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0.0.1 Outline of the paper
Given a Hida family F of tame level W , for a quadratic imaginary field K that
satisfies the Heegner hypothesis for W , one can construct some classes in the
Galois cohomology of a self-dual twist of Hida’s big Galois representation asso-
ciated to F , which are called big Heegner points. When two families intersect,
a natural question is to compare the big Heegner points at the intersection. We
show that the specializations at intersections agree up to multiplication by some
Euler factor that arise from the difference in the tame levels.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Bloch-Kato conjecture
Let K be a number field, p a rational prime and and fix an embedding Qp ↪→ C.
Let V be a p-adic geometric Galois representation of GK 1, i.e. V is a finite
dimensional Qp-vector space, as a GK-module is unramified almost everywhere
and de Rham at all places dividing p. To such a representation one can associate
two different obiects: a complex L-function L(V, s) and the Bloch-Kato Selmer
group H1

f (K,V ).

L(V, s) analytic

V

44

))

H1
f (K,V ) algebraic

The L-function is defined by an Euler product over the finite places of K

L(V, s) =
∏
v-p

det

(
Id− (Frob−1

v q−sv )|V Iv

)−1∏
v|p

det

(
Id− (ϕ−1q−sv )|Dcrys(V|Gv )

)−1

where qv is the cardinality of the residue field at v, ϕ = φfv with φ the crystalline
Frobenius and fv is the integer such that qv = pfv . It is absolutely convergent
for <(s)� 0 and conjecturally it has a moremorphic continuation to the whole
complex plane; moreover if V is irreducible and V 6∼= Qp(n) then L(V, s) should
have no poles.

The Bloch-Kato Selmer group is defined as

H1
f (K,V ) = ker

(
H1(K,V ) −→

∏
v-p

H1(Iv, V )
∏
v|p

H1(Dv, V ⊗Qp
Bcrys)

)
1Fontaine and Mazur conjectured that every p-adic geometric Galois representation comes

from geometry, i.e. it can be realized as a subquotient of a Tate twist of an étale cohomology
group of a proper and smooth variety over K.
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whereDv is the decomposition group at v and Iv the inertia. It could be thought
as a generalization of the Mordell-Weil group of an elliptic curve. A more
concrete description, an element of H1(K,V ) that corresponds to an extension

0→ V →W → Qp → 0

is in H1
f (K,V ) if and only if the sequences{

0→ (V|Dv
)Iv → (W|Dv

)Iv → Qp → 0 v - p
0→ Dcrys(V|Dv

)→ Dcrys(W|Dv
)→ Dcrys(Qp)→ 0 v | p

are all exact, where Dcrys(V ) :=
(
V ⊗Bcrys)

GK .
The Bloch-Kato conjecture predicts a strong relationship between the two

different objects attached to V . For the purposes of this introduction we will
consider the following version

(BK) ords=0 L(V ∗(1), s) = dimQp
H1
f (K,V )

where V ∗(1) is the Kummer dual of V and we assume that V does not con-
tain Qp(n) as a subrepresentation. Notice that the conjecture becomes more
interesting when V is self-dual, V ∼= V ∗(1), because in that case only one rep-
resentation is in the game. Furthermore, a priori L(V, s) is not even defined at
s = 0 and if it is, it is only through the process of analytic continuation. It
amazes me how the process of analytic continuation can put together all the
local information coming from the definition of L(V, s) as an Euler product to
produce a global invariant of V .

Examples 1.1.1. Let E be an elliptic curve over Q and V = Vp(E) the p-adic
GQ-representation associated to it. Here L(V, s) = L(E, s+ 1) where L(E, s) is
the usual L-function associated to an elliptic curve. By Weil pairing V is self-
dual and if the p-torsion part of the Tate-Shafarevich group of E is finite, the
Kummer map k : E(Q) ⊗Z Qp → H1

f (Q, Vp(E)) is an isomorphism of Qp[GQ]-
modules. Thus (BK) becomes

(BSD) ords=1 L(E, s) = dimQp E(Q)⊗Z Qp.

More generally2 we can consider an eigenform f of level Γ0(N) and even weight
k and V = Vp(f)

(
k
2

)
, where Vp(f) is the Galois representation associated to f

by Deligne.

1.1.2 Heegner points and the Gross-Zagier formula
A way to state the modularity of an elliptic curve E/Q is to say that there exists
a modular parametrization defined over Q

ΦN : X0(N)/Q −→ E/Q

where X0(N) is the compact modular curve of level Γ0(N). The arithmetic
applications of such a map come from the theory of complex multiplication. CM
theory provides an analytic construction of class fields of quadratic imaginary
fields and combined with the modular parametrization allows the construction

2After the work of Taylor, Wiles and others, all elliptic curves over Q are modular.
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of special points on E, called Heegner points, that are defined over such class
fields.

Points on X0(N)(C) are equivalence classes of couples
(
E(C), n(C)

)
where

E/C is an elliptic curve and n is cyclic subgroup of order N . To construct
Heegner points, let K/Q be a quadratic imaginary that satisfies the Heegner
hypothesis for N , i.e. there exists N ⊂ OK ideal such that OK/N ∼= Z/NZ.
For any positive integer c coprime with N , consider

Qc = [(C/Oc,N−1
c /Oc))]

where Oc is the order of conductor c of K and Nc = N ∩ Oc. Qc is called a
Heegner point of conductor c on the modular curve. Furthermore

Qc ∈ X0(N)
(
Hc

)
where Hc is the ring class field of K corresponding to Oc, i.e. if K̂× are the
finite idels of K and if Ôc is the closure of Oc in K̂, then Hc is the abelian
extension of K corresponding to the group of norms K×Ô×c .

The great merit of the Gross-Zagier formula is to show the relation

Heegner points // Derivatives of L− functions.oo

It states that if we define P1 = ΦN (Q1) ∈ E(H) and PK = TrH/K(P1) ∈ E(K)
then the height of PK is equal to the derivative of the L-function associated to
E at 1 up to a non-zero constant .

〈PK , PK〉
·
= L′(E/K, 1).

Recall that L(E/K, s) = L(E, s)L(E′, s) where E′ is the quadratic twist of E
over K.

To generalize the construction of Heegner points it is necessary to see them
as cohomology classes. The modular parametrization induces a morphism of
abelian varieties ΦN : J0(N) → E from the Jacobian of X0(N) to the elliptic
curve, as it is isomorphic to its own Jacobian; combining it with the Kummer
morphism we get the following commutative diagram

J0(N)(K)

Kum

��

ΦN // E(K)

Kum

��

H1
(
K,Tap(J0(N))

) Φ∗N // H1
(
K,Tap(E)

)
that explains why big Heegner points are constructed as cohomology classes of
some big Galois representation.

1.1.3 p-adic variation
The theme of p-adic variation is very important in modern number theory. The
aim is to use the more arithmetic notion of p-adic topology to put objects of
arithmetic interest in families and to be allowed to use limit arguments.

To be a little more precise, let M be an arithmetic object and suppose there
exists a p-adic family {Mk}k∈Cp

that varies in a well-behaved manner and for
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which there exists k0 ∈ Cp such thatMk0
= M∗ 3. If we are able to show that

a property P is true for Mk for k in a neighborhood of k0, we may ”take the
limit for k → k0” and obtain that also M∗ satisfies P.

