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Introduction

One of the most famous problems in diophantine geometry is the Fermat's last
theorem, that states that the equation

xn + yn = zn (1)

has no nontrivial integer solutions if n ≥ 3. This conjecture for centuries stimulated
major developments in number theory and, as it is well known, is now a theorem
(see [61] and [59]).
Then one can ask for the primitive integer solution of the generalized Fermat's
equation:

Axp +Byq = Czr, (2)

where A,B,C are nonzero integers and p, q, r ∈ Z≥1. A primitive solution (a, b, c)
is a solution such that gcd(a, b, c) = 1.
One important invariant linked to (2) is

χ =
1

p
+

1

q
+

1

r
− 1, (3)

that allows us to distinguish three cases:

1. The spherical case: χ > 0.
A simple calculation shows that the set {p, q, r} is either of the form {2, 2, k}
with k ≥ 2 or {2, 3,m} with m = 3, 4, 5. In this case there are either no
solution or in�nitely many. In the latter case the solutions are given by a
�nite set of polynomial parametrizations of the equation, as proved in [5].

2. The euclidean case: χ = 0.
We can easily �nd that in this case the set {p, q, r} equals one of {3, 3, 3},
{2, 4, 4}, {2, 3, 6}. In this case determing the solutions boils down to the
determination of the rational points on twists of some elliptic curves over Q
and we �nd that the set of solutions is �nite. See [26].

3. The hyperbolic case: χ < 0.
In this case the number of solutions is at most �nite, as proved in [23].

The method of descent is the key ingredient used in the proofs of these results:
descent relates the primitive integer solutions to the rational points on one or more
auxiliary curves of genus g, whose Euler characteristic 2 − 2g is a positive integer
multiple of χ.
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• In the spherical case, we have χ > 0, so 2− 2g > 0. Hence we get g = 0, and
the auxiliary curves are isomorphic to P1.

• In the euclidean case, from χ = 0 we get g = 1 and thus, as previously
mentioned, we should look for the rational points on some elliptic curves.

• In the hyperbolic case, we get that the auxiliary curves have g > 1, hence
�nitely many rational points by the theorem of Faltings [29].

A case of particular interest is the hyperbolic case with A = B = C = 1. In this
case many explicit solutions are found (or the nonexistence of solutions is proved),
as summarized in the following table:

{p, q, r} notes references
{n, n, n} n ≥ 4 [61], [59]
{n, n, 2} n = 5, 6, 9 or n ≥ 7 prime [24]
{n, n, 3} n = 4, 5 or n ≥ 7 prime [24]
{3, 3, n} n = 4, 5, 7, 11, 13 or 17 ≤ n ≤ 109 [37], [11], [10], [16], [20]
(2, n, 4) includes (4, n, 4) [22], [4]
(2, 4, n) n ≥ 211 prime [28]

(2n, 2n, 5) n = 2, 3, 5 or n ≥ 7 [3], [10]
(2, 2n, 3) n prime and 7 < n < 1000 or n ≡ −1 (mod 6) [14], [21]
(2, 2n, 5) n > 17 prime or n ≡ 1 (mod 4) [15]
{2, 4, 6} [9]
{2, 4, 5} [11]
{2, 3, 9} [12]
{2, 3, 8} [9], [11]
{2, 3, 7} [46]

In the table above, the notation {p, q, r} means that the solutions have been deter-
mined for every permutation of (p, q, r): this matters only if at least two between
p, q, r are even.

The aim of this thesis is to show the tools and some steps to prove the case of
{2, 3, 7}, following [46].
With the solution of this case, now we know the complete list of primitive solutions
for every triple (p, q, r) of the hyperbolic case for which nontrivial primitive solutions
(excluding 1n + 23 = 32) are known to exist.
The equation x2 + y3 = z7 is of particular interest and di�culty for many reasons:
First of all, it corresponds to the negative value of χ closest to 0. There exists
a naive heuristic that predicts that when χ is negative but close to 0, the set of
primitive integer solutions should be relatively large and that some solutions should
involce large integers: then if we have big solutions, proving the nonexistence of
others could be a di�cult task. Indeed the equation has several solutions and some
of them involve big integers, like 22134592 + 14143 = 657. See theorem 2.2 for the
complete list of solutions.
Moreover 2, 3, 7 are primes, that means that we cannot use any parametrization to
reduce some computations to previously known cases. Finally, to apply the descent,
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we need to �nd a �nite étale covers: this is relatively easy to do in the case of two
exponents sharing a common factor. On the other hand, for {2, 3, 7} the smallest
nontrivial Galois étale covering has a nonabelian Galois group of order 168, as shown
in chapter 3.

• In chapter 1 we will show some of the basic tools needed in the following.

• In chapter 2 we state the result and we present a detailed overview of the
proof.

• In chapter 3 we will �nd a Galois étale covering and we will apply the descent
method, thus reducing the problem to �nding all the rational points on a �nite
set of twists of the Klein quartic curve X.

• In chapter 4 we exploit the isomorphism between X and the modular curve
X(7) to reduce the problem of �nding the relevant twists to the classi�cation
of some Gal(Q̄/Q)-modules; eventually we explicitly �nd a list of ten equations
describing the relevant twists.

• Finally, chapters 5 and 6 are devoted to �nding all the rational points on the
ten given curves using di�etent methods, for instance descent on the Jacobians
of the curves, Mordell-Weil sieve and Chabauty-Coleman theory.
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Chapter 1

Preliminaries

1.1 Algebraic geometry

We assume that the reader is familiar with the common notions in algebraic geometry
like scheme, morphism, variety, étale cover, base change. Classical references for
these notions are [33] and [39].
We will use a lot de�nition and tools about divisors, hence here there is a brief
introduction that follows mostly [34, �A.2-�A.3].

De�nition 1.1. Let X be an algebraic variety. The group of Weil divisors on X
is the free abelian group generated by the closed subvarieties of codimension one on
X. It is denoted by Div(X).

Example 1.2. If X is a curve, a divisor D on X is a �nite formal sum D =
∑
nPP

where the nP 's are integers and the P 's are points and we can de�ne the degree of
D to be deg(D) =

∑
nP .

De�nition 1.3. The support of the divisor D =
∑
nY Y is the union of all those

Y 's for which the multiplicity nY is nonzero. It is denoted by supp(D).

De�nition 1.4. A divisor D =
∑
nY Y is e�ective or positive if every nY ≥ 0.

Lemma 1.5. Recall that if Y is an irreducible divisor, then OY,X denotes the local
ring of functions that are regular in some neighborhood of some points of Y . In
particular, if X is nonsingular, then OY,X is a discrete valuation ring. We write
ordY : OY,X r {0} −→ Z for the normalized valuation on OY,X and we can extend
it to the �eld of fractions k(X). Then this function has the following properties:

a. ordY (fg) = ordY (f) + ordY (g) for all f, g ∈ k(X)×.

b. Fix f ∈ k(X)×. There are only �nitely many Y 's with ordY (f) 6= 0.

c. Let f ∈ k(X)×. Then ordY (f) ≥ 0 if and only if f ∈ OY,X and ordY (f) = 0
if and only if f ∈ O×Y,X .

Proof. See [30, pp. 47-48].

Lemma 1.5 allows us to de�ne the divisor of a function.
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De�nition 1.6. Let X be a variety, and let f ∈ k(X)× be a rational function on
X. The divisor of f is the divisor

div(f) =
∑
Y

ordY (f)Y ∈ Div(X).

De�nition 1.7. A divisor is principal if it is the divisor of a function.

De�nition 1.8. Two divisors D and D′ are said to be linearly equivalent if D−D′ =
div(f) for some function f ∈ k(X)×. We will denote it by D ∼ D′.

De�nition 1.9. The divisor class group of X is the group of divisor classes modulo
linear equivalence. It is denoted by Cl(X). The linear equivalence class of a divisor
D is denoted by Cl(D) or by [D].

De�nition 1.10. A Cartier divisor on a variety X is an equivalence class of collec-
tions of pairs (Ui, fi)i∈I satisfying the following conditions:

a. The Ui's are open sets that cover X.

b. The fi's are nonzero rational functions fi ∈ k(Ui)
× = k(X)×.

c. fif
−1
j ∈ O(Ui ∩ Uj)×.

Two collections {(Ui, fi)|i ∈ I} and {(Vj , gj)|j ∈ J} are considered to be equivalent
if fig

−1
j ∈ O(Ui ∩ Vj)× for all i ∈ I and j ∈ J .

The sum of two Cartier divisors is

{(Ui, fi)|i ∈ I}+ {(Vj , gj)|j ∈ J} = {(Ui ∩ Vj , figj)|(i, j) ∈ I × J}.

The group of Cartier divisors of X is denoted by CaDiv(X). The group of Cartier
divisors modulo linear equivalence is called the Picard group of X and is denoted by
Pic(X).

Actually the notion of Cartier divisor generalize the notion of Weil divisor:

Lemma 1.11. Let X be a smooth variety. Then the natural maps CaDiv(X) →
Div(X) and Pic(X)→ Cl(X) are isomorphisms.

Proof. See [33, II.6.11].

If X is a curve, we denote by Pic0(X) the subgroup of Pic(X) whose elements
are divisors of degree 0 modulo linear equivalence.

De�nition 1.12. Let X be a smooth variety of dimension n and let ω be a nonzero
di�erential n− form on X (Note that the value of a di�erential form at some point
makes no sense, but asking ω is nonzero has a meaning). We can contruct a divisor
associated to ω as follows. On any a�ne open subset U of X with local coordinates
x1, . . . , xn we can write ω = fUdx1∧ · · ·∧xn for some rational functions fU ∈ k(X).
Then we de�ne the divisor of ω to be the collection div(ω) = {(U, fU )}. This is
a well de�ned divisor on X independent on the coordinates. Any other nonzero
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di�erential n − form ω′ on X has the form ω′ = fω for some rational function
f ∈ k(X)×. It follows immediately that

div(ω′) = div(ω) + div(f),

so that the divisor class of div(ω) ∈ Pic(X) is independent of the chosen form. This
divisor class is called the canonical class of X, any divisor in the canonical class is
called a canonical divisor of X.

De�nition 1.13. Let D be a divisor on a variety X. The set L(D) de�ned as
follows:

L(D) = {f ∈ k(C)|(f) +D ≥ 0}
is actually a vector space of �nite dimension `(D).

De�nition 1.14. A linear system on a variety X is a set of e�ective divisors all
linearly equivalent to a �xed divisor D and parametrized by a linear subvariety of
P(L(D)) ' P`(D)−1.

Example 1.15. The set of e�ective divisors linearly equivalent to D is a linear
system called the complete inear system of D, denoted by |D|.

De�nition 1.16. A linear system L on a projective variety X is very ample if the
associated rational map φL : X −→ Pn is an embedding. A divisor D is said to be
very ample if the complete linear system |D| is very ample. A divisor D is said to
be ample if some positive multiple of D is very ample.

1.2 Algebraic curves, elliptic curves

The main references for the following de�nition and proofs are the books [56] and
[34].

De�nition 1.17. A curve is a projective variety of dimension 1.

Proposition 1.18. Let φ : C1 → C2 be a morphism between two curves. Then φ is
either constant or surjective (cf. [33, II.6.8]).

De�nition 1.19. Let φ : C1 → C2 be a map between two curves. If φ is constant,
we de�ne the degree of φ to be 0. Otherwise we say that φ is a �nite map and we
de�ne its degree to be

deg φ = [K(C1) : φ∗K(C2)].

De�nition 1.20. Let C and C ′ be two curves de�ned over a �eld k of characteristic
0. We say that C ′ is a k−twist of C if there exists an isomorphism between C
and C ′ over an algebraic closure k̄ of k, i.e. if there exist an isomorphism of curves
φ : C ⊗ k̄ → C ′ ⊗ k̄. If the curves are isomorphic over k, the twist is called trivial.
If the curves are isomorphic over a �eld k′ ⊃ k such that [k′ : k] = 2, the twist is
called quadratic.

Theorem 1.21 (Riemann-Roch). Let C be a smooth (projective) curve and KC a
canonical divisor on C. There exists an integer g ≥ 0 such that for all divisors
D ∈ Div(C)

`(D)− `(KC −D) = deg(D)− g + 1
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Proof. See [33, IV, �1] or [38, Ch.1] for a more elementary proof.

De�nition 1.22. The integer g is called the genus of the smooth curve C. When
C is not smooth, its genus is de�ned to be the genus of the smooth projective curve
that is birational to C.

De�nition 1.23. A point P on an algebraic curve C of genus g is a Weierstrass
point if there exist a non-constant rational function on C which has at this point a
pole of order not exceeding g and which has no singularities at other points of C.

Theorem 1.24 (Faltings, previously Mordell's conjecture). Let C be a non-singular
algebraic curve de�ned over a number �eld k. Then, if the genus of the curve is
greater or equal to 2, C has �nitely many k-rational points.

Proof. See [29] for Faltings's original proof. For a relatively easier proof by Bombieri
that uses Vojta's inequality, see [34, Part E].

De�nition 1.25. An elliptic curve is a pair (E,O) where E is a nonsingular curve
of genus 1 and O ∈ E. The elliptic curve is de�ned over the �eld K, written E/K,
if E is de�ned over K as a curve and O ∈ E(K).

Remark 1.26. In the following, if this do not bring confusion, we will denote by
an elliptic curve simply by E.

