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Instituut dell’Università di Leida, e a coloro con cui ho qui condiviso quest’anno
di lavoro in questo stimolante ambiente di formazione e ricerca.

Non sarei qui senza il premuroso appoggio datomi dai miei fantastici genitori
e da tutta la mia estesa famiglia; sono immensamente grato per il loro sostegno
nelle mie importanti scelte di vita. Un enorme ringraziamento va a Guido per
avermi sempre spronato e aiutato a trovare motivazione in quello che faccio.
Infine un ringraziamento a tutte le belle persone incontrate nel mio percorso di
vita e di studio, tutte le amiche e tutti gli amici di Torino, Bordeaux, Padova,
Leida e L’Aia. Un particolare ringraziamento alla mitica Tanja!



iv

Introduction

In this thesis we will consider Galois closures for monogenic degree-4 ring
extensions. We will start by giving the definition of a G-closure for a degree-n
ring extension as in O. Biesel’s PhD thesis [1], where G ≤ Sn. This definition
generalizes classical finite Galois Theory, with the property of having a G-closure
corresponding to having the Galois group contained in G. We will also recall
some properties of G-closures which will help us to give parametrizations in
the case of a monogenic degree-4 extension of a ring R, that is, an R-algebra
obtained by adjoining a variable x to R and quotienting by a degree-4 polynomial
f(x). To do this, we will consider 4-multivariate polynomial rings and try to
describe their invariants under certain subgroups of S4 as an algebra over the
symmetric polynomials. Finally, a counterexample will point out that it is not
possible to generalize the definition of Galois group (as the minimal subgroup
G ≤ Sn for which a G-closure exists), giving a negative answer to the first of
Questions 4.4.3 in [1].

First, we review the relevant facts from classical Galois Theory. Consider a
finite separable field extension K → L of degree n and fix a separable closure K̄
of K. Let N be the Galois closure of L/K, that is, the minimal subfield of K̄
containing all the images of the field homomorphisms L→ K̄ over K. We have
n field homomorphisms L→ N fixing K, that we can call π1, . . . , πn, choosing
an order for them. Then the Galois group G = Gal(N/K) of the field extension
K → L acts on the left on {π1, . . . , πn} by composition. This is easily seen to be
a faithful action, so that we can consider G as a subgroup of Sn via σπi = πσ(i).

This allows us to construct a K-algebra map

Φ : L⊗n > N

`1 ⊗ `2 ⊗ · · · ⊗ `n >

n∏
i=1

πi(`i).

Also, there is a left action of G ≤ Sn on the K-algebra L⊗n, defined by

σ(`1 ⊗ · · · ⊗ `n) = `σ−1(1) ⊗ · · · ⊗ `σ−1(n)

which makes Φ a G-map of K-algebras. Hence Φ restricts to a K-algebra map
ϕ : (L⊗n)G → NG = K, giving the following commutative diagram:

(L⊗n)G
ϕ
> K

L⊗n
∨

Φ
> N
∨

One can prove that this is a tensor product diagram, i.e. L⊗n ⊗(L⊗n)G K ∼= N
via the induced map (this is a consequence, for example, of Theorem 1 from [1]).

To generalize this, we first point out some properties of the K-algebra
homomorphism ϕ. For ` ∈ L we denote

`(j) = 1⊗ · · · ⊗ 1⊗ `⊗ 1⊗ · · · ⊗ 1, j ∈ {1, . . . , n},

where the only ` in the simple tensor lies in the j-th position. We define
ek(`) := ek(`(1), . . . , `(n)), the k-th elementary symmetric polynomial computed
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in `(1), . . . , `(n). This element clearly lies in (L⊗n)Sn ⊆ (L⊗n)G, and it is sent by
ϕ to sk(`), the k-th symmetric polynomial in the n conjugates π1(`), . . . , πn(`).
This happens to be the k-th signed coefficient of the characteristic polynomial
of `. That is, using ` to indicate a matrix of `· : L→ L,

det(λ · idL − `) =

n∏
j=1

(λ− πj(`)) = λn − s1(`)λn−1 + ...+ (−1)nsn(`).

For example, ϕ(e1(`)) = s1(`) =
∑n
j=1 πj(`), the trace of ` over K, and

ϕ(en(`)) = sn(`) =
∏n
j=1 πj(`), the norm of ` over K.

Moving to the case of rings, we define a degree-n extension of R, an associative
commutative unital ring, to be a commutative R-algebra A which is locally free
of rank n, that is, Ari

∼= Rnri as Rri-modules, for some set {r1, ..., rm} ⊆ R
generating the unit ideal. For a ∈ A, the definition of ek(a) ∈ A⊗n is exactly the
same, and also the coefficient sk(a) ∈ R can be defined, since the characteristic
polynomials on the free localizations can be glued together.

Instead of defining the Galois group for ring extensions, we adopt the following
approach: we fix a subgroup G ≤ Sn, and define G-closures for the extension
R→ A as tensor product diagrams like the one we obtain in the case of a degree-n
separable field extension. More precisely, a G-closure is a map ϕ : (A⊗n)G → R
sending ek(a) 7→ sk(a), for k = 1, . . . , n, together with an R-algebra B realizing
a tensor product diagram

(A⊗n)G
ϕ
> R

A⊗n
∨

> B
∨

i.e. B ∼= A⊗n ⊗(A⊗n)G R.

An R-algebra map sending ek(a) 7→ sk(a) like ϕ is called a normative map.
One can define morphisms of G-closure in the following way: there is a morphism
only if the normative maps are the same, and for each pair of G-closures (B,ϕ),
(B′, ϕ) a morphism consists of an A⊗n-algebra map B → B′. Then it is easily
seen that all such morphisms are actually isomorphisms, and that isomorphism
classes of G-closures are parametrized by normative maps (A⊗n)G → R. We
denote the set of such maps with NormR((A⊗n)G, R). For G = Sn there exists
a unique normative map ϕ0 : (A⊗n)Sn → R, called the Ferrand map. This is
proven in [1], Chapter 2. Hence we can view R as an (A⊗n)Sn-algebra via ϕ0,
so that, for G ≤ Sn, normative maps (A⊗n)G → R are just (A⊗n)Sn-algebra
maps. For a finite separable field extension, it can be proven that the Galois
group of the extension is (up to conjugation) the minimal G ≤ Sn for which a
G-closure for the field extension exists. In Section 1.1 we will give more detailed
definitions and results of Galois closures for finite ring extensions.

For n ≤ 3 and G ≤ Sn, parametrizations of G-closures for monogenic degree-
n extensions of rings, i.e. R-algebras of the form R→ R[x]/(f(x)) (where f is a
monic degree-n polynomial, can be easily obtained using the results in [1]. This
is why in our thesis the aim is to consider monogenic degree-4 extensions of rings
R→ R[x]/(f(x)), with f(x) = x4 − s1x

3 + s2x
2 − s3x+ s4, and to give criteria

for when G-closures exist, for each subgroup G ≤ S4. Up to conjugation, the
subgroups of S4 are laid out all together in Figure 1. In order to do this, we will
use some results for monogenic extensions from [1].
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24 S4

12 A4

8 D4

6 S3

4 C4 V4 S2 × S2

3 C3

2 C2 S2

1 1

A4 =〈V4, C3〉
D4 =〈σ, (1 3)〉
S3 =〈(1 2 3), (1 3)〉
V4 ={1, σ2, (1 2)(3 4), (1 4)(2 3)}
C4 =〈σ〉

S2 × S2 =〈(1 3), (2 4)〉
C3 =〈(1 2 3)〉
S2 =〈(1 3)〉
C2 =〈σ2〉

Figure 1: A diagram representing (up to conjugation) all the subgroups of S4, where σ stands
for the 4-cycle (1 2 3 4) and the numbers on the left are the orders of the subgroups lying on
that line.

In Section 1.2 we will give a proof of Theorem 1.2.1. This theorem states
that if G = Sd1 × · · · × Sdk ≤ Sn, with d1 + · · · + dk = n, then isomorphism
classes of G-closures are in one-to-one correspondence with factorizations of the
polynomial defining the monogenic extension into monic polynomials of degrees
d1, . . . , dk. This allows us to describe the G-closure for a monogenic degree-4
extensions when G ∈ {1, S2, S3, S2 × S2, S4} in terms of factorizations of f .

In Section 1.3 we will give an easier description of G-closures for monogenic
extensions in terms of invariant polynomials. Specifically, one can give to R an
R[x1, . . . , xn]Sn-algebra structure via the R-algebra map R[x1, . . . , xn]Sn → R
sending the k-th elementary symmetric polynomial, which we will denote by
ek, to the k-th signed coefficient of the polynomial defining the monogenic
extension. Recall that indeed we have R[x1, . . . , xn]Sn = R[e1, . . . , en] by the
fundamental theorem of symmetric polynomials. Whenever the order of G is
not a zero-divisor in R, then G-closures are in one-to-one correspondence with
R[x1, . . . , xn]Sn-algebra maps R[x1, . . . , xn]G → R. We will explain how an
R[x1, . . . , xn]Sn -algebra description of R[x1, . . . , xn]G can be given.

In [1], this is done to describe An-closures for monogenic extensions. There
the following isomorphism of R[x1, . . . , xn]Sn -algebras is proven:

R[x1, . . . , xn]An ∼= R[x1, . . . , xn]Sn [x]/(x− Γ)(x− Γ′),

where Γ is the sum over the An-orbit of the monomial x0
1x

1
2 · · ·xn−1

n and Γ′

is the sum of the monomials on the complementary orbit (that is, the poly-
nomial Γ acted on by any odd permutation of the variables xi). Then by
Theorem 1.3.3, An-closures for a monogenic degree-n extension of rings R →
A = R[x]/(f(x)) are in one-to-one correspondence with maps of R[x1, . . . , xn]Sn -
algebra R[x1, . . . , xn]An → R, hence with roots in R of the polynomial x2 −
ϕ0(Γ + Γ′)x+ ϕ0(ΓΓ′), which are the possible images of Γ. Here ϕ0 denotes the
map R[x1, . . . , xn]Sn → R sending the k-th elementary symmetric polynomial
ek to the k-th signed coefficient of f . This allows us to immediately parametrize
A4-closures for monogenic degree-4 ring extensions, while in order to parametrize
C3-closures one has to be a bit more careful.

In Chapter 2 we will give explicit parametrizations of G-closures for monogenic
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degree-4 extensions R → A = R[x]/(f(x)), focusing on the subgroups for
which there was no previous immediate or explicit description, that is, G ∈
{V4, C4, C2, C3}. To make things simpler, we will suppose that 2 ∈ R is not a zero-
divisor. While D4-closures (as stated in [1]) are in one-to-one correspondence with
roots of f ’s resolvent cubic g(x) = x3−s2x

2 +(s1s3−4s4)x− (s2
3−4s2s4 +s2

1s4),
we will see that V4-closures are in one-to-one correspondence with g’s splittings
into monic linear factors, agreeing with classical Galois theory (see Chapter 4
in [4]). Next, we will find explicit polynomial equations parametrizing C4-closures
when 2 ∈ R×, after giving a free basis for the Z [ 1

2 ] [x1, x2, x3, x4]S4-module
Z [ 1

2 ] [x1, x2, x3, x4]C4 . After that, we will deal with C2-closures, which can be
easily parametrized by presenting Z[x1, x2, x3, x4]C2 as an Z[x1, x2, x3, x4]S2×S2 -
algebra.

Finally, in Section 2.5 we will apply the criteria for G-closures on some
particular monogenic degree-4 ring extensions, and we will also lay out a coun-
terexample which gives a negative answer to the first of Questions 4.4.3 in [1].
Specifically, this counterexample establishes that it is not possible to define the
Galois group of a ring extension as the minimal subgroup up to conjugation
G ≤ Sn such that a G-closure exists, since there are such minimal subgroups
which are not conjugate.

Notation & Conventions

• 0 ∈ N.

• All rings considered are commutative, associative and with an identity.

• For n ∈ N we denote [n] = {1, . . . , n}.

• When working with a degree-n extension of rings, we denote R[x] :=
R[x1, . . . , xn]. Moreover, each time we are working with a polynomial ring
R[x1, . . . , xn], we denote by er the r-th elementary symmetric polynomial
in the n variables x1, . . . , xn.

• If G is a group, we write H ≤ G to mean that H is a subgroup of G, and
H �G to mean that H is a normal subgroup of G. For any group G acting
on a set I we denote IG := {t ∈ I : ∀σ ∈ G, σt = t}.

• For any R-algebra A and finite set D we denote A⊗RD the tensor product
over R of copies of the R-algebra A indexed by D. We denote it shortly
as A⊗D if it is clear for the context that A is regarded as an R-algebra.
For n ∈ N, we consider A⊗n := A⊗[n]. (For n = 0, A⊗0 = R, the initial
object in the category of R-algebras.) For j ∈ D and a ∈ A, we denote by
a(j) ∈ A⊗D the simple tensor with a in the position indexed by j and 1
everywhere else.

• For any set I, we denote by SI the symmetric group Bij(I, I) of I. For
n ∈ N, we write Sn := S[n]. Given s ∈ Z>0 distinct elements k1, . . . , ks ∈ I,
we use the cycle notation (k1 k2 · · · ks) for the permutation in SI sending
ki 7→ ki+1 for i ∈ [s− 1], ks 7→ k1, and fixing all the rest of I. For a, b ∈ I,
we denote by τab := (a b) the permutation in SI interchanging a↔ b and
fixing all the rest of I. Since permutations are functions, for σ1, σ2 ∈ SI ,
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we denote by σ1σ2 the composition of the two permutations, where σ1 is
applied after σ2.
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Chapter 1

G-closures for monogenic
extensions

1.1 Galois closures for finite ring extensions

In this section we will define finite ring extensions and their Galois closures.
We will also state some important facts about them before moving to the case
of monogenic ring extensions.

Definition 1.1.1. Let R be a ring and n ∈ N. An R-module M is said
to be locally free of rank n if there exist elements r1, . . . , rm ∈ R such that
〈r1, . . . , rm〉R = R and Mri

∼= Rnri as Rri-modules for all i ∈ {1, . . . ,m}.

Definition 1.1.2. Let R be a ring and n ∈ N. A degree-n ring extension of R
is an R-algebra A such that A is locally free of rank n as an R-module.

To define normative maps, we need to prove that it makes sense to define the
characteristic polynomial of an element a ∈ A, for R→ A a degree-n extension.
This is done in the following lemma. Recall that for any R-algebra A which is
finite free as an R-module we can define the characteristic polynomial of each
element a ∈ A, that is, fa(λ) = det(λ · idA− a), where a also denotes any matrix
associated to the R-linear map a· : A→ A. It is well defined, in the sense that
it does not depend on the R-basis of A used to define the matrix a.

