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Introduction

Finding integer solutions of a system of equations with integer coefficients only
is one of the most ancient mathematical problems: the first attempt to solve such
a problem can be found in India, around 800 b.C. In the third century we can find
the first large study about this problem, by Diophantus of Alexandria: this is why
now we call this kind of problems diophantine problems.
In his studies, Diophantus treated only some particular equations, and did not de-
velop a general theory about these equations.
Even though mathematicians reached many new results about diophantine prob-
lems throughout history, a formulation of a general theory about the problem is
still an unfulfilled aim.
In the last centuries a geometric approach to the problems turned out to be advan-
tagious: in this approach, the so called K3 surfaces play an important role.
The K3 surfaces are the 2-dimensional analogues of elliptic curves in the sense
that their canonical sheaf is trivial (see [19, 20] for more details).The K3 sur-
faces are just in between surfaces that are geometrically relatively easy in some
technical sense and surfaces that are geometrically complicated. Smooth quartic
surfaces in P3 are examples of K3 surfaces. Little is known about the arithmetic
of these surfaces. It is for instance not known whether there exists a K3 surface
over the rational numbers (or any number field) on which the set of rational points
is neither empty nor dense.

In 2010, Logan, McKinnon and van Luijk gave in [9] an interesting result
about density of rational points on a large family of projective diagonal quartic
surfaces, namely:

Theorem (Theorem 3.4). Let a, b, c, d ∈ Q× be nonzero rational numbers with
abcd square. Let P = (x0 : y0 : z0 : w0) be a rational point on the surface

V : ax4 + by4 + cz4 + dw4 = 0,

and suppose that all the coordinates of P are nonzero and that P does not lie on
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any of the 48 lines of the surface. Then the set of rational points of the surface is
dense in both the Zariski and the real analitic topology.

To prove this result, the authors consider two elliptic fibrations of the surface,
and they show that any smooth fiber with at least one rational point, viewed as
elliptic curve has four rational 2-torsion points. Using the hypotheses concerning
P they show that then P does not lie on an intersection of two singular fibers and
it has infinite order on at least one of the smooth fibers passing through it. Then
they use this point and the group structure of the fiber to get infinitely many other
rational points on the fiber. For each of these points they apply the same argument,
but with respect to the other fibration, deducing the Zariski density of the set of
rational points on V .

In this thesis we will use a similar argument, but for a more specific case,
not covered by the previous theorem. The case is less general, since the family
we consider is given by two parameters instead of the four (in fact three) of the
family considered in [9], but we get a similar result assuming weaker hypotheses.
Recall that we will always assume the existence of at least one rational point on
the surface. We can state our result as follows:

Theorem. Let c1, c2 be two nonzero rationals and W be the surface defined as

W : x4 − 4c2
1y4 − c2z4 − 4c2w4 = 0.

Let P = (x0 : y0 : z0 : w0) be a rational point on W with x0 and y0 both nonzero.
If |2c1| is a square in Q×, then also assume that z0,w0 are not both zero. Then the
set of rational points on the surface is Zariski dense.

To prove this result we consider two elliptic fibration of W defined over the ra-
tionals and we show that any smooth fiber with at least one rational point, viewed
as an elliptic curve, has at most one nontrivial rational 2-torsion point and no other
rational torsion points. Using the hypotheses concerning P we show that then P
does not lie on an intersection of two singular fibers and it has infinite order on at
least one of the smooth fibers passing through it. Then, using the same argument
as in [9] we deduce the Zariski density of the set of rational points on W.
Another similar result can be found in [7]: in this paper Elkies shows that on the
surface x4+y4+z4−w4 = 0 the set of rational points is dense in both the Zariski and
real topology. This surface is neither in our family nor in the family considered
in [18].

In [18], van Luijk focuses on the set of rational points on a surface which
do not ensure the Zariski density of the set of rational points. He obtained the
following result:
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Theorem (Theorem 2.2). Let k be a number field and let k be an algebraic closure
of k. Let V be a projective smooth surface over k. For each integer d there exists
an explicitly computable closed subset Z ⊆ V such that for each field extension
K of k of degree at most d over Q and for each twist W of V, with corresponding
isomorphism φ : Wk 7→ Vk, the set W(K) is Zariski dense in W as soon as it
contains any point outside φ−1(Z).

In our work, in 4.2, we give an explicit (although very simple) example of
such a subset for our case.

We start our work introducing the family of diagonal quartic surfaces together
with two rational fibrations. We also study the lines on the surface and give some
results about the image of the lines on the surface under the fibrations.
For a good comprehension of the fibration it is crucial to study their fibers. This
is what we do in the second chapter. First we consider only a special case, for
c1 = 1

2 and c2 = 1; then we study the general case, showing that our fibrations
are actually elliptic fibrations. We compute the j-invariant and discriminant of the
smooth fibers, and give an explicit list of the singular fibers.
Proposition 2.2.4 is crucial in providing the explicit example for Theorem 2.2
in [18].
In the next chapter we study the torsion subgroup of the fibers with a rational
point, viewed as elliptic curves. At the end of the chapter we can finally state
theorem 3.5.2, which gives an explicit description of the torsion subgroup. This is
the most important part of our work.
Thanks to the result given in chapter 3, in chapter 4 we state and prove The-
orem 4.1.1, which represents our main result, together with a straightforward
Corollary. In the proof we apply the same argument used in the proof of The-
orem 3.4 in [9] even if our result does not represent a special case of that theorem.
In the fifth and last chapter we introduce another family of projective diagonal
quartic surfaces in order to apply our results to this family as well. This chapter is
uncomplete and it will represent a stimulus for our further works.

6



Chapter 1

A family of projective diagonal
quartic surfaces

Consider the following family of diagonal quartic surfaces in P3(Q), named A148
in [4, A1, pag. 135]:

Wc1,c2 : x4 − 4c2
1y4 − c2z4 − 4c2w4 = 0 (1.1)

where c1, c2 ∈ Q
×. When c1 and c2 are clear from the context, we will denote

Wc1,c2 by simply W.

1.1 Fibrations defined over Q

The equation defining the surface gives raise to a natural fibration defined over Q:
indeed we have that

x4 − 4c2
1y4 = c2(z4 + 4w4)

and hence

(x2 − 2c1y2)(x2 + 2c1y2) = c2(z2 + 2zw + 2w2)(z2 − 2zw + 2w2)
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so that we can consider the following fibrations from W to P1:

ψ1 : (x : y : z : w) 7→ (x2 − 2c1y2 : z2 + 2zw + 2w2) = (c2(z2 − 2zw + 2w2) : x2 + 2c1y2),
(1.2)

ψ2 : (x : y : z : w) 7→ (x2 − 2c1y2 : z2 − 2zw + 2w2) = (c2(z2 + 2zw + 2w2) : x2 + 2c1y2)
(1.3)

Proposition 1.1.1. The fibrations defined in (1.2) and (1.3) are well defined on W.

Proof. Start considering ψ1. We can use the same arguments to prove the propo-
sition in the case of ψ2.
We have to show that the quantities x2 − 2c1y2, z2 + 2zw + 2w2, z2 − 2zw + 2w2 and
x2 + 2c1y2 are not all zero for any (x : y : z : w) on W. Consider P = (x0 : y0 : z0 :
w0) on W and assume that

x2
0 − 2c1y2

0 = 0 = z2
0 + 2z0w0 + 2w2

0.

Recall that since P is an element of the projective space, its coordinates cannot be
all zero. Now notice that x2 − 2c1y2 and x2 + 2c1y2 have no common factors in
Q[x, y]; the same holds for z2 + 2zw + 2w2 and z2 − 2zw + 2w2 in Q[z,w]. From

z2
0 + 2z0w0 + 2w2

0 = 0

it follows then that either z0 = 0 = w0 or z2
0 − 2z0w0 + 2w2

0 , 0.
If z2

0 − 2z0w0 + 2w2
0 , 0 then we are done.

So assume z0 = w0: then
z2

0 − 2z0w0 + 2w2
0 = 0

and at least one of x0 and y0 is nonzero. But from x2
0 − 2c1y2

0 = 0 we have that
then both are nonzero. It follows that x2

0 + 2c1y2
0 is nonzero, since x2 − 2c1y2 and

x2 + 2c1y2 have no common factors in Q[x, y]. �

Now we will prove a property of these two fibrations that will allow us to
translate the results obtained for ψ1 into results for ψ2 (and viceversa).

Proposition 1.1.2. Let ψ1 and ψ2 the fibration from W to P1 defined as in in (1.2)
and (1.3). Consider the automorphism of P3 defined by:

χ : (x : y : z : w) 7→ (x : y : z : −w).

The automorphism χ induces an automorphism of W; with an abuse of notation we
call χ the automorphism of W. The automorphism χ makes the following diagram
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commute.
W

χ
//

ψ1
��

W

ψ2
��

P1 P1

Proof. Trivial. �

1.2 Lines on W

Now we will find the equations of the 48 lines lying on W.
Let W = Wc1,−c2 ⊂ P

3 be the surface of the family A148 given by the equa-
tion (1.1):

x4 − 4c2
1y4 + c2z4 + 4c2w4 = 0.

The surface W contains 48 lines, Lk, given by the following equations:

Ll+4 j =

x = −
√

2γ1ζ
2l
8 y

z = −
√

2ζ2 j+1
8 w

,

L16+l+4 j =

x = −γ2ζ
2l+1
8 z

y = −
γ2
γ1
ζ

2 j
8 w

,

L32+l+4 j =

x = −
√

2γ2ζ
2l+1
8 w

y = −
γ2
√

2γ1
ζ

2 j
8 w

,

where ζ8 is a primitive 8-th root of unity,
√

2 = ζ8 − ζ
3
8 and l, j ∈ {0, 1, 2, 3};

furthermore γ1 and γ2 are elements of Q such that γ2
1 = c1 and γ4

2 = c2, and let
i = ζ2

8 .

If we define

α = x2 − 2c1y2,

β = z2 + 2zw + 2w2,

α = x2 + 2c1y2,

β = z2 − 2zw + 2w2;
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then it follows that on W we have αα = −c2ββ,
and let ψ j, with j = 1, 2, be the fibrations from W to P1 defined as in (1.2) and
(1.3), given by:

ψ1 : (x : y : z : w) 7→ (α : β) = (−c2β : α), (1.4)

ψ2 : (x : y : z : w) 7→ (α : β) = (−c2β : α). (1.5)

We want to see where the 48 lines are mapped by those fibrations.

1.3 Lines mapped by ψ1

In this section we study the image of the 48 lines on the surface W via the fibra-
tions ψ1 and ψ2.
It is very easy to see that the four lines given by the conditions α = 0, β , 0 or,
equivalently, α = 0, β = 0, namely L4, L6, L8, L10 are mapped to (0 : 1), and in fact
the fiber above (0 : 1) is given by the union of these 4 lines. To show this, it is
enough to recall that

α = x2 − 2c1y2 = (x −
√

2γ1y)(x +
√

2γ1y),

β = z2 − 2zw + 2w2 = (z − ζ8

√
2w)(z + ζ3

8

√
2w),

and from αα = −c2ββ it follows that α = 0, β , 0 is equivalent to α = 0, β = 0,
from which the equations of our lines follow.

