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Introduction

In the last century, information security became of the utmost importance for

human society. Initially it was used for military scope, but with the incoming of

personal computers and with the increasing dependence on information technology

for commercial and private use, also the general public needed to protect electronic

data. Thus cryptography gained popularity.

The symmetric systems, in which the two parties who want to communicate

share a common secret key, are the oldest ones. They could be used in a not large

organism where the secret keys could be shared without many issues. But with

the advent of Internet these systems will no longer be usable for every context.

In 1976 Diffie and Hellman proposed public-key systems. They are based on

the so called one-way functions. Such a function is easy to compute, but the

inverse cannot be computed in an acceptable time window. The ”hard” mathe-

matics problem, as the factorization of the product of two large prime and the

Discrete Logarithm Problem, leads to construct a lot of one-way functions. Nowa-

days there are subexponential algorithms that can attack these ”hard” problems

over a finite field. So that key size of about 2048 bits are required in order to keep

secure information.

In 1985 Koblitz and Miller proposed independently to use elliptic curves and

their group law instead of finite fields. Nowadays a good cryptography system

based on elliptic curve is exponential in the security parameters and we can use

much smaller keys. This is useful, for example, in the availment of small rigid

supports like smart cards.

The introduction of elliptic curves in the realm of cryptography pushed many

people to study possible applications of other curves and of abelian varieties in

general.

In this thesis we give a review on the mathematical background of algebraic

curve, in particular we explain the connection between a curve and its Jacobian,

which is an Abelian variety. So that for each curve we can define an addition law

on its Jacobian, and this is useful for computer applications.

After that, in the third chapter, we give the explicit construction of the ad-

dition law on elliptic curves in Weierstrass, Huff and Edwards form. The first

is the standard form and the most studied in the literature; the second one was

introduced by Huff in 1948 to study diophantine problems; the third one has the

faster algorithms, it is one of the most studied models in these last years and it

found a lot of application.
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In the fourth chapter we present the results needed for the computation of the

group law on hyperelliptic curves. We give the definition of Mumford representa-

tion for a semi-reduced divisor, that is in short an ideal representation, and the

Cantor algorithms for the addition and reduction of a divisor.

In chapter five we describe some example of addition on Jacobians of non-

hyperelliptic curves. In particular superelliptic curves, that are triple cover of the

projective line, are a first generalization of the addition on hyperelliptic curve;

and we describe also the general case of non hyperelliptic curves of genus 3.

After these subcases we show how to compute the addition for general curves.

This last argument use an algorithm for the computation of a basis of the Riemann-

Roch space of a divisor.
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Chapter 1

Algebraic curves and their

Jacobian

The aim of this chapter is to introduce the basic definitions and the results about

algebraic curves. We will mainly refer to the books of Fulton [Ful69], Milne

[Mil91], and Moreno [Mor93].

For all the thesis we denote by k an arbitrary perfect field as, for example,

C,Q,Fq.

1.1 Curves

In the affine space An(k), we define the Zarisky topology by its open basis

{Df (k) | f ∈ k[x1, · · · , xn]},

where Df (k) = {P ∈ An(k) | f(P ) 6= 0}.
The closed subsets are given by

VI = {P ∈ An(k) | f(P ) = 0 ∀f ∈ I}

for any ideal I of k[x1, · · · , xn]

An affine variety is a closed irreducible subset of the affine space An.

For the projective space Pn(k) we define as well the Zarisky topology by its

open basis

{Df (k) | f ∈ k[X0, X1, · · · , Xn]h},

where Df (k) = {P ∈ Pn(k) | f(P ) 6= 0} and k[X0, X1, · · · , Xn]h is the set of

homogeneous polynomial in n+ 1 variables.

The closed subsets are given by VI = {P ∈ Pn(k) | f(P ) = 0 ∀f ∈ I}, where

I is an homogeneous ideal in k[X0, X1, · · · , Xn] different from 〈X0, · · · , Xn〉.
A projective variety is a closed irreducible subset of the projective space.

A subvariety of a variety is a closed irreducible subset in the induced topology.

The dimension of a variety V is defined to be the supremum on the lengths

of chains S0 ⊃ S1 ⊃ · · · ⊃ Sn of distinct irreducible closed subvariety of V . A

variety is called curve if it has dimension 1.
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In particular, an affine plane curve is the set of its k-rational points

C := {(X,Y ) ∈ A2(k) | f(X,Y ) = 0}

for a given f ∈ k[X,Y ].

We say that an affine plane curve is defined over k if f ∈ k[X,Y ] and we call

k-rational points of the curve C the elements in {(X,Y ) ∈ A2(k) | f(X,Y ) = 0}.
We require that f is absolutely irreducible (i.e. which remains irreducible over

any finite extension of k). This condition ensures that the curve is connected and,

of course, irreducible. The degree of C is the degree of the polynomial f .

In a similar way we define the projective plane curve as the set

C := {[X0, X1, X2] ∈ P2(k) | f(X0, X1, X2) = 0}

for a given f ∈ k[X0, X1, X2]h. It is defined over k if f ∈ k[X0, X1, X2]h and the

set of its k-rational points is {[X0, X1, X2] ∈ P2(k) | f(X0, X1, X2) = 0}.
Let’s introduce the field of rational functions k(C ) defined by the quotient

field of

k[C ] := k[X1, · · · , Xn]/I.

Consider I prime, hence C irreducible, then we have that k[C ] is a unique fac-

torization domain. We get an isomorphism between k(C ) and the subfield of

elements of degree 0 in the quotient field of k[C ]h (the set of homogenueous poly-

nomials), namely every element φ ∈ k(C ) can be written as f/g, where f, g are

homogeneous polynomials with the same degree. Indeed the homogenization

h : k(C )→ Q0(k[C ]h)

and the affinization

a : Q0(k[C ]h)→ k(C ),

defined by

h(φ) = Xdeg φ
0 φ(

X1

X0
, · · · , Xn

X0
),

with deg φ = deg f1 − deg f0 if φ = f1/f0, and

a(ψ(X0, · · · , Xn)) = ψ(1, X1, · · · , Xn),

are isomorphisms of fields, one inverse of the other.

If Σ = k(ξ, ρ), with ξ transcendent over k and ρ algebraic over k(ξ), is a field of

trascendent degree 1 and f is a minimal polynomial of Σ over k, i.e. the minimal

polynomial in k[X,Y ] such that f(ξ, ρ) = 0. Then the curve C defined by f has

Σ as its field of rational function. Clearly this construction is equivalent to the

previous, indeed k(C ) ∼= k(X)[Y ]/(f) ∼= Σ.
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1.2 Points

From now on we will consider only curves.

Let’s see now the definition of closed points on a curve and their corresponding

valuation. Recall that a valuation on a field K is a non trivial homomorphism

ν : K× → Z satisfying:

ν(xy) = ν(x) + ν(y),

ν(x+ y) ≥ min(ν(x), ν(y)).

The set Rν = {x ∈ K× | ν(x) ≥ 0} ∪ {0} forms a discrete valuation ring (DVR)

and mν = {x ∈ Rν | ν(x) > 0} is its maximal ideal. They are uniquely determined

by the equivalence class of the valuation (namely ν ∼ ν ′ if the topology induced by

the metrics d(x, y) = cν(x−y) and d′(x, y) = cν
′(x−y), where c ∈ R>1, is equivalent).

We denote by kν the residue field Rν/mν . Recall also that the following are

equivalent if Rν has dimension 1:

(i) Rν is a DVR,

(ii) Rν is integrally closed,

(iii) mν is a principal ideal,

(iv) dimkν (m/m2) = 1,

(v) every non zero ideal is a power of mν ,

(vi) there exists an element t, called the local uniforming parameter, such that

every non zero ideal is of the form (ti), with i > 0.

If K = k(C ) for some curve C , we call closed point of the curve the couple

Pν = (Rν ,mν). We define the degree of a closed point to be deg(Pν) = [kν , k].

Remark.

i) If k is algebraically closed, then all the closed points have degree 1.

ii) We are interested in closed points of degree 1, they are in correspondence with

the k-rational point (a, b) such that f(a, b) = 0. Indeed we can associated to

(a, b) the ring

R = {φ ∈ k|φ = g/h, h(a, b) = 0}

and its ideal

m = {φ ∈ R|φ = g/h, g(a, b) = 0}.

If (a, b) is not a singular point (i.e. if the partial derivatives respect to x and

y are not both 0 in (a, b)), then the pair (R,m) is a DVR and corresponds to

(a, b). Conversely, if Pν = (Rν ,mν) is a closed point of degree 1, then mν is

the ideal generated by (x− a, y − b) for some (a, b) such that f(a, b) = 0. If

(a, b) is a singular point there may be several closed points corresponding to

it.

When it will be strictly necessary we will recall that we are working with

closed points.
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iii) There exists d = deg(Pν) points P1, · · · , Pd over C (k) lying over Pν , i.e. the

corresponding valuation rings in k(C ) are the same of the one of Pν . It is

also true that νP1 = νPi if and only if Pi ∈ Gk · P1, where Gk = Gal(k/k).

Then we have that the order of the orbit Gk · P1 equals d.

iv) Fix a closed point Pν = (Rν ,mν). For an f ∈ Rν , we can think at this

function modulo ml
ν , then we get

f ≡
l−1∑
i=0

ait
i (mod ml

ν),

with unique elements ai ∈ kν and t is the uniforming parameter. Hence we

can pass to the limit and consider f in the completion R̂ν of Rν . The ring

R̂ν is isomorphic to the ring of power series kν [[t]]. The field of quotient of

kν [[t]] is denoted by kν((t)) and it contains k(C ) as a dense subset.

Let now φ ∈ k(C ) be a rational function. For every point P , corresponding to

a closed point Pν , we can write φ as a formal power series:

φ =
∑
j

ajt
j

with aj ∈ kν and t the local uniforming parameter. We define the order of φ at

P by

ordP (φ) = n

where n is the smallest exponent of a power of t which appears with coefficient

an 6= 0 in the power series expansion of φ.

1.3 Intersection of curves

Let C and D be two plane curves with no common components defined over an

algebraic closed field k. Let f and g be the corresponding homogeneous polyno-

mials. Suppose that the curves do not pass through the point O = (0, 0, 1) and

that each line passing through O contains at most one point of intersection of C

and D . Let h ∈ k[X0, X1] be the resultant of f and g respect the variable X2.

For a point P = (a, b, c) ∈ C ∩ D we define the intersection multiplicity of C and

D at P to be

mP (C ,D) = ord(a,b)h(X0, X1).

Theorem 1.3.1 (Bézout). Let C and D be two plane projective curves defined

on an algebraically closed field with no common components, then∑
P

mP (C ,D) = deg C · deg D .

Proof. See [Ful69].
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1.4 Maps

Let C and D be two subvarieties of Pn and Pm respectively. A rational map

F : C 99K D is defined in a open subset of C , and is is such that there exist

m+1 rational functions f0, f1, · · · , fm ∈ K(X0, X1, · · · , Xn) for which the equality

F (P ) = [f0(P ), f1(P ), · · · , fm(P )] holds. A rational map F is said to be birational

if it is injective in an open subset of D and it has a rational inverse. It is clear

that the composition of rational maps is still rational.

We can define the pullback operator

∗ : Ratk(C ,D)→ Homk(k(D),k(C ))

form the set of k-rational maps to the set of k-homomorphism of fileds. It is such

that F ∗(φ) = φ ◦ F with φ ∈ k(D). Moreover, it is a bijection and id∗C = idk(C ),

(F ◦G)∗ = G∗ ◦ F ∗.

k

C

��

F
//

φ◦F
::

D

��

φ

OO

k(C ) k(D)
F ∗oo

Theorem 1.4.1. Two curves are birationally equivalent if and only if there exists

a k-algebra isomorphism between the corresponding function fields.

Proof. See [Ful69] and [Wal50] for algebraically closed field or [Mor93] for non-

algebraically closed field.

We define the degree of a rational map F : C → D to be

deg(F ) = [k(C ) : F ∗(k(D))].

We have the following result.

Proposition-Definition 1.4.2. Each non constant rational map F : C 99K D

induces a surjective application from the (closed) points of C to the (closed) points

of D . For every point Q of D we can assign to every point P1, · · · , Pk in the in-

verse image a positive integer mPi(F ), called multiplicity of ramification, such

that
∑

imPiFdegPi = deg(F ) and t = t
mPi (F )

i , where t and ti are the local uni-

forming parameters of Q and Pi.

The points with multiplicity bigger than 1 are called points of ramification for

F and we can define the ramification of F in P to be ramP (F ) = mP (F ) − 1,

and the total ramification to be ram(F ) =
∑

P∈C ramP (F ) degP .
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1.5 Divisors

We introduce now the fundamental instrument for studying curves.

The group of divisors of the curve C is the free group generated by its (closed)

points. Let’s denote it by

Div(C ) = {D : D =
∑
P

dPP, dP ∈ Z, dP almost everywhere zero}

where dP := ordPD is called the order of P in D. We shall call support of D the

set {P : ordPD 6= 0}.
For D,D′ ∈ Div(C ) we shall say that D ≤ D′ if and only if ordPD ≤ ordPD′

∀ P ∈ C .

We call effective a divisor D such that D ≥ 0.

Lastly we define the degree of the divisor D to be

degD =
∑
P

ordPD degP.

and finally we denote with Div0(C ) the subgroup of divisors of degree 0.

Remark. Since every points in the orbit Gk · P , with P ∈ Ck, correspond to a

single closed point in Ck, then a divisor D over Ck can be viewed as divisor of C

if and only if it is fixed by every element in Gk, i.e. g · D = D for all g ∈ Gk, if

and only if for every point P ∈ Ck the points on the orbit Gk · P appears in D
with the same degree.

The divisor of a rational function φ ∈ k(C ) is called principal divisor and it

is given by

div(φ) =
∑
P

ordP (φ)P.

We have deg(div(φ)) = 0, hence the set PDiv(C ) of all principal divisor is a

subgroup of Div0(C ).

From now on, if not specified, the support of a divisor will be composed only

of closed points of degree 1, i.e. k-rational points.

1.6 Differentials

Let K be a field lying over k. Consider the product K ⊗k K and the linear

application π : K ⊗k K → K, such that π(a⊗ b) = ab.

Observe that I = ker(π) is a linear combination of elements of the type 1⊗b−b⊗1,

indeed if
∑

i ai ⊗ bi ∈ ker(π), then∑
i

ai⊗bi =
∑
i

(ai⊗bi−aibi⊗1) =
∑
i

(ai⊗1)(1⊗bi−bi⊗1) =
∑
i

ai(1⊗bi−bi⊗1).

Define now the space of differential of K to be

Ωk(K) = I/I2.
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The set Ωk(K) is a k-vector space and a K-vector space.

This space is equipped with a k-linear map

d : K → Ωk(K)

defined by d(a) = [1⊗ a− a⊗ 1]. The following holds:

(i) d(k) = 0 for every k ∈ k
(ii) d(ab) = ad(b) + bd(a) (Leibniz rule)

(iii) if b ∈ K×, then d(1b ) = −d(b)
b2

(iv) for f ∈ k[X] we have d(f(X)) =
∑

i
∂f
∂Xi

(X)d(Xi).

In our case let K = k(C ) and define Ω(C ) = Ωk(k(C )), it is called differential

space of the curve C .

The field k(C ) has trascendental degree 1 over k, then every two element

φ, ψ ∈ k(C ) are algebraically dependent, so there exists a polynomial g(x, y) such

that g(φ, ψ) = 0. We have

gx(φ, ψ)dφ+ gy(φ, ψ)dψ = 0,

dφ = −gy(φ, ψ)

gx(φ, ψ)
dψ,

where gx = ∂g
∂x .

Therefore every element dφ is a multiple (over k(C )) of a given non zero element.

It follows that Ω(C ) is a one dimensional vector space over k(C ).

As in the case of rational function we can define the divisor of a differential :

fix a point Pν , for every differential ω ∈ Ω(C ) we can write

ω =
∑
j

bjt
j−1dt;

define the order at Pν to be the smallest exponent n of a power of t which appears

with coefficient bn 6= 0 in the power series expansion of ω. And define also

div(ω) =
∑
P

ordP (ω)P

and W = {div(ω) | ω ∈ Ω(C )}
Since the dimension of Ω(C ) is 1, then the degree of a divisor of a differential

is always the same. This suggests to define the genus g of the curve to e the

integer such that

deg(ω) = 2g − 2.

1.7 Divisors under rational maps

Assume now that the field of constant of the function field k(C ) is k, it means

k ∩ k(C ) = k. Let F : C → D be a rational map and let Q be a point of D , we

can construct a divisor in C defined by

F ∗(Q) =
∑

P∈C , F (P )=Q

mP (F )P,

7



we can extend by linearity to the group of all divisors

F ∗ : Div(D)→ Div(C ).

We have deg(F ∗D) = deg(F )deg(D), hence F ∗ can be resticted to the application

F ∗ : Div0(D)→ Div0(C ). Moreover we can further restrict it to the subgroup of

principal divisors, indeed

F ∗(div(φ)) = div(F ∗φ).

For a canonical divisor, we observe that the function F induce a k-linear

application F ∗ : Ω(D)→ Ω(C ) that send d(ψ) in d(F ∗ψ). We have

div (F ∗ω) = F ∗ (div(ω)) +Ram(F ),

where Ram(F ) =
∑

P ramP (F )P . Passing on degrees we get

Theorem 1.7.1 (Hurwitz). Let F : C 99K D be a rational map. Let ω be a

differential in Ω(C ). Then

deg (div(F ∗ω)) = deg(F ) deg (div(ω)) + ram(F ).

Proof. See [Mor93] for finite field or [Ful69] for algebraically closed field.

1.8 Linear systems

Two divisors D,D′ are linearly equivalent (D ∼ D′) if there exists a rational

function φ such that D −D′ = div(φ). We denote by |D| the equivalence class of

D restricted on the effective divisors, namely

|D| = {E ∈ Div(C ) : E ≥ 0, E ∼ D},

and we shall call it complete linear system of D (it is empty if degD < 0).

We define the Riemann-Roch space as

L (D) = {φ ∈ k(C ) : div(φ) +D ≥ 0}.

There is a natural bijection P(L (D))↔ |D| that send χ to div(χ) +D.

We shall call linear system every projective subspace G of |D|, we use the

notation G ≤ |D|. The degree of G is the degree of every element in G, it

is denoted by deg(G); and the dimension of G is the dimension as projective

subspace, it is denoted by d(G).

In the same way, for the complete linear system |D|, we introduce

`(D) = dimkL (D), d(D) = dim|D|

hence d(D) = `(D)− 1.

We denote by B(D) the base locus of the divisor D that is by definition the

intersection of all effective divisors in the complete linear system |D|, in other

words it is the divisor such that B(D) ≤ E holds for every E ∈ |D|. We have

L (D) = L (D − B(D)). We say that a complete linear system is without base

points if B(D) = 0.

8



1.9 Riemann theorem, Riemann-Roch theorem

The following theorems are the fundamental results in the realm of curves and

their divisors. They give us a link between the degree and the dimension of a

complete linear system. These theorems will be often used in the whole text

without being mentioned. The reader can find the proof in [Ful69] and [Wal50]

for algebraically closed field, and in [Mor93] for finite field.

Theorem 1.9.1 (Riemann). For every divisor D we have

deg(D)− d(D) ≤ g.

