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Chapter 1

Introduction

It is well-known by Hilbert’s Basis Theorem that if A is a Noetherian ring, then the ring

A[x] of polynomials in one variable x and coefficients from A is also Noetherian. We find

by induction that the polynomial ring R = A[x1, x2, · · · , xn] in finitely many variables is

Noetherian. Moreover the notion of Gröbner Basis allows us to do effective computations in

R/I, where I is an ideal in R, with some assumption on A.

The situation changes dramatically when one considers polynomial rings in infinitely

variables. For instance, the ring A[x1, x2, · · · ] is not Noetherian, since the ideal (x1, x2, · · · )

does not have a finite set of generators.

However, if we have some special actions of some special monoids on the ring R, we may

have finiteness. Indeed, let X = {x1, x2, · · · }, and let a monoid P act on R by mean of ring

homomorphisms : if p ∈ P and f ∈ R = A[x1, x2, · · · , xn], where xi ∈ X, then

pf(x1, x2, · · · , xn) = f(px1, · · · , pxn)

This in turn gives R structure of a left module over the left skew-monoid ring R ∗ P =

{
∑m
i=1 ripi : ri ∈ R, pi ∈ P} with the multiplication given by

r1p1.r2p2 = r1(p1r2)(p1p2)

and extended by distributivity and A−linearity to the whole ring. An ideal I ⊆ R is called
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invariant under P (or P−stable) if

PI := {pf : p ∈ P, f ∈ I} ⊆ I

And note that invariant ideals are simply the R ∗ P−submodules of R.

We study the question whether the ring R = A[x1, x2, · · · ] is P−Noetherian, which means

that it has an action of P by ring homomorphisms and that all ascending chains of P−stable

ideals stabilise after finitely many steps.

It is shown that when P = Sym(N) is the symmetric group ([AH07]) or P = Inc(N) is

the monoid of strictly increasing functions on N ([HS09], [D09]), the ring R = A[x1, x2, · · · ]

is P−Noetherian. For instance, the ideal (x1, x2, · · · ) is P−stable and as R ∗ P−module

generated by the single polynomial x1.

Notice that in those situations above, the monoid P acts trivially on the coefficient ring

A. Hence a natural question is that when we have a nontrivial action of a monoid P on the

coefficient ring A, and when A is P−Noetherian, is the polynomial ring R = A[x1, x2, · · · ]

still P−Noetherian? This is one of main problems that I am going to investigate in this

thesis (chapter 3).

Since polynomial rings in infinitely many variables occur naturally in applications such

as chemistry ([AH07]) and algebraic statistics ([HS09], [BD10]), we would like to do compu-

tations with their ideals. In case P = Sym(N), P−stable ideals are finitely generated as a

R∗P−submodule, and the proof of this fact can be turned into a Buchberger-type algorithm

for computing with such ideals ([AH09]).

More generally, the notion of equivariant Gröbner basis (in [BD10]) or P−Gröbner basis

(or monoidal Gröbner basis in [HS09]) is defined and used, where the coefficient ring A = k

is restricted to be a field k. Under some conditions, there exists a Buchberger-type algorithm

for computing equivariant Gröbner bases of P−stable ideals in k[x1, x2, · · · ] (see [BD10]).

So now, connecting with equivariant Gröbner bases method above ([BD10]), another

question of the thesis is described as follows (chapter 4):
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Let Subs(N) be the substitution monoid, whose elements are infinite sequences (σ1, σ2, · · · )

of pairwise disjoint non-empty finite subsets of N, with multiplication defined by

(σ ◦ τ)i =
⋃
j∈τi

σj

Let Subs<(N) be the submonoid of all such sequences (σ1, σ2, · · · ) satisfying

max(σ1) < max(σ2) < · · ·

Note that the full symmetric group of N is naturally contained in Subs(N) and that

Inc(N) is contained in Subs<(N) (by taking singetons).

Now consider the polynomial ring S = K[t;x1, x2, · · · ; (zI)I⊆N], where I runs over all

finite subsets of the natural numbers. In this ring consider the ideal I(Y ) generated by all

elements of the form

zI − t
∏
i∈I

xi

The substitution monoid acts on (monomials in) S by σt = t, σxi =
∏
j∈σi xj , and σzI =

z∪i∈Iσi , and this action stabilises the ideal I(Y ). We will compute a Subs<(N)−Grobner

basis of I(Y ) with respect to the lexicographic order satisfying t > xi > zI for all i and I

and xi+1 > xi and zJ > zJ′ if J is lexicographically larger than J ′ (e.g. {4} > {2, 3} > {2}).

Use this Grobner basis to compute the intersection of I(Y ) with K[(zI)I ].

The background of this problem is the following: the intersection of I(Y ) with this ring

in the z−variables is the ideal of all polynomials vanishing on all infinite rank-1 tensors.

This ideal is in fact known to be generated by certain 2 × 2−minors, and the (feasible)

computation above gives a new proof of this fact. A more ambitious goal would be to do

such a computation of infinite rank-2 tensors, but there the computation is probably not

yet feasible (chapter 5).

My thesis is organized as the following

• Chapter 2 is devoted to introducing some background knowledge that we need for

latter chapters. In this chapter, we first introduce some basic algebraic notions such

as : monoids, action of a monoid, commutative Noetherian rings with some examples.
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Next, we introduce the theory of P−ordering ([HS09], [BD10]) where P is a monoid

that acts on the ring R = A[x1, x2, · · · ] by mean of homomorphisms. That ordering is

good in the sense that it is compatible with the monomial order in R. The notion of

Gröbner basis over a general ring is then introduced in the last part of this chapter.

In particular, the definition of an equivariant Gröbner basis along with the sufficient

conditions for computations ([BD10]) are given.

• In chapter 3, we are going to investigate the Noetherianity of the polynomial ring

R = A[x1, x2, · · · ] under the Sym(N)−actions and Inc(N)−actions. In particular, we

give a number of examples in which R is sometimes Inc(N)−Noetherian and sometimes

not Inc(N−)Noetherian.

• In chapter 4, we introduce the infinite rank-1 tensors problems and we give another

proof with the substitution approach.

• In chapter 5, we introduce the infinite rank-2 tensors problems and two potential

approaches that may give us a solution.

• We give a short summary in chapter 6 of this thesis. In addition, we give two open

problems that we have not solved in this time.
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Chapter 2

Preliminaries

2.1. Some algebraic notions

2.1.1. Action of monoids

Definition 2.1 A monoid is a set M together with a binary operation ×, that satisfies

the following conditions :

• (Associativity) a× (b× c) = (a× b)× c for all a, b, c ∈M .

• (Identity element) There is an e ∈M such that e× a = a× e = a for all a ∈M .

More compactly, a monoid is a semigroup with an identity element. A monoid with invert-

ibility ( i.e. for every element a ∈M there is a−1 ∈M such that a× a−1 = a−1 × a = e) is

a group.

A submonoid is a subset N ⊆M containing the identity element, and such that if a, b ∈ N

then a × b ∈ N . A subset N is said to generate M if the set generated by N , denoted

by 〈N〉, which is the intersection over all submonoids containing the elements of N , is M .

Equivalently, M = 〈N〉 if and only if every element of M can be written as a finite product

of elements in N . If there is a finite generating set of M , then M is said to be finitely

generated. A monoid whose operation is commutative is called a commutative monoid (or,

less commonly, an abelian monoid).
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Example 2.2

• The natural numbers form a commutative monoid under addition (N,+) (with identity

element 0), or multiplication (N, .) (with identity element 1).

• Given two sets M and N endowed with monoid structure, their cartesian product

M × N is also a monoid. The associative operation and the identity element are

defined pairwise.

• Fix a monoid M. The set of all functions from a given set to M is also a monoid. The

identity element is the constant function mapping any element to the identity of M;

the associative operation is defined pointwise.

• Let S be a set. The set of all functions S → S forms a monoid under function

composition. The identity is just the identity function. If S is finite with n elements,

the monoid of functions on S is finite with nn elements.

• The set Π = Inc(N) of strictly increasing functions on N is a monoid with the com-

position operation. The identity is just the identity map, which is also an increasing

function.

• The set of all finite strings (words) over some fixed alphabet
∑

is a monoid with string

concatenation as the operation. The empty string is the identity element. The monoid

is denoted by
∑∗ and is called free monoid over

∑
.

Definition 2.3 Let M be a monoid and a set S. A (left) action of M on S is the operation

∗ : M × S → S satisfying the following conditions

• e ∗ s = s , for all s ∈ S.

• a ∗ (b ∗ s) = (ab) ∗ s, for all a, b ∈M, s ∈ S.

A homomorphism between two monoids (M1, ∗) and (M2, �) is a function f : M1 →M2 such

that

• f(x ∗ y) = f(x) � f(y) for all x, y ∈M .

• f(e1) = e2

6



where e1 and e2 are the identity elements of M1 and M2 respectively. Monoid homomor-

phisms are sometimes simply called monoid morphisms.

Given an action of a monoid M on the set S, the orbit of an element s ∈ S is the subset

Ms = Os = {a.s|a ∈ M} ⊆ S, and the submonoid Stab(s) = {a ∈ M : a.s = a} ⊆ M is

defined to be the stabilizer of the point s ∈ S.