With an analogous argument we show that the fiber above the point (1 : 0)
is given by the union of the lines L1, L3, L13, L15. In this case the conditions are
α , 0, β = 0, i.e. α = 0, β = 0.

We can summarize these results in the following Proposition.

Proposition 1.3.1. The fiber of ψ1 above (0 : 1) is the union of the lines L4, L6, L8, L10.
The fiber of ψ1 above (1 : 0) is the union of the lines L1, L3, L13, L15.
Both fibers have type I4, i.e. the four lines of each fiber form a tetragon: each line
of the fiber intersects the next line cyclically (see also [16, p. 365]).

In order to study the case of the other lines it is useful to recall that the surface
W defined in (1.1) is a K3 surface (see [4, II.2.2]), and to prove the following
Lemma.
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Lemma 1.3.2. Let s and t be two rationals, not both zero. Then the fiber of ψ1

above (s : t) on W is linearly equivalent to the fiber above (0 : 1).

Proof. The fiber F of ψ1 above (s : t) is given by the equations:t(x2 − 2c1y2) = s(z2 + 2zw + 2w2)
c2t(z2 − 2zw + 2w2) = s(x2 + 2c1y2)

.

Let F0 be the fiber of ψ1 above (0 : 1) and consider then the function

f =
t(x2 − 2c1y2) − s(z2 + 2zw + 2w2)

α
.

The divisor of f is F − F0 and the statement follows. �

This reult holds more in general for any map from V to P1.

Let F0 denote the fiber of ψ1 above (0 : 1); from Lemma 1.3.2 it follows that,
for any fiber F of ψ1 and any k ∈ 0, . . . , 47, the following identity of intersection
numbers holds: F · Lk = F0 · Lk.
On the other hand, it is very easy to compute the 48 × 48 matrix A = (a j,k)0≤ j,k≤47

where a j,k = L j ·Lk, since we have to compute the intersection number of lines, and
so it can only be either 0 if the two lines does not intersect, or 1 if they intersect;
for any j we have that the self-intersection number L j · L j equals −2, using [8,
Prop.V.1.5, pag. 361] and recalling that by definition the canonical divisor of a
K3 surface is K = 0. It also turns out that rank(A) = 20.

Proposition 1.3.3. Let j ∈ {0, . . . , 47} be such that L j is not in the fiber of ψ1

above (0 : 1) nor (1 : 0) (see 1.3.1).
If j ≤ 15 then L j is surjectively mapped to P1 via ψ1 with a 2-to-1 correspondence.
If j ≥ 16 then L j is surjectively mapped to P1 via ψ1 with a 1-to-1 correspondence.

Proof. Let s be a non zero rational and let F denote the fiber of ψ1 above (s : 1).
To show that any line is surjectively mapped to P1 it is enough to show that the
intersection number F · L j is greater than zero. But by 1.3.2 we have that F · L j =

F0 · L j, and by 1.3.1 we know that F0 = L4 + L6 + L8 + L10. So by bilinearity of
the intersection pairing we have that

F · L j = L4 · L j + L6 · L j + L8 · L j + L10 · L j = a4, j + a6, j + a8, j + a10, j
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for any j as in the hypotheses and s ∈ Q×, where the ai, j
′s are the entries of the

intersection number matrix A computed before.
If j ≤ 15 the sum above turns out to be 2: hence any fiber F has two intersections
with L j, i.e. L j is surjectively mapped to P1 via ψ1 with a 2-to-1 correspondence.
If j ≥ 16 then the sum above turns out to be 1: hence any fiber F intersects L j in a
point, i.e. L j is surjectively mapped to P1 via ψ1 with a 1-to-1 correspondence. �

1.4 Lines mapped by ψ2

Thanks to 1.1.2 it is easy to restate the results of the prevoius section for ψ2. In
any proposition we just have to substitute the line Lk with the line χ(Lk), where χ
is defined as in 1.1.2.
In this way we get the following Propositions.

Proposition 1.4.1. The fiber of ψ2 above (0 : 1) is the union of the lines L0, L2, L12, L14.
The fiber of ψ2 above (1 : 0) is the union of the lines L5, L7, L9, L11.

Proposition 1.4.2. Let L j with j ∈ {0, . . . , 47} be a line on W not in the fiber of ψ2

above (0 : 1) nor (1 : 0) (see 1.4.1).
If j ≤ 15 then L j is surjectively mapped to P1 via ψ2 with a 2-to-1 correspondence.
If j ≥ 16 then L j is surjectively mapped to P1 via ψ2 with a 1-to-1 correspondence.
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Chapter 2

Elliptic fibers

Let W be a surface defined as in (1.1),

W = Wc1,c2 : x4 − 4c2
1y4 − c2z4 − 4c2w4 = 0

with its elliptic fibrations ψ j, ji = 1, 2 defined as in (1.2) and (1.3),

ψ1 : (x : y : z : w) 7→ (x2 − 2c1y2 : z2 + 2zw + 2w2) = (c2(z2 − 2zw + 2w2) : x2 + 2c1y2),

ψ2 : (x : y : z : w) 7→ (x2 − 2c1y2 : z2 − 2zw + 2w2) = (c2(z2 + 2zw + 2w2) : x2 + 2c1y2).

Let F be a smooth fiber of ψ1. In this chapter we will see that F has genus 1 and
we will find the Weierstrass equation and the j-invariant of the Jacobian of F. If
we assume that F is smooth and there is a rational point on it, then the Jacobian of
F is isomorphic to F; taking the given rational point as nutral element, F inherits
the structure of an elliptic curve.
In order to do this we will follow the procedure presented in [1].
First we will consider the case for W = W 1

2 ,1
and then the general case for W =

Wc1,c2 where c1, c2 run in Q×.

2.1 W = W1
2 ,1

Let W = W 1
2 ,1

be the surface defined as in (1.1). Namely:

W : x4 − y4 = z4 + 4w4,
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and consider the two fibrations from W to P1 defined as in (1.2) and (1.3):

ψ1 : (x : y : z : w) 7→ (x2 − y2 : z2 + 2zw + 2w2) = (z2 − 2zw + 2w2, x2 + y2),

ψ2 : (x : y : z : w) 7→ (x2 − y2 : z2 − 2zw + 2w2) = (z2 + 2zw + 2w2, x2 + y2).

We start considering the fibers of ψ1. Let F denote the fiber of ψ1 above the point
(s : 1); then F is given by:x2 − y2 = s(z2 + 2zw + 2w2)

z2 − 2zw + 2w2 = s(x2 + y2)
⇐⇒

x2 − y2 − sz2 − 2szw − 2sw2 = 0
sx2 + sy2 − z2 + 2zw − 2w2 = 0

.

Notice that by the equations above we can deduce that F has genus 1, since they
are intersection of two quadrics in P3. Let U and V denote the quadric forms given
by

U(x, y, z,w) = x2 − y2 − sz2 − 2szw − 2sw2, (2.1)

V(x, y, z,w) = sx2 + sy2 − z2 + 2zw − 2w2. (2.2)

Let A and B be two 4 × 4 square symmetric matrices such that

U(x, y, z,w) = (x, y, z,w) · A · t(x, y, z,w),
V(x, y, z,w) = (x, y, z,w) · B · t(x, y, z,w).

Then we have that

A =


1 0 0 0
0 −1 0 0
0 0 −s −s
0 0 −s −2s

 , (2.3)

B =


s 0 0 0
0 s 0 0
0 0 −1 1
0 0 1 −2

 . (2.4)

Let ∆,Θ,Φ,Θ′,∆′ be defined by the following identity:

det(λA + B) = ∆λ4 + Θλ3 + Φλ2 + Θ′λ + ∆′. (2.5)

(Doing the easy computations) we find that they are

∆ = −s2

Θ = −6s

Φ = s4 − 1

Θ′ = 6s3

∆′ = s2.
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Then we define the following quantities:

a0 = ∆

a1 = −
Θ

4

a2 =
Φ

6

a3 = −
Θ′

4
a4 = ∆′

h = a0a4 − 4a1a3 + 3a2
2

k = a0a2a4 + 2a1a2a3 − a0a2
3 − a4a2

1 − a3
2.

By the result in [1, III.3], we have that the Jacobian of F is isomorphic to the
elliptic curve E defined by

y2 = x3 − 4hx − 16k,

namely:

E : y2 = x3 −
s8 + 94s4 + 1

3
x +

2s12 − 582s8 + 582s4 − 2
27

. (2.6)

If we assume that there is a rational point P on F , then F is isomorphic to its
Jacobian, hence to E. In this way we can look at (F, P) as an elliptic curve,
isomorphic to E. The j-invariant of E is given by:

j =
2(s8 + 94s4 + 1)3

s4(s2 − 2s − 1)2(s2 + 2s − 1)2(s4 + 6s2 + 1)2 . (2.7)

and whose discriminant d is

d = 2048s4(s2 − 2s − 1)2(s2 + 2s − 1)2(s4 + 6s2 + 1)2 = 0 (2.8)

So in our case, finding the values of s such that the fiber above (s : 1) is singular
means finding the roots of

s4(s2 − 2s − 1)2(s2 + 2s − 1)2(s4 + 6s2 + 1)2 = 0

Since we already computed the fibers above (0 : 1) and (1 : 0), we can reduce to
consider the following equation:

(s2 − 2s − 1)(s2 + 2s − 1)(s4 + 6s2 + 1) = 0 (2.9)
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whose roots are {±1 ±
√

2, i(±1 ±
√

2)}.
So we can conclude that in the case of the fibration ψ1 we have exactly 10 singular
fibers, namely the fibers above (1 : 0), (0 : 1), (s : 1) where s ∈ {±1 ±

√
2, i(±1 ±√

2)}. The fibers above the latter eight points turn out to have type I2, as we will
see in the next section.

Beacuse of the involution χ in 1.1.2, the same result holds for the fibers of ψ2

2.2 W = Wc1,c2

Now we will to do the same computations in the general setting: take W defined
by:

W = Wc1,c2 : x4 − 4c2
1y4 − c2z4 − 4c2w4 = 0

with its elliptic fibrations ψ j, j = 1, 2 defined by:

ψ1 : (x : y : z : w) 7→ (x2 − 2c1y2 : z2 + 2zw + 2w2) = (c2(z2 − 2zw + 2w2) : x2 + 2c1y2),

ψ2 : (x : y : z : w) 7→ (x2 − 2c1y2 : z2 − 2zw + 2w2) = (c2(z2 + 2zw + 2w2) : x2 + 2c1y2).