In this paper, the theme of p-adic variation is applied to the following situ-
ations.

p−adic variation+


f eigenform

Vp(f) Galois representation

Heegner points

=


Hida family

big Galois representation

big Heegner points

1.2 Setting

1.2.1 Hida families
Fix a prime p ≥ 5 and embeddings Q ↪→ Qp, Q ↪→ C. Let O be the ring of
integers of F a finite extension of Qp and Λ = O[[Γ]] the Iwasawa algebra where
Γ = 1 + pZp.

Definition 1.2.1. If A is a finite and flat, commutative Λ-algebra, a continuous
O-algebra map A→ Qp is arithmetic if the composition

Γ
γ 7→[γ]−→ A× −→ Q×p

has the form γ 7→ ψ(γ)γr−2 for some integer r ≥ 2 and some finite order
character ψ of Γ. We denote the set of arithmetic maps of A by Xarith(A) and
we may call it also the set of arithmetic points of A.

Λ-adic modular form

A Λ-adic modular form is a formal q-expansion

H =
∑
n≥0

Anq
n ∈ FracΛ[[q]]

and we let Rh = Λ[{An}n∈N] be the Λ-algebra generated by the coefficients of
H, which we suppose to be finite and flat over Λ. For every arithmetic point
ν ∈ Xarith(R) we denote by

ν(H) =
∑
n≥0

ν(An)qn ∈ Qp[[q]]

the specialization of H at ν.

Definition 1.2.2. Let W be a positive integer prime to p. A Hida family of
tame levelW is a Λ-adic modular form whose specializations at arithmetic points
are p-ordinary, p-stabilized newforms of tame level W .

Recall that a newform is p-ordinary if the pth coefficient of its q-expansion
is a p-adic unit. Moreover, with p-stabilized newform of tame level W we mean

3Usually we do not get back exactly M but a M∗ which is M minus ”the Euler factor at
p”
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either a newform for Γ1(Wpr) with r ≥ 1 or the p-stabilization of a p-ordinary
newform on Γ1(W ).

The utility of the theory of Hida families comes from the following theorem
(Theorem 1.2 [4]).

Theorem 1.2.1. Let h ∈ St(Γ0(Wp), ψ;O) be a p-ordinary, p-stabilized new-
form of tame level W , then there exists a Hida family H of tame level W whose
specialization at an arithmetic point is h.

For a given h, we can construct the Hida family passing through it consid-
ering an irreducible component of the universal ordinary Hecke algebra. Let’s
recall the construction for h ∈ St(Γ0(Wp), ωu;O) p-ordinary and p-stabilized.

Hecke algebra

We keep the normalizations considered in ([5]). Let Xs(W )/Q be the complete
modular curve classifying triples

(E,w, π) (1.1)

where E/Q is an elliptic curve, w is a cyclic subgroup of order W and π ∈ E[ps]

is a point of exact order ps. For a ∈
(
Z/psZ

)×, the diamond operator 〈a〉 acts
on Xs(W )/Q by

〈a〉(E,w, π) = (E,w, a · π).

For a prime `, let Xs(W ; `)/Q be the modular curve classifying quadruples

(E,w, π,C)

where (E,w, π) is as in (1.1) and C is a cyclic subgroup of order ` such that
C∩w = {0} and C∩〈π〉 = {0}. There are finite morphisms α, β : Xs(W ; `) −→
Xs(W ) given by

(E,w, π)
α←− (E,w, π,C)

β−→ (E/C,w + C/C, π + C).

They define a correspondence

Xs(W ; `)

α

yy

β

%%

Xs(W )
T` // Xs(W )

which acts on various cohomology groups, both covariantly: T`,Alb = β∗ ◦α∗ and
contravariantly: T`,Pic = α∗ ◦ β∗. As the operators T` behave differently from
the others when l |Wp, we denote them by U`.

The diamond operators 〈a〉 : Xs(W ) −→ Xs(W ), a ∈
(
Z/psZ

)×, act on
cohomology by

〈a〉Alb = 〈a〉∗, 〈a〉Pic = 〈a〉∗ = 〈a−1〉∗ = 〈a−1〉Alb.

If f ∈ Sk(Γ0(W ) ∩ Γ1(ps), ψ,Qp) is a p-adic modular form, where ψ :(
Z/psZ

)× −→ Qp is a Dirichlet character, the action of the diamond oper-
ators is given by

〈a〉Albf = ψ(a)f.
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If f =
∑
n≥0 anq

n ∈ Qp[[q]] is viewed as q-expansion, then

T`,Albf =
∑
n≥0

an`q
n + `k−1ψ(`)

∑
n≥0

anq
n`

and
U`,Albf =

∑
n≥0

an`q
n.

Let hW,s be the O-algebra generated by the Hecke operators T`,Alb (` -Wp),
U`,Alb (` | Wp) and the diamond operators 〈a〉Alb, a ∈ (Z/psZ)×, acting on the
space of p-adic cusp forms S2(Γ0(W ) ∩ Γ1(ps),Qp). Hida’s ordinary projector
eord = lim Um!

p,Alb defines an idempotent in each hW,s, and these are compatible
with the natural surjections hW,s → hW,s−1 induced by restricting the action to
the subspace S2(Γ0(W ) ∩ Γ1(ps−1),Qp). If we define hordW,s = eordhW,s, then

hordW = lim
←,s

hordW,s

is the universal ordinary Hecke algebra. We make it into a O[[Z×p ]]-algebra by
[z] 7→ 〈z〉Alb for z ∈ Z×p , and we find that it is finite and flat over Λ (Theorem
3.1 [3]). We are also interested in the quotient of hordW that acts faithfully on the
space of newforms and we denote it hnewW .

Recall that O[[Z×p ]] has a decomposition
∏

i∈(Z/(p−1)Z)×
Λei where

ei =
1

p− 1

∑
δ∈µp−1

ω−i(δ)[δ]

is an idempotent.
A p-ordinary, p-stabilized newform h =

∑
n>0 anq

n ∈ St(Γ0(Wp), ωu;O)
determines an arithmetic map

h : hnewW −→ O

characterized by Tl,Alb 7→ al for l -Wp, Ul,Alb 7→ al for l |Wp and

[δ] 7→ ωt+u−2(δ) [γ] 7→ γt−2

for δ ∈ µp−1, γ ∈ Γ. There is a decomposition of hnewW as a direct sum of its
localizations at maximal ideals, and we let (hnewW )w be the unique local summand
through which h factors. As h(ei) = 0 for i 6= t+ u− 2 we must have

(hnewW )w = et+u−2(hnewW )w.

The localization of (hnewW )w at the kernel of h is a discrete valuation ring. There-
fore there is a unique minimal prime a′ ⊂ (hnewW )w such that h factors through
the integral domain

Rh := (hnewW )w/a
′.