Proposition 1.27. The set of rational points of an elliptic curve is an abelian group
with O as neutral element.

Proof. See [56, III.2], where there are also explicit formulas for the group law.

Proposition 1.28. If char(K) 6= 2, 3 then any elliptic curve de�ned over K can
be represented (not uniquely) by an equation of the form y2 = x3 + ax + b, with
a, b ∈ K and the discriminant ∆ = −16(4a3 + b3) 6= 0. Such an equation is called a
Weierstrass equation (cf. [56, III.1]).

Theorem 1.29 (Mordell-Weil). If E is an elliptic curve de�ned over a number �eld
k, then the group E(k) of k−rational points is a �nitely generated abelian group.

Proof. See [56, VII].

Remark 1.30. The above theorem can be generalized in higher dimension. See
Theorem 1.46.

De�nition 1.31. Let (E,O) and (E′, O′) be two elliptic curves. An isogeny from
E to E′ is a morphism

φ : E → E′such that φ(O) = O′.

Two elliptic curves E and E′ are isogenous if there is an isogeny between them.

Remark 1.32. Note that, thanks to Proposition 1.18, an isogeny beteween two
elliptic curves E and E′ is either trivial (i.e. maps every point of E into O′), or is
surjective.
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Proposition 1.33. Being isogenous is an equivalence relation between elliptic curves.
(cf. [56, III.6.1]).

Remark 1.34. Unless otherwise stated, from now on all the elliptic curves will be
de�ned over a �eld K of characteristic zero.

Proposition 1.35. Let E be an elliptic curve with Weierstrass equation y2 = x3 +
ax+ b, then the value

j = 1728
4a3

4a3 + 27b2
,

called the j-invariant, is an invariant of the curve indipendent on the choice of the
Weierstrass equation. Moreover if E is de�ned over an algebrically closed �eld K̄,
two curves are isomorphic over K̄ if and only if they have the same j-invariant (cf.
[56, III.1, Proposition 1.4]).

De�nition 1.36. Let E/K be an elliptic curve. For m ∈ Z, m 6= 0 de�ne the
multiplication by m to be the map [m] : E(K)→ E(K) such that P 7→ P + · · ·+ P
(m times). The kernel of this map, denoted by E[m], is the subgroup of E(K) of
points of order m.

Proposition 1.37. Let E be an elliptic curve de�ned over an algebraically closed
�eld K̄ and let m ∈ Z. Then:

• deg[m] = m2

• If m 6= 0, then

E[m] =
Z
mZ
× Z
mZ

.

Proof. See [56, III.6, Corollary 6.4].

De�nition 1.38. Let E be an elliptic curve over Q. The conductor of E is the
product

N =
∏
p

pfp

Where p runs trough all (�nite) primes and fp is de�ned as follows:

fp =


0, if E has good reduction at p

1, if E has multiplicative reduction at p

≥ 2 if E has additive reduction at p,

The exact de�ninition of fp in the case of bad additive reduction is slightly more
complicated, but for our purposes it is enough to know that if p 6= 2, 3 then fp = 2.

For a complete and detailed exposition about the conductor of an elliptic curve,
see [55, Ch. V].
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1.2.1 The Weil pairing

Let E be an elliptic curve over Q or, more generally, over any number �eld k. Let
m be a positive integer. Then, over an algebraic closure k̄, the group of m−torsion
points E[m] has the form E[m] ' Z/mZ × Z/mZ, a free Z/mZ-module of rank 2
(cfr. 1.37). As for every free module, we have the determinant pairing det : E[m]→
Z/mZ which is of course independent on the choice of the basis. In any case, a major
drawback is that the determinant pairing is not invariant under Galois action, that
is if P,Q ∈ E[m] and σ ∈ Gal(k̄/k), then the values of det(P σ, Qσ) and det(P,Q)σ

may be di�erent.
The aim is to de�ne a similar pairing invariant under Galois action, using a primitive
mth root of unity ζ. We will follow mainly [56, III.8].
Recall that [56, III.3.5] on an elliptic curve E a divisor

∑
ni(Pi) is principal (i.e. is

the divisor of some function) if and only if
∑
ni = 0 and

∑
[ni]Pi = O.

Let T ∈ E[m]. Then there is a function f ∈ K̄(E) s.t.

div(f) = m(T )−m(O). (1.1)

Now let T ′ ∈ E(K̄) be a point s.t. [m]T ′ = T . Similarly we �nd a function g ∈ K̄(E)
s.t.

div(g) = [m]∗(T )− [m]∗(O) =
∑

R∈E[m]

(T ′ +R)− (R). (1.2)

In fact to check that the sum of the divisor is O, we note that #E[m] = m2 and
that [m2]T ′ = O.
Looking carefully we �nd that the functions gm and f ◦ [m] have the same divisor,
so, up to multiplying f by a constant from K̄∗, we may assume that f ◦ [m] = gm.
Now let S ∈ E[m] be another m−torsion point. (It can be S = T ). Then, for any
point R ∈ E, we have:

g(R+ S)m = f([m]R+ [m]S) = f([m]R) = g(R)m.

Thus if we consider the function g(R + S)/g(R) as a function of R, it takes only
�nitely many values: for everyR it is amth root of unity. In particular, the morphism

E → P1, S 7→ g(R+ S)

g(R)

is not surjective, so by proposition 1.18 it is constant.
So we are allowed to de�ne a pairing

em : E[m]× E[m]→ µm

by setting

em(S, T ) =
g(R+ S)

g(R)
,

where R ∈ E is any point such that g(R+S) and g(X) are both de�ned and nonzero
and µm is the group of mth roots of unity.
This is called the Weil em- pairing.
This machinary satis�es all the properties that we were looking for:
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Theorem 1.39. The Weil em-pairing has the following properties:

1. It is bilinear.

2. It is alternating, that is em(T, T ) = 1 for all T ∈ E[m].

3. It is nondegenerate: if em(S, T ) = 1 for all S ∈ E[m], then T = O.

4. It is Galois invariant: For all S, T ∈ E[m], we have em(S, T )σ = em(Sσ, T σ)
for all σ ∈ GK̄/K .

5. It is compatible: emm′(S, T ) = em([m′]S, T ) for all S ∈ E[mm′] and T ∈ E[m].

Proof. See [56, III.8, Proposition 8.1].

1.3 Abelian varieties

Intuitively, one can think of abelian varieties as a higher-dimensional generalization
of elliptic curves. For references in this section, see [34] and [41].

De�nition 1.40. An abelian variety is a projective variety that is also an algebraic
group.

Actually, the name �abelian" is well chosen:

Lemma 1.41. An abelian variety is a commutative algebraic group (cf. [34, A.7.1.3]).

De�nition 1.42. Let G1 and G2 be two algebraic groups. A map φ ∈ Hom(G1, G2)
is an isogeny if it is surjective, has �nite kernel and dimG1 = dimG2. The cardi-
nality of ker(φ) is called the degree of the map.

Proposition 1.43. Let A be an abelian variety of dimension g over an algebraically
closed �eld K̄ of characteristic 0. Then:

a. The multiplication-by-m map [m] : A→ A is an isogeny of degree m2g.

b. A[m] = ker[m] ' (ZmZ)2g

Proof. See [34, A.7.2.7].

Curves of genus g ≥ 2 are not abelian varieties. However, we can embed canon-
ically each such a curve in an abelian variety:

Theorem 1.44. Let C be a smooth projective curve of genus g ≥ 1. There exist an
abelian variety Jac(C), called the Jacobian of C, and an injection j : C ↪→ Jac(C),
such that:

• Extend j linearly to divisors on C. Then j induces a group isomorphism
between Pic0(C) and Jac(C).

• For each r ≥ 0, de�ne the subvariety Wr ⊆ Jac(C) by

Wr = j(C) + ...+ j(C) (r copies).

Then dim(Wr) = min(r, g) and Wg = Jac(C). In particular, dim(Jac(C)) =
g.
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• Let Θ = Wg−1. Then Θ is an irreducible ample divisor on Jac(C).

Proof. See [34, A.8.1.1].

Remark 1.45. If C is an elliptic curve, i.e. if it is of genus 1 and has a rational
point, we have that C ' Jac(C).

Theorem 1.46 (Mordell-Weil). Let A be an abelian variety de�ned over a number
�eld k. Then the group A(k) of k−rational points of A is �nitely generated.

Proof. See [34, Part C].

We say that X = V/Λ is a complex torus if V is a C−vector space and Λ is a
full lattice of V .

De�nition 1.47. Consider the complex torus Cg/Λ and let E be a skew-symmetric
form Λ×Λ→ Z. Since Λ⊗R = Cg, we can extend E to a skew-symmetric bilinear
form ER : Cg × Cg → R. We say that E is a Riemann form if:

a. For all v, w we have ER(iv, iw) = ER(v, w),

b. The associated Hermitian form is positive de�nite.

De�nition 1.48. We say that a complex torus X is polarizable if admits a Riemann
form.

Theorem 1.49. A complex torus X is an abelian variety over C if and only if it
admits a polarization.

Proof. See [41, Theorem 2.8].

Proposition 1.50. All complex tori of dimension 1 are polarizable. In other words,
if Λ is a full C−lattice, then C/Λ is an elliptic curve (cf. [34, A.5.0.3]).

De�nition 1.51. An algebraic curve C de�ned over Q has good reduction at some
prime p if it is the generic �ber of some smooth proper curve de�ned over Zp.

Theorem 1.52 (Néron-Reduction modulo p). Let A be an abelian variety de�ned
over Qp. Then there exists a canonical way to attach to A an algebraic group A0

over Fp.

Remark 1.53. In fact Néron proves the following: the functor from smooth schemes
over Zp,

S 7→ HomSpecQp(S ×SpecZp SpecQp, A)

is representable over a smooth group scheme A over Zp. The scheme A is unique
and we set

A0 = A×Spec(Zp) Spec(Fp).

The scheme A is called Néron model of A.

De�nition 1.54. We say that A has good reduction at the prime p if A0 is an
abelian variety.
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De�nition 1.55. Let B be an abelian variety de�ned over Q. For each prime p,
consider the abelian variety A de�ned over Qp by the same equations of B and let
A0 be the algebraic group of theorem 1.52. Then the Tamagawa number of B at p
is

cB,p = #
A

A0

Proposition 1.56. Let C be an algebraic curve de�ned over Q. If C has good
reduction at some prime p, then its Jacobian J has good reduction at p.

See [6] for details about Néron models and [54] for reduction of abelian varieties.

1.4 Galois cohomology

Introductory references to this section are [34, App. C.4-C.5] 1 and [56, App. B].
For a complete discussion, one can look at [53].

In the following let G be a �nite or topological group and let A be a G-module.
Denote the action of G on A by (σ, a) 7→ aσ.

De�nition 1.57. The 0th cohomology group of G acting on A is the group

H0(G,A) = AG{α ∈ A|ασ = α for all σ ∈ G}.

De�nition 1.58. A map φ : G→ A is called a 1-cocycle from G to A if it satis�es

φ(στ) = φ(σ)τφ(τ) for all σ, τ ∈ G.

Two 1−cocycles φ, φ′ are said to be cohomologous if there exists an a ∈ A such that

aσφ(σ) = φ′(σ)a for all σ ∈ G.

This is an equivalence relation; the set of cohomology classes of 1−cocycles is denoted
by H1(G,A) and is called the 1st cohomology group of G acting on A.

Remark 1.59. IfG is a topological group, for example the Galois group of an in�nite
extension, we will add the requirement that the cocycles should be continuous when
A is given the discrete topology. For example, if A is �nite, this amounts to requiring
that each 1-cocycle factors through a �nite quotient group of G.

Proposition 1.60. Let X0 be a quasi-projective variety de�ned over k. Then
there is a natural bijection between the k−twists of X0 and the cohomology set
H1(Gal(k̄/k),Aut(X0)).

Proof. See [34, App. C.5].

Now we list some classical properties of H0 and H1.

Proposition 1.61. Let G be a group, and let A and A′ be G-modules.

1The book contains also a short but beautiful motivation to the subject: see pp.283-285.
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a. Let f : A → A′ be a G-homomorphism, that is, an homomorphism that com-
mutes with the action of G. Then f induces a natural homomorphism

H1(G,A) −→ H1(G,A′)

[φ] 7−→ [f ◦ φ]

Now let F : G′ → G be a homomorphism. Then G′ acts on A via F , and
induces a natural homomorphism

H1(G,A) −→ H1(G′, A)

[φ] 7−→ [F ◦ φ].

b. Let H be a subgroup of G. Then the map H1(G,A) → H1(H,A) from a. is
called the restriction map. If further H is a normal subgroup of G, then G/H
acts on AH . In this case, the projection map π : G→ G/H and the inclusion
AH ↪→ A induce the in�ation map de�ned by the formula

H1(G/H,AH) −→ H1(G,A)

[φ] 7→ [φ ◦ π].

The following sequence, called the in�ation-restriction sequence, is exact:

0 −→ H1(G/H,AH)
inf−→ H1(G,A)

res−→ H1(H,A).

c. Let
0 −→ A

f−→ B
g−→ C −→ 0

be a short exact sequence of G-modules. Then there is a canonical long exact
sequence

0 −→ H0(G,A)
f−→ H0(G,B)

g−→ H0(G,C)

δ−→ H1(G,A)
f−→ H1(G,B)

g−→ H1(G,C).