Theorem 1.9.2 (Riemann-Roch). The gap in the Riemann theorem is given by

`(ω −D) for every ω ∈W . Hence

`(D) = deg(D) + 1− g + `(ω −D)

in other words

d(D) = deg(D)− g + `(ω −D).

We say that a divisor D is special if `(ω −D) > 0.

Remark. Using the Riemann-Roch theorem it is easy to prove that d(W ) = g−1.

1.10 Abelian varieties

In this section we introduce the notion of abelian variety, that is a projective curve

with a group law defined on its points. Abelian varieties are indeed very useful

for cryptographic application. We will have that a Jacobian curve is an abelian

variety.

An algebraic group D over a field k is an absolutely irreducible variety defined

over k together with:

i) the addition morphism

m : D ×D → D

ii) the inverse morphism

i : D → D ,

iii) and a neutral element

0 ∈ D

satisfying the usual group laws. We shall use the notations P ⊕Q := m(P,Q) and

	P := i(P ).

We can extend the group law in DL, for an extension field L/k, via the eval-

uating morphism defined over k. In particular the group law extends in a unique

way in Dk.

9



Lemma 1.10.1. Every algebraic group is nonsingular.

Proof. For any variety we can find an open set in which the variety is non singular.

By the translation isomorphism ta : P 7→ m(P, a) we have that every open subset

of D is nonsingular. Hence every algebraic group is automatically nonsingular.

A projective algebraic group A is called abelian variety.

Remark. We could define abelian varieties to be a complete connected algebraic

group. This implies the projectivity, but the proof is not immediate, and it is not

necessary in this context.

Theorem 1.10.2 (Rigidity). Let α : A ×B → C be a regular map, and assume

that A ,B,C are projective varieties. If there are three points a ∈ A , b ∈ B, c ∈ C

such that

α(A × {b}) = α({a} ×B) = {c},

then α(A ×B) = {c}.

Proof. See [Mil91].

Corollary 1.10.3. Every regular map α : A → B of abelian varieties is the

composite of a homomorphism with a translation

Proof. After a translation by −α(0) we can always assume that α(0) = 0. Let

φ : A ×A → B be the regular map given by φ(a1, a2) = α(a1+a2)−α(a1)−α(a2).

Then φ(A × 0) = φ(0×A ) = 0. This means that α is an isomorphism.

Corollary 1.10.4. The group law on an abelian variety is commutative.

Proof. A group is commutative if and only if the inverse map i is an homomor-

phism. By definition the inverse map of an abelian variety is a regular map, and

it send 0 to 0. We can conclude applying the precedent corollary.

We explain now what happen to the homomorphism group Homk(A ,B) under

base change. Let L/k be a field extension and let AL,BL be the abelian varieties

obtained by scalar extension. The Galois group GL = AutL
(
L
)

acts in a natural

way on Homk(A ,B). We have:

i) if L0 is the algebraic closure of k in L, then HomL(AL,BL) = HomL0(AL0 ,BL0),

ii) for any L contained in k we have HomL(AL,BL) = Homk(Ak,Bk)GL .

Proposition 1.10.5. Let φ ∈ Homk(A ,B).

i) Im(φ) is an abelian subvariety of B by restriction of the addition law,

ii) ker(φ) is a closed subset of A and it contains a maximal absolutely irreducible

subvariety Ker(φ)0 containing 0A , it is called the connected component of the

unity of Ker(φ),

iii) we have dim(Im(φ)) + dim(ker(φ)0) = dim(A ).

Proof. See [Mil91]
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1.11 Isogenies and [n]-torsion points

We define an isogeny to be a surjective morphism with finite kernel between two

abelian varieties A and B. In this case we say that A is isogenous to B. It is

an equivalence relation.

Theorem 1.11.1. For a morphism α : A → B of abelian varieties, the following

are equivalent:

i) α is an isogeny,

ii) dim A = dim B and α is surjective,

iii) dim A = dim B and ker(α) is finite.

Proof. See [Mil91] Proposition 7.1.

The degree of an isogeny α : A → B is the degree as a regular map, i.e.

[k(A ) : α∗(k(B))]. If α is separable, i.e. k(A )/α∗(k(B)) is a separable extension,

then α is unramified. If moreover k is algebraically closed, then every fibre has

exactly deg(α) points.

Let [n] : A → A , a 7→ na = a + · · · + a be the integer multiplication on A

Denote by A [n] the kernel of [n], its points are called n-torsion points.

Theorem 1.11.2. Let A be an abelian variety of dimension g. The integer

multiplication [n] is an isogeny of degree n2g. It is separable, hence it is unramified,

if k has characteristic 0 or is has characteristic p 6= 0 such that p - n. In these

case we have Ak[n] ' (Z/nZ)2g.

For n = ps we have Ak[ps] ' (Z/pstZ), with t ≤ g independent on s.

We call the integer t the p-rank of the abelian variety A . If t = g the variety is

called ordinary. If A is an elliptic curve, i.e. it is an abelian variety of dimension

1, it is called supersingular if t = 0. In general an abelian variety is called

supersingular if it is isogenous to a product of supersingular elliptic curves.

Proof. See [Mil91] or [MRM70]. We need to use ample divisors.

1.12 Jacobians

In this section we will describe the Jacobian of an algebraic curve. Theorem 1.12.1

will be very useful in the whole thesis, it gives us a way to represent a point of

the Jacobian. Unfortunately this representation is still not unique in general.

Let C be an (absolutely) irreducible curve over a field k. In an algebraic closed

field k we can define the Picard group

Pic0Ck
:= Div0(Ck)/PDiv(Ck).
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Let Gk be the Galois group AutK(K). It acts in a natural way on Pic0Ck
and we

define

Pic0C := (Pic0Ck
)Gk .

More generally, if L is a field extension of k inside k, we have Pic0CL
= (Pic0Ck

)GL .

We would like to construct an abelian variety J = Jac(C ) such that

JL = Pic0CL
.

Assume that C is a nonsingular, absolutely irreducible, projective curve of

genus g > 0. Assume also that it has a k-rational point at infinity P∞, and

suppose for simplicity that it is (0, 1, 0).

Theorem 1.12.1. For every k-rational divisor D of degree 0 there exists an ef-

fective k-rational divisor E of degree g such that E − gP∞ ∼ D, it is in the divisor

class of D.

Proof. Take D′ ∼ D. Write D′ = D1−D2, with D1,D2 effective divisors. Fix an m

such that m−deg(D2) > g. By Riemann-Roch theorem there exists a function f1
such that div(f1) +mP∞−D2 is effective. We can replace D′ by D′+ div(f1) and

assume that D′ = D − kP∞ with k = degD and D effective. If k ≤ g we proved

the theorem, otherwise we consider the divisor D−(k−g)P∞. It has degree bigger

than g, then there exists a function f such that D−(k−g)P∞+div(f) is effective,

therefore D−kP∞+div(f) ∼ D and it is equal to (D−(k−g)P∞+div(f))−gP∞
as required.

Remark. Suppose that g > n = [k(C ) : k(x)]. If E contains in its support points

at infinity then the divisor

E ′ − (∗)P∞ = E − {points at infinity in supp(E)} − (∗)P∞

is in the same class of E − gP∞. Now if E ′ contains all the points in the set

ΣP = {Pi | Pi = σiP, σi ∈ Gal(k(C )/k(x))}, then xPi = xP for each Pi, and

div(x− xP ) = ΣP − nP∞, hence

E ′ − (∗)P∞ ∼ (E ′ − ΣP )− (∗)P∞ = E ′′ − (∗)P∞.

Note that deg E ′′ ≤ deg E .

We call a divisor in the form E −(∗)P∞ reduced along P∞ if E does not contain

any sets ΣP and any points at infinity.

We construct the g-fold cartesian product C g as follow. Take Ca a (nonempty)

affine part of C , let (x1, · · · , xn) be the affine coordinates. Let Ca,i a copy of

Ca of coordinates (xi1, · · · , xin). The variety C g
a is define to be the cartesian

product of the Ca,i, hence it can be embedded in an affine space of coordinates

(x11, · · · , x1n, · · · , x
g
1, · · · , x

g
n). The projective variety C g is defined by glueing.
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Let Sg be the symmetric group acting on {1, · · · , g}. It acts in a natural

way on C g permuting the coordinates (x1, · · · , xg). Finally we have a projective

variety Sg \ C g.

For a field L between k and k let P be a point of Sg \ CL represented by

(P1, · · · , Pg). For every σ ∈ GL = Gal(k/L) we have σP = P, hence there exists

a permutation π ∈ Sg such that (σP1, · · · , σPg) = (Pπ(1), · · · , Pπ(g)). This mean

that the formal sum P1 + · · ·+ Pg is an effective divisor of degree g.

We get a map φ : Sg \ C g → Pic0CL
defined by

φL(P) = P1 + · · ·+ Pg − gP∞.

Finally we can define the structure of variety on JL = Pic0CL
.

Remark. The point P∞ = (P∞, · · · , P∞) is sent via φ to the neutral element of

the algebraic group J .
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Chapter 2

Classification

In this chapter we describe the curves according to the genus. We will consider

always curves with at least a k-rational point.

We refer to the the appendix of the book of Mumford [Mum99] and to [Cai10].

2.1 Rational maps associated to a linear system

Let ϕ : C → Pn be a rational map, we say that it is nondegerate if the image

is not contained in any hyperplane of Pn. We call it dominant if it cannot be a

projection of any map of the type φ : C → Pm, with m > n.

For a given divisor D consider the associated complete linear system |D|. Take

a linear system G ≤ |D| and assume that it has no base points. Then there is a

bijection


Linear system

(i) without f.p.

(ii) projective dim. n

(iii) degree r

←→


Rational maps

(i) nondegenerate

(ii) C → Pn

(iii) degree of the image r

 /projectivity,

which can be restricted to a bijection


Linear system

(i) complete

(ii) projective dim. n

(iii) degree r

←→


Rational maps

(i) dominant

(ii) C → Pn

(iii) degree of the image r

 /projectivity.

Indeed, a given linear system G is a projective subspace of P(L (D)), then we can

fix a projective basis ϕ0, · · · , ϕn of G. The element (ϕ0, · · · , ϕn) ∈ Pn(k(C )) is

the map that we want to. Note that every basis of G gives the same map up to

projectivity of Pn(k).
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2.2 Genus 0

A projective curve C has genus 0 if and only if there exists a point P such that

d(P ) = 1. Then the curve C is birational to the projective line P1. Indeed the

map C → P1 is nonconstant and it has a unique pole (it is dominant), hence

birational.

2.3 Genus 1

Let C be a curve of genus 1. Since d(rP ) = r− g + `(W − rP ) = r− 1 for r ≥ 1,

the space L (rP ) is given by the bases

〈1〉k if r = 1,

〈1, φ〉k if r = 2,〈
1, φ, φ′

〉
k if r = 3,〈

1, φ, φ′, φ2
〉
k if r = 4,〈

1, φ, φ′, φ2, φφ′
〉
k if r = 5,〈

1, φ, φ′, φ2, φφ′, φ3
〉
k if r = 6.

Note that also φ′2 is in L (6P ), therefore there exists a linear relationship between

φ′2, φ3 and other terms. Put now φ = X,φ′ = Y , hence there exists a cubic

relationship over the affine plane. Then we can say that every curve of genus 1 is

birationally equivalent to a smooth curve E of degree 3. Note that we used the

divisor D = 3P and its corresponding rational map C → P2 of degree 3, where

2 = d(3P ).

If we use the divisor D = 4P , instead of the divisor 3P , we obtain a different

classification of the curve: an intersection of two quadrics in the three dimensional

projective space. Indeed let X = φ, Y = φ′, Z = φ2; the first relation is defined

by Z = X2 and the second one depends on a linear relationship between XZ and

Y 2 and other terms that appear in L (6P ).

A curve of genus 1 is called elliptic curve if it has a k-rational point.

Construction of the sum

For every nonzero effective divisor D, since the genus of E is 1 and the divisors of

positive degree are nonspecial, we have d(D) = deg(D)−1. IfD+Q ∼ nO ∼ D+Q′

then d(nO − D) = deg(nO − D) − 1 = 0. We can find out only one function in

L (nO−D) up to multiplicative constants, then the zero is unique. In particular

Q ∼ Q′ implies Q = Q′.

Fix a point O for every two points P,Q we defined the sum P ⊕ Q in such

a way: since d(3O − P − Q) = 0 there exists a unique (up to constant) rational

function φ such that div(φ) = P +Q+ P ∗Q− 3O, for a unique point P ∗Q; we

can do it two times and set

P ⊕Q = O ∗ (P ∗Q).
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It is easy to see that it is an abelian group with O as neutral element.

If the curve is represented by its cubic embedding in the plane then the ratio-

nal function φ must have three zeros on the elliptic curve, hence it has degree 1,

therefore it is a line. We will see the explicit construction in the next chapter.

2.4 Genus 2

A canonical divisor K = div(ω) has degK = 2g − 2 = 2 and d(K) = 1. Then the

corresponding projective map κ : C → P1, called the canonical map, has degree

2. We say that a curve for which exists a rational map C → P1 of degree 2 is an

hyperelliptic curve.

Then every curve of genus 2 is an hyperelliptic curve.

2.5 Canonical maps and hyperelliptic curves

More generally we have that a rational map φ : C → Pn defined by a divisor D is:

i) injective if `(D − P −Q) = `(D)− 2 for every P 6= Q in C ;

ii) an immersion if `(D − P −Q) = `(D)− 2 for every P,Q in C .

And we call the divisor D very ample if (ii) holds.

Indeed if φ(P ) = φ(Q) and P 6= Q we have

L (D − P −Q) = L (D − P ) = L (D −Q);

moreover if L (D−2P ) = L (D−P ) this mean that every function in L (D) that

have zeros (with order bigger than the necessary for D) in P has order 2 (more

than the necessary) in P , so that the differential of these functions (with respect

the uniforming parameter) has a zero (more than the necessary) in P and it is

not an immersion.

A canonical divisor K = div(ω) has no base point for g ≥ 1, i.e. for every

point P we have `(K − P ) = `(K)− 1, indeed `(K)− 1 = g − 1 and

1 = `(P ) = deg(P ) + 1− g + `(K − P ).

The canonical map κ : C → Pg−1 could be an immersion or not. The latter

case implies that for P,Q in C we have `(K − P − Q) = `(K) − 1 = g − 1. By

Riemann-Roch we have also

`(K − P −Q) = g − 3− `(P +Q),

so that `(P + Q) = 2. Then there exists a birational map C → P1 of degree 2,

hence the curve is hyperelliptic.
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2.6 Genus ≥ 3

For a genus g ≥ 3 we can have either hyperelliptic curves, if the canonical map is

not an immersion, or nonhyperelliptic curves if the canonical map is an immersion.

Then, in the latter case, every canonical divisor K = div(ω) is very ample.

Considering the canonical map κ : C → Pg−1(k), for every homogeneous

polynomial F ∈ k[X0, · · · , Xg−1]m (the set of homogeneous polynomial of degree

m) we can define the divisor in C of F to be

divCF = div

(
F

ψ
◦ κ
)
,

where ψ ∈ k[X0, · · · ;Xg−1]m is a function such that the zeros in κ(C ) are different

from the zeros in κ(C ) of F (for example it could be m times an hyperplane).

We have divCF ∼ mK and therefore a linear application

Φm : k[X0, · · · , Xg−1]m → L (mK), F → F

ψ
◦ κ.

The kernel of this application is given by the functions that are identically

zero on κ(C ), hence they give equations for κ(C ).

Using `(mK) = deg(mK)− g + 1 = 2(g − 1)m− (g − 1) we have

dimk ker(Φm) ≥
(
m+ g − 1

m

)
︸ ︷︷ ︸

dim of k[X0,··· ,Xg−1]m

+ (g − 1)− 2(g − 1)m︸ ︷︷ ︸
− dim of L (mK)

.

Genus 3.

dimk ker(Φm) ≥ 6− 8 + 2 = 0 if m = 2;

10− 12 + 2 = 0 if m = 3;

15− 16 + 2 = 1 if m = 4.

We have at least one eqution of degree 4. Then the projective curves of genus

3 are either hyperelliptic or birational to a smooth plane curve of degree 4.

Genus 4.

dimk ker(Φm) ≥ 10− 12 + 3 = 1 if m = 2;

20− 18 + 3 = 5 if m = 3.

We have at least one equation of degree 2 and one independent equation of

degree 3. Then the projective curves of genus 4 are either hyperelliptic or bira-

tional to a smooth intersection of a quadric and a cubic.

Genus ≥ 5. For g ≥ 5 we have three type of curves: hyperelliptic, smooth

intersection of quartics in Pg−1 or triple ramified covers of the Riemann’ sphere.
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2.7 Hyperelliptic representation

Assume now that we are working on an algebraic closed field k of odd charac-

teristic. Let C be an hyperelliptic curve of genus g. By definition there exists

a rational map x : C → P1 of degree 2. By Hurwitz formula the total ramifi-

cation is 2g + 2, hence there exist 2g + 2 ramification points of ramification 1,

the so called Weierstrass points. We denote these points with P1, · · · , P2g+2. Let

div∞(x) = Q + R, we can assume, up to projectivity of the line, that Q and R

are not Weierstrass points.

We define ai = x(Pi) and the map ι : C → C to be the map that exchange the

inverse images of the rational map x. Obviously we have ι2 = idC .

We look now at the divisor D = (g+ 1)Q+ (g+ 1)R. By Riemann-Roch we have

`(D) = deg(D)− g + 1 = g + 3.

Since ι(D) = D we can consider the endomorphism ι∗ : L (D) → L (D), it is

clear that ι∗2 = id, hence it is diagonalisable with eigenvalue ±1. We can decom-

pose L (D) in L (D)+ ⊕L (D)− where L (D)+ = 〈1, x, · · · , xg+1〉 has dimension

g + 2 and L (D)− = 〈y〉, with ι∗(y) = −y, has dimension 1.

Fix f(x) =
∏2g+2
i=1 (x − ai). We want to prove that y2 = cf(x) for some nonzero

c ∈ k. In order to do this we show that the corresponding divisor of y2 and f(x)

are the same, so that the quotient function is a constant. We have:

div(y) =
∑
i

Pi −D

because y(Pi) = −y(Pi), hence deg(div0(y)) = 2g + 2 (we are working in odd

characteristic), and the only possible pole are Q and R with g + 1 as maximum

degree; on the other hand

div(f(x)) =
∑
i

div0(x− ai)−
∑
i

div∞(x− ai) = 2
∑
i

Pi − 2D.

We proved the following

Proposition 2.7.1. A projective curve is hyperelliptic of genus g if and only if it

is birationally equivalent to a projective plane curve of the form y2 = f(x), where

f has degree 2g + 2 and it has no double roots.

Remark.

i) If we assume that div∞(x) = 2P , with P a Weierstrass point, then we can

prove with the same argument that every hyperelliptic curve is birationally

equivalent to a projective plane curve of the form y2 = f(x), where f has

degree 2g + 1 and it has no double roots.

ii) In a field of characteristic 2 we can show that any hyperelliptic curve is

birational to a projective plane curve of the form y2 + h(x)y = f(x), with

deg(h) ≤ g and deg(f) = 2g + 1.
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Chapter 3

Arithmetic on Elliptic curves

Throughout this chapter we present some examples of elliptic curves. We study

if an elliptic curve can be expressed with a particular polynomial according to

the base field k and we give some explicit formulæ for the computation of the

addition law. For the first section we will mainly refer to [Coh+10], for the second

to [JTV10] and for the third to [BL07a], [Ber+08], [Are+11], and [BL07b].