Lemma 1.1.3. Let R→ A be a degree-n extension of rings, with free localiza-
tions Ari

∼= Rnri (as Rri-modules), where (r1, ..., rm) = 1, and take a ∈ A. Then
there exist unique elements sk(a), for k ∈ [n] such that λn − s1(a)λn−1 + · · ·+
(−1)nsn(a) is the characteristic polynomial of the Rri-linear map a· : Ari → Ari
for each i ∈ [m]. Moreover, this polynomial vanishes at λ = a.

We call λn − s1(a)λn−1 + · · ·+ (−1)nsn(a) the characteristic polynomial of
a ∈ A, and sk(a) its k-th signed coefficient.

Proof. For each r ∈ R we have Rr = OSpec(R)(Ur), where Ur = {p ∈ Spec(R) :
r 6∈ p}. Then Ur ∩ Us = Urs, so that Rrs = OSpec(R)(Ur ∩ Us), where the
restriction map Rr → Rrs is the canonical one. Whenever r and s realize
free localizations, we want to show that the coefficients of the characteristic

3



CHAPTER 1. G-CLOSURES FOR MONOGENIC EXTENSIONS

polynomials of the Rr-linear map Ar → Ar and the Rs-linear map As → As
sending x 7→ a · x are the same on the intersection, that is, in Rrs. Then the
coefficients glue and become elements of R, because OSpec(R) is a sheaf and the
opens Uri cover Spec(R), as (r1, ..., rm) = 1. This can be done by showing that
the characteristic polynomial of a· : Ar → Ar is also the characteristic polynomial
of a· : Ars → Ars, which is unique (the same holding for the localization over s).
As passing from Ar to Ars means just tensoring with Rrs, each free Rr-basis
for Ar is also a free Rrs-basis for Ars. Then any matrix with coefficients in Rr
representing the Rr-linear map Ar → Ar represents also the map Ars → Ars, so
that the characteristic polynomial of a· : Ar → Ar becomes the characteristic
polynomial of a· : Ars → Ars in Rrs.

Finally, a is a root of its characteristic polynomial on each free localization by
the Cayley-Hamilton theorem, so that it is (globally) a root of the characteristic
polynomial, again because OSpec(R) is a sheaf and {Uri} an open cover.

Then we can give the definitions:

Definition 1.1.4. Let R → A be a degree-n ring extension and G ≤ Sn. For
a ∈ A and k ∈ [n] we denote ek(a) := ek(a(1), . . . , a(n)) ∈ (A⊗n)Sn , and with
sk(a) ∈ R we denote the k-th signed coefficient of the characteristic polynomial
of a. We say that an R-algebra map (A⊗n)G → R is normative if it maps
ek(a) 7→ sk(a) for all a ∈ A and k ∈ [n].

Remark 1.1.5. Adjoining a variable y to the ring (A⊗n)G, for all a ∈ A we
have the identity

∏n
i=1(y − a)(i) =

∑n
k=0(−1)kek(a)yn−k (where e0(a) = 1), so

that an R-algebra map (A⊗n)G → R is normative if and only if the induced
R-algebra map (A⊗n)G[y]→ R[y] (mapping y 7→ y) sends

∏n
i=1(y − a)(i) to the

characteristic polynomial of a in the variable y.

Definition 1.1.6. Let R→ A be a degree-n ring extension and G ≤ Sn. We call
a G-closure for the ring extension R→ A the data (ϕ,B), where ϕ : (A⊗n)G → R
is a normative map and B is an A⊗n-algebra realizing a tensor product diagram

(A⊗n)G
ϕ
> R

A⊗n
∨

> B
∨

i.e. B ∼= A⊗n ⊗(A⊗n)G R.

We define a morphism of G-closures (ϕ,B) 7→ (ϕ′, B′) to be an equality of the
normative maps together with a map of A⊗n-algebras B → B′.

The tensor product diagram makes it clear that two G-closures with same
normative map are isomorphic, so that we will mostly be interested in the set of
normative maps Norm((A⊗n)G, R). Indeed, this set parametrizes isomorphism
classes of G-closures. As said in the introduction, we have the following theorem:

Theorem 1.1.7. Let R be a ring, and let A be a degree-n extension of R. Then
there exists a unique isomorphism class of Sn-closures for R → A, i.e., there
exists exactly one normative map ϕ0 : (A⊗n)Sn → R. We call ϕ0 the Ferrand
map associated to the ring extension R→ A.

This is proven in [1], Chapter 2. The proof proceeds by constructing such a
map ϕ0 of R-modules, and then it is proven to be an R-algebra homomorphism.

4



1.1. Galois closures for finite ring extensions

Uniqueness is established by showing that (A⊗n)Sn is generated as R-algebra by
the set {ek(a) : a ∈ A, k ∈ [n]}.

Now suppose G ≤ H ≤ Sn. Then the inclusion (A⊗n)H ↪→ (A⊗n)G induces
a map:

γH,G : NormR((A⊗n)G, R)→ NormR((A⊗n)H , R)

ϕ 7→ ϕ|(A⊗n)H
(1.1)

This allows, given a G-closure (ϕ,B) to induce canonically the isomorphism class
of H-closures represented by (ϕ|(A⊗n)H , A

⊗n ⊗(A⊗n)H R). Hence a G-closure
gives a canonical H-closure. We recall that considering this for H = Sn allows
us to consider normative maps just as (A⊗n)Sn -algebra maps (A⊗n)G → R.

In the case of a separable degree-n field extension K → L, Theorem 1 in [1]
states that, for every H ≤ Sn, an H-closure for K → L exists if and only if H
contains the Galois group G of N over K for some identification of [n] with the set
HomK(L,N), where N is the Galois closure of the field extension in the classical
sense. As we said in the introduction, by some basic Galois theory HomK(L,N)
has n elements, and the left action of G on HomK(L,N) by composition is
transitive, so that any bijection π : [n]→ HomK(L,N) allows us to see G ≤ Sn
via σ 7→ π−1 ◦ (σ·) ◦ π, where σ· is the bijection HomK(L,N) → HomK(L,N)
defined by σ. This theorem assures that the definition of G-closure given is a
generalization of the classical Galois theory. Morally, this theorem suggests that
the Galois group of a finite ring extension R → A should be regarded as the
minimal subgroup G ≤ Sn, up to conjugation, such that there exists a G-closure
for the extension R→ A, if it exists (but we will see that this is not always the
case). The fact that we can work up to conjugation can be explained with the
following lemma:

Lemma 1.1.8. Suppose that R→ A is an algebra and G1, G2 ≤ Sn are conju-
gates subgroups. Then there exists a natural isomorphism of (A⊗n)Sn-algebras
(A⊗n)G1 ∼= (A⊗n)G2

Proof. Suppose that G2 = σG1σ
−1 for some σ ∈ Sn. Then we have the isomor-

phism of R-algebras χ : A⊗n → A⊗n sending a(i) 7→ a(σ(i)). The map χ turns
out to be a G1-map by defining, for τ ∈ G1, τ · a(i) = a(τ(i)) in the domain
and τ · a(i) = a(στσ−1(i)) in the codomain. Hence the image of (A⊗n)G1 is the
subring of A⊗n fixed by G1 in the codomain via the “conjugated action”, which
is just (A⊗n)G2 . Hence (A⊗n)G1 ∼= (A⊗n)G2 via χ, which is an isomorphism of
(A⊗n)Sn -algebras since the symmetric tensors are fixed by σ.

Another important property of G-closures is that they are preserved via base
change R→ R′. The following appears as Lemma 3.1.1 and Theorem 3.1.3 in [1]:

Theorem 1.1.9. Let R → A be a degree-n ring extension of R, R → R′

an R-algebra and define A′ = R′ ⊗ A. Let G ≤ Sn and take a normative
map ϕ : (A⊗n)G → R. Then R′ → A′ is a degree-n extension and the map

ϕ′ : (A′⊗R′n)G ∼= R′ ⊗ (A⊗n)G
idR′⊗ϕ−→ R′ is normative. The G-closure of the

extension R′ → A′ corresponding to ϕ′ is isomorphic to

A′⊗R′n
⊗

(A′⊗R′n)G

R′.

5



CHAPTER 1. G-CLOSURES FOR MONOGENIC EXTENSIONS

In the next two sections, we will consider the specific case of a monogenic
extension of rings. Let us first define what monogenic algebras are, and then see
what they are like in the case of a degree-n ring extension.

Definition 1.1.10. Let A be an R-algebra. We call it monogenic if it is
generated by a single element α ∈ A, that is, the R-algebra map R[x] → A
sending x→ α is surjective.

We will now prove that all monogenic degree-n ring extensions are actually
of the form R→ R[x]/(f(x)):

Lemma 1.1.11. Let R→ A be a degree-n extension of rings, with A a monogenic
R-algebra. Then A is isomorphic to R[x]/(f(x)) as an R-algebra, for some monic
degree-n polynomial f .

Proof. Let α be a single generator of A as an R-algebra, and consider the
surjective R-algebra map π : R[x] → A sending x 7→ α. By Lemma 1.1.3,
which we can apply as R→ A is a degree-n extension, α has a degree-n monic
characteristic polynomial f(x), and f(α) = 0. In particular, (f(x)) ⊆ kerπ, so
that π factors as

R[x] >>
R[x]

(f(x))

π̄
>> A.

To conclude, we prove that π̄ is an isomorphism of R-modules. It is enough
to prove this on the free localizations. Notice that, for Ar ∼= Rnr , the map

π̄r :
(
R[x]

(f(x))

)
r
→ Ar is still surjective. Then, given an Rr-basis β0, . . . , βn−1 of

Ar we can consider the isomorphism of Rr-modules ψ : Ar →
(
R[x]

(f(x))

)
r

sending

βj 7→ xj , and π̄r is an isomorphism if and only if the onto map π̄r ◦ψ : Ar → Ar
is an isomorphism, which is the case by Theorem 1 in [5].

Hence, given a ring R, a monogenic degree-n extension of R is just an R-
algebra of the form A = R[x]/(f(x)), for f(x) ∈ R[x] a monic polynomial of
degree n. It is a free R-module with free basis {1, x, . . . , xn−1}, and since x
has to satisfy its characteristic polynomial, this turns out to be equal to f(x).
We will set s0 = 1 and write down f(x) =

∑n
k=0(−1)kskx

n−k = xn − s1x
n−1 +

s2x
n−2 − ...+ (−1)nsn, so that sk = sk(x).

The following lemma tells us how it is possible to generate (A⊗n)Sn as an
R-algebra starting by a few symmetric tensor powers. It will be useful to give a
proof of next session’s main theorem.

Lemma 1.1.12. Let R be a ring, and consider a monogenic degree-n extension
R→ A = R[x]/(f(x)). Then (A⊗n)Sn is generated as an R-algebra by {ek(x) :
k ∈ [n]}.

Proof. Lemma 2.2.5 in [1] states that {ek(ω) : k ∈ [n], ω ∈ Ω} generates (A⊗n)Sn

as an R-algebra whenever the powers of elements of Ω generate A as an R-module.
As {1, x, . . . , xn−1} generates A as an R-module, we can apply that lemma with
Ω = {x}.

6



1.2.
∏
j Sdj -closures for monogenic extensions

1.2
∏

j Sdj-closures for monogenic extensions

In this section, we will prove that given a monogenic degree-n ring extension
R→ A = R[x]/f(x) andG = Sd1×· · ·×Sdm ≤ Sn, normative maps (A⊗n)G → R
are in one-to-one correspondence with decompositions of f into monic polynomials
of degrees d1, . . . , dm. As the subgroups of Sn can be considered up to conjugation,
it is not important to distinguish how the embedding Sd1

× · · · × Sdm ≤ Sn
is realized. Hence, without loss of generality, we can assume that Sdj acts on
Dj := {d1 + · · ·+ dj−1 + 1, . . . , d1 + · · ·+ dj−1 + dj} ⊆ [n].

Theorem 1.2.1. Let R→ A = R[x]/(f(x)) be a monogenic degree-n extension
of rings. Take a partition of n into m positive integers d1, . . . , dm, and view∏
j Sdj as a subgroup of Sn. Then the following are in one-to-one correspondence:

• isomorphism classes of
∏
j Sdj -closures for R→ R[x]/(f(x));

• factorizations into monic polynomials f(x) =
∏
j fj(x), with deg fj = dj.

The
∏
j Sdj -closure corresponding to the factorization f(x) =

∏
j fj(x) is iso-

morphic to the tensor product of the Sdj -closures for the ring extensions R→
Aj := R[x]/(fj(x)).

Proof. For a ∈ A, let us denote by Ej,k(a) ∈ A⊗n the k-th elementary symmetric
polynomial on the dj elements a(l) ∈ A⊗n, with l ∈ Dj . Dealing with any ring
map θ, we will denote with abuse of notation still by θ the map between the
two rings with an adjoined variable. As in the statement, we will not write
everywhere explicitly that j ranges over [m]. We want to define a correspondence{

(fj)j

∣∣∣∣ deg fj = dj
fj monic, f =

∏
j fj

} C
>

<
D

NormR((A⊗n)

∏
j
Sdj , R).

For each factorization f =
∏
j fj we consider the monogenic ring extensions

R→ Aj = R[x]/(fj(x)) and denote by ϕj : (A
⊗dj
j )Sdj → R their Ferrand map.

We then define C((fj)j) = ϕ as the following composite, where π is the tensoring
of canonical projections A→ Aj :

ϕ : (A⊗n)

∏
j
Sdj ∼=

⊗
j∈[m]

(A⊗dj )Sdj
π→
⊗
j∈[m]

(A
⊗dj
j )Sdj

⊗jϕj−→ R (1.2)

The isomorphism is the one from Remark A.2.6. For each j ∈ [m] and k ∈ [dj ],
we have that Ej,k(x) ∈ A⊗n corresponds via the isomorphism to ek(x)(j), which
is mapped to sj,k via ⊗jϕj ◦ π, so that the resulting ϕ is normative. Indeed, the
polynomial

∑n
k=0(−1)kek(x)yn−k ∈ A⊗n[y] is equal to

∏n
i=1(y − x(i)), which

can be factorized as the product over j ∈ [m] of the polynomials
∏
i∈Dj

(y−x(i)).

Since those are mapped via ϕj to fj(y), we get that ϕmaps
∑n
k=0(−1)kek(x)yn−k

to f(y).

Conversely, suppose we have a normative map ϕ : (A⊗n)

∏
j
Sdj → R. Since

Ej,k(x) ∈ (A⊗n)

∏
j
Sdj , for all j we can define

fj(y) =

dj∑
k=0

(−1)kϕ(Ej,k(x))ydj−k = ϕ

( ∏
i∈Dj

(y − x(i))

)
.

7



CHAPTER 1. G-CLOSURES FOR MONOGENIC EXTENSIONS

Then
∏
j fj(y) = ϕ

(∏n
i=1(y − x(i))

)
= f(x) and we can define

D(ϕ) = (

dj∑
k=0

(−1)kϕ(Ej,k(x))xdj−k)j .

We now prove that the two associations C and D are each others’ inverses.