The Hida family passing through h is defined by H =
∑
n>0 Tnq

n ∈ Rh[[q]].
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Geometrically, we can think of a Hida family as a branched cover of the
weight space.

w

H = Hida family

W = weight space

For a Hida family F of tame level W , we consider H = Spec((hnewW )w) and
W = Spec(Λ); the weight map w : H →W is induced by the structure morphism
Λ → R. Moreover, the arithmetic points cannot be branch points because the
structure morphism is étale around them (Corollary 1.4 [4]).

1.2.2 Big Galois representation
We recall the construction of the big Galois representation that interpolates the
contragredient cohomological representations attached to the eigenforms of the
Hida family passing through h. We assume that the residual representation
attached to h is absolutely irreducible and p-distinguished.

For s,W > 0 integers consider the tower

. . . −→ Xs(W )
α−→ Xs−1(W ) −→ . . .

with respect to the degeneracy maps described on the open modular curve by

(E, n, π) 7→ (E, n, p · π).

Letting JWs be the Jacobian variety of Xs(W ), the inverse limit of the system
induced by Albanese functoriality,

. . . −→ Tap(J
W
s ) ⊗

Zp

O α∗−→ Tap(J
W
s−1) ⊗

Zp

O −→ . . .

is equipped with an action of the algebra O[[Z×p ]].
Let

Taordp (JWs ) = eord
(
Tap(J

W
s ) ⊗

Zp

O
)

and define
TaordW = lim

←

(
Taordp (JWs ), α∗

)
Th = TaordW ⊗

hord
W

Rh.
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Proposition 1.2.1. The Rh-module Th is free of rank two. As a Galois repre-
sentation it is unramified outside Wp and the arithmetic Frobenius of a prime
` -Wp acts with characteristic polynomial X2 − T`,AlbX + `[`]. Furthermore,

Rh ∼= HomΛ(Rh,Λ)

as Rh-modules.

Proof. As we assume that the residual representation attached to h is absolutely
irreducible and p-distinguished this follows from Theorem 2.1 [4] and for the
Gorenstein property from Theorem 2.1 [7].

For later use let’s compute the determinant of the residual representation
attached to Th. First reduce modulo the prime ideal ph corresponding to h to
get

`[`] ≡ `ωt+u−2(δ`)γ
t−2
` (mod ph) ∀` -Wp

where ` = δ` · γ` under the decomposition Z×p ∼= µp−1 × 1 + pZp. The reduction
modulo the maximal ideal (p) + ph is then equal to ωt+u−1(δ`). As the Teich-
muller character ω : GQ → µp−1 is ramified at p, the determinant of the residual
representation is ramified at p if and only if t+ u 6≡ 1 (mod p− 1).

Definition 1.2.3. Factor the p-adic cyclotomic character εcyc = εtame · εwild ac-
cording to the decomposition of Z×p as µp−1×1+pZp. Let h ∈ St(Γ0(Wp), ωu;O)
and define the critical character Θh : GQ −→ Λ× associated to h by

Θh = ε
t+u−2

2
tame · [ε1/2wild]

where ε1/2wild is the unique square root of εwild taking values in 1 + pZp.

Remark 1.2.1. As noted by Howard, the critical character is defined up to
multiplication by the quadratic character of conductor p. Therefore, if f ∈
Sk(Γ0(Np), ωj) and g ∈ Sr(Γ0(Mp), ωs) are p-ordinary p-stabilized newforms
such that k + j ≡ r + s (mod p− 1), we can choose Θf = Θg.

1.2.3 Big Heegner points
As before, let W be a positive integer and h ∈ Su(Γ0(Wp), ωu;O) a p-ordinary,
p-stabilized newform of tame conductor W whose residual representation is ab-
solutely irreducible and p-distinguished. The Rh[GQ]-module Th attached to
the Hida family passing through h is not self-dual, but if we twist it by Θ−1, the
inverse of the critical character associated to h, Θ : GQ → Λ×, then the twist
T†h is self-dual, in fact its determinant is given by the character

[εcyc]εcyc ·Θ−2 = [εcyc]εcyc · [εcyc]−1 = εcyc

as Θ2 = [εcyc] in R×h (as noted in (2) page 5 [2]). Now we are in the favourable
setting to talk about p-adic variation of Heegner points. LetK/Q be a quadratic
imaginary field that satisfies the Heegner hypothesis for W and such that its
discriminant is prime to W . Let Oc be the order of conductor c of K and Hc

the ring class field of K corresponding to Oc, i.e. if K̂× are the finite idels of
K and if Ôc is the closure of Oc in K̂, then Hc is the abelian extension of K
corresponding to the group of norms K×Ô×c .
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Then for every positive integer c prime to W , B. Howard constructed in [2]
a cohomology class

Xh,c ∈ H̃1
f

(
Hc,T

†
h

)
that lives in J. Nekovar’s extended Selmer group of T†h

4 and has the property
that when it is specialized at an arithmetic prime of weight 2 and trivial char-
acter it essentially recovers the Kummer image of a classical Heegner point.
The Bloch-Kato Selmer group is a quotient of J. Nekovar’s extended Selmer
group, the reason is that it is modelled on a complex L-function rather than
on a p-adic one, and sometimes ”trivial zeros” arise from the process of p-adic
interpolation. Anyway, if we specialize T†h at an arithmetic prime of even weight
and not exceptional (Definition 2.4.3 [2]), then the extended Selmer group and
the Bloch-Kato Selmer group coincide ((22), (23) above Proposition 2.4.5 [2]).

Construction

Fix a positive integer c prime toW . Let K be an imaginary quadratic field with
an ideal W of OK = Z + $Z such that OK/W ∼= Z/WZ. For each s ≥ 0 let
Ocps = Z + cps$Z be the order of conductor cps and consider

Qc,s = [(C/Ocps ,W−1
c,s/Ocps , [c$])] ∈ Xs(W )

where Wc,s = W ∩ Ocps .
By the theory of complex multiplication Qc,s ∈ Xs(W )(Lc,s), where Lc,s =

Hcps(µps) (Corollary 2.2.2 [H]).
The natural short exact sequence

0→ JWs (Lc,s)⊗O → Pic(Xs(W )/Lc,s
)⊗O deg→ O → 0

is Hecke equivariant, and as the action of Up,Alb on O is by p = deg(Up) there
is an induced isomorphism taking the ordinary parts, that we abbreviate as

JWs (Lc,s)
ord ∼= Pic(Xs(W )/Lc,s

)ord.

Viewing Qc,s as a divisor on Xs(W )/Lc,s
, we obtain an element

eordQc,s ∈ JWs (Lc,s)
ord.

Moreover, if we project to the component where µp−1 acts through ωt+u−2

through the idempotent et+u−2 we get a point

yc,s = et+u−2e
ordQc,s ∈ JWs (Lc,s)

ord

such that
yσc,s = Θ(σ) · yc,s (1.2)

for all σ ∈ Gal(Q/Hcps). Let hord,†2,s denote hord2,s as a module over itself but
with GQ acting through the character Θ−1, and let ζs ∈ hord,†2,s be the element

4B. Howard actually proves that they live in the Greenberg Selmer group and that in this
case Nekovar’s and Greenberg’s coincide. Proposition 2.4.5 and (21) page 18 [2].
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corresponding to 1 ∈ hord2,s under the identification of underlying hord2,s-modules.
For any hord2,s-module M we abbreviate

M ⊗ ζs = M ⊗hord
2,s

hord,†2,s .