We give some explicit formulæ for the addition law. It is very important to

find fast algorithm that could save some field operation for computing addition

on elliptic curve. Here the symbols I, M, and S stand for the running time for

an inversion, a multiplication, and a square in the field k. We always neglect the

running time of additions.

3.1 Weiestrass curves

An elliptic curve over k is in the Weierstrass form if it satisfies the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the condition of nonsingularity, i.e. the partial derivativs 2y1 + a1x1 + a3
and 3x2 + 2a2x+ a4 − a3y do not vanish simultaneously. Let

b2 = a21 + 4a2,

b4 = a1a3 + 2a4,

b6 = a23 + 4a6,

b8 = a21a6 − 4a2a6 + a2a
2
3 − a24

In a field of characteristic different from 2 we can consider the isomorphic curve

y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4

given by the isomorphism y 7→ y − (a1x+ a3)/2.

If moreover the characteristic is different from 3, then we can apply the isomor-

phism x 7→
(
x− ( b24 )/3

)
and we can consider equations in which the coefficient of

x2 is zero.

The addition law of two points P and Q in an arbitrary field k is given in the

classical way:
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Figure 3.1: Addition law on Weierstrass curves

i) find the line passing through P and Q (if P = Q find the tangent line);

ii) find the third R̃ point of intersection;

iii) repeat (i) and (ii) for R̃ and the fixed flex P∞, the (unique) point at infinity.

This gives the sum R = P ⊕ Q. Figure 3.1 describes this construction. The

opposite point of a given point (x1, y1) is (x1,−y1−a1x1−a3), the neutral element

is the unique point at infinity P∞ = [0, 1, 0].

We compute now the sum explicitly. Take P = (x1, y1) 6= Q = (x2, y2) with

x1 6= x2. We want to compute R = P ⊕ Q = (x3, y3). The slope of the line

passing through P and Q is

λ =
y1 − y2
x1 − x2

,

the equation of the line is given by

l : y = λx+
x1y2 − x2y1
x1 − x2

.

We denote the constant term by µ. The intersection of l and E gives us the

equation

(λx+ µ)2 + (a1x+ a3)(λx+ µ) = x3 + a2x
2 + a4x+ a6

and then the equation

f(x) = x3 + (a2 − a1λ− λ2)x2 + (a4 − 2λµ− a3λ− a1µ)x+ a6 − µ2 − a3µ = 0.
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We already know two different roots of f in k, so the third one is still in k.

The coefficient of x2, multiplied by −1, equals the sum of the roots of f , then

x3 = λ2 + a1λ− a2 − x1 − x2

and ỹ3 = λx3 + µ, where (x3, ỹ3) = 	R. Hence

R = (x3,−λx3 − µ− a1x3 − a3).

If P = Q we can do the same thing with the slope given by implicit derivatives.

Finally we have

	P = (x1,−y1 − a1x− a3),
P ⊕Q = (λ2 + a1λ− a2 − x1 − x2,−λ(x1 − x3)− y1 − a1x3 − a3),where

λ =


y1 − y2
x1 − x2

if P 6= ±Q

3x21 + 2a2x1 + a4 − a1y1
2y1 + a1x1 + a3

if P = Q

In characteristic different from 2 and 3 we can assume that E is given by the

equation y2 = x3 +a4x+a6. The formulæ for adding and doubling points require

respectively I + 2M + S and I + 2M + 2S. For cryptographic applications we

always need to compute a scalar multiplication of a point, in order to do this we

need to recursively add a point after doubling. The next formulæ gives us a faster

way to compute [2]P ⊕Q = (P ⊕Q)⊕ P , saving one multiplication:

A = (x2 − x1)2, B = (y2 − y1)2, C = A(2x1 + x2)−B,
D = C(x2 − x1), E = D−1, λ = CE(y2 − y1),
λ2 = 2y1A(x2 − x1)E − λ, x4 = (λ2 − λ)(λ2 + λ) + x2, y4 = (x1 − x4)λ2 − y1,

where we assume that P 6= ±Q and [2]P 6= −Q. It needs I + 9M + 2S.

Affine coordinates

In case k has characteristic bigger than 3 then an elliptc curve can be given by

the equation E : y2 = x3 + a4x + a6. We can write simplified formulæ for the

addition law.

Addition. Let P = (x1, y1), Q = (x2, y2) be two points on the elliptic curve

E such that P 6= ±Q, then the point P ⊕Q = (x3, y3) can be computed by

λ =
y1 − y2
x1 − x2

, x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1.

It requires I + M + S.
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Doubling. Let P = (x1, y1) be a point on the elliptic curve E and write

[2]P = (x3, y3), then put

λ =
3x21 + a4

2y1
, x3 = λ2 − 2x1, y3 = λ(x1 − x3)− y1.

It requires I + 2M + S.

Projective coordinates

In projective coordinates the equation for E becomes Y 2Z = X3 +a4XZ
2 +a6Z

3.

Addition. Let P = [X1, Y1, Z1], Q = [X2, Y2, Z2] be two points on E such

that P 6= ±Q, then the point P ⊕Q = [X3, Y3, Z3] can be computed by

A = Y1 · Z2, B = X1 · Z2, C = Z1 · Z2, D = Y2 · Z1 −A, E = X2 · Z1 −B,

F = E2, G = E · F, H = F ·B, I = D2 · C −G− 2H,

X3 = E · I, Y3 = D · (H − I)−GA, Z3 = G · C

It requires 12M + 2S. Note that if one of the inputs is already in affine coordi-

nates, i.e. has form [X1, Y1, 1], then the requirements decrease to 9M + 2S.

Doubling. Let P = [X1, Y1, Z1] be a point on the elliptic curve E and let

[2]P = [X3, Y3, Z3], then put

A = a4Z
2
1 + 3X2

1 , B = Y1 · Z1, C = X1 · Y1 ·B, D = A2 − 8C,

X3 = 2B ·D, Y3 = A · (4C −D)− 8Y 2
1 ·B2, Z3 = 8B3

It requires 7M+5S.

Jacobian coordinates

In jacobian coordinates the point [X1, Y1, Z1] on the elliptic curve E corresponds

to the affine point (X1/Z
2
1 , Y1/Z

3
1 ) if Z1 6= 0, so that the equation of the elliptic

curve E becomes

Y 2 = X3 + a4Z
4 + a6Z

6.

The neutral element is (1, 1, 0) and the opposite of [X1, Y1, Z1] is [X1,−Y1, Z1].

Addition. Let P = [X1, Y1, Z1], Q = [X2, Y2, Z2] be two points on E such

that P 6= ±Q, then the point P ⊕Q = [X3, Y3, Z3] can be computed by

U2 = Z2
1 , U3 = Z1 · U2, V2 = Z2

2 , V3 = Z2 · V2,

A = X1 · V2, B = X2 · U2, C = Y1 · V3, D = Y2 · U3, E = B −A,

F = D − C, G = E2, H = E ·G, I = A ·G,
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X3 = −H − 2I + F 2, Y3 = −C ·H + F · (I −X3), Z3 = Z1 · Z2 · E.

It takes 12M + 4S. If one of the inputs is already in affine coordinates, then the

requirements decrease to 8M + 3S.

Doubling. Let P = [X1, Y1, Z1] be a point on the elliptic curve E and let

[2]P = [X3, Y3, Z3], then put

A = Y 2
1 , B = 3X2

1 + a4Z
4
1 , C = 4X1 ·A

X3 = −2C +B2, Y3 = −8A2 +B · (C −X3), Z3 = 2Y1 · Z1.

It requires 4M + 6S. Note that if a4 is small then its multiplication can be

neglected; note that for a4 = −3 we can use B′ = 3X2
1−3Z4

1 = 3(X1−Z2
1 )(X1+Z2

1 )

leading to the requirement 4M + 4S.

Chudnovky-Jacobian coordinates

In order to improve the addition in Jacobian coordinates we can represent a point

[X1, Y1, Z1] with the quintuple (X1, Y1, Z1, Z
2
1 , Z

3
1 ). The formulæ for addition and

doubling are the same for jacobian coordinates, but the complexity descreases to

11M + 3S and 5M + 6S respectly.

Modified Jacobian coordinates

We can represent the point [X1, Y1, Z1] in jacobian coordinates with the quintuple

(X1, Y1, Z1, a4Z
4
1 ). The formulæ are essentially the same. In the doubling formula

we can add D = 8A2 so that Y3 = −D+B(C −X3) and a4Z
4
3 = 2D(a4Z

4
1 ). This

new algorithm takes 13M + 6S for the addition and 4M + 4S for doubling.

3.2 Huff’s curves

Let k a field of characteristic different from 2. An elliptic curve over k is in Huff

form if it satisfies the equation

E : ax(y2 − 1) = by(x2 − 1),

or in projective coordinates

E : aX(Y 2 − Z2) = bY (X2 − Z2),

where a2 6= b2 and ab 6= 0 (this guaranties the smoothness). It has three points

at infinity, respectively [1, 0, 0], [0, 1, 0], [a, b, 0].

The addition law of two points P and Q is defined likewise the law for the

Weierstrass form:

i) find the line passing through P and Q (if P = Q find the tangent line);

ii) find the third R̃ point of intersection;
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Figure 3.2: Addition law on Huff curves

iii) repeat (i) and (ii) for R̃ and the fixed flex O = [0, 0, 1].

Figure 3.2 describes this construction.

In particular the inverse of a point [X,Y, Z] is [X,Y,−Z].

For the points at infinity we have:

[X,Y, Z]⊕ [1, 0, 0] = [Z2,−XY,XZ]

[X,Y, Z]⊕ [0, 1, 0] = [−XY,Z2, Y Z]

[X,Y, Z]⊕ [a, b, 0] =

{
[a, b, 0] if [X,Y, Z] = [0, 0, 1]

[Y Z,XZ,−XY ] otherwise

Affine formulæ

We now study the explicit formulæ for the affine plane. Let as usual y = λx+ µ

be the secant line passing through the points P = (x1, y1) and Q = (x2, y2). So

that λ = y1−y2
x1−x2 and µ = y1 − λx1.

In order to find P ⊕Q, i.e. the opposite the third point of intersection of the line

with the Huff’s curve, we must solve the equation

ax((λx+ µ)2 − 1) = b(λx+ µ)(x2 − 1)

and then

λ(aλ− b)x3 + µ(2aλ− b)x2 + (λb− a)x+ µb = 0.

We get 
x1 + x2 − x3 =

µ(2aλ− b)
λ(aλ− b)

y3 = λx3 − µ
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Now, starting from the equation of the curve, we have

ax1(y
2
1 − 1) = by1(x

2
1 − 1) and ax2(y

2
2 − 1) = by2(x

2
2 − 1).

Multiplying the first equation by y2 and the second by y1 and subtracting we get

y1y2(ax1y1 − ax2y2 − bx21 − b+ bx22 + b)− ax1y2 + ax2y1 = 0

and then

y1y2(x1 + x2)(a(y1 − y2)− b(x1 − x2)) = a(x2y1 − ax1y2)(y1y2 − 1). (3.1)

If we instead multiply the first equation by x2 and the second by x1 and we

subtract, then we get

ax1x2(y
2
1 − y22) + b((x1 + x2)(y1 − y2)− x1y1 + x2y2) = b(y1x

2
1x2 − y2x22x1)

and then

(ax1x2(y1 + y2) + b(x1 + x2))(y1 − y2) = b(x1y1 − x2y2)(x1x2 + 1). (3.2)

Coming back to the addition formula, we substitute the value of λ and µ in

x1 + x2 − x3, and then

x3 = x1 + x2 +
(x1y2 − x2y1)(2a(y1 − y2)− b(x1 − x2))

(y1 − y2)(a(y1 − y2)− b(x1 − x2))
,

we use (3.1) and we get

x3 = x1 + x2 −
(2a(y1 − y2)− b(x1 − x2))y1y2(x1 + x2)

a(y1y2 − 1)(y1 − y2)

= x1 + x2 −
x2y1 − x1y2
y1 − y2

− (x1 − x2)y1y2
y1y2 − 1

=
x1y1 − x2y2
y1 − y2

− (x1 − x2)y1y2
y1y2 − 1

.

Now we could use (3.2) and we get

x3 =
ax1x2(y1 + y2) + b(x1 + x2)

b(x1x2 + 1)
− (x1 − x2)y1y2

y1y2 − 1

=
(x1 + x2)(1 + y1y2)

(1 + x1x2)(1− y1y2)
.

By symmetry we can compute y3 and we get finally
x3 =

(x1 + x2)(1 + y1y2)

(1 + x1x2)(1− y1y2)

y3 =
(y1 + y2)(1 + x1x2)

(1− x1x2)(1 + y1y2)

Note that the parameters a, b, λ, µ are not involved. Moreover we can use this

formula for the doubling. Note also that it is defined for x1x2 6= ±1, y1y2 6= ±1.
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Projective formulæ

In order to avoid inversion we can use projective coordinates. We have
X3 = (X1Z2 +X2Z1)(Z1Z2 + Y1Y2)

2(Z1Z2 −X1X2)

Y3 = (Y1Z2 + Y2Z1)(Z1Z2 +X1X2)
2(Z1Z2 − Y1Y2)

Z3 = (Z2
1Z

2
2 −X2

1X
2
2 )(Z2

1Z
2
2 − Y 2

1 Y
2
2 )

In particular we can use the following algorithm

A = X1 ·X2, B = Y1 · Y2, C = Z1 · Z2,

D = (X1 + Z1) · (X2 + Z2)−A− C, E = (Y1 + Z1) · (Y2 + Z2)−B − C,

F = (C −A) · (B + C), G = (C −B) · (A+ C),

H = D · (B + C), I = E · (A+ C),

X3 = H · F, Y3 = I ·G, Z3 = G · F.

It needs 12M.

For a doubling we can use the squaring instead of the multiplication in A, B,

C, D, E, hence it needs 7M + 5S. We can speed up the doubling in case S> 3
4M

with the following

A = X1 · Y1, B = X1 · Z1, C = Y·1Z1, D = Z2
1 ,

E = (B − C) · (B + C), F = (A−D) · (A+D),

G = (A−D) · (B − C), H = (A+D) · (B + C),

X3 = (G−H) · (E + F ), Y3 = (G+H) · (E − F ), Z3 = (E + F ) · (E − F ).

It takes 10M + S.

Theorem 3.2.1. Let P = [X1, Y1, Z1] and P = [X2, Y2, Z2]. Then the addition

formula is valid provided that X1X2 6= Z1Z2 and Y1Y2 6= Z1Z2.

Proof. We already know the the affine formula is valid whenever x1x2 6= 1 and

y1y2 6= 1, so that the formula is valid when X1X2 6= ±Z1Z2, Y1Y2 6= ±Z1Z2.

We remark that adding [1, 0, 0] or [0, 1, 0] with an other point, the formula gives

[0, 0, 0], that is not a well defined point in the projective space. Adding the point

[a, b, 0] to an other point [X1, Y1, Z1] /∈ {O, [1, 0, 0], [0, 1, 0]}, this formula gives

[−Y1Z1,−X1Z1, X1Y1]: the correct answer.

Remark.

1. In order to avoid these cases we can fix a point R = [X3, Y3, Z3] on the Huff

curve and compute P ⊕Q = (P ⊕ R)⊕ (Q⊕−R) if P and Q are different

from [1, 0, 0] and [0, 1, 0]; it will works for a general R.
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2. The points at infinity [1, 0, 0], [0, 1, 0] and [a, b, 0] are the points of 2-torsion.

Adding [a, b, 0] to any of the points [±1,±1, 1] transforms it into its inverse,

hence these four points are solutions of [2]P = [a, b, 0] and so are of order 4.

These eight points form a subgroup isomorphic to Z/4Z× Z/2Z.

Corollary 3.2.2. Let P a point of odd order in the Huff curve E , then the addition

formula is complete in the subgroup generated by P .

Proof. Note first that the points at infinity cannot be in {P} since they are of

order 2. The same for the points [±1,±1, 1] that are of order 4. Now, pick two

points P1 = (x1, y1) and P2 = (x2, y2) in {P}. Suppose that x1x2 = ±1. We

have ax1(y
2
1 − 1) = by1(x

2
1 − 1), this implies a 1

x1
(y21 − 1) = by1(1 − 1

x21
), hence

±ax2(y21 − 1) = −by1(x22 − 1). It follows that ∓y2(y21 − 1) = y1(y
2
2 − 1), hence

y2 = ∓y1 or y2 = ± 1
y1

. In all cases one of P1 ⊕ P2 or P1 	 P2 has order 2, that is

a contradiction. Likewise, y1y2 = ±1 leads to a contradiction.

Theorem 3.2.3. Every elliptic curve E over a perfect filed k of odd characteristic

is birationally equivalent over k to an Huff curve if and only if it contains a

subgroup isomorphic to G = Z/4Z× Z/2Z.

Proof. We already know that an huff curve has a subgroup isomorphic to the

group Z/4Z×Z/2Z. Conversely let ϕ be the isomorphism that goes from G to E

and use the notation Aab = ϕ(a, b). So that A10, A11, A31, A30 are the 4-torsion

points in the subgroup isomorphic to G. Doubling these points we obtain a unique

point in G of order 2, namely R = A20. Call Q = A21 and P = A01 the remaining

points of order 2 in G.

We have P ⊕R	Q	O = O, then there exists a rational function x such that

div(x) = Q+O − P − R, we can assume that x(A10) = 1. Likewise, there exists

a rational function y such that div(y) = P −R−Q+O and y(A10) = 1.

The function x−1 has the same pole as x. So that div(x−1) = A10+X−P−R,

we haveX = P⊕R	A = R⊕A31 = A11. so that x(A11) = 1. Likewise y(A31) = 1.

Consider now the map ι : S 7→ 	S for every point S in the elliptic curve. For

every rational function f , denote by ι∗f the function f ◦ ι. This is an endomor-

phism of the space L (·), such that ι∗2 = id. Since L1 = L (P + Q − R − O)

has dimension 1 over k (by Riemann-Roch, using the fact that P + Q − R − O
is principal), it follows that ι∗|L1

= ±1. If ι∗x = x then x(A30) = x(A10) = 1,

but this contradicts the previous computation on div(x− 1), hence we have that

ι∗ = −1. Note that x(A10) = x(A11) = 1 implies x(A31) = x(A30) = −1,

and we have div(x + 1) = A31 + A30 − P − R. In the same way we obtain

div(y + 1) = A11 +A30 −Q−R.

Finally we consider the rational functions u = x(y2 − 1) and v = y(x2 − 1).
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We have

div(u) = div(x) + div(y − 1) + div(y + 1)

= (Q+O − P −R) + (A10 +A31 −R−Q) + (A11 +A30 −Q−R)

= A10 +A11 +A31 +A30 +O − P −Q− 3R

= (P +O −Q−R) + (A10 +A11 − P −R) + (A31 +D30 − P −R)

= div(y) + div(x− 1) + div(x+ 1)

= div(v).

Then there exist a and b in k× such that au = bv, hence such that

ax(y2 − 1) = by(x2 − 1).