For ϕ ∈ NormR((A⊗)

∏
j
Sdj , R), we define the maps

(A
⊗dj
j )Sdj 3 ek(x)

ϕj7→ sj,k := ϕ(Ej,k(x)) ∈ R.

Then (C ◦D)(ϕ) is precisely the composition of (⊗jϕj) ◦π after the isomorphism

(A⊗n)

∏
j
Sdj ∼=

⊗
j∈[m](A

⊗dj )Sdj .

Hence for all j ∈ [m] and k ∈ [dj ] we get (C ◦ D)(ϕ)(Ej,k(x)) = ϕ(Ej,k(x)).

And since the elements Ej,k correspond to e
(j)
k via the isomorphism (A⊗n)

∏
j
Sdj ∼=⊗

j∈[m](A
⊗dj )Sdj , they generate the whole (A⊗n)

∏
j
Sdj — because {ek(x) : k ∈

[dj ]} generates (A⊗dj )Sdj as an R-algebra for all j ∈ [m] by Lemma 1.1.12.
This gives (C ◦ D)(ϕ) = ϕ. Conversely, for any decomposition f =

∏
j fj we

consider Aj = A/(fj), take the Ferrand maps ϕj : (A
⊗dj
j )Sdj → R which send

ek(x) 7→ sj,k, and define ϕ as in (1.2). This gives

(D ◦ C)((fj)j) =

( dj∑
k=0

(−1)kϕ(Ej,k(x))xdj−k
)
j

= (fj)j .

Hence we have a one-to-one correspondence. Given a factorization into monic
polynomials f =

∏
j fj , the

∏
j Sdj -closure given by the corresponding normative

map ϕ = C((fj)j) is

B(fj)j = A⊗n
⊗

(A⊗n)

∏
j
Sdj

R ∼= A⊗n/(Ej,k(x)− sj,k : j ∈ [m], k ∈ [dj ])

∼=
⊗
j

A⊗dj/(ek(x)− sj,k : k ∈ [dj ]).

Since over A⊗dj/(ek(x)− sj,k : k ∈ [dj ]) we have fj(x) =
∏
k∈[dj ](x− x(k)),

one has fj(x
(k)) = 0, so that

B(fj)j
∼=
⊗
j

A⊗dj/(fj(x
(k)), ek(x)− sj,k : k ∈ [dj ])

∼=
⊗
j

A
⊗dj
j /(ek(x)− sj,k : k ∈ [dj ]) ∼=

⊗
j

(
A⊗dj

⊗
(A
⊗dj
j

)
Sdj

R
)
.

and the corresponding
∏
j Sdj -closure is isomorphic to the tensor product of the

Sdj -closures for the extensions R→ R[x]/(fj(x)).

An easy particular case is the following corollary for G = Sn−1 × S1.
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1.3. G-closures for monogenic extensions via polynomials

Corollary 1.2.2. Let R→ A = R[x]/(f(x)) be a monogenic degree-n extension
of rings. Then isomorphism classes of Sn−1 × S1-closures for R → A are
in one-to-one correspondence with roots of f in R. For r ∈ R a root of f ,
the corresponding Sn−1 × S1-closure of R → A is isomorphic to the unique

Sn−1-closure of the monogenic extension R→ R[x]/( f(x)
x−r ).

Proof. It is an immediate application of Theorem 1.2.1, together with the
following well-known lemma, which allows us to define f(x)/(x− r), for r a root
of f .

Lemma 1.2.3 (Factorization lemma). Let R be a ring and p ∈ R[x] be a non-
constant polynomial such that p(r) = 0. Then there exists a unique polynomial
pr ∈ R[x] such that p = (x− r)pr.

Proof. Let n = deg p > 0 and write p = a0x
n + a1x

n−1 + ...+ an−1x+ an. Then
such a factorization can only occur if pr has degree n− 1, because the leading
coefficient of p = (x − r)pr is equal to the leading coefficient of pr, hence it
must be the coefficient of the monomial of degree n− 1. Then we write down
pr = b1x

n−1 + ...+ bn−1x+ bn, and p = (x− r)pr is equivalent to the system of
equations (defining b0 = 0){

bj − rbj−1 = aj−1, 1 ≤ j ≤ n
an = −bnr

⇐⇒
{
bj = aj−1 + rbj−1, 1 ≤ j ≤ n
0 = −(an + an−1r + ...+ a0r

n)

where the first row uniquely defines b1, . . . , bn, and the second row is true by
hypothesis (since it states that −p(r) = 0). This implies that there exist uniquely
determined coefficients b1, . . . , bn for pr, hence the existence and uniqueness of
pr such that p = (x− r)pr.

1.3 G-closures for monogenic extensions via poly-
nomials

In [1], O. Biesel uses invariants of multivariate polynomials to give a descrip-
tion of G-closures for monogenic extensions. We will now explain how this can be
done. For R→ A = R[x]/(f(x)) a monogenic degree-n ring extension, tensoring
the canonical surjection R[x] → A with itself we get a map R[x]⊗n → A⊗n.
Notice that R[x]⊗n ∼= R[x] := R[x1, . . . , xn] via x(j) 7→ xj . The left action of Sn
on the tensor factors of R[x]⊗n induces the left action of Sn on the R-algebra
R[x] defined by σ · xj = xσ(j) (since σ · x(j) = x(σ(j))), or more explicitly via
(σ · p)(x1, ..., xn) = p(xσ(1), . . . , xσ(n)).

Example 1.3.1. The Sn-action on R[x] can be surprisingly confusing, so here
is an example. Suppose n = 4, and consider π, σ ∈ S4 with π = (1 3) and
σ = (1 2 4). Then πσ = (1 3)(1 2 4) = (1 2 4 3). For a polynomial p ∈
R[x1, x2, x3, x4], we have (π(σp))(x1, x2, x3, x4) = (σp)(x3, x2, x1, x4). Since
(σp)(y1, . . . , y4) = p(y2, y4, y3, y1), we can let (y1, y2, y3, y4) = (x3, x2, x1, x4)
and get

(π(σp))(x1, . . . , x4) = p(y2, y4, y3, y1) = p(x2, x4, x1, x3) = ((πσ)p)(x1, . . . , x4)).

which is what we expect from a left action. The action of Sn on R[x] should not be
regarded as the permutation of the arguments of a polynomial p, which is actually

9



CHAPTER 1. G-CLOSURES FOR MONOGENIC EXTENSIONS

a right action. In fact, if we permute the arguments according to σ and then
according to π, we get p(x1, x2, x3, x4) 7→ p(x2, x4, x3, x1) 7→ p(x3, x4, x2, x1),
which is exactly what we get by permuting the argument of p according to
σπ = (1 3 2 4).

We recall that er ∈ R[x]Sn is the r-th elementary symmetric polynomial in
the n variables x1, . . . , xn.

Remark 1.3.2. Given a G-closure ϕ : (A⊗n)G → R of the monogenic degree
n extension R → A, we can compose it with (R[x])G → (A⊗n)G to get an
R-algebra map (R[x])G → R sending ek 7→ sk. Under reasonable conditions
on R, one can prove that each such map (R[x])G → R comes from a unique
normative map, as stated in the following Theorem from [1]:

Theorem 1.3.3. Let R→ A = R[x]/(f(x)) be the monogenic degree-n extension
of rings given by f(x) =

∑n
k=0(−1)kskx

n−k, where s0 = 1. Let G ≤ Sn and
suppose that |G| is not a zero-divisor in R. Then isomorphism classes of G-
closures for R → A are in one-to-one correspondence with R-algebra maps
χ : R[x]G → R sending ek 7→ sk. Given such a map χ, the corresponding
normative map ϕχ : (A⊗n)G → R is the composition of χ after the R-algebra
maps (A⊗n)G → R[x]G sending x(j) 7→ xj.

To apply this theorem, one can try to find free R[x]Sn-module generators
for R[x]G (if possible) and, finding out algebraic relations among them, present
R[x]G as an R[x]Sn -algebra. For this reason, we will point out some useful facts
about polynomial invariants. Over the complex numbers, we have this result,
appearing as part of Theorem 2.7.6 in [6]:

Theorem 1.3.4. Let G ≤ Sn. Then C[x]G is a free C[x]Sn-module of rank
n!/|G|, and it has a free basis consisting of homogeneous polynomials. The
degrees of such homogeneous generators do not depend on the choice of basis.

Using this theorem we can prove the following slight generalization:

Lemma 1.3.5. Let G ≤ H ≤ Sn. If Z[x]G is a finite free Z[x]H-module
generated by homogeneous polynomials, then it has rank |H : G| over Z[x]H .
The degrees of such homogeneous generators don’t depend on choice of basis.

Proof. Suppose that B is a free Z[x]H -basis for Z[x]G consisting of non-zero
homogeneous polynomials. Then tensoring with C we get C[x]G ∼=

⊕
b∈B C[x]Hb,

and applying Theorem 1.3.4 we get

(C[x]Sn)|Sn:G| ∼=
⊕
b∈B

(C[x]Sn)|Sn:H|b.

This implies that |B| <∞, and more precisely |B| = |Sn : G||Sn : H|−1 = |H : G|.
Moreover, the degrees of the homogeneous polynomial in B are uniquely deter-
mined by the degrees of any homogeneous C[x]Sn-bases G for C[x]G and H for
C[x]H . Indeed, for a finite set of homogeneous polynomials S ⊆ C[x] one can
define DS(t) =

∑
s∈S t

deg s ∈ Z[t]. It is easily seen, as C[x] is a domain, that
DS·S′ = DSDS′ , denoting S ·S ′ = {s·s′ : s ∈ S, s′ ∈ S ′}. Then, since G and B·H
are both free C[x]Sn -bases for C[x]G, Theorem 1.3.4 gives DG = DB·H = DBDH
which, Z[t] being a UFD, uniquely determines DB, and hence the degrees of the
polynomials in B.
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1.3. G-closures for monogenic extensions via polynomials

We now explain a way to recover the degrees of homogeneous free generators.
We denote NG,d := dimC(C[x]Gd ), where C[x]Gd denotes the submodule of C[x]G

consisting of homogeneous polynomials of degree d. This allows us to define the
Molien formal series:

MG(t) =
∑
d∈Z

NG,dt
d ∈ C[[t]]

Then, given a free Z[x]H -basis B = {g1, ..., gr} for Z[x]G, and di = deg gi, we
get

C[x]G =

r⊕
i=1

giC[x]H =

r⊕
i=1

gi
⊕
d∈Z

C[x]Hd−di =
⊕
d∈Z

r⊕
i=1

giC[x]Hd−di ,

which means NG,d =
∑r
i=1NH,d−di . Then we can expand out the Molien series

MG(t) =
∑
d∈Z

r∑
i=1

NH,d−dit
d =

r∑
i=1

tdi
∑
d∈Z

NH,dt
d =MH(t)

r∑
i=1

tdi .

Hence what we need to do to recover the di is just to divide MG(t) by MH(t).
To compute a Molien series we can use Molien’s theorem (see [6], theorem 2.2.1),
which gives

MG(t) =
1

|G|
∑
σ∈G

1

det(id− tσ)
.

where we interpret σ ∈ G ≤ Sn as an element of GL(C, n). The polynomial
det(I − tσ) is constant over the conjugacy class of σ in Sn, so that we just
need to consider the sizes l1 + ... + ls = n of the disjoint cycles into which σ
decomposes. After reordering the basis, I − tσ can be written as a matrix which
is block diagonal, whose diagonal blocks are of the form

1 −t
. . .

. . .

1 −t
−t 1


and whose determinant is given by

∏s
j=1(1− tlj ).

The Molien series is an useful tool for finding a homogeneous Z[x]H -basis
for Z[x]G, if it exists. They allow us to easily decide if C[x]G is a free C[x]H -
module, which is not always the case (for example, Z[x1, x2, x3, x4]C4 is not a free
Z[x1, x2, x3, x4]D4-module, see Example 2.0.3), but this does not immediately
imply that a graded Z[x]H -basis for Z[x]G exists (see Proposition 2.2.1).
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Chapter 2

Criteria for monogenic
degree-4 extensions

In this chapter we will parametrize isomorphism classes of G-closures for
monogenic degree-4 extensions R → A = R[x]/(f(x)), for G ≤ S4, using the
results we recalled in Chapter 1. We will start by pointing out for which subgroups
of S4 this is already done in [1] or follows immediately from the previous chapter.
Then we will work the remaining subgroups in separate sections.

First, notice that for G ∈ {1, S2, S3, S2×S2, S4} we can apply Theorem 1.2.1
to put in one-to-one correspondence isomorphism classes of G-closures with
particular factorizations of f . More precisely, we have the following correspon-
dences:

• there exists precisely one isomorphism class of S4-closures for R→ A;

• isomorphism classes of S3-closures for R→ A are in one-to-one correspon-
dence with roots r ∈ R of the monic polynomial f by Corollary 1.2.2;

• isomorphism classes of (S2 × S2)-closures for R → A are in one-to-one
correspondence with factorizations of f into two monic polynomials of
degree 2 in R[x], that is, quadruples (u1, u2, v1, v2) ∈ R4 such that f(x) =
(x2 − u1x+ u2)(x2 − v1x+ v2);

• isomorphism classes of S2-closures for R→ A are in one-to-one correspon-
dence with factorizations of f into a monic polynomial of degree 2 and two
monic linear factors in R[x], that is, quadruples (u1, u2, r1, r2) ∈ R4 such
that f(x) = (x2 − u1x+ u2)(x− r1)(x− r2)

• isomorphism classes of 1-closures for R→ A are in one-to-one correspon-
dence with splittings of f into monic linear factors in R[x], that is, quadru-
ples (r1, r2, r3, r4) ∈ R4 such that f(x) = (x− r1)(x− r2)(x− r3)(x− r4).

Moreover, as said in the introduction, the parametrization of An-closures
given in [1] allows us to give an explicit parametrization of A4-closures for
monogenic extensions, which the reader can find in Appendix B.1. Similarly, but
paying a bit more attention, one can use the parametrization of An-closures to
give a parametrization of C3-closures when 6 is not a zero-divisor. This is done
in Section 2.4.
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Considering Figure 1 from the introduction, it is clear the only remaining
subgroups to consider are D4, V4, C4 and C2. The case G = D4 is treated in [1].
There is proven the following:

Lemma 2.0.1. Let R be a ring and λ = x1x3 + x2x4. Then {1, λ, λ2} is a free
basis for R[x]D4 as an R[x]S4-module.

The proof is given for R = Z, the result for any other R following by tensoring
everything with R (over Z). It is a constructive proof, since it allows us to
explicitly write down any p ∈ Z[x]D4 as p = ap + bpλ + cpλ

2. We here write
down the explicit equations from [1] for obtaining ap, bp, cp (with a different
notation), which will be useful when dealing with C4-invariant polynomials, in
Appendix B.2. We define

ωp =
τ14p− τ12p

(x1 − x3)(x2 − x4)
and χp =

τ14ωp − τ12ωp
(x1 − x3)(x2 − x4)

.