The equality (1.2) implies that

yc,s ⊗ ζs ∈ H0
(
Hcps , J

W
s (Lc,s)

ord ⊗ ζs
)

and we define the corestriction

xc,s = CorHcps/Hc

(
yc,s ⊗ ζs) ∈ H0(Hc, J

W
s (Lc,s)

ord ⊗ ζs
)
.

We now construct a twisted Kummer map

Kums : H0
(
Hc, J

W
s (Lc,s)

ord ⊗ ζs
)
−→ H1

(
Gc,Ta

ord
p (JWs )⊗ ζs

)
where Gc = Gal

(
H

(Wp)
c /Hc

)
is the Galois group of the maximal extension of Hc

unramified outside Wp.
Suppose A⊗ ζs ∈ JWs (Lc,s)

ord ⊗ ζs is fixed by the action of Gal(Q/Hc). For
each n > 0 choose a finite extension L/Lc,s contained in H(Wp)

c large enough so
that there is a point An ∈ JWs (L)ord with [pn]An = A. Abbreviating

JWs [pn]ord = eord(JWs [pn]⊗O),

for σ ∈ Gc
bn(σ) = (An ⊗ ζs)σ −An ⊗ ζs

defines a 1-cocycle with values in

JWs [pn]ord ⊗ ζs ∼=
(
Taordp (JWs )/pnTaordp (JWs )

)
⊗ ζs

whose image in cohomology does not depend on the choice of L or An. Taking
the inverse limit over n yelds an element

Kums(A⊗ ζs) = lim
←, n

bn ∈ H1
(
Gc,Ta

ord
p (JWs )⊗ ζs

)
.

The twisted Kummer map is both hord2,s and GQ equivariant. Define

Xc,s = Kums(xc,s) ∈ H1
(
Gc,Ta

ord
p (JWs )⊗ ζs

)
(1.3)

Lemma 2.2.4 [2] says that the map

α∗ : Taordp (JWs+1)⊗ ζs+1 −→ Taordp (JWs )

acts on the cohomology classes (1.3) by α∗(Xc,s+1) = Up ·Xc,s therefore we can
consider the limit

lim
←, s

U−sp Xc,s ∈ H1
(
Gc,Ta

ord
W ⊗ ζ

)
(1.4)

which belongs to that cohomology group because cohomology and inverse limit
commute as the group Gc satisfies a property of p-finitness, i.e. for all open
subgroups U ⊂ Gc and ∀i ≥ 0 the set Hi(U,Z/pZ) is finite ([6]).

Define the big Heegner point of conductor c

Xh,c ∈ H1
(
Hc,T

†
h

)
to be the image of (1.4) after inflation to Hc-cohomology and projection TaordW ⊗
ζ −→ T†h.
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1.3 Overview of the result
We denote by ω :

(
Z/pZ

)× → µp−1 the Teichmuller character. Let N,M be
positive integers and p - NM . Let

f =
∑
n>0

anq
n ∈ Sk(Γ0(Np), ωj), g =

∑
n>0

bnq
n ∈ Sr(Γ0(Mp), ωs)

be normalized eigenforms of weight greater or equal to 2. Fix a finite extension
F/Qp which contains all Fourier coefficients of f and g and let O be its ring of in-
tegers. We assume that they are p-ordinary p-stabilized newforms of conductors
divisible by N andM respectively. Moreover, we suppose the residual represen-
tations attached to them to be absolutely irreducible and p-distinguished. Fix
a quadratic imaginary field K where all the prime divisors of NM are split.

Let

F =
∑
n>0

Anq
n ∈ Rf [[q]], G =

∑
n>0

Bnq
n ∈ Rg[[q]]

be the Hida families passing through f and g. We suppose that the two families
intersect, i.e. there are continuous O-algebra homomorphisms ν : Rf −→ OQp

,
ν′ : Rg −→ OQp

such that ν(F) = ν′(G). We recall that under our hypothesis
there are big Galois representations Tf ,Tg free of rank two over Rf , Rg respec-
tively. The hypothesis that the two branches intersect implies that the residual
representations are isomorphic. To assure that the residual representation has
a unique p-stabilization we ask that k + j ≡ r + s 6≡ 1 (mod p − 1). It implies
that the determinant of the residual representation is ramified at p.

We consider the twists T†f ,T
†
g by the same critical character Θ, which makes

sense as the definition of the critical character essentially depends only on the
congruence classes of k+ j and r+ s (mod p− 1). For every positive integer c
prime toNM B.Howard’s construction, recalled in the previous section, provides
cohomology classes

Xf,c ∈ H1
(
Hc,T

†
f

)
, Xg,c ∈ H1

(
Hc,T

†
g

)
.

Our objective is to compare them when they are specialized at the intersection
of the families F and G. For an OF -algebra homomorphism ν : R → OQp

we
set T †ν := T† ⊗

R,ν
OQp

the specialization of T† at ν and we denote again by ν

the map induced in cohomology ν : H1
(
Hc,T

†) → H1
(
Hc, T

†
ν

)
. When ν, ν′

correspond to the intersection point of the families, we show that there exists
an isomorphism of GQ-modules (Corollary 3.2.1)

Υ : T †f,ν
∼−→ T †g,ν′

and that (Corollary 4.1.1) for all positive integer c prime to NM the induced
isomorphism in cohomology

Υc : H1
(
Hc, T

†
f,ν

) ∼−→ H1
(
Hc, T

†
g,ν′

)
is such that

ν

( ∏
some prime `

E`(f)Xf,c

)
7→ ν′

( ∏
some prime `′

E`′(g)Xg,c

)

13



where E`(f), E`′(g) are some Euler factor that depend on the Hida families
passing through f and g and the respective tame levels.

1.3.1 Future perspectives
Howard’s construction of big Heegner points was generalized by M. Longo and
S. Vigni to a general quaternionic setting over Q in

[* ] M. Longo, S. Vigni, Quaternion algebras, Heegner points and the arithmetic
of Hida families, Manuscripta Math. 135, (2011), 273-328.

It would be interesting to extend the result of this memoire to the same setting.
On one hand, the extension to the indefinite Shimura curve case over Q, where
we allow an even number of prime factors of the tame level to be inert in
the quadratic imaginary field K, might be useful to prove the analogue of B.
Howard’s "Horizontal non-vanishing conjecture" (Conjecture 10.3 [*]).

On the other hand, in the definite case overQ, where we allow an odd number
of prime factors of the tame level to be inert in K, M. Longo and S. Vigni’s
construction provides theta elements instead of cohomology classes which can
be shown to give rise to anticyclotomic p-adic L-functions and the extension
of our result could be used to control the variation of anticyclotomic Iwasawa
invariants in Hida families.

14



Chapter 2

Modular deformation theory

We fix a representation ρ̄ : GQ → GL2(F), where F is a finite field of charac-
teristic p and V is the two dimensional F-vector space on which ρ̄ acts. Let us
recall some definitions.

Definition 2.0.1. .