The connecting homomorphism δ is de�ned as follows. Let c ∈ H0(G,C).
Choose some b ∈ B such that g(b) = c. Then for any σ ∈ G, we have

g(bσ − b) = g(b)σ − g(b) = cσ − c = 0 since c ∈ H0(G,C) = CG.

Thus bσ is in ker(g) = Im(f), and the injectivity of f means that we obtain a
well-de�ned element f−1(bσ − b) ∈ A. The map

G −→ A

σ 7−→ f−1(bσ − b),

is a cocycle representing the cohomology class of δ(c). Moreover, the long exact
sequence gives rise to the following short exact sequene:

0 −→ CG/g(BG)
δ−→ H1(G,A)

f−→ H1(G,B)[g] −→ 0.
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Proof. These are very classical results. See for instance [56, App. B].

Theorem 1.62 (Hilbert's 90). Let k be a �eld and let k′ be a (�nite or in�nite)
Galois extension of k. Let G = Gal(k′/k). Then we have that H1(G, k′×) = 1.

Proof. See [51, Ch. 10, Proposition 2].

Example 1.63. Let Gk = Gal(k̄/k) and let µm ⊂ k̄× be the group of mth root of
unity. The short exact sequence of Gk-modules

0 −→ µm −→ k̄×
m−→ k̄× −→ 0

induces the long exact sequence

0 −→ µm(k) −→ k×
m−→ k×

δ−→ H1(Gk,µm) −→ H1(Gk, k̄×).

By Hilbert's 90 (theorem 1.62) we have that H1(Gk, k̄×) is trivial. This implies that
δ is an isomorphism, the Kummer isomorphism

k×/k×m
δ' H1(Gk,µm).

Example 1.64. Let α : A→ B be an isogeny of two abelian varieties de�ned over
k and let Gk = Gal(k̄/k). Then the short exact sequence of Gk-modules

0 −→ ker(α)
ι−→ A(k̄)

α−→ B(k̄)→ 0

induces a long exact sequence

0 −→ ker(α)(k)
ι−→ A(k)

α−→ B(k)

δ−→ H1(Gk, ker(α))
ι−→ H1(Gk, A(k̄))

α−→ H1(Gk, B(k̄)).

This exact sequence gives rise to the following fundamental short exact sequence

0 −→ B(k)/αA(k)
δ−→ H1(Gk, ker(α)) −→ H1(Gk, A(k̄))[α] −→ 0,

where H1(Gk, A(k̄))[α] denotes the kernel of the map

α : H1(Gk, A(k̄)) −→ H1(Gk, B(k̄)).

De�nition 1.65. Let α : A → B be an isogeny of abelian varieties de�ned over a
number �eld k and let Mk be the set of places of k. Let Gk = Gal(k̄/k) and for each
v ∈Mk set Gv = Gal(k̄v/kv). The Selmer group of A with respect to α is the group

Sel(α)(A/k) =
⋂
v∈Mk

ker{H1(Gk, ker(α)) −→ H1(Gv, A(k̄v))[α]}.

De�nition 1.66. The Tate-Shafarevich group of A is the group

X(A/k) =
⋂
v∈Mk

ker{H1(Gk, A(k̄)) −→ H1(Gv, A(k̄v))}.
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Remark 1.67. From the exact sequence of example 1.64, we can now deduce the
following exact sequence:

0 −→ B(k)/αA(k) −→ Sel(α)(A/k) −→X(A/k)[α] −→ 0.

Proposition 1.68. Let α : A→ B be an isogeny of abelian varieties de�ned over a
number �eld k. Then the Selmer group Sel(α)(A/k) is �nite, hence by remark 1.67
also X(A/k)[α] is �nite.

De�nition 1.69. Let k be a number �eld and let v be a place of k. Let Iv ⊂
Gal(k̄v/kv) be an inertia for v. A cohomology class φ ∈ H1(Gk,M) is unrami�ed at
v if its restriction to H1(Iv,M) is trivial. It is important to note that Iv is de�ned
only up to conjugation, but the triviality or nontriviality of the restriction of φ does
not depend on the choice of Iv.

Remark 1.70. It also possible to de�ne the cohomology in the case ofA not being an
abelian group. See for instance [56, App. B.3] for a brief introduction to nonabelian
cohomology.

1.5 Modular forms

The main references for the following de�nition and proofs are [43] and [55, Ch. I].
Another good reference is [35].
We will work with the complex upper half plane H:

H = {z ∈ C|=(z) > 0}.

We want to study Riemann surfaces of the form Γ\H for some discrete group Γ.
The most obvious such Γ is the full modular group Γ = SL2(Z) that acts on H by
homography.

De�nition 1.71. For any positive integer N , de�ne the principal congruence subr-
group of level N to be:

Γ(N) =

{(
a b
c d

)
s.t. a ≡ 1, b ≡ 0, c ≡ 0, d ≡ 1 mod N

}
Then we are mainly interested in congruence subgroup Γ of SL2(Z) that are the

ones that contains a principal congruence subgroup of some level N .

Proposition 1.72. Let Y (N) = Γ(N)\H. Let p : H→ Y (N) be the projection map.
Then there is a unique complex structure on Y (N) such that a function f on a open
subset U of Y (N) is holomorphic if and only if f ◦ p is holomorphic on p−1U .

Proof. See [43, Proposition 2.7].

In this way, by composing with p, we get a bijection between holomorphic func-
tions on some open U ⊂ Y (N) and holomorphic functions of p−1U invariant under
the action of Γ(N), that is such that f(γz) = f(z) for each γ ∈ Γ(N).
However, the Riemann surface Y (N) is not compact, but it can be naturally com-
pacti�ed by adding a �nite number of points (the �cusps�). The compacti�cation of
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Y (N) is denoted by X(N).
As an example, the compacti�cation of Y (1) can be symply obtained considering
H∗ = H∪P1(Q). Then Γ(1) acts continuously on H∗ and we can take the (compact)
quotient space Γ(1)\H∗.

Similarly, if Γ is a subgroup of �nite index of Γ(1) we can de�ne a compact
Riemann surfaceX(Γ) taking the quotient Γ\H∗ and putting an appropriate complex
structure on it.

De�nition 1.73. Let Γ be a subgroup of �nite index in Γ(1). A modular function
for Γ is a meromorphic function on the compact Riemann surface X(Γ).

In this way a modular function f for Γ can bee seen as an holomorphic function
on H such that f is invariant under the action of Γ and that is meromorphic at the
cusps. (For precise de�nition of being �meromorphic at the cusps�, see [43, I.4]).

De�nition 1.74. An elliptic modular curve is a curve of the form Γ\H∗ for Γ a
congruence subgroup of Γ(1).

De�nition 1.75. Let Γ be a subgroup of �nite index of Γ(1). A modular form of
γ of weight 2k is an holomorphic function on H such that:

a. f(γz) = (cz + d)2k · f(z), for all z ∈ H and for all γ ∈ Γ.

b. f(z) is holomorphic at the cusps of Γ.

Moreover, if f is zero at all the cusps, it is called a cusp form.

De�nition 1.76. A newform of level N is a normalized cusp form of weight 2 for
the full modular group, belonging to the new space at level N , that is a simultaneous
eigenfunction for the Hecke operators.

See [43] and [55] for a complete explanation.

However one can think to newforms in term of their q−expansions:

f(z) = q +
∑
n≥2

cnq
n, q = exp(2πiz) (1.3)

(In principle we could have ci ∈ C, but see below).
In the following we state some basic facts about newforms. For details and

proofs, see as usual [43].

Theorem 1.77. Let f be a newform with q−adic expansion as in (1.3)

• For each �xed positive integer N , there are only �nitely many newforms f of
level N .

• If f is a newform with coe�cients ci and K = Q(c2, c3, . . . ) then K is a real
number �eld.

• The coe�cients ci in fact belong to the ring of integer OK of the number �eld
K.
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• If l is prime then

|cσl | ≤ 2
√
l for all embeddings σ : K ↪→ R

Remark 1.78. We care only about newforms up to Galois conjugacy.

Remark 1.79. The number of newforms at a particular level N depends in a very
erratic way on the level N .

De�nition 1.80. If all the coe�cients ci of a newform f lie in Q, then f is said to
be rational.

Theorem 1.81 (Modularity theorem for Elliptic Curve, previously Taniyama-Shimu-
ra-Weil conjecture). Associated to any rational newform f of level N , there is an
elliptic curve Ef/Q of conductor N such that for all primes l - N

cl = al(Ef ) (1.4)

where cl is the l−th coe�cients in the q−expansion of f and al(Ef ) = l+1−#Ef (Fl).
For any given positive integer N , the association f 7→ Ef is a bijection between
rational newforms of level N and isogeny classes of elliptic curves of conductor N .

The proof is completed in a series of papers by many authors. See [61], [59], [25],
[18] and �nally [8].

1.5.1 Level-lowering

In this section we will describe a simpli�ed version of Ribet's Level-Lowering theo-
rem stated in [47].

We should use the language of Galois representations, but for our purpose the
following is enough. (This presentation is essentialy due to Siksek [2, pp.151�179]).

De�nition 1.82. Let E be an elliptic curve de�ned over Q of conductor N , suppose
moreover that f is a newform (of weight 2) of level N ′ with q−expansion as in (1.3)
and with coe�cients ci generating the number �eld K. Then we say that E arises
modulo p from the newform f (writing E ∼p f) if there is some prime ideal p over
p of K such that for almost all primes l, we have al(E) ≡ cl mod p.

Thanks to theorem 1.81, if f is a newform we know that it corresponds to some
elliptic curve F . Then if E arises modulo p from f we can also say that E ∼p F .

Proposition 1.83. Suppose that E and F are elliptic curves over Q with conductors
N and N ′ respectively. Suppose that E ∼p F . Then for all primes l (even p = l).

• if l - NN ′ then al(E) ≡ al(F ) mod p and

• if l - N ′, l|N and l2 - N then l + 1 ≡ ±al(F ) mod p.

Proof. See [36, pp. 262-264].
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Let E be, as usual, an elliptic curve over Q. Let ∆ be the minimal discriminant
of E and N its conductor. Suppose p is a prime and de�ne

Np = N
/ ∏
q|N, q2-N
p|ordq(∆)

q.

Theorem 1.84 (Simpli�ed Ribet's Level-Lowering). Let E be an elliptic curve over
Q and let p ≥ 5 be a prime. Suppose moreover that E does not have isogenies of
degree p. Then there exists a newform f of level Np such that E ∼p f .

Proof. See [47] for Ribet's original statement and proof.

1.5.2 Moduli varieties

Heuristically, moduli varieties are geometrical spaces that classi�es some algebro-
geometric object. Once again, an (introductory) reference is [43].

De�nition 1.85. Let k an algebraically closed �eld. A moduli problem over k is a
contravariant functor F from the category of algebraic varieties over k to the category
of sets. In particular for each k−variety V we are given a set F(V ) and for each
regular map φ : W → V of k−varieties we are given a map F(φ) : F(V )→ F(W ).

Remark 1.86. Most of the times F(V ) is taken to be the set of isomorphism classes
of some objects over V .

De�nition 1.87. A pair (V, α), consisting of a k−variety and of a bijection α :
F(k)→ V (k); is a solution to the moduli problem if it satis�es the following condi-
tions:

a. Let T be a variety over k and let f ∈ F(T ); a point t ∈ T (k) can be viewed as
a map m-Spec(k)→ T , and so by functoriality f de�nes an element ft of Ft;
we therefore have a map [t 7→ α(ft)] : T (k) → V (k) and we require this map
to be regular (i.e. de�ned by a morphism of algebraic varieties),

T (k)→ V (k) f ∈ F(T )

t 7→ α(ft) ft = F(t)(f) ∈ F(k).

b. Let Z be a k−variety and let β : F(k)→ Z(k) be a map such that, for every
pair (T, f) as in [a.], the map t 7→ βF(t) : T (k) → Z(k) is regular, then the
map β ◦ α−1 : V (k)→ Z(k) is required to be regular:

F(k)
α
> V (k)

Z(k)

β ◦ α−1

∨

β

>
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A variety V that arises as a solution of a moduli problem is called a moduli
variety.

Remark 1.88. The condition [b.] implies that there is at most one solution, up to
isomorphism, to a moduli problem.

Remark 1.89. The above de�nitions can be generalized to a �eld k0 which is not
algebraically closed. Supposing k0 to be perfect with algebraic closure k, now we
take V to be a k0-variety and α to be a family of maps α(k′) : F(k′) → V (k′)
(for each k′ algebraic extension of k) compatible with the inclusions of �elds, and
(Vk, α(k)) is required to be a solution of the moduli problem over k.

In this last construction we do not require α(k′) to be a bijection when k′ is not
algebraically closed, so that, in general, V does not represent the functor F . This
yields to the following de�nition:

De�nition 1.90. If V represents the functor F is called a �ne moduli variety;
otherwise is called a coarse moduli variety.

Example 1.91. Let V be a variety over a �eld k0. A family of elliptic curves over
V is a map of algebraic varieties E → V such that the coe�cients of the Weierestrass
equation of E are regular function on V .
For a variety V , let E(V ) be the set of isomorphism classes of elliptic curves over
V . Then E is a contravariant functor, so we can see it as a moduli problem over k0.
For every �eld k′ containing k0, the j− invariant (1.35) de�nes a maps

E(k′)→ A1(k′) = k′

E 7→ j(E)

that is an isomorphism if k′ is algebraically closed. In general we have the following
result:

The pair (A1, j) is a solution to the moduli problem E .