Then we get the symmetric coefficients:

cp = −χp
bp = ωp − cp(x1 + x3)(x2 + x4) = ωp + χp(e2 − λ)

ap = p− bλ− cλ2 = p− ωpλ+ χpλ
2 − χp(e2 − λ)λ

As λ is a root of r1(Λ) = (Λ−λ)(Λ−τ14λ)(Λ−τ12λ) = Λ3−e2Λ2+(e1e3−4e4)Λ−
(e2

3−4e2e4 +e2
1e4) ∈ Z[x]S4 , we get an isomorphism R[x]D4 ∼= R[x]S4 [Λ]/(r1(Λ)),

so that finding a map R[x]D4 → R sending ek 7→ sk is equivalent to find a root
l ∈ R for the polynomial g(x) = x3 − s2x

2 + (s1s3 − 4s4)x− (s2
3 − 4s2s4 + s2

1s4).
This polynomial is called the resolvent cubic of the polynomial f . Hence the
following parametrization from [1]:

Theorem 2.0.2. Let R be a ring such that 2 ∈ R is not a zero-divisor. Consider
the monogenic degree-4 extension R → A = R[x]/(f(x)), where f(x) = x4 −
s1x

3 + s2x
2 − s3x + s4. Then isomorphism classes of D4-closures for R → A

are in one-to-one correspondence with roots ` ∈ R of the resolvent cubic g(x) =
x3 − s2x

2 + (s1s3 − 4s4)x− (s2
3 − 4s2s4 + s2

1s4).

In the the following three sections, we will present the polynomial invariants
R[x]G as an R[x]S4-algebra, for G ∈ {C2, C4, V4}. This will allow us to give
parametrizations of G-closures via Theorem 1.3.3. In order to do this, we will
use Molien series, as defined in previous chapter, to get information about the
possible degrees of polynomials generating R[x]G as a free R[x]S4-module. We
compute them in this example:

Example 2.0.3. In this table we write down det(id − tσ) in relation to the
conjugation class of σ ∈ S4, that is, its cycle type. We also write how many
elements of each conjugation class there are in certain subgroups of S4:

cycle type S4 D4 C4 V4 det(id− tσ)
1 + 1 + 1 + 1 1 1 1 1 (1− t)4

2 + 1 + 1 6 2 0 0 (1− t2)(1− t)2 = (1− t)3(1 + t)
2 + 2 3 3 1 3 (1− t2)2 = (1− t)2(1 + t)2

3 + 1 8 0 0 0 (1− t3)(1− t) = (1− t)2(1 + t+ t2)
4 6 2 2 0 1− t4 = (1− t)(1 + t)(1 + t2)

14
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This allows us to compute the Molien series for those four subgroups of S4:

MS4 (t) =
1

24

(
1

(1− t)4
+

6

(1− t)3(1 + t)
+

3

(1− t2)2
+

8

(1− t)2(1 + t+ t2)
+

6

1− t4

)
=

1

(1− t)4(1 + t)2(1 + t+ t2)(1 + t2)

MD4
(t) =

1

8

(
1

(1− t)4
+

2

(1− t)3(1 + t)
+

3

(1− t2)2
+

2

1− t4

)
=

1− t+ t2

(1− t)4(1 + t)2(1 + t2)

MV4
(t) =

1

4

(
1

(1− t)4
+

3

(1− t2)2

)
=

1− t+ t2

(1− t)4(1 + t)2

MC4 (t) =
1

4

(
1

(1− t)4
+

1

(1− t2)2
+

2

1− t4

)
=

t3 + t2 − t+ 1

(1− t)4(1 + t)2(1 + t2)

Then one gets for example that
MD4

(t)

MS4
(t) = (1− t+ t2)(1 + t+ t2) = 1 + t2 + t4,

which means that possible homogeneous generators for Z[x]D4 as Z[x]S4 -modules
have to be of degrees 0, 2 and 4, in agreement with Lemma 2.0.1. Moreover,
MC4

(t)

MD4
(t) = (t3 + t2 − t+ 1)(1− t+ t2)−1 6∈ Z[t], which shows that C[x]C4 is not a

free C[x]D4 -module (and of course this cannot be true with polynomials over Z).

2.1 V4-closures for monogenic degree-4 extensions

In this section, we will consider V4 = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
and parametrize V4-closures for monogenic degree-4 ring extensions, assuming
that 2 ∈ R is not a zero-divisor. In this case, Theorem 2.1.4 states that V4-
closures for the monogenic degree-4 extension R→ R[x]/(f(x)) are in one-to-one
correspondence with splittings of the resolvent cubic of the polynomial f(x).

To prove this, we want to describe R[x]V4 as an R[x]D4-algebra. From the

Molien series computed in Example 2.0.3, we get
MV4

(t)

MD4
(t) = 1 + t2, suggesting

that R[x]V4 may be a free R[x]D4 -module generated by two polynomials of degree
0 and 2. This is actually true:

Lemma 2.1.1. Let R be any ring, λ = x1x3 + x2x4 ∈ R[x] and µ = τ14λ =
x1x2 + x3x4. Then

R[x]V4 = R[x]D4 ⊕R[x]D4µ

Proof. This can be proved for R = Z, the result for any other ring following just
by tensoring with it over Z. For p ∈ Z[x]V4 , we have that p− τ13p changes sign
under τ13 and under τ24. Then such a difference is mapped to zero via both the
quotient maps Z[x] → Z[x]/(x1 − x3) and Z[x] → Z[x]/(x2 − x4), because there
it coincides with its opposite, and 2 is not a zero-divisor in Z. Now, as Z[x] is a
UFD, we can define

ρp =
p− τ13p

(x1 − x3)(x2 − x4)
.

We immediately see that ρµ = 1. Notice that the numerator and the
denominator of ρp do both change sign under τ13 and are both V4-invariant, so
that ρp is invariant under 〈V4, τ13〉 = D4.
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Suppose that 0 = α + βµ, with α, β ∈ Z[x]D4 . Then by computing ρ0 = 0
we obtain β = 0, hence α = 0. This proves linear independence of 1 and µ over
Z[x]D4 .

On the other hand, for p ∈ Z[x]V4 we can define β = ρp and α = p−βµ. Then
β ∈ Z[x]D4 as already noticed, p = α+βµ by definition of α, and α ∈ Z[x]D4 : it is
in Z[x]V4 by definition, and α−τ13α = (p−τ13p)−(x1x2+x3x4−x1x4−x2x3)β =
(x1−x3)(x2−x4)ρp−(x1−x3)(x2−x4)β = 0. This proves that 1, µ are generators
for Z[x]V4 as an Z[x]D4-module.

Lemma 2.1.2. Let R be any ring, λ = x1x3 + x2x4 ∈ R[x] and µ = τ14λ =
x1x2 + x3x4. Then {1, λ, λ2, µ, λµ, λ2µ} is a free basis for R[x]V4 as an R[x]S4-
module.

Proof. This is just a combination of Lemma 2.0.1 and Lemma 2.1.1.

Now we let ν = τ12λ = x1x4 + x2x3. Then λ is a root of the polynomial

r1(Λ) = (Λ−λ)(Λ−µ)(Λ−ν) = Λ3−e2Λ2 +(e1e3−4e4)Λ− (e2
3−4e2e4 +e2

1e4),

which has coefficients in Z[x]S4 , and factors in Z[x]D4 [Λ] as

r1(Λ) =(Λ− λ)(Λ2 − (e2 − λ)Λ + λ2 − e2λ+ e1e3 − 4e4).

Denoting H(Λ,M) := M2 − (e2 − Λ)M + Λ2 − e2Λ + e1e3 − 4e4, we have

Lemma 2.1.3. For any ring R, consider the polynomials r1(Λ) and H(Λ,M)
as above. Then we have an isomorphism of R[x]S4-algebras

R[x]S4 [Λ,M ]

(r1(Λ), H(Λ,M))

∼→ R[x]V4

sending Λ 7→ λ and M 7→ µ.

Proof. To define such a morphism we just need to say where to send Λ and
M , in such a way that r1(Λ) and H(Λ,M) are mapped to zero. But this is
actually the case, since r1(Λ) 7→ r1(λ) = 0, and H(Λ,M) 7→ H(λ, µ) = 0.
With an easy induction one can prove that {1,Λ,Λ2,M,MΛ,MΛ2} is a set
of R[x]S4-generators of the domain, and since they are mapped to the R[x]S4-
basis {1, λ, λ2, µ, µλ, µλ2}, the map is bijective. Indeed any linear combination
is sent to a linear combination of the basis, which is zero if and only if the
coefficients are all zero (proving injectivity), and the image of map is generated
by {1, λ, λ2, µ, µλ, µλ2} (proving surjectivity).

Theorem 2.1.4. Let R be a ring such that 2 ∈ R is not a zero-divisor. Consider
the monogenic degree-4 extension R → A = R[x]/(f(x)), where f(x) = x4 −
s1x

3 + s2x
2 − s3x + s4. Then isomorphism classes of V4-closures for A over

R are in one-to-one correspondence with triples (`1, `2, `3) ∈ R3 of roots of the
resolvent cubic g(x) = x3 − s2x

2 + (s1s3 − 4s4)x− (s2
3 − 4s2s4 + s2

1s4) realizing
g(x) = (x− `1)(x− `2)(x− `3).

Proof. Since |V4| = 4 is not a zero-divisor (as 2 is not), we can apply Theo-
rem 1.3.3, so that isomorphism classes of V4-closures for R→ A are in one-to-one
correspondence with R-algebra maps R[x]V4 → R mapping ek 7→ sk. By
Lemma 2.1.3, determining such a map is equivalent to choosing (`,m) ∈ R2 such
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2.2. C4-closures for monogenic degree-4 extensions

that g(`) = 0 (since the coefficients of g are the image of the coefficients of r1)
and m is a root of the polynomial g(x)/(x− `). This division makes sense thanks
to Lemma 1.2.3, and the same lemma allows us to conclude that isomorphism
classes of V4-closures for R→ A are in one-to-one correspondence with triples
(`1, `2, `3) ∈ R3 such that g(t) = (t− `1)(t− `2)(t− `3).

2.2 C4-closures for monogenic degree-4 extensions

In this section, we will consider C4 = {1, σ, σ2, σ3}, with σ = (1 2 3 4), and
parametrize C4-closures for monogenic degree-4 ring extensions, assuming that
2 is a unit. We prove that under this condition R[x]C4 is a free R[x]S4-module
with free basis {1, λ, λ2, η, θ, λη}, where

λ = x1x3 + x2x4,

η = (x1 − x3)(x2 − x4)(x1 − x2 + x3 − x4), and

θ = (x1 − x3)(x2 − x4)(x1x3 − x2x4).

Hence λ, η and θ generate R[x]C4 as an R[x]S4-algebra, and we present it as a
quotient of R[Λ, H,Θ] by six equations.

Since 2 is a unit, one can assume, by changing variables to x′ = x−s1/4, that
the polynomial f(x) is of the form x4 +s2x

2−s3x+s4, and get that isomorphism
classes of C4-closures for the extension are in one-to-one correspondence with
triples (`, h, t) ∈ R3 satisfying the following equalities, where g(x) = x3 − s2x

2 +
(s1s3 − 4s4)x− (s2

3 − 4s2s4 + s2
1s4) is the resolvent cubic of f :

g(`) = 0
h2 = 8s2`

2 + (−4s2
2 + 16s4)`+ (−4s3

2 − 12s2
3 − 16s2s4)

t2 = 16s4`
2 − 3s2

3`− s2s
2
3 − 64s2

4

ht = 6s3`
2 − 4s2s3`− 2s2

2s3 − 32s3s4

2t(`− s2) + s3h = 0
h`2 + 2s3t− 4s4h = 0

First, we point out that it is not possible to have free homogeneous generators
for Z[x]C4 as an Z[x]S4 -module, explicitly using the fact that 2 is not invertible
in Z:

Proposition 2.2.1. Z[x]C4 is not a graded free Z[x]S4-module of any rank.

Proof. Suppose it were. Then we could apply Lemma 1.3.5, and considering the
Molien series for C4 and S4 computed in Example 2.0.3 we would have

MC4
(t)

MS4(t)
=(1 + t+ t2)(t3 + t2 − t+ 1) = 1 + t2 + t3 + 2t4 + t5.

implying the existence of six homogeneous free Z[x]S4 -module generators p1, . . . , p6

for Z[x]C4 of degree 0, 2, 3, 4, 4, 5. Then Z[x]C4 would coincide with its Z[x]S4-

submodule 〈
⋃5
d=0 Z[x]C4

d 〉. As the Z[x]S4-span of the six polynomials g1 = 1,
g2 = x1x3 + x2x4, g3 = x2

1x2 + x2
2x3 + x2

3x4 + x2
4x1, g4 = (x1x3 + x2x4)2,

g5 = x3
1x2 + x3

2x3 + x3
3x4 + x3

4x1, g6 = x3
1x

2
2 + x3

2x
2
3 + x3

3x
2
4 + x3

4x
2
1 contains all⋃5

d=0 Z[x]C4

d , they would have to generate all of Z[x]C4 , hence be a free basis

17
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(since the Z[x]S4-module endomorphism of Z[x]C4 sending gi 7→ pi would need
to be bijective, by the same arguments given in the proof of Lemma 2.1.3). But
this is not true, since the polynomial p0 = x3

1x2x
2
3 + x3

2x3x
2
4 + x3

3x4x
2
1 + x3

4x1x
2
2

is not in their Z[x]S4 -span. Indeed,

2p0 =(e2
1e

2
2 − 2e3

2 − 2e3
1e3 + 3e1e2e3 − 2e2

3 + 2e2
1e4 + 2e2e4)g1

+ (e2
2 + e1e3 − 2e4)g2 + (−e3

1 + 3e1e2 − e3)g3 + (−e2
1 + e2)g4

+ (e2
1 − 2e2)g5 − e1g6,

which by linear independence implies that all the symmetric coefficient should
be divisible by 2, while e1 = x1 + x2 + x3 + x4 is not. Thus no free basis can
exist.

The previous proof’s final part suggests that R[x]C4 can be a graded free
R[x]S4-module if we require 2 to be a unit in R. We will now show that this is
actually the case:

Proposition 2.2.2. Let R be a ring such that 2 ∈ R×. Consider the following
C4-invariant polynomials:

λ = x1x3 + x2x4

η = (x1 − x3)(x2 − x4)(x1 − x2 + x3 − x4)

θ = (x1 − x3)(x2 − x4)(x1x3 − x2x4)

Then {1, λ, λ2, η, θ, λη} is a free basis for R[x]C4 as an R[x]S4-module.