- ρ̄ is p-ordinary if ρ̄ restricted to GQp has an unramified quotient of dimen-
sion one over F.

- A p-stabilization of ρ̄ is a choice of a one-dimensional quotient of V on
which the GQp-action is unramified.

- If ρ̄|GQp
is reducible, then we say that ρ̄ is p-distinguished if the semi-

semplification of ρ̄|GQp
is non-scalar.

We assume that ρ̄ is irreducible, odd, p-ordinary and p-distinguished and we
fix a p-stabilization. Finally we suppose that ρ̄ is modular and that F is equal
to the field generated by the traces of ρ̄.

Let N(ρ̄) denote the tame conductor of ρ̄. If ` 6= p is a prime, write

m` = dimk V I`

and for any finite set of primes Σ that does not contain p, write

N(Σ) = N(ρ̄)
∏
`∈Σ

`m`

.

Remark 2.0.1. Let L be a field of characteristic zero, ρ : GQ −→ GL2(L) a
Galois representation of tame conductor W and V the L-vector space on which
ρ acts; suppose ρ̄ : GQ −→ GL2(F) is its residual representation. Then we
may write W =

∏
`|W `n`(ρ) and set Σ = {` prime| ` | W}. If we let as above,

N(Σ) =
∏
`∈ΣW

`n`(ρ̄)+dimV I` , we have that W | N(Σ) and they have the same
prime factors, but they are not equal in general. In fact, the exponent of the
conductor at a prime ` |W is

n`(ρ) = n`(ρ̄) +
(

dimV I` − dimVI`
)

and the quantity between the parentesis is positive, but it might happen that
dimVI` > 0 .

15



Definition 2.0.2. For any level W , we let h
′

W denote the Λ-subalgebra of hordW
generated by the Hecke operators T`,Alb for ` - Wp, together with the operator
Up,Alb.

If U | W then restricting the action of the prime to W Hecke operators
to p-ordinary forms of level dividing U yields a surjective map of Λ-algebras
h
′

W −→ h
′

U . Composing it with h
′

U ↪→ hordU −→ hnewU gives a map h
′

W −→ hnewU
and taking the product over all divisors U of W we get

h
′

W −→
∏
U |W

hnewU .

This map is an isomorphism after tensoring by the fraction field L of Λ (Proposi-
tion 2.3.2 [1]) and this allows us to associate to h

′

W ⊗
Λ
L the Galois representation

V =

( ∏
U |W

TaordU ⊗
hord
U

hnewU

)
⊗
Λ
L.

For every maximal ideal m of h
′

W we can consider the Galois representation of
the local factor Vm at m. If the residual representation is absolutely irreducible
then there is a uniquely determined representation Tm defined over (h

′

W )m such
that Tm ⊗

Λ
L ∼= Vm.

Theorem 2.0.1. There is a unique maximal ideal m of h
′

N(Σ) such that Tm/mTm,
with its canonical p-stabilization (Definition 2.2.11 [1]), is isomorphic to ρ̄, with
its p-stabilization.

Proof. This is Theorem 2.4.1 [1].

Proposition 2.0.1. If m denotes the maximal ideal of h
′

N(Σ) of the prececeding
theorem, then there is a unique maximal ideal n of hordN(Σ) satisfying the following
conditions:

• n lifts m.

• U`,Alb ∈ n for each ` ∈ Σ.

• The natural map of localizations (h
′

N(Σ))m → (hordN(Σ))n is an isomorphism
of Λ-algebras.

In particular, (h
′

N(Σ))m is a finite flat Λ-algebra. Also, the image of U`,Alb in
the localization (hordN(Σ))n vanishes for each ` ∈ Σ.

Proof. This is Proposition 2.4.2 [1].

Definition 2.0.3. We let hΣ(ρ̄) (or simply hΣ when ρ̄ is understood) denote
the localization of h

′

N(Σ) at the maximal ideal whose existence is guaranteed by
Theorem 2.0.1 above.
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2.0.2 Branches
Let a′ denote a minimal prime of hnewW that is contained in a maximal ideal
whose corresponding residual Galois representation is isomorphic to ρ̄ with its
given p-stabilization and such that W | N(Σ).

We call such a prime an admissible minimal prime associated to hΣ.

Proposition 2.0.2. Let a′ ⊂ hnewW be an admissible minimal prime associated
to hΣ. Then there is a unique minimal prime a of hΣ such that the following
diagram commutes

hΣ

��

// h′N(Σ)
//
∏
U |N(Σ) h

new
U

��

hΣ/a // hnewW /a′

(2.1)

.

Proof. By Proposition 2.5.2 [1] the only thing to show is that a′ is contained
in the local component corresponding to the maximal ideal m that defines hΣ.
Let w ⊂ hnewW be the unique maximal ideal that contains a′ and let m′ be its
inverse image under h′N(Σ) → hnewW , m′ is maximal because the morphism is
finite. Consider the local component Vm′ of the representation V attached to
h′N(Σ) ⊗Λ L. We have the projection

Vm′ −→
(
TaordW ⊗hord

W
hnewW

)
w
⊗Λ L

which induces an isomorphism when we take the residual representations. By
hypothesis the residual representation associated to w is isomorphic to ρ̄ with
its given p-stabilization, which implies that is the case for the one associated to
m′. Therefore m = m′ by uniqueness of Theorem 2.0.1.

Remark 2.0.2. Set h(a) := hΣ/a and h(a)◦ := hnewW /a′. The embedding de-
scribed in (2.1) is an embedding of local domains

h(a) −→ h(a)◦.

Note that the target is local since it a complete finite Λ-algebra and hence a
product of local rings. Being a domain, it must be local.

For future use, we conclude this section introducing the Euler factors.

Definition 2.0.4. Let a′ be an admissible minimal prime of tame conductor W
associated to hΣ, and let h(a)◦ be the new quotient corresponding to it. For each
prime ` 6= p, define the reciprocal Euler factor E`(a′, X) ∈ h(a)◦[X] via:

E`(a
′, X) :=

{
1− (U`,Alb mod a′)X ` |W
1− (T`,Alb mod a′)X + `〈`〉X2 ` -W

17



Chapter 3

Comparison morphism

In this section we compare the Galois representations

TΣ
a′ := TaordN(Σ) ⊗

hord
N(Σ)

h(a)◦, Ta′ := TaordW ⊗
hord
W

h(a)◦

depending on an admissible minimal prime a′ of tame level W associated to
some hΣ. Recall that hΣ is the localization of h′N(Σ) at a maximal ideal m which
has a unique lift n to hordN(Σ) and such that the map of localization hΣ → (hordN(Σ))n
is an isomorphism. Moreover, the admissible minimal prime a′ is contained in
a unique maximal ideal w of hnewW .

Motivation

We want to be able to consider a commutative diagram of the following shape
to compare big Heegner points.

TaordN(Σ) ⊗
hord
N(Σ)

h†Σ

zz %%

T†f

��

T†g

��

T †f,ν
Υ // T †g,ν′

(3.1)

Here f and g are the cusp forms considered in Section 1.3 and T †ν , T
†
ν′ are the

specializations of the big Galois representations at the intersection of the Hida
families; Υ is a suitable isomorphism.