And consider the point (s : 1) ∈ P1 with s , 0. Then the fiber of ψ1 above (s : 1),
say F, is given by:x2 − 2c1y2 = s(z2 + 2zw + 2w2)

c2(z2 − 2zw + 2w2) = s(x2 + 2c1y2)
⇐⇒

x2 − 2c1y2 − sz2 − 2szw − 2sw2 = 0
sx2 + 2sc1y2 − c2z2 + 2c2zw − 2c2w2 = 0

.

Notice that the fiber has genus 1, since it is give by the intersection of two quadrics
in P3.
If we denote by U and V the quadric forms given by

U(x, y, z,w) = x2 − 2c1y2 − sz2 − 2szw − 2sw2, (2.10)

V(x, y, z,w) = sx2 + 2sc1y2 − c2z2 + 2c2zw − 2c2w2. (2.11)

then the matrices A, B defined as in the previous section, are given by

A =


1 0 0 0
0 −2c1 0 0
0 0 −s −s
0 0 −s −2s

 , (2.12)

B =


s 0 0 0
0 2sc1 0 0
0 0 −c2 c2

0 0 c2 −2c2

 . (2.13)
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It follows that

∆ = −2s2c1

Θ = −12sc1c2

Φ = 2s4c1 − 2c1c2
2

Θ′ = 12c1c2s3

∆′ = 2s2c1c2
2;

and finally

h =
s8c2

1 + 94s4c2
1c2

2 + c2
1c4

2

3

k =
s12c3

1 + 291s8c3
1c2

2 − 291s4c3
1c4

2 + c3
1c6

2

27
.

and so, by the result in [1, III.3], the Jacobian of F is isomorphic to the curve E
given by:

E = E(s, c1, c2) : y2 = x3 − 4hx − 16k

= x3 −
4
3

(s8c2
1 + 94s4c2

1c2
2 + c2

1c4
2)x +

16
27

(s12c3
1 + 291s8c3

1c2
2 − 291s4c3

1c4
2 + c3

1c6
2)

= x3 −
4c2

1

3
(s8 + 94s4c2

2 + c4
2)x +

16c3
1

27
(s12 + 291s8c2

2 − 291s4c4
2 + c6

2)

Moving the rational 2-torsion point ( 4c1(s4−c2
2)

3 , 0) to (0, 0) we can write:

E : y2 = x3 + 4c1(c2
2 − s4)x2 + 4c2

1(c4
2 − 34s4c2

2 + s8)x. (2.14)

If we assume that on F there is a rational point, then F is isomorphic to its Jaco-
bian, hence to E.

In other words, we have shown the following theorem:

Theorem 2.2.1. Let W be the surface defined as in (1.1) and ψ1 its fibration de-
fined in (1.2). Let s be a non zero rational and F the fiber of ψ1 above (s : 1) on
W.
Then the Jacobian of F is isomorphic over the rationals to the elliptic curve given
by:

y2 = x3 + 4c1(c2
2 − s4)x2 + 4c2

1(c4
2 − 34s4c2

2 + s8)x.

Corollary 2.2.2. Let W, ψ1, s and F defined as in 2.2.1, and assume there is a
rational point on F.
Then F is isomorphic over the rationals to the elliptic curve given by:

y2 = x3 + 4c1(c2
2 − s4)x2 + 4c2

1(c4
2 − 34s4c2

2 + s8)x.
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From now until the end of the chapter assume that F admits a rational point.
Then we may ask when F is a singular curve, and we already know that the fibers
above (0 : 1) and (1 : 0) are singular curves (namely, union of four lines of type
I4, as we will see). In order to answer this question it is useful to compute the
discriminant of E in terms of s.

The j-invariant of E is:

j = j(s, c2) =
2(s8 + 94s4c2

2 + c4
2)3

c2
2s4(s4 − 6s2c2 + c2

2)2(s4 + 6s2c2 + c2
2)2
, (2.15)

and the discriminant d is:

d = d(s, c2) = 217s4c6
1c4

2(s4 − 6s2c2 + c2
2)2(s4 + 6s2c2 + c2

2)2. (2.16)

Notice that the roots of both the j-invariant and the discrminant of E are indipen-
dent of c1.
Finding the values of s = s(c2) for which F is singular means finding the roots of
the equation (in the variable s over Q(c2))

c6
2s4(s4 − 6s2c2 + c2

2)2(s4 + 6s2c2 + c2
2)2 = 0.

Recalling that we assumed s, c2 , 0 this is equivalent to solving the equation

(s4 − 6s2c2 + c2
2)(s4 + 6s2c2 + c2

2) = 0.

The set of roots of the above equation is: {(±1 ±
√

2)γ2
2, i(±1 ±

√
2)γ2

2}.
So we can conclude that in the case of the fibration ψ1 we have exactly 10 singular
fibers, namely the fibers above (1 : 0), (0 : 1), (s : 1) with

s ∈ {(±1 ±
√

2)γ2
2, i(±1 ±

√
2)γ2

2},

where γ2 is such that γ4
2 = c2 (see 1.2).

But not all of these fibers admit rational points.
In fact let P = (x0 : y0 : z0 : w0) be a rational point of F, then ψ1(P) will have
rational coordinates: hence ψ1(P) , (s : 1) with s ∈ {(±1±

√
2)γ2

2, i(±1±
√

2)γ2
2}.

Indeed for any s in that set, s is not rational: for example let s = (1 +
√

2)γ2
2 and

assume it is rational. Then

s2 = (1 +
√

2)2γ4
2 = (1 +

√
2)2c2,

from which it follows that

3 + 2
√

2 =
s2

c2
.

The righthand side of the above identity is a rational, while the lefthand side is
not, getting a contradiction. With the same argument we show that also the other
roots cannot be rationals. We claim that the following Proposition holds.
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Proposition 2.2.3. Let W and ψ1 defined as before. Assume that |2c1| is not a
square in Q and let F be a fiber of ψ1 on W. Assume F has a rational point. Then
F is not singular.
If 2c1 is a square in Q then there are exactly two rational points on the fiber above
(0 : 1) and this is the only singular fiber with rational points.
If −2c1 is a square in Q then there are exactly two rational points on the fiber
above (1 : 0) and this is the only singular fiber with rational points.

Proof. We have already seen that the only fibers that may be singular are the fibers
above (1 : 0), (0 : 1), (s : 1) with s ∈ {(±1 ±

√
2)γ2

2, i(±1 ±
√

2)γ2
2} and that the

fibers above (s : 1) admit no rational points.
Now assume that |2c1| is not a square in Q. We need to check that also the fibers
above (1 : 0) and (0 : 1) have no rational points.
Indeed first assume that P = (x0 : y0 : z0 : w0) is a rational point of W sent to
(0 : 1) via ψ1. Then we have that 0 = x2

0 − 2c1y2
0, but since 2c1 is not a square the

equality can hold only if x0 = y0 = 0. Recalling that P lies on W it follows that

c2(z4
0 + 4w4

0) = 0

which implies that z0 = w0 = 0, getting a contradiction.
Now assume that P is sent to (1 : 0) via ψ1: then z2

0 + 2z0w0 + 2w2
0 = 0, which

implies that z0 = w0 = 0. But P is on W, then it follows that

0 = x4
0 − 4c2

1y4
0 = (x2

0 + 2c1y2
0)(x2

0 − 2c1y2
0),

from which we can conclude, since none of ±2c1 is a rational square, that x0 =

y0 = 0. Then we get another contradiction. In this way we have proved that if
|2c1| is not a square in Q then the fibers above (1 : 0) and (0 : 1) have no rational
points.
Assume now that 2c1 is a rational square: then the points (±

√
2c1 : 1 : 0 : 0) are

rational points on W sent to (0 : 1). We can use the same argument as before to
show that the fiber above (1 : 0) has no rational points.
Finally, assume that −2c1 is a rational square: then the points (±

√
−2c1 : 1 : 0 : 0)

are rational points on W sent to (1 : 0). As before we can show that there are no
rational points on the fiber above (0 : 1). �

As in the previous section, taking ψ2 instead of ψ1 one gets exactly the same
results, thanks to the involution χ defined in the proof of 1.1.2.

It may be interesting investigate the intersection points of the fibers of ψ1 and
ψ2 above (0 : 1) and (1 : 0).
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Let F0 and F∞ be the fibers of ψ1 above (0 : 1) and (1 : 0) respectively; let G0 and
G∞ be the analogue for ψ2. Then the following result holds:

Lemma 2.2.4. The intersection of the fibers above (0 : 1) and (1 : 0) are the
following:

F0 ∩G0 = {(±
√

2γ1 : 1 : 0 : 0)},

F0 ∩G∞ = {(0 : 0 :
√

2ζ8 : 1), (0 : 0 : −
√

2ζ3
8 : 1)},

F∞ ∩G0 = {(0 : 0 : −
√

2ζ8 : 1), (0 : 0 :
√

2ζ3
8 : 1)},

F∞ ∩G∞ = {(±
√

2γ1i : 1 : 0 : 0)},

where i and γ1 are defined as in section 1.2.

Proof. • F0 ∩ G0: recall that F0 is given by the conditions α = β = 0 while
G0 is given by the conditions α = β = 0. Then their intersection is given by
the conditions α = β = β = 0. The conditions β = β = 0 imply z = w = 0.
The condition α = 0 gives the desired result.

• F0∩G∞: recall that G∞ is given by the conditions α = β = 0; then the inter-
section with F0 is given by the conditions α = α = β = 0. From α = α = 0
it follows that x = y = 0; from β = 0 the desired conclusion does.

• F∞ ∩G0: as in the case of F0 ∩G∞, but with β in the place of β.

• F∞ ∩G∞: as in the case of F0 ∩G0, but with α in the place of α.

�

Notice that, using Lemma 2.2.4, we can see that the points in F0 ∩ G∞ and
F∞ ∩G0 are not rational for any choice of c1; the points in F0 ∩G0 are rational if
and only if 2c1 is a rational square; the points in F∞ ∩G∞ are rationals if and only
if −2c1 is a rational square.

Although not in this work, it is often very useful to know which type the
singular fibers have.

Proposition 2.2.5. Let F0 and F∞ be the singular fibers of ψ1 above (0 : 1) and
(1 : 0) respectively. Then they both have type I4.
Let s be an element of {(±1±

√
2)γ2

2, i(±1±
√

2)γ2
2}, and let Fs denote the singular

fiber of ψ1 above (s : 1). Than Fs has type I2.
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Proof. We explicitely computed the fibers F0 and F∞, and so it is easy to see that
they have type I4.
To show that the fiber Fs has type I2 it is enough to recall the table in [16, p. 365]
and to notice that the valuation of the j-invariant and the discriminant of Fs at s
is −2 and 2 respectively, as one can deduce from (2.15) and (2.16) respectively.
Looking at the table, we can conclude that Fs has type I2. �
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Chapter 3

Torsion Points

Let W be a surface defined as in (1.1),

W = Wc1,c2 : x4 − 4c2
1y4 − c2z4 − 4c2w4 = 0

with its elliptic fibrations ψi, i = 1, 2 defined as in (1.2) and (1.3),

ψ1 : (x : y : z : w) 7→ (x2 − 2c1y2 : z2 + 2zw + 2w2) = (c2(z2 − 2zw + 2w2) : x2 + 2c1y2),

ψ2 : (x : y : z : w) 7→ (x2 − 2c1y2 : z2 − 2zw + 2w2) = (c2(z2 + 2zw + 2w2) : x2 + 2c1y2).