It is enough to prove this for R = Z [ 1
2 ]. Indeed, the result for R any other

ring with 2 ∈ R× can be obtained by tensoring over Z with R itself, since
Z [ 1

2 ]⊗Z R ∼= R. To do this, we will use the two following lemmas:

Lemma 2.2.3. Take xi, xj , xk indeterminates in Z [ 1
2 ] [x] with xi 6= xj, and

let f ∈ Z [ 1
2 ] [x] be fixed by τij. Then the polynomial gi,j,k;f := τjkf − τikf is

divisible by (xj − xi) and gi,j,k;f/(xj − xi) is fixed by τij.

Proof. We have τij(gi,j,k;f ) = τijτjkf − τijτikf = τikτijf − τjkτijf = τikf −
τjkf = −gi,j,k;f . Then in the quotient Z [ 1

2 ] [x]/(xj − xi) one has gi,j,k;f =
τijgi,j,k;f = −gi,j,k;f , so that gi,j,k;f = 0 since 2 is not a zero-divisor in R, and
so neither in Z [ 1

2 ] [x]/(xj − xi). Since Z [ 1
2 ] [x] is a UFD, gi,j,k;f is divisible by

xj − xi. Their ratio is fixed by τij as it changes both their signs.

For any polynomial p ∈ R[x] we will denote p̃ := τ13p. Moreover, we will
denote σ = (1 2 3 4).

Lemma 2.2.4. For R a ring, denote

R[x]C4

+,D4
= {f ∈ R[x]C4 : f̃ = f} = R[x]D4 ,

R[x]C4

−,D4
= {f ∈ R[x]C4 : f̃ = −f}, and

R[x]S2×S2

−,D4
= {f ∈ R[x] : f̃ = f, σf = −f}.

1. If 2 ∈ R×, then R[x]C4 = R[x]C4

+,D4
⊕ R[x]C4

−,D4
as R[x]S4-submodules of

R[x]C4 .
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2. The following is an isomorphism of Z [ 1
2 ] [x]S4-modules:

Z [ 1
2 ] [x]S2×S2

−,D4
→ Z [ 1

2 ] [x]C4

−,D4

f 7→ (x1 − x3)(x2 − x4)f

Proof. First, note that R[x]C4

+,D4
, R[x]C4

−,D4
and R[x]S2×S2

−,D4
are clearly R[x]S4-

submodules of R[x]C4 as they are closed under sum and multiplication by
symmetric polynomials. For all p ∈ R[x]C4 , one has p = p+p̃

2 + p−p̃
2 , which makes

sense as 2 ∈ R×. Clearly p+p̃
2 ∈ R[x]C4

+,D4
and p−p̃

2 ∈ R[x]C4

−,D4
. Hence R[x]C4 =

R[x]C4

+,D4
+R[x]C4

−,D4
. Moreover, if p ∈ R[x]C4

+,D4
∩R[x]C4

−,D4
then p = p̃ = −p, so

that 2p = 0 and p = 0. Hence the decomposition R[x]C4 = R[x]C4

+,D4
⊕R[x]C4

−,D4
.

The map Z [ 1
2 ] [x]S2×S2

−,D4
→ Z [ 1

2 ] [x]C4

−,D4
sending f 7→ (x1 − x3)(x2 − x4)f is

well-defined, since for f in the domain we have

σ((x1 − x3)(x2 − x4)f) = (x2 − x4)(x3 − x1)(−f) = (x1 − x3)(x2 − x4)f

and

τ13((x1 − x3)(x2 − x4)f) = (x3 − x1)(x2 − x4)f = −(x1 − x3)(x2 − x4)f.

It clearly respects the Z [ 1
2 ] [x]S4-module structure, and it is injective since

Z [ 1
2 ] [x] is an integral domain. Moreover, for any polynomial g ∈ R[x]C4 such

that τ13g = −g, we also have τ24g = τ24σ
2g = τ13g = −g, so that g coincides

with its opposite when mapped to each of the quotient rings Z [ 1
2 ] [x]/(x3 − x1)

and Z [ 1
2 ] [x]/(x4 − x2), implying that g vanishes there. As Z [ 1

2 ] [x] is a UFD,
one gets (x1− x3)(x2− x4)|g, and this allows us to conclude that the map above
is also surjective.

Proof of Proposition 2.2.2. As already said, we can reduce to R = Z [ 1
2 ]. By

point 1 in Lemma 2.2.4, we have Z [ 1
2 ] [x]C4 = Z [ 1

2 ] [x]C4

+,D4
⊕Z [ 1

2 ] [x]C4

−,D4
, where

Z [ 1
2 ] [x]C4

+,D4
= Z [ 1

2 ] [x]S4 ⊕ Z [ 1
2 ] [x]S4λ⊕ Z [ 1

2 ] [x]S4λ2 by Lemma 2.0.1. It only

remains to prove that {η, θ, λη} is a free Z [ 1
2 ] [x]S4 -basis for Z [ 1

2 ] [x]C4

−,D4
.

By Lemma 2.2.4, point 2, we just need to prove that {ρη, ρθ, ρλη} is a free

Z [ 1
2 ] [x]S4-basis for Z [ 1

2 ] [x]S2×S2

−,D4
, where we denote, for Ω ∈ Z [ 1

2 ] [x]C4

−,D4
,

ρΩ :=
Ω

(x1 − x3)(x2 − x4)
∈ Z [ 1

2 ] [x]S2×S2

−,D4
.

Hence, for p ∈ Z [ 1
2 ] [x]S2×S2

−,D4
, we are interested in decompositions of the form

p = αρη + βρθ + γρλη, with α, β, γ ∈ Z [ 1
2 ] [x]S4 . (2.1)

As p ∈ Z [ 1
2 ] [x]S2×S2

−,D4
is fixed by τ24, we can apply Lemma 2.2.3 twice, with

(i, j, k) = (2, 4, 1), and define

p′ :=
τ14p− τ12p

x4 − x2
, p′′ :=

τ14p
′ − τ12p

′

x4 − x2
.
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Now p′′−τ13p
′′ vanishes in the quotient Z [ 1

2 ] [x]/(x3−x1), and we can define

δp :=
p′′ − τ13p

′′

x3 − x1
.

With some easy computation we obtain:

Ω ρΩ ρ′Ω ρ′′Ω δρΩ

η x1 − x2 + x3 − x4 2 0 0
θ x1x3 − x2x4 x1 + x3 1 0
λη λρη (x1 − x3)2 + (x1 + x3)(x2 + x4) e1 − 4x3 −4

Then the equality (2.1) implies the conditions p′ = 2α+ β(x1 + x3) + γ((x1 − x3)2 + (x1 + x3)(x2 + x4))
p′′ = β + γ(e1 − 4x3)
δp = −4γ

(2.2)

Notice that if we suppose (2.1) holds with p = 0, then p′, p′′, δp do all vanish, so
that third equation gives γ = 0, then the second gives β = 0 and the first α = 0.
Hence we have linear independence of ρη, ρθ and ρλη.

For any p ∈ Z [ 1
2 ] [x]S2×S2

−,D4
, by solving equations (2.2) we get uniquely defined

values of α, β and γ. We want to prove that they are symmetric polynomials
satisfying (2.1). Equations (2.2) give

γ =− 1

4
δp, β = p′′ +

1

4
(e1 − 4x3)δp, α =

1

2
p′ − 1

2
(x1 + x3)p′′ +

1

2
x2

3δp.

To prove that α, β, γ are symmetric, we start by noticing some symmetries of
the polynomials p, p′, p′′ and δp. First, observe that p, p′, p′′ are invariant under
τ24 by Lemma 2.0.1, and so is δp by definition. We also know that p is invariant
under τ13 and changes sign under σ = (1 2 3 4). Moreover, τ34σ = (1 2 4) = τ12τ24

and τ23σ = (1 3 4) = τ14τ13, implying

τ34p = −τ34σp = −τ12p and τ23p = −τ23σp = −τ14p.

Then p′ is also invariant under τ13:

τ13p
′ =

τ34τ13p− τ23τ13p

x4 − x2
=
τ34p− τ23p

x4 − x2
=
τ14p− τ12p

x4 − x2
= p′

Now p′′ is invariant under τ14, since

τ14p
′′ − p′′ =τ14

τ14p
′ − τ12p

′

x4 − x2
− τ14p

′ − τ12p
′

x4 − x2
=
p′ − τ12p

′

x1 − x2
− τ14p

′ − τ12p
′

x4 − x2

=

τ14p−τ12p
x4−x2

− τ14p−p
x4−x1

x1 − x2
−

p−τ12p
x1−x2

− τ14p−p
x4−x1

x4 − x2

=
(x4 − x1) + (x2 − x4) + (x1 − x2)

(x4 − x2)(x1 − x2)(x4 − x1)
(τ14p− p) = 0,

meaning that p′′ is symmetric in the variables x1, x2, x4.
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From this we can see that δp is symmetric, since it is not only invariant under
τ13 and τ24, but also under τ14:

τ14δp − δp =
τ14p

′′ − τ14τ13p
′′

x3 − x4
− p′′ − τ13p

′′

x3 − x1

=
(x4 − x1)p′′ − (x3 − x1)τ14τ13p

′′ + (x3 − x4)τ13p
′′

(x3 − x4)(x3 − x1)

=
τ12((x4 − x2)p′′) + τ14τ13τ12((x4 − x2)p′′)− τ13τ12((x4 − x2)p′′)

(x3 − x4)(x3 − x1)

=
τ12(τ14p

′ − τ12p
′) + τ14τ13τ12(τ14p

′ − τ12p
′)− τ13τ12(τ14p

′ − τ12p
′)

(x3 − x4)(x3 − x1)

=
τ14p

′ − p′ + τ34p
′ − τ14p

′ − τ34p
′ + p′

(x3 − x4)(x3 − x1)
= 0

Hence γ is symmetric. Now, the second equation of (2.2) makes it clear that
β is symmetric in the variables x1, x2, x4. Then β is symmetric since it is also
invariant under τ13:

τ13β − β =
1

4
δp(e1 − 4x1) + τ13p

′′ − 1

4
δp(e1 − 4x3)− p′′

= (x3 − x1)δp − (p′′ − τ13p
′′) = 0

Finally, from the first equation of (2.2) we clearly see that α is invariant
under τ24 and τ13. Then α is symmetric since it is also invariant under τ14:

τ14α− α =
τ14p

′ − p′

2
− x4 − x1

2
p′′

=
1

2
τ12(τ12τ14p

′ − τ12p
′ − (x4 − x2)p′′)

=
1

2
(τ14p

′ − τ12p
′ − (τ14p

′ − τ12p
′)) = 0

To conclude the proof, we prove that (2.1) holds. To do so, we prove that
ψ := p− (αρη + βρθ + γρλη) ∈ Z [ 1

2 ] [x]S2×S2

−,D4
is zero, using the fact that ψ′ = 0,

which is guaranteed by the first equation of (2.2). Then τ14ψ = τ12ψ, and
ψ = τ12τ12ψ = τ12τ14ψ = τ14τ24ψ = τ14ψ. Since ψ is already fixed by τ13 and
τ24, it is a symmetric polynomial, so that ψ = σψ = −ψ, implying ψ = 0. Hence
{ρη, ρθ, ρλη} is a free Z [ 1

2 ] [x]S4-basis for Z [ 1
2 ] [x]S2×S2

−,D4
, and this was the only

thing left to prove.

Now we look for polynomial relations satisfied by the generators. We already
know that λ is a root of

r1(Λ) = (Λ− λ)(Λ− τ14λ)(Λ− τ12λ)

= Λ3 − e2Λ2 + (e1e3 − 4e4)Λ− (e2
3 − 4e2e4 + e2

1e4).

As both η, θ change sign under τ13, their squares and their product are stable
under τ13, so that they are allD4-invariant. Hence η2, θ2, ηθ ∈ 〈1, λ, λ2〉R[x]S4 and
we can compute their coefficients using the formulas we wrote after Lemma 2.0.1.
This gives three polynomials

r2(Λ, H,Θ) = H2 − (aη2 + bη2Λ + cη2Λ2)
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r3(Λ, H,Θ) = Θ2 − (aθ2 + bθ2Λ + cθ2Λ2)

r4(Λ, H,Θ) = HΘ− (aηθ + bηθΛ + cηθΛ
2)

that vanish under Λ 7→ λ, H 7→ η, Θ 7→ θ. On the other hand, η̃λ2 = η̃λ2 = −ηλ2,

and θ̃λ = θ̃λ = −θλ, so that ηλ2 and θλ can be written as linear combinations of
η, θ and ηλ by computing, as in the proof of Proposition 2.2.2, the correspondent
polynomials ρ, ρ′, ρ′′, δρ, which allows us to obtain the symmetric coefficients
α, β and γ. This gives two polynomials

r5(Λ, H,Θ) = HΛ2 − (αηλ2H + βηλ2Θ + γηλ2HΛ)

r6(Λ, H,Θ) = ΘΛ− (αθλH + βθλΘ + γθλHΛ)

that again vanish under Λ 7→ λ, H 7→ η, Θ 7→ θ. These six polynomials are
computed explicitly in terms of the ek in Appendix B.2.

Lemma 2.2.5. For R a ring with 2 ∈ R×, we have an isomorphism of R[x]S4-
algebras

R[x]S4 [Λ, H,Θ]/I
∼→ R[x]C4

sending Λ 7→ λ, H 7→ η and Θ 7→ θ, where I is the ideal generated by the six
polynomials ri(Λ, H,Θ) in the list above.

Proof. As the six polynomials generating I are zero on λ, η and θ, the map in the
statement is well-defined. To prove it is a bijection, it is enough to prove that the
set {1,Λ,Λ2, H,Θ,ΛH} generates the domain of the map as an R[x]S4 -module,
because it is mapped to {1, λ, λ2, η, θ, λη}, which is an R[x]S4-basis for R[x]C4

by Proposition 2.2.2.
The ring R[x]S4 [Λ, H,Θ]/I is R[x]S4-generated by the set of monomials

{Λn1Hn2Θn3 : n1, n2, n3 ∈ N}. As we quotient by r1, each of those monomial
is an R[x]S4-linear combination of monomials with unchanged exponents n2

and n3, and a strictly lower exponent for Λ, whenever n1 ≥ 3. Then the set
{Λn1Hn2Θn3 : n1, n2, n3 ∈ N, n1 ≤ 2} still generates R[x]S4 [Λ, H,Θ]/I as an
R[x]S4-module, by an easy induction. Similarly, as we quotient by r2, r3 and
r4, we can reduce this set of generators to {Λn1Hn2Θn3 : n1, n2, n3 ∈ N, n1 ≤
2, n2 + n3 ≤ 1} = {1,Λ,Λ2, H,ΛH,Λ2H,Θ,ΛΘ,Λ2Θ}. Finally, quotienting by
r5 and r6 we can express Λ2Θ as an R[x]S4 -linear combination of ΛH, ΛΘ and
Λ2H, and we can express both ΛΘ and Λ2H as an R[x]S4-linear combination
of H, Θ and ΛH. Hence {1,Λ,Λ2, H,Θ,ΛH} generates R[x]S4 [Λ, H,Θ]/I as an
R[x]S4-module.