As the big Heegner points Xf,c, Xg,c live in H1
(
Hc,T

†
f

)
and H1

(
Hc,T

†
g

)
respectively, if we found a cohomology class X̃c ∈ H1

(
Hc,Ta

ord
N(Σ) ⊗hord

N(Σ)
h†Σ
)

whose images under the morphisms induced in cohomology by the oblique maps
is related to Xf,c and Xg,c, then also its images Imν

(
X̃c
)
∈ H1

(
Hc, T

†
f,ν

)
and

Imν′
(
X̃c
)
∈ H1

(
Hc, T

†
g,ν′

)
would be related to the specializations of Xf,c and
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Xg,c. By the commutativity of the diagram, we would know that

Υc : H1
(
Hc, T

†
f,ν

) ∼−→ H1
(
Hc, T

†
g,ν′

)
maps

Imν

(
X̃c
)
7→ Imν′

(
X̃c
)
.

This is the way we compare big Heegner points at the intersection of two Hida
families.

3.1 Construction
Definition 3.1.1. Let N ≥ 1 be an integer, d a divisor of N and d′ a divisor
of d, then we let Bd,d′ : Xs(N)→ Xs(N/d) denote the map induced by the map
τ 7→ d′τ on the upper half plane. It is defined over Q and induces a map

(Bd,d′)∗ : Tap(J
N
s )→ Tap(J

N/d
s )

between the p-adic Tate modules of the Jacobians.

If ` is a prime different from p, let e` be the largest power of ` dividing
N(Σ)/W . We have 0 ≤ e` ≤ 2. We easily see that if ` 6∈ Σ then e` = 0 and if
e` = 2 then ` ∈ Σ and ` -W .

Write

ε(`) :=



1 e` = 0[
(B`,1)∗ − `−1U`,Alb(B`,`)∗

]
e` = 1

[
(B`2,1)∗ − `−1T`,Alb(B`2,`)∗ + `−1〈`〉(B`2,`2)∗

]
e` = 2

Choose an ordering Σ = {`1, . . . , `n} and for any s ≥ 1 define

εs : Taordp (JN(Σ)
s ) −→ Taordp (JWs ) (3.2)

by εs = ε(`n)◦· · ·◦ε(`1). To explain this formula, let’s writeNi = N(Σ)/`e11 . . . `eii ,
then in the formula for εs

ε(`i) : Taordp (JNi−1
s ) −→ Taordp (JNi

s )

is the map given by the formula above. The symbols T`i,Alb or U`i,Alb in the
formula for ε(`i) are understood to stand for the corresponding Hecke operators
acting in level Nips. The map εs is independent of the ordering and it can be
verified through direct computations as it is suggested at the bottom of page
557 of [1].

If regard the source and the target of εs as h′N(Σ)-modules via the inclusion
h′N(Σ) ⊂ hordN(Σ) and the natural map h′N(Σ) → h′W ⊂ hordW then εs is seen to be
h′N(Σ)-linear.
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As s varies, the sources and the targets of the maps εs each form a projective
system and the maps εs are compatible with the projection maps on the source
and target. Thus, taking the inverse limit in s, we get an h′N(Σ)-linear map

ε∞ : TaordN(Σ) −→ TaordW .

If we localize ε∞ with respect to m the maximal ideal of h′N(Σ) recalled at the
beginning of the chapter, we obtain a map

TaordN(Σ) ⊗
h′
N(Σ)

(h′N(Σ))m −→ TaordW ⊗
h′
N(Σ)

(h′N(Σ))m. (3.3)

Now n and w each pull back to m under the maps h′N(Σ) → hordN(Σ) and
h′N(Σ) → hnewW and so the localizations (hordN(Σ))n and (hnewW )w are local factors of
the complete semilocal rings (h′N(Σ))m⊗h′

N(Σ)
(hordN )n and (h′N(Σ))m⊗h′

N(Σ)
(hnewW )w.

Thus the localizations TaordN(Σ) ⊗hord
N(Σ)

(hordN(Σ))n and TaordW ⊗hord
W

(hnewW )w appear

naturally as direct factors of TaordN(Σ) ⊗hord
N(Σ)

(h′N(Σ))m and TaordW ⊗hord
W

(h′N(Σ))m

respectively, so the map (3.3) induces a map

TaordN(Σ) ⊗
hord
N(Σ)

(hordN(Σ))n −→ TaordW ⊗
hord
W

(hnewW )w.

Tensoring the source of this map with h(a)◦ over (hordN(Σ))n and the target with
h(a)◦ over (hnewW )w, we obtain a h(a)◦-linear map

Ξa′ : TaordN(Σ) ⊗
hord
N(Σ)

h(a)◦ −→ TaordW ⊗
hord
W

h(a)◦. (3.4)

Theorem 3.1.1. The map (3.4) is an isomorphism of h(a)◦[GQ]-modules

Ξa′ : TΣ
a′
∼−→ Ta′ .

Proof. This is the analogous result to Theorem 3.6.2 [1]. Following [1], we define
for any positive integer A

MA := lim
←, s

H1

(
Xs(A)/Q, {cusps};O

)ord
.

When we localize at a maximal ideal a of hordA corresponding to a p-ordinary
irreducible residual representation we find that(

MA

)
a
∼=
(

lim
←, s

H1

(
Xs(A)/Q;O

)ord)
a

as (hordA )a-modules ((3.1) page 544 and page 547 [1]).
Theorem 3.6.2 [1] states that the morphism(

MN(Σ)

)
n
⊗(hord

N(Σ)
)n h(a)◦ −→

(
MW

)
w
⊗(hord

W )w h(a)◦ (3.5)

constructed exactly as our map (3.4), is an isomorphism of h(a)◦-modules. By
(1.6.1) [5], for every positive integer A we have

H1
et

(
Xs(A)/Q,O

)
= HomO

(
Tap(J

A
s )⊗Zp

O(1),O
)
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which, taking HomO
(
−,O

)
, implies

H1

(
Xs(A)/Q,O

)
= Tap(J

A
s )⊗Zp

O(1).

We then deduce an isomorphism of hordA [GQ]-modules

TaordA (1) ∼= lim
←, s

H1

(
Xs(A)/Q;O

)ord
such that the diagram(

MN(Σ)

)
n
⊗

(hord
N(Σ)

)n

h(a)◦

��

//
(
MW

)
w
⊗

(hord
W )w

h(a)◦

��(
TaordN(Σ)

)
n
(1) ⊗

(hord
N(Σ)

)n

h(a)◦
Ξa′ //

(
TaordW

)
w

(1) ⊗
(hord

W )w

h(a)◦

commutes, where the horizontal upper map is (3.5) and the horizontal lower
map is Ξa′ after a Tate twist on the source and on the target.