Y(N) as moduli variety

De�nition 1.92. Let N be a positive integer. A primitive level N structure on an
elliptic curve E is a pair of points t = (t1, t2) in E(k) such that the maps

Z
NZ
× Z
NZ
→ E(k)

(m,m′) 7→ (mt1,mt2)

is injective. This means that E(k)[N ] has order N2 and that t1 and t2 form a basis
for E(k)[N ] as a Z/NZ-module.

Let now ζ ∈ C be a primitve N−th rooth of unity. For any variety V over a �eld
k ⊇ Q(ζ), we de�ne EN (V ) to be the set of isomorphism classes of pairs (E, t), where
E is an elliptic curve over V and t is a level-N structure on E s.t. eN (t1, t2) = ζ,
where eN is the eN -Weil pairing de�ned in 1.2.1. Then EN is a contravariant functor,
hence a moduli problem:
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Proposition 1.93. The map

H→ EN (C)

τ 7→
(
C/Λ(τ, 1), (τ/N, 1/N) mod Λ(τ, 1)

)
induces a bijection Γ(N) → EC, where Λ(τ, 1) is the 1−dimensional lattice Λ =
τZ + Z. (C/Λ is an elliptic curve by Proposition 1.50) (cf. [43, Lemma 8.7]).

Theorem 1.94. Let k be a �eld containing Q[ζ], where ζ is a primitive N -th root
of unity. Then the moduli problem E has solution (M,α) over k. When k = C, M
is canonically isomorphic to Y (N)C. Let M be the solution of moduli problem EN
over Q[ζ]. Then M has good reduction at the prime ideals not dividing N .

Proof. See [42, �1].
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Chapter 2

The theorem: solving x2 + y3 = z7

2.1 The theorem

We begin now the explanation of the main paper [46].

De�nition 2.1. Fix integers p, q, r ≥ 1. An integer solution (x, y, z) to

xp + yp = zr

is called primitive if gcd(x, y, z) = 1

Theorem 2.2. The primitive integer solution to the equation x2 + y3 = z7 are the
16 triples:

(±1,−1, 0), (±1, 0, 1),±(0, 1, 1), (±3,−2, 1), (±71,−17, 2), (±2213459, 1414, 65),

(±15312283, 9262, 113), (±21063928,−76271, 17).

Remark 2.3. The condition on the gcd is really necessary: for example, if a+b = c,
multiplying by a21b14c6 we get that

(a11b7c3)2 + (a7b5c2)3 = (a3b2c)7,

�nding in�nitely many easy solutions to x2 + y3 = z7.

2.2 Notations

• SA = Spec
(

A[x,y,z]
(x2+y3−z7)

)
r {(x, y, z)}, where A is any commutative ring. (The

quasi-a�ne subscheme obtained from x2 + y3 = z7 removing the trivial point
x = y = z = 0);

• S(Z) the set of (primitive) integer solutions to x2 + y3 = z7;

• k a number �eld;

• Gk = Gal(Q/k). If k = Q, often we will simply denote GQ by G;

• R = Z[1/42];

• G = PSL2(F7) the smallest Hurwitz group.
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2.3 Overview of the strategy

First of all, in chapter 3 we will look for a suitable étale Galois cover of SZ. We will
�nd that the smallest possible Galois cover X that allows us to apply the descent
method has G = PSL2(F7) as Galois group. After identifying X to be the Klein
quartic curve, a (nonabelian) descent argument will reduce our problem to explicitly
�nd the relevant twists X ′ of X together with some maps π′ that will allow us to
recover the "true" solutions in S(Z) from the rational points on the twists X ′.

In chapter 4 we will sketch the construction of the modular curve X(7) (see
also section 1.5.2). Then the isomorphism between X(7) and X allows us to reduce
our problem further to the classi�cation of some of the symplectic twists of a speci�c
GQ-module, up to quadratic twist. We will show then that there is one way to assign
to each elliptic curve over Q two of the relevant twists of X(7), thus requiring us to
classify the possible E[7], seen as GQ-module. This will be done �rst in the case of
E[7] reducible and then in the case of E[7] irreducible. With a little bit of theory
about covariants then we will �nally �nd an explicit list of ten equations describing
the relevant twists ofX. Moreover we will give a formula for the maps π′ of chapter 1.

At this point what is left to do is to �nd all the Q-rational points on the ten
curves. This task is far from being trivial and we will start by constructing the
Jacobian of each of the given curves. The aim of chapter 5 is to compute the
Mordell-Weil ranks of the ten Jacobians. For three of them this will be sketched
using an argument previously appeared in literature. For the remaining seven, a
di�erent cohomological descent argument will be shown in details. The basic idea in
the latter case is to exploit an analogy between the Klein quartic X with triangles
of its in�ection points with a genus-3 hyperelliptic curve with its Weierstrass points.

Finally, in chapter 6, we will show that all the rational points that one can
�nd on the ten curves with a naive search (listed in appendix B) are actually all the
rational points on those curves. To do that we will �rst brie�y explain two classical
tools in the theory of rational points: the Mordell-Weil sieve and the Chabauty-
Coleman method. Finally, we will sketch these arguments applied to the curves. We
will discover that one of the curve cannot be treated in the same way as the others
and we will give for it the sketch of an ad-hoc argument.
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Chapter 3

Descent

3.1 Étale covers

To apply the descent method, we need a �nite étale cover of SZ or at least of SZ[1/N ]

for some N ≥ 1. First, we will �nd such a cover for SC.
Using some basics facts about stacks, we �nd that a convenient cover of SC is XC
s.t Aut(XC) = G = PSL2(F7), the smallest Hurwitz group, of order 168.
Now, using the Hurwitz formula for orbifolds (see the Remark 3.2), we recognize
XC to be the only genus 3 curve with 168 automorphism, the Klein quartic curve
de�ned by the equation

X3Y + Y 3Z + Z3X = 0. (3.1)

A good reference for many facts about this curve and its automorphism group
G is [27].
To be able to apply the descent method later (Section 3.2), we work with the stack
quotient [SC/Gm] (that is birational to P1(C)), so that we actually consider X̃C the
base extension of XC by the projection SC → [SC/Gm].

Similarly we de�ne, with the same equations, the varieties X, X̃ over Q and XR

X̃R over the ring R = Z[1/42]. This particular choice will allow us to apply the
descent method as in R we have 2, 3 and 7 invertibles (since 42 = 2 · 3 · 7).
The map X̃C → SC, of degree 168, arises from a map π̃ : X̃R → SR; the associated
morphism π will be explicitly described later. (See Section 3.2 and Lemma 4.15).

The situation is shown by the following diagram:

X̃R′ > XR′

SR′

π̃

∨
> [SR′/Gm]

π0

∨ birational
> P1

π

>

Here the maps π̃, π0, π are of degree 168. The schemes can be considered either
over C or more generally over any ring R′ containing R.
On the bottom row, the map j : S → P1 arises from our construction and is de�ned
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by

(a, b, c) 7−→ 1728b3

c7
(3.2)

Remark 3.1. The map de�ned by the equation (3.2) is a crucial point: looking for
the sub�eld of the function �eld C(SC), we choose C(j) where j = 1728y3/z7. We
do this because we would like to have the quotient SC by the action of Gm being
birational to P1. (Note that this choice is not unique, but it will lead to easier
computations). What we will do at the end will be to �nd explicit values for j and
from them recovering the triples (a, b, c) with a2 + b3 = c7 (cf. Remark 4.17).

Remark 3.2. For (very) basic facts about stacks, see for example [31]. For orbifolds
one can look at [44] and [1].
[S/Gm] is not a scheme, but one can think about it as P1 except that the points
1728, 0 and ∞ are replaced by a 1

2−point, a
1
3−point, and a 1

7−point, respectively.
See [1] for details.

3.2 The �rst descent

Since G is not abelian we have to work with nonabelian cohomology, in this case
H1(GQ, G) is simply a pointed set. From descent theory [57, �5.3], we get that:

• The set of classes in the Galois cohomology set H1(GQ, G) that are unrami�ed
outside 2, 3 and 7 is �nite.

• Each such class corresponds to an isomorphism class of twists π̃′ : X̃ ′ → of
π̃ : X̃ → S.

• the set S(R) is the disjoint union of the sets π̃′(X̃ ′(R)).

Remark 3.3. Recall that (cf. de�nition 1.69 ) an element of H1(GQ, G) is unrami�ed
at p if its restriction in H1(Ip, G) is trivial, where Ip is the inertia group of p. Thus
"unrami�ed outside 2, 3, 7", for an element of H1(GQ, G), means that its restriction
to H1(Ip, G) is trivial for all p 6= 2, 3, 7.

So choosing a cocycle in a class of H1(GQ, G), we are able to construct an iso-
morphism class of twists of X. Actually each such cocycle twist the upper half of
the square

X̃ > X X̃ ′ > X

obtaining

S

π̃

∨ j
> P1

π

∨
S

π̃′

∨ j
> P1

π′

∨

Since PicR is trivial, each map X̃ ′(R) → X ′(R) is surjective. Thus we have
S(Z) ⊆ S(R) =

⋃
j−1(π′(X ′(Q))); so that in the following we will need to do:

a. Find explicitly the equations for each twist X ′ and the maps π′ arising from
cocycles unrami�ed outside 2, 3, 7.
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b. Determine X ′(Q) for each twist X ′.

Remark 3.4. Note that, since X ′ has genus 3, X ′(Q) is �nite by the theorem of
Faltings 1.24.

Remark 3.5. The task [b.] is obviously not know to reduce to a �nite computation,
in general.

Remark 3.6. Since we want to �nd only S(Z) and not all S(R), we will compute
only the rational points inside some �residue classes� on each curve: see section 3.3.

3.3 The local test

De�nition 3.7. We say that the curveX ′ passes the local test if the subset π′(X ′(Qp))∩
j(S(Zp) of P1(Qp) is nonempty for all primes p.

Hence our task actually will be:

a.' For each X ′ passing the local test, �nd an equation for X ′ and a formula for
π′. (See Lemma 4.15 for the latter).

b.' For each suchX ′, determine the set {P ∈ X ′(Q) : π′(P ) ∈ j(S(Z)p)) for all primes p}.
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Chapter 4

Finding the twists of X(7)

4.1 Modularity

In this part of the proof, we observe that the map j : X → P1 is equivalent to a map
of modular curves X(7)→ X(1): this will help us �nding the required twists of X.

Here, in contrast with what was said in section 1.5, the construction of the
modular curves X(7) and X(1) is algebraic: starting from Y (N) as given in section
1.5.2, we take X(N) to be its usual compacti�cation. Details can be found in [43].
Recall that if E is an elliptic curve de�ned over a number �eld k, then E[m] denotes
the kernel of the multiplication by m ∈ Z≥1 on the k-rational points; moreover E[m]
has a natural structure of Gk-module.

4.1.1 Twists of X(7) associated to elliptic curves

Let Y (1) be the (coarse) moduli space of elliptic curves over Q. By Example 1.91,
we know that Y (1) ' A1 and so X(1) = P1. The forgetful functor mapping a pair
(E, φ) to E induces a morphism Y (7)→ Y (1) and thus a morphism X(7)→ X(1).

De�nition 4.1. Now let Mk be the Gk-module µ7 × (Z/7Z)3. When we write
φ : Mk'̂E[7], we mean that φ is a symplectic isomorphism, that is, an isomorphism
of Gk-modules such that

∧2 φ :
∧2Mk →

∧2E[7] is the identity µ7 → µ7.

Remark 4.2. From the isomorphismMQ̄ ' (Z/7Z)2 mapping (ζa, b) to the column

vector

(
a
b

)
induces the following equality on the groups of symplectic automor-

phisms of MQ̄:
AutΛ(MQ̄) = AutΛ((Z/7Z)2) = SL2(F7)

Lemma 4.3. Over Q̄, the covering X(7)→ X(1) is Galois, moreover we have that

Gal(X(7)Q̄/X(1)Q̄) ' G = PSL2(F7).

(cf. [46, 4.2]).

Now we note (see [27] for many details) that X and X(7) are isomorphic as
Q-varieties. However, the isomorphism is not unique, so we choose a particular
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one that will lead to easier computations: in this way we get that the isomorphism
X(1) → P1 is the standard one given by the j−invariant; suppose (a, b, c) ∈ S(Z)
and a, b, c nonzero. Then j = 1728b3/c7 is not 1728, 0 or ∞. The corresponding
point on X(1) is represented by the elliptic curve

E = E(a,b,c) : Y 2 = X3 + 3bX − 2a.

(to verify that this works, one has just to recall that (a, b, c) ∈ S(Z) means
a2 + b3 = c7).

S(Z)
j

> P1 > X(1)

(a, b, c) >
1728b3

c7
> E(a,b,c)

Since GQ acts onMQ, it acts also on AutΛ(MQ). The homomorphism AutΛ(MQ −→
Aut(X(7)Q) is clearly GQ-equivariant, so we can �nd the following cohomological
map:

H1(GQ,AutΛ(MQ)) −→ H1(GQ,Aut(X(7)Q)),

that can be seen as a map

γ : {symplectic twists of M} −→ {twists of X(7)}

where by symplectic twist of M we mean a GQ-module M ′ with an isomorphism∧2M ′ ' µ7 such that there is an isomorphism ι : MQ → M ′Q such that
∧2 ι is the

identity µ7 → µ7 over Q.
Let XM ′(7) be the image trough γ of M ′. Then XM ′(7) is the smooth projective
model of the smooth a�ne curve whose points classify pairs (E, φ) where E is an
elliptic curve and φ : M ′'̂E[7].