If we fix a monogenic extension R→ R[x]/(f(x)), with f(x) = x4 − s1x
3 +

s2x
2 − s3x + s4, we can map via ϕ0 : ek 7→ sk the symmetric coefficients of

the polynomials r1, ..., r6, and obtain 6 polynomials in R[Λ, H,Θ]. The set of
triples (`, h, t) ∈ R3 satisfying the six polynomials parametrizes the classes of
C4-closures for R→ R[x]/(f(x)):

Theorem 2.2.6. Let R be a ring such that 2 ∈ R×. Consider the monogenic
degree-4 extension R→ A = R[x]/(f(x)), where f(x) = x4−s1x

3+s2x
2−s3x+s4.

Let g(x) = x3 − s2x
2 + (s1s3 − 4s4)x− (s2

3 − 4s2s4 + s2
1s4) be the resolvent cubic

of f . Then isomorphism classes of C4-closures for A over R are in one-to-
one correspondence with triples (`, h, t) ∈ R3 satisfying conditions (B.1) in
Appendix B.2.
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Proof. |C4| = 4 is not a zero-divisor since 2 ∈ R× is not, so that we can
apply Theorem 1.3.3. Then isomorphism classes of C4-closures for R → A
are in one-to-one correspondence with R-algebra maps R[x]C4 → R mapping
ek(t) 7→ sk. By Lemma 2.2.5, which we can apply since 2 ∈ R×, determining
such a map is equivalent to choosing (`, h, t) ∈ R3 images of λ, η, θ in R, and the
conditions (B.1) in Appendix B.2 are precisely the ones needed to make (`, h, t)
satisfy the necessary relations.

Remark 2.2.7. Since 2 ∈ R×, each monogenic degree-4 ring extension of rings is
isomorphic to a monogenic degree-4 ring extension with coefficient s1 = 0. Indeed,
if f(x) = x4−s1x

3 +s2x
2−s3x+s4, then for r0 ∈ R we have f̂(x) := f(x+r0) =

x4− (s1−4r0)x3 +(s2−3r0s1 +6r2
0)x2− (s3−2r0s2 +3r2

0s1−4r3
0)x+f(r0), and

the isomorphism of R-algebra R[x]/(f(x))→ R[x]/(f̂(x)) sending x 7→ x− r0.

In particular, the coefficient of x3 is zero in f̂(x) for r0 = s1/4. Then the
equations (B.1) in Appendix B.2 simplify to

`3 − s2`
2 − 4s4`− (s2

3 − 4s2s4) = 0
h2 = 4

(
2s2`

2 + (4s4 − s2
2)`− (s3

2 + 3s2
3 + 4s2s4)

)
t2 = 16s4`

2 − 3s2
3`− s2s

2
3 − 64s2

4

ht = 2(3s3`
2 − 2s2s3`− s2

2s3 − 16s3s4)
2t(`− s2) + s3h = 0
h`2 + 2s3t− 4s4h = 0

2.3 C2-closures for monogenic degree-4 extensions

In this section, we will consider C2 := 〈τ13τ24〉 ≤ S4 and parametrize C2-
closures for monogenic degree-4 ring extensions, assuming that 2 ∈ R is not a
zero-divisor. We will prove that they are in one-to-one correspondence with the
data of a factorization of f into two degree-2 polynomials together with a root
of a certain degree-2 polynomial depending on the factorization. This can be
done quite easily by considering the R[x]S2×S2 -algebra structure of R[x]C2 .

First, we note that R[x]C2 is a free R[x]S2×S2 -module:

Lemma 2.3.1. Let R be any ring, λ = x1x3 + x2x4 ∈ R[x] and µ = τ14λ =
x1x2 + x3x4. Then

R[x]C2 = R[x]S2×S2 ⊕R[x]S2×S2µ.

The proof of this lemma follows verbatim the one we gave for Lemma 2.1.1.
Consider the monic polynomial

H(λ,M) = M2 − (e2 − λ)M + λ2 − e2λ+ e1e3 − 4e4 ∈ R[x]S2×S2 [M ],

where H(Λ,M) is the polynomial from Lemma 2.1.3. Since µ is a root of
H(λ,M), we immediately get the following isomorphism:

Lemma 2.3.2. For any ring R, consider the polynomial H(λ,M) as above.
Then we have an isomorphism of R[x]S2×S2-algebras sending M 7→ µ:

R[x]S2×S2 [M ]

(H(λ,M))

∼→ R[x]C2
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We denote in the following way these two-variable symmetric polynomials:

U1 = x1 + x3, U2 = x1x3, V1 = x2 + x4, V2 = x2x4.

Then we can prove the following parametrization for C2-closures:

Theorem 2.3.3. Let R be a ring such that 2 ∈ R is not a zero-divisor. Consider
the monogenic degree-4 extension R→ A = R[x]/(f(x)), where f(x) = x4−s1x

3+
s2x

2− s3x+ s4. Consider g(x) = x3− s2x
2 + (s1s3− 4s4)x− (s2

3− 4s2s4 + s2
1s4),

the resolvent cubic of f . Then the following are in one-to-one correspondence:

• isomorphism classes of C2-closures of R→ A;

• quintuples (u1, u2, v1, v2,m) ∈ R5 such that f(x) = (x2 − u1x+ u2)(x2 −
v1x+ v2) and m is a root of g(x)/(x− u2 − v2);

• septuples (u1, u2, v1, v2, `1, `2, `3) ∈ R7 such that `1 = u2 + v2, f(x) =
(x2 − u1x+ u2)(x2 − v1x+ v2) and g(x) = (x− `1)(x− `2)(x− `3).

Proof. As 2 ∈ R is not a zero-divisor, we can apply Theorem 1.3.3 for G = C2.
Then isomorphism classes of C2-closures for the monogenic extension R → A
are in one-to-one correspondence with maps of R[x]S4-algebras R[x]C2 → R.
Then, by the isomorphism (of R[x]S4 -algebras) in Lemma 2.3.2, those are given
by a map of R[x]S4-algebras φ : R[x]S2×S2 → R together with a root of the
polynomial φ(H(λ,M)). Giving such a map φ is equivalent, by Theorems 1.2.1
and 1.3.3 combined together (the latter being applicable since 4 ∈ R is not a
zero-divisor), to give a factorization into monic polynomial of the form f(x) =
(x2 − u1x+ u2)(x2 − v1x+ v2), precisely via φ(Uj) = uj and φ(Vj) = vj . Notice
that λ = U2 + V2 is mapped to a root of the resolvent cubic g, say ` = u2 + v2,
and that (M − `)φ(H(λ,M)) = φ((M −λ)H(λ,M)) = g(M). This gives exactly
the parametrization in terms of quintuples for which we were looking, since the
image of M has to be a root of g(x) = (x− u2 − v2). The parametrization in
terms of septuples is equivalent to the previous one via Lemma 1.2.3.

2.4 C3-closures for monogenic degree-4 extensions

In this section, we will consider C3 = {1, (1 2 3), (1 3 2)} ≤ S4 and parametrize
C3-closures for monogenic degree-4 ring extensions, assuming that 6 is not a
zero-divisor.

We define γ = x2x
2
3 + x2

1x3 + x1x
2
2, and denote by e′j the j-th elementary

symmetric polynomial in the variables x1, x2, x3. Then, applying Example 5.4.4
in [1], one has: γ+ τ12γ = e′1e

′
2− 3e′3 and γ · (τ12γ) = e′32 − 6e′1e

′
2e
′
3 + e′31 e

′
3 + 9e′23 .

This gives the following description of the polynomial invariants:

R[x]C3 = (R[x1, x2, x3])C3 [x4] = (R[x1, x2, x3])S3 [γ][x4] = R[x]S3 [γ]

∼=
R[x]S3 [y]

(y2 − (e′1e
′
2 − 3e′3)y + (e′32 − 6e′1e

′
2e
′
3 + e′31 e

′
3 + 9e′23 ))

We assume that 6 is not a zero-divisor, i.e., 2 and 3 are not zero-divisors.
Then by Theorem 1.3.3 we have that C3-closure are in one-to-one correspondence
with maps R[x]C3 → R sending ek 7→ sk. By the description of R[x]C3 that we
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gave, such maps are uniquely determined by a map ϕ : R[x]S3 → R sending
ek 7→ sktogether with a root in R of the polynomial to which x2

3−(e′1e
′
2−3e′3)x3 +

(e′32 − 6e′1e
′
2e
′
3 + e′31 e

′
3 + 9e′23 ) is sent via φ. Using that 6 is not a zero-divisor

and applying Theorem 1.3.3 together with Corollary 1.2.2, we have that maps
R[x]S3 → R sending ek 7→ sk are uniquely determined by a root of f , i.e., by a
decomposition f(x) = (x−r)(x3−s′1x2 +s′2x−s′3), where the map corresponding
to such a decomposition is the one sending e′j 7→ s′j . This proves the following:

Theorem 2.4.1. Let R be a ring such that 6 ∈ R is not a zero-divisor. Consider
the monogenic degree-4 extension R → A = R[x]/(f(x)), where f(x) = x4 −
s1x

3 + s2x
2 − s3x+ s4. Then the following are in one-to-one correspondence:

• isomorphism classes of C3-closures of R→ A;

• quintuples (r, s′1, s
′
2, s
′
3, c) ∈ R5 such that f(x) = (x−r)(x3−s′1x2+s′2x−s′3)

and c2 = (s′1s
′
2 − 3s′3)c− (s′32 − 6s′1s

′
2s
′
3 + s′31 s

′
3 + 9s′23 ).

2.5 Examples and Classical Galois Theory

For separable degree-4 field extensions, a good reference about computing the
Galois group is the Section Quartic polynomials from Chapter 4 in [4]. The
parametrizations of D4-closures and V4-closures we pointed out in this chapter
are a natural generalization of the ones from classical Galois theory which are
expressed in terms of the resolvent cubic g of the polynomial f defining the
extension (respectively, the Galois group G is contained in D4 if and only if g
has root in the base field, and G is contained in V4 if and only if g splits in the
base field).

We will now apply the criteria we gave on some specific monogenic degree-4
extensions. The last of those is the most important, as it makes it clear that it
is not possible to have a unique minimal subgroup G of Sn (up to conjugation)
for which a G-closure exists. Such a subgroup G would generalise the definition
of Galois group in the case of a ring extension. This answers negatively the first
of Questions 4.4.3 in [1]. The ring R we consider in that counterexample is a
domain, but it is not integrally closed. It remains unknown if the answer to the
question is positive supposing that R is an integrally closed domain, or at least
supposing that R is a UFD.

Example 2.5.1. Consider the field extension F3 → F81 = F3[x]/(x4 +x2 +x+1).
By basic Galois theory (as a reference, see Section Finite Fields from Chapter
4 in [4]), this extension has cyclic Galois group C4 (generated by the Frobenius
automorphism α 7→ α3). Hence we have a C4-closure for the extension. This is
indeed consistent with Theorem 2.2.6, which we can apply since 2 is a unit: the
resolvent cubic is g(x) = x3−x2− 4x = x(x2−x− 1) and it has the unique root
` = 0. Then the other equations from Remark 2.2.7 are:

h2 = 1
t2 = 1
ht = 1
t− h = 0
t− h = 0

giving h = t = ±1. Hence we have two distinct classes of C4-closures for our
ring extension.
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Example 2.5.2. Consider the ring extension R→ A = R[x]/(x4 + x2 + x+ 1),
with R = Z/9Z. It is easy to check that x4 +x2 +x+ 1 is irreducible in Z/9Z[x],
so that by Theorem 1.2.1 there exists no G-closure for intransitive G. Since 2
is a unit, we can apply Theorems 2.0.2, 2.1.4 and 2.2.6: the resolvent cubic is
g(x) = x3 − x2 − 4x+ 3 = (x− 3)(x2 + 2x+ 2) and it has the unique root ` = 3.
This means that there exists exactly one class of D4-closures, and no V4-closure.
For C4-closures, we have 5 other equations from Remark 2.2.7:

h2 = 4
t2 = 7
ht = 1
4t− h = 0
−2t− 4h = 0

but there are no solutions, meaning that there is no C4-closure for our extension.
Moreover, there is no A4-closure: if it existed, we would have a map R[x]A4 → R
sending ek 7→ sk, while finding such a map requires, as seen in Appendix B.1,
there to be a root in R for the quadratic polynomial x2 − x+ 4 = (x+ 4)2 − 3,
which does not exist as 3 is not a square in R.

Example 2.5.3. Here we want to study the extension R→ R[x]/(x4− 4x2 + 2)
for R = Z. If a G-closure for this extension in the case R = Z exists, then by
Theorem 1.1.9 also a G-closure in the case R = Q has to exist. For R = Q,
f(x) = x4 + 4x2 + 2 is irreducible, so that we cannot have a G-closure for G ≤ S4

an intransitive subgroup. Moreover, g(x) = x3− 4x2− 8x+ 32 = (x− 4)(x2− 8),
so that there exists a unique isomorphism class of D4-closures (even for R = Z).
If R = Q we have the 5 other equations for C4-closures from Remark 2.2.7:

h2 = 0
t2 = 162

ht = 0
0 = 0
16h− 8h = 0

which give two classes of C4-closures for our extension when R = Q. In this case
the Galois group of the field extension is C4, and we have a G-closure if and only
if G ∈ {C4, D4, S4}. If R = Z, the criterium for C4-closures cannot be applied,
and it is not immediate to decide if a C4-closure does exist or not.

Example 2.5.4 (Counterexample to existence of Galois group for ring exten-
sions). Consider the monogenic degree-4 extension R → A = R[x]/(x4 + s),
supposing that s ∈ R \ {0}, with R a domain where 2 is a unit and 3 is not a
zero-divisor. The resolvent cubic is then equal to g(x) = x3 − 4sx = x(x2 − 4s).
Then by Theorem 2.0.2 there necessarily exists a D4-closure, as g(0) = 0. By
the parametrization in Appendix B.1, isomorphism classes of A4-closures are
in one-to-one correspondence with roots of x2 − 64s3. This implies that an
A4-closure exists if and only if 64s3 is a square in R, which is equivalent to s3

being a square in R. The resolvent cubic g(x) splits into monic linear factors
over R if and only if there exists roots `1, `2, `3 ∈ R of g realizing the split. In
particular, this requires the product `1`2`3 to be equal to zero, so that, R being
a domain, one of the `i should be 0, and by Lemma 1.2.3 we need the other two
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to be roots of g(x)/x = x2 − 4s. Hence, by Theorem 2.1.4, a V4-closure exists if
and only if 4s is a square in R, which is equivalent to s being a square in R.