In this chapter we will study the subgroup of the group of rational points formed
by the rational torsion points on each but finitely many fibers with at least one
rational point on it. We will treat only the fibers of ψ1, but thanks to Proposi-
tion 1.1.2 all the results hold for the fibers of ψ2 as well.

Our claim is that on each smooth fiber with at least one rational point (used
as 0 to make the fiber an elliptic curve), the rational torsion subgroup of the fiber
is isomorphic to Z/2Z. We will see that in order to prove this, using Mazur’s
theorem, it is enough to show that on these fibers there is only one non trivial
rational 2-torsion point and no nontrivial rational 3,4 and 5-torsion points.

3.1 2-torsion points

We will start our study considering the fibers of ψ1, but because of the involution
χ the same results hold for ψ2 as well.
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Assume there is a rational point on W, call it P = (x0 : y0 : z0 : w0) ∈ W(Q), such
that ψ1(P) = (s : 1) for some nonzero rational s (recall that we already know what
are the fibers above (0 : 1) and (1 : 0) ).
Let F denote the fiber of ψ1 passing through P; then we have an isomorphism
between F and the elliptic curve E given in 2.2.2 sending P to the zero element of
E. So we can think about F, P as an elliptic curve having P as zero element. With
an abuse of notation, we will write E when we want to consider F, P as an elliptic
curve, and we will write simply F when we consider F just as a curve.
Thanks to the result of the previous chapter, we could easily compute the rational
2-torsion points of E using its Weierstrass equation computed in 2.2.2. We prefer
to use another argument, to better understand the arithmetic of these surfaces.

Consider the following isomorphisms of W defined by:

σ : (x : y : z : w) 7→ (−x : y : z : w), (3.1)
τ : (x : y : z : w) 7→ (x : −y : z : w). (3.2)

They both respect the fibration, i.e. the following diagrams commute for j = 1, 2.

W σ //

ψ j
��

W
ψ j
��

W τ //

ψ j
��

W
ψ j
��

P1 P1 P1 P1

By the definition of σ and τ it is easy to see that σ(P), τ(P), σ ◦ τ(P) ∈ F(Q).
Notice that σ is an automorphism of F, but not of E, since it does not fix the point
P. Recall the following results:

Lemma 3.1.1. Let F be defined as before, P a rational point on F and let E denote
(F, P) viewed as elliptic curve over Q.
Consider the following short sequence

0 // E(Q) T // AutQ(F) Υ // AutQ(E) // 0.

where T is the map sending a point Q of E(Q) to the translation (using the group
structure on E) by Q; the map Υ sends an automorphism of F, say ω, to the
automorphism of E given by T−ω(P) ◦ ω.
The sequence is exact. In fact it splits.

Proof. The injectivity of the map T is trivial, as well as the surjectivity of the map
Υ. So we just need to show that ImT = kerΥ.
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Let ω ∈ ImT , then ω is a translation, say ω = TQ. Then

Υ(ω) = T−ω(P) ◦ ω

= T−Q ◦ TQ

= idE

Now assume that ω ∈ kerΥ. It implies that T−ω(P) ◦ ω = idE and hence

ω = (T−ω(P))−1 = Tω(P).

Hence ω is the translation by the point ω(P).
To show that the sequence splits just notice that AutQ(E) is contained in AutQ(F).
With this the proof is completed. �

Proposition 3.1.2. Let E be an elliptic curve defined over Q, then

AutQ(E) '


{±1} if j(E) , 0, 1728
{±1,±i} if j(E) = 1728
〈ζ6〉 if j(E) = 0

where j(E) denotes the j-invariant of E and ζ6 is a primitive 6-th root of unity.

Proof. See [14], pag. 104, Corollary III.10.2. �

We are interested in the image of σ and τ in AutQ(E).

Lemma 3.1.3. Let E = (F, P) be smoth a fiber of W with at least a rational point
viewed as elliptic curve overQ, and letσ and τ be the elements of AutQ(F) defined
as in (3.1) and (3.2).
Then there are rational points Rσ and Rτ on F such that, for any point Q on F we
have:

σ(Q) = Rσ − Q,
τ(Q) = Rτ − Q.

In particular Rσ = σ(P) and Rτ = τ(P).

Proof. We start considering σ.
First notice that since σ is an involution, it has order 2, and so, by 3.1.2, its image
under Υ can only be either 1 or −1. So we have only these two cases:
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• σ is mapped to 1: then σ is a translation by a point, and since σ is an invo-
lution, it is a translation by a 2-torsion point; in this case σ does not admit
fixed points. Recall that σ cannot be the identity, since it does not fix P.

• σ is mapped to −1: then by Lemma 3.1.1 we have that there is an Rσ ∈ E(Q)
such that for any Q ∈ E, σ(Q) = Rσ − Q.
Let R′ be a point on E(Q) such that 2R′ = Rσ, then we get that σ(R′) = R′,
hence the fixed points for σ are given by R′ + E[2], i.e. the points of the
form R′ + T where T is a 2-torsion point of E.

But now notice that σ admits fixed points if and only if F ∩ {x = 0} , ∅, indeed

σ(x : y : z : w) = (x : y : z : w) ⇐⇒ (−x : y : z : w) = (x : y : z : w) ⇐⇒ x = 0

But actually F ∩ {x = 0} , ∅ (for example consider the point (0 : ξ
√

2γ1
: z0 : w0),

where ξ ∈ Q is a square root of −s ), and so we have that σ is mapped to −1.
Using the same argument but considering F ∩ {y = 0} we can show that also τ is
mapped to −1.
Hence we can conclude that there are Rσ,Rτ, ∈ EQ such that for any Q ∈ E we
have that σ(Q) = Rσ − Q and τ(Q) = Rτ − Q. Notice that Rσ = σ(P) and
Rτ = τ(P). �

Now consider στ = σ ◦ τ:

στ(Q) = σ(Rτ − Q) = (Rσ − Rτ) + Q;

hence στ is a translation, but it is also an involution: indeed

στ(x : y : z : w) = (−x : −y : z : w).

Then it is a translation by a 2-torsion point, so we can conclude that

T0 := Rσ − Rτ = στ(P) = (−x0 : −y0 : z : w) ∈ E(Q)[2]. (3.3)

In order to find the other two 2-torsion points take the following two maps
from W to W, which also respect the fibration ψ1:

ρ1 : (x : y : z : w) 7→ (
√

2x :
√

2y : 2w : z)

ρ2 : (x : y : z : w) 7→ (−
√

2x : −
√

2y : 2w : z).
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They are both involutions but they also have fixed points, namely the points such
that z =

√
2w for ρ1 and the points such that z = −

√
2w for ρ2. So, as before, there

are R1,R2 ∈ E such that:

ρ1(Q) = R1 − Q, where R1 = ρ1(Q), (3.4)
ρ2(Q) = R2 − Q, where R2 = ρ1(Q). (3.5)

Notice that R1 and R2 are nonrational since ρ1 and ρ2 map P to a non rational point:
indeed ρ1(P) = (

√
2x0 :

√
2y0 : 2w0 : z0) is rational if and only if x0 = y0 = 0, but

in this case P would be sent either to (0 : 1) or (1 : 0), while we assumed that F
were a fiber above (s : 1) with s nonzero rational; the same argument works for
ρ2 as well.
Moreover, looking at their definitions, we see that ρ1ρ2 = στ, from which it
follows that R1 − R2 = T0. But consider ρ1σ:

ρ1σ(Q) = ρ1(Rσ − Q) = (R1 − Rσ) + Q; (3.6)

so ρ1σ is an involution (since composition of two commuting involutions) and a
translation, then it is a translation by a 2-torsion point. We can hence conclude
that:

T1 := (R1 − Rσ) = ρ1σ(P) = (−
√

2x0 :
√

2y0 : 2w0 : z0) ∈ E[2]. (3.7)

The last torsion point is then T2 := T1 + T0.
To compute it explicitely we can use the same argument used to compute T1, but
considering ρ2σ(= ρ1τ). Then we have that:

T2 = ρ2σ(P) = (
√

2x0 : −
√

2y0 : 2w0 : z0) (= ρ1τ(P)). (3.8)

To check that in fact T0 + T1 + T2 = P, recalling the definition of these points, it is
enough to check that

(ρ2σ)(ρ1σ)(στ) = idF ,

but this is straightforward using the definitions of σ, τ, ρ1, ρ2.

So we have found that

E[2] = {P,T0,T1,T2}.

Recalling that P is rational, (3.3) shows that T0 ∈ E(Q)[2]; instead (3.7) and
(3.8) show that T1 and T2 are not rational. Hence we have proved the following
Theorem.
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Theorem 3.1.4. Let E = (F, P) be a smooth fiber of ψ1 on W with a rational point
P, viewed as elliptic curve. Then

E(Q)[2] = {P,T0} ' Z/2Z.

where στ(P) = T0 = Rσ − Rτ, with Rσ,Rτ defined as in 3.1.3.

Proof. We already proved that E(Q)[2] = {P,T0}. Then to show that {P,T0} '

Z/2Z it is enough to show that P , T0. Let P ∈ W be the point with coordinates
(x0 : y0 : z0 : w0), then we have seen that T0 = (−x0 : −y0 : z0 : w0). It follows
that P = T0 if and only if either x0 = y0 = 0 or z0 = w0 = 0. But for each of these
two cases it follows that then P lies on a singular fiber, while we assumed that P
was on a smooth fiber. �

3.2 4-torsion points

Let s ∈ Q×, and let F denote the fiber on W of ψ1 above (s : 1). Assume that on F
there is a rational point. Then by Corollary 2.2.2 we have that F is isomorphic to
the elliptic curve E given by

E : y2 = x3 + 4c1(c2
2 − s4)x2 + 4c2

1(c4
2 − 34s4c2

2 + s8)x =: g(x).

So looking for the 4-torsion points on F is equivalent to looking for the 4-torsion
points on E. Notice that g(x) = xg1(x), where

g1(x) = x2 + 4c1(c2
2 − s4)x + 4c2

1(c4
2 − 34s4c2

2 + s8).