Remark 4.4. Since by Lemma 4.3 acts as automorphism of X(7)Q over X(1)Q,
there is a canonical morphism XM ′ → X(1). From the moduli space point of view,
this is nothing else that the forgetful functor mapping (E, φ) to E.

De�nition 4.5. Now let E be an elliptic curve over Q. De�ne XE(7) = XE[7](7)

and de�ne X−E (7) = XE[7]−1(7), where E[7] is saw as a GQ-module and E[7]−1 is one
induced from E[7] by the map

µ7 → µ7

α 7→ α−1.

Remark 4.6. By our construction, if E is an elliptic curve and F is a quadratic
twist of E, then XE(7) ' XF (7) and X−E (7) ' X−F (7).

Lemma 4.7. Let G = Gal(Q̄/Q). To classify relevant twists X ′ of X of section 3.2
for which j ∈ π′(X ′(Q)), it su�ces to list the possibilities for the G-module E[7], up
to quadratic twist (cf. [46, Lemma 4.4]).

So we begin �nding restriction on E[7]:

31



De�nition 4.8. Suppose that we have ρp a Galois representation of GQ that takes
value in GL2(Fp) and so de�nes an étale group scheme of type (p, p) over the �eld
Qp. If this group scheme extends to a group scheme over Zp that is �nite and �at,
we say that the representation ρp is �nite at p.

See [52, p.189] for the de�nition in its original context and for more details.

Lemma 4.9. If (a, b, c) ∈ S(Z) and a, b, c are nonzero, then 1728b3/c7 is the j-
invariant of an elliptic curve E over Q such that

a. the conductor N of E is of the form N = 2r3s
∏
P∈T p where r ≤ 6, s ≤ 3,

and T is a �nite set of primes ≥ 5.

b. E[7] is �nite at 7 in the sense of de�nition 4.8.

Proof. For (a.) it's pretty much a straightforward check with the p-adic valuations.
For (b.) here we note that if E has good reduction at 7, the result is obvious. See
[46, p.10] for the full details.

4.2 Classi�cation of admissible E[7]

Remark 4.10. Lemma 4.7 say that we need only to list the possibilities of E[7],
up to quadratic twist, such that E[7] is unrami�ed outside 2, 3, 7. We will do that
in the two distinct cases of E[7] reducible and irreducible.

4.2.1 Reducible E[7]

Here the proof involves di�erent combined technics on modular curves and coho-
molgy, with the addition of the Kronecker-Weber theorem (a nice proof of this
theorem can be �nd in [60]) and the use of lemma 4.9. We end up with a �nite list
of parametrized twists.

4.2.2 Irreducible E[7]

Let H be the speci�c set of 13 elliptic curves over Q given in Appendix A, that
follows the notation of [19].

Lemma 4.11. Suppose that E is an elliptic curve as in Lemma 4.9, and that E[7]
is an irreducible G-module. Then there exists a quadratic twists E′ of some E′′ ∈ H
such that E[7] ' E′[7] as G-modules.

The proof works by level-lowering (theorem 1.84) a particular weight−2 newform
associated to E, then one proceed by a case-by-case analysis to show the result (cf.
[46, p.15] for details).

Corollary 4.12. Suppose (a, b, c) ∈ S(Z) and a, b, c 6= 0. If E(a,b,c,)[7] is irreducible,
then j = 1728b3/c7 ∈ X(1)(Q) is the image of a rational point on one of the 26
curves XE(7) or X−E (7) with E ∈ H.

Here XE(7) and X−E (7) are twists of X(7) coming from the relevant twists of the
G-module E[7]. (cf. De�nition 4.5)

32



4.3 Explicit equations

X = X(7) is a non-hyperelliptic curve of genus 3 and so are its twists. The aim
of this part is to �nd explicit equations for the relevant twists, exploiting their
symmetries and using the local test (de�nition 3.7).

The left action of GLn(C) on V = Cn induces a right action of the same group
on the C-algebra C[x1, . . . , xn] = SymV ∗: if g ∈ GLn(C) and F ∈ C[x1, . . . , xn],
we have that F g(v) = F (gv) for all v ∈ V . Let C[x1, . . . , xn]d = Symd V ∗ be the
subspace of SymV ∗ consisting of homogeneous polynomials of degree d.

De�nition 4.13. Fix n and d. A covariant of order j and degree δ is a function
Ψ : C[x1, . . . , xn] −→ C[x1, . . . , xn]j such that:

a. The coe�cients of a �xed monomial xi11 . . . x
in
n in Ψ(F ) depends polynomially

on the coe�cients of F , as F varies in C[x1, . . . , xn].

b. For each g ∈ SLn(C), we have Ψ(F g) = Ψ(F )g.

c. For each t ∈ C×, we have Ψ(tF ) = tδΨ(F ).

Similarly a contravariant of order j and degree δ is a polynomial map Ψ :
Symd V ∗ −→ Symj V that is homogeneous of degree δ in the coe�cients and equiv-
ariant with respect of the right action of SLn(C) on the two spaces, that is, Ψ(F g) =
Ψ(F )g

−t
for all F ∈ Symd V ∗ and g ∈ SLn(C). Choosing a base for V , we induce an

isomorphism V ' V ∗, so that each contravariant may be expressed as a polynomial
in the same variables x1, . . . , xn.

Later on, we will consider only covariants and contravariants of ternary quartic
forms that is, with the above notation, n = 3 and d = 4, with variables x, y, z.

In the following, 5 speci�c covariants and one contravariant (Ψ−4) will be used:

name order degree
Ψ0 0 3
Ψ4 4 1
Ψ6 6 3
Ψ14 14 8
Ψ21 21 12
Ψ−4 4 2

See [48] for an (old-fashioned) complete list of the de�nitions.

In the paper [32] is explicitly �nd the equation of XE(7) in terms of the coe�-
cients of E. If E is given in Weierstrass form Y 2 = X3 + aX + b, then the equation
is:

ax4 +7bx3z+3x2y2−3a2x2z2−6bxyz2−5abxz3 +2y3z2 +2a2yz3−4b2z4 = 0. (4.1)

What we miss at this point is an explicit equation for X−E (7) given the equation
of E. We will �x this small gap with the following result:
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Lemma 4.14. Let M be a G-module. If F is a ternary quadratic form describing
XM (7), then Ψ−4(F ) is a ternary quartic form describing X−M (7).

Proof. See [46, Proposition 7.5].

Then X−E (7) is de�ned by the following equation:

−a2x4 + a(3a3 + 19b2)y4 + 3z4 + 6a2y2z2 + 6az2x2 − 6(a3 + 6b2)x2y2 − 12aby2zx)

+18bz2xy + 2abx3y − 12bx3z − 2(4a3 + 21b2)y3z + 2a2by3x− 8az3y = 0.

(4.2)

As we saw in the section 3.2, for each twist of X ′ of X, we need to �nd explicitly
the associated morphism X ′ −→ P1, to be able to recover the �true" solutions over
Z.

Lemma 4.15. Let X ′ be a twist of X de�ned by a ternary quartic form F . Then
the canonical morphisms is:

π′ : X ′ −→ P1

(x : y : z) 7−→ Ψ14(F )3

Ψ0(F )Ψ6(F )7

where we take P1 parametrized by the j−invariant.

Proof. It su�ces to chek this for the Klein quartic X, and this is done in [27,
2.13].

Proposition 4.16. It is possible to write explicitly an algorithm for the local test
(cf. section 3.3) that terminates.

Proof. See [46, 7.4].

4.3.1 Equations

Since we are not interested in all the solutions S(R), we have to run the local
test algorithm on the (�nite) list of twists of X coming from both reducibles and
irreducibles E[7]. We end up with exactly 10 twists that passes the test: 3 of them
coming from reducibles E[7], the other 7 from the irreducible ones. At this point
we are able to compute explicitly the 10 equations that de�ne the same number of
quartic plane curves of genus 3 denoted by C1, . . . , C10, where C1, C2 and C3 are the
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one coming from the reducible case.

C1 : 6x3y + y3z + z3x = 0

C2 : 3x3y + y3z + 2z3x = 0

C3 : 3x3y + 2y3z + z3x = 0

C4 : 7x3z + 3x2y2 − 3xyz2 + y3z − z4 = 0

C5 : − 2x3y − 2x3z + 6x2yz + 3xy3 − 9xy2z + 3xyz2 − xz3 + 3y3z − yz3 = 0

C6 : x4 + 2x3y + 3x2y2 + 2xy3 + 18xyz2 + 9y2z2 − 9z4 = 0

C7 : − 3x4 − 6x3z + 6x2y2 − 6x2yz + 15x2z2 − 4xy3 − 6xyz2 − 4xz3 + 6y2z2

− 6yz3 = 0

C8 : 2x4 − x3y − 12x2y2 + 3x2z2 − 5xy3 − 6xy2z + 2xz3 − 2y4 + 6y3z

+ 3y2z2 + 2yz3 = 0

C9 : 2x4 + 4x3y − 4x3z − 3x2y2 − 6x2yz + 6x2z2 − xy3 − 6xyz2 − 2y4 + 2y3z

− 3y2z2 + 6yz3 = 0

C10 : x3y − x3z + 3x2z2 + 3xy2z + 3xyz2 + 3xz3 − y4 + y3z + 3y2z2 − 12yz3

+ 3z4 = 0

See Appendix B for the known rational points of each Ci found with a naive
search.

Remark 4.17. What we have to do at this point is the following:

a. For each curve C1, . . . , C10 we �nd all its Q-rational points;

b. For each such rational point, we compute the corresponding value j ∈ P1 using
Lemma 4.15;

c. For each such j, we list all the primitive integer solutions (a, b, c) to a2+b3 = c7

with 1728b3/c7 = j, if such solutions exist.

See appendix B for the list of the rational points on C1, . . . , C10.

Example 4.18. P28 = (0 : 0 : 1) is a rational point of C8. The corresponding
j−invariant, computed with the formula of Lemma 4.15, is j = −2933. Hence we
have (recall that (a, b, c) ∈ S(Z)):

j = −2933 =
1728b3

c7

−23c7 = b3

−8(a2 + b3) = b3

8a2 = −9b3.

Now, since gcd(a, b, c) = 1, we have also gcd(a, b) = 1. It follows that v2(b3) = 3 and
v2(a2) = 0, hence v2(b) = 1 and v2(a2) = 0. Similarly we have that v3(a) = 1 and
v3(b) = 0. Finally, if p ≥ 5, vp(a) = vp(b) = 0. In this way we get that (±3,−2, 1)
are two solutions to our original equation that comes from P28.
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Example 4.19. P25 = (0 : 1 : 0) is a rational point of C7. The corresponding
j−invariant is j = −2333. So we have:

j = −2333 =
1728b3

c7

−3c7 = 23b3

−3(a2 + b3) = 8b3

3a2 = −11b3.

The assumption gcd(a, b) = 1 implies that there are no primitive solutions to x2 +
y3 = z7 coming from this speci�c rational point.

In the following page there is a picture that explains the situation: for each
relevant twist Cj of X(7) are listed all its known Q-rational points, following the
notation of the appendix B. Then for each such Pi we list, if any, the elements of
S(Z) (that are primitive integer solutions to x2 + y3 = z7) coming from Pi. It is
important to note that, since we worked with the quasi-a�ne punctured scheme SZ,
we cannot obtain the trivial solution (0, 0, 0) from this contruction.
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Cj ' X(7) Pi ∈ Cj S(Z)

P1

C1 P2

P3

P4

P5

P6

C2 P7 (±1,−1, 0)

P8

P9

P10

C3 P11

P12

P13

P14

C4 P15 (±1, 0,−1)

P16

P17

C5 P18

P19

P20

P21 ±(0, 1, 1)

C6 P22

P23

P24 (±15312283, 9262, 113)

P25

C7 P26 (±2213459, 1414, 65)

P27 (±21063928,−76271, 17)

C8 P28

P29 (±3,−2, 1)

C9 P30

P31

C10 P32 (±71,−17, 2)
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Chapter 5

Computing the ranks of the ten
Jacobians

In order to determine the sets of rational points of C1, . . . , C10 �rst we need to
determine the Mordell-Weil ranks of their corresponding Jacobians J1, . . . , J10. (cf.
Theorem 1.44 for the construction of the Jacobian of a curve).

5.1 Ranks of J1, J2, J3

The curves C1, C2, C3 are µ7 -twists of X, that is Ci ' X over L = Q[ζ7] for
i = 1, 2, 3; rather than more general twist; so that we can apply more methods to
compute the ranks of J1, J2 and J3.

First we note that C1, C2 and C3 are birational to the (singular) plane curves of
equations:

C ′1 : u7 = (6v − w)w4

C ′2 : u7 = (18v − w)w4

C ′3 : u7 = (12v − w)w4.

By [45] this three curves are Galois cover of P1 with Galois group µ7; hence their
Jacobians have complex multiplication by Z[ζ7] and we can perform a (1 − ζ7) de-
scent on these Jacobians, following [45] and [49].