Now take R = Q[y2, y3] and s = y2. Then R is a domain (being a subring of
the polynomial ring Q[y]) and s3 = y6 = (y3)2 is a square, while s is not (since
its only two square roots in the fraction field Q(y) are ±y 6∈ R). Hence there
exist a D4-closure and an A4-closure, but no V4-closure for this ring extension.
Notice that the third of the conditions on a triple (`, h, t) ∈ R3 parametrizing
C4-closures from Remark 2.2.7 is t2 = −64y4, which is not realizable with t ∈ R
(not even with t ∈ Q(y)). Hence there is no C4-closure for this ring extension. It
can also be easily checked that f(x) is irreducible over R, so that no (S2 × S2)-
closures, no S3-closures and no C3-closures exist. In conclusion, D4 and A4 are
two minimal subgroups in {G ≤ S4 : a G-closure of R→ A exists}, but they are
not conjugates. This means that first of Questions 4.4.3 in [1] has a negative
answer.

27



CHAPTER 2. CRITERIA FOR MONOGENIC DEGREE-4 EXTENSIONS

28



Appendices

29





Appendix A

Invariant algebras and
tensor powers

In this appendix, for R → A a degree-n ring extension, we will prove the
isomorphism of tensor powers

(A⊗n)

∏
j
Sdj ∼=

⊗
j∈[m]

(A⊗dj )Sdj

that we use to give a proof of Theorem 1.2.1, parametrizing
∏
j Sdj -closures for

a monogenic extension R→ R[x]/(f(x)) in terms of splittings of f into monic
factors fj of degrees dj .

A.1 Localization and invariants

We are now going to prove that in any R-algebra localization commutes with
taking invariants under an action of a finite group G. Actually, this is not only
true for localization, but for any flat base change, as said in Proposition A7.1.3
from [2]. We here rephrase part of statement and proof of this proposition:

Lemma A.1.1. Let A and R′ be R-algebras, and G be a finite group with an
action on the R-algebra A. Then the action of G induces an action on the
R′-algebra R′ ⊗R A via σ · (r′ ⊗ a) = r′ ⊗ (σ · a). If R′ is a flat R-algebra, then
the following is an isomorphism of R′-algebras:

ψ :R′ ⊗R AG
∼
> (R′ ⊗R A)G

r′ ⊗ a > r′ ⊗ a

Proof. For all σ ∈ G, the expression σ ·(r′⊗a) = r′⊗(σ ·a) defines the R-algebra
endomorphism idR′ ⊗ σ of R′ ⊗R A. Since it is easily checked to be also an
R′-linear map, this is actually an endomorphism of R′ ⊗R A as an R′-algebra.
It is clear by the definition that compositions work fine, so that this is an action
of G on the R′-algebra R′ ⊗R A.

Sending r′⊗a 7→ r′⊗a we define an R′-algebra map R′⊗RAG → (R′⊗RA)G

(the image of each simple tensor is clearly G-invariant). To prove that when R′
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is flat the map is an isomorphism, we can just regard it as a map of R′-modules.
Writing down G = {σ1, . . . , σ|G|}, we notice that AG is the kernel of the R-linear

map A → A|G| sending a 7→ (a − σj · a)j , and that (R′ ⊗R A)G is the kernel
of the R-linear map R′ ⊗R A → (R′ ⊗R A)|G| ∼= R′ ⊗R A|G| with analogue
definition. Being R′ flat, the kernel are preserved after tensoring with idR′ , so
that R′ ⊗R AG and (R′ ⊗R A)G coincide in R′ ⊗R A, i.e., ϕ is an isomorphism
of R′-modules.

In particular, we can consider a multiplicative subset S ⊆ R, and take
R′ = S−1R. Since localization is flat, we immediately get the following result:

Corollary A.1.2. Let G be a finite group acting on an R-algebra A, and
S ⊆ R a multiplicative subset. Then the action of G induces an action on the
S−1R-algebra S−1A via σ · as = σa

s , and the following is an isomorphism of
S−1R-algebras:

ψ :S−1AG > (S−1A)G

a

s
>
a

s

A.2 Invariant tensor powers

We are now going to prove some lemmas which will allow us to prove the
isomorphism

(A⊗n)

∏
j
Sdj ∼=

⊗
j∈[m]

(A⊗dj )Sdj .

For a fixed ring R, we associate every finite set C to the power R-algebra RC ,
and for any map of sets α : C → D we call the R-algebra map RD → RC induced
by α the one that sends ed 7→

∑
α(c)=d ec, for any d ∈ D. Here we denote by

ec the c-th standard basis element of RC , for every c ∈ C (we will keep this
notation in the rest of the appendix, even if it has nothing to do with the one
used in the main thesis). It is easily seen that the R-algebra map induced by a
composition of set maps is the composition of the R-algebra maps induced by
the set maps (i.e., we have defined a contravariant functor from finite sets to
R-algebras) so that bijections induce isomorphisms of R-algebras.

Lemma A.2.1. Let R be a ring and m, k ∈ N, I = [m] and J = [k]. Consider:

Sm ×RMap(I,J) > RMap(I,J)

(σ, eπ) > eπσ−1

This defines a left group action of Sm on the R-algebra RMap(I,J), i.e., we have the
group homomorphism Sm → AutR−Alg(RMap(I,J)) which sends σ 7→ (p 7→ σp).
Moreover, endowing (RJ)⊗I with the Sm-action defined by σ · a(i) = a(σ(i)) for
all a ∈ RJ , the following defines an Sm-isomorphism of R-algebra:

Q : RMap(I,J) > (RJ )⊗I

eπ > eπ(1) ⊗ · · · ⊗ eπ(m) =
∏
i∈I

e
(i)
π(i)
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Proof. First, we have that Q is an isomorphism of R-algebras. It is well-defined
because it sends the eπ to a complete set of orthogonal idempotents (it can
immediately checked that

∑
π Q(eπ) = 1 and Q(eπ)Q(eγ) = δπ,γQ(eπ), where

δπ,γ is Kronecker’s delta). Since the Q(eπ) form an R-module basis for (RJ )⊗I ,
the map is actually an isomorphism. It can be easily seen that the inverse map

is Q−1(e
(i)
j ) =

∑
π:π(i)=j eπ.

To conclude the proof it is sufficient to notice that the G-action induced on
RMap(I,J) via Q is exactly the one considered in the lemma:

σ ·Q(eπ) = σ ·

(∏
i∈I

e
(i)
π(i)

)
=
∏
i∈I

e
(σ(i))
π(i) =

∏
i∈I

e
(i)
π(σ−1(i)) = Q(eπσ−1)

so that the action is well defined and makes Q a G-map.

Lemma A.2.2. Let R be a ring, n ∈ N and G a group acting on [n]. Consider

G×Rn > Rn

(σ, ej) > eσ(j).

This defines a left group action of G on the R-algebra Rn. Moreover, the R-
algebra map R[n]/G → Rn induced by the canonical projection [n] → [n]/G
factors through an isomorphism R[n]/G ∼→ (Rn)G.

Proof. As G permutes the elements of the R-basis respecting compositions on the
left, the above defines an action of G on the R-module Rn. Also multiplication
is preserved, making it an action of R-algebras.

For o ∈ [n]/G, the map R[n]/G → Rn sends eo 7→
∑
j∈o ej , which is G-

invariant since G acts on o, hence the map factors through R[n]/G → (Rn)G.
To prove that this is an isomorphism, it is enough to show that the elements∑

j∈o ej , with o ∈ [n]/G, form an R-basis for (Rn)G.

For every r ∈ (Rn)G we have r =
∑
j∈[n] rjej , and

∑
j∈[n]

rjej = σ

( ∑
j∈[n]

rjej

)
=
∑
j∈[n]

rjeσ(j) =
∑
j∈[n]

rσ−1(j)ej

so that rj = rσ−1j for all σ ∈ G, and denoting oj = G · j ∈ [n]/G we can define

roj
= rj , obtaining

∑
j∈[n] rjej =

∑
o∈[n]/G ro

(∑
j∈o ej

)
. Hence the elements∑

j∈o ej are R-generators for (Rn)G.
As concerns linear independence, notice that if we have some elements

ro ∈ R such that
∑

o∈[n]/G ro
∑
j∈o ej = 0, then we get

∑
o∈[n]/G

∑
j∈o roej = 0,

implying that all the ro are zero since the ei, i ∈ [n], are linearly independent in
Rn.

From this lemma follows immediately the following result:

Corollary A.2.3. Let R be a ring and m, k ∈ N, I = [m] and J = [k]. Let Sm
act on the R-algebra RMap(I,J) as in Lemma A.2.1, and on the set Map(I, J)
via σ · π = π ◦ σ−1. Let G ≤ Sm. Then the R-algebra map RMap(I,J)/G → Rn

induced by the canonical projection Map(I, J)→ Map(I, J)/G factors through
an isomorphism RMap(I,J)/G ∼→ (RMap(I,J))G.
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Now we can prove the following isomorphism of invariant subalgebras of
tensor powers:

Lemma A.2.4. Let M be a locally free R-module of rank n, and h, k ∈ N. Let
H ≤ Sh, K ≤ Sk, and view H ×K ≤ Sh × Sk ≤ Sh+k. Then the isomorphism
of R-algebras M⊗h ⊗M⊗k ∼= M⊗h+k restricts to an isomorphism (M⊗h)H ⊗
(M⊗k)K ∼= (M⊗h+k)H×K . More precisely, there exists an isomorphism γ making
the following diagram commute:

(M⊗h)H ⊗ (M⊗k)K
γ
> (M⊗h+k)H×K

M⊗h ⊗M⊗k
∨ ∼

> M⊗h+k

∨

where the vertical arrows are the canonical inclusions.

Proof. First, notice that existence of γ is equivalent to the image of the composite
map (M⊗h)H ⊗ (M⊗k)K → M⊗h ⊗M⊗k → M⊗h+k being H × K-invariant,
which is immediately checked on the R-module generators of the domain ξ ⊗ ζ,
with ξ ∈ (M⊗h)H and ζ ∈ (M⊗k)K .

The fact that γ is an isomorphism of R-modules can be proved locally on the
free localizations Mr

∼= Rnr . As localization commutes with both tensor products
and taking invariants under group actions (Corollary A.1.2), it is enough to
prove that γ is an isomorphism when M = Rn.

We will actually show that γ is an isomorphism of R-algebras, endowing Rn

with the product ring structure. Using the canonical isomorphism of R-algebras
from Lemma A.2.1, and denoting Map(a, b) := Map([a], [b]) for a, b ∈ N, we have
the following commutative diagram:

(Rn)⊗h ⊗ (Rn)⊗k > (Rn)⊗h+k

RMap(h,n)×Map(k,n)

o∧

> RMap(h+k,n)

o∧

It is easy to see that the lower arrow has to send e(f1,f2) 7→ ef1tf2 , where
f1 t f2 : [h + k] → [n] maps i 7→ f1(i) and j + h 7→ f2(j), for i ∈ [h] and
j ∈ [k]. Hence this arrow is exactly the R-algebra map induced by the bijection
β : Map(h+ k, n)→ Map(h, n)×Map(k, n) sending a map f to its compositions
with the inclusions of [h] in the first h integers and [k] in the last k integers in
[h+k]. We call β̄ the induced bijection Map(h+k, n)/(H×K)→ Map(h, n)/H×
Map(k, n)/K, where H and K act on the maps by pre-composition.

Then, we taking invariants and consider the map θ obtained by making the
following diagram commute, where the vertical arrows are obtained using the
isomorphism from Corollary A.2.3:

((Rn)⊗h)H ⊗ ((Rn)⊗k)K
γ
> ((Rn)⊗h+k)H×K

RMap(h,n)/H×Map(k,n)/K

o∧
θ
> RMap(h+k,n)/(H×K)

o∧

We claim that θ is induced by the bijection β̄, which is enough to prove that θ
is an isomorphism, and so is γ.
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To prove this claim, it is sufficient to consider the following diagram, which
is obtained from the one in the statement, again through the isomorphism in
Lemma A.2.1:

RMap(h,n)/H×Map(k,n)/K θ
> RMap(h+k,n)/(H×K)

RMap(h,n)×Map(k,n)

∨
> RMap(h+k,n)

∨

Generators of the upper-left R-module are of the form ef1◦H,f2◦K , and we can
denote f = f1 t f2. They are mapped via the vertical arrow to the elements∑

η∈H
µ∈K

ef1◦η,f2◦µ, which must be mapped to
∑
ν∈H×K ef◦ν . Since these elements

come from ef◦(H×K) via the vertical map on the right, which is injective, we
have that θ has to send ef1◦H,f2◦K 7→ ef◦(H×K), and the claim is proved.

The previous lemma generalizes to the case with more than two summands
by an easy induction, giving the following:

Corollary A.2.5. Let M be a locally free R-module of rank n, take h1, ..., hs ∈ N
and call ` =

∑
j hj. Let Hj ≤ Shj

and view
∏
j Hdj ≤

∏
j Shj

≤ S`. Then the

isomorphism
⊗

jM
⊗hj ∼= M⊗` restricts to an isomorphism

⊗
j(M

⊗hj )Hj ∼=

(M⊗`)

∏
j
Hj . More precisely, there exists an isomorphism γ making the following

diagram commute: ⊗
j

(M⊗hj )Hj
γ
> (M⊗m)

∏
j
Hj

⊗
j

M⊗hj

∨
∼

> M⊗m
∨

where the vertical arrows are the canonical inclusions.

Remark A.2.6. If R→ A is a degree-n extension of R, then the isomorphism γ :⊗
j(M

⊗hj )Hj → (M⊗m)

∏
j
Hj from the previous corollary is also an isomorphism

of R-algebras. Indeed, all the other arrows in the diagram are R-algebra maps,
so that composing the right vertical arrow (which is an injective map) after γ
we get an R-algebra map, and γ itself must therefore respect multiplication.
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Appendix B

Explicit computations

In this appendix, we collect the computations carried out to present the
A4-invariant and the C4-invariant polynomials as algebras over the symmetric
polynomials. This allows us to give explicit parametrizations for A4-closures and
C4-closures for a monogenic degree-4 ring extension of rings R→ R[x]/(f(x)).