Let f4(x) be the 4-division polynomial of E:

f4(x) = 8xh1(x)h2(x)h3(x), (3.9)

where

h1(x) = g1(x),

h2(x) = x2 − 4c2
1(s8 − 34s4c2

2 + c4
2),

h3(x) = x4 + 8c1(c2
2 − s4)x3 + 24c2

1(s8 − 34s4c2
2 + c4

2)x2+

+ 32c3
1(−s12 + 35s8c2

2 − 35s4c4
2 + 32c6

2)x+

+ 16c4
1(s16 − 68s12c2

2 + 1158s8c4
2 − 68s4c6

2 − c8
2).
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The roots of h1(x) = g1(x) are the first coordinate of the two non rational 2-torsion
points (since the two rational ones are give by the point at infinity and (0, 0) ).
We claim that the roots of h3 are the first coordinates of those 4-torsion points
mapped to T1 and T2 under multiplication by 2 and the roots of h2 are the first
coordinates of the 4-torsion points mapped to (0, 0) under multiplication by 2: to
see this notice that h3 splits over Q(

√
2), and so its roots are conjugated under the

action of the Galois group Gal(Q(
√

2)/Q). Instead the polynomial h2 splits over
Q(γs), where γs is such that γ2

s = 4c2
1(s8 − 34s4c2

2 + c4
2). Notice that

√
2 is not an

element of Q(γs). This implies that, if we consider the extension field Q(
√

2, γS ),
the roots of h2 are fixed by the map

√
2 7→ −

√
2. Recalling that T1 and T2 are

conjugated under the action of Gal(Q(
√

2)/Q), our claim follows. But then the 4-
torsion points mapped to T1 and T2 under multiplication by 2 cannot be rational,
since T1 and T2 are not.
We still need to check the four 4-torsion points given by h2: in order to prove that
they are not rational it is enough to prove that their first coordinate is not rational,
i.e. h2(x) admits no rational roots for any s, c2 ∈ Q

×.

Lemma 3.2.1. Let s, c2 be nonzero rationals, then the equation

h2(x) = 0

has no rational roots.

Proof. Asking whenever the equation h2(x) = 0 has a rational solution is equiva-
lent to asking whenever 4c2

1(s8 − 34s4c2
2 + c4

2) is a rational square, but notice that
it is a rational square if and only if s4

c2
2
− 34 + ( s4

c2
2
)−1 is a rational square.

In other words, we are looking for rational points on the surface D ⊂ A3(z, s, c2)∩
{sc2 , 0} =: U given by:

D : z2 −
s4

c2
2

− 34 +

( s4

c2
2

)−1

= 0.

Let θ denote the map from U to A2(p, q) defined by:

θ : (z, s, c2) 7→
(
z

s2

c2
,

s2

c2

)
. (3.10)

The map θ maps D to the curve C ⊂ A2(p, q) defined by:

C : p2 = q4 − 34q2 + 1, (3.11)

whose projective closure is given by:

C : X2Z2 = Y4 − 34Y2Z2 + Z4, (3.12)
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where p = X
Z and q = Y

Z ⊂ P
2(X,Y,Z).

Hence we can look at θ as the map from D to C defined by:

(z, s, c2) 7→ (zs2 : s2 : c2) (3.13)

The map θ sends rational points to rational points, so to show that there are no
rational points on D it is enough to show that there are no rational points on C
coming from D via θ for any admissible choice of s and c2.
Again using the procedure shown in [1] it turns out that the Jacobian of C is
isomorphic to the elliptic curve H given by:

H : y2 = x3 − x2 − 24x − 36.

On C there are rational points, namely (1 : 0 : 1), (1 : 0 : −1) and (1 : 0 : 0), but
since it is singular (in (1 : 0 : 0) ) what we can say is that H is isomorphic to the
desingularization of C. Blowing up C at (1 : 0 : 0) we can see that (1 : 0 : 0)
corresponds to two distinct rational points on the desingularization of C. Hence
we have at least four rational points on the desingularization of C.
It is easy to compute the rank of H, which turns out to be 0, and so we have that
HQ = HTor(Q). But one can see that #HTor(Q) = 4.
It follows that on the desingularization of C there exactly four points, two corre-
sponding to (1 : 0 : 1) and (1 : 0 : −1) and two corresponding to (1 : 0 : 0) on C.
Looking at (3.13) we can see that none of these points comes from any point of D
via θ. This means that we have no rational points on D, hence we have no rational
roots of h2. �

From the Lemma 3.2.1 we can deduce that the four 4-torsion points coming
from h2 have nonrational first coordinate, from which it follows that they are non-
rational. With this we have shown the following:

Theorem 3.2.2. Let E = (F, P) be a smooth fiber of ψ1 on W with a rational point
P, viewed as elliptic curve. Then there are no nontrivial rational 4-torsion points
on E, i.e.

E(Q)[4] = E(Q)[2].

Recall that E(Q)[2] is explicitely given in 3.1.4.

3.3 5-torsion points

In this section we will show that any smooth fiber of ψ1 on W with at least one
rational point, viewed as elliptic curve, admits no nontrivial rational 5-torsion
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points.

In our strategy to show this, the j-invariant of the fiber plays a crucial role. Let
s be a non-zero rational, then from (2.15) we know that the j-invariant of the fiber
F of ψ1 above (s : 1) is given by:

j = j(s, c2) =
2(s8 + 94s4c2

2 + c4
2)3

c2
2s4(s4 − 6s2c2 + c2

2)2(s4 + 6s2c2 + c2
2)2
. (3.14)

Now assume that on F, viewed as an elliptic curve, there is a rational nontrivial
5-torsion point, P. Then we can consider the following Lemma.

Lemma 3.3.1. Let E/Q be an elliptic curve defined over Q, and P ∈ E(Q) a 5-
torsion point. Then there is a number b ∈ Q and an isomorphism ϕ : E → E′,
where E′ is the curve defined by

E′ : y2 + (b + 1)xy + by = x3 + bx2, (3.15)

such that ϕ(P) = (0, 0).

Proof. See [6], proposition 8.2.8. �

In fact this Lemma shows that X1(5) � P1(b). From the Lemma 3.3.1 it follows
that the j-invariant of the elliptic fiber F is given by

j = −
b2 + 12b + 14 − 12b−1 + b−2

b + 11 + b−1 (3.16)

for some b ∈ Q×. It follows that there is a b ∈ Q× such that

g(b) := −
b2 + 12b + 14 − 12b−1 + b−2

b + 11 + b−1 =
2(s8 + 94s4c2

2 + c4
2)3

c2
2s4(s4 − 6s2c2 + c2

2)2(s4 + 6s2c2 + c2
2)2

=
2(c−2

2 s4 + 94 + c2
2s−4)3

(c−2
2 s4 − 34 + c2

2s−4)2
=: f (s).

This means that we have a rational point on the affine curve C′ ⊂ A2(s, b) ∩ {sb ,
0} =: U defined by

C′ : g(b) = f (s). (3.17)

We are interested then in understanding the set of rational points of C′. We claim
that the curve C′ has no rational points. In order to prove this, consider the fol-
lowing map from C′ to C ⊂ A2(u, c):

ν : (s, b) 7→ ((c−1
2 s2 − c2s−2)2, b − b−1). (3.18)
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where C is given by

C : 2(u + 96)3(c + 11) = −(c2 + 12c + 16)3(u − 32)2. (3.19)

Now we have to give two remarks: the first is that the map ν sends rational points
to rational points, hence if we have that there are no rational points on C it follows
that there are no rational points on C′; the second remark is that, by (3.18), the first
coordinate of the image of the rational points of C′ on C via ν must be a rational
square, namely

u = (c−1
2 s2 − c2s−2)2 =: v2.

Lemma 3.3.2. Let C ⊂ P2(X,Y,Z) be the projective closure of the curve C defined
in (3.19), where u = X/Z and c = Y/Z, then there exist a birational morphism

ϕ : P1 → C, (p : q) 7→ (X(p, q) : Y(p, q) : Z(p, q))

with

X(p, q) =25(p − 7168q)2(p2 − 10240pq + 20971520q2)2(p2 −
73728

5
pq + 54525952q2),

Y(p, q) = − 11(p − 8192q)4(p −
36864

5
q)

(p3 − 22528p2q +
1862270976

11
pq2 −

4668629450752
11

q3),

Z(p, q) =(p − 8192q)5(p − 7168q)2(p −
36864

5
q);

Its inverse (X : Y : Z) 7→ (p(X,Y,Z) : q(X,Y,Z)) is given by:

p(X,Y,Z) =(XY9 + 60XY8Z − 32Y9Z + 1520XY7Z2 − 1920Y8Z2 + 21104XY6Z3 − 34304Y7Z3+

+ 2X2Y4Z4 + 174528XY5Z4 + 88576Y6Z4 + 70X2Y3Z5 + 877696XY4Z5+

+ 11028480Y5Z5 + 880X2Y2Z6 + 2659200XY3Z6 + 160147456Y4Z6 + 4608X2YZ7+

+ 4824064XY2Z7 + 1086945280Y3Z7 + 8096X2Z8 + 5496832XYZ8 + 3710566400Y2Z8+

+ 3602432XZ9 + 5761662976YZ9 + 3261759488Z10)/2,

q(X,Y,Z) =Z3(Y + 11Z)(Y2 + 12YZ + 16Z2)2(Y2 + 18YZ + 76Z2).

Proof. The map is obtained using MAGMA, but one can check that the composi-
tions of the two maps are the identity maps. �

This parametrization helps us in finding rational points on C coming from C′.
In fact, using the parametrization, we have that

u =
X(p, q)
Z(p, q)

,
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but u = v2; hence the existence of a rational point on C coming from C′ would
imply the existence of rational p, q, v such that

v2 =
25(p − 7168q)2(p2 − 10240pq + 20971520q2)2(p2 − 73728

5 pq + 54525952q2)

(p − 8192q)5(p − 7168q)2(p − 36864
5 q)

that is equivalent to the existence of rational p, q, r such that

q2r2 = 2(p2 −
73728

5
pq + 54525952q2)(p − 8192q)(p −

36864
5

q). (3.20)

Let M ⊂ P2(q, r, p) be the curve defined by (3.20). Notice that (1 : 0 : 8192) and
(5 : 0 : 36864) are rational points on M. Are there more rational points on M?
Again using the results presented in [1] we can see that M is isomorphic (since
there are rational points on it) to the elliptic curve

G : y2z = x3 − 4x2z + 20xz2,

which has rank 0 and torsion subgroup isomorphic to Z/2Z. This means that
G(Q) = GTor(Q) = {(0 : 0 : 1), (0 : 1 : 0)}. Hence we have only two rational
points also on M, namely (1 : 0 : 8192) and (5 : 0 : 36864). These two points
correspond to the points (8192 : 1), (36864 : 5) ∈ P1(p : q). So in correspondence
of these two points, via ϕ, we should have two rational points on C coming from
C′. Both points are mapped to (1 : 0 : 0) ∈ C. This means that the only rational
points on C coming from C′ have u = ∞. But this is impossible since

u = (c−1
2 s2 − c2s−2)2,

with c2, s ∈ Q×. So there are no rational points on C coming from C′, hence
there are no rational points on C′. In other words we have proven the following
Proposition.