3.2 Isomorphism of specializations
We are interested to apply the previous constructions to the situation where
f and g are the p-ordinary p-stabilized modular forms of tame conductors N
and M respectively, whose residual representations are isomorphic and with a
unique p-stabilization, let’s call it ρ̄. Let Σ be a finite set of primes, p 6∈ Σ, such
that N | N(Σ) and M | N(Σ) and consider hΣ := hΣ(ρ̄). In this setting the
minimal primes

a′ ⊂ hnewN , b′ ⊂ hnewM (3.6)
corresponding to the families passing through f and g are admissible for hΣ,
thus we get the corresponding minimal primes a, b of hΣ. Moreover, we have

Rf = h(a)◦, Rg = h(b)◦. (3.7)

Remark that if ν : Rf −→ OQp
and ν′ : Rg −→ OQp

are the continuous
O-algebra homomorphisms corresponding to an intersection point of the Hida
families passing through f and g, then Rf⊗νOQp

= Rg⊗ν′OQp
. We will denote

this ring by S.

Corollary 3.2.1. There is an isomorphism of S[GQ]-modules

Υ : T †f,ν
∼−→ T †g,ν′

such that the diagram

TaordN(Σ) ⊗
hord
N(Σ)

h†Σ

zz %%

T†f

��

T†g

��

T †f,ν
Υ // T †g,ν′
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commutes, where the oblique morphisms are defined as the composites

TaordN(Σ) ⊗hord
N(Σ)

h†Σ −→ TaordN(Σ) ⊗hord
N(Σ)

h(a)◦,†
Ξa′−→ T†f

and
TaordN(Σ) ⊗hord

N(Σ)
h†Σ −→ TaordN(Σ) ⊗hord

N(Σ)
h(b)◦,†

Ξb′−→ T†g.

Proof. Υ is the unique map that makes the diagram

TaordN(Σ) ⊗
hord
N(Σ)

S†

∼

��

id // TaordN(Σ) ⊗
hord
N(Σ)

S†

∼

��

T †f,ν T †g,ν′

commutes, where the left vertical isomorphism is obtain from

Ξa′ : TaordN(Σ) ⊗hord
N(Σ)

h(a)◦,†
∼−→ T†f

by tensoring over Rf with S = Rf ⊗ν OQp
and the right vertical isomorphism

from
Ξb′ : TaordN(Σ) ⊗hord

N(Σ)
h(b)◦,†

∼−→ T†g

by tensoring over Rg with S = Rg ⊗ν′ OQp
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Chapter 4

Effect on cohomology classes

In this chapter we calculate the effect on big Heegner points of the comparison
maps. We consider an admissible minimal prime a′ of tame level W associated
to some hΣ. Fix an imaginary quadratic field K where all the prime divisors of
N(Σ) are split. Recall the construction of the comparison morphism in Section
3.1. As the map εs (3.2) does not depend on the ordering of Σ, we can assume
that Σ = {`}. Then, N(Σ) = W`e where e ∈ {0, 1, 2}. If e = 0, the map is the
identity so everything is clear. Let’s consider the cases where e ∈ {1, 2}.

For each prime q | N(Σ), q 6= ` let bq be the greatest power of q that divides
N(Σ) and choose one prime Q in K above it. Similarly let b` the greatest power
of ` that divides N(Σ) and choose a prime L above it in K.

Let W be the ideal of OK = Z +$Z defined as( ∏
q|N(Σ),q 6=`

Qbq

)
Lb`−e,

and N(Σ) the ideal WLe then OK/W ∼= Z/WZ and OK/N(Σ) ∼= Z/N(Σ)Z.
For every positive integer c prime to N(Σ) and s ≥ 0 consider the point

Q̃c,s = [(C/Ocps ,N(Σ)−1
c,s/Ocps , [c$])] ∈ Xs(N(Σ))(Hcps)

where N(Σ)c,s = N(Σ) ∩ Ocps and

Qc,s = [(C/Ocps ,W−1
c,s/Ocps , [c$])] ∈ Xs(W )(Hcps)

where Wc,s = W ∩ Ocps .
Then the projection map

Xs(N(Σ)) −→ Xs(W )

that simply forgets the N(Σ)/W -torsion structure maps

Q̃c,s 7→ Qc,s.

From now on, we will adorne with a tilde all the objects that appear in the
construction of big Heegner points at level N(Σ).
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We want to understand the effect of the maps Bi,j (Definition 3.1.1). Consider
the map

λ`e : Xs(N(Σ)) −→ Xs(W )

defined on moduli by (E,C, P ) 7→ (E/C ′, f(C), f(P )) where C is a cyclic sub-
group of order N(Σ) of E, P is a point of exact order ps of E, C ′ ⊂ C is the
unique subgroup of C of order `e and f : E → E/C ′ is the quotient map.

Lemma 4.0.1. We have

〈`〉eB`e,`e = λ`e , 〈`〉B`2,` = λ`.

Proof. Ble,le acts on the points of the modular curve by(
C/Λτ ,

〈
1

N(Σ)

〉
,

1

ps

)
7→
(
C/Λ`eτ ,

〈
`e

N(Σ)

〉
,

1

ps

)
.

The `e-isogeny C/Λτ → C/Λ`eτ induced by z 7→ `ez has as kernel the subgroup
〈1/`e〉 so λ`e acts as(

C/Λτ ,
〈

1

N(Σ)

〉
,

1

ps

)
7→
(
C/Λ`eτ ,

〈
`e

N(Σ)

〉
,
`e

ps

)
.

Therefore we get the equality 〈`〉eB`e,`e = λ`e . A similar argument works for
the equality 〈`〉B`2,` = λ`.

For a positive integer c prime to N(Σ) denote L∞c :=
⋃
sHcps(µps) and let FrobL

be the Frobenius at L in the abelian group Gal(L∞c /K).

Lemma 4.0.2. Case e = 1.

- Bl,1
(
Q̃c,s

)
= Qc,s

- 〈l〉Bl,l
(
Q̃c,s

)
=
(
Qc,s

)FrobL
Proof. Let Nc,s = N(Σ) ∩ Ocps where N(Σ) = LW and let x ∈ K̂× be a finite
idele which is a uniformizer at L and has trivial components at all other primes,
then the fractional ideal generated by x is L. The effect of 〈l〉Bl,l = λl on Q̃c,s
is

Q̃c,s = [
(
C/Ocps ,N−1

c,s/Ocps , c$
)
]

7→ [
(
C/x−1Ocps ,N−1

c,s/x
−1Ocps , c$

)
].

On the other hand, the main theorem of complex multiplication gives us an
isomoprhism (

Qc,s
)FrobL = [

(
C/Ocps ,W−1

c,s/Ocps , c$
)FrobL ]

∼= [
(
C/x−1Ocps , (xWc,s)

−1/x−1Ocps , x−1c$
)
].

But xWc,s = (LW)c,s = Nc,s and as x as trivial component at p, c$ and x−1c$
determine the same element of K/x−1Ocps .
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Lemma 4.0.3. Case e = 2.

- Bl2,1
(
Q̃c,s

)
= Qc,s

- 〈l〉Bl2,l
(
Q̃c,s

)
=
(
Qc,s

)FrobL
- 〈l〉2Bl2,l2

(
Q̃c,s

)
=
(
Qc,s

)Frob2
L

Proof. The proof is analogous to that of Lemma 4.0.2.