Let L = Q[ζ7]. The descent map is given by the function f = v/w that takes
values in

H = L({2, 3, 7}, 7) = {θ ∈ L×/L×7 : L(θ
1
7 /L) is unrami�ed outside {2, 3, 7}}.

If θ ∈ H, θ7 = 1, so that H is a F7−vector space. Moreover we have that dimH = 7
(cf. [60, Theorem I.2.13]). Performing a 1−ζ7 descent, we �nd that the Mordell-Weil
rank of Ji(L) is 6, for i = 1, 2, 3.
To conclude we apply the following lemma (cf. [45, p. 31]):
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Lemma 5.1. Let k be a number �eld not necessarily containing a primitive p−th
root of unity ζp ∈ Q̄. Let f(x) be a p−th power free polynomial with zeros in Q̄ ,
and let J be the Jacobian of yp = f(x). Then

rank J(k) =
rank J(k(ζp))

[k(ζp) : k]

Hence, we get that rank Ji = 1 for i = 1, 2, 3.

5.2 Ranks of J4, . . . , J10

The Klein quartic (hence its twists) has 24 �exes. These points can be partitioned
into eight sets with the following property. Choose one set of three and denote the
points by W1,W2,W3. The tangent line at Wj intersects X with multiplicity 3 at
Wj and multiplicity 1 at Wj+1 (The subscripts are considered modulo 3). We will
call such a set of three �exes a triangle. By abuse of notation, let Ti denote both a
triangle and the e�ective divisor of degree 3 given by the sum of the points. Let us
denote by T = {Ti|i = 1,≤ i ≤ 8} the set of the eight triangles.

Lemma 5.2. Let X ′ be a twist of X, then the set T is a Galois-stable set. In other
words, if σ ∈ Gal(K̄/K), then σTi = Tj where Tj ∈ T .

Proof. The tangent-intersection procedure involves only algebraic operations.

Remark 5.3. For i ≤ i ≤ j ≤ 8, we can �nd a function with divisor 2Ti − 2Tj
whose numerator and denominator are cubics. Therefore the divisor class [Ti − Tj ]
is killed by 2, moreover since the points in each Ti are not collinear, we have that
the order of [Ti − Tj ] is exactly 2 (cf. Remark 5.16).

Proposition 5.4. The [Ti− T1] for i = 1, . . . , 8 sum to 0, and any six of them with
i 6= 1 form a basis for Jac(X)[2]. Let Q1 = [

∑8
i=1 aiTi] and Q2 = [

∑8
i=1 biTi] with∑

ai =
∑
bi = 0. Let e2 be the 2−Weil pairing. Then

e2(Q1, Q2) = (−1)
∑8

i=1 aibi .

Remark 5.5. There is an analogy (cf. [46, p. 26] for details) between X with its
Ti and a genus-3 hyperelliptic curve with its Weierstrass points. This will allow us
to reformulate many of the results in [45] in our situation.

Lemma 5.6. For each curve C4, ..., C10 the following holds: for each Ti there is a
cubic whose intersection divisor with C is 2Ti + 3P + Ri, where Ri is an e�ective
divosr of degree 3 de�ned over Q and supported on three non-collinear Q̄.

Proof. This is a straightforward computation. See [46, p. 27].

In the following we develop the theory for a generic twist C of X. (C=Ci for
some i = 4, . . . , 10). Let us denote by J the Jacobian of C and let P ∈ C(Q) be a
Q−rational poins of C.
Choose functions f1, . . . , f8 with div(fi) = 2Ti+3P+Ri−3Ω, where Ω is a canonical
divisor over Q; and such that if σ ∈ G, then σTi = Tj . Then div(fi/fj) = 2Ti −
2Tj +Ri −Rj . Since sTi − 2Tj is principal, so is Ri −Rj .
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Lemma 5.7. We have that Ri = Rj for each i, j ∈ {1, . . . , 8}. Denote by R this
common value.

Proof. The Ri are e�ective, of degree 3, and are supported on three non-collinear
points by our construction. The Riemann-Roch theorem (cf. 1.21) then implies that
Ri = Rj .

In the following let K be one of the following �elds: Q,Qp or Q∞ = R.
Let us denote by ĀK the K̄-algebra of maps {α : T → K̄}. Since GK = Gal(K̄/K)
acts on T and on K̄, it acts also on ĀK . Denote by AK the algebra of GK-invariant
elements of ĀK .

De�nition 5.8. We say that D is a good divisor if it is of degree 0, de�ned over K
and if its support is disjoint from the support of div(fi) for every i ∈ {1, . . . , 8}.

De�ne now the following homomorphism of groups:

{good divisors} > A×K

D > (Ti 7→ fi(D)).

Lemma 5.9. If D is a good principal divisor, then f(D) ∈ A×2
K K×.

Now, since C has at least one rational point, every element of J(K) can be
represented by a good divisor. Therefore, f induces a well-de�ned homomorphism

f :
J(K)

2J(K)
−→

A×K
A×2
K K×

.

Let µT2 = {β : T → µ2 ⊂ K̄} be the 2−torsion in AK ; let µT2 /µ2 be its quotient
by the set of constant maps. Let q be the projection µT2 → µT2 /µ2. LetN : µT2 → µ2

be the restriction of the norm map ĀK → K̄.
De�ne the map

ε : J [2] >
µT2
µ2

Q > (Ti 7→ e2(Q, [Ti − T1])).

Note that ε is well-de�ned by Proposition 5.4.
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We obtain the following commutative diagram of Gk−modules:

1

µ2

∨

µT2

∨
N

> µ2 > 1

0 > J [2]
ε

>
µT2
µ2

q
∨

N
> µ2

wwwwwwwwww
> 1

1
∨

Using proposition 5.4 one can check that the vertical and horizontal lines are exact.

Now we compute the long exact exact cohomology sequences for the rows and the
columns. Since H1(GK , K̄×) and H1(GK , Ā×K) are trivial by Hilbert's 90 (theorem
1.62), we have that H1(GK ,µ2) ' K×/K×2 and that H1(GK ,µT2 ) ' A×K/A

×2
K by

Kummer isomorphisms (example 1.63).
We get the following diagram with exact rows and columns:

J(K)

2J(K)

K×

K×2

A×K
A×2
K

∨
N
>

f

> K×

K×2

H0

(
GK ,

µT2
µ2

)
N

> µ2
δ
> H1(GK , J [2])

ε
>

δ′

>

H1

(
GK ,

µT2
µ2

)q′

∨
N
>

K×

K×2

wwwwwww

The map f : J(K)/2J(K) −→ A×/A×2 is the map induced from f : J(K) → A×,
modulo 2.
The map q′ is the composition of the Kummer isomorphism A×/A×2 ' H1(GK ,µT2 )
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with the map induced by q in the cohomology. The map δ′ is the connecting homo-
morphis obtained taking the cohomology of the following sequence:

0 −→ J(K)[2] −→ J(K)
·2−→ J(K) −→ 0.

Proposition 5.10. The above diagram commutes, that is, f ◦ q′ = δ′ ◦ ε (cf. [46,
Proposition 11.2]).

Lemma 5.11. We have that δ′[R− 3P ] = δ(−1).

Proof. Let C1 be the cubic curve de�ned by the union of the three lines tangent
at the points of T1. By de�nition we have R = R1, so that 2T1 + 3P + R is the
intersection of C with a cubic. So it is linearly equivalent to the intersection of
C with any other cubic; thus we can take the intersection between C and C1. So
[2T1 +3P +R] = [4T1] by de�nition of T1, hence [R−3P ] = [4T1−6P ] = 2[T1−3P ],
therefore δ′([R−3P ]) is in the class of the 1-cocycle (σ 7→ [σT1−T1]). By Proposition
5.4, we have that ε([σT1 − T1]) = [σM −M ], where M is the following map:

M(Ti) =

{
1, if i = 1

−1 if i = 2, . . . , 8.

Moreover we have that N(M) = (−1)7 = −1, so that, by de�nition, δ(−1) is in the
class of the 1-cocycle (σ 7→ [σT1 − T1]) in H1(GK , J [2]).

Proposition 5.12. The kernel of f : J(K)/2J(K) −→ A×K/A
×2
K is generated by

[R− 3P ]. This element is trivial in J(K)/2J(K) if and only if the GK-set T has an
orbit of odd size.

Proof. The maps δ′ : J(K)/2J(K)→ H1(GK , J [2]) and q′ : A×K/A
×2
K −→ H1(GK ,µT2 /µ)

are injective by construction. Hence we have that

ker f = (δ′)−1(ker ε) = (δ′)−1(δ(µ2)).

Now, since µ2 is generated by −1, by Lemma 5.11 we have that
δ(µ2) = δ′(< [R− 3P ] >). It follows that

ker f = (δ′)−1(δ(µ2)) = (δ′)−1δ′(< [R− 3P ] >) =< [R− 3P ] > .

For the second part of the proof, see [45, Lemma 11.2 case b].

Now set A = AQ and Ap = AQp . In section 5.2.1 we will compute the GQ orbits
of T and we will see that for each of C4, . . . , C10 there are no orbits of odd size
(cf. Remark 5.20). Hence the kernel of the map f has size 2 and is generated by
[R− 3P ] ∈ J(Q)/2J(Q).
Let A '

∏
Ai, where the Ai are number �elds. Let p ve a prime number; let a be an

element of A× and ai its image in Ai. We say that a ∈ A×/A×2 is unrami�ed at p if
for each i, the �eld extension Ai(

√
ai/Ai) is unrami�ed at all primes over p. Let S

be a set of places of Q including 2, ∞ and all primes at which J has bad reduction,
excluding the odd primes at which the Tamagawa (de�nition 1.55) number is odd.
Let (A×/A×2Q×)S be the image in A×/A×2Q× of the elements of A×/A×2 that are
unrami�ed outside the primes of S. Finally, let H be the kernel of the norm map
from (A×/A×2Q×)s to Q×/Q×2.
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Proposition 5.13. The image of f : J(Q) −→ A×/A×2Q× is contained in H.

Proof. See [46, Proposition 11.5].

Let p be a prime of Q (it could be ∞). We have the following commutative
diagram:

J(Q)

ker(f)

f
> H

J(Qp)

ker(fp)

∨
fp
>

A×p

A×2
p Q×p

ρp
∨

where f denotes the map f in the case K = Qp; and ρp is the composition
H ↪→ A×/A×2Q× → A×p /A

×2
p Q×p .

Recall that (de�nition 1.65), in our setting, the 2-Selmer group Sel2(J,Q) is the
set of elements in H1(GQ, J [2]), unrami�ed outside S, which map to the image of
J(Qp) −→ H1(GQp , J [2]) for all p ∈ S.

De�nition 5.14. De�ne the fake 2-Selmer group to be

Sel2fake(J,Q) = {θ ∈ H|ρp(θ) ∈ f(J(Qp))for all p ∈ S}.

Lemma 5.15. The sequence

µ2
δ−→ Sel2(JQ)

ε−→ Sel2fake(J,Q) −→ 0

is exact.

Proof. See [45, Theorem 13.2]: in our case we have p = 2.

We will see that δ′(R − [R − 3P ]) is not zero (cf. 5.18). By Lemmas 5.11 and
5.15 we �nd that dimF2 Sel2(J,Q) = 1 + dimF2 Sel2

fake
(J,Q).

To compute Sel2
fake

(J,Q) �rst we need to explicitly �nd A. Let Λ be a subset of
{1, . . . , 8} such that the set 4{Tj}j∈Γ contains one representative of each GQ-orbit
of T . Let Aj = Q(Tj). Then we can �nd an isomorphism

A '
∏
j∈Λ

Aj (5.1)

The composition of f and this isomorphim is
∏
f∈Λ fj .

Then, to �nd a basis of (A×/A×2Q×)S we can use the algorithm described in [45,
�12].

Remark 5.16. Now, to �nd the function fj we �rst �nd a cubic form de�ned
over Aj , with the property that the curve de�ned by this cubic meets C at P with
multiplicity at least 3 and at each of the three points of Tj with multiplicity at least
2. The jth component of f then can be �nd by taking this cubic divided by any
cubic de�ned over Q, like z3.
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At this point we need a "local" basis for each J(Qp)/ ker(f). First we gather
some informations about the dimension:

Lemma 5.17. a. If p is odd, then #J(Qp)/2J(Qp) = #J(Qp)[2];

b. If p = 2, then #J(Q2)/2J(Q2) = 23#J(Q2)[2];

c. If p =∞, then #J(R)/2J(R) = #J(R)[2]/23.

Proof. It is [45, Lemma 12.10], in the special case where the isogeny φ is the mul-
tiplication by 2, the �eld kv is simply Qp and the dimension g of the Jacobian is
3.

Then, by Lemma 5.11 we have that in our cases J(Qp)/ ker(f) has half of the size
of J(Qp)/2J(Qp). Then we determine the intersection of all ρ−1

p (f(J(Qp))) for all
p ∈ S. That intersection is equal to Sel2

fake
(J,Q) which is half the size of Sel2(J,Q).

Then we have:

dim Sel2(J,Q) = rank J(Q) + dim J(Q)[2] + dimX(J,Q)[2]. (5.2)

In each of our cases we have that the number of independent elements we found so far
in J(Q)/2J(Q) equals dim Sel2(J,Q), so X(J,Q)[2] = 0, so subtracting dim J(Q)[2]
from dim Sel2(J,Q) gives us the rank of J(Q).