It remains to prove that the map that send a point S of the elliptic curve

in [x(S), y(S), 1] is injective. Suppose that there exist two points S and S′ with

the same image [x0, y0, 1], then the two rational functions x− x0 and y − y0 have

divisors respectively S+S′−P−R and S+S′−Q−R, hence P⊕R = S⊕S′ = Q⊕R,

that is a contradiction.

3.3 Edwards and Twisted Edwards curves

Fix a field k of characteristic different from 2. An Edwards elliptic curve is given

by the equation

x2 + y2 = c2(1 + dx2y2)

where cd(1−dc4) 6= 0. Edwards shows that every elliptic curve over a number field

could be transformed to an Edwards curve of the form x2 +y2 = c2(1+x2y2), but

some elliptic curves over finite field require a field extension for the transformation.

See [Edw07] for further details.

In order to compute the addition law explicitly we restrict to finite fields.

Edwards and Weierstrass curves

The following theorem shows a way to represent elliptic curves in Edwards elliptic

form.

Theorem 3.3.1. Let E be an elliptic curve over k such that E has an element of

order 4, then there exists d ∈ k, d /∈ {0, 1} such that the curve x2 + y2 = 1 +dx2y2

is birationally equivalent over k to E ; if moreover E has a unique element of order

2, then there d is a nonsquare.

Proof. Let’s start with an elliptic curve E in Weierstrass form. Since the char-

acteristic of the field is different from 2, we can assume that E has the form

s2 = r3 + a2r
2 + a4r + a6.

Let P be the point of order 4. Up to translation, we can assume that 2P = (0, 0)

and thus a6 = 0.
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Write P = (r1, s1). Note that there is a line passing through O = (0, 0) and

tangent at P , that is s1 = λr1 where λ is the slope (3r21 + 2a2r1 + a4)/2s1.

The point P satisfies the equation of the curve, i.e. s21 = r31 + a2r
2
1 + a4r1. Then

we have r31 = a4r1, hence r21 = a4, because r1 6= 0.

Combining these results we obtain

a2 =
s21 − r31 − a4r1

r21
= 2

1 + d

1− d
r1,

where d = 1− 4r31/s
2
1.

Note that d 6= 1, since r1 6= 0; note also that d 6= 0, otherwise the equation for E

would be s2 = r3 + 2r1r
2 + r21r = r(r + r1)

2, but this is not an elliptic curve.

If d is a square, then there exists an other k-rational point of order 2, namely

(r1(
√
d+ 1)/(

√
d− 1), 0).

Consider now the elliptic curve

E ′ :
r1

1− d
s2 = r3 + a2r

2 + a4r,

it is isomorphic to E because r1
1−d =

(
s1
2r1

)2
is a square in k.

Substitute u = r/r1 and v = s/r1 and we get a homothetic new coordinate system

with P = (1, s1/r1), hence r1 = 1 = a4. Then E ′ becomes

E ′′ :
1

1− d
s2 = r3 + 2

1 + d

1− d
r2 + r.

Now we show that the curve x2 + y2 = 1 + dx2y2 is birationally equivalent

to E ′′ via the rational map (s, r) 7→ (x, y) = (2r/s, (r − 1)/(r + 1)). The inverse

function is (x, t) 7→ (r, s) = ((1 + y)/(1 − y), 2(1 + y)/(1 − y)x). In both maps

there are only finitely many exceptional point. In a similar way, putting 1/d for

d and −u for u, we can show that x2 + y2 = 1 + dx2y2 is birationally equivalent

to E ′′.

Remark. For d = d̄c̄4 we have that the curve x2 + y2 = 1 + dx2y2 is isomorphic

to the curve x̄2 + ȳ2 = c̄2(1 + d̄x̄2ȳ2) via x̄ = c̄x, ȳ = c̄y. Note that if k is a finite

field, then at least 1/4 of the possibilities of d̄ ∈ k× gives us a 4-power d/d̄.

Addition on Edwards curves

The addition law on an Edwards curve x2+y2 = c2(1+dx2y2), with cd(1−dc4) 6= 0,

is given by

(
x1
y1

)
⊕

(
x2
y2

)
7−→


x1y2 + y1x2

c(1 + dx1x2y1y2)

y1y2 − x1x2
c(1− dx1x2y1y2)


the neutral element is (0, c), and the inverse of (x1, y1) is (−x1, y1). This addition

law is defined when dx1x2y1y2 /∈ {+1,−1}.
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Now we give two result involving the addition law. The first says that the

birational equivalence between an elliptic curve in Weierstrass form and the Ed-

wards curve preserves the group law. The second says that the addition law is

complete when d is nonsquare.

Theorem 3.3.2. Let e = 1− dc4 and let E be the elliptic curves

1

e
v2 = u3 +

4

e− 2
u2 + u.

Then E is birationally equivalent to x2 + y2 = c2(1 + dx2y2) via

(x, y) 7−→

(
u

v

)
=


c+ y

c− y
2c(c+ y)

(c− y)x


and this rational map preserves the group law (for the points in which it is defined).

Proof. The birational equivalence is given by essentially the same computation as

in Theorem 3.3.1.

We need to show that the addition law is preserved.

The proof for the particular cases involving the points (0, c), (0,−c) on the

Edwards curve, hence the points P∞, (0, 0) on the Weierstrass curve, can be done

analysing each possibility.

In general, after the assumption that x1x2x3 6= 0, we can distinguish two

cases: (u1, v1) = (u2, v2) and u1 6= u2. In both cases it can be proved by a

straightforward computation, the former using the doubling, the latter using the

addition.

Theorem 3.3.3. If d is not a square in k then the group law is complete, i.e. for

every two points (x1, y1), (x2, y2) on the Edwards curve x2 + y2 = c2(1 + dx2y2)

we have ε = dx1y1x2, y2 /∈ {+1,−1}.

Proof. Suppose by contradiction that ε ∈ {+1,−1}. We have

dx21y
2
1(x22 + y22) = c2(dx21y

2
1 + d2x21y

2
1x

2
2y

2
2) = c2(1 + dx21y

2
1) = x21 + y21

then

(x1 + εy1)
2 = x21 + y21 + 2εx1y1 = dx21y

2
1(x22 + y22) + 2dx21y

2
1x2y2

= dx21y
2
1(x22 + 2x2y2 + y22)

= dx21y
2
1(x2 + y2)

2.

If x2 + y2 6= 0, then d is a square. In a similar way, if x2 − y2 6= 0, then d is a

square. If both x2 + y2 6= 0 and x2 − y2 6= 0 then x2 = y2 = 0, hence d = 0. In all

cases we have a contradiction.

32



Twisted Edwards and Montgomery curves

We define now the Twisted Edwards curves to be the elliptic curves defined by

EE,a,d : ax2 + y2 = 1 + dx2y2,

for distinct element a, d ∈ k. The twisting map (x, y) 7→ (x̄, ȳ) = (
√
ax, y) defined

form EE,a,d to EE,1,d/a is an isomorphism over k(
√
a), hence EE,a,d is isomorphic

to an Edwards curve if a is a square in k.

A Montgomery curve is an elliptic curve of the form

EM,A,B : Bv2 = u3 +Au2 + u

with A 6= ±2.

The following theorems give us a way to represent Montgomery curve with

Edwards curves.

Theorem 3.3.4. Every twisted Edwards curve over k is birationally equivalent

over k to a Mongomery curve and vice versa. In particular the coefficients are

A = 2(a + b)/(a− d), B = 4/(a− d), resp. a = (A + 2)/B, b = (A− 2)/B, and

the maps are given by

(x, y) 7→ (u, v) = ((1 + y)/(1− y), (1 + y)/(1− y)x),

(u, v) 7→ (x, y) = (u/v, (u− 1)/(u+ 1)).

Proof. Using the first map we have(
1 + y

1− y

)3

+A

(
1 + y

1− y

)2

+

(
1 + y

1− y

)3

= B

(
1 + y

1− y

)3 1

x2

this is equivalent to

x2

B

(
(1 + y)2 +A(1− y2) + (1− y)2

)
= (1− y2)

and then to
A+ 2

B
x2 + y2 = 1 +

A− 2

B
x2y2.

that is a twisted Edwards curve with a = (A+ 2)/B, b = (A− 2)/B. The other

map is clearly the inverse rational map. Moreover

2
a+ d

a− d
=

A+2
B + A−2

B
A+2
B − A−2

B

= A,
4

a− d
=

4
A+2
B − A−2

B

= B.

Proposition 3.3.5. If k is a finite field with #k ≡ 3 (mod 4) then every Mont-

gomery curve EM,A,B : Bv2 = u3 +Au2 + u over k is birationally equivalent over

k to an Edwards curve.

Proof. We divide the proof in three distinct cases:
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1. If (A+ 2)/B (resp. (A− 2)/B) is a square then the Montgomery curve has

a point of order 4, namely (1,
√

(A+ 2)/B) (resp. (−1,
√

(A− 2)/B)).

2. If (A+ 2)/B and (A− 2)/B are nonsquare, then (A+ 2)(A− 2) is a square.

Note that, since (A + 2)/B is not a square, then EM,A,B is a nontrivial

quadratic twist of EM,A,A+2. Note also that EM,A,A+2 has three points of

order 2, namely (0, 0), (12(−A ±
√

(A+ 2)(A− 2)), 0) and a point of order

4, namely (1, 1), so that EM,A,A+2 contains a subgroup isomorphic to the

group Z/2Z× Z/4Z. Then #EM,A,A+2 ≡ 0 (mod 8) and

#EM,A,A+2 + #EM,A,B = 2#k + 2 ≡ 0 (mod 8).

Note that the curve EM,A,B cannot have more than three point of order 2,

hence it cannot contains a subgroup isomorphic to Z/2Z × Z/2Z × Z/2Z,

then it has an element of order 4.

In both cases it has an element of order 4 and then, because of Theorem 3.3.1 it

is birational to an Edwards curve.

Theorem 3.3.6. If k is a finite field with #k ≡ 1 (mod 4) and EM,A,B is a

Montgomery curve such that (A+2)(A−2) is a square, let δ be a nonsquare in k.

Then exactly one of EM,A,B and EM,A,δB is birationally equivalent to an Edwards

curve.

Proof. We have #EM,A,B + #EM,A,δB = 2#k + 2 ≡ 4 mod 8, and both EM,A,B

and EM,A,δB contain a subgroup isomorphic to Z/2Z×Z/2Z since (A+ 2)(A− 2)

is a square in k. Then exactly one of #EM,A,B and #EM,A,δB is divisible by 4 but

not by 8. Hence exactly one has a point of order 4.

Geometric interpretation

The sum of two points (x1, y1), (x2, y2) on the twisted Edwards curves of equation

ax2 + y2 = 1 + dx2y2 is given by

(
x1
y1

)
+

(
x2
y2

)
7−→


x1y2 + y1x2

1 + dx1x2y1y2

y1y2 − ax1x2
1− dx1x2y1y2


The neutral element is O = (0, 1); the inverse of a point (x1, y1) is (−x1, y1).

Denote by O′ the point (0,−1), it has order 2. Denote also by I1 and I2 the two

point at infinity [1, 0, 0] and [0, 1, 0].

Before we start to show the explicit formulæ for addiction and doubling we

describe the geometric interpretation of the addition law. Since the Edwards

curves have degree 4, we cannot use the line passing through the two points that

we want to add, because it leads us to find 2 other points. We use instead conics

passing through three fixed points.
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Figure 3.3: Addition law on Edwards curve

We know that a conic is uniquely determined by five points (with multiplicity)

on the conic. Fix now the three points O′, I1, I2. Evaluating a generic conic

aY Z+bXY +cXZ+dX2+eY 2+fZ2 at O′, I1 and I2 we see that a conic passing

through these points must have the form

C : a(Z2 + Y Z) + bXY + cXZ = 0, (3.3)

with [a, b, c] ∈ P2. Now if we want to add P1 and P2 in the Edwards curve we

only need to find the conic of the previous form passing through P1 and P2. Since

the two points at infinity are singular points of multiplicity 2, the conic intersect

the curve in O′ + P1 + P2 + 2I1 + 2I2 + R, where R will be the inverse point of

P1 ⊕ P2. Indeed, if we call `R, `0 the two line given by ZRY − YRX, and X, then

we get

div

(
C

`R`

)
∼ (O′ + P1 + P2 + 2I1 + 2I2 +R)

−(R+ (	R)− 2I2)− (O +O′ − 2I1)

∼ P1 + P2 − (	R)−O,

then, by the unicity of the group law with a given neutral element on an elliptic

curve, we have P1 ⊕ P2 = 	R.

The following theorem shows how to compute the equation of the conic C .

Theorem 3.3.7. Let E be the twisted Edwards curve ax2 + y2 = 1 + dx2y2. Let

P1 = [X1, Y1, Z1] and P2 = [X2, Y2, Z2] be two affine points on E . Let C the conic

of form 3.3 passing through O′, I1, I2, P1 and P2; if some of these points are equal

we consider that C intersect E with at least that multiplicity at the corresponding

points. Then the coefficient [a, b, c] of 3.3 are determined as follows:
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• If P1 6= P2 and P1, P2 6= O′, then

a = X1X2(Y1Z2 − Y2Z1),

b = Z1Z2(X1Z2 −X2Z1 +X1Y2 −X2Y1),

c = X1X2Z
2
1 −X1Y1Z

2
2 − Y2Y1(X2Z1 −X1Z2).

• If P1 6= P2 and P2 = O′, then

a = −X1, b = Z1, c = Z1.

• If P1 = P2, then

a = X1Z1(Z1 − Y1),
b = dX2

1Y1 − Z3
1 ,

c = Z1(Z1Y1 − aX2
1 ).

Proof. Straightforward computations, see [Are+11].

Arithmetic

Now we give some explicit formulæ for the addition law on Edwards and Twisted

Edwards curves in projective coordinates. The symbols M, S, a, b, and c repre-

sent the time needed by the platform to compute respectively the multiplication,

the squaring, the multiplication by a, b, and c.

Arithmetic on Edwards curves

Let E be an Edwards curve of equation x2 + y2 = c2(1 + dx2y2).

Addition on Edwards curves. The following computes the coordinates of

the point [X3, Y3, Z3] = [X1, Y1, Z1]⊕ [X2, Y2, Z2]:

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2;

E = d · C ·D; F = B − E; G = B + E;

X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D) ;

Y3 = A ·G · (D − C) ; Z3 = c · F ·G.

It takes 10M + S + c + b. If the platform computes squaring much faster

that multiplication, say S/M< 3/4, we can compute A(B − E), A(B + E) and

(B − E)(B + E) as linear combination of A2, B2, E2, (A + B)2, (A + E)2; this

replaces 10M + S by 7M + 5S.
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Doubling on Edwards curve. In order to compute the doubling we can

rewrite c(1 + dx21y
2
1) as (x21 + y21)/c, c(1− dx21y21) as (2c2− (x21 + y21))/c, and 2x1y1

as (x1 + y1)
2 − x21 − y21, then we have

2(x1, y1) =

(
2x1y1

c(1 + dx21y
2
1)
,

y21 − x21
c(1− dx21y21)

)
=

(
2cx1y1

(x21 + y21)
,
c(y−1 2x21)

.
2c2 − (x21 + y21)

)
We can write the explicit algorithm that computes [X3, Y3, Z3] = 2[X1, Y1, Z1]:

B = (X1 + Y1)
2 ; C = X2

1 ; D = Y 2
1 ;

E = C +D; H = (c · Z1)
2; J = E − 2H;

X3 = c · (B − E) · J ; Y3 = c · E · (C −D); Z3 = E · J.

It uses only 3M + 4S + 3c.

Arithmetic on Twisted Edwards curves

Let EE,a,d be a twisted Edwards curve of equation ax2 + y2 = 1 + dx2y2.

Addition in Twisted Edward curves. The following computes the sum

[X3, Y3, Z3] = [X1, Y1, Z1]⊕ [X2, Y2, Z2]:

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2;

E = d · C ·D; F = B − E; G = B + E;

X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D) ;

Y3 = A ·G · (D − a · C) ; Z3 = F ·G.

It uses 10M + S + a + d.

Doubling in Twisted Edward curves. The following computes the sum

[X3, Y3, Z3] = 2[X1, Y1, Z1]:

B = (X1 + Y1)
2 ; C = X2

1 ; D = Y 2
1 ;

E = a · C; F = E +D; H = Z2
1 ; J = F − 2H;

X3 = (B − C −D) · J ; Y3 = F · (E −D); Z3 = F · J.

It takes 3M + 4S + a.
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Inverted coordinates

In inverted coordinates a point [X1, Y1, Z1] on the curve

(X2 + aY2)Z
2 = X2Y 2 + dZ4

corresponds to the affine point (Z1/X1, Z1/Y1) on the Edwards curve EE,a,d.

Addition in Inverted Twisted Coordinates. The following computes

[X3, Y3, Z3] = [X1, Y1, Z1]⊕ [X2, Y2, Z2]:

A = Z1 · Z2; B = d ·A2;

C = X1 ·X2; D = Y1 · Y2; E = C ·D;

H = C − aD; I = ((X1 + Y1) · (X2 + Y2)− C −D)

X3 = (E +B) ·H; Y3 = (E −B) · I; Z3 = A ·H · I.

It takes 9M + S + a + d.

Doubling in Inverted Twisted Coordinates. The following compute

[X3, Y3, Z3] = 2[X1, Y1, Z1]:

A = X2
1 ; B = Y 2

1 ; U = a ·B;

C = A+ U ; D = A− U ; E = (X1 + Y1)
2 −A−B;

X3 = C ·D; Y3 = E · (C − 2d · Z2
1 ); Z3 = D · E.

It need 3M + 4S + a + d.
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Chapter 4

Arithmetic on Hyperelliptic

curves of genus bigger than 1

The aim of this chapter is to explain how to compute the addition law on Jaco-

bians of hyperelliptic curve of genus g. In the first section we give the notions

of semi-reduced and reduced divisor, and in the second section we present the

Cantor algorithm. This notions can be slightly modified in order to be adapted

for superelliptic curves and also for algebraic curves in general, as we will see in

chapter 5 and 6. In the third section we describe the Cantor Algorithm from a

geometrical point of view and, in the last section, we describe a faster way to

compute the addition law for hyperelliptic curves of genus 2.

We mainly refer to [Men+96] and [Lan05]

4.1 Reduced divisors

Let C be an hyperelliptic curve of genus g (with at least one k-rational point)

given by

y2 + h(x)y = f(x),

with deg(f) = 2g + 1. We denote by ι its canonical involution that send (a, b) to

(a,−b− h(a)), and by P∞ its unique point at infinity.

We say that a divisor D of C is semi-reduced if it is of the form

D =

k∑
i=1

miPi − (

k∑
i=1

mi)P∞

where mi ≥ 0, and moreover Pi ∈ supp(D) and ι(Pi) ∈ supp(D) implies Pi = ι(Pi)

and mi = 1.

We shall show that on hyperelliptic curves each divisor class can be represented

by a unique semi-reduced divisor if k ≤ g.

Lemma 4.1.1. Every divisor in Pic0C can be represented by a semi-reduced divisor

Proof. Let D =
∑
mPP be a divisor of degree 0. Let (C0, C1, C2) be a partition of

the point in the curve where C0 contains the Weierstrass points, i.e. the points Q
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such that ι(Q) = Q, P ∈ C1 if and only if ι(P ) ∈ C1, if P ∈ C1 then mP ≥ mι(P ).