Proposition 3.3.3. Let C′ be the curve defined in (3.17). C′ has no rational points.

But this is a contradiction to the assumption of the existence of a rational 5-
torsion point on the fiber F (viewed as an elliptic curve), then the assumption must
be false. This is the proof of the following Theorem.

Theorem 3.3.4. Let s ∈ Q× and F be the fiber of ψ1 over (s : 1), and assume
there is at least one rational point on F. Then F viewed as elliptic curve has no
nontrivial rational 5-torsion points.
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3.4 3-torsion points

After having proven that there are no non trivial rational 4- and 5-torsion points
on the smooth fibers of ψ1 on W with at least one rational point, we show that
there are not even nontrivial rational 3-torsion points.

Lemma 3.4.1. Let E be an elliptic curve defined overQ and P a rational 3-torsion
point; assume E has nonzero j-invariant. Then there exist an element b ∈ Q× such
that the pair (E, P) is isomorphic to the pair (Eb, (0, 0)), where Eb is the elliptic
curve defined by

y2 + xy +
b

27
y = x3.

Proof. First reduce E to the Weierstrass form. Then E can be expressed as

E : y2 + a′xy + b′y = x3 + c′x2 + d′x + e′.

By means of the translation given sending P to (0, 0) we have that E is isomorphic
to the curve given by

E′′ : y2 + a′′xy + b′′y = x3 + c′′x2 + d′′x.

Now notice that b′′ , 0 otherwise the tangent to E′ at (0, 0) would be x = 0
implying that (0, 0) has order 2, while from the hypotheses it follows that (0, 0) is
of order 3. So we can consider the following automorphism of A2(a1, a2)

(a1, a2) 7→ (a1, b′′a2 − d′′a1),

which sends E′′ to E′ defined by

E′ : y2 + axy + b′′′y = x3 + cx2.

Since E is an elliptic curve, it is non singular; hence E′ is non singular. It follows
that b′′′ , 0, otherwise (0, 0) would be a singular point for E′.
Now consider the 3-division polynomial of E′, say ϕ3:

ϕ3 = 3x4 + (a2 + 4c)x3 + 3ab′′′x2 + 3b′′′2x + b′′′2c.

By hypotheses we have that P is 3-torsion. This implies that (0, 0) is 3-torsion on
E′, hence 0 is a zero of ϕ3. From this follows that b′′′2c = 0, but since b′′′ , 0 we
can deduce that c = 0.
Then we can write E′ as

y2 + axy + b′′′y = x3.
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Now suppose that a = 0, then the j−invariant of E′ turns out to be 0, which contra-
dicts the hypotheses. So we may assume that a , 0. Applying the automorphism
of A2(x, y) sending y to a3y and x to a2x we can write E′ as

y2 + xy +
b′′′

a3 y = x3.

For b = 27 b′′′
a3 we get the desired expression. �

Let s be a nonzero rational, and F the fiber of ψ1 over (s : 1) on W. Assume
that on F viewed as an elliptic curve there is a rational 3-torsion points. Then
by 3.4.1 we have that the j-invariant of F is given by:

g(b) := 2933 (b − 9/8)3

b4 − b3 (3.21)

for some b ∈ Q×.
But from (2.15) we know that the j-invariant of F is also give by:

2(c−2
2 s4 + 94 + c2

2s−4)3

(c−2
2 s4 − 34 + c2

2s−4)2
=: f (s) (3.22)

Then assuming the existence of a rational 3-torsion point on F is equivalent to
assuming the existence of a rational point on the curve C′ ⊂ A2(b, s)∩{bs , 0} =:
U:

C′ : g(b) = f (s) ⇐⇒ 2833(b−9/8)3(c−2
2 s4−34+c2

2s−4)2 = (c−2
2 s4+94+c2

2s−4)3(b4−b3)
(3.23)

Consider the map ε from A2(b, s) to A2(p, q) defined by:

ε : (b, s) 7→ (b, c−1
2 s2 + c2s−2). (3.24)

Notice that ε sends rational points to rational points. The curve C′ is mapped to
the curve C ⊂ A2(p, q) defined by:

C : 2833(p − 9/8)3(q2 − 36)2 = (q2 + 92)3(p4 − p3) (3.25)

For this curve we have the following result:

Lemma 3.4.2. Let C ⊂ A2(p, q) be the curve defined in (3.25). Then there are no
rational points on C coming from C′ via ε.
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Proof. To show this Lemma we use the software MAGMA. The following is not
really exactly a proof since the author does not yet know the theory and the al-
gorithm beyond the MAGMA functions. Nevertheless we will try to give a basic
idea.
Consider the curve C given in (3.25). It is easy to see that (0,±6), (1,±6) are ra-
tional points on C, and in particular that the points (0,±6) are also singular. We
will show that these are the only rational points on the curve.
Using MAGMA the curve turns out to be isomorphic over the rational to the hy-
perelliptic curve H defined by:

H : y2 = 4x5 − 14x4 − 8x3 + 36x2 + 36x + 9 (3.26)

Also in this case it is easy to see that (1 : 0 : 0), (0 : ±3 : 1), (−1 : 0 : 2), (4 : ±27 :
1) are rational points on H. Let H̃ be the desingularization of H. Then we have at
least six rational points on H̃. Let J = J(H̃) denote the Jacobian of H̃. Since we
have rational points on H̃, let R be one of them, we have that H̃ can be embedded
in J(H̃) via the canonical map ι : Q 7→ (P) − (R). By Mordell-Weil theorem we
know that J(H̃) is isomorphic to Zr ⊕ JTor, where r is a nonnegative integer and
JTor is the torsion subgroup of J. Using MAGMA we can compute JTor and r,
getting that JTor ' Z/4Z and r = 1. Then let D be a generator of J/JTor; it follows
that J = 〈D〉 ⊕ JTor.
Now we introduce the concepts of naive height and Neron-Tate height of a point
in J. Notice that we are working with elements of the Jacobian of a curve, and so
it is not clear what are the coordinates of these points. As coordinates we use the
standard model of the associated singular Kummer surface (see [5]). This surface
can be embedded in P3, and so we define the height for elements of P3.
Let Q = (x0 : y0 : z0 : w0) be a rational point of P3. Without loss of generality
we can assume all the coordinates to be integers. Then we define the height of Q,
denoted by H(Q) as

H(Q) = max{|x0|, |y0|, |z0|, |w0|}. (3.27)

Using the definition of the height we can now define the naive height of Q, to be:

h(Q) = log H(Q). (3.28)

We can now define the Neron-Tate height to be:

ĥ(Q) = lim
n→∞

h(2nQ)
4n . (3.29)

It is a fact that the Neron-Tate height is well defined and that it is a quadratic form
on the Mordell-Weil group of rational points of an abelian variety (J in our case).
It is also true that |h − ĥ| is bounded, and using MAGMA we can even compute
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a bound for it in our case, call it b2, getting b2 ≈ 2.47. For more details about
Neron-Tate height see [21]; it may be also useful to read [15, III.1,2] .
Let B be the set of rational points Q of J such that H(Q) ≤ 250:

B = {Q ∈ J(Q) : H(Q) ≤ 250},

and let B the subgroup of J generated by B. We can use MAGMA to compute
BTor ' Z/4Z, and also a basis for B/BTor, that turns out to be generated by a single
element, say P. Then it follows that

B = 〈P〉 ⊕ BTor.

Using MAGMA we can also compute the height of P, getting H(P) ≈ 0.17. Sup-
pose now that 〈P〉 is strictly contained in J/JTor = 〈D〉. Then there is an m ∈ Z≥2

such that P = m · D (modulo torsion). Recalling that the Neron-Tate height is a
quadratic form and that m ≥ 2 it follows that

ĥ(D) ≤
ĥ(P)

4
,

and hence, recalling that |h − ĥ| ≤ b2 ≈ 2.78 we have that

h(D) ≤
ĥ(P)

4
+ b2,

and so finally we get

H(D) ≤ exp
(
ĥ(P)

4
+ b2

)
≈ 249.04 < 250.

But then D ∈ B, that is a contradiction with the assumption that 〈P〉 is strictly
contained in J/JTor = 〈D〉. So we have that actually B = J.
By Chabauty’s method (see [12] for more details) one has that

ι(H̃(Q)) = ι(H̃(Qp)) ∩ J(Q).

Using p = 17, 23 MAGMA shows that ι(H̃(Q)) = {(1 : 0 : 0), (0 : ±3 : 1), (−1 :
0 : 2), (4 : ±27 : 1)}. Recall that H̃(Q) is in a 1-to-1 correspondence with ι(H̃(Q)):
hence there are only six rational points on H̃.
Using MAGMA we can compute the pullback on C for each of these points:
MAGMA returns the points that are actually in the preimage of the given point
together with the points at which the birational map from C to H is not defined.
For all the six points we get that the preimage is given by {(0,±6), (1,±6)}. Since
the map is birational this implies that these four points are the only rational points
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on C.
Now we need to show that none of these points comes from C′ via ε. By the def-
inition of ε asking when one of these points comes from C′ via ε is equivalent to
asking when the equation

c−1
2 s2 + c2s−2 = ±6 (3.30)

has nonzero rational solutions in s, c2. Let e = s2

c2
; since s and c2 are nonzero

rationals, we have that e is a nonzero rational. Notice that finding nonzero rational
solutions in s, c2 for the equation (3.30) is equivalent to finding nonzero rational
roots in e of the equations

e2 ± 6e + 1 = 0, (3.31)

whose solutions are {±3 ± 2
√

2}, none of which is rational.
The statement follows. �

Then, since the map from C′ to C sends rational points to rational points, 3.4.2
implies that there are no rational points on C′ either. But this contradicts our initial
assumption, that is the existence of a rational 5-torsion point on F. In this way,
assuming that MAGMA’s computations are correct, we have shown the following
Theorem.

Theorem 3.4.3. Let s ∈ Q× and F be the fiber of ψ1 over (s : 1), and assume
there is at least one rational point on F. Then F, viewed as elliptic curve, has no
nontrivial rational 5-torsion points.

3.5 Torsion subgroup

Using the results obtained in the prevoius sections, in this one we will finally give
an explicit description of the torsion subgroup of the smooth fibers of W.
In order to do this it is important to recall Mazur’s Theorem.

Theorem 3.5.1 (Mazur). Let E/Q be an elliptic curve defined over Q. Then the
torsion subgroup ETor(Q) of E(Q) is isomorphic to one of the following fifteen
groups:

Z/NZ with 1 ≤ N ≤ 10,N = 12
Z/2Z × Z/2NZ with 1 ≤ N ≤ 4.