For the next proposition it will be useful to compute ek+j−2〈`〉. Write 〈`〉 =
〈δ`〉〈γ`〉 according to the decomposition Z×p ∼= µp−1×Γ and let ξ` = ω(δ`). Then

ek+j−2〈`〉 = ωk+j−2(δ`)〈γ`〉ek+j−2

= ξk+j−2
` 〈γ`〉ek+j−2

= Θ(Frob`)
2ek+j−2.

Proposition 4.0.1. Case e = 1.

- (Bl,1)∗X̃c = Xc

- (Bl,l)∗X̃c = Θ(`)−1
(
Xc
)Frob`

Proof. By Lemma 4.0.2 we have

Bl,l
(
Q̃c,s

)
= 〈l〉−1

(
Qc,s

)FrobL .
As B`,` is Hecke equivariant on the Jacobian and the ordinary projector and
the idempotent ek+j−2 are defined over Q we get that

B`,`
(
ỹc,s
)

= Θ(Frob`)
−2
(
yc,s
)FrobL .

Twisting by ζs we get

B`,`
(
ỹc,s ⊗ ζs

)
= Θ(Frob`)

−2
(
yc,s
)FrobL ⊗ ζs

= Θ(Frob`)
−2Θ(FrobL)

(
yc,s ⊗ ζs

)FrobL .
Then we take corestriction from Hcps to Hc

B`,`(x̃c,s) = B`,`

( ∑
η∈G(Hcps/Hc)

(ỹc,s ⊗ ζs)η
)

=

( ∑
η∈G(Hcps/Hc)

Bη`,`(ỹc,s ⊗ ζs)
η

)

= Θ(Frob`)
−2Θ(FrobL)

( ∑
η∈G(Hcps/Hc)

[(
yc,s⊗ζs

)FrobL]η)

= Θ(Frob`)
−2Θ(FrobL)

(
xc,s

)FrobL
because Gal(Lc,s/K) is abelian.
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As ` is split in K, FrobL = Frob` in Gal(L∞c /Q) which implies εcyc(FrobL) =
`. Identifying Θ with a character on Z×p by factoring through the cyclotomic
character, we get Θ(FrobL) = Θ(`). By the GQ-equivariance of the twisted
Kummer map we also have that

(B`,`)∗X̃c,s = Θ(`)−1
(
Xc,s

)Frob`
and taking the inverse limit over s we conclude.

Proposition 4.0.2. Case e = 2.

- (B`2,1)∗X̃c = Xc

- (B`2,`)∗X̃c = Θ(`)−1
(
Xc
)Frob`

- (B`2,`2)∗X̃c = Θ(`)−2
(
Xc
)Frob2

`

Proof. The proof is analogous to that of Proposition 4.0.1.

4.1 Precise results
Finally, we have proved the following theorem.

Theorem 4.1.1. Let h be a p-ordinary newform in St(Γ0(Wp), ωu) whose resid-
ual representation is absolutely irreducible and p-distinguished. We assume that
the prime factors of W split in the imaginary quadratic field K. Let Σ be a fi-
nite set of rational primes that split in K which contains {` prime| ` divides W}
and let a′ be the minimal prime of hnewW corresponding to the Hida family passing
through h. Then for every c ∈ N prime to N(Σ) there exists an isomorphism

ΞΣ
h,c : H1

(
Hc,T

Σ,†
a′

)
−→ H1

(
Hc,T

†
h

)
such that

ΞΣ
h,c

(
X̃c
)

=
∏

`|(N(Σ)/W )

E`
(
a′, `−1Θ(`)−1Frob`

)
Xc

where the Euler factors E`(a′, X) ∈ h(a)◦[X] were defined in Definition 2.0.4.

Proof. The isomorphism ΞΣ
h,c is induced by the map (3.4), thus we just have to

put together the calculations of the last chapter to check that the effect on big
Heegner points is the one claimed. Let ` | (N(Σ)/W ).

If ` |W , then E`(a′, X) = 1− (U`,Alb mod a′)X and e` = 1. Therefore[
(B`,1)∗ − `−1U`,Alb(B`,`)∗

]
X̃c =

= Xc − `−1U`,AlbΘ(`)−1
(
Xc
)Frob`

= E`(a
′, `−1Θ(`)−1Frob`)Xc

If ` - W , then E`(a
′, X) = 1 − (T`,Alb mod a′)X + `〈`〉X2 and e` = 2.

Therefore[
(B`2,1)∗ − `−1T`,Alb(B`2,`)∗ + `−1〈`〉(B`2,`2)∗

]
X̃c =
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= Xc − `−1T`,AlbΘ(`)−1
(
Xc
)Frob` + `−1〈`〉Θ(`)−2

(
Xc
)Frob2

`

= E`(a
′, `−1Θ(`)−1Frob`)Xc

Recall our cusp forms f and g of tame conductors N and M . Putting
together Theorem 4.1.1 and the isomorphism Υ of Corollary 3.2.1 we get the
following corollary.

Corollary 4.1.1. Let f ∈ Sk(Γ0(Np), ωj) and g ∈ Sr(Γ0(Mp), ωs) be p-
ordinary p-stabilized newforms with isomorphic residual representation ρ̄ abso-
lutely irreducible and p-distinguished and let a′ ⊂ hnewN , b′ ⊂ hnewM be the minimal
primes corresponding to the intersecting Hida families passing through f and
g. Let Σ = {` prime| ` | NM}, and consider hΣ = hΣ(ρ̄). For every posi-
tive interger c prime to NM denote by Xf,c and Xg,c the big Heegner points of
conductor c. Then there is an isomorphism

Υc : H1
(
Hc, T

†
f,ν

)
−→ H1

(
Hc, T

†
g,ν′

)
such that

ν

( ∏
`|(N(Σ)/N)

(E`
(
a′, `−1Θ(`)−1Frob`

)
Xf,c

)
7→ ν′

( ∏
`′|(N(Σ)/M)

E`′
(
b′, (`′)−1Θ(`′)−1Frob`′

)
Xg,c

)

Proof. Consider the following commutative diagram

H1
(
Hc,Ta

ord
N(Σ) ⊗hord

N(Σ)
h†Σ
)

uu ))

H1
(
Hc,T

†
f

)
��

H1
(
Hc,T

†
g

)
��

H1
(
Hc, T

†
f,ν

) Υc // H1
(
Hc, T

†
g,ν′

)
and X̃c ∈ H1

(
Hc,Ta

ord
N(Σ) ⊗hord

N(Σ)
h†Σ
)
. Its image in H1

(
Hc,T

†
f

)
is∏

`|(N(Σ)/N)

E`
(
a′, `−1Θ(`)−1Frob`

)
Xf,c

and in H1
(
Hc,T

†
g

)
is ∏

`′|(N(Σ)/M)

E`′
(
b′, (`′)−1Θ(`′)−1Frob`′

)
Xg,c

by further specializing to H1
(
Hc, T

†
f,ν

)
and H1

(
Hc, T

†
g,ν′

)
we get that Υc maps

ν

( ∏
`|(N(Σ)/N)

(E`
(
a′, `−1Θ(`)−1Frob`

)
Xf,c

)
7→ ν′

( ∏
`′|(N(Σ)/M)

E`′
(
b′, (`′)−1Θ(`′)−1Frob`′

)
Xg,c

)

by the commutativity of the diagram.
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