<h’ + hiprx")) + hy_12" mod (2771, n).

i=0
Therefore this second step costs O(rlog, n). Hence the total cost of f(z)* (mod 2" —1,n) is
in fact O(r?log®n).
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We have now prove the cost assumed in table 2.1 at the end of Chapter 2. Now let’s see
the cost we used in Chapter 3.

Using fast Fourier transform (FFT):

The notation O(X) means a bound ¢; X (log X ) for suitable positive constants ¢y, cs.
In chapter 9.5 of [3] we can see that the bit complexity of multiply two size-N numbers using
FFT is
O(log N (loglog N)(logloglog N))

By chapter 9.6 of [3] we know that multiplying two degree-D polynomials in Z/,,,Z[z], that is,
all coeflicients are reduced mod m is

O(M(Dlog(Dm?))), (A1)

where M (n) is the bit complexity for multiplying two integers of n bits each. With the FFT
we have:
O(log m(loglog m)(log log log m)(D log(Dm?))),

using the O notation, we have that the total cost is

O(Dlog(m)(log D + logm)). (A.2)

Where D is much smaller than m we have that the bit complexity for multiplying two
polynomials of degree D in Z/mZ is

O(D(log m)?). (A.3)

We know that the inverse of a polynomial of degree D in Z/mZ is O(D(logm)?), and that
the computational cost to perform Euclid’s algorithm on h(z) and g(z), two polynomial of

degree D on Z/mZ is O(D(logm)?).
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