Further, each of these group occurs as ETor(Q) for some elliptic curve E/Q.
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Proof. See [10, 11]. �

Let s be a non zero rational, and let F the fiber of ψ1 over (s : 1) on W. Assume
that F has at least a rational point P = (x0 : y0 : z0 : w0). Denote by E = (F, P)
the fiber viewed as elliptic curve. By 3.1.4 we know that ETor(Q) has at most
one element of order 2 and hence ETor(Q) , Z/2Z × Z/2NZ, where 1 ≤ N ≤
4. More in particular 3.1.4 tells us that ETor(Q)[2] is isomorphic to Z/2Z. This
implies that ETor(Q) , Z/3Z,Z/5Z,Z/7Z,Z/9Z; by 3.2.2 we know that there are
no non trivial rational 4-torsion points, from which we can deduce that ETor(Q) ,
Z/4Z,Z/8Z,Z/12Z; by 3.3.4 we know that there are no 5-torsion points, hence
ETor(Q) , Z/10Z; finally 3.4.3 shows that there are no 3-torsion points and so we
have that ETor(Q) , Z/6Z. The only case left is then that ETor(Q) = Z/2Z. In
other words, we have proved the following Theorem.

Theorem 3.5.2. Let s ∈ Q× and F be the fiber of ψ1 over (s : 1) on W. Assume
that F has at least one rational point, P = (x0 : y0 : z0 : w0). Denote by E = (F, P)
the fiber viewed as elliptic curve. Then

ETor(Q) = {(x0 : y0 : z0 : w0), (−x0 : −y0 : z0 : w0)} ' Z/2Z.

By 1.1.2 we have that the same results hold for ψ2 as well.
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Chapter 4

Density of Rational Points

In this chapter we present our main result. It is deeply linked with the Theorem
3.4 in [9] proved by Van Luijk, Logan and McKinnon.

4.1 The main results

Theorem 4.1.1. Let c1, c2 be two nonzero rationals and W be the surface defined
as

W : x4 − 4c2
1y4 − c2z4 − 4c2w4 = 0.

Let P = (x0 : y0 : z0 : w0) be a rational point on W with x0 and y0 both nonzero.
If |2c1| is a square in Q×, then also assume that z0,w0 are not both zero. Then the
set of rational points on the surface is Zariski dense.

Proof. First assume |2c1| not to be a square in Q×. From this assumption and from
the fact that the point P is a rational point, using Lemma 2.2.4, it follows that P
does not lie on the intersection of two singular fibers. So let F be a smooth fiber
passing through P. Without loss of generality we may assume that F is a fiber of
ψ1. Let E = (F, P) be the fiber viewed as an elliptic curve.
Consider the point P′ = (−x0 : y0 : z0 : w0): Since x0 is nonzero, it is different
from P. The point P′ is a rational point on F, and by Theorem 3.5.2, since x0

and y0 are both nonzero, it has infinite order. So we have infinitely many rational
points on E, which implies that the set E(Q) is Zariski dense in E. It may happen
that some rational points on E lie on a singular fiber of ψ2, but recalling that E is a
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smooth fiber and using Proposition 1.3.3, it follows that this can happen for only
finitely many points on E. Notice that only fnitely many points among those we
obtained can have the product of the first two coordinates equal to zero: indeed
assume that there are infinitely many rational points on F having as first coordinate
x = 0, then the fiber F and the curve over W given by x = 0 has infinitely many
points of intersection. Since F has only one irreducible component this implies
that F is contained in the curve x = 0. But this is a contradiction to the assumption
of the existence of the point P = (x0 : y0 : z0 : w0) with x0 and y0 nonzero. So
for infinitely many points on E(Q), consider the fiber of ψ2 passing through it. To
each of these fibers we can apply the same argument as above, getting that each
of these fibers have a Zariski dense set of rational points. So we have infinitely
many fibers with infinitely many rational points on each of them. Zariski density
follows.
Assume now that |2c1| is a square in the rationals. By hypotheses we have that z0

and w0 are not both zero, then from Lemma 2.2.4 it follows that P does not lie on
the intersection of two singular fibers. Hence we can apply the same argument as
before and the conclusion follows. �

From the theorem 4.1.1 we can easily deduce the following Corollary.

Corollary 4.1.2. Let c1, c2 be two nonzero rationals such that

4c2
1 + 5c2 = 1

and let W = Wc1,c2 be the surface defined as in (1.1). Then the set of rational
points of the surface is Zariski dense.

Proof. The point (1:1:1:1) lies on W, and so we can apply theorem 4.1.1. The
statement follows. �

4.2 Bad points

As we have seen in the proof of Theorem 4.1.1, the assumption of the existence
of a rational point on a smooth elliptic fiber having infinite order is crucial. So
one may ask what are the points that satisfy this assumption or, equivalently, what
are the points that do not satisfy this request and hence do not ensure the Zariski
density of the set of rational points on the surface.
Van Luijk gives an answer to this question in [18], with the following Theorem.
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Theorem 4.2.1 (Theorem 2.2). Let k be a number field and let k be an algebraic
closure of k. Let V be a projective smooth surface over k. For each integer d
there exists an explicitly computable closed subset Z ⊆ V such that for each field
extension K of k of degree at most d over Q and for each twist W of V, with
corresponding isomorphism φ : Wk 7→ Vk, the set W(K) is Zariski dense in W as
soon as it contains any point outside φ−1(Z).

In this section we give an expicit example of such a subset. Notice that in our
case we consider d = 1.

Let W ⊂ P3 be a diagonal quartic surface defined as in 1.1 and consider the
trivial twist of W, i.e. W itself together with the identity map idW : W → W.
Taking d = 1, Theorem 4.2.1 implies that there exists an explicitely computable
closed subset Z ⊆ W such that the set W(Q) is Zariski dense in W as soon as it
contains any point outside Z. We will now compute this subset Z.
Assume that |2c1| is not a square inQ×: then Theorem 4.1.1 shows that the rational
points not ensuring the Zariski density are just the rational points with one of the
two first coordinates equal to zero, i.e. Z = {xy = 0}. Instead if |2c1| is a rational
square, then, again from Theorem 4.1.1, we can deduce that Z = {xy = 0} ∪ {z =

w = 0}.
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Chapter 5

Further Developments

In this chapter we start showing how the results we got for the family A148 can
be used to get similar results for another family of diagonal quartic surfaces.

5.1 Another family: A25

Consider the family of diagonal quartic surfaces, named A25 in [4], given by:

Vc1,c2 : x4 + c2
1y4 − c2z4 − 4c2w4 = 0 (5.1)

where c1, c2 are non zero rationals. When the values of c1 and c2 are clear from
the context, we will denote Vc1,c2 by V .
We start by considering the following two fibrations from the surface V to P1:

φ1 : (x : y : z : w) 7→ (x2−ic1y2 : z2+2izw−2w2) = (c2(z2−2izw−2w2) : x2+ic1y2)
(5.2)

φ2 : (x : y : z : w) 7→ (x2−ic1y2 : z2−2izw−2w2) = (c2(z2+2izw−2w2) : x2+ic1y2)
(5.3)

defined over Q(i), where ζ8 is a primitive 8-th root of unity and i = ζ2
8 .

Proposition 5.1.1. The fibrations defined in (5.2) and (5.3) are well defined over
V.

Proof. Start by considering φ1: we can use the same arguments to prove the
proposition in the case of φ2.
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We need to prove that the quantities x2 − ic1y2, z2 + 2izw − 2w2, z2 − 2izw − 2w2

and x2 + ic1y2 are not all zero for any (x : y : z : w) on V . Consider P = (x0 : y0 :
z0 : w0) on V and assume that

x2
0 − ic1y2

0 = 0 = z2
0 + 2iz0w0 − 2w2

0.

Recall that since P is an element of the projective space, its coordinates cannot
be all zero. Now notice that x2 − ic1y2 and x2 + ic1y2 have no common factors in
Q[x, y]; the same holds for z2 + 2izw − 2w2 and z2 − 2izw − 2w2 in Q[z,w]. From

z2
0 + 2iz0w0 − 2w2

0 = 0

it follows then that either z0 = 0 = w0 or z2
0 − 2iz0w0 − 2w2

0 , 0.
If z2

0 − 2iz0w0 − 2w2
0 , 0 then we are done.

So assume z0 = w0: then
z2

0 − 2iz0w0 − 2w2
0 = 0

and at least one of x0 and y0 is nonzero. But from x2
0 − ic1y2

0 = 0 we have that
then both are nonzero. It follows that x2

0 + ic1y2
0 is nonzero, since x2 − ic1y2 and

x2 + ic1y2 have no common factors in Q[x, y]. �

Proposition 5.1.2. Let φ1 and φ2 the fibration from V to P1 defined as in (5.2) and
(5.3). Consider the automorphism of P3 defined by:

Ξ : (x : y : z : w) 7→ (x : y : z : −w).

The automorphism Ξ induces an automorphism of V; with an abuse of notation we
call Ξ the automorphism of V. The automorphism Ξ makes the following diagram
commute:

W Ξ //

φ1
��

W

φ2
��

P1 P1

Proof. Trivial. �

This proposition will allow us to translate the results obtained for the fibration
φ1 into results for φ2, and viceversa.

Let G be the Galois group Gal(Q(i)/Q) = {1, σ}, where σ : i 7→ −i. Notice
then that σ induces an automorphism of V(Q(i)).
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Proposition 5.1.3. The map σ sends fibers of φ1 to fibers of φ1.

Proof. Let P = (x0 : y0 : z0 : w0) be a point on V , and let (s : t) = φ1(P). Then

(σφ1)(P) = (x2
0 + ic1y2

0 : z2
0 − 2iz0w0 − 2w2

0) = (c2t : s).

Hence σ sends the fiber above (s : t) to the fiber above (c2t : s). �

By Proposition 5.1.2 the same result holds for φ2.
Notice that the involution aσ of P1, where

aσ : (s : t) 7→ (c2t : s),

makes the following diagram commute:

V
φ1

��

σφ1

��

P1 P1
aσ

oo

Since we are interested in working on rational points, it is more useful to have
a fibration defined over Q. In order to get such a fibration we may consider one
from V to some projective curve defined over Q, but isomorphic to P1 over Q.
So let ψ : P1 → P2 the map given by ψ : (s : t) 7→ (s2 : st : t2). Consider the
composition of φ1 with ψ and denote this composition by ρ1 : V → P2. Let C
denote the image of ρ1 in P2. It is easy to see that C is curve defined by

C : XZ = Y2. (5.4)

So we have two fibrations: ρ1 from V to C and σρ1 from V to σC = C (since C is
defined over Q). Let bσ be the automorphism of P2 defined as:

bσ : (p : q : r) 7→ (c2r : q : p/c2);

bσ induces an automorphism of C: with an abuse of notation we denote the in-
duced automorphism of C with bσ as well.
It is easy to see that bσ ◦ σρ1 = ρ1, i.e. the following diagram commutes.