Then we can write

D =
∑
P∈C0

mPP +
∑
P∈C1

mPP +
∑
P∈C2

mPP +mP∞P∞.

Consider now the following divisor

D1 = D −
∑
P∈C2

mPdiv(x− aP )−
∑
P∈C0

⌊mP

2

⌋
div(x− aP )

then D1 ∼ D and

D1 =
∑
P∈C1

(mP −mι(P ))P +
∑
P∈C1

(mP −
⌊mP

2

⌋
)P − kP∞.

The lemma is proved.

Lemma 4.1.2. Let P = (a, b) be a point on C such that ι(P ) 6= P . Let φ ∈ k(C )

be a rational function which doesn’t have pole at P . Then for any k ≥ 0, there

exist unique constants c0, · · · , ck ∈ k, and φk ∈ k(C ) such that

φ =
k∑
i=0

ci(x− a)i + (x− a)k+1φk,

where φk doesn’t have a pole at P .

Proof. Take c0 = φ(a, b), since (x − a) is a uniforming parameter for P , we can

write φ = c0 + (x− a)φ1. The lemma follows by induction.

Lemma 4.1.3. Let P = (a, b) be a point on C such that ι(P ) 6= P . Then for

each k ≥ 1 there exists a unique polynomial ψk(x) ∈ k[x] such that

(a) degψk < k;

(b) ψk(a) = b;

(c) ψ2
k(x) + ψk(x)h(x) ≡ f(x) mod (x− a)k.

Proof. By the previous lemma write y =
∑k−1

i=0 ci(x − a)i + (x − a)kφk−1. De-

fine ψk(x) =
∑k

i=0 ci(x − a)i. We know that c0 = b, hence ψk(a) = b holds.

Since b2 + h(a)b = f(a), we can reduce both sides modulo (x − a)k and obtain

ψ2
k(x) +ψk(x)h(x) ≡ f(x) mod (x−a)k. The uniqueness can be proved easily by

induction.

Theorem 4.1.4. Let D =
∑k

i=1miPi − (
∑k

i=1mi)P∞ be a semi-reduced divisor,

with Pi = (ai, bi). Let u(x) =
∏

(x−ai)mi. There exists a unique polynomial v(x)

satisfying:

(a) deg v < deg u;

(b) v(ai) = bi for all i such that mi 6= 0;

(c) u(x)|(v(x)2 + v(x)h(x)− f(x)).

Moreover

D = gcd(div(u(x)), div(v(x)− y)),

where gcd(
∑
sPP,

∑
rPP ) =

∑
min(sP , rP )P (we will denote gcd(div(f), div(g))

by div(f, g)).
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Proof. Let (C0, C1) be the partition of supp(D) such that C0 contains the points

with ι(P ) = P and C1 the other ones. Let C2 = {ι(P ) | P ∈ C1}. We can write

D =
∑
Pi∈C0

Pi +
∑
Pi∈C1

miPi −m∞P∞.

For every Pi ∈ C1 there exist polynomials ψi(x) ∈ k[x] satisfying the condition

of the previous lemma. For each Pi ∈ C0 set ψi(x) = bi. By the Chinese Remain-

der Theorem, there is a unique polynomial v(x) ∈ k[x], with deg(v) <
∑
mi, such

that

v(x) ≡ ψi(x) mod (x− ai)mi , for all i.

Moreover,

div(u(x)) = 2
∑
Pi∈C0

Pi +
∑
Pi∈C1

miPi +
∑
Pi∈C1

miι(Pi)−
(

2
∑

mi

)
P∞

and

div(v(x)− y) =
∑
Pi∈C0

tiPi +
∑
Pi∈C1

siPi +
∑
Pi∈C

riι(Pi)−
(∑

(ti + si + ri)
)
P∞,

where C = C \ (C0 ∪ C1 ∪ C2 ∪ {P∞}). We have that each si ≥ mi, because

(x − ai)mi divides v2 + hv − f = (v(x) − y)(v(x) + h(x) + y). For each Pi ∈ C0

we have that the element ai is a single root of v(x)2 + v(x)h(x)− f(x), therefore

ti = 1 for all i. Hence

gcd (div(u(x)) ,div(v(x)− y)) =
∑
Pi∈C0

Pi +
∑
Pi∈C1

miPi +
∑
Pi∈C1

miι(Pi)−mP∞.

So div(u, v − y) = D and this proves the theorem.

The converse is also true

Corollary 4.1.5. Let µ(x), ν(x) ∈ k[x] be two polynomials such that deg ν < degµ

and µ | (ν2 + νh− f) then div(µ, ν − y) is semi-reduced.

Let D =
∑k

i=1miPi −
(∑k

i=1mi

)
P∞ be a semi-reduced divisor. We say that

it is a reduced divisor if
∑k

i=1mi < g.

Theorem 4.1.6. Each divisor D ∈ Pic0C can be represented by a reduced divisor

in a unique way.

Proof. Note that if we use the construction of the semi-reduced divisor given by

the lemma 4.1.1 we obtain a divisor D1 with N(D1) ≤ N(D), where N is the norm

N(D) =
∑

P∈C \{P∞} |mP |. Now, if N(D1) ≤ g then we are done, otherwise pick

g + 1 points in supp(D1), say P1, · · · , Pg+1 (the point P cannot occur in this list

more than ordP (D1) times). Let div(u, v − y) be a representation of the divisor

D′1 = P1+ · · ·+Pg+1−(g+1)P∞, since deg(v) ≤ g we have deg(v(x)−y) = 2g+1,

hence

div(v(x)− y) = P1 + · · ·+ Pg+1 +Q1 + · · ·+Qg − (2g + 1)P∞

41



for some points Q1, · · · , Qg. Subtracting this divisor from D1, it gives a divisor

D2 ∼ D1 ∼ D with N(D2) < N(D1). We can repeat this operation obtaining

divisors D3, · · · ,Dk unless N(Dk) ≤ g.

For the uniqueness, suppose that D1 and D2 are two reduced divisor such that

D1 ∼ D2 and D1 6= D2. Let D3 be the semi-reduced divisor D3 ∼ D1−D2 obtained

using Lemma 4.1.1. The divisor D3 is principal (since D1 ∼ D2) and non zero

(since D1 6= D2). Since it is semi-reduced the corresponding function φ has no

affine poles, then D3 = div(φ) with φ polynomial function, i.e. φ = f(x)− g(x)y

for some f, g ∈ k[x]. Since deg(φ) = N(D3) ≤ N(D1−D2) ≤ N(D1)+N(D2) ≤ 2g

and deg(y) = 2g + 1 we must have g(x) = 0. Hence φ = f(x), then D3 is of the

form
∑
mP (P + ι(P )) − (2

∑
mP )P∞, contradicting the fact that D3 is semi-

reduced.

We proved also that the Jacobian JC (K) is in bijection with the set of reduced

divisor of the hyperelliptic curve C . This is also true for any hyperelliptic curves

over a perfect field k.

4.2 Mumford representation and Cantor algorithm

Summing up we have the so called Mumford representation:

Proposition-Definition 4.2.1. Each nontrivial ideal class over k can be repre-

sented via a unique ideal generated by u(x) and y − v(x), u, v ∈ k[x] , where

(a) u is monic,

(b) deg v < deg u ≤ g,

(c) u | v2 + vh− f .

Let D =
∑r

i=1 Pi − rP∞ be a reduced divisor. Put Pi = (ai, bi), then the corre-

sponding ideal class is represented by u =
∏r
i=1(x−ai) and if ordPi(D) = mi then(

d
dx

)j
[v(x)2 + v(x)h(x)− f(x)]|x=ai = 0 for 0 ≤ j < mi.

For brevity we denote the points in JC by [u, v]. The inverse is represented by

[u,−h − v], (where the second polynomial is understood modulo u if necessary).

The zero element JC is represented by [1, 0].

Fix two reduced divisors D1 and D2. Now we present two algorithms:

the first one finds a semi-reduced divisor D ∼ D1 +D2;

the second one finds the reduced divisor D′ ∼ D.

Algorithm 1.

INPUT: Reduced divisors D1 = [u1, v1] and D2 = [u2, v2] of Ck.

OUTPUT: A semi-reduced divisor D = [u, v] such that D ∼ D1 +D2.

1. Use the extended Euclidean algorithm to find three polynomials d1, e1,

e2 ∈ k[x] such that d1 = e1u1 + e2u2.
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2. Use the extended Euclidean algorithm to find three polynomials d, c1,

c2 ∈ k[x] such that d = c1d1 + c2(v1 + v2 + h).

3. Let s1 = c1e1, s2 = c1e2, s3 = c2, so that

d = s1u1 + s2u2 + s3(v1 + v2 + h).

4. Set

u =
u1u2
d2

and

v =
s1u1v2 + s2u2v1 + s3(v1v2 + f)

d
mod u.

Algorithm 2.

INPUT: A semi-reduced divisor D = [u, v];

OUTPUT: The reduced divisor D′ = [u′, v′] such that D′ ∼ D.

1. Set

u′ = (f − vh− v2)/u

and

v′ = (−h− v) mod u′

2. If deg u′ > g then set u← u′ and v ← v′and go to step 1.

3. Otherwise make u′ monic, i.e. put u′ ← a−1u′, where a is the leading

coefficient of u′. Return [u′, v′].

Theorem 4.2.2. The Algorithm 1 works.

Proof. First prove that v is indeed a polynomial. We have

v =
v2(d− s2u2 − s3(v1 + v2 + h)) + s2u2v1 + s3(v1v2 + f)

d

= v2 +
s2u2(v1 − v2)− s3(v22 + v2h− f)

d
.

Since d|u2 and u2|(v22 + b2h− f), v is a polynomial.

We can write

v − y =
s1u1v2 + s2u2v1 + s3(v1v2 + f)− dy

d
mod a

=
s1u1v2 + s2u2v1 + s3(v1v2 + f)

d
+

−s1u1y + s2u2y + s3(v1 + v2 + h)y

d
mod a

=
s1u1(v2 − y) + s2u2(v1 − y) + s3(v1 − y)(v2 − y)

d
mod a. (4.1)

To prove that u|(v2 + vh− f) it suffices to show that u1u2 divides the product of

s1u1(v2−y)+s2u2(v1−y)+s3(v1−y)(v2−y) by its conjugate. This follows because
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u1|(v21 +v1h−f) = (v1−y)(v1+y+h) and u2|(v22 +v2h−f) = (v2−y)(v2+y+h).

Then, by Corollary 4.1.5, [u, v] is a semi-reduced divisor.

We need to prove now that D ∼ D1 +D2. First we remark that

m(P ) + n(ιP ) ∼ (m− n)P + 2nP∞

using the polynomial function x− xP .

Now we consider two different cases:

1. Let P = (xP , yP ) an ordinary point. And consider the two subcases:

(a) Suppose that

ordP (D1) = m1, ordι(P )(D1) = 0

ordP (D2) = m2, ordι(P )(D2) = 0.

Then

ordP (u1) = m1, ordP (u2) = m2,

ordP (v1 − y) ≥ m1, ordP (v2 − y) ≥ m2.

If m1 = 0 or m2 = 0 then ordP (d1) = 0, hence ordP (d) = 0 and

ordP (u) = m1 +m2.

If m1 ≥ 1 and m2 ≥ 1, then ordP (d) = 0 and ordP (u) = m1 + m2,

because (v1 + v2 + h)(xP ) = 2yP + h(xP ) ≥ 0.

From 4.1 it follows that ordP (v − y) ≥ m1 + m2, hence we have

ordP (D) = m1 +m2.

(b) Suppose now that

ordP (D1) = m1, ordι(P )(D2) = m2,

with m1,m2 > 0. Then

ordP (u1) = m1, ordP (u2) = m2, ordP (d1) = m2,

ordP (v1 − y) ≥ m1, ordP (v2 − y) = 0, ordι(P )(v2 − y) ≥ m2.

This implies that ordP (v2 +h+y) ≥ m2, hence ordP (v1 +v2 +h) ≥ m2

or (v1 + v2 + h) = 0. Then ordP (d) = 0 and ordP (u) = m1 −m2.

From 4.1 it follows that ordP (v − y) ≥ m1 − m2, hence we have

ordP (D) = m1 −m2.

2. Let now P be a Weierstrass point. There are two other subcases:

(a) Suppose that

ordP (D1) = ordP (D2) = 1.

Then

ordP (u1) = 2, ordP (u2) = 2, ordP (d1) = 2.

Now we have (v1 + v2 + h)(xP ) = 2yP + h(xP ) = 0, hence either

ordP (v1 + v2 + h) ≥ 2 or (v1 + v2 + h) = 0. It follows that ordP (d) = 2

and ordP (u) = 0, hence ordP (D) = 0.
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(b) Suppose that

ordP (D1) = 1, ordP (D2) = 0.

Then

ordP (u1) = 2, ordP (u2) = 0,

ordP (d1) = 0, ordP (d) = 0, ordP (u) = 2.

Since ordP (v1 − y) = 1, then by 4.1 we get ordP (v − y) ≥ 1. Since the

divisor D is semi-reduced we have ordP (v − y) = 1 and ordP (D) = 1.

Using the first remark we proved the correctness of the first algorithm.

Theorem 4.2.3. The Algorithm 2 works.

Proof. We shall show that after the step 1 we have:

1. deg(u′) < deg(u);

2. D′ = [u′, v′] is semi-reduced;

3. D′ ∼ D.

We shall prove it step by step:

1. Let m = deg u, and n = deg v, where m > n and m ≥ g + 1. Then

deg u′ = max(2g + 1, 2n)−m.

If m > g+1, then max(2g+1, 2n) ≤ 2(m−1), hence deg u′ ≤ m−2 < deg u.

If m = g + 1, then max(2g + 1, 2n) = 2g + 1, hence deg u′ = g < deg u.

2. We have that f − vh− v2 = uu′. Then

f + (v′ + h)h− (v′ + h)2 = 0 mod u′

hence

f − v′h− v′2 = 0 mod u′.

This implies that u′|(f − v′h − v′2). Then, by Corollary 4.1.5, [u′, v′] is

semi-reduced.

3. As we use in the previous proofs, let C0 be the set of the Weierstrass points

in supp(D), let C1 be the set of ordinary points in supp(D), and finally let

C2 = {ι(P ) : P ∈ C1}. Then we can write

D =
∑
Pi∈C0

Pi +
∑
Pi∈C1

miPi −m∞P∞.

We have

div(u) =
∑
Pi∈C0

2Pi +
∑
Pi∈C1

mi(Pi + ι(Pi))− 2m∞P∞
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and

div(v − y) =
∑
Pi∈C0

Pi +
∑
Pi∈C1

niPi +
∑
Pi∈C

0ι(Pi) +
∑
Pi∈C

siPi − (∗)P∞,

where C = C \ (C0 ∪ C1 ∪ C2 ∪ {P∞}, ni ≥ mi, si ≥ 1, and si = 1 if Pi is a

Weierstrass point. Since (v2 + vh− f) = (v − y)(v + y + h) it follows that

div(v2+vh−f) =
∑
Pi∈C0

2Pi+
∑
Pi∈C1

ni(Pi+ι(Pi))+
∑
Pi∈C

si(Pi+ι(Pi))−(∗)P∞,

hence

div(u′) = div(v2 + vh− f)− div(u)

=
∑
Pi∈C′1

ti(Pi + ι(Pi)) +
∑
Pi∈C

si(Pi + ι(Pi))− (∗)P∞,

where ti = ni −mi and C ′1 = {P ∈ C1 | ti > 0}.
If Pi = (ai, bi) ∈ C ′1 ∪ C, then

v′(ai) = −h(ai)− v(ai) = −h(ai)− yi mod u′.

We have

div(v′ − y) =
∑
Pi∈C′1

riι(Pi) +
∑
Pi∈C

wiι(Pi) +
∑
Pi∈C3

ziPi − (∗)P∞,

where ri ≥ ti, wi ≥ si, wi = 1 if Pi is a Weierstrass point, and C3 is the set

C \ C ′1 ∪ C ∪ {P∞}. Finally

div(u′, v′ − y) =
∑
Pi∈C′1

tiι(Pi) +
∑
Pi∈C

siι(Pi)− (∗)P∞

∼ −
∑
Pi∈C′1

tiPi −
∑
Pi∈C

siPi + (∗)P∞

= D − div(v − y),

therefore D ∼ D′.

4.3 Geometric interpretation

Starting from a hyperelliptic curve E : y2 + h(x)y = f(x) of genus g ≥ 2, over

an algebraic closed field, we can describe the geometric interpretation of the two

algorithms. Suppose now that we want to add two reduced divisors of the form

D1 =
∑k

i=1miPi − (
∑k

i=1mi)P∞ and D2 =
∑k

j=1 njPj − (
∑k

j=1 nj)P∞. Suppose

that Pi 6= ι(Pj) for each i and j (if not we can eliminate the couples from D1+D2,

indeed the complete system do not change). We can interpreter the algorithm in

such a way: find the function t that interpolates the points Pi and Pj with the
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Figure 4.1: Addition law on hyperelliptic curves of genus 2

respective multiplicities, i.e if the multiplicity is bigger that 1 on a point Q then

the derivative of t and E evaluated in Q are the same. In general t is a polynomial

of degree 2g−1 (or less). Now the divisor div(t) = D1+D2+E , then D1+D2 ∼ −E .

The figure 4.3 represent the addition on an hyperelliptic curve of genus 2. Note

that in the figure the divisor −E = R1 + R2 is already reduced. But this is not

the case for higher genus. In fact, the Bézout Theorem says that the number of

(projective) points of intersection (with multiplicities) of two plane curve is the

product of their degrees, then, computing the multiplicity of the intersection of t

and E in P∞, we can find the number of points of intersection in the affine plane.

In order to do this we only care on terms of higher degree in t and E , then we

can suppose that the functions are t′ : y = xk and E ′ : y2 = x2g+1. Passing to

the projective coordinate and using the affinization respect the variable y, we can

look at the function t′′ : zk−1 = xk and E ′′ : z2g−1 = x2g+1. Using the definition

of multiplicity of intersection we can compute

mP∞(t,E ) = min{(2g + 1)(k − 1), (2g − 1)k}.

Remark. Computing the multiplicity with the definition could take more than

a while. Note that in this case we can avoid it using the idea of Algorithm 2.

Indeed the number of affine point is deg(f − th− t2) = max{2g+ 1, 2k}, then the

multiplicity at infinity is (2g+1)k−deg(f−th−t2) = min{(2g+1)(k−1), (2g−1)k}.

Now, assuming that we are in the most common case in which k = 2g − 1,

then mP∞(t,E ) = (2g− 1)2 and the total points of intersection in the affine plane

are (2g − 1)(2g + 1) − (2g − 1)2 = 4g − 2. The divisor D1 + D2 has already 2g

points in the affine plane, hence the divisor E has 2g− 2 finite points. So only for

g = 2 it is already reduced.

If the divisor E is not reduced than we can do it again using the affine point of

E instead of the affine points of D1 +D2, and find others divisors E2, E3, · · · until

the affine points of Ek are less than g.
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Here are some examples:

• genus 2. After the first iteration E has 2 affine points. So the divisor E is

reduced

• genus 3. After the first iteration E has 4 affine points, hence another iteration

is necessary. Now let t2 the polynomial that interpolates these 4 points, it

has degree 3. Then

deg(t2) deg(E )− 4−mP∞(t2,E ) = 3 · 7− 4− 14 = 3 = g.

Hence the divisor E2 is reduced.

• genus 4. After the first iteration E has 6 > g affine points. Now let t2 the

polynomial that interpolates these 6 points, it has degree 5. Then

deg(t2) deg(E )− 6−mP∞(t2,E ) = 5 · 9− 6− 35 = 4 = g.

Hence the divisor E2 is reduced.

• genus 5. After the first iteration E has 8 > g affine points. Now let t2 the

polynomial that interpolates these 8 points, it has degree 7. Then

deg(t2) deg(E )− 8−mP∞(t2,E ) = 7 · 11− 8− 63 = 6 > g.

Hence the divisor E2 is not reduced yet. Let t3 the polynomial that inter-

polates these last 6 points, it has degree 5. Then

deg(t3) deg(E )− 6−mP∞(t3,E ) = 5 · 11− 6− 44 = 5 = g.

Hence the divisor E3 is reduced.

We can also prove that the number of iteration required are dg2e.

4.4 Explicit formulæ on genus 2

Here we present how to compute explicitly the addition and the doubling on

hyperelliptic curves of genus 2. As we already said in this case it suffices to only

do one iteration of the reduction step, moreover we can describe quickly all the

types of the possible couples of divisors that can occur in the addition. Suppose

that we want to add D1 = [u1, v1] and D2 = [u2, v2], then we can distinguish the

possible cases according to the degree of u1 and u2.

1. If deg u1 = 0, then D1 = [1, 0] is the neutral element. Hence D1 +D2 = D2.

2. If deg u1 = deg u2 = 1, then we can write D1 = P1−P∞ and D1 = P2−P∞.

If P1 = ιP2 then D1 +D2 = [1, 0], the neutral element.

If P1 6= ιP2 then D1 + D2 = P1 + P2 − 2P∞, in particular we can compute

the function u and v as follow

48



a) If P1 = P2, hence [u1, v1] = [u2, v2], then we put

u = u21, v = ((f ′(xP )− v1h′(xP ))x+
f ′(xP ) + v1h

′(xP )xP
2v1 + h(xP )

+ v1.

b) If P1 6= P2 we can put

u = u1u2, v =
(v2 − v1)x+ v2xP1 − v1xP2

xP1 − xP2

.

In both cases the divisors are already reduced.

3. If deg u1 = 1 and deg u2 = 2, say u1 = x + x10 and u2 = x2 + u21x + u20
then we can write D1 = P1 − P∞ and D1 = P2 + P3 − 2P∞.

a) If ιP1 occurs in D2, say ιP1 = P2 then D1 +D2 = P3−P∞. In particular

u = x+ u21 − u10, v = v2(−u21 + u10).

b) If P1 occurs in D2 then we can apply the doubling in (2.a) and add

[x + u21 − u10, v2(−u21 + u10)] using the following (3.c) if P2 6= P3.

Otherwise one can double D2 and then subtracts D1 using (3.c).

c) If ιP1 and P1 do not occur in D2 we can use the general algorithms.

Faster implementations will be discussed later in section 4.4

4. If deg u1 = deg u2 = 2, then we can assume that D1 = P1 + P2 − 2P∞ and

D1 = P3 + P4 − 2P∞.

a) If u1 = u2, then we can assume that the x-coordinate of Pi and Pi+2 are

equal.

i) If v1 = −v2 − h mod u1, then the two divisors are opposite and

D1 +D2 = [1, 0].

ii) If v1 = v2 we can distinguish two cases:

• If P1 is a Weierstrass point, then D1 + D2 = 2P2 − 2P∞ and

we can apply (2.a) to [x+ u11 + xP1 , v1(−u11 − xP1 ], where xP1

is compute using (x − xP1) = gcd(h + 2v1, u1). Indeed P1 is a

Weierstrass point iff h(xP1) = −2yP1 .

• If P1 is not a Weierstrass point we can apply the general algo-

rithms. A faster implementation will be discuss later in section

4.4

iii) The last of these cases is P1 = P3 and P2 = ιP4. Then D1+D2 = 2P1

and we can compute it using (2.a) on [x− v10−v20
v21−v11 , v1(

v10−v20
v21−v11 )].

b) If deg(gcd(u1, u2)) = 1, then we can suppose that P2 and P4 are distinct

and non-conjugate.

i) If P1 = ιP3, then the sum D1 = D2 = P2 + P4 − 2P∞ and we are

done.
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ii) If P1 = P3 then we can use (2.a) and (3.c) and compute D1 +D2 as(((
2 (P1 − P∞)

)
+ P2 − P∞

)
+ P3 − P∞

)
c) If gcd(u1, u2) = 1 then all the Pj are distinct and non-conjugate each

other. This is the most common case and we will give the explicit algo-

rithm.

Addition

Now we give the explicit formulæ for the most common case, deg u1 = deg u2 = 2

and gcd(u1, u2) = 1. The addition algorithm simply return the function u = u1u2
and the function v which satisfies

v ≡ v1 mod u1

v ≡ v2 mod u2

The reduction algorithm must be iterated one time. And it returns the polyno-

mials u′ = (f − vh− v2)/u (if necessary make it monic) and v′ = −h− v mod u.

In order to optimize the computation we give a different algorithm that does not

compute explicitly the semi-reduced divisor.

k = (f − v2h− v22)/u2

s ≡ (v1 − v2)/u2 mod u1

l = su2

u = (k − s(l + h+ 2v2))/u1

u′ = u∗

v′ ≡ −h(l + v2) mod u′

where u∗ means that we make u monic.

For further details on the computation time and for the proof that this algo-

rithm works see [Lan05]; it takes 3S + 22M + I, and if s is constant it takes only

2S + 11M + I.

In [Lan05] we can also find a way to compute the addition much faster in the

case (3.c), when deg u1 = 1,deg u2 = 2 and gcd(u1, u2) = 1. It is proved that it

needs only S + 10M + I.

The same argument leads to a faster doubling algorithm:

k = (f − hv − v2)/u
s ≡ k/(h+ 2v) mod u

l = su

ũ = s2 − ((h+ 2v)s− k)/u

u′ = ũ∗

v′ ≡ −h− (l + v) mod u′.
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In [Lan05] it is proved that it needs 5S + 22M + I, and if s is constant it takes

only 3S + 13M + I in odd characteristic. Another multiplication is required in

even characteristic.
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Chapter 5

Arithmetic on

non-hyperelliptic curves

The present chapter will focus on the study of superelliptic curves and general

non-hyperelliptic curves of genus 3, i.e. smooth quartics in the plane. These curves

are the first and simplest examples of non-hyperelliptic curves. The construction

of the reduction algorithm in the superelliptic case will be very similar to the

hyperelliptic case, indeed they both have a single point at infinity. The case of

quartics will be slightly different, indeed they have in general more than one point

at infinity. For this chapter we mainly refer to [Bas+05] and [FOR07].

5.1 Superelliptic curves

A superelliptic curve is a plane curve of the form

C : y3 = f(x),

where f is a polynomial of degree at least 3, not divisible by 3 and without

multiple roots in k. Since deg f ≥ 4 the curve has a unique point at infinity,

namely [0, 1, 0], and it is a singulas point if deg f > 4. It is clear that C is a cover

of degree 3 of the projective line, and that Gal(k(C )/k(x)) = {1, σ, σ2} where

σ : Y 7→ ξY and ξ is a primitive third root of unity. By Hurwitz formula we have

2g − 2 = (−2) deg(π) + ram(π)

where π : (x, y) 7→ (y). Since the points of ramification for π are the points (xi, 0)

with f(xi) = 0 and the point at infinity, we have 2g − 2 = −2 · 3 + 2 deg(f) + 2

because they are of ramification 2, then

g = deg(f)− 1.

As in Theorem 1.12.1 we represent every divisor D of degree 0 with its reduced

representation, i.e. a divisor E −mP∞ ∼ D that is minimal (respect to m).

As in the case of the hyperelliptic curve we can write it with its Mumford

representation (u,w). If E =
∑
Pi, with Pi = (xi, yi), then u =

∏
(x − xi).
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We remark that w is of the form ry2 + sy + t where r, s, t ∈ k[x], deg r, deg s,

deg t < deg u ≤ g, and gcd(u, r, s, t) = 1.

Indeed, if D contains in its support the point Pi, σPi, σ
2Pi then we can remove

these points using the rational function `/`∞ where ` : x − xi and `∞ is the line

at infinity, hence D is not reduced. Therefore a reduced divisor cannot contain all

the cycle Pi + σPi + σ2Pi and the points (xi, 0) must have multiplicity at most 2,

hence the degree (respect to y) of w is at most 2.

The sum D+σD+σ2D is the divisor of a polynomial in x, so that the divisor

σD + σ2D is the inverse of the divisor D.

Even if the representation (u(x), y − v(x)) cannot be always obtained (unlike

the hyperelliptic curves), it correspond to the most common case, so that we define

the typical divisor to be a divisor of the form (u, y − v), with deg v < deg u ≤ g

and u|v3 − f .

Now we give a results that shows the probability to have a typical divisor.

Theorem 5.1.1. If k = Fq, then the ratio of the reduced typical divisors over

the reduced divisors is 1 − 1
qO(1). Moreover the probability to have a typical

divisor after adding a distinct typical divisor or doubling a typical divisor is again

1− 1
qO(1).

Proof. See [Bas+05].

The following theorem explain if a divisor
∑k

i=1 Pi − kP∞, with k ≤ g, on a

superellitic curve of genus 3 or 4 is already reduced or not.

Theorem 5.1.2. On a superellipctic curve of genus 3 a divisor of the form∑k
i=1 Pi − kP∞, with k at most 3, is not reduced if and only if it consist of three

collinear points.

On a superellipctic curve of genus 4 a divisor of the form
∑k

i=1 Pi − kP∞, with k

at most 4, is not reduced if and only if it satisfies one of the following conditions:

? it contains a triplet of conjugate points,

? it consists in two pairs of conjugate points,

? it consists of four collinear points,

? it consists of four points lying on a parabola y − v and on an elliptic curve

y2 + sy + t with deg s ≤ 1 and deg t = 2.

Moreover the elliptic curve intersect the superelliptic curve is these four points,

three collinear points and their conjugate.

Proof. First assume that D is not reduced, and call D′ its reduction. Write

D′ =
∑

miPi +
∑

nj(σQj + σ2Qj)− (∗)P∞,

where the Pi and the Qj have different x-coordinates, and denote by µ and ν

respectively
∑
mi and

∑
nj .

Let β ∈ k[x] be the monic polynomial such that

divβ =
∑

mi(Pi + σPi + σ2Pi) +
∑

nj(Qj + σQj + σ2Qj)− (∗)P∞,
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then the divisor D −D′ + divβ is principal and we call α its function. We have

divα = D +
∑

mi(σPi + σ2Pi) +
∑

njQj − (∗)P∞.

Write α = ry2 + sy + t, we have

degD+ + 2 degD′+ ≥ degD+ + 2 degD′+ − 3ν

= degα

= degxNk(C )/k(x)(α)

= degx(α · σα · σ2α)

= degx(r3f2 + (s3 − 3srt)f + t3)

= max{3 deg r + 2(g + 1), 3 deg s+ g + 1, 3 deg t}

Now we distinguish different cases:

1) If degD+ 6= g then degD′+ ≤ g − 2 and degα ≤ 3g − 5. Since g ∈ {3, 4} we

have r = 0 and deg s ≤ 0, i.e. s ∈ {0, 1}.
If s = 1, then div(α) cannot contain a pair of conjugate points, hence µ = 0,

ν = bdegD
′+

2 c ≤ bg−22 c ≤ 1 and degα ≤ g − 1 + 1 < deg f, contradiction.

If s = 0, then α = t ∈ k[x], so that div(α) ≥ div(β), hence β|α. Since

D = D′ + div(α/β) and degD+ > degD′+ we have deg(α/β) ≥ 1, whence D
contains to divisor of a vertical line.

2) If degD+ = g and r = 0 then, since degα ≤ 3g − 2, deg s ≤ 1.

If s = 0, then D contains to divisor of a vertical line.

If s = 1, then as above divα doesn’t contains a pair of conjugate points, µ = 0,

ν ≤ 1, degα ≤ g + 1, and deg t ≤ 1. If ν = 0, then β = 0, contradiction. If

ν = 1, then D′ = σQ + σ2Q and divα = D + Q and D contains g collinear

points.

If deg s = 1, we can assume µ ≥ 1. Indeed if µ = 0 then degα ≤ g + 1 and it

contradicts deg(s3f + t3) ≥ g + 4. Fix a point Pi in D′,

if Pi is unramified, then yi 6= 0 and

{
s(xi)σ(yi) + t(xi) = 0

s(xi)σ
2(yi) + t(xi) = 0

;

if it is ramified, then ordPα = ordPY + 1 = 2 and s(xi)yi + t(xi) = 0, hence,

in every case s(xi) = t(xi) = 0. We have x − xi|α and Pi ≤ D, hence D − Pi
reduced to D′ − Pi and, since deg(D+ − Pi) = g − 1, D − Pi contains a triplet

of conjugate point Q, σQ, σ2Q, so that g = 4, D′ = P, β = x − xi, and

α = (x− xi)(x− xQ), contradiction.

3) If degD+ = g and r 6= 0, then

2g + 2 ≤ 3 deg r + 2g + 2

≤ degα

= degD+ + 2 degD′+ − 3ν

≤ degD+ + 2 degD′+

≤ 3g − 2.
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This implies g ≥ 4 (hence g = 4), and then all the inequalities are equalities.

We have ν = 0, µ = 3, r = 1, D′ = P1+P2+P3 with Pi = (xi, yi), α = y2+sy+t,

β = (x− x1)(x− x2)(x− x3), deg t ≤ 3, and deg s ≤ 1.

Now we prove that in this case β|t − s2. Let 1 ≤ m ≤ 3 such that the sum

m(σP ) +m(σ2P ) is in div(α).

a) If P is a ramification point, then the ordP (y) = 1, ordP (α) ≥ 2m ≥ 2,

t(xP ) = 0, ordP (t) ≥ 3, ordP (y2 + t) = 2, s(xP ) = 0, ordP (s) ≥ 3,

ordP (α) = 2, m = 1. In particular (x− xP )|t− s2.
b) If P is unramified, then ordP (y) = 0, ordP (σα) ≥ m, ordP (σ2α) ≥ m. This

implies m ≤ ordP (σα − σ2α) = ordP (y(y − s)) = ordP (y − s). Therefore,

m(σP ) +m(σ2P ) ≤ div(α̃), where the function α̃ is given by

α̃ = σ(y − s) · σ2(y − s) = y2 + sy + s2.

So that mσP +mσ2P is in div(α− α̃) = div(t− s2). In particular we have

(x− xP )m|t− s2.
c) Since σD′ + σ2D′ ≤ div(α), we have β|t − s2. Moreover we proved that

D′ ≤ div(y − s).

By the Bézout theorem we have div(y − s) = D′ +Q+ S, where Q and S are

two points. Consider now the following two cases:

a) deg t ≤ 2. Since β has degree 3, we have t = s2 and α = α̃. Then

D = divα− divβ +D′

=

(
3∑
i=1

(σPi + σ2Pi) + σS + σ2S + σQ+ σ2Q

)

−

(
3∑
i=1

(Pi + σPi + σ2Pi

)
+

(
3∑
i=1

Pi

)
= σS + σ2S + σQ+ σ2Q.

b) deg t = 3. We have α = y2 + sy + s2 + cβ, that is an elliptic curve. Then

D = divα− divβ +D′

= div

(
α(y − s)
cβ

)
−Q− S

= div

(
y − s+

(y2 + sy + s2)(y − s)
cβ

)
−Q− S

= div

(
y − s+

(f − s3)
cβ

)
−Q− S.

Since divβ ≤ divNk(C )/k(x)(y − s), we have β|f − s3 = Nk(C )/k(x)(y − s).
Furthermore deg

(
s− (f−s3)

cβ

)
= 2, hence y−

(
s− (f−s3)

cβ

)
define a parabola

containing the points of D.

Moreover we have divα =
∑3

i=1(σPi + σ2Pi) +D and the Pi’s lie on y − s,
hence they are collinear.
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This proves the necessity of the conditions.

To prove that the conditions are sufficient we can easily construct the reducing

functions.

Corollary 5.1.3. On a superelliptic curve of genus 3 or 4, a typical divisor repre-

sented by (u, y−v) is reduced whenever deg u < g, or deg u = g and deg v = g−1.

Proof. The previous theorem shows that, for g ∈ {3, 4}, a divisor is not reduced

either if deg u < g and it contains a pair of conjugate points, or deg u = g and its

points can be interpolated by a polynomial y − v with deg v ≤ g − 2.

Addition

As for hyperelliptic curves, we give two algorithms for computing the addition or

the doubling of two divisors, one for the composition and one for the reduction.

We consider only typical divisors Di = (ui, y − vi). As we had already seen

in Theorem 5.1.1, the probability to have a typical divisor after an addition of

two typical divisor is extremely high. To be accurate, it does not occur when

gcd(u1, u2, v
2
1 + v1v2 + v22) 6= 1. Indeed suppose that u1 and u2 have a common

root on a point P , now if P is a ramification point, then v1(xP ) = v2(xP ) = 0 and

(v21 + v1v2 + v22)(xP ) = 0; if P is not a ramification point, then v1(xP ) = v2(xP )

if and only if (v21 + v1v2 + v22)(xP ) 6= 0.

So we give an algorithm that works only in this case.

Algorithm 3.

INPUT: D1 = (u1, y − v1), D2 = (u2, y − v2) two typical divisors on the su-

perelliptic curve C such that gcd(u1, u2, v
2
1 + v1v2 + v22) = 1.

OUTPUT: D3 = D1 +D2 = (u, y − v).

1. Find s1, s2, s3 ∈ k[x] such that

s1u1 + s2u2 + s3(v
2
1 + v1v2 + v22) = 1;

2. Set

u = u1u2

v = v1 + s1u1(v2 − v1)− s3(v31 − f) mod u

Theorem 5.1.4. The previous Algorithm is correct.

Proof. First note that the definition of v is symmetric in v1 and v2. Indeed

v = v1 + s1u1(v2 − v1)− s3(v31 − f) mod u

= (1− s1u1)v1 + s1u1v2 − s3(v31 − f) mod u

= (s2u2 + s3(v
2
1 + v1v2 + v22))v1 + s1u1v2 − s3(v31 − f) mod u

= s1u1v2 + s2u2v1 + s3(v
2
1v2 + v1v

2
2 + f) mod u.
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Now the only thing to prove is that u|v3 − f . Let p be an irreducible polynomial

and e1, e2 such that pei ||ui, hence pe||u, with e = e1+e2. Suppose that e1 = 0 then

pe2 |v32 − f and v ≡ v2 (mod u2); this implies that pe|v3 − f . The same for e2 = 0.

Assume now that e1, e2 ≥ 1, and assume also e2 ≤ e1, so that pe2 divides u1, u2;

since v1 ≡ v2 ≡ f (mod pe2), pe2 divides also v31 − v32. From gcd(u1, u2,
v31−v32
v1−v2 ) = 1

we deduce that pe2 |v1 − v2. We have also that 1 ≡ s3
v31−v32
v1−v2 ≡ 3s3v

2
1 (mod pe2),

and then pe|u1(v1 − v2). By definition we get

v ≡ v1 − s3(v31 − f) mod pe.

Hence

v3 − f ≡ v31 − 3v21s3(v
3
1 − f) + (v31 − f)2(· · · )− f mod pe,

but, since pe|u21 and u1|(v31 − f), we have

v3 − f ≡ (v31 − f)(1− 3v21s3) ≡ 0 mod pe.

We can apply the previous algorithm to the case of doubling only if the divisor

does not contain a ramification point in its support, i.e. if gcd(u1, v1) = 1. Then

the algorithm becomes

Algorithm 4.

INPUT: D1 = (u1, y − v1), a typical divisor such that gcd(u1, v1) = 1.

OUTPUT: D3 = 2D1 = (u, y − v).

1. Find s1, s3 ∈ k[x] such that

s1u1 + 3s3v
2
1 = 1.

2. Set

u = u21,

t = −s3 · (v31 − f)/(u1) mod u1,

v = v1 + tu1.

The addition of two divisor D1 and D2 in case their support are disjoint be-

comes easier. Indeed we can use the following

Algorithm 5.

INPUT: D1 = (u1, y − v1), D2 = (u2, y − v2) such that gcd(u1, u2) = 1.

OUTPUT: D3 = D1 +D2 = (u, y − v).

1. Find s1, s2 ∈ k[x] such that

s1u1 + s2u2 = 1.
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2. Set

u = u21,

t = s1(v2 − v1) mod u2,

v = v1 + tu1.

Reduction

Now we give an algorithm that reduces a typical divisor D = (u, y−v) to a reduced

typical divisor DR = (uR, y − vR). The main idea is to:

1. invert the divisor D using

−D + div(u) = (u, y2 + vy + v2);

2. choose a typical ideal D′ in the class of −D, say D′ = −D + div(β);

3. let α ∈ L (D′+) such that

−ordP∞(α) = min
ψ∈L (D′+)

{−ordP∞(ψ)};

4. put DR = D + div(α)− β.

The following algorithm tells us how to compute the typical form of a divisor

in the opposite class of the divisor D. Moreover, for an appropriate index i0, the

algorithm returns a divisor with lower degree of the given divisor D. Then we

can iterate an even number of times the algorithm to compute the reduced typical

divisor of D.

Algorithm 6.

INPUT: a typical divisor D = (u, y − v).

OUTPUT: a typical divisor D′ ∼ −D in the form (u′, y − v′)

1. Use the extended Euclidean algorithm and find the sequence of poly-

nomial ri, si, and ti such that

ri = siu+ tiv.

Assume that gcd(ri, ti) = 1.

2. Set

u′ =
t3i f − r3i

u

v′ = ri · (t−1i mod u′)

Remark. The assumption gcd(ri, ti) = 1 happens with probability 1− 1
qO(1) and

we have

gcd(ti, u
′)| gcd(ti, t

3
i f − r3i )| gcd(ti, ri)

3 = 1,

then the inverse of ti modulo u′ does exist.
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Theorem 5.1.5. The previous algorithm is correct. Moreover if deg u ≥ g and

deg v = deg u− 1, and suppose also that deg ri = degu−1− i and deg ti = i, then

using the algorithm with the index i0 =
⌊
3 deg u−g−4

6

⌉
, we have:

? if deg u ≥ g + 2, then deg u′ < deg u;

? if deg u ∈ {g, g + 1}, then deg u′ = g.

Proof. First we prove that the algorithm gives the correct result.

div((u, y − v)) = div((u, tiy − tiv)) (5.1)

= div((u, tiy − ri)) (5.2)

∼ −(div(tiy − ri)− div((u, tiy − ri))) (5.3)

= −div((u′, tiy − ri)) (5.4)

= −div((u′, y − ri(ti mod u′))) (5.5)

In the step 5.1 we used gcd(ti, u)| gcd(ti, ri) = 1; in 5.2 we used tiv ≡ ri mod u;

the step 5.3 is true because the divisor div(tiy−ri) is principal; and in 5.5 we used

gcd(u′, ti) = 1. For the step 5.4 note that Nk(C )/k(x)(tiy − ri) = t3i f − r3i = uu′,

so that div(tiy − ri) = div(uu′, tiy − ri). Moreover if a point P = (xP , yP )

is in div(tiy − ri), then ti(xP ) 6= 0 since gcd(ti, ri) = 1, and if yP 6= 0, then

the points σP, σ2P are not contained in div(tiy − ri); if yP = 0, then we have

ordP (tiy − ri) = 1, because ordP (y) = 1, this shows that exactly one of the two

divisors div((u, tiy − ri)) or div((u′, tiy − ri)) contains P . This shows that 5.4

holds, and the algorithm is correct.

For the second part of the theorem define the function

d(i) = max{3i+ g + 1− deg u, 2 deg u− 3− 3i} = max{δ, γ}

that is the degree of the divisor div((u′, y − ri(ti mod u′))) after one iteration

of the algorithm using the function ri, ti. Since δ is strictly increasing and γ is

strictly decreasing, d(i) assume the (real) minimum for i = imin = 3 deg u−g−4
6 .

Then we have d(imin) = deg u+g−2
2 . Note that the slopes of the linear functions δ

and γ are +3,−3 then for i ∈ N, d(i) = d(imin) + 3 · |i− imin| and the minimum

of the function d is attained for the closed integer i0 to imin. Since |i− imin| ≤ 1
2 ,

we have d(i0) ≤ bg− 1 + 3
2c for deg u = g and d(i0) ≤ bdeg u− 2 + 3

2c = deg u− 1

for deg u ≥ g+ 2. In case deg u = g+ 1 we use the fact that g 6≡ −1 mod 3, then

d(i0) < bg − 1
2 + 3

2c, hence d(i0) = g.

Corollary 5.1.6. Let D = (u, y − v) with deg u = 2g and deg v = 2g − 1. In the

assumptions of Theorem 5.1.5 we can apply the algorithm two times for g = 3, or

four times for g = 4 and it is enough to obtain a reduced typical divisor D′ ∼ D.

5.2 Non-hyperelliptic curves of genus 3

As we already proved, a non-hyperelliptic curve of genus 3 is birationally equiva-

lent to a smooth plane curve of degree 4. So we are allowed to consider a quartics,

call it Q.
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Suppose that there exists a line that intersects the curve Q in four k rational

points, possibly with multiplicity. Up to linear transformation of the projective

space, we can consider the line at infinity, `∞ : Z = 0, and we can call the four

point P∞1 , P∞2 , P∞3 , P∞4 . We state without proof the sufficient conditions in which

this assumption is fulfilled for a base field k = Fq, where q = pr.

Proposition 5.2.1. There exists a line intersecting the smooth quartic Q in four

k-rational points, with multiplicity, if

• p = 2, q > 8 and #Q(Fq) ≥ q + 3,

• p > 2 and q > 106,

• p > 2, q > 8 and #Q(Fq) ≥ p−
√
q
4 + 7

4 .

Proof. See [FOR07].

Now, fix the divisor D∞ = P∞1 + P∞2 + P∞3 . Rearranging the proof of 1.12.1

we know that for every divisor D of degree 0 there exists an effective divisor D+

such that D+ −D∞ ∼ D.

Theorem 5.2.2. Let D1 and D2 two divisor of degree 0. Then D1 +D2 is equiv-

alent to D+ −D∞ given by the following algorithm:

• Take the cubic E passing through D+
1 ,D

+
2 , P

∞
1 , P∞2 , P∞4 . It is unique since it

is determined by nine points on the plane (if some point are equal consider

the relative multiplicity of intersection with Q). The cubic intersect the

quadric also in the residual effective divisor E.

• Take the unique conic C passing through E , P∞1 , P∞2 . This conic in unique

and it also intersect the quadric in the residual divisor D+.

Proof. Consider the differential ω = dx/fy, where fy is the derivatives respect to

y of the affine equation for Q. It is easy to see that div(ω) has support only on

l∞ because Q is smooth. Changing coordinates ξ = X1/X2, ζ = X0/X2 we have

dx

fy
= −dy

fx
=
ζdeg(Q)−3

f̃(ξ, ζ)
dζ, where fX(ξ/ζ, 1/ζ) =

f̃(ξ, ζ)

ζdeg(Q)−1 , hence every point at

infinity has order deg(Q)−3 = 1, hence (Q · l∞) is canonical. Now it is clear that

(E ·Q) ∼ 3K and (C ·Q) ∼ 2K. Therefore we have

D+
1 +D+

2 + P∞1 + P∞2 + P∞4 + E ∼ 3K,

E + P∞1 + P∞2 + E ′ ∼ 2K

and

P∞1 + P∞2 + P∞3 + P∞4 ∼ K.

Then

D+
1 +D+

2 +P∞1 +P∞2 +P∞4 +E ∼ 3K ∼ E+P∞1 +P∞2 +E ′+P∞1 +P∞2 +P∞3 +P∞4
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so that

D+
1 +D+

2 ∼ E
′ +D∞.

Finally

D1 +D2 ∼ E ′ −D∞,

hence E ′ = D+.

A divisor D is in the typical form if

• the three points in D+ are not collinear;

• there is no point at infinity in the support of D+;

• the three x-coordinate xi of the points in the support of D+ are distinct.

In this case we can associate to it the Mumford representation D = (u, v) as

follow:

? u, v ∈ k[x]

? u =
∏

(x− xi) is monic of degree 3

? deg(v) = 2

? u|f(x, v(x))

Now we distinguish different cases:

• the line `∞ intersect the quartic in four distinct points.

• the line `∞ intersect the quartic in three points, assume that P∞1 = P∞2 .

Hence the line is a tangent line

• the line `∞ intersect the quartic in two points.

If P∞1 = P∞2 and P∞3 = P∞4 , then the line is a bitangent.

If P∞1 = P∞2 = P∞3 the the point P∞1 is a flex.

• the line `∞ intersect the quartic in one point. That point is called hyperflex.

Tangent case

Assume now that the line `∞ is tangent at P∞1 then in this situation the quadric

has the form

y3 + h1y
2 + h2y = f4,

where deg(h1) ≤ 2,deg(h2) ≤ 3,deg(f4) ≤ 4. It follows that the cubic E has the

form

y2 + sy + t = 0,

where s and t are polynomials in x of degrees deg(s) ≤ 2 and deg(t) ≤ 2. The

conic C has the form

y − v,

with v of degree 2.
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Algorithm 7.

INPUT: D1 = (u1, v1) and D2 = (u2, v2), two typical divisor

OUTPUT: D3 = D1 +D2 = (u3, v3)

1. Computation of the cubic E in case of addition

a. Compute t1 = (v1 − v2)−1 mod u2

b. Compute the remainder r of (u1 − u2)t1 by u2

c. Find the couple (s, δ1) such that{
degx(−v1(v1 + s) + u1δ1) = 2

v1 + v2 + s ≡ rδ1 mod u2

where s, δ1 ∈ k[x] with deg(s) = 2 and deg(δ1) = 1.

Then E = (y − v1)(y + v1 + s) + u1δ1.

2. Computation of the cubic E in case of doubling

a. Compute t1 =
(
(v31 + v21h1 + v1h2 − f4)/u1

)−1
mod u1

b. Compute the remainder r of 3v21 + 2v1h1 + h2)t1 by u1

c. Find a couple (s, δ1) such that{
degx(−v1(v1 + s) + u1δ1) = 2

2v1 + s ≡ rδ1 mod u1

where s, δ1 ∈ k[x] with deg(s) = 2 and deg(δ1) = 1.

Then E = (y − v1)(y + v1 + s) + u1δ1.

3. Computation of the conic C

a. Compute u′ = Res∗y(E ,Q)/(u1u2)

b. Compute α1 = (t− s2 − h2 + sh1)
−1 mod u′

c. Compute the remainder v′ of α1(st− th1 − f4) by u′.

Then the conic C is y − v′.

4. Computation of D1 +D2

a. v3 = v′

b. u3 = ((v33 + v23h1 + v3h2 − f4)/(u′))∗

c. D1 +D2 = (u3, v3).

Here the ∗ means that we divide a function by its leading coefficient.

Theorem 5.2.3. The algorithm works
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Proof. We have to prove that the points in the support of D1 and D2 are in the

cubic E . Pick a point P = (xi, yi) in D1, then u1(xi) = 0 and yi = v1(xi).

Evaluating in the cubic we have (v1(xi)− v1(xi))(∗) + u1(xi)δ1(xi) = 0. Pick now

a point in D2, evaluating in E we get

(v2(xi)− (v1(xi))((v2(xi) + (v1(xi) + s(xi)) + u1(xi)δ1(xi)

and then

(−t1(xi))(r(xi)δ1(xi)) + u1(xi)δ1(xi) = −u1(xi)δ1(xi) + u1(xi)δ1(xi) = 0.

Then the cubic E is the right one.

For the doubling we can do the same check.

For the equation of the conic, assume that Q = (x′, y′) is a point in the intersection

of the cubic with quartic such that u′(x′) = 0, i.e. Q is in E (see Theorem 5.2.2).

Then

v′(x′) =
s(x′)t(x′)− t(x′)h1(x′)− f4(x′)

t(x′)− s2(x′)− h2(x′)− s(x′)h1(x′)

=
y′
(
− s2(x′)− s(x′)y′ + s(x′)h1(x

′) + y′h1(x
′)− y′2 − y′h1(x′)− h2(x′)

)
−y′2 − s(x′)y − s2(x′)− h2(x′) + s(x′)h1(x′)

= y′.

Hence the conic passes through the divisor E (with the appropriate multiplicities).

Step 4. is clear. The algorithm is correct.

Flex case

Conjecture 5.2.1. The probability that a smooth curve has at least one rational

flex is asymptotic to 1− e−1 + α when q tends to infinity, where |α| ≤ 10−25.

If the quadric Q as a flex, we can assume that `∞ is the tangent at the flex

P∞1 = (0, 1, 0) and then the curve is of the form

y3 + h1y
2 + h2y = f4,

where deg(h1) ≤ 1,deg(h2) ≤ 3,deg(f4) ≤ 4. It follows that the cubic E has the

form

y2 + sy + t = 0,

where s and t are polynomial in x of degrees deg(s) ≤ 1 and deg(t) ≤ 3. The

conic C has the form

y − v,

with v of degree 2.

The algorithm is the same as Algorithm 7, but in this case the polynomial s

and δ1 are of degree 1. All become easier to compute.

If the characteristic of the field k is greater than 3, then we can also assume that

the curve has the form y3 + h2y = f4, and f4 had no x3 term. In this case the

addition require 148M + 15S + 2I and the doubling require 165M + 20S + 2I.
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Hyperflex case

This is a sub case of the Flex case. Here the curve is birationally equivalent to

a curve of the form y3 + h1y
2 + h2y = f4, where deg(h1) ≤ 1, deg(h2) ≤ 2,

deg(f4) ≤ 4. We can take the same assumption for high characteristic. In this

case the addition require 131M + 14S + 2I and the doubling require 148M +

19S + 2I.
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Chapter 6

Reduction for general curve

In this chapter we explain how to reduce divisors in general. We have already seen

in Theorem 1.12.1 that every divisor class in Pic0C admits a reduced representative

of the form E − gP∞, where E is an effective divisor of degree g. We have seen

also, in Theorem 4.1.6, that for hyperelliptic curves this representative is unique

if we consider only semi-reduced divisor, but this is not true for general curves.

For this chapter we mainly refer to [Heß02].

General strategy

Denote by A a divisor of degree bigger than 1, and assume for simplicity that

its support is a subset of the points at infinity. A divisor D̃ is maximal reduced

along A if D̃ ≥ 0 and dimk(D̃ − rA) = 0 for each r ≥ 1. The representation

D = D̃ + sA− div(a) is called maximal reduction for D along A.

The maximal reduction is still not unique in general, but

Proposition 6.0.4. For a maximal reduction D = D̃ + sA − div(a) we have

dim D̃ ≤ degA, deg D̃ < g + degA, and an other maximal reduction has the

same degree. Moreover the maximal reduction are in a bijection with Pdim(D̃). If

furthermore degA = 1, then the maximal reduction is unique.

Proof. The first proprieties are easy to prove. Let now degA = 1, and let s be

the greatest integer such that dim(D− rA) = 1. Then let D̃ be the only effective

divisor in |D − rA|, it is maximal reduced and D̃ + rA is the unique maximal

reduction of D along A.

Remark.

i) On hyperelliptic curves we can consider A = P∞ and then the notions of

maximal reduced and reduced are equal.

ii) On superelliptic curves we can consider A = P∞, and also in this case the

maximal reduction is unique.

iii) On smooth plane quartics we set A = D∞ = P∞1 + P∞2 + P∞3 , and this case

is slightly different from the previous.
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The main idea for computing the maximal reduction of a divisor D is to search

the largest r such thatD−rA still has positive dimension, then D̃ = D−rA+div(a)

is either maximal reduced along A or an effective divisor with degree less than

g + degA; it is called elementary reduction along A. In order to construct an

algorithm that follows this idea we need a way to compute r, D̃, and a, hence we

need to compute a basis for the space L (D − rA).

First we give some useful definitions. Let S be a non empty set of (closed)

points, for simplicity assume that S = supp(div(x)−), the set of points at infinity.

Let oS be the subring of k(C ) composed by the elements that are integral at all

points of S, i.e. the ring {φ | vP (φ) ≥ 0, ∀P ∈ S}, on the other hand define oS

be the subring of k(C ) composed by the elements that are integral at all points

outside S, i.e. the ring {φ | vP (φ) ≥ 0, ∀P /∈ S}. These rings are Dedekind

domains, hence we can denote by IS and IS their ideal groups. Furthermore we

denote by o∞ the ring of elements of k(C ) with non-positive degree.

Since we choose S to be the set of all points at infinity, we also have that oS equals

the integral closure of k[x] in k(C ), denoted by Cl(k[x], k(C )). On the other hand

we have oS = Cl(o∞,k(C )).

6.1 Computing the Riemann-Roch space

In order to construct an algorithm for the computation of the Riemann-Roch

space we need an algorithm that reduces square matrices over k(x).

6.1.1 Lattices and basic reduction over k[x]

Let α ∈ k((x−1)) be a formal Laurent series in x, i.e α =
∑nα

i=−∞ aix
i. Define

the degree of α to be the exponent of the largest x-power occurring in α. For

v ∈ k((x−1))n we define the (column) degree of v to be maximum of the degrees

of the entries of v, it is denoted by deg(v). By hc(v) we denote the vector of the

coefficient of the deg(v)-th power of x of the entries of v.

Let Λ ⊂ k((x−1)) be a free k[x]-module of rank m and let v1, · · · , vm a basis

of Λ. We also assume that the elements of the basis are k((x−1))-linearly inde-

pendent, i.e. the lattice Λ is discrete regarding the metric induced by deg. We

can define the lattice discriminant of Λ to be the minimum degree of the nonzero

determinants of the m×m submatrices of the matrix (v1, · · · , vm), since it is an

invariant for the lattice.

Proposition-Definition 6.1.1. A basis v1, · · · , vm for Λ is called reduced if one

of the following equivalent conditions is fulfilled:

i) {hc(vi) | 1 ≤ i ≤ m} is a set of linearly independent elements of kn;

ii) deg(
∑

i fivi) = maxi deg(fivi) for all fi ∈ k[x];

iii) v1, · · · , vm realize the successive minima;

iv)
∑

i deg(vi) equals the lattice discriminant.
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We call reduction step the addition of a k[x]-linear combination of vj to a vi,

j 6= i, such that the degree of vi decrease. A the basis is reduced if and only if

it does not admit ant reduction step. Since the lattice discriminant represents a

lower bound for
∑

i deg(vi), the number of reduction steps required to obtain a

reduced basis is finite.

For a unimodular matrix T ∈ k[[x−1]]n×n we have that deg(Tv) = deg(v).

We say that two lattices Λ1,Λ2 are isometric if there exists a unimodular matrix

T ∈ k[[x−1]]n×n such that Λ1 = TΛ2, then reduced basis are sent in reduced

basis via T , the successive minima is preserved and the lattice discriminant is

also preserved. Lastly we call orthogonal lattice of rank m and successive minima

−d1 ≤ · · · ≤ −dm the unique lattice with basis vj = (x−djδi,j) ∈ k((x−1))n.

Proposition 6.1.2. Every lattice Λ ⊂ k((x−1))n of rank m is isometric to a

unique orthogonal lattice.

Proof. Since the ring k[[x−1]] is an Euclidean ring, any basis of the lattice Λ can

be put, using row operation, in Hermite Normal Form, i.e. in an upper triangular

shape where the entries over the diagonal are zero or have larger degree than the

diagonal entry below, and the diagonal entries are of the form ta. If we start with

a reduced basis then, since {hc(vi)} is a set of linear independent elements, the

HNF is already in a diagonal form.

Remark. Note that we use only row operation, indeed we use only multiplication

of unimodular matrices by the left.

Corollary 6.1.3. Let M ∈ k(x)n×n. Then there exist matrices T1 ∈ on×n∞ and

T2 ∈ k[x]n×n and integers d1 ≥ · · · ,≥ dn such that

T1MT2 = (x−djδi,j)i,j ,

where T2 is the matrix obtained by the reduction algorithm applied to the columns

and T1 is the unimodular matrix of the previous proposition.

Proof. Since M ∈ k(x)n×n, we have T1 ∈ on×n∞ .

Note that if M is a matrix in k(x)n×n, then we can write M = M0/g with

M0 ∈ k[x]n×n and g ∈ k[x].

Corollary 6.1.4. Let M1 and M2 be respectively a k[x]-module and a o∞-module

free of rank n. Then there exists a basis v1, · · · , vn of M1 and a basis w1, · · · , wn of

M2 such that (v1, · · · , vn)N = (w1, · · · , wn), where N is of the shape (x−djδi,j)i,j.

Proof. Apply the previous corollary to the transformation matrix of arbitrary

bases of M1 and M2.

Example. We give an example for the reduction algorithm. We consider the

matrix (
x3 + x x2

x x

)
.
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It is not reduced because the sum of the column degrees is 5, but the degree of

the discriminant is 4. We subtract x times the second column from the first, we

exchange the two columns and negate the second column, we get(
x2 −x
x x2 − x

)
,

a reduced matrix. In order to obtain the normal form we subtract 1/x times the

first raw from the second, then add x/(x2− x− 1) the last raw from the first and

scale the last raw by x2/(x2 − x− 1), we get the normal form(
x2 0

0 x2

)
.

6.1.2 Basis of L (D)

First we give a way to represent divisor using ideals of oS and oS .

Proposition 6.1.5. There is a valuation preserving bijection between the set of

(closed) points of the curve C and the set of prime ideals of oS and oS. This

bijection leads to an isomorphism

Div(C ) −→ IS × IS

D 7→ (DS ,DS)

Moreover we have L (D) = (DS)−1 ∩ (DS)−1.

Proof. Since oS and oS are Dedekind domains and the fraction field is in both cases

k(C ), we get the bijection from a well knows result from commutative algebra (see

for example [AM69] chapter 9). For the last statement let p be a prime ideal of

oS and P the corresponding closed point, P /∈ S, and r such that pr||DS , hence

r = vP (D). Since oS is a Dedekind domain then a function φ is in (DS)−1 ⊂ k(C )

if and only if vP (φ) ≥ −r (see [AM69]). In the same way we get that ∀P ∈ S,

φ ∈ (DS)−1 if and only if vP (φ) ≥ −vP (D). So that L (D) = (DS)−1∩(DS)−1.

Remark.

• Note that, from a theoretical point a view, we did the same when we in-

troduced the Mumford representation. Indeed for a divisor E − gP∞, the

corresponding ideal (u, y − v) is in IS , with S = {P∞}.

• If D has representation (DS ,DS), then D + rdiv(x)+ is represented by

(xrDS ,DS) and D + rdiv(x)− by (DS , x−rDS).

• Note that the ideals in IS and in IS are respectively free k[x]-modules and

o∞-modules of rank n = [k(C ) : k(x)]. Then we can use the results of

the previous section on lattice reduction, in particular we can apply the

Corollary 6.1.4.
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The following is the main theorem of the chapter and it gives us a way to

compute the basis for the Riemann-Roch spaces. The proof is constructive and it

will be part of the Algorithm 8.

Theorem 6.1.6. For every divisor D of C there exist a unique sequence of inte-

gers d1 ≥ · · · ≥ dn and unique elements vi, · · · , vn ∈ k(C ) such that the set

{xjvi | 1 ≤ i ≤ n, 0 ≤ j ≤ di + r}

is a k basis of L (D + rdiv(x)−) for all r ∈ Z. Moreover the elements vi, · · · , vn
are k(x)-linear independent.

Proof. First we prove the existence. Fix a divisor D and its representation

(DS ,DS). Choose a basis v1, · · · , vn for (DS)−1, a basis w1, · · · , wn for (DS)−1

and a matrix M ∈ k(x)n×n such that (w1, · · · , wn)M = (v1, · · · , vn). By Corol-

lary 6.1.4 we can assume that M is of the form (x−djδi,j)i,j , hence x−diwi = vi
with uniquely determined integers −di.

Fix now the divisor D+rdiv(x)−, it is represented by the couple (DS , x−rDS).

The bases of the fractional ideals (DS)−1 and xr(DS)−1 are then given by v1, · · · , vn
and w′1 = xrw1, · · · , w′n = xrwn, they are already related by a diagonal transfor-

mation. Fix now an element z =
∑

i λivi in (DS)−1, with λi ∈ k[x]. We can write

z =
∑

i λix
−di−rw′i, then z is in xr(DS)−1 if and only if λix

−di−r ∈ o∞ for all i.

This means that deg λi ≤ di+r. This prove that {xjvi | 1 ≤ i ≤ n, 0 ≤ j ≤ di+r}
is a k basis of L (D + rdiv(x)−).

For the last statement suppose that
∑
λivi = 0 with λi ∈ k[x] not all zero,

then the xjvi, with j ≤ deg λi, are k-linear dependent. This is a contradiction

since we proved the k-linear independence for every r.

It remains to prove that the uniqueness of the di is independent from the

choice of vi. Suppose that {xjvi | 1 ≤ i ≤ n, 0 ≤ j ≤ di + r} is a basis for

L (D + rdiv(x)−).

• Fix any φ ∈ (DS)−1, then there exists an r such that φ ∈ L (D+ rdiv(x)−)

and then we can write

φ =

n∑
i=1

di+r∑
j=0

µix
j

 vi,

and this proves that (vi)i is a k[x]-basis for (DS)−1.

• Fix any element φ ∈ (DS)−1, then there exist a polynomial h ∈ k[x] such

that φ ∈ L (D + div(h)+). If r = deg h, then rdiv(x)− = div(h)− and

D+ div(h)+ = D+ rdiv(x)−+ div(h). Hence (h−1)xjvi, with 0 ≤ j ≤ di + r

is a k-basis for L (D + div(h)+). This proves that (xdivi)i is a o∞-basis for

(DS)−1.

Since (vi)i and (xdivi)i are related by a diagonal transformation, we can deduce

by Corollary 6.1.4 that the di’s are unique.

71



6.1.3 Algorithm for the computation of the Riemann-Roch spaces

We will assume that we are able to compute bases for DS and DS , equivalently

we are able to compute integral bases for Cl(o∞, k(C )) and Cl(k[x], k(C )), and

then bases for their ideals and fractional ideals.

Algorithm 8.

INPUT: A divisor of the curve C .

OUTPUT: A k-basis for L (D).

1. Compute a k[x]-basis v′1, · · · , v′n of (DS)−1 and a o∞-basis w′1, · · · , w′n
of (DS)−1;

2. Compute M ∈ k(x)n×n such that (w′1, · · · , w′n)M = (v′1, · · · , v′n);

3. Compute the unimodular matrix T2 ∈ k[x]n×n and the integers di as

in Corollary 6.1.3.

4. Return the basis {xjvi | 1 ≤ i ≤ n, 0 ≤ j ≤ di}, or equivalently just

the elements (vi)i and (di)i, where (v1, · · · , vn) = (v′1, · · · , v′n)T2.

Example

Consider the hyperelliptic curve defined over k = Q given by y2 = f(x), with

f(x) = x(x− 1)(x+ 1)(x− 2)(x+ 3).

Let S be the set {P∞}. Then oS = Cl(k[x], k(C )) = k[x][y]/(y2 − f(x)) and the

ring oS = Cl(o∞, k(C )). The element y/x3 is integral over o∞ with minimum

polynomial g(α) = α2 − g(x)/x6. We have also oS = o∞[y/x3].

Consider the affine points P1 = (1, 0) and P2 = (3, 12), it is clear that the corre-

sponding ideals in oS are respectively p1 = (x−1, y) and p2 = (x−3, y−12). Con-

sider now the point at infinity P∞, in order to compute the corresponding prime

ideal we have to factorize (1/x)oS in prime ideals. Since g(y) ≡ y2 mod o∞[y]

we have that (1/x)oS is a square power of a prime ideal q of oS . Moreover

q = (y/x3)oS .

We want to find the smallest l such that L (−P1 − P2 + lP∞) has positive

dimension, then the intersection p1p2 ∩ q−l has to be computed. First we have to

compute a k[x]-basis for p1p2. A set of generators is

{(x− 1)(x− 3), (x− 3)y, (x− 1)(y − 12), (y − 12)y},

in order to find a basis we can reduced the matrix(
(x− 1)(x− 3) 0 −12(x− 1) f(x)

0 x− 3 x− 1 −12

)
.

First add from the first column x−3
12 times the third column and −x−1

12 times

the second column, we get
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(
0 0 −12(x− 1) f(x)

0 x− 3 x− 1 −12

)
.

Then substract the second column from the third, divide by 2 the third column

and add f(x)
6(x−1) times the third column from the fourth, we get(

0 0 −6(x− 1) 0

0 x− 3 1 f(x)
6(x−1) − 12

)
.

Note that (x−3) divides f(x)
6(x−1)−12, then we can erase the first and the fourth

columns and we can say that (y(x− 3), y − 6x+ 6) is a k[x]-basis for p1p2.

An o∞-basis for q−1 is clearly given by
(
x3

y , 1
)

, and a o∞-basis for q−l is given

by
(
x3

y

)l (
1, y

x3

)
.

Suppose now l = 3, then we have

(y(x− 3), y − 6x+ 6) =

(
x,
x4

y

)
·

(
0 −6(x−1)

x
f(x)(x−3)

x4
f(x)
x4

)
.

The previous matrix is not reduced, but we can reduce it by adding −(x−3) times

the second column to the first, i.e. multiply on the right by the matrix, then the

matrix becomes (
−6(x−1)(x−3)

x −6(x−1)
x

0 f(x)
x4

)
.

It is reduced. The indices corresponding to the degree of the functions in the

diagonal are −d1 = 1 and −d2 = 1. So that d1 and d2 are both negative, then the

Riemann-Roch space L (−P1 − P2 + 3P∞) has dimension 0.

Suppose l = 4, then we get

(y(x− 3), y − 6x+ 6) =
(
x2,

y

x

)
·

(
0 −6(x−1)

x2

x(x− 3) x

)
.

The matrix is not reduced. multiply on the right by the matrix T2 and we get(
6(x−1)(x−3)

x2
−6(x−1)

x2

0 x

)
,

a reduced matrix. Note that −6(x−1)(x−3)
x2

has degree 0 and x has degree 1, then

d1 = 1, d2 = −1. The base change gives us

(y(x− 3), y − 6x+ 6)T2 = ((x− 3)(x− 1), y − 6x+ 6).

Then a basis for L (−P1−P2+4P∞) is given by the rational function (x−3)(x−1).

Remark. Note that div(x)− = 2P∞, then with this two computation we can

recover all the bases for the space L (−P1−P2+rP∞), with r ∈ Z, using Theorem

6.1.6. In order to avoid two computations we can use Theorem 6.1.6 with a
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function that has a unique pole in P∞ instead of x, but in this case it not exist,

indeed for any point P = (a, b) on the curve we have

(x− a, y − b) = (1, x3/y)

(
x− a −b

0 f(x)/x3

)
,

the matrix is reduced and it has indices d1 = −1, d2 = −2, then L (−P + P∞)

has dimension 0.

Running time

As already seen in 6.1.5, for a fixed closed point we can associate a prime ideal in

oS or oS . We can use two different types of representation of a divisor:

i) the first is the ideal representation, it associates a divisor D to (the inverse

of) the two ideals DS and DS , as already seen in 6.1.5;

ii) the second is called free representation, here every divisor is represented by

the power product of the prime ideals corresponding to the points in supp(D).

Clearly we can recover easily the ideal representation from a free representation

(just multiplying out the prime ideal). Conversely, in order to recover a divisor in

free representation from a divisor in ideal representation, it requires a factorization

of the ideals DS and DS . This change requires a polynomial running time in n,

h(D) and Cf , where

h(D) := deg(D+) + deg(D−)

is the height of the divisor D and

Cf := max{ddegx(ai)/ie|1 ≤ i ≤ n}

where f(x, y) = yn+a1y
n−1 + · · ·+an ∈ k[x, y] is the affine equation of the curve.

Moreover the cost of the divisor arithmetic is also polynomial in n, h(D) and

Cf . Therefore the running time for the computation of the Riemann-Roch space

is polynomial in n, h(D) and Cf , in fact the size of the entries of the matrix M is

polynomial in n, h(D) and Cf .

6.2 Divisor reduction

Recall from the introduction of the chapter that, in order to compute the max-

imal reduction of a divisor D, we are looking for the largest integer r such that

the space L (D − rA) still has positive dimension and then obtain the elemen-

tary reduction along A. In order to avoid exponential time computations, the

elementary reduction should only be performed for divisor of small height.

We can write D =
∑m

i=0 2iDi where the Di are sum or subtraction of single

distinct points. It is possible to avoid the time computation issue using double-

and-add tricks if the number of points in Di is not too large.
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From a theoretical point of view we can compute the reduction after each

addiction (or subtraction) in the double-and-add algorithm, then we can write

the maximal reduction of a divisor E =
∑m

i=0 2iEi to be

E = 2m−j Ẽm−j +

m−j−1∑
i=0

2iEi +

 m∑
i=m−j

2iri

A− m∑
i=m−j

2idiv(ai), (6.1)

where j goes from −1 to m, Em+1 := 0. More precisely we can write

Em = Ẽm + rmA− div(am),

the elementary reduction of Em, then we double this expression and we can add

Em−1 and compute the reduction

2Em + Em−1 = 2Ẽm + Em−1 + 2rmA− 2div(am)

= Ẽm−1 + (2rm + rm−1)A+ 2div(am) + div(am−1).

We can do it inductively and obtain the formula 6.1. Note that the elementary

reduction of 2Ẽm−j + Em−j−1 is Ẽm−j−1 + (rm−j−1)A− div(am−j−1).

Then we get

E = Ẽ0 +

(
m∑
i=0

2iri

)
A−

m∑
i=0

2idiv(ai). (6.2)

For a computational point of view the size of the orders of E contributes only

logarithmically, but the number of places in each Ei is still a problem.

Now, return to our divisor D =
∑m

i=0 2iDi, before applying the previous pro-

cedure, we can reduce every divisor Di in order to decrease the number of places.

If the divisor Di is equal to
∑t

k=1 P
i
k, we can sum up the point Pr successively,

applying the elementary reduction after each step, namely

Di = (P i1 + P i2) +

t∑
k=3

P ik

= (P i2 + P i3) +
t∑

k=4

P ik + `2A− div(bi,2)

= (P i3 + P i4) +
t∑

k=5

P ik +
3∑
j=1

`jA−
3∑
j=1

div(bi,j)

...

= P it +

t∑
j=1

`j −
t∑

j=1

div(bi,j) (6.3)

where `1 = 0 and bi,1 = 1. Write li =
∑t

j=1 `j , bi =
∏t
j=1 bi,j and D′i = P it , then

we can write

Di = D′i + liA− div(bi).
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Now we can apply the procedure for 6.2 to E =
∑

2iD′i and we get

D = Ẽ0 +

(
m∑
i=0

2i(ri + li)

)
A−

m∑
i=0

2idiv(ai · bi).

The choice of r can be done in two ways. The first is to choose the integer

r such that g ≤ deg(D − fA) < g + deg(A), it gives a reduced divisor D̃ such

that g ≤ deg(D̃) < g + deg(A). The second is to choose the integer r such that

0 < dim(D − rA) ≤ deg(A), it gives a divisor D̃ such that deg(D̃) < g + deg(A).

The latter return the maximal reduced divisor, but several tries of values of r

might be necessary (in this case we can use the binary search method).

In case A = div(x)− then, because of theorem 6.1.6, the maximal r is given

by d1, hence no tries are required.

We can sum up in the next Algorithm.

Algorithm 9.

INPUT: The divisors D and A.

OUTPUT: A divisor D̃, an integer r ∈ Z and element ai, bi ∈ k(C )× such that

D = D̃ + rA−
∑

i 2idiv(ai · bi).

1. Compute m and divisors (Di)i, whose orders have absolute value 1,

such that D =
∑m

i=0 2iDi.

2. Compute the divisors D′i using the elementary reduction after each ad-

dition of a point of Di as we seen in 6.3, and obtain the representation

Di = D′i + liA− div(bi).

3. Put E =
∑

2iD′i =
∑

2iEi. Let Em+1 = 0 and compute the elementary

reduction of 2Ẽm−j + Em−j−1 inductively for −1 ≤ j ≤ m. So that

2Ẽm−j + Em−j−1 = Ẽm−j−1 + (rm−j−1)A− div(am−j−1) holds.

4. Let D̃ = D̃0 and r =
∑

i 2i(ri + li). Return the divisor D̃, the integer

r and the rational functions ai and bi.
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Conclusion
As we said in the introduction, the aim of this thesis was to study methods

for the implementation of the addiction law on Jacobians of algebraic curves.

We showed explicitly formulæ for the addiction on elliptic curves. In this

context it is of the utmost importance, for a computational point of view, to find

algorithms which let us save even one field operation. The best algorithm found

is related to Edwards elliptic curves: it needs 7M + 5S for the addition and only

3M + 4S for a doubling.

In the last decades, cryptographic studies found developments on the use of

algebraic curves of small genus, both hyperelliptic and not. In this thesis we

have seen methods for the implementation of the addition on Jacobian of non-

hyperelliptic curves of genus 3, of superelliptic of genus 3 and 4, and, using Mum-

ford representation, of hyperelliptic curves of arbitrary genus.

Studies of the addition law on these particular curves lead to search for a

method for the implementation of the addition law on Jacobians of generic curves.

We presented the method described by Heß. The natural continuation of this work

would be to implement this general algorithm.
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