To express any symmetric polynomial with elementary symmetric polynomials,
one can use symmetric functions of Sage. For an introduction about symmetric
functions, a good reference is Chapter 1 in [3]. We wrote down the following
code in Sage:

sage: Z.<x1 ,x2,x3,x4 > = PolynomialRing(QQ)
sage: Sym=SymmetricFunctions(QQ)
sage: e = Sym.elementary ()

This makes it possible to work with four variables over Q. Given a symmetric
function, applying the command defined in the last line on it we will obtain the
symmetric function expressed via elementary symmetric functions ek, k ∈ N. To
obtain the symmetric function correspondent to a symmetric polynomial p, one
can use the command:

sage: Sym.from_polynomial(p)

B.1 Conditions for A4-closures

For G = A4, we are in a very particular result in [1] describing An-closures
for monogenic degree-n extensions of rings, as said in the introduction. We have
the isomorphism of R[x]S4-algebras

R[x]An ∼= R[x]Sn [x]/(x− Γ)(x− τ12Γ)

where Γ =
∑
π∈A4

π(x2x
2
3x

3
4). An implementation of Sage allows us to compute

Γ + τ12Γ and Γ · τ12Γ in terms of symmetric polynomials:

sage: Gamma=x1^3*x2^2*x3+x1*x2^3*x3^2+x1^2*x2*x3^3+x1^2*x2^3*x4
+x1^3*x3^2*x4+x2^2*x3^3*x4+x1^3*x2*x4^2+x2^3*x3*x4^2
+x1*x3^3*x4^2+x1*x2^2*x4^3+x1^2*x3*x4^3+x2*x3^2*x4^3

sage: Sum=Gamma+Gamma(x2 ,x1,x3,x4)
sage: Prod=Gamma*Gamma(x2 ,x1,x3,x4)
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sage: e(Sym.from_polynomial(Sum))
e[3, 2, 1] - 3*e[3, 3] - 3*e[4, 1, 1] + 4*e[4, 2] + 7*e[5, 1]
- 12*e[6]
sage: e(Sym.from_polynomial(Prod))

e[3, 3, 2, 2, 2] + e[3, 3, 3, 1, 1, 1] - 6*e[3, 3, 3, 2, 1]
+ 9*e[3, 3, 3, 3] + e[4, 2, 2, 2, 1, 1] - 4*e[4, 2, 2, 2, 2]
- 6*e[4, 3, 2, 1, 1, 1] + 22*e[4, 3, 2, 2, 1]
+ 6*e[4, 3, 3, 1, 1] - 42*e[4, 3, 3, 2]
+ 9*e[4, 4, 1, 1, 1, 1] - 42*e[4, 4, 2, 1, 1]
+ 36*e[4, 4, 2, 2] + 48*e[4, 4, 3, 1] - 64*e[4, 4, 4]
+ 2*e[5, 2, 2, 1, 1, 1] - 8*e[5, 2, 2, 2, 1]
- 7*e[5, 3, 1, 1, 1, 1] + 32*e[5, 3, 2, 1, 1]
+ 10*e[5, 3, 2, 2] - 58*e[5, 3, 3, 1] + 4*e[5, 4, 1, 1, 1]
- 44*e[5, 4, 2, 1] + 130*e[5, 4, 3] + 29*e[5, 5, 1, 1]
- 47*e[5, 5, 2] + 4*e[6, 2, 1, 1, 1, 1] - 9*e[6, 2, 2, 1, 1] -
12*e[6, 2, 2, 2] - 18*e[6, 3, 1, 1, 1] + 76*e[6, 3, 2, 1]
- 54*e[6, 3, 3] - 3*e[6, 4, 1, 1] + 16*e[6, 4, 2]
- 40*e[6, 5, 1] + 36*e[6, 6] - 9*e[7, 1, 1, 1, 1, 1]
+ 32*e[7, 2, 1, 1, 1] - 20*e[7, 2, 2, 1] - 18*e[7, 3, 1, 1]
- 8*e[7, 3, 2] + 30*e[7, 4, 1] - 8*e[7, 5]
+ 30*e[8, 1, 1, 1, 1] - 85*e[8, 2, 1, 1] + 48*e[8, 2, 2]
+ 32*e[8, 3, 1] - 32*e[8, 4] - 66*e[9, 1, 1, 1]
+ 98*e[9, 2, 1] - 18*e[9, 3] + 147*e[10, 1, 1] - 128*e[10, 2]
- 222*e[11, 1] + 288*e[12]

Notice that the meaning of e[k1, k2, . . . , ks] in the output is just the elementary
symmetric function

∏s
i=1 eki . Rewriting this in our notation (and cancelling out

ek for k > 4), we have

Γ + τ12Γ = e3(e1e2 − 3e3) + e4(4e2 − 3e2
1), and

Γ · τ12Γ = e3
2e

2
3 + e3

1e
3
3 − 6e1e2e

3
3 + 9e4

3 + e2
1e

3
2e4 − 4e4

2e4 − 6e3
1e2e3e4+

+ 22e1e
2
2e3e4 + 6e2

1e
2
3e4 − 42e2e

2
3e4 + 9e4

1e
2
2 − 42e2

1e2e
2
4+

+ 36e2
2e

2
4 + 48e1e3e

2
4 − 64e3

4.

so that A4-closures for a monogenic degree-4 extension R→ R[x]/(x4 − s1x
3 +

s2x
2−s3x+s4) are in one-to-one correspondence with roots in R of the quadratic

polynomial x2 − ax+ b, where

a = s3(s1s2 − 3s3) + s4(4s2 − 3s2
1), and

b = s2
3(s3

2 + s3
1s3 − 6s1s2s3 + 9s2

3 + 6s2
1s4 − 42s2s4) + 2s1s3s4(11s2

2 + 24s4)+

+ s2
1(s3

2s4 − 6s1s2s3s4 + 9s2
1s

2
2 − 42s2s

2
4) + 4s4(9s2

2s4 − s4
2 − 16s2

4).

The hypothesis that 6 is not a zero-divisor can be dropped by Theorem 6.2.1
from [1].

B.2 Conditions for C4-closures

We will here lay out explicitly the six polynomials r1, . . . , r6 considered in
Lemma 2.2.5 and deduce the equations whose solutions parametrize C4-closures.

As already noticed, η2, θ2 and ηθ are D4-invariant polynomials. The following
code uses the formulas from [1] that we have written after Lemma 2.0.1: given a
polynomial D4-invariant polynomial ψ, it computes symmetric coefficients a, b
and c such that ψ = a+ bλ+ cλ2, and express their correspondent symmetric
function as a polynomial in the elementary symmetric functions:
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sage: Lambda=x1*x3+x2*x4
sage: eta=(x1-x3)*(x2-x4)*(x1 -x2+x3-x4)
sage: theta=(x1 -x3)*(x2-x4)*(x1*x3 -x2*x4)
sage: xi=Lambda*eta
sage: count=0
... listpoly =[’eta^2’,’theta^2’,’theta*eta’]
... for psi in [eta^2,theta^2,theta*eta]:
... omega=(psi(x4,x2,x3 ,x1)-psi(x2,x1 ,x3,x4))/

((x1-x3)*(x2 -x4))
... chi=(omega(x4,x2,x3 ,x1)-omega(x2,x1,x3 ,x4))/

((x1-x3)*(x2 -x4))
... c=-chi
... b=omega+chi*(x1+x3)*(x2+x4)
... a=psi -b*Lambda -c*Lambda ^2
... print(listpoly[count ])
... count=count +1
... print(’a’,a.denominator (),e(Sym.from_polynomial

(a.numerator ())))
... print(’b’,b.denominator (),e(Sym.from_polynomial

(b.numerator ())))
... print(’c’,c.denominator (),e(Sym.from_polynomial

(c.numerator ())))

eta^2
(’a’, 1, e[2, 2, 1, 1] - 4*e[2, 2, 2] - 4*e[3, 1, 1, 1]
+ 16*e[3, 2, 1] - 12*e[3, 3] + 4*e[4, 1, 1] - 16*e[4, 2]
+ 6*e[5, 1] + 24*e[6])
(’b’, 1, 2*e[2, 1, 1] - 4*e[2, 2] - 4*e[3, 1] + 16*e[4])
(’c’, 1, -3*e[1, 1] + 8*e[2])
theta^2
(’a’, 1, -e[3, 3, 2] - e[4, 2, 1, 1] + 16*e[4, 3, 1]
- 64*e[4, 4] + 4*e[5, 1, 1, 1] - 30*e[5, 2, 1] + 88*e[5, 3]
+ 11*e[6, 1, 1] - 8*e[6, 2] - 32*e[7, 1] + 32*e[8])
(’b’, 1, e[3, 2, 1] - 3*e[3, 3] - 3*e[4, 1, 1] + 23*e[5, 1]
- 48*e[6])
(’c’, 1, -e[3, 1] + 16*e[4])
theta*eta
(’a’, 1, -2*e[3, 2, 2] + 5*e[3, 3, 1] - 3*e[4, 1, 1, 1]
+ 12*e[4, 2, 1] - 32*e[4, 3] - 15*e[5, 1, 1] + 38*e[5, 2]
+ 10*e[6, 1] - 28*e[7])
(’b’, 1, e[2, 2, 1] - e[3, 1, 1] - 4*e[3, 2] + 4*e[4, 1]
+ 10*e[5])
(’c’, 1, -e[2, 1] + 6*e[3])

As can be seen in the code, the 1 in the output (in the second positions of
each vector starting with ’a’, ’b’ and ’c’) are just a check that a, b and c are
polynomials, since they are obtained by dividing polynomials. We write down
the output in this table:

Ω η2 θ2 ηθ
aΩ e2

1e
2
2 − 4e3

2 − 4e3
1e3+ −e2e

2
3 − e2

1e2e4+ −2e2
2e3 + 5e1e

2
3 − 3e3

1e4+
+16e1e2e3 − 12e2

3+ +16e1e3e4 − 64e2
4 +12e1e2e4 − 32e3e4

+4e2
1e4 − 16e2e4

bΩ 2e2
1e2 − 4e2

2+ e1e2e3 − 3e2
3+ e1e

2
2 − e2

1e3+
−4e1e3 + 16e4 −3e2

1e4 −4e2e3 + 4e1e4

cΩ −3e2
1 + 8e2 16e4 − e1e3 −e1e2 + 6e3

Given a C4-invariant polynomial ψ changing sign under τ13, the following Sage
code computes symmetric coefficients α, β and γ such that ψ = αη + βθ + γλη,
and express their correspondent symmetric function as a polynomial in the
elementary symmetric functions. This is done by using equations (2.2) from the
proof of Proposition 2.2.2.
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sage: count =0
... listpoly =[’theta*Lambda ’,’eta*Lambda ^2’]
... for psi in [theta*Lambda ,eta*Lambda ^2]:
... rho= psi/((x2 -x4)*(x1-x3))
... rhoi=( rhopsi(x4,x2 ,x3,x1)-rhopsi(x2,x1 ,x3,x4))/(x4-x2)
... rhoii=(rhoi(x4 ,x2,x3,x1)-rhoi(x2 ,x1,x3 ,x4))/(x4 -x2)
... delta=(rhoii -rhoii(x3,x2 ,x1,x4))/(x3-x1)
... gamma=delta /(-4)
... beta=(rhoii -gamma*(x1+x2 -3*x3+x4))/1
... alpha=(rhoi -beta*(x1+x3)-gamma *((x1-x3)^2

+(x1+x3)*(x2+x4)))/2
... print(listpoly[count ])
... count=count +1
... print(’alpha’,alpha.denominator (),e(Sym.

from_polynomial(alpha.numerator ())))
... print(’beta’,beta.denominator (),e(Sym.

from_polynomial(beta.numerator ())))
... print(’gamma’,gamma.denominator (),e(Sym.

from_polynomial(gamma.numerator ())))

theta*Lambda
(’alpha’, 1, -1/2*e[3])
(’beta’, 1, -1/4*e[1, 1] + e[2])
(’gamma’, 1, 1/4*e[1])
eta*Lambda ^2
(’alpha’, 1, -1/2*e[3, 1] + 4*e[4])
(’beta’, 1, -1/4*e[1, 1, 1] + e[2, 1] - 2*e[3])
(’gamma’, 1, 1/4*e[1, 1])

We rewrite the output in this table:

Ω θλ ηλ2

αΩ −e3/2 −e1e3/2 + 4e4

βΩ −e2
1/4 + e2 −e3

1/4 + e1e2 − 2e3

γΩ e1/4 e2
1/4

Hence the six polynomials satisfied by λ, η and θ in Section 2.2 are

r1(Λ, H,Θ) =(Λ− λ)(Λ− τ14λ)(Λ− τ12λ)

=Λ3 − e2Λ2 + (e1e3 − 4e4)Λ− (e2
1e4 + e2

3 − 4e2e4)

r2(Λ, H,Θ) =H2 − (−3e2
1 + 8e2)Λ2 − (2e2

1e2 − 4e2
2 − 4e1e3 + 16e4)Λ+

− (e2
1e

2
2 − 4e3

2 − 4e3
1e3 + 16e1e2e3 − 12e2

3 + 4e2
1e4 − 16e2e4)

r3(Λ, H,Θ) =Θ2 − (16e4 − e1e3)Λ2 − (e1e2e3 − 3e2
3 − 3e2

1e4)Λ+

− (−e2e
2
3 − e2

1e2e4 + 16e1e3e4 − 64e2
4)

r4(Λ, H,Θ) =HΘ− (6e3 − e1e2)Λ2 − (e1e
2
2 − e2

1e3 − 4e2e3 + 4e1e4)Λ

− (−2e2
2e3 + 5e1e

2
3 − 3e3

1e4 + 12e1e2e4 − 32e3e4)

r5(Λ, H,Θ) =4ΘΛ + 2e3H − (−e2
1 + 4e2)Θ− e1HΛ

r6(Λ, H,Θ) =4HΛ2 − (−2e1e3 + 16e4)H − (−e3
1 + 4e1e2 − 8e3)Θ− e2

1HΛ

We map the coefficients of those polynomials to R via ek 7→ sk. If 2 ∈ R×,
then C4-closures for the monogenic extension R→ R[x]/(x4−s1x

3 +s2x
2−s3x+

s4) are in one-to-one correspondence with triples (`, h, t) ∈ R3 satisfying the
following equation, where g(x) = x3 − s2x

2 + (s1s3 − 4s4)x− (s2
3 − 4s2s4 + s2

1s4)
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is the resolvent cubic of f :

g(`) = 0
h2 = (−3s2

1 + 8s2)`2 + (2s2
1s2 − 4s2

2 − 4s1s3 + 16s4)`+
+(s2

1s
2
2 − 4s3

2 − 4s3
1s3 + 16s1s2s3 − 12s2

3 + 4s2
1s4 − 16s2s4)

t2 = (16s4 − s1s3)`2 + (s3s2s1 − 3s2
3 − 3s2

1s4)`+
+(−s2s

2
3 − s2

1s2s4 + 16s1s3s4 − 64s2
4)

ht = (6s3 − s1s2)`2 + (s1s
2
2 − s2

1s3 − 4s2s3 + 4s1s4)`
+(−2s2

2s3 + 5s1s
2
3 − 3s3

1s4 + 12s1s2s4 − 32s3s4)
4t`− s1h`+ 2s3h− (4s2 − s2

1)t = 0
4h`2 − s2

1h`− (−s3
1 + 4s1s2 − 8s3)t− (−2s1s3 + 16s4)h = 0

(B.1)

If we suppose that s1 = 0, then those equations simplify to

`3 − s2`
2 − 4s4`− (s2

3 − 4s2s4) = 0
h2 = 4

(
2s2`

2 + (4s4 − s2
2)`− (s3

2 + 3s2
3 + 4s2s4)

)
t2 = 16s4`

2 − 3s2
3`− s2s

2
3 − 64s2

4

ht = 2(3s3`
2 − 2s2s3`− s2

2s3 − 16s3s4)
2t(`− s2) + s3h = 0
h`2 + 2s3t− 4s4h = 0.
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