V
ρ1

��

σρ1

��

C C
bσ

oo
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If we represent points of P2 as column vectors then bσ can be represented by
an element of PGL3(K). Notice that the representative of the class is not uniquely
determined.
In our case we choose as representative of bσ the matrix Mσ :=

( 0 0 c2
0 1 0

c−1
2 0 0

)
.

We want to find an automorphism τ of P2 defined overQ such that the diagram
below commutes,

V
ρ1

~~

σρ1

  

C

τ
  

C
bσ

oo

στ~~

D0

i.e. τ must be such that τ ◦ bσ = στ, where D0 is a conic in P2 isomorphic to P1

over the rationals. This means that if τ is represented by the invertible matrix T
(in the analogous sense of bσ with respect to Mσ) we require that σT = T · Mσ.
Finding such a T means finding the desired τ.

Lemma 5.1.4. Let K be a field extension of Q; let H denote the galois group
Gal(K/Q). Assume that there exist a map h 7→ Mh such that it is a 1-cocycle, i.e.
Mkh = Mk ·

kMh for any h, k ∈ H. Consider S =
∑

h∈H Mh ·
hN for some choice of

N in GL3(K). Then, for any g ∈ H, we have that

Mg ·
gS = S .

Proof.

Mg ·
gS = Mg ·

g
(∑

h∈H

Mh ·
hN

)
(5.5)

= Mg ·
∑
h∈H

gMh ·
g(hN) (5.6)

=
∑
h∈H

Mg ·
gMh ·

ghN (5.7)

=
∑
h∈H

Mgh ·
ghN (5.8)

=
∑
h′∈H

Mh′ ·
h′N (5.9)

= S (5.10)

Notice that the identity (5.8) follows from the hypotheses that the map h 7→ Mh is
a 1-cocycle. �
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From Lemma 5.1.4 one can easily deduce the following Corollary.

Corollary 5.1.5. Let K,H, S be defined as in 5.1.4. Assume that S is invertible
and denote with T = S −1 its inverse. Then for any g ∈ H we have that

gT = T · Mg.

It is easy to show that the hypoteses of Lemma 5.1.4 hold in our case: since
ρ1 is defined over Q(i), we can consider K = Q(i), then H = G = Gal(Q(i)/Q) =

{1, σ}. Consider then the map from G to GL3(Q(i)) sending 1 to the identity matrix
I and σ to the matrix Mσ defined as before. It is easy to see that this map is a 1-
cocycle. So we can apply the previous results to our case.
To keep the computations simple we take

N =

1 0 i
0 1 0
0 0 1

 ,
getting

S =

ic2 0 −ic2
2 + c2

0 1 0
−i 0 ic2 + 1


and hence

T = S −1 =

1 − i/c2 0 c2 + i
0 2 0

1/c2 0 1

 .
By Corollary 5.1.5 this is the desired T , i.e. σT = T · Mσ.
The automoprhism τ is hence given by sending:

(p : q : r) 7→ ((1 − i/c2)p + (c2 + i)r : 2q : p/c2 + r), (5.11)

and its inverse is given by:

(p : q : r) 7→ (c2(r + i(p − c2r)) : q : r − i(p − c2r)). (5.12)

Now we can write the equation defining the image of the curve C under τ,
the curve D0 := τ(C) (= στ(C) ). Using (5.12) and recalling that C is defined by
Y2 = XZ we get that D0 is defined by

D0 : Y2 = c2(Z2 + (X − c2Z)2). (5.13)
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Finding two fibrations from V to a curve described by a simpler equation might
be useful; for this reason consider the automorphism of P2 defined over Q by

(p : q : r) 7→ (c2(p − c2r) : q : c2r), (5.14)

call it τ0. Notice that, since it is defined over the rationals, στ0 = τ0.
It follows that the image of D0 via τ0, call it D := τ0(D0), is the curve given by:

c2Y2 = X2 + Z2. (5.15)

In this way we have found two fibrations from V to D, namely:

Φ1 := τ0 ◦ τ ◦ ψ ◦ φ1
σΦ1 := τ0 ◦

στ ◦ ψ ◦ σφ1

V
φ1

~~

σφ1

  

P1

ψ

��

P1
aσ

oo

σψ=ψ
��

C

τ
  

C
bσ

oo

στ~~

D0

τ0=στ0
��

D
Lemma 5.1.6. Using the above notations, we have that

σΦ1 = Φ1,

i.e. the diagram above is commutative.

Proof. The proof is straightforward from the construction and follows from the
commutativity of the diagram above. Indeed

σΦ1 =σ (τ0 ◦ τ ◦ ψ ◦ φ1)
= στ0 ◦

στ ◦ σψ ◦ σφ1

= τ0 ◦ (τ ◦ bσ) ◦ σψ ◦ σφ1

= τ0 ◦ τ ◦ (bσ ◦ σψ) ◦ σφ1

= τ0 ◦ τ ◦ (ψ ◦ aσ) ◦ σφ1

= τ0 ◦ τ ◦ ψ ◦ (aσ ◦ σφ1)
= τ0 ◦ τ ◦ ψ ◦ φ1 = Φ1.

�
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Lemma 5.1.6 shows that in fact the fibration Φ1 is defined over the rationals,
but we still do not have an explicit expression for it that is defined over the ratio-
nals. If we call

α = x2 − ic2y2,

β = z2 + 2izw − 2w2,

α = x2 + ic2y2,

β = z2 − 2izw − 2w2;

then it follows that on V we have that αα = c2ββ.
Using this notation we can write

(s : t) = φ1(x : y : z : w) = (α : β)

from which it follows that

(p : q : r) = ψ(s : t) = (s2 : st : t2) = (α2 : αβ : β2).

Then applying τ:

τ(α2 : αβ : β2) = ((1 − i/c2)α2 + (c2 + i)β2 : 2αβ : α2/c2 + β2)

and finally

τ0((1 − i/c2)α2 + (c2 + i)β2 : 2αβ : α2/c2 + β2) =

= (c2(((1 − i/c2)α2 + (c2 + i)β2) − c2(α2/c2 + β2)) : 2αβ : c2(α2/c2 + β2))

= (ic2β
2 − iα2 : 2αβ : α2 + c2β

2).

So the fibration Φ1 can be expressed by:

(x : y : z : w) 7→ (ic2β
2 − iα2 : 2αβ : α2 + c2β

2), (5.16)

from wich it follows that σΦ1 = Φ1 can be expressed by:

(x : y : z : w) 7→ (−ic2β
2

+ iα2 : 2αβ : α2
+ c2β

2
). (5.17)

Although the fibration is defined over the rationals, we still have nonrational ex-
pressions for it, since i is involved in (5.16) and (5.17) and also in the expression
of α and β.
In order to find rational expressions recall the following property:

If
x
y

=
z
w

then
x
y

=
z
w

=
x + z
y + w
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where K is a field and x, y, z,w ∈ K, y,w , 0, y + w , 0.
So we can consider the expressions of Φ1 from V to D given by the sum and the
difference divided by i of the expressions in (5.16) and (5.17), getting

(x : y : z : w) 7→ (P : Q : R) = (P′ : Q′ : R′) (5.18)

where

P = −4c2zw(z2 − 2w2) − 2c2x2y2, (5.19)

Q = 2(x2z2 − 2x2w2 + 2c2y2zw), (5.20)

R = (x4 − c2y4) + c2(z4 − 4z2w2 + w2 − 2z2w2), (5.21)

and

P′ = c2(z4 − 4z2w2 + w2 − 2z2w2) − (x4 − c2y4), (5.22)

Q′ = 2(2x2zw − c2y2z2 + c2y2w2), (5.23)

R′ = 4c2zw(z2 − 2w2) + 2c2x2y2. (5.24)

We can summarize these results in the following Proposition.

Proposition 5.1.7. Let V be the projective surface defined as in (5.1) and D the
projective curve defined as in (5.15). Then there is rational fibration Φ1 from V to
D defined by (5.18). Furthermore, the following diagram commutes.

V
φ1

��

Φ1

��

P1
τ0◦τ◦ψ

// D�oo

Doing the same construction, but starting with the fibration φ2, we get another
fibration from V to D defined over the rationals. Call it Φ2. Recalling Lemma 5.1.2
one can easily check that Φ2 is given by

(x : y : z : w) 7→ (P : Q : R) = (P′ : Q′ : R′) (5.25)

where

P = 4c2zw(z2 − 2w2) − 2c2x2y2, (5.26)

Q = 2(x2z2 − 2x2w2 − 2c2y2zw), (5.27)

R = (x4 − c2y4) + c2(z4 − 4z2w2 + w2 − 2z2w2), (5.28)

and

P′ = c2(z4 − 4z2w2 + w2 − 2z2w2) − (x4 − c2y4), (5.29)

Q′ = 2(−2x2zw − c2y2z2 + c2y2w2), (5.30)

R′ = −4c2zw(z2 − 2w2) + 2c2x2y2. (5.31)
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5.2 An isomorphism between the two families

In this section we want to find an isomorhism between the two families defined
over some algebraic extension of Q. This isomorphism will allow us to translate
any geometric result for the family A148 into a result for the family A25.
In particular we want an isomorphism which respects the fibrations given by (1.2)
and (1.3) for the family A148 and given by (5.2) and (5.3) for the family A25 and
viceversa.
Let c1, c2 be in Q× and consider the surface V = Vc1,c2 of the family A25 defined
as in (5.1) with the fibrations φ1 and φ2 be its fibrations defined in (5.2) and (5.3);
let W = Wc1,c2 be the surface of the family A148 defined as in (1.1), and ψ1

and ψ2 its fibration defined as in (1.2) and (1.3) respectively. We want to find
an isomorphism Θ from V to W such that the following diagrams commute for
k = 1, 2:

V Θ //

φk
��

W

ψk
��

P1 P1

Proposition 5.2.1. Let Θ denote the map from V to W defined as

Θ : (x : y : z : w) 7→ (x :
ζ8y
√

2
: z : iw). (5.32)

Then Θ makes the previous diagram commute.

Proof. It is easy to see that it is well defined, i.e. any point on V is sent to a point
on W, and bijective; we need to check that the diagram is commutative, that is
ψk ◦ Θ = φk, with k = 1, 2 :

ψ1 ◦ Θ(x : y : z : w) = ψ1(x :
ζ8y
√

2
: z : iw)

= (x2 − 2c1
iy2

2
: z2 + 2izw − 2w2)

= (x2 − c1iy2 : z2 + 2izw − 2w2)
= φ1(x : y : z : w).

Recalling Lemmas 1.1.2 and 5.1.2, the commutativity of the diagram for k = 2
follows. �

So the Θ is the desired isomorphism. Notice that it is induced on V by an
automorphism of P3 that does not depend on c1, c2.
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