5.2.1 Results for J4, . . . , J10

Here we apply the technics developed in 5.1 to explicitly compute the ranks of
J4, . . . , J10. First of all, for each of the Ci we list all the known rational points that
we are able to �nd with a naive search. (See Appendix B).
Then we will discover the following:

Remark 5.18. For the curves C4, . . . , C10 we have that δ′([R− 3P ]) is nonzero.

Remark 5.19. In each Ji, for i = 4, . . . , 10, we have that ρ−1
2 (f(Ji(Q2)/ ker f)) is

the same as the image of the subgroup of Ji(Q) generated by the known rational
points. This means that, in each case, Sel2

fake
(Ji,Q) = ρ−1

2 (f(Ji(Q2)/ ker f)).

Remark 5.20. In each case, the GQ-set T has no orbit of odd size, therefore the
dimension of Sel2(Ji,Q) ' Ji(Q)/2Ji(Q) equals 1 + dim Sel2

fake
(Ji,Q).

Now we summarize the steps needed in such computations. See [46, �11.2] for the
full details concerning the computation of rank J4 and a sketch of the computation
of the ranks of J5, . . . , J10.

• For any smooth plane curve, the �ex points are the points on the curve where
the Hessian vanishes. We dehomogenize each model of Ci (4 ≤ i ≤ 10) and
their Hessians with respect to z, getting two polynomials in u = x/z and
v = y/z.

• We compute the resultant of such two polynomials to eliminate v and we get
a product of polynomials hα1(u) · · ·hαk

(u), each of them irreducible over Q.
From this decomposition we are able to compute the sizes of the Gk-orbits of
the triangles.
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• We explicitly compute, for each orbit Tαj , the number �eld Q(αj) containing
all the triangles Tk ∈ Tαj , so that we get A ' Q(α1)× · · · ×Q(αn).

• Let S = {∞, 2, 3, 7}. For each Qαj , we �nd a basis for the subgroup of
Q(αj)/Q(α)×2 that is unrami�ed outside S.

• Using this result and the norm map, we �nd a basis for (A×/A×2Q×)S ; then
we compute the kernel H of the norm map (A×/A×2Q×)S → Q/Q×2. We
have that this group H contains the fake 2-Selmer group (cf. De�nition 5.14).

• Now we �nd the function f , in order to do that we express f as an n-tuple
(f1, . . . , fn) where each fj is de�ned over the component Q(αj).

• We compute explicitly Sel2
fake

(Ji,Q): �rst we perform global computations to
obtain relations between dim Ji(Q)/ ker(f) and rank Ji(Q). Then we give a
lower bound on rank Ji(Q) looking at the image in H under the map f of the
subgroup of Ji(Q) generated by the known rational points on Ci.

• Then we perform a local computation �nding a basis for Ji(Q2)/ ker f ; we
conclude retrieveng the rank of the Jacobians using the Lemma 5.15.

The �nal results are summarized in the following table:

Curve rank Ji(Q)

C4 2
C5 3
C6 2
C7 2
C8 2
C9 2
C10 2

45



Chapter 6

Rational points on the ten curves

The aim of this chapter is to prove that all the points that we found on C1, . . . , C10

with a naive search (see Appendix B) are actually all the rationals points on the
curves C1, . . . , C10, except perharps for C5. In order to do that, two classical
diophantine geometry technics will be applied: the Mordell-Weil Sieve and the
Chabauty-Coleman theory. See Remark 6.7 to understand why the latter cannot
be applied to C5: this curve need one ad-hoc argument that will be explained in
section 6.4.

6.1 Mordell-Weil sieve

The main reference for this section is [50], where the method is explicitly introduced
for the �rst time.
Let C be a curve over Q and J its Jacobian; suppose furthermore that we know
explicitly an embedding C → J . The Mordell-Weil sieve is a method that uses
reduction modulo p, for several primes p, to show that certain points in J(Q) cannot
lie in the image of C. Suppose moreover that we explicitly know the generators for
J(Q): then the points of C(Q) are simply the points of J(Q) that lies on C. In
general, it is not known wheter there exists an algorithm to solve this problem.
Therefore we take a prime p of good reduction for C (hence for J , cf. Proposition
1.56), and we ask that reduction modulo p of a point P ∈ J(Q) lies in C(Fp). For
each p this weaker condition allow us to "sieve out" certain cosets of a �nite-index
subgroup in J(Q). After using these sieve conditions at few primes, maybe no point
on J(Q) remain, in this case we conclude that C(Q) is empty.

Remark 6.1. If C(Q), as in our cases, is known a priori to be nonempty, obviously
no complete obstruction to rational points can be found. In this case, one can try
to use the sieve information as input to a Chabauty-Coleman argument.

Remark 6.2. One can obtain sieve conditions also at primes p of bad reduction,
using the Néron model of J over Zp. See [46, Remarks 12.1] for details.

Remark 6.3. We assumed that we know the generators of J(Q), however it may
be enough to know the generators for a subgroup Q of �nite index in J(Q). For
instance, if one can prove that the index (J(Q) : Q) is relatively prime to the order
of J(Fp), then Q and J(Q) will have the same image in J(Fp).
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6.2 Chabauty-Coleman theory

Here we explain a method that originates with Chabauty [13], while he was trying
to prove the Mordell conjecture. Coleman [17] later realized that Chabauty's idea
could be done explicitly. In this very introductory exposition, we follow mostly [40].
If J is the Jacobian of the curve C, de�ned over Q, denote by JQp the variety de�ned
by the same equations as J , but de�ned over Qp for some �xed prime p where C
has good reduction. Finally denote by H0(JQp ,Ω

1) the Qp-vector space of regular
1-form on JQp .

Proposition 6.4. If ω ∈ H0(JQp ,Ω
1), then one can de�ne an "antiderivate" λω:

λω : J(Qp)→ Qp

Q 7→
∫ Q

0
ω.

characterized uniquely by the following two properties:

a. It is an homomorphism;

b. There is an open subgroup U of J(Qp) such that if Q ∈ U , then
∫ Q

0 ω can be
computed by expanding ω in power series in local coordinates, �nding a formal
antiderivative and evaluating the formal power series at the local coordinates
of Q. For a su�ciently small U , the formal antiderivative converges.

Proof. See [7, III.�7.6].

Now denote by J(Q) the closure of J(Q) in J(Qp) with respect to the p−adic
topology. Then we have the following result:

Lemma 6.5. Let r′ = dim J(Q) and r = rankJ(Q). Then r′ ≤ r.

Chabauty theorem was an important results towards the Mordell's conjecture,
before Faltings proved the conjecture in full:

Theorem 6.6 (Chabauty). Let C be a curve of genus g ≥ 2 de�ned over Q. Let J
be the Jacobian of C and let p be a prime. Let r and r′ be as above. Suppose r′ < g,
then C(Qp) ∩ J(Q) is �nite. In particular, C(Q) is �nite.

Proof. See [13].

Remark 6.7. The condition of r′ ≤ g, di�cult to verify in general, is automatically
satis�ed if r < g, thanks to Lemma 6.5. In our case, as shown in chapter 5, we have
that rank Ji(Q) < g = 3 for all the J ′is but J5; in the latter we have rank J5(Q) = 3
and this is exactly why the curve C5 needs a separate treatment.

We say that the 1−form ω kills a subset S ⊂ J(Qp) if λω|s = 0. By linear
algebra, we can �nd at least g − r > 0 indepentents 1−forms ω killing J(Q) (and
hence C(Q)). By "�nding" a 1−form, we mean computing its formal power series
expansion inl local coordinates. Coleman's method consists essentially in bounding
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the number of common zeros of the corresponding integrals λω on J(Qp) and hoping
that enough points in C(Q) are found to meet the bound: in this case these points
are all of them. If this fail, we can try with a di�erent prime, or we can combine
it with the Mordell-Weil sieve to exclude some residue classes on C(Fp) and thus
obtaining a sharper bound.

In the following we summarize the steps that we need to perform for each Ci
(i 6= 5) to apply Coleman's theorem 6.8 in the sequel, in order to get the rational
points of Ci (i 6= 5).
Let C be the smooth projective model of our quartic curve de�ned by the a�ne
equation g(u, v) = 0, obtatained dehomogenizing the equations given in section
4.3.1 and let J be its Jacobian. We pick a point P ∈ C(Q) (this can be always
done for our curves) and identify C as the subvariety of J given by the following
embedding:

C ↪→ J

T 7→ [T − P ],

where [T − P ] is the class of T − P in J .

• For the computations, we need G1, . . . , Gr ∈ J(Q), where r = rank J(Q),
in such a way that the group generated by these points has �nite index in
J(Q). Usually we obtain this information during the computation of r done
in chapter 5.

• We pick t uniformizing parameter at P that is also a uniformizer at P modulo
p. (Recall that C is smooth and that has good reduction at p).

• For each i, 1 ≤ i ≤ r, we compute mi ∈ Z≥1 such that miGi reduces to 0
modulo p.

• For each i we �nd a divisor of the form Di − 3P linearly equivalent to miGi,
where Di = Pi,1 + Pi,2 + Pi,3 is an e�ective divisor of degree 3 de�ned over Q.

• If we choose P such that its reduction modulo p is not an in�ection point, then
we have that each of the Pi,j is congruent to P modulo p.

• Since the genus of C is 3, the space of holomorphic di�erentials of C has
dimension 3, and we can compute a basis ω1, ω2, ω3. Then we can express
formally each such ωj as an element of Q[[t]]dt. A formal integration gives us
λj =

∫ t
0 ωj ∈ tQ[[t]] with j = 1, 2, 3.

• Now we compute, for each 1 ≤ i ≤ r and each 1 ≤ j ≤ 3, the following
expression:
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λωj (miGi) =

∫ miGi

0
ι∗ωj =

∫ [Di−3P ]

0
ι∗ωj

=

∫ Pi,1

P
ωj +

∫ Pi,2

P
ωj +

∫ Pi,3

P
ωj

= λj(t(Pi,1)) + λj(t(Pi,2)) + λj(t(Pi,3));

where ι∗ω denotes the pushforward of ω induced by C ↪→ J .

• Since the Pi,k are congruent to P modulo p, we have that the t(Pi,k) have
positive p-adic valuation, hence the series converge p−adically.

• With linear algebra we can compute the kernel of the map ω 7→ (λω(m1G1), . . . , λω(mrGr)).
This way we �nd s = 3 − r independent holomorphic di�erentials η1, . . . , ηs
such that the related 1-forms on JQp kill J(Q).

• For each 1 ≤ i ≤ s, we rescale ηi such that modulo p it reduces to a nonzero
di�erential η̃i.

• For Q ∈ C(Fp), set

ν = min
1≤i≤s

vQ(η̃i).

Then a (slightly sharper) version of Coleman's original result says the following:

Theorem 6.8 (Coleman improved version). Let Q ∈ C(Fp) and let ν be as above.
Then, if p > ν + 1, then there are at most ν + 1 rational points on C that reduce to
Q modulo p.

Proof. See [17] for Coleman's original proof; or [58] and [40] for the sharper results.

Remark 6.9. For some of our Ci, in particular for i = 1, 3, 7, 8, 9, 10; we want to do
a Chabauty argument using the prime 7 where Ci has bad reduction. The argument
is essentially the same, but we have to consider the Néron model of Ji. In all of the
cases we consider, we �nd that Ji(F7) ' (Z/7Z)3.
See [40, Appendix A] for the general approach to this case.

6.3 The strategy for the Ci's, i 6= 5

In this section we sketch the Mordell-Weil sieve and the Chabauty's arguments for
the curves Ci, i 6= 5. We refer to the notation of appendix B for the known rational
points on the curves.
De�ne the known part Ji(Q)known of Ji(Q) as the subgroup generated by the rational
points of appendix B and the element [R− 3P ] of lemma 5.11.

49



6.3.1 Computing C1(Q)

We want to show that
C1(Q) = {P1, P2, P3, P4}.

As prime we use p = 7. As said in remark 6.9, we have that J1(F7) ' (Z/7Z)3.
From section 5.1 we also get that dimF7 J1(Q/7J1(Q) = 2. Moreover the reduction
of J1(Q)known has also dimension 2, so that is the reduction of the whole J1(Q).
Using P4 as a basepoint, we easily see that there are four points in C1(F7): they are
the reductions of the four known rational points on C1. So it su�ces to show that
there is only one point of C1(Q) in each of those residue classes.
Now we compute the reductions modulo 7 of the di�erentials killing J1(Q) and we
�nd

η̃1 ←→ x+ 2y

η̃2 ←→ x− z.

Since their common zero in P2(F7) is not on C1, we have that min{vQ(η̃1, vQ(η̃2)} = 0
and so there is at most one rational point per residue class by theorem 6.8.

6.3.2 Computing C2(Q)

We want to show that
C2(Q) = {P5, P6, P7, P8, P9}.

As prime we use p = 5; we get that J2(F5) ' Z/126Z and the reduction of
J2(Q)known is the cyclic subgroup of order 63. Using P8 as a basepoint, we �nd
that the �ve known rational points reduce to di�erent points in C2(F5), which has
size 6. The reductions of the di�erentials killing J2(Q) are

η̃1 ←→ z

η̃2 ←→ x+ 2y.

Their common zero in P2(F5) is not on C2, so each of the six residue classes contains
at most one rational point. Since �ve of the six do contain a rational point, the last
thing that we prove is that there are no rational points on C2 that reduces into the
sixth class.