Example 2.4 Let X = {x1, x2, · · · } be a set of infinitely many variables and k[X] be the

ring of polynomials in infinitely many variables with coefficients in some field k. For every

π ∈ Π, and for every xi ∈ X let :

π.xi = xπ(i)

It is in fact an action of Π on k[X] since :

• id.xi = xid(i) = xi.

• For π, σ ∈ Π, we have :

π(σ.xi) = π.xσ(i) = xπσ(i) = (πσ)xi.

Notice that in this example, Π acts trivially on k, i.e., π.a = a for all π ∈ Π, a ∈ k. This is

a very important example which we will study in later sections.

2.1.2. Commutative Noetherian ring

Definition 2.5 A commutative ring ([AM69]) is a set with binary operations (addition

and multiplication) satisfying the following conditions :

(i) A is an abelian group with respect to addition (so that A has a zero element, denoted

by 0, and every x ∈ A has an (additive) inverse, −x).

(ii) Multiplication is associative ((xy)z = x(yz)) and distributive over addition (x(y+z) =

xy + xz, (y + z)x = yx+ zx).

(iii) xy = yx for all x, y ∈ A.

(iv) ∃1 ∈ A such that x1 = 1x = x for all x ∈ A.

An (left) ideal of A is a subgroup I of (A,+) such that ax ∈ I for every a ∈ A, x ∈ I.
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Definition 2.6 A commutative Noetherian ring A is a commutative ring satisfying one of

the following equivalent conditions

(a) Every non-empty set of ideals in A has a maximal element, with respect to the inclusion

ordering.

(b) Every ascending chain of ideals I1 ⊆ I2 ⊆ · · · in A is stationary, i.e. there exists n

such that In = In+1 = · · · .

(c) Every ideal I inA is finitely generated, i.e., there are finitely many elements x1, · · · , xk ∈

A such that I = 〈x1, · · · , xk〉.

Example 2.7

• The ring of integers Z and the ring k[x] of polynomials in one variable over a field k

are principal ideal domains, hence Noetherian.

• The polynomial ring k[x1, x2, · · · ] in infinitely many variables is not Noetherian since

there is a strictly increasing sequence (x1) ⊂ (x1, x2) ⊂ · · · of ideals.

Theorem 2.8 (Hilbert’s Basis Theorem) If A is Noetherian, then the ring A[x1, x2, · · · , xn]

of polynomials in finitely many variables with coefficients in A is also Noetherian.

Remark 2.9 As we have seen in theorem 2.8, the Hilbert’s basis theorem is true only for

rings of polynomials in finitely many variables, and it does not hold for rings of polynomials

in infinitely many variables as in example 2.7. In later sections, we will study when A[X] =

A[x1, x2, · · · ] is Noetherian in some senses by using some good actions of some good monoids

on A[X] (as in example 2.4), which will be introduced in the following sections.

2.2. Theory of P−order relations

2.2.1. Well-partial-ordering

A partial ordering on a set S is a binary relation ≤ on S which is reflexive, transitive

and antisymmetric. A trivial ordering on S is given by s ≤ t ⇔ s = t for all s, t ∈ S. We
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write s < t if s ≤ t and t � s.

An antichain of S is a subset A ⊆ S such that any two elements in the subset are incom-

parable. A final segment is a subset F ⊆ S which is closed upwards : s ≤ t∧s ∈ F ⇒ t ∈ F .

A parial ordered set S is said to be well partial ordering if (1) there are no infinite

antichains and (2) there are no infinitely strictly decreasing sequences. An infinite sequence

s1, s2, · · · in S is called good if si ≤ sj for some indices i < j, and bad otherwise. We have

the following characterization of well-partial-orderings as follows (see [K72], [AH07]).

Proposition 2.10 The following are equivalent, for a partial ordered set S :

(1) S is well-partial-ordered.

(2) Every infinite sequence in S is good.

(3) Every infinite sequence in S contains an infinite increasing subsequence.

(4) Any final segment of S is finitely generated.

(5) (F(S),⊇), where F(S) is the set of final segments of S, is well-founded (i.e., the

ascending chain condition holds for final segments of S).

If (S,≤S) and (T,≤T ) are partial ordered, then the cartesian product S × T can be turned

into a partial ordered set by using the cartersian product of ≤S and ≤T :

(s, t) ≤ (s′, t′) :⇔ s ≤S s′ ∧ t ≤T t′, for s, s′ ∈ S, t, t′ ∈ T

From the proposition 2.10 we easily obtain that the cartesian product of two well-partial-

ordered sets is again well-partial-ordered.

Of course, a total ordering ≤ is well-partial-ordered if and only if it is well-founded. In

this case ≤ is called well-ordering.

Definition 2.11 (The Higman partial order) Let (S,�) be a partially-ordered set.

Let (SH ,�H) be defined on the set SH = S∗ of finite words of elements of S by

u1u2 · · ·um �H v1v2 · · · vn

9



if and only if there is a π ∈ Π sending [m] to [n] such that ui � vπ(i) for i ∈ [m].

The main result about Higman partial orders is Higman’s Lemma ([H52],[W63],[MR90]):

Lemma 2.12 (Higman’s Lemma) If (S,�) is a well-partial-order, then the Higman

partial order (SH ,�H) is also well-partial-order.

Example 2.13 We may take S = Nk, partially ordered by inequality

(s1, s2, · · · , sk) � (t1, t2, · · · , tk) :⇔ si ≤ ti for i = 1, · · · , k

which is well-partial-ordered by Dickson’s Lemma ([AL94]).

A term ordering on monomials in polynomial ring R = A[X] = A[x1, x2, · · · ] is a well-

odering ≤ on the set of monomials such that

• 1 ≤ x for all x ∈ X = {x1, x2, · · · }, and

• v ≤ w ⇒ xv ≤ xw for all monomials v, w and x ∈ X = {x1, x2, · · · }.

2.2.2. The P−ordering

Let A be a commutative ring with 1, let Q be a (possibly noncommutative) monoid,

and let A[Q] be the semigroup ring associated to Q over A. We call the elements of Q

the monomials of A[Q]. Let a monoid P act on A[Q] by means of homomorphisms (with

multiplication in P given by composition). Associated to A[Q] and P is the skew-monoid

ring A[Q] ∗ P , which is formally the set of all linear combinations

A[Q] ∗ P =
{ s∑
i=1

ciqipi : ci ∈ A, qi ∈ Q, pi ∈ P
}

Multiplication of monomials in the ring A[Q] ∗ P is given by

q1p1.q2p2 = q1(p1q2)(p1p2)

and extended by distributivity and A−linearity to the whole ring. The natural (left) action

of the skew-monoid ring on A[Q] makes A[Q] into a (left) module over A[Q] ∗ P .
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We say that an (left) ideal I ⊆ A[Q] is P−invariant if

PI := {pn : p ∈ P, n ∈ I} = I

Stated another way, a P−invariant ideal is simply a A[Q] ∗ P−submodule of A[Q].

If we have a well ordering 4 of Q, we may talk about the initial monomial or leading

monomial q = lm(f) of any nonzero f ∈ A[Q], which is the largest element q ∈ Q with

respect to 4 appearing with nonzero coefficient in f . We set lm(f) = 0 whenever f = 0,

and also 0 4 q for all q ∈ Q.

Definition 2.14 (P−order) A well-ordering 4 of Q is called a P−order on A[Q] if for

all q ∈ Q, p ∈ P , and f ∈ A[Q], we have

lm(qp.f) = lm(qp.lm(f))

i.e., P preserves the monomial order in A[Q].

Remark that when P = {1}, a P−order is simply a term order on monomials. In next

section, we will provide examples of P−order, in particular the shift order.

Lemma 2.15 Suppose that 4 is a P−order on A[Q]. Then the following hold ([HS09]):

(i) For all q ∈ Q, p ∈ P and q1, q2 ∈ Q, we have q1 ≺ q2 ⇒ lm(qpq1) � lm(qpq2).

(ii) If lm(qpf) = lm(qpg) for some q ∈ Q, p ∈ P and f, g ∈ A[Q], then either lm(f) =

lm(g) or qpf = qpg = 0.

(iii) Q is left-cancellative : for all q, q1, q2 ∈ Q, we have qq1 = qq2 ⇒ q1 = q2.

(iv) q2 � q1q2 for all q1, q2 ∈ Q (in particular, 1 is the smallest monomial).

(v) All elements of P act injectively on A[Q].

(vi) For all q ∈ Q and p ∈ P , we have q � lm(pq).
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Proposition 2.16 (Characterization of P−order) Let Q be a monoid and let P be a

monoid of A−algebra endomorphisms of A[Q]. Then a well-ordering � of Q is a P−order

if and only if for all q ∈ Q, p ∈ P , and q1, q2 ∈ Q, we have

q1 ≺ q2 ⇒ lm(qpq1) ≺ lm(qpq2)

Proof. If lm(qpq1) = lm(qpq2), since q1 ≺ q2, then by (ii) of lemma 2.15 we have qpq1 =

qpq2 ⇒ pq1 = pq2 by (iii), and then q1 = q2 by (v), which is a contradiction.

Conversely, suppose that � is a well-ordering of Q. Let p ∈ P, q ∈ Q and 0 6= f ∈ A[Q],

we will prove that lm(qpf) = lm(qp.lm(f)). Order monomials q1 ≺ q2 ≺ · · · ≺ qk appearing

in f with nonzero coefficient. By assumption, we have lm(qpqi) ≺ lm(qpqi+1) for all i. It

follows that lm(qpf) = lm(qp.lm(f)).

Definition 2.17 (The P−divisibility relation) Given monomials q1, q2 ∈ Q, we say

that q1|P q2 if there exists p ∈ P and q ∈ Q such that q2 = q.lm(pq1). Such a p is called a

witness of the relation q1|P q2.

Proposition 2.18 If � is a P−order on Q, then P−divisibility |P is a partial order on Q

that is a coarsening of � (i.e., q1|P q2 ⇒ q1 � q2).

Proof. It is clear that |P is reflexive. Assume that q1|P q2 and q2|P q3 for q1, q2, q3 ∈ Q. Then

there is m1,m2 ∈ Q, p1, p2 ∈ P such that q2 = m1lm(p1q1) and q3 = m2lm(p2q2). We have

q3 = m2lm(p2q2)

= m2lm(p2.m1lm(p1q1))

= m2lm(p2m1.p2lm(p1q1))

= m2lm(p2m1.lm(p2lm(p1q1)))

= m2lm(p2m1.lm(p2p1q1))

Since lm(p2m1.lm(p2p1q1)) 6= 0, it must be of the form q.lm(p2p1q1) for some q ∈ Q. Hence

q3 = m2q.lm(p2p1q1), which implies that q1|P q3. So |P is transitive.
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If q1|P q2 then q2 = m1lm(p1q1) for some m1 ∈ Q, p1 ∈ P . Then by (vi) of lemma 2.15

we have

q1 � lm(p1q1) � m1lm(p1q1) = q2

So, if we also have q2|P q1 then by the same procedure we get q2 � q1. Thus q1 = q2, which

proves the antisymmetry of |P .

2.2.3. The Π−ordering (Shift ordering)

Recall that

Π = Inc(N) = {π : N→ N : π(i) < π(i+ 1) for all i ∈ N}

For r ∈ N, let [r] = {1, 2, · · · , r}. We consider the (linear) action of Π on A[X[r]×N] induced

by its action on the second index of the indeterminates X[r]×N :

πxi,j := xi,π(j), π ∈ Π

Proposition 2.19 The column-wise lexicographic term order xi,j � xk,l if j < l or (j=l

and i ≤ k) is a Π−order on A[X[r]×N]. In addition Π−divisibility on A[X[r]×N] is a well-

partial-order.

Proof. Notice that every monomial in A[X[r]×N] is written in the form xu = xu1
1 · · ·xumm for

some m ∈ N, where xujj =
∏
i∈[r] x

ui,j
i,j . Suppose that xu ≺ xv, then we can write xu as

xu = xu1
1 · · ·xumm x

vm+1
m+1 · · ·xvnn

for some m ≤ n in which xumm ≺ xvmm . For π ∈ Π, we have

πxu = xu1
π(1) · · ·x

um
π(m)x

vm+1

π(m+1) · · ·x
vn
π(n)

πxv = xv1π(1) · · ·x
vm
π(m)x

vm+1

π(m+1) · · ·x
vn
π(n)

Since π is increasing so xumπ(m) ≺ x
vm
π(m). Hence πxu ≺ πxv, which proves that � is a Π−order.

We now show that Π−divisibility on A[X[r]×N] is well-partial-ordered. Assume that

xu|Πxv, then there is π ∈ Π such that πxu|xv, then xuiπ(i)|x
vπ(i)

π(i) for each i ∈ [m]. By Higman’s

lemma applied to Nr with respect to partial order as in example 2.13, the Π−divisibility is

well-partial-ordered.
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2.2.4. The Sym(N)−ordering (symmetric cancellation ordering)

Definition 2.20 Let Sym(N) act on monomials in R = A[Q] by permutations. The

symmetric cancellation ordering corresponding to Sym(N) and a term ordering ≤ on R is

defined by

v 4 w :⇐⇒

 v ≤ w and there exists σ ∈ Sym(N) and a monomial u

such that w = uσv and for all v′ ≤ v, we have uσv′ ≤ w.

Remark 2.21 Every term ordering ≤ is linear in the sense : v ≤ w ⇔ uv ≤ uw for all

monomials u, v, w. Hence the condition above may be written as : v ≤ w and there exists

σ ∈ Sym(N) such that σv|w and σv′ ≤ σv for all v′ ≤ v. We say that σ witnesses v 4 w.

Lemma 2.22 The relation 4 is an ordering on monomials.

Proof. w � w for all w ∈ Q, since we may choose u = 1 and σ to be the identity. So �

is reflexive. Next, suppose that u � v � w, then there are u1, u2 ∈ Q, σ, τ ∈ Sym(N) such

that v = u1σu,w = u2τv, so w = u2τu1τσu. In addition, if v′ ≤ u, then u1σv
′ ≤ v, so that

u2τu1τσv
′ ≤ w. This shows that � is transitive. Finally, if u � v and v � u, then u ≤ v

and v ≤ u by definition. Hence u = v as desired.

We have the following result ([AH07]):

Proposition 2.23 The ordering 4 is a well-partial-order.

Remark 2.24 . Symmetric cancellation is not a P−order since it does not preserve any

monomial odering. Let A[Q] = A[XN] be the polynomial ring in infinitely many variables

XN = {xi : i ∈ N}. Also let P = Sym(N). Then there is no P−order on A[XN]. To see this,

let g = x1 +x2, and suppose (without loss of generality) that a P−order makes lm(g) = x1.

Then if p = (12), we have lm(p.g) = lm(g) = x1, while lm(p.lm(g)) = lm(p.x1) = x2.

In later sections, we will show that A[Q] is Π−Noetherian, with respect to the Π−order.

However, although Sym(N) is not a P−order on A[Q], but we still can use the result of

Π−order to show that A[X] is Sym(N)−Noetherian.
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2.3. Gröbner bases

2.3.1. Reduction of polynomials

Let f ∈ R = A[Q], f 6= 0, and let B be a set of non-zero polynomials in R. We say that

f is reducible by B if there exists pairwise distinct g1, g2, · · · , gm ∈ B,m ≥ 1, such that for

each i we have lm(gi) 4 lm(f), witnessed by some pi ∈ P , i.e., lm(pigi) = pilm(gi) devides

lm(f), and

lt(f) = a1q1p1lt(g1) + · · ·+ amqmpmlt(gm)

for non-zero ai ∈ A and monomials qi ∈ Q such that qipilm(gi) = lm(f). In this case we

write f −→
B

h, where

h = f − (a1q1p1lt(g1) + · · ·+ amqmpmlt(gm))

and we say that f reduces to h by B. We say that f is reduced with respect to B if f is not

reducible by B. By convention, the zero polynomial is reduced with respect to B. Trivially,

every element of B reduces to 0.

The smallest partial-ordering on R extending the relation −→
B

is denoted by ∗−→
B

. If f, g 6= 0

and f −→
B

h, then lm(h) 4 lm(f). In particular, every chain

h0 −→
B

h1 −→
B

h2 −→
B
· · ·

with all hi ∈ R \ {0} is finite (since 4 is well-founded). Hence there exists r ∈ R such that

f
∗−→
B

r and r is reduced with respect to B. We call such an r a normal form of f with

respect to B.

Lemma 2.25 Suppose that f ∗−→
B

r. Then there exist g1, · · · , gn ∈ B, p1, · · · , pn ∈ P and

h1, · · · , hn ∈ R such that

f = r +
n∑
i=1

hipigi and max
1≤i≤n

lm(hipigi) 4 lm(f)

(In particular, f − r ∈ 〈B〉A[Q]∗P ).

Proof. This is clear if f = r. Otherwise we have f −→
B

h
∗−→
B

r for some h ∈ R. Inductively,

we may assume that there exist g1, · · · , gn ∈ B, p1, · · · , pn ∈ P and h1, · · · , hn ∈ R such
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that

h = r +
n∑
i=1

hipigi and lm(h) � max
i≤i≤n

lm(hipigi)

There are also gn+1, · · · , gn+m ∈ B, pn+1, · · · , pn+m ∈ P, an+1, · · · , an+m ∈ A and qn+1, · · · , qn+m ∈

Q such that lm(qn+ipn+ign+i) = lm(f) for all i and

lt(f) =
m∑
i=1

an+iqn+ipn+ilt(gn+i), f = h+
m∑
i=1

an+iqn+ipn+ign+i

Hence putting hn+i := an+iqn+i for i = 1, · · · ,m we have f = r +
∑n+m
j=1 hjpjgj and

lm(f) � lm(h) � lm(hjpjqj) if 1 ≤ j ≤ n, lm(f) = lm(hjpjqj) if n < j ≤ n+m.

2.3.2. Gröbner bases

If 4 is a P−order, then we may compute the initial final segment with respect to the

P−divisibility partial order of any subset B ⊆ A[Q] :

lm(B) = {q ∈ Q : lm(g)|P q for some g ∈ B \ {0}}

Moreover when I ⊆ A[Q] is a P−invariant ideal, then it is straightforward to check that

lm(I) = {lm(f) : f ∈ I \ {0}}

Definition 2.26 A (possibly infinite) set B ⊆ I ⊆ A[Q] is a P−Gröbner basis for a

P−invariant ideal I (with respect to the P−order 4) if and only if

lm(I) = lm(B)

Additionally, in the case A = k is a field, a Gröbner basis is called minimal if no leading

monomial of an element in B is P−divisibility smaller than any other leading monomial of

an element in B.

Proposition 2.27 Let I be an ideal of R and B be a set of non-zero elements of I. The

following are equivalent :

(1) B is a Gröbner basis for I.

(2) Every non-zero f ∈ I is reducible by B.

(3) Every f ∈ I has a normal form 0. (In particular, I = 〈B〉A[Q]∗P )
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(4) Every f ∈ I has unique normal form 0.

Proof. (1)⇒ (2)⇒ (3)⇒ (4) follow from the lemma above. Now suppose (4) holds. Every

f ∈ I \ {0} with lt(f) /∈ lt(B) is reduced with respect to B, hence it has two distinct normal

forms (0 and f), a contradiction. Thus lt(I) = lt(B), which implies that B is a Gröbner

basis for I.

Theorem 2.28 Let 4 be a P−order. If P−divisibility |P is a well-partial-ordering, then

every P−invariant ideal I ⊆ A[Q] has a finite P−Gröbner basis with respect to 4. Moreover,

if elements of P send monomials to scalar multiples of monomials, the converse holds.

Proof. The set of monomials lm(I) is a final segment with respect to P−divisibility, since

P−divisibility is a well-partial-ordering, lm(I) is finitely generated. Since I is P−invariant,

these generators are leading monomials of a finite subset B of elements of I. It follows that

B is a P−Gröbner basis.

Suppose now that elements of P send monomials to scalar multiples of monomials. Let M

be any final segment of Q with respect to |P , and set I = 〈M〉A[Q]∗P . By assumption, there

is a finite set B = {g1, · · · , gk} such that

M ⊆ lm(B)

Now, each g ∈ B has a representation of the form

g =
d∑
j=1

ajqjpjmj aj ∈ A, pj ∈ P, qj ∈ Q,mj ∈M

Since elements of P send monomials mj ∈M to a scalar multiples of monomials, it follows

that lm(g) = q.lm(pm) for some q ∈ Q, p ∈ P,m ∈ M . Hence m|P lm(g). Thus M =

〈lm(g1), · · · , lm(gk)〉 is finitely generated, which proves that |P is a well-partial-ordering.

We immediately have the following corollary :

Corollary 2.29 Let � be a P−order. If P−divisibility |P is a well-partial-ordering, then

every P−invariant ideal I ⊆ A[Q] is finitely generated over A[Q] ∗ P . In other words, A[Q]

is a Noetherian A[Q] ∗ P -module.
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2.4. Equivariant Gröbner Bases

In this section, we restrict our settings above to the case A = k is a field and Q is the

free commutative monoid generated by X = {x1, x2, · · · } and assume that Q is P−stable.

Definition 2.24 (Equivariant Gröbner Basis) Let I be a P−stable ideal ideal in k[Q].

If P is fixed, then we call a P−Gröbner basis B of I an equivariant Gröbner basis ([BD10])

(or monoidal Gröbner basis ([HS09])). If P = {1}, then B is an ordinary Gröbner basis

([AL94]).

Lemma 2.25 If I is P−stable and B is a P−Gröbner basis of I, then PB = {πb|π ∈

P, b ∈ B} generates the ideal I.

Proof. If 〈PB〉 6= I, then take an f ∈ I \〈PB〉 with lm(f) minimal. Since B is a P−Gröbner

basis, then there exist b ∈ B and π ∈ P with lm(πb)|lm(f). Hence f − lt(f)
lt(πb)πb ∈ I \ 〈PB〉

with leading term strictly smaller than lm(f), a contradiction.

Example 2.26 ([BD10]) : Let X = {yij |i, j ∈ N}, let k be a number number, and let

I be the ideal of all polynomials in the yij that vanish on all N × N−matrices y of rank

at most k. Order the variables yij lexicographically by the pair (i, j), where i is the most

significant index; so for instance y3,5 > y2,6 > y2,4 > y1,10. The corresponding lexicographic

order on monomials in the yij is a well-order. Let P := Inc(N) × Inc(N) act on X by

(π, σ)yij = yπ(i),σ(j); this action preserves the strict order. The P−orbit of the determinant

D of the matrix (yij)i,j=1,··· ,k+1 consists of all (k + 1)× (k + 1)−minors of y, which form a

Gröbner basis of the ideal I. Hence, {D} is also a P−Gröbner basis of I.

Definition 2.27 (Equivariant remainder) Given f ∈ k[Q] and B ⊆ k[Q], proceed as

follows : if πlm(b)|lm(f) for some π ∈ P and b ∈ B, then substract the multiple lt(f)
lt(πb)πb

of πb from f . so as to lower the latter’s leading monomial. Do this until no such pair

(π, b) exists anymore. The resulting polynomial is called a P−remainder (or an equivariant

remainder, if P is fixed) of f modulo B. This process will stop after a finite number of steps,

since � is a well-order.
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In the polynomial ring of example 2.26 the set {y12y21, y12y23y31, y12y23y34y41, · · · } is

an infinite antichain of monomials, hence the Inc(N)−stable ideal generated by it does not

have a finite Inc(N)−Gröbner basis. But even in such a setting where not all P−stable

ideals have finite P−Gröbner bases, ideals of interesting P−stable varieties may still have

such bases. Hence, to have an algorithm for computing equivariant Gröbner bases, we need

the following two addition assumptions :

EGB1 For all p ∈ P and m,m′ ∈ Q we have lcm(pm, pm′) = p.lcm(m,m′).

EGB2 For all f, h ∈ k[Q] the set Pf ×Ph is the union of a finite number of P−orbits (where

P acts diagonally on k[Q] × k[Q]), and generators of these orbits can be computed

effectively.

Under all assumptions above, we have the definition of equivariant S-polynomials as S−polynomials

for the ordinary Buchberger’s definition :

Definition 2.28 (Equivariant S-polynomials) Consider two polynomials b0, b1 with

leading monomials m0,m1 respectively. Let H be a set of pairs (σ0, σ1) ∈ P × P for which

Pb0×Pb1 =
⋃

(σ0,σ1)∈H{(πσ0b0, πσ1b1)|π ∈ P}. For every element (σ0, σ1) ∈ H we consider

the ordinary S-polynomial

S(σ0b0, σ1b1) := lc(b1)
lcm(σ0m0, σ1m1)

σ0m0
σ0b0 − lc(b0)

lcm(σ0m0, σ1m1)
σ1m1

σ1b1

The set {S(σ0b0, σ1b1)|(σ0, σ1) ∈ H} is called a complete set of equivariant S-polynomials

for b0, b1. It depends on the choice of H.

We then have following result (as for ordinary Buchberger Criterion) ([BD10]):

Theorem 2.29(Equivariant Buchberger Criterion) Let B be a subset of k[Q] such

that for all b0, b1 ∈ B, there exists a complete set of S−polynomials each of which has 0 as

a P−remainder modulo B. Then B is a P−Gröbner basis of the ideal generated by PB.
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Chapter 3

Noetherianity of the polynomial

ring R = A[x1, x2, · · · ]

In this chapter, we will study the Noetherianity of polynomial ring R = A[Q] under the

actions of Π = Inc(N) and Sym(N).

3.1. Π−Noetherianity

For r ∈ N, let [r] = {1, 2, · · · , r}. We consider the (linear) action of Π on A[X[r]×N]

induced by its action on the second index of the indeterminates X[r]×N :

πxi,j := xi,π(j), π ∈ Π

By proposition 2.19, the Π−divisibility on A[X[r]×N] is a well-partial-ordering, hence by

corollary 2.29, we have :

Theorem 3.1 The ring A[X[r]×N] is Π−Noetherian.

Remark 3.2 In the result above, we just considered the trivial action of Π on the ring A.

A natural question is when the polynomial ring A[X] is Π−Noetherian when we have a non-

trivial action of Π on the ring A. We will study this question in a number of different settings.

20



First, let Π′ be the set of all π ∈ Π with cofinite images, and denote |π| = |N \ Im(π)|.

We have the following lemma :

Lemma 3.3 The following map is a homomorphism of monoids

φ : Π′ → (Z,+)

π 7→ |π|

Proof. For π, σ ∈ Π′, we would like to check whether |πσ| = |σ|+ |π|. We can view |σ| and

|π| as follows :

|σ| =
∞∑
n=0

(σ(n+ 1)− σ(n)− 1) + σ(0)− 1

|π| =
∞∑
n=0

(π(n+ 1)− π(n)− 1) + π(0)− 1

We have

|πσ| =
∞∑
n=0

(πσ(n+ 1)− πσ(n)− 1) + πσ(0)− 1

=
∞∑
n=0

{(πσ(n+ 1)− π(σ(n+ 1)− 1)− 1) + (π(σ(n+ 1)− 1)− π(σ(n+ 1)− 2)− 1) +

+ · · ·+ (π(σ(n) + 1)− πσ(n)− 1) + (σ(n+ 1)− σ(n)− 1)}+ πσ(0)− 1

=
∞∑

n=σ(0)

(π(n+ 1)− π(n)− 1) +
∞∑
n=0

(σ(n+ 1)− σ(n)− 1) + πσ(0)− 1

Moreover,

πσ(0)− 1 = (π(σ(0))− π(σ(0)− 1)− 1) + · · ·+ (π(1)− π(0)− 1)− 1 + σ(0)− 1 + π(0)

=
σ(0)−1∑
n=0

(π(n+ 1)− π(n)− 1) + σ(0)− 1 + π(0)− 1

Hence we obtain

|πσ| = |π|+ |σ|

as required.

Example 3.4 Let Π′ act on A = k[z] by π.z = z2|π| , π ∈ Π′ and act on monomials in

R = A[x1, x2, · · · ] as usual. First we show that π.z = z2|π| , π ∈ Π′ is an action on A = k[z] :

• id.z = z2|id| = z20
= z.
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• For π, σ ∈ Π′, we have

(πσ)z = z2|πσ| = z2|π|+|σ| (by lemma 3.3)

= z2|σ|2|π| =
(
z2|σ|

)2|π|

= π(σz)

Hence, we have an action of Π′ on R = A[x1, x2, · · · ]. Then R is not Π′−Noetherian.

Indeed, consider the Π′−stable ideal

I = (zx1, zx2, · · · )

If I is finitely generated, I = (zx1, · · · , zxn) say, then since zxn+1 ∈ I, then

zxn+1 = π.(zxi) = (πz)xπ(i) = z2|π|xn+1

for some i ≤ n and π ∈ Π′ such that π(i) = n+ 1. But then 2|π| = 1⇒ |π| = 0, hence π is

the identity map, which contradicts to π(i) = n + 1. So I is not finitely generated, which

implies that R is not Π′−Noetherian.

Example 3.5 Now we consider the action of Π′ on A = k[z] by injective homomorphisms

π.z = z+ |π|. Then R now is Π′−Noetherian. To see this, we define the order on monomials,

which are of the form zkui for the monomial ui in x1, x2, · · · , in R as follows

zkui 4
∗ zluj ⇔ (k ≤ l and ui 4 uj)

Since ≤ in natural numbers and 4 in monomials defined as above are both well-partial-

orderings, also4∗ is a well-partial-ordering. And4∗ is now a Π′−ordering. Since Π′−divisibility

is a well-partial-ordering inspired from proposition 2.19, then R is Π′−Noetherian by corol-

lary 2.29.

Example 3.6 Consider A = k[z] the ring of polynomial in one variable z, where k is a

field. Let Π act on A by π.z = z if π = id and π.z = 0 otherwise, and act on monomials as

usual. Consider the Π−stable ideal

I = (zx1, zx2, · · · )

If I is finitely generated, I = (zx1, · · · , zxn) say, since zxn+1 ∈ I, then there should exist a

π ∈ Π and i ≤ n such that zxn+1 = π(zxi) = (πz)(πxi) = 0 which is a contradiction. Hence
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in this case, R is not Π−Noetherian.

We get the same result if id.z = z and π.z = a constant α for all π 6= id. Since at this

time, the stable ideal

I = ((z − α)x1, (z − α)x2, · · · )

is not Π−finitely generated.

There is a pointwise convergence topology on Π = Inc(N) inspired from the discrete

topology on N, namely, a neighborhood of an element π ∈ Π is the set containing elements

σ ∈ Π that agree with π on some specified finite set of points, for instance,

Br(π) = {σ ∈ Π : σ|{1,··· ,r} = π|{1,··· ,r}}

Definition 3.7 We say that Π acts on A = k[z] continuously if there is a positive integer

m > 0 such that for all σ, π ∈ Π for which σ|[m] = π|[m] then σ.z = π.z.

Note that none of the actions of Π and Π′ above are continuous.

Lemma 3.8 If ϕ : Π → M from Π into a monoid M is continuous with respect to the

discrete topology on M and the topology of Π defined above, i.e., there is a positive integer

m such that for all π, σ ∈ Π for which π|[m] = σ|[m] we have ϕ(π) = ϕ(σ), then for every

π ∈ Π, there is a positive integer d0 > 0 such that for all d > d0, ϕ(π)d is idempotent.

Proof. For π ∈ Π, if π(i) > m for all i = 1, 2, · · · ,m, we choose σ ∈ Π such that

σ|[m] = id|[m], and σ(m+ i) = π(m+ i) for all i ≥ 1

Such an increasing function σ always exists since π(m+ i) > m.

Then we have

σπ|[m] = π2|[m]

So

ϕ(σπ) = ϕ(π2) = ϕ(π)2

Since σ|[m] = id|[m], then ϕ(σπ) = ϕ(σ)ϕ(π) = ϕ(id)ϕ(π) = ϕ(π), therefore

ϕ(π)2 = ϕ(π)
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Hence, ϕ(π) is idempotent.

If π is not as the form above, there exist n ≤ m and d ∈ N such that πd(i) = i for i = 1, · · · , n

and πd(i) > m for i > n.

Put δ = πd. If n = 0 then from the procedure above ϕ(π)d = ϕ(δ) is idempotent. Otherwise,

we may take σ ∈ Π as follows

σ|[m] = id[m], and σ(δ(n+ i)) = δ2(n+ i)for i ≥ 1

Since δ(i+ 1)− δ(i) ≤ δ2(i+ 1)− δ2(i), this assures that σ can still be chosen an increasing

function. Then we have

δ2|[m] = σδ|[m]

So

ϕ(δ)2 = ϕ(δ)ϕ(σ) = ϕ(δ)(ϕ(id)) = ϕ(δ)

Hence ϕ(δ) is idempotent. Thus ϕ(π)d is also idempotent, as desired.

Now, if Π acts continuously on A = k[z], assume that π.z = f(z), σ.z = g(z) for π, σ ∈ Π.

Since (πσ).z = π(σ.z) = g(f(z)), then we have deg(πσ) = deg(π).deg(σ), where deg(π) =

deg(π.z) = deg(f(z)). Hence we have a continuous homomorphism from Π into the monoid

k[z] in which the multiplication is defined by f ◦ g(z) = g(f(z)) for all f, g ∈ k[z] :

φ : Π→ (k[z], ◦)

By lemma 3.8, for every π ∈ Π, there is d >> 0 such that φ(π)d is idempotent.

Every idempotent element f ∈ k[z] satisfies f(f(z)) = f(z), so deg(f) ≤ 1, i.e., f(z) =

az + b. Since f(f(z)) = f(z), we have

f(z) = az + b = f(f(z)) = a(az + b) + b

= a2z + (a+ 1)b

Thus a2 = a and b = (a + 1)b. From a2 = a we have either a = 1 or a = 0. If a = 1,

then from b = (a+ 1)b = 2b we get b = 0, so f(z) = z. If a = 0, then f(z) = b, a constant.

Hence, for every π ∈ Π, either φ(π) = z or φ(π) = c, a constant.

Let π.z = φ(z) = a(π)z + b(π) and let I = {π ∈ Π : a(π) = 0} be a (two-sided) prime

ideal of Π. Then for every π ∈ Π, we have :

π : z 7−→

 b(π) if π ∈ I

z if π /∈ I
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And R = A[x1, x2, · · · ] is always Π−Noetherian. Therefore, we have proved :

Theorem 3.9 If Π acts on A = k[z] continuously then there is a prime ideal (clopen)

I ⊆ Π and a constant c ∈ k such that

π : z 7−→

 c if π ∈ I

z if π /∈ I

And A[x1, x2, · · · ] is always Π−Noetherian.

Remark 3.10 (Another proof of theorem 3.9) Now let Πm be the set of all π ∈ Π

such that π|[m] = id|[m]. Π acts continuously on A = k[z], then there is m such that for

π, σ ∈ Π satisfying

π|[m] = σ|[m]

we have

σ.z = π.z

Since π|[m] = id|[m] for all π ∈ Π, Πm acts trivially on A = k[z], hence Πm acts trivially on

A′ = k[z, x1, · · · , xm]. Then

R = k[z][x1, x2, · · · ] = A′[xm+1, xm+2, · · · ]

SinceA′ is Πm−Noetherian, then by [AH09], R is Πm−Noetherian. HenceR is Π−Noetherian.

One can also prove in a similar fashion that for any continous action of Π on A =

k[z1, z2, · · · , zn], the polynomial ring R = A[x1, x2, · · · ] is Π−Noetherian.

3.2. The Sym(N)−Noetherianity

Let Sym(N) act trivially on ring A and act on monomials in x1, x2, · · · by permutations.

We have the following result

Theorem 3.11 A[X[r]×N] is Sym(N)−Noetherian.

Proof. Each polynomial f ∈ A[X[r]×N] depends on only finitely many column indices. Thus

if π ∈ Π, there exists σ ∈ Sym(N such that σ.f = π.f . Indeed, if the largest column index
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increasing in f is m, then σ can be chosen to be the identity on all i > π(m). This implies

that every Sym(N)−stable ideal I is Π−stable and any A[X[r]×N] ∗Π generating set of I is

a A[X[r]×N] ∗ Sym(N) generating set.

When r = 1, this is the main result of [AH07].

However, if we consider the action of Sym(N) on R = A[XN× N× · · · × N︸ ︷︷ ︸
k factors

] by permuting

the indices simultaneously, then R is no longer Sym(N)−Noetherian for k ≥ 2. Indeed, if

we denote R(k) the ring A[XN×N×···×N] in k indices, then

xu1,··· ,uk,uk+1 7→ xu1,··· ,uk

defines the surjective A−algebra homomorphism πk : R(k+1) → R(k) with invariant kernel.

Hence if R(k+1) is Sym(N)−Noetherian, then so is R(k). Hence, it is enough to do for the

case k = 2. We state in the following proposition

Proposition 3.12 The polynomial ringR = A[XN×N] is not Sym(N)×Sym(N)−Noetherian.

Proof. It is enough to show a bad sequence of monomials inR with respect to the Sym(N)−divisibility

order. For this, consider the sequence of monomials ([AH07],[JW69]):

s3 = x(1,2)x(3,2)x(3,4)

s4 = x(1,2)x(3,2)x(4,3)x(4,5)

s5 = x(1,2)x(3,2)x(4,3)x(5,4)x(6,7)

...

sn = x(1,2)x(3,2)x(4,3) · · ·x(n,n−1)x(n,n+1)

...

For any n < m and any σ ∈ G, the monomial σsn does not divide sm. Otherwise, notice that

x(1,2)x(3,2) is the only pair of indeterminates which divides sn or sm and has form x(i,j)x(l,j).

Therefore σ(2) = 2, and either σ(1) = 1, σ(3) = 3 or σ(3) = 1, σ(1) = 3. But since 1 does

not appear as the second component j of a factor x(i,j) of sm, we have σ(1) = 1, σ(3) = 3.

Since x(4,3) is the only indeterminate dividing sn or sm of the form x(i,3), we get σ(4) = 4.

Since x if the only indeterminate dividing sn or sm of the form x(i,4), we get σ(5) = 5, etc.

So we get σ(i) = i for all i = 1, 2, · · · , n. But the only indeterminate dividing sm of the
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form x(n,j) is x(n,n−1), hence the factor σxn,n+1 = xn,σ(n+1) of σsn does not divide sm. This

shows that s3, s4, · · · is a bad sequence, as required.

However, if we let R≤d denote the Sym(N)−module of polynomials of degree at most d,

we do have the following result ([D09])

Lemma 3.13 The Sym(N)−module R≤d is Noetherian, i.e., every Sym(N)−submodule of

its is finitely generated.

If we let FSym(N) =
⋃
n Sym([n]) ⊆ Sym(N) be the finitary subgroup of Sym(N), and

if we let Rn = A[X[n]], and so Rn ⊆ Rm naturally becomes a subring of Rm for all n ≤ m,

and hence R = A[XN] =
⋃∞
n=1Rn. The group Sym[n] acts on Rn naturally by permuting

the indices. Furthermore, suppose that the natural embedding of Sym([n]) into Sym([m])

for n ≤ m is compatible with the embedding of rings Rn ⊆ Rm; that is , if σ ∈ Sym[n]

and σ̂ is the corresponding element in Sym[m], then σ̂|Rn = σ. Hence, we have the action

of FSym(N) on R which extends the action of each Sym[n] on Rn. Then R is FSym(N)-

Noetherian modulo the symmetric group. Before stating the main theorem, we introduce

some notions.

Definition 3.14 For m ≥ n, the m-symmetrization Lm(B) for a set B of elements of Rn

is the Sym([m])−invariant ideal of Rm given by

Lm(B) = 〈g : g ∈ B〉Rm∗Sym([m])

We consider the increasing chain I0 of ideals In ⊆ Rn :

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

simply called chains below. Of course, such chains will fail to stabilize since they are ideals

in larger and larger rings. However, it is possible for these ideals to stabilize ”up to the

action of the symmetric group”. We call a symmetrization invariant chain is one for which

Lm(In) ⊆ Im for all n ≤ m.

Definition 3.15 A symmetrization invariant chain of ideals stabilizes modulo the symmet-

ric group (or simply stabilizes) if there exists a positive integer N such that

Lm(In) = Im for all m ≥ n > N
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We do have the following result ([AH07]):

Theorem 3.16 Every symmetrization invariant chain stabilizes modulo the symmetric

group.
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Chapter 4

Rank-1 tensors and Substitution

monoids

4.1. Substitution monoids

Definition 4.1 We define the substitution monoid Subs(N) as follows : its elements are

infinite sequences σ = (σ1, σ2, · · · ) of disjoint non-empty finite subsets of N. The product of

two such sequences σ and τ is defined by

(σ ◦ τ)i =
⋃
j∈τi

σj

It makes Subs(N) a monoid :

• The identity is the infinite sequence 1 = ({1}, {2}, · · · ).

• The associativity : for σ, τ, γ ∈ Subs(N), we have :

(σ ◦ (τ ◦ γ))i =
⋃

j∈(τ◦γ)i

σj =
⋃

j∈∪k∈γiτk

σj

=
⋃
k∈γi

⋃
j∈τk

σj =
⋃
k∈γi

(σ ◦ τ)k

= ((σ ◦ τ) ◦ γ)i

Let Subs<(N) be the submonoid of all such sequences (σ1, σ2, · · · ) satisfying

max(σ1) < max(σ2) < · · ·
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Note that Inc(N) is the submonoid of Subs<(N) consisting of sequences ({i1}, {i2}, · · · ) of

singletons with i1 < i2 < · · · .

4.2. Rank-1 tensors

4.2.1. The orginial rank−1 tensors problem

For a positive integer n, denote (k2)n = k2 × k2 × · · · × k2︸ ︷︷ ︸
n factors

and (k2)⊗n = k2 ⊗ k2 ⊗ · · · ⊗ k2︸ ︷︷ ︸
n factors

,

where k is an algebraically closed field. We consider the following multi-linear mapping :

ϕ : (k2)n → (k2)⊗n((
xi0
xi1

))
i∈[n]

7→
⊗
i∈[n]

(
xi0
xi1

)

Choose the standard basis {ei0, ei1} for the i th copy of k2, so every element
(
xi0
xi1

)
∈ k2 can

be written as

xi0ei0 + xi1ei1

Hence

ϕ

((
xi0
xi1

)
i∈[n]

)
=
⊗
i∈[n]

(xi0 + xi1ei)

Let α be a map defined as follows

α : k × kn → (k2)n

(t, x0, x1, · · · , xn−1) 7→
((

t

tx0

)
,

(
1
x1

)
, · · · ,

(
1

xn−1

))
We would like to find the image of the map ψ = ϕ ◦ α : k × kn → (k2)⊗n. We have

ψ(t, x0, x1, · · · , xn−1) =
(
t

tx0

)
⊗
(

1
x1

)
⊗ · · · ⊗

(
1

xn−1

)
= (te10 + tx0e11)⊗ (e20 + x1e21)⊗ · · · ⊗ (en0 + xn−1en1)

= t
∑

sj∈{0,1}

( ∏
i:si=1

xi

)
es1 ⊗ es2 ⊗ · · · ⊗ esn

If we let zI , I ⊆ [n], be coordinate for (k2)⊗n related to es1 ⊗ es2 ⊗ · · · ⊗ esn where si = 1 if

i ∈ I and si = 0 if i /∈ I. We should take the ideal generated by all elements of the form

zI − t
∏
i∈I

xi
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Then by elimination theory, the intersection I(Y ) of this ideal with the ring k[(zI)I⊆[n]] is

exactly the ideal of the image Y = Im(ϕ).

It is known that the ideal I(Y ) is generated by certain 2× 2−minors. We will approach

this problem by another setting, namely, by substitution method which is presented in the

following section.

4.2.2. The substitution approach

We rephrase our settings as follows :

Let A be the infinite dimensional affine space (over a field K) whose coordinates are zI ,

where I runs over the finite subsets of N. Consider the map as follows

φ : A1 × AN → A

(t, (xi)i∈N) 7→ (zI)I = (t
∏
i∈I

xi)I

Subs(N) acts on AN by σXi :=
∏
j∈σi Xj . It is an action since :

• 1.Xi =
∏
j∈{i}Xj = Xi.

• For σ, τ ∈ Subs(N), we have

(σ ◦ τ)Xi =
∏

j∈(σ◦τ)i

Xj =
∏

j∈∪k∈τiσk

Xj

=
∏
k∈τi

∏
j∈σk

Xj =
∏
k∈τi

(σXk)

= σ(
∏
k∈τi

Xk) = σ(τXi)

And Subs(N) acts on A by σZI = Z∪i∈Iσi . Again, it is clearly an action since :

• 1.ZI = Z∪i∈I1i = Z∪i∈I{i} = ZI .

• For σ, τ ∈ Subs(N), we have

(σ ◦ τ)ZI = Z∪i∈I(σ◦τ)i = Z∪i∈I(∪j∈τiσj)

= Z∪(j∈∪i∈Iτi)σj
= σ(Z∪i∈Iτi) = σ(τZI)
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Moreover, the map φ is Subs(N)−equivariant, since for σ ∈ Subs(N), (λ, (xi)i∈N) ∈ A1×AN,

we have :

φ(σ(λ, (xi)i∈N)) = φ(λ, (σxi)i∈N) = φ(λ, (
∏
j∈σi

xj))

= (λ
∏
i∈I

∏
j∈σi

xj)I = σ(λ
∏
i∈I

xi)I

= σφ(λ, (xi)i∈N)

Let Y be the scheme-theoretic image of the map φ, and I(Y ) be the vanishing ideal

on Y . Then I(Y ) is Subs<(N)-stable. We would like to know the ideal of the image of

φ by computing the Subs<(N)−Gröbner basis of the ideal I(Y ) in the polynomial ring

S = K[t;x1, x2, · · · ; (zJ)J⊆N], where J runs over all finite subsets of the natural numbers,

generated by all elements of the form

zJ − t
∏
i∈J

xi

with respect to the lexicographic order satisfying t > xi > zJ for all i and J and xi+1 > xi

and zJ > zJ′ if J is lexicographically larger than J ′. And we will use this Gröbner basis to

compute the intersection of I(Y ) with the polynomial ring K[(zJ)J⊆N]. And doing this way

will give us a new proof of the result in the section 4.2.1. This intersection is known as the

ideal of all polynomials vanishing on all infinite rank-1 tensors.

We follow the method in [BD10] to compute an equivariant Gröbner basis for I(Y ) as

follows :

• We compute the Gröbner basis for ideal I(Y ) in each number n of variables xi, i ∈ [n]

from 0, 1, 2, · · · .

• In each step, we compute primitive generators which are those not obtained by applying

the action of Subs<(N) to generators from previous steps.

• If we are lucky, it will be stable after finitely many steps, that means from then on,

no primitive generators appears.

Luckily, our computations with Singular ([GPS05]) stop after the fourth step. We get 18

primitive generators as follows :
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At n = 0, there is one generator : t− z∅.

0 → 1 : There is one primitive generator, namely x0z∅ − z{0}.

1 → 2 : There are 3 primitive generators :

• [1→ 2][1] := z{0,1}z∅ − z{1}z{0}.

• [1→ 2][2] := x0z{1} − z{0,1}.

• [1→ 2][3] := x1z{0} − z{0,1}.

2 → 3 : There are 5 primitive generators :

• [2→ 3][1] := z{0,2}z{1} − z{2}z{0,1}.

• [2→ 3][2] := z{1,2}z{0} − z{2}z{0,1}.

• [2→ 3][3] := z{0,1,2}z{0} − z{0,2}z{0,1}.

• [2→ 3][4] := z{0,1,2}z{1} − z{1,2}z{0,1}.

• [2→ 3][5] := z{0,1,2}z{2} − z{1,2}z{0,2}.

3 → 4 : There are 8 primitive generators :

• [3→ 4][1] := z{0,1,3}z{0,2} − z{0,3}z{0,1,2}.

• [3→ 4][2] := z{0,1,3}z{1,2} − z{1,3}z{0,1,2}.

• [3→ 4][3] := z{0,2,3}z{0,1} − z{0,3}z{0,1,2}.

• [3→ 4][4] := z{0,2,3}z{1,2} − z{2,3}z{0,1,2}.

• [3→ 4][5] := z{0,2,3}z{1,3} − z{2,3}z{0,1,3}.

• [3→ 4][6] := z{1,2,3}z{0,1} − z{1,3}z{0,1,2}.

• [3→ 4][7] := z{1,2,3}z{0,2} − z{2,3}z{0,1,2}.

• [3→ 4][8] := z{1,2,3}z{0,3} − z{2,3}z{0,1,3}.
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Set B to be the set of these 18 generators. We will prove that B is the equivariant

Gröbner basis for the ideal I(Y ).

Firstly, we observe that the Subs<(N)-orbits of elements in B give rise to the following

reduction laws :

• If one has a monomial of the form xizJ with i /∈ J , then we can shift it to zJ∪{i}. This

comes from elements [1→ 2][2] and [1→ 2][3].

• If one has a monomial of the form zI∪JzK with I <lex J, (I ∪ J) ∩ K = ∅, then we

can shift I to the second index, that means we shift zI∪JzK to zJzI∪K , provided that

I ∪K <lex J . This is justified by elements [1→ 2][1], [2→ 3][1], [2→ 3][2].

• If one has a monomial of the form zI∪J∪KzJ∪L, then we shift the smaller one I to the

second index, that means we transform zI∪J∪KzJ∪L into zJ∪KzI∪J∪L. This is justified

by the remaining elements of B.

In particular, if we consider J = ∅ in the third case, then we have the second case. Hence,

we have only two ways of reduction laws.

Now, we consider the polynomial of the form zSzT , where S >lex T in general :

• If S ∩ T = ∅, then zSzT can be reduced via B unless S has only one element (by the

second rule).

• If S ∩ T = J 6= ∅, then it can be reduced by the third rule via B unless S \ T has only

one element.

Hence the monomial zSzT where S >lex T is not reduced if and only if S \ T has only

one element. So, standard monomials are of the form zS1zS2 · · · zSk where S1 ≥lex S2 ≥lex

· · · ≥lex Sk, and |Si \ Sj | = 1 for all i > j such that Si >lex Sj .

We have the following lemma :

Lemma 4.2 Let P a finite multi-set in N, and let k ≥ max{multiplicity of xi : xi ∈ P }.

Then there is a unique standard monomial (relative ti Subs<(N)B) zS1zS2 · · · zSk satisfying
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∪ki=1Si = P .

For example, if P = {0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3}, then we have a unique standard

monomial for k = 5 :

z321z321z32z310z31 = z2
321z32z310z31

If we take k = 7 and the same multi-set P , we have also a unique standard monomial as

follows :

z32z31z31z3z3z210z21 = z32z
2
31z

2
3z210z21

Proof. So for the chosen k, we need k variables z appearing in our monomial zS1zS2 · · · zSk .

Assume that we index elements in P by x1 > x2 > · · · > xm with ni is the multiplicity of

xi. We create our monomial by the following steps :

• Step 1 : we distribute the copies of x1 over S1, S2, · · · , Sn1 beginning from the left.

So, we have two blocks : block 1 is S1 = {x1}, S2 = {x1}, · · · , Sn1 = {x1} and block 2

is Sn1+1 = · · · = Sk = ∅.

• Step 2 : we distribute the x2 into the second block, from the left to the right. There

are three possibilities :

– Case 1 : k − n1 > n2, hence we divide the block 2 into 2 blocks, where the first

block includes Si’s containing x2, and the second block includes empty Sj ’s. So

we have now three blocks.

– Case 2 : k − n1 = n2 we distribute all the x2’s into block 2.

– Case 3 : k− n1 < n2, hence after distributing every x2 into the second block, we

have some x2’s left. So we distribute them into the first block from the left to the

right. At this time, we have 3 blocks as well : first one includes Sj ’s containing

x1, x2, the second one includes Sj ’s containing x1, and the last one includes Sj ’s

containing x2.

• Step 3 : So now we continue distributing x3 starting at the last block first, from the left

to the right. If there are some remained, we distribute them into the next rightmost

block.

• We stop after step m corresponding to the distribution of xm into our blocks.
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We have to follow the procedure above to guarantee the rule of standard monomial that

|Si \ Sj | = 1 for all i > j. For example, if in the second step, we distribute the x2’s into the

first blocks from the left to the right, then |S1 \Sm| = 2 at that time, which does not satisfy

the condition of a standard monomial. And this makes our monomial unique.

To illustrate for the algorithm above, we take the previous example : suppose that we

consider the multi-set P = {0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3}, with multiplicity of 3 is 5, and we

want to arrange them into k = 7 blocks, we follow the algorithm as the following :

• Firstly, we arrange 3 in each box from the left to the right, i.e., we have

| 3 | 3 | 3 | 3 | 3 || . | . |

• Then now, we have two blocks, one contains 3 in each box, and one is empty in each

box. We arrange 2 into the second block first. Since multiplicity of 2 is 3, then we

return some remain 2 into the first block :

| 32 || 3 | 3 | 3 | 3 || 2 | 2 |

• So now, we have three blocks. We continue as follows :

| 32 || 31 | 31 || 3 | 3 || 21 | 21 |

• We have now 4 blocks. The last step :

| 32 || 31 | 31 || 3 | 3 || 210 || 21 |

Hence, finally, we get the element

z32z31z31z3z3z210z21 = z32z
2
31z

2
3z210z21

With the result of this lemma, we see that two monomials ze1S1
ze2S2
· · · zekSk and zr1T1

zr2T2
· · · zrmTm

with
⋃k
i=1 eiSi =

⋃m
j=1 rjTj , can be reduced to a unique stardard monomial. Hence, their

difference will reduce to zero.

In particular, for all b0, b1 ∈ B, σ, π ∈ Sub<(N), the S−polynomial S(σb0, πb1) is the

difference of two polynomials ze1S1
ze2S2
· · · zekSk and zr1T1

zr2T2
· · · zrmTm with

⋃k
i=1 eiSi =

⋃m
j=1 rjTj .

Since they reduce to a same standard monomial, hence their difference reduces to zero,

which means that S−polynomial S(σb0, πb1) reduces to zero by B. Therefore, by theorem

2.29, we have proved that :
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Theorem 4.3 B is an equivariant Gröbner basis for the ideal I(Y ).

We could compute an equivariant Gröbner basis for the ideal I(Y ), since Subs<(N) has

the following properties :

• The natural lexicographic order on (monomials in) the zI is compatible with this

submonoid, and so is the lexicographic order on (monomials in) the xi, and hence so

is a natural elimination order.

• For any two monomials m,m′ in the xi and zI , we have gcd(σm, σm′) = σgcd(m,m′),

which we need for the Buchberger criterion (additional condition EGB1).

Moreover, we have the following lemma (additional condition EGB2), which ensures that

for any pair of polynomials, only finitely many S−polynomials need to be considered, so

that we could in principal run the equivariant Buchberger algorithm.

Lemma 4.4 For any two polynomials p and q in k[t, (xi), (zI)], the set Subs<(N)p ×

Subs<(N)q can be written as the union of a finite number of Subs<(N)−orbits, relative to

the diagonal action of Subs<(N).

Proof. Let σ′, τ ′ ∈ Subs<(N) and let m and n be the largest indices appearing in a variable

of p and a variable of q, respectively. Then σ′p and τ ′q depend only on the trunstitutions

σ := (σ′1, · · · , σ′m) and τ := (τ ′1, · · · , τ ′n), respectively. We will show that there are trunsti-

tutions π, τ ′′, σ′′ ∈ Subs<(N) such that π ◦ τ ′′ = τ and π ◦σ′′ = σ, and that the pair (τ ′′, σ′′)

only takes finitely many values as τ and σ vary.

We have that σ gives rise to a natural partition of S :=
⋃
i σi
⋃
j τj into the parts

σ1, σ2, · · · , σm, S \∪iσi and similarly for τ . Let π1, · · · , πk be the parts of the coarsest com-

mon refinement of these partitions, with maxπ1 < maxπ2 < · · · < maxπk. Now for every

i ∈ [m] the set σi equals ∪r∈σi”πr for some unique, non-empty subset σ′′i of [k]; define the

subsets τ ′′j similarly.

We claim that σ′′ := (σ′′1 , · · · , σ′′m) and τ ′′ := (τ ′′1 , · · · , τ ′′n ) are trunstitutions. Indeed,

the sets σ′′i are disjoint by construction, and maxσ′′i is the unique r for which πr contains

maxσi; infact, necessarily as its maximum maxπr. This implies that maxσ′′i < maxσ′′i+1,
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since maxσi < maxσi+1. The same argument applies for τ .

Furthermore, by construction π := (π1, · · · , πk) is also a trunstitution. And we have

(π ◦ σ′′)i = ∪j∈σ′′i πj = σi

Hence π ◦ σ′′ = σ. Similarly, we have π ◦ τ ′′ = τ .

Since there are m+ 1 parts for partition of σ and n+ 1 parts for partition of τ , hence k

must be bounded by (m+ 1)(n+ 1), and we have σ′′i , τ
′′
j ⊆ [k]. Hence, there are only finitely

many values for (σ′′, τ ′′), which completes our proof.
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Chapter 5

Approaches to Rank-2 tensors

For now, we consider the mapping

ϕ : (k × kN)× (k × kN) → A

((t, (xi)i∈N), (s, (yi)i∈N)) 7→ (zI)I⊂N

where

zI := t
∏
i∈I

xi + s
∏
i∈I

yi

for finite subset I ⊂ N. We would like to know the image Imϕ, so we need to compute the

ideal J(Y ) generated by elements in the polynomial ring k[t, s, (xi)i∈N, (yi)i∈N, (zI)I⊂N]

zI − t
∏
i∈I

xi − s
∏
i∈I

yi

The intersection I(Y ) of the ideal J(Y ) with the polynomial ring k[(zI)I⊂N] is exactly the

ideal of the image Imϕ.

We have some approaches as follows

5.1. The substitution monoid approach

Let Subs<(N) act on k[t, s, (xi)i∈N, (yi)i∈N, (zI)I⊂N] as in the chapter 4, i.e., for every

σ = (σ1, σ2, · · · ) ∈ Subs<(N), we have

σ.t = t, σ.s = s
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σ.xi =
∏
j∈σi

xj , σ.yk =
∏
i∈σk

yi, and σ.zI = z∪i∈Iσi

This makes J(Y ) a Subs<(N)−stable ideal. Hence, we may apply the method we did in

chapter 4 to compute an equivariant Gröbner basis for the ideal J(Y ). However, it may take

a lot of time for running our program by computer.

5.2. The highest weight vector approach

By reductive group theory, it is sufficient to know the highest weight vectors in the

ideal J(Y ). Indeed, these highest weight vectors generate J(Y ) as a G−module, where

G =
⋃
nGLn.

Definition 5.1 Denote D = {Di, i ∈ N} the set of all differentials in which any one Di of

them acts on the polynomial ring k[t, s, (xi)i∈N, (yi)i∈N, (zI)I⊂N] as follows :

Di.t = Di.z = 0

Dixi = Diyi = 1, and Dixj = Diyj = 0 for i 6= j

DizI =

 zI\{i} If i ∈ I

0 Otherwise

The set D with the composition operation becomes a (commutative monoid).

Definition 5.2 (Highest weight vector) With the action of D on the polynomial ring

R = k[t, s, (xi)i∈N, (yi)i∈N, (zI)I⊂N], the highest weight vector is element α ∈ R satisfying

Di.α = 0.

Example 5.3 In the chapter 4, the highest weight vectors in the set B are t− z∅, x0z∅ −

z{0}, z{0,1}z∅ − z{1}z{0}, x1z{0} − z{0,1} and z{0,1,2}z{0} − z{0,2}z{0,1}.

We have a natural embedding

i : k × kN × k ↪→ k × kN × k × kN

(t, (xi)i∈N, s) 7→ (t, (xi)i∈N, s, 0)
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And consider the following mapping

φ : k × kN × k → A

(t, (xi)i∈N, s) 7→ (zI)I⊂N

where zI is determined by

zI =

 t
∏
i∈I xi If I 6= ∅

t+ s If I = ∅

We have the following result

Lemma 5.4 The D−invariants in the ideal I(Im(φ)) are exactly the D−invariants in the

ideal I(Imϕ).

An equivariant Gröbner basis B for the ideal I = I(Im(ϕ)) can be computed exactly

as in chapter 4. However, there is one problem in this approach : the set of highest weight

vectors Ihw = 〈B〉hw is different from 〈Bhw〉. At present, we do not know how to efficiently

compute (generators of) Ihw.
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Chapter 6

Conclusion

In this chapter, we will give a short summary on what we have done in this thesis and

some remaining open questions :

• First, we investigate the Noetherianity of the polynomial ring R = A[x1, x2, · · · ] un-

der the Sym(N)−action and Π−action in chapter 3. Moreover, we give a number of

examples in which R is Π−Noetherian and not Π−Noetherian. In particular, we give

a classification of continuous actions of Π on A = k[z] and prove the fact that for each

of them the ring R = A[x1, x2, · · · ] is Π−Noetherian.

However, we still have one main problem as follows :

Question 1 Does there exist a continuous actions of Π on any A such that A is

Π−Noetherian but the polynomial ring R = A[x1, x2, · · · ] is NOT Π−Noetherian.

• Second, we give a computational proof for the rank-1 tensors problem by computing

the equivariant Gröbner basis in chapter 4. This method might work for the rank-2

tensors problem as described in chapter 5. However, we need more time for using such

method in computations since it seems not to stop in a short time for some first small

number of variables.

Moreover, we give an idea to approach the rank−2 tensors problem by looking for

the highest weight vectors in the ideal I(Y ). But we meet one problem (described in

chapter 5) and I also have not enough time to investigate the SL2−theory to deal with

this problem.
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Question 2 As we said in chapter 5, we would like to start with the Subs<(N)−stable

ideal in the polynomial ring k[t, s, (xi)i∈N, (zI)I⊂N] generated by the polynomials

zI −

(
t
∏
i∈I

xi + s
∏
i∈I

yi

)

and then we take the intersection with the ring k[(zI)I⊂N]. Could we obtain the 3 ×

3−minors result as the 2×2−minors result in chapter 4 ?. Precisely, we hope that the

result is generated by all polynomials of the form∑
π∈S3

sgn(π )zI1∪Jπ(1)zI2∪Jπ(2)zI3∪Jπ(3)

for the subsets I1, I2, I3, J1, J2, J3 ⊂ N such that (I1 ∪ I2 ∪ I3) ∩ (J1 ∪ J2 ∪ J3) = ∅.

In fact, this is the famous GSS (Garcia-Stillman-Sturmfels) Conjecture ([GSS05]) .

In hope in the near future, we may solve this question with our two potential methods

as setting in chapter 5.
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