6.3.3 Computing C3(Q)

We want to show that
C3(Q) = {P10, P11, P12, P13}.

As prime we use p = 7 and, as for C1, we have again that J1(F7) ' (Z/7Z)3 and
dimF7 J1(Q/7J1(Q) = 2. Moreover the reduction of J2(Q)known has also dimension
2, so that it is the reduction of the whole J3(Q). Using P13 as basepoint, we �nd
that there are exactly four points of C3(F7) in the reduction of J3(Q): they are
the reductions of the four known rational points on C3. The reductions of the
di�erentials killing J3(Q) are

η̃1 ←→ 2x− y
η̃2 ←→ x+ 2z.
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And as before we can conclude that there is at most one rational point per residue
class.

6.3.4 Computing C4(Q)

We want to show that
C4(Q) = {P14, P15, P16}.

As prime we use p = 5; we get that J4(F5) ' (Z/6Z)3. The reduction of J4(Q)known
is isomorphic to (Z/6Z)2. From section 5.2.1 we get that J4(Q) and J4(Q)known
are both isomorphic to Z2 × Z/4Z and J4(Q)known has odd index in J4(Q), the
whole J4(Q) must reduce to the same (Z/6Z)2 subgroup. Using P14 as basepoint,
we show as before that the only elements in C4(F5) in the reduction of J4(Q) are
the restrictions of the three known rational points. Since the rank is 2, there is only
one di�erential

η̃ ←→ x+ y

that does not vanish on C4(F5), so that, as before, there is only one rational point
in each residue class.

6.3.5 Computing C6(Q)

We want to show that
C6(Q) = {P21, P22, P23, P24}.

As primes we use p = 11, 23. From section 5.2.1 we get again that J6(Q) and
J6(Q)known are both isomorphic to Z2 × Z/4Z and that J6(Q)known has odd index
in J6(Q). We have that J6(F11) ' (Z/16Z) × (Z/8Z)2 × (Z/2Z) and that the
reduction of J6(Q)known is isomorphic to (Z/8Z)2 × (Z/4Z). So, as for C4, J6(Q)
and J6(Q)known have the same reduction. There are �ve points in C6(F11) that lye
in the reduction of J6(Q); four of them are the reductions of the four known rational
points. To prove that there are no points that reduces to the �fth class, we consider
the reduction at p = 23; �nally we show that the di�erential modulo 11

η̃ ←→ x+ 5y

does not vanish at the four relevant residue classes modulo 11.

6.3.6 Computing C7(Q)

We want to show that
C7(Q) = {P25, P26, P27}.

As primes we use p = 7, 13. We have that J7(F7) ' (Z/7Z)3, and from section
5.2.1 we get that J7(Q) has rank 2 and no 7-torsion. Moreover the reduction of
J7(Q)known is isomorphic to (Z/7Z)2. We use P25 as a basepoint; we discover that
the only elements in C7(F7) in the reduction of J7(Q) are the reductions of the three
known rational points. Our di�erential modulo 7 is

η̃ ←→ x− 2z,
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it does not vanish at P26 and at P27, but it has a simple zero at P25. So in principle
we may have two rational points in the third residue class of P25.
We repeat the Chabauty argument with p = 13: its di�erential is

ω̃ ←→ x− 2y,

that does not vanish at P25. So there is only one point of C7(Q) in the residue class.

6.3.7 Computing C8(Q)

We want to show that
C8(Q) = {P28, P29}.

As prime we use p = 7. We have that J8(F7) ' (Z/7Z)3, and from section 5.2.1
we get that J8(Q) has rank 2 and no 7-torsion. The reduction of J7(Q)known is
isomorphic to (Z/7Z)2, soo that is also the reduction of the whole J8(Q). We use
P28 as a basepoint. Then the only elements of C8(F7) in the reduction of J8(Q) are
the reductions of the two known rational points. The di�erential modulo 7 is

η̃ ←→ x− y − 3z.

It does not vanishes at P28 and P29, so that there is only one point of C8(Q) in each
of those residue classes.

6.3.8 Computing C9(Q)

We eant to show that
C9(Q) = {P30, P31}.

As primes we use p = 7, 11, 13 and we use P30 as basepoint. We know that
J9(Q)known ' Z2 and that J9(Q) has rank 2 and not 7 − torsion. We have that
J8(F7) ' (Z/7Z)3. There are four points of C9(F7) in the reduction of J9(Q): two of
them correspond to the reductions of the two known rational points. We eliminate
the other two possibilities with a similar argument at p = 13.
Now the di�erential modulo 7 is

η̃ ←→ x− y − 2z.

it does not vanish at P30 but it has a simple zero at P31. So in principle we may
have two rational points in the third residue class of P31.
We repeat the Chabauty argument with p = 11: its di�erential is

ω̃ ←→ x− 5y + 4z,

that does not vanish at P31. So there is only one point of C9(Q) in this residue class.
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6.3.9 Computing C10(Q)

We want to show that
C10(Q) = {P32, P33}.

As prime we use 7. As before wfe have that J10(F7) ' (Z/7Z)3. Also the group
J10(Q) has rank 2 and no 7-torsion. The reduction of J10(Q)known is isomorphic to
(Z/7Z)2, so that as before is also the reduction of the whole J10(Q). We use P32 as
a basepoint. Then we show that the only elements in C10(F7) in the reduction of
J10(Q) come from the two known rational points. So, as usually, it su�ces to show
that there is only one point of C10(Q) in each of the residue classes. The di�erential
modulo 7 is

η̃ ←→ x+ y + 3z;

it does not vanish on the reductions of P32 and P33 and this proves the claim.

6.4 The strategy for C5

See [46, �13] for the full details of this section.
To approach C5, �rst of all we need to de�ne the following sets:

C5(Q2)subset = {P ∈ C5(Q2) : P ≡ P17 or P20 mod 2}
C5(Q3)subset = {P ∈ C5(Q3) : P ≡ P18 mod 3}
C5(Q)subset = {P ∈ C5(Q) : P ∈ C5(Q2)subset ∩ C5(Q3)subset}.

Remark 6.10. If Q1, Q2 ∈ P2(Qp), we say that Q1 ≡ Q2 mod p if the image of Q1

and Q2 under the restricion map P2(Qp) −→ P2(Fp) are equal.

Lemma 6.11. Let p be 2 or 3. If P ∈ C5(Qp) and the image of P in P1(Qp) is in
j(S(Zp)), then P ∈ C5(Qp)subset.

Proof. The proof is pretty much a straightforward computation reducing the equa-
tion de�ning C5 modulo 2 and 3. See [46, lemma 7.8].

Remark 6.12. Thanks to lemma 6.11, it will be enough to determine C5(Q)subset

instead of the whole C5(Q). In this section eventually we will show that C5(Q)subset

is empty.

To prove the result, we must use the sieve information at the bad primes 2 and
3: in fact we will use only the component groups of the Néron models at 2 and 3.
Finally we will retrieve some sieve information at some primes of good reductions
to get a contradition.
Let Qi ∈ J() be the class of the divisor Pi−P17, for i = 17, 18, 19, 20. Let Q be the
subgroup of J(Q) generated by the Qi. We will show that the index (J5(Q) : Q)
is relatively prime to 14, and we will use groups of order divisible only by 2 and
7 in the sieve. We will determine the set (n18, n19, n20) ∈ Z3 such that n18Q18 +
n19Q19 + n20Q20 satis�es the siece conditions.

• From the sieve information at 3, we get that if P ∈ C5(Q)subset and n18Q18 +
n19Q19 + n20Q20 = [P − P17], then

n18 + 3n20 ≡ 1 mod 7. (6.1)
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• From the sieve information at 2, if P ∈ C5(Q)subset we get that

n18(0, 3) + n19(0, 3) + n20(1, 2) ≡ (0, 0) or (1, 0) or (1, 2) mod 4. (6.2)

• From the sieve information at 23 (of good reduction) we get that n18 and n19

should be both even.

• From the sieve information at 97 (of good reduction) and all the previous
conditions we get that (n18, n19, n20) is congruent modulo 14 to one of the
following:

(2, 10, 9), (6, 2, 10), (6, 10, 10), (8, 0, 7). (6.3)

• From the sieve information at 13 (of good reduction) we get that the image
of C5(F13) in J5(F13)/14J5(F13) has size 6, and the resulting conditions on
(n18, n19, n20) modulo 14 contradict those of (6.3).

To conclude the proof, we need this last result:

Lemma 6.13. The index (J5(Q) : Q) is relatively prime to 14.

Proof. By the resuts in chapter 5, we get that J5(Q) ' Z3. The image of Q under
J5(Q) −→ J5(F23)/2J5(F23) has F2-rank 3, so 2 - (J(5(Q) : Q). Finally the image
of Q under

J5(Q)→ J5(F13)

7J5(F13)
× J5(F97)

7J5(F97)

has F7- rank 3, so 7 - (J(5(Q) : Q). Thus 14 - (J(5(Q) : Q).

So we get that C5(Q)subset is empty, hence thanks to lemma 6.11 we have that
there are no points on C5(Q) giving us solutions in S(Z).

This concludes the proof of the main theorem 2.2.
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Appendix A

The set H

In section 4.2.2 is shown that all the irreducibles relevants G-modules E[7] comes
from quadratic twists of curves in a speci�c set H (cf. Lemma 4.11). Here follows
the list of equations of these elliptic curves, with the Cremona label from [19] for
each one. The equations are written in terms of the classical minimal projective
model

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

(24A1): Y 2Z = X3 −X2Z − 4XZ2 + 4Z3

(27A1): Y 2Z + Y Z2 = X3 − 7Z3

(32A1): Y 2Z = X3 + 4XZ2

(36A1): Y 2Z = X3 + Z3

(54A1): Y 2Z +XY Z = X3 −X2Z + 12XZ2 + 8Z3

(96A1): Y 2Z = X3 +X2Z − 2XZ2

(108A1): Y 2Z = X3 + 4Z3

(216A1): Y 2Z = X3 − 12XZ2 + 20Z3

(216B1): Y 2Z = X3 − 3XZ2 − 34Z3

(288A1): Y 2Z = X3 + 3XZ2

(864A1): Y 2Z = X3 − 3XZ2 + 6Z3

(864B1): Y 2Z = X3 − 24XZ2 + 48Z3

(864C1): Y 2Z = X3 + 24XZ2 − 16Z3

If we want to recover the standard Weirestrass equation over a �eld of char 6= 2, 3,
following [56, III.1], we de�ne the following quantities:
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b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6.

Then the (a�ne) model is given by the Weierstrass equation

y2 = x3 − 27c4x− 54c6.
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Appendix B

Known rational points on
C1, . . . , C10

Here we list all the known Q-rational points on the quartic curves C1, . . . , C10, whose
equations can be found in section 4.3.1. In sections 6.3 and 6.4 we proved that this
points are actually all the rational points of the curves except perharps for C5. In
the latter case, we proved instead that a primitive integer solution to x2 + y3 = z7

coming from a rational point of C5 (in the sense of section 4.3.1), should come from
one of the rational points listed below: this su�ces to our purpose. The table also
lists the Mordell-Weil rank of each Jacobian Ji computed in chapter 5 and the prim-
itive solutions to x2 + y3 = z7 that comes from each rational points (if any).

In section 4.3.1 there is a picture that shows the connection between the curves
Cj 's, their rational points Pi's and the primitive integer solutions of x2 + y3 = z7.
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Curve rank Ji(Q) Points Primitive solutions
C1 1 P1 (1 : 0 : 0) (±1,−1, 0)

P2 (0 : 1 : 0) (±1,−1, 0)
P3 (0 : 0 : 1) (±1,−1, 0)
P4 (1 : −1 : 2) −

C2 1 P5 (1 : 0 : 0) (±1,−1, 0)
P6 (0 : 1 : 0) (±1,−1, 0)
P7 (0 : 0 : 1) (±1,−1, 0)
P8 (1 : 1 : −1) −
P9 (1 : −2 : −1) −

C3 1 P10 (1 : 0 : 0) (±1,−1, 0)
P11 (0 : 1 : 0) (±1,−1, 0)
P12 (0 : 0 : 1) (±1,−1, 0)
P13 (1 : 1 : −1) −

C4 2 P14 (1 : 0 : 0) (±1, 0, 1)
P15 (0 : 1 : 0) (±1, 0, 1)
P16 (0 : 1 : 1) −

C5 3 P17 (1 : 0 : 0) −
P18 (0 : 1 : 0) −
P19 (0 : 0 : 1) −
P20 (1 : 1 : 1) −

C6 2 P21 (0 : 1 : 0) ±(0, 1, 1)
P22 (1 : −1 : 0) ±(0, 1, 1)
P23 (0 : 1 : 1) (±15312283, 9262, 113)
P24 (0 : 1 : −1) (±15312283, 9262, 113)

C7 2 P25 (0 : 1 : 0) −
P26 (0 : 0 : 1) (±2213459, 1414, 65)
P27 (0 : 1 : 1) (±21063928,−76271, 17)

C8 2 P28 (0 : 0 : 1) (±3,−2, 1)
P29 (2 : −1 : 0) −

C9 2 P30 (0 : 0 : 1) −
P31 (1 : 1 : 0) −

C10 2 P32 (1 : 0 : 0) (±71,−17, 2)
P33 (1 : 1 : 